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Abstract

We consider the one-sided exit problem for stable Lévy process in random scenery,
that is the asymptotic behaviour for T large of the probability

P
[

sup
t∈[0,T ]

∆t ≤ 1
]

where

∆t =

∫
R

Lt(x) dW (x).

Here W = {W (x);x ∈ R} is a two-sided standard real Brownian motion and
{Lt(x);x ∈ R, t ≥ 0} the local time of a stable Lévy process with index α ∈ (1, 2],
independent from the process W . Our result confirms some physicists prediction by
Redner and Majumdar.
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1 Introduction

Random processes in random scenery are simple models of processes in disordered
media with long-range correlations. These processes have been used in a wide variety
of models in physics to study anomalous dispersion in layered random flows [13, 5],
diffusion with random sources, or spin depolarization in random fields (we refer the
reader to Le Doussal’s review paper [11] for a discussion of these models). Let us also
mention the fact that these processes are functional limits of random walks in random
scenery [9, 6, 7, 4, 8]. The persistence properties of these models were studied by Red-
ner [15, 16] and Majumdar [12]. The interested reader could refer to the recent survey
paper [1] for a complete description of already known persistence probabilities and ex-
ponents. Supported by physical arguments, numerical simulations and comparison with
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On the one-sided exit problem for stable processes in random scenery

the Fractional Brownian Motion, Redner and Majumdar conjectured the persistence ex-
ponents. In this paper we rigorously prove their conjecture up to logarithmic factors.
Before stating our main result, we present the process we are interested in.

Let W = {W (x);x ∈ R} be a standard two-sided real Brownian motion and Y =

{Yt, t ≥ 0} be a strictly stable Lévy process with index α ∈ (1, 2] such that Y0 = 0. More
precisely, for some positive scale-parameter c, the characteristic function of the random
variable Y1 is given by

∀θ ∈ R, E[eiθY1 ] = exp
{
− c|θ|α

(
1 + iγ sgn(θ) tan(πα/2)

)}
. (1.1)

where γ ∈ [−1, 1]. We will denote by {Lt(x);x ∈ R, t ≥ 0} a continuous version with
compact support of the local time of the process {Yt; t ≥ 0}. The processes W and Y are
defined on the same probability space and are assumed to be independent. We consider
the random process in random scenery {∆t; t ≥ 0} defined as

∆t =

∫
R

Lt(x) dW (x).

The process ∆ is known to be a continuous δ-self-similar process with stationary incre-
ments, with

δ := 1− 1

2α
.

This process can be seen as a mixture of Gaussian processes, but it is neither Gaussian
nor Markovian. In this article, we study the asymptotic behaviour of

F(T ) := P
[

sup
t∈[0,T ]

∆t ≤ 1
]

as T → +∞. Our main result is the following one.

Theorem 1. For any α ∈ (1, 2], there exists a constant c = c(α) > 0, such that for T
large enough,

T−1/(2α)(log T )−c ≤ P
[

sup
t∈[0,T ]

∆t ≤ 1
]
≤ T−1/(2α)(log T )+c.

2 Lower Bound

For a certain class of stochastic processes {Xt; t ≥ 0} (to be specified below), Molchan
[14] proved that the asymptotic behavior of

P
[

sup
t∈[0,T ]

Xt ≤ 1
]

is related to the quantity

I(T ) := E

(∫ T

0

eXt dt

)−1
 .

We refer to [2] where the relationship between both quantities is clearly explained as
well as the heuristics.

Theorem 2 (Statement 1, [14]). Let {Xt; t ≥ 0} be a continuous process, self-similar
with index H ∈ (0, 1), with stationary increments s.t. for every θ > 0,

E
[

exp
(
θ max
t∈[0,1]

|Xt|
)]

< +∞.
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Then, as T → +∞,

E

(∫ T

0

eXt dt

)−1
 = HT−(1−H)

(
E
[

max
t∈[0,1]

Xt

]
+ o(1)

)
.

