Electron. Commun. Probab. 18 (2013), no. 33, 1-7. ELECTRONIC

DOI: 10.1214/ECP.v18-2444 COMMUNICATIONS
ISSN: 1083-589X in PROBABILITY

On the one-sided exit problem for
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Abstract

We consider the one-sided exit problem for stable Lévy process in random scenery,
that is the asymptotic behaviour for 7" large of the probability

IP[ sup A; < 1}
te[0,T]

where
A= /}R Lo(x) dW (x).

Here W = {W(z);z € R} is a two-sided standard real Brownian motion and
{Li(z);x € R,t > 0} the local time of a stable Lévy process with index a € (1,2],
independent from the process W. Our result confirms some physicists prediction by
Redner and Majumdar.
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1 Introduction

Random processes in random scenery are simple models of processes in disordered
media with long-range correlations. These processes have been used in a wide variety
of models in physics to study anomalous dispersion in layered random flows [13, 5],
diffusion with random sources, or spin depolarization in random fields (we refer the
reader to Le Doussal’s review paper [11] for a discussion of these models). Let us also
mention the fact that these processes are functional limits of random walks in random
scenery [9, 6, 7, 4, 8]. The persistence properties of these models were studied by Red-
ner [15, 16] and Majumdar [12]. The interested reader could refer to the recent survey
paper [1] for a complete description of already known persistence probabilities and ex-
ponents. Supported by physical arguments, numerical simulations and comparison with
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the Fractional Brownian Motion, Redner and Majumdar conjectured the persistence ex-
ponents. In this paper we rigorously prove their conjecture up to logarithmic factors.
Before stating our main result, we present the process we are interested in.

Let W = {W(x);x € R} be a standard two-sided real Brownian motion and ¥ =
{Y;,t > 0} be a strictly stable Lévy process with index « € (1, 2] such that Y; = 0. More
precisely, for some positive scale-parameter c, the characteristic function of the random
variable Y7 is given by

Vo € R, E[eY1] = exp { —clg]” (1 + iy sgn(6) tan(ﬂ'a/Q)) } . (1.1)

where v € [-1,1]. We will denote by {L;(z);z € R,t > 0} a continuous version with
compact support of the local time of the process {Y;;¢ > 0}. The processes W and Y are
defined on the same probability space and are assumed to be independent. We consider
the random process in random scenery {A;;¢ > 0} defined as

The process A is known to be a continuous J-self-similar process with stationary incre-

ments, with

1
6:=1——.
2x

This process can be seen as a mixture of Gaussian processes, but it is neither Gaussian
nor Markovian. In this article, we study the asymptotic behaviour of

F(T) := IP[ sup A; < 1}
t€[0,T)

as T' — +oo. Our main result is the following one.

Theorem 1. For any a € (1,2, there exists a constant ¢ = c¢(«) > 0, such that for T
large enough,

Tfl/(2a)(1ogT)fc < P sup At < 1:| < Tfl/(2a)(logT)+c.
te[0,T

2 Lower Bound

For a certain class of stochastic processes { X;;t > 0} (to be specified below), Molchan
[14] proved that the asymptotic behavior of

IP[ sup X; < 1]
te[0,T]

I(T) =T (/OT et dt)

We refer to [2] where the relationship between both quantities is clearly explained as
well as the heuristics.

is related to the quantity
-1

Theorem 2 (Statement 1, [14]). Let {X;;t > 0} be a continuous process, self-similar
with index H € (0,1), with stationary increments s.t. for every 6 > 0,

]E[exp (9 max |Xt\>] < +o0.
te[0,1]
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Then, as T — 400,

E (/OTeXf dt>_1 :HT—<1—H>(E[tr§g§]Xt]+o(1)).

By applying this result to our random process A we get

Proposition 2.1. Forany o € (1,2], as T — +oo,

-1
T
1
Ay — = —-1/(2c)
E (/0 e dt) (1 2a>T (E[trerl[gﬁ]At]—Fo(l)).

