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Abstract

We consider a version of a classical concentration inequality for sums of independent,
isotropic random vectors with a mild restriction on the distribution of the radial part
of these vectors. The proof uses a little Fourier analysis, the Laplace asymptotic
method and a conditioning idea that traces its roots to some of the original works on
concentration inequalities.
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1 Introduction

The purpose of this paper is to give a multi-dimensional version of a concentration
inequality that traces its origins to P. Lévy [14]. These Lèvy type concentration results
assert a rate of decay on the maximal amount of mass that the distribution of a sum
of independent, nondegenerate, random variables can place in an arbitrary interval.
We remark that this is in contrast to another version of the concentration phenomena,
see [13] and the vast literature listed there, where measures concentrate most of their
mass on particular subsets of a measure space. However, the proof of our result relies
on an early version of the latter type of concentration phenomena due to Bernstein and
Hoeffding. Motivation to study the concentration inequality in the context of isotropic
random vectors arises from a variety of sources. Sums of independent isotropic vectors
are the so-called isotropic random flights which arise in problems in astronomy, [2], [4].
Such sums appear in random searches in the context of biological encounters, [3]. They
are also used as polymer models in chemistry, [6], [8]. Yet another example of isotropic
random vectors arises in a discrete model for the theory of magnetic fields generated
by a turbulent media, [15], where random vectors of the form Mξ appear where M is a
random element of the orthogonal group, O(3), and the random vector ξ is independent
of M.

Early works on the concentration inequalities in the real valued case are due to
Döblin, [5], Kolmogorov [11], Lèvy [14] and Rogozin [17]. The higher dimensional case
has been treated in Kanter, [10]. In [10], the author considered independent, RN-
valued, symmetric random vectors X1, · · · , Xn. Then if C ⊂ RN is a convex set and
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On a concentration inequality for sums of independent isotropic vectors

λ =
∑n
i=1 P (Xi 6∈ C) it was proved that

P (X1 + · · ·+Xn + x ∈ C) ≤ Φ(λ)

where Φ(s) = e−s(I0(s) + I1(s)) and I0 and I1 are the modified Bessel functions given by

Ik(s) =

∞∑
m=0

1

m!(m+ k)!

(s
2

)2m+k

.

Our work considers the convex set C = Q(l), the cube centered at Q(l) = [0l]d. As
remarked in [10], Φ(n2 ) ≥ cn−1/2. Thus, the Kanter result doesn’t contain the dimen-
sional dependence which does appear in our bound on the concentration function in
Theorem2.1.

The authors wish to thank the referee for pointing out the Lèvy decoupage technique
[1], used in our conditioning argument at (3.6) below, which greatly improved an earlier
version of the paper.

2 Statement of Result

Let us give a precise statement of the result proven by Kolmogorov [11]. Suppose
{ξk}k≥1 are independent random variables defined on some probability space (Ω,F , P ).

Set Sn =
∑n
k=1 ξk and define for l > 0, the concentration function

Qk(l) = sup
x
P (x ≤ ξk ≤ x+ l)

and
QSn(l) = sup

x
P (x ≤ Sn ≤ x+ l).

Kolmogorov’s version of the concentration inequality states that there exists a constant
C > 0 such that if

L ≥ l, L2 ≥ l2 log s

where

s =

n∑
k=1

(1−Qk(l))

then

QSn(L) ≤ CL

l
√
s
.

We prove a higher dimensional version of this result. Due to possible degeneracies, the
higher dimensional result will not hold in general, but a natural condition to impose
on random vectors under which the result turns out to be true is isotropy. We say an
Rd valued random vector, X, on a probability space (Ω,F , P ) is isotropic if PX−1 =

P (UX)−1 for every U ∈ O(d), the group of orthogonal matrices. With this definition we
have,

Theorem 2.1. Let X1, X2, · · · be independent, isotropic random vectors with values in
Rd, d ≥ 2 and put Sn = X1 + X2 + · · · + Xn. Let l > 0 and L > 0 be given. Define, for
a > 0, the cube

Q(l) = [0, a]d ⊂ Rd.

Assume pi = P (Xi /∈ Q(l)), satisfies
∑n
i=1 pi → ∞. Then given any ε ∈ (0, 1), for every

x ∈ Rd,

P (Sn ∈ x+Q(L)) ≤2 exp

{
−

2ε2(
∑n
i=1 pi)

2

n

}

+(1 + o(1))

(√
d

2π

L

l

)d(
(1− ε)

n∑
i=1

pi

)− d
2

.