By applying this result to our random process ∆ we get

Proposition 2.1. For any α ∈ (1, 2], as T → +∞,

E

(∫ T

0

e∆t dt

)−1
 =

(
1− 1

2α

)
T−1/(2α)

(
E
[

max
t∈[0,1]

∆t

]
+ o(1)

)
.

Proof. The process {∆t; t ≥ 0} being continuous, self-similar with index δ := 1− 1
2α , with

stationary increments, it is enough to prove that for every θ > 0,

E
[

exp
(
θ max
t∈[0,1]

|∆t|
)]

< +∞. (2.1)

Let θ > 0. We have

E
[

exp
(
θ max
t∈[0,1]

|∆t|
)]

=

∫ ∞
0

P
(

exp (θ max
t∈[0,1]

|∆t|) ≥ λ
)
dλ

≤ 2 +

∫ ∞
2

P
(

max
t∈[0,1]

|∆t| ≥
log(λ)

θ

)
dλ.

Since the process {∆t; t ≥ 0} is symmetric,

P
(

max
t∈[0,1]

|∆t| ≥
log(λ)

θ

)
≤ 2 P

(
max
t∈[0,1]

∆t ≥
log(λ)

θ

)
≤ 4 P(∆1 ≥ (log λ)/θ),

using the maximal inequality for the process ∆ (see Theorem 2.1 in [10]). Moreover,
from Theorem 5.1 in [10], there exist positive constants C and γ (depending on α) s.t.
for every x > 0,

P(∆1 ≥ x) ≤ C exp(−γx2α/(1+α)).

Since the function λ → exp(−γ((log λ)/θ)2α/(1+α)) is integrable at infinity for any α ∈
(1, 2] and any θ > 0, assertion (2.1) follows.

Aurzada’s proof of the lower bound in the H-index Fractional Brownian Motion
{BH(t); t ≥ 0} case (see [2]) rests on both following arguments: the self-similarity of
the FBM and the inequality (valid for a large enough)

(E|BH(t)−BH(s)|a)1/a = C(a)|t− s|H , t, s ≥ 0 (2.2)

with C(a) ≤ caν , for some c and ν > 0. Our random process ∆ being self-similar, it
is enough to prove assertion (2.2) to derive the lower bound. The increments of the
process ∆ being stationary, by self-similarity, we have for every t, s ≥ 0,

E[|∆t −∆s|a] = |t− s|δa E[|∆1|a]

≤ |t− s|δa E[|∆1|2([a]+1)]a/(2([a]+1))

Conditionally to the process Y , the random variable ∆1 is centered Gaussian with vari-
ance

V1 :=

∫
R

L2
1(x) dx.
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From the independence of both processes Y and W and from the formula of the even
moments of the centered reduced Gaussian law, we can derive the even moments of the
random variable ∆1, namely, for any m ∈ N,

E[∆2m
1 ] = E[V m1 ]

(2m)!

2mm!
.

First of all, from Stirling’s formula, for m large enough, we have

(2m)!

2mm!
≤ C.

(2

e

)m
mm.

Moreover,

E[V m1 ] =

∫ ∞
0

P[V1 ≥ λ1/m] dλ.

From Corollary 5.6 in [10], there exist positive constants C and ξ s.t. for every λ > 0,

P[V1 ≥ λ] ≤ Ce−ξλ
α

.

So, we have (the constant C may change from line to line but does not depend on m ≥ 1)

E[V m1 ] ≤ 2 + Cm

∫ ∞
21/m

e−ξλ
α

λm−1 dλ

≤ Cm

∫ ∞
0

e−ξλ
2

λ
2m
α dλ

≤ Ccm/αmm/α,

for some constants C, c > 0. It is now easy to derive (2.2) namely

(E|∆t −∆s|a)1/a = C(a)|t− s|δ, t, s ≥ 0 (2.3)

where C(a) ≤ caν with ν := 1
2 (1 + 1

α ).