Proof. The process {A;;t > 0} being continuous, self-similar with index § := 1— i with
stationary increments, it is enough to prove that for every 6 > 0,

E[exp (otgl[gﬁ] |At|)} < foo. 2.1)
Let 6 > 0. We have
E[exp (9 m[a}i]|At|)} = /0 IP(exp ((‘)tmax |AL) > X )dA
°° log(A)
< 2 P Ay > dA.
< 2+ [ P(mm a2 25
Since the process {A;;t > 0} is symmetric,
log()) log(A)
> < >
P 10 2 57) < 2P (e Ay > Z52)

< 4P(A; > (log)N)/0),

using the maximal inequality for the process A (see Theorem 2.1 in [10]). Moreover,
from Theorem 5.1 in [10], there exist positive constants C' and v (depending on «) s.t.
for every x > 0,

P(A; > z) < Cexp(—ya?®/(1F),

Since the function A — exp(—v((log \)/0)%*/(1+2)) is integrable at infinity for any o €
(1,2] and any # > 0, assertion (2.1) follows. O

Aurzada’s proof of the lower bound in the H-index Fractional Brownian Motion
{Bu(t);t > 0} case (see [2]) rests on both following arguments: the self-similarity of
the FBM and the inequality (valid for a large enough)

(B|Bg (t) — By (s)|)Y* = Cla)|t — s|?, t,s >0 (2.2)

with C(a) < ca”, for some ¢ and v > 0. Our random process A being self-similar, it
is enough to prove assertion (2.2) to derive the lower bound. The increments of the
process A being stationary, by self-similarity, we have for every ¢, s > 0,

E[A = Al = [t —s|" B[|Aq]]
<t — s E[|A |2(al+D]a/(2(lal+1D)

Conditionally to the process Y, the random variable A is centered Gaussian with vari-

ance
i ::/L%(m)dm.
R
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From the independence of both processes Y and W and from the formula of the even
moments of the centered reduced Gaussian law, we can derive the even moments of the
random variable A;, namely, for any m € N,

(2m)!
2mm!’

E[A}™] = E[V}"]
First of all, from Stirling’s formula, for m large enough, we have

) o)

Moreover,
E[V;"] :/ P[V; > AY™]dA.
0

From Corollary 5.6 in [10], there exist positive constants C and ¢ s.t. for every A > 0,
P[Vy > \] < Ce ",

So, we have (the constant C' may change from line to line but does not depend on m > 1)

E[V;"] < 2+Cm e AN A
21/m
< Cm / e N dA
0
< Cvc'm/(x?,nm/a7

for some constants C, ¢ > 0. It is now easy to derive (2.2) namely
(B|A, — A )Y = Cla)|t — s|°, t,5>0 (2.3)
where C(a) < ca” with v := 1(14 1).

3 Upper bound

As in [14] and [2], the main idea of the proof is to bound I(T") from below by restrict-
ing the expectation to a well-chosen set of paths.
Observe that, conditionally to Y = {Y;;t > 0}, the process {A;;t > 0} is a centered
Gaussian process such that for every 0 <t < s,

B[AA,[Y] = /]RLt(x)Ls(x) dz >0,

E[A(A; — AY)Y] = /RLt(x)(Ls(x) — Ly(z)) dz > 0,

since t — L.(z) is a.s. increasing for all x € R. It follows then from Slepian’s lemma,
that for every 0 < v < v < w and every real numbers a, b,

P| sup A;<a, sup A; < b‘Y >P| sup A < a’Y P| sup Ay < b‘Y (3.1)
te(u,v] tev,w) te(u,v] tev,w]
P| sup Ay <a, sup (Ar—A,) < b‘Y >P| sup Ay < a‘Y P| sup (Ar—A,) < b’Y .
t€lu,v] tev,w] teu,v] tev,w)
(3.2)
ECP 18 (2013), paper 33. ecp.ejpecp.org
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Let p > 0 and 8 > 0. We define

1 1
2a 1o

a
ar = (logT)p and ﬁT = (jiogW

For any t > 0, we write |L;|, the random variable ([, L7(z) dx)1/2. Let us consider the
event

Ar ={|Loyl2 > Br}-
Lemma 3. Forallp > 0andall 5 >0,

P[AS] = O((logaT)_Qo‘ﬁa;i> as T — +oo.