(2.1)
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There various immediate corollaries that may be derived from this. We sate two
such.

Corollary 2.2. Assume in addition to the conditions above that

n∑
i=1

pi > 2−2/d

(√
d

2π

L

l

)2

and

1

4
>

n

2(
∑n
i=1 pi)

2
ln

2
(

1
2

∑n
i=1 pi

) d
2(√

d
2π

L
l

)d .

Then there is a positive constant c independent of n, l and L such that,

P (Sn ∈ x+Q(L)) ≤ c

(
n∑
i=1

pi

)− d
2 (

L

l

)d
.

Proof. The conditions of the corollary ensure that the solution of

ε2 =
n

2(
∑n
i=1 pi)

2
ln

2 ((1− ε)
∑n
i=1 pi)

d
2(√

d
2π

L
l

)d
satisfies 0 < ε < 1

2 . This follows since the left hand side minus the right hand side is
increasing in ε and this forces the solution to be less than 1

4 . Since ε is then bounded
from 1 we can take this ε in (2.1) and find the c as claimed by using Theorem2.1.

Another possibility is the following.

Corollary 2.3. Let X1, X2, · · · be independent, isotropic random vectors with values in
Rd, d ≥ 2, for which

P (Xi /∈ Q(1)) ≥ 1

2
, for all i ≥ 1.

There is a constant c(d) such that for every x we have

P (Sn ∈ x+Q(1)) ≤ c(d)

nd/2
.

Proof. In this case,
∑n
i=1 pi ≥

n
2 and L = l = 1. Taking ε = 1

2 in Theorem2.1 the
corollary holds with a suitable choice of constant c.

3 Proof of the Concentration Inequality

We commence with two lemmas, the first is a local central limit theorem. This is
likely a known result and as the proof is short we include it for completeness.

Lemma 3.1. Suppose that Ỹ1, · · · , Ỹm are iid uniformly distributed on the unit sphere
in Rd. If p̃dm denotes the density of Ỹ1 + · · ·+ Ỹm then

p̃dm(0) ∼

(√
d

2πm

)d
, m→∞.
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Proof. If Y is uniformly distributed on the unit sphere in Rd, then for k ∈ Rd, we first
compute

ψd(k) = E[ei〈k,Y 〉].

Given k, one selects coordinates on the sphere φ1, φ2, · · · , φd−1, φi ∈ [0, π), for i =

1, · · · , d − 2, and φd−1 ∈ [0, 2π), so that k = |k| cosφ1. The volume form on the sphere,
normalized to have total mass one, is given in these coordinates by

dV =
Γ(d2 + 1)

dπ
d
2

sind−2 φ1 sind−3 φ2 · · · sinφd−2 dφ1dφ2 · · · dφd−1.

Then since the characteristic function of a random vector Y which is uniformly dis-
tributed on the sphere of radius 1 in Rd is real,

E[ei〈k,Y 〉] = cd

∫ π

0

cos(|k| cosφ1) sind−2 φ1 dφ1,

where cd =
(∫ π

0
sind−2 φ1 dφ1

)−1
.

For d = 2, by [12] page 115,

ψ2(k) =
1

π

∫ π

0

cos(|k| cosφ)dφ

=
1

π

∫ π

0

cos(|k| sinφ)dφ

=J0(|k|),

where J0(z) is the 0th order Bessel function of the first kind given by

J0(z) = 1− (z/2)2

(1!)2
+

(z/2)4

(2!)2
− (z/2)6

(3!)2
+ · · · .

For d = 3,

ψ3(k) =
1

2

∫ π

0

cos(|k| cosφ1) sinφ1dφ1

=
1

2

∫ 1

−1

cos(|k|w)dw

=
sin(|k|)
|k|

.

For d > 3, we have by [12] page 114,

ψd(k) =cd

∫ π

0

cos(|k| cosφ1) sind−2 φ1 dφ1

=2
d
2−1Γ

(
d

2

)
|k|− d

2 +1J d
2−1(|k|),

where J d
2−1 is the order d

2 − 1 Bessel function of the first kind.
Since for any d ≥ 2,

p̃dm(0) =
1

(2π)d

∫
Rd

(ψd(k))
m
dk, (3.1)

we need to check the asymptotics of the right hand side.
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Starting with d = 2, we observe that ψ2(r) = J0(r) has a unique global maximum at
r = 0 with ψ2(0) = 1. Also, ψ′′2 (0) = − 1

2 and for any ε > 0, c2(ε) ≡ supr≥ε |ψ2(r)| < 1.