3 Upper bound

As in [14] and [2], the main idea of the proof is to bound I(T ) from below by restrict-
ing the expectation to a well-chosen set of paths.
Observe that, conditionally to Y = {Yt; t ≥ 0}, the process {∆t; t ≥ 0} is a centered
Gaussian process such that for every 0 ≤ t < s,

E[∆t∆s|Y ] =

∫
R

Lt(x)Ls(x) dx ≥ 0,

E[∆t(∆s −∆t)|Y ] =

∫
R

Lt(x)(Ls(x)− Lt(x)) dx ≥ 0,

since t → Lt(x) is a.s. increasing for all x ∈ R. It follows then from Slepian’s lemma,
that for every 0 ≤ u < v < w and every real numbers a, b,

P

[
sup
t∈[u,v]

∆t ≤ a, sup
t∈[v,w]

∆t ≤ b
∣∣∣Y ] ≥ P[ sup

t∈[u,v]

∆t ≤ a
∣∣∣Y ]P[ sup

t∈[v,w]

∆t ≤ b
∣∣∣Y ] (3.1)

P

[
sup
t∈[u,v]

∆t ≤ a, sup
t∈[v,w]

(∆t −∆v) ≤ b
∣∣∣Y ] ≥ P[ sup

t∈[u,v]

∆t ≤ a
∣∣∣Y ]P[ sup

t∈[v,w]

(∆t −∆v) ≤ b
∣∣∣Y ] .

(3.2)
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Let p > 0 and β > 0. We define

aT := (log T )p and βT :=
a

1− 1
2α−

1
4α2

T

(log aT )β
.

For any t > 0, we write |Lt|2 the random variable
(∫
R
L2
t (x) dx

)1/2
. Let us consider the

event
AT = {|LaT |2 ≥ βT }.

Lemma 3. For all p > 0 and all β > 0,

P[AcT ] = O
(

(log aT )−2αβa
− 1

2α

T

)
as T → +∞.

Proof. First we notice that |LaT |2 has the same distribution as a
1− 1

2α

T |L1|2 and that, by
the Cauchy-Schwartz inequality, we have

1 =

∫
R

L1(x) dx ≤ |L1|2
√
S, with S := sup

s∈[0,1]

Ys − inf
s∈[0,1]

Ys.

Hence we have

P[AcT ] = P[|LaT |2 < βT ]

= P[|L1|2 < a
− 1

4α2

T (log aT )−β ]

≤ P[S > a
1

2α2

T (log aT )2β ]

≤ P[ sup
s∈[0,1]

Ys > a
1

2α2

T (log aT )2β/2] + P[ sup
s∈[0,1]

(−Ys) > a
1

2α2

T (log aT )2β/2] (3.3)

and so, for T large enough, due to Theorem 4.a in [3], we have

P[AcT ] = O(a
− 1

2α

T (log aT )−2αβ).

(Remark that in the case γ = 1 where γ is defined in (1.1), it follows from (8) in [3]
that the first probability in (7) is zero. Theorem 4.a [3] can then be applied to the
Lévy process {−Yt; t ≥ 0} which is strictly stable with index α and γ = −1). The lemma
follows.

Let us define the function

φ(t) :=

{
1 for 0 ≤ t < aT ,

1− βT for aT ≤ t ≤ T .

Clearly, we have

E

(∫ T

0

e∆t dt

)−1 ∣∣∣Y
 ≥ (∫ T

0

eφ(t) dt

)−1

P
[
∀t ∈ [0, T ],∆t ≤ φ(t)

∣∣∣Y ].
When p(1− 1

2α −
1

4α2 ) > 1, it is easy to show that∫ T

0

eφ(t) dt = O(aT ).