.
Proof. First we notice that |L,, |2 has the same distribution as a; 2| L4]5 and that, by
the Cauchy-Schwartz inequality, we have

1:/L1(x)da:§\L1|2\/§, with S := sup Y, — inf Y.
R s€0,1] s€[0,1]

Hence we have
PlAT] = P[[Lazl2 < B7]
_ 1
P[|L1]z < ag*** (logar) "]

P[S > a2 (logar)?’]

IN

1 1
P[ sup Vi > a2? (logar)?? /2] + P sup (—Y:) > a2*” (logar)*? /2] (3.3)
s€[0,1] s€[0,1]

IN

and so, for T large enough, due to Theorem 4.a in [3], we have
- 9
P[AF] = O(ap (logar) ).

(Remark that in the case v = 1 where « is defined in (1.1), it follows from (8) in [3]
that the first probability in (7) is zero. Theorem 4.a [3] can then be applied to the
Lévy process {—Y;;t > 0} which is strictly stable with index « and v = —1). The lemma
follows. O

Let us define the function

1 for0<t<ar,
¢(t):={ et <

17[31“ fOI'aTStST.

Clearly, we have

E (/OTeAt dt) - ’Y > (/0T6¢<t> dt>_11P[Vte [0, 7], A, g¢(t)‘y]

When p(1 — 5= — 13) > 1, it is easy to show that

T
/ e?® dt = O(ar).

0

By Slepian’s lemma (see (3.1)), we have

Jp[w € [0,T],A, < ¢(t)M > IP[Vt e [0,ar], A, < 1M P[\ﬁ € lar, T, A, < 1— ﬁTM.
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Remark that
PVt € lar, T], A < 1= Br[Y| 2 P[Auy < —Brs¥ € [ar, T), Ay = Auy < 1Y)

Conditionally to Y, the increments of the process {A;;¢ > 0} being Gaussian and posi-
tively correlated, by Slepian’s lemma (see (3.2)), we get

]P{w e lar, T], A < 1 —5TM > ]P[AaT < —ﬂTMIP[\ﬁ € lar, T, A — Ay, < 1]Y].

Conditionally to Y, the random variable A, is centered Gaussian with variance |L,. |3
and so P[A,, < —B7|Y] = F(—+22-) where F is the distribution function of the Normal

|L0,T‘2

distribution N(0,1). On the event Ar, we then have
P[Ag, < —Br|Y] > F(-1).
Moreover,
Br =By = [ Limane = Yor) dW (@)
where L is the local time of the process {f’t, t> 0} defined as f’t = Yo, 4t —Ya, fort > 0.
Conditionally to Y, the processes {A; — A,.;t > ar} and {f f/t,aT () dW (x);t > aT}
have the same distribution and P [Vt €lar,T], Ar—Aqy, <1 ‘Y} is therefore o (Yt,t > O)-

measurable. Finally, on the event A, we get

fOT e®(®) gt

T -1
D) (/0 oA dt) V| zP[vte 0,ar), A < 1Y]P[VE € [ar, 7], A=A, <1|1].

The probabilities in the right hand side are respectively measurable with respect to
the o-fields o(Y;,s < ar) and 0(Ya,+s — Yar,s > 0), which are independent. We get
therefore

T —1
ME /T eAt dt
F(=1) 0

T —1
fo e®®) gt /T A

> —=— T e~ dt 14,
F(-1) 0

E[]P [\ﬁ € [0,ar], A, < 1M 1AT]1P{W € lar, T, Ay — A, < 1]

v

Y

(113[\# € [0,ar], A < 1} —P[ACTDJP[W € (0,7 —ar), A < 1]

Let ¢ be the exponent appearing in the lower bound. We choose 8 > ¢/(2«) and p such
that p(1 — .~ — ;1z) > 1. Due to Lemma 3 and to the lower bound of F(T'), the first term

in the right hand side is larger than C(log aT)‘Ca;l/ ) for T large enough. The second
term is clearly larger than

P[Vte[o,T},Atgl].

Therefore, we get
T -1
PVt € [0,T],A; < 1] < C’(logaT)C(aT)HﬁIE </ et dt>
0
and the upper bound follows using the equivalent for I(7) in Proposition 2.1.
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