Similarly, for d = 3, ψ3(r) = sin r
r has a unique global maximum at r = 0 with ψ3(0) = 1.

This time ψ′′3 (0) = − 1
3 and for any ε > 0, c3(ε) ≡ supr≥ε |ψ3(r)| < 1. Finally, for d > 3, we

use the the representation, from [12] page 114,

2
d
2−1Γ

(
d

2

)
r−

d
2 +1J d

2−1(r) =
Γ
(
d
2

)
Γ
(

1
2

)
Γ
(
d−1

2

) ∫ 1

−1

(1− t2)
d−3
2 cos(rt)dt

to conclude that ψd(r) = 2
d
2 Γ
(
d
2

)
r−

d
2 +1J d

2−1(r) has a unique global maximum at r = 0

with ψd(0) = 1 and

ψ′′d (0) =−
Γ
(
d
2

)
Γ
(

1
2

)
Γ
(
d−1

2

) ∫ 1

−1

(1− t2)
d−3
2 t2dt

=−
Γ
(
d
2

)
Γ
(

1
2

)
Γ
(
d−1

2

) Γ
(
d−1

2

)
Γ
(

3
2

)
Γ
(
d
2 + 1

)
=− 1

d
,

and for any ε > 0, cd(ε) ≡ supr≥ε |ψd(r)| < 1.

In order to determine the asymptotics at (3.1), we need the r → ∞ decay of ψd(r).
For d ≥ 2 from [12] page 134 for some positive constant c,

|ψd(r)| ≤ c
√
r
−d+1

, r →∞. (3.2)

Now, with ωd = dπ
d
2

Γ( d
2 +1)

being the volume of Sd−1, write

1

(2π)d

∫
Rd

(ψd(k))
m
dk =

ωd
(2π)d

∫ ∞
0

rd−1 (ψd(r))
m
dr

=
ωd

(2π)d

∫ ε

0

rd−1 (ψd(r))
m
dr +

ωd
(2π)d

∫ ∞
ε

rd−1 (ψd(r))
m
dr.

(3.3)

We use the fact that in any dimension d ≥ 2, cd(ε) ≡ supr≥ε |ψd(r)| < 1 to show the
second integral dies off exponentially fast in m. In fact,∣∣∣∣∫ ∞

ε

rd−1 (ψd(r))
m
dr

∣∣∣∣ ≤ cd(ε)m/2 ∫ ∞
ε

rd−1 |ψd(r)|m/2 dr (3.4)

and by (3.2), the second integral is bounded in m for m
2 > 2d

d−1 .

Since for any d ≥ 2, ψ′′d (0) = − 1
d , in the first integral, we write

(ψd(r))
m

= em lnψd(r) ∼ e−mr2

2d

proceeding with the Laplace asymptotic method gives

ωd
(2π)d

∫ ε

0

rd−1 (ψd(r))
m
dr ∼ ωd

(2π)d

∫ ε

0

|r|d−1e−
mr2

2d dr

=
ωd

(2π)d

(√
d

m

)d ∫ √m
d ε

0

rd−1e−
r2

2 dr

∼

(√
d

2πm

)d (3.5)
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Thus, by (3.3), (3.4) and (3.5), for d ≥ 2,

p̃dm(0) ∼

(√
d

2πm

)d
and the lemma is proved.

Lemma 3.2. Let Y1, Y2, · · · , Ym be independent random vectors with Yi uniformly dis-
tributed on the sphere of radius Ri, i = 1, · · · ,m. Assume there is a number l > 0 such
that each Ri ≥ l and the Ri are non-random. Let m be an even integer. Then for L > 0

and any x ∈ Rd,

P (Y1 + Y2 + · · ·+ Ym ∈ x+Q(L)) ≤ (1 + o(1))

(√
d

2πm

L

l

)d
, m→∞.

Proof. It suffices to provide an appropriate bound on the L∞ norm of the density of
Y1 + Y2 + · · ·+ Ym. Notice that

E[ei〈k,Yi〉] = ψd(Rik).

Then, by the independence of Y1, Y2, · · · , Ym,

E[ei〈k,Y1+Y2+···+Ym〉] =

m∏
i=1

ψd