By Slepian’s lemma (see (3.1)), we have

P
[
∀t ∈ [0, T ],∆t ≤ φ(t)

∣∣∣Y ] ≥ P[∀t ∈ [0, aT ],∆t ≤ 1
∣∣∣Y ]P[∀t ∈ [aT , T ],∆t ≤ 1− βT

∣∣∣Y ].
ECP 18 (2013), paper 33.
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Remark that

P
[
∀t ∈ [aT , T ],∆t ≤ 1− βT

∣∣∣Y ] ≥ P[∆aT ≤ −βT ;∀t ∈ [aT , T ],∆t −∆aT ≤ 1
∣∣∣Y ].

Conditionally to Y , the increments of the process {∆t; t ≥ 0} being Gaussian and posi-
tively correlated, by Slepian’s lemma (see (3.2)), we get

P
[
∀t ∈ [aT , T ],∆t ≤ 1− βT

∣∣∣Y ] ≥ P[∆aT ≤ −βT
∣∣∣Y ]P[∀t ∈ [aT , T ],∆t −∆aT ≤ 1

∣∣∣Y ].
Conditionally to Y , the random variable ∆aT is centered Gaussian with variance |LaT |22
and so P[∆aT ≤ −βT |Y ] = F (− βT

|LaT |2
) where F is the distribution function of the Normal

distribution N (0, 1). On the event AT , we then have

P[∆aT ≤ −βT |Y ] ≥ F (−1).

Moreover,

∆t −∆aT =

∫
L̃t−aT (x− YaT ) dW (x)

where L̃ is the local time of the process
{
Ỹt; t ≥ 0

}
defined as Ỹt := YaT+t−YaT for t ≥ 0.

Conditionally to Y , the processes {∆t −∆aT ; t ≥ aT } and
{∫

L̃t−aT (x) dW (x); t ≥ aT
}

have the same distribution and P
[
∀t ∈ [aT , T ],∆t−∆aT ≤ 1

∣∣∣Y ] is therefore σ
(
Ỹt, t ≥ 0

)
-

measurable. Finally, on the event AT , we get∫ T
0
eφ(t)dt

F (−1)
E

(∫ T

0

e∆t dt

)−1 ∣∣∣Y
 ≥ P[∀t ∈ [0, aT ],∆t ≤ 1

∣∣∣Y ]P[∀t ∈ [aT , T ],∆t−∆aT ≤ 1
∣∣∣Y ].

The probabilities in the right hand side are respectively measurable with respect to
the σ-fields σ(Ys, s ≤ aT ) and σ(YaT+s − YaT , s ≥ 0), which are independent. We get
therefore∫ T

0
eφ(t)dt

F (−1)
E

(∫ T

0

e∆t dt

)−1


≥
∫ T

0
eφ(t)dt

F (−1)
E

(∫ T

0

e∆t dt

)−1

1AT


≥ E

[
P
[
∀t ∈ [0, aT ],∆t ≤ 1

∣∣∣Y ]1AT ]P[∀t ∈ [aT , T ],∆t −∆aT ≤ 1
]

≥
(
P
[
∀t ∈ [0, aT ],∆t ≤ 1

]
− P

[
AcT
])
P
[
∀t ∈ [0, T − aT ],∆t ≤ 1

]
.

Let c be the exponent appearing in the lower bound. We choose β > c/(2α) and p such
that p(1− 1

2α −
1

4α2 ) > 1. Due to Lemma 3 and to the lower bound of F(T ), the first term

in the right hand side is larger than C(log aT )−ca
−1/(2α)
T for T large enough. The second

term is clearly larger than

P
[
∀t ∈ [0, T ],∆t ≤ 1

]
.

Therefore, we get

P
[
∀t ∈ [0, T ],∆t ≤ 1

]
≤ C(log aT )c(aT )1+ 1

2αE

(∫ T

0

e∆t dt

)−1


and the upper bound follows using the equivalent for I(T ) in Proposition 2.1.

ECP 18 (2013), paper 33.
Page 6/7

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v18-2444
http://ecp.ejpecp.org/


On the one-sided exit problem for stable processes in random scenery

References

[1] Aurzada, F.; Simon, T. Persistence probabilities & exponents (2012) Math arXiv:1203.6554.

[2] Aurzada, F. On the one-sided exit problem for fractional Brownian motion. Electronic Com-
munications in Probability 16 (2011), 392-404. MR-2831079

[3] Bingham, N. H. Maxima of sums of random variables and suprema of stable processes. Z.
Wahrscheinlichkeitstheorie verw. Geb. (1973), 26, 273 – 296. MR-0415780

[4] Bolthausen, E. A central limit theorem for two-dimensional random walks in random scener-
ies. Ann. Probab. 17 (1989), no. 1, 108 – 115. MR-0972774

[5] Bouchaud, J. P.; Georges, A.; Koplik, J.; Provata, A.; Redner, S. Superdiffusion in random
velocity fields. Phys. Rev. Lett. 64, 2503 – 2506.

[6] Borodin, A. N. A limit theorem for sums of independent random variables defined on a
recurrent random walk. (Russian) Dokl. Akad. Nauk SSSR 246 (1979), no. 4, 786 – 787.
MR-0543530

[7] Borodin, A. N. Limit theorems for sums of independent random variables defined on a tran-
sient random walk. Investigations in the theory of probability distributions, IV. Zap. Nauchn.
Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 85 (1979), 17 – 29, 237, 244. MR-0535455

[8] Deligiannidis, G.; Utev, S., An asymptotic variance of the self-intersections of random walks,
Sib. Math. J. (2011), Vol 52, No 4, 639 – 650. MR-2883216

[9] Kesten, H.; Spitzer, F. A limit theorem related to a new class of self-similar processes. Z.
Wahrsch. Verw. Gebiete 50 (1979), 5 – 25. MR-0550121

[10] Khoshnevisan, D.; Lewis, T. M. A law of iterated logarithm for stable processes in random
scenery Stoch. Proc. and Their Appli. (1998), 74, 89 – 121. MR-1624017

[11] Le Doussal, P. Diffusion in layered random flows, polymers, electrons in random potentials,
and spin depolarization in random fields. J. Statist. Phys. 69 (1992), no. 5-6, 917 – 954.
MR-1192029

[12] Majumdar, S. Persistence of a particle in the Matheron - de Marsily velocity field. Phys. Rev.
E 68, 050101(R) (2003).

[13] Matheron, G.; de Marsily G. Is transport in porous media always diffusive? A counterexam-
ple. Water Resources Res. 16 (1980), 901 – 907.

[14] Molchan, G. M. On the maximum of fractional Brownian motion. (Russian) Teor. Veroyatnost.
i Primenen. 44 (1999), no. 1, 111–115; translation in Theory Probab. Appl. 44 (2000), no. 1,
97 – 102. MR-1751192

[15] Redner, S. Invited Symposium Contribution: Superdiffusion in Random Velocity Fields. Pro-
ceedings of the Bar-Ilan Conference in Condensed-Matter Physics, Physica A 168, 551
(1990).

[16] Redner, S. Survival Probability in a Random Velocity Field. Phys. Rev., E56, 4967 (1997).

ECP 18 (2013), paper 33.
Page 7/7

ecp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=2831079
http://www.ams.org/mathscinet-getitem?mr=0415780
http://www.ams.org/mathscinet-getitem?mr=0972774
http://www.ams.org/mathscinet-getitem?mr=0543530
http://www.ams.org/mathscinet-getitem?mr=0535455
http://www.ams.org/mathscinet-getitem?mr=2883216
http://www.ams.org/mathscinet-getitem?mr=0550121
http://www.ams.org/mathscinet-getitem?mr=1624017
http://www.ams.org/mathscinet-getitem?mr=1192029
http://www.ams.org/mathscinet-getitem?mr=1751192
http://dx.doi.org/10.1214/ECP.v18-2444
http://ecp.ejpecp.org/

	Introduction
	Lower Bound
	Upper bound
	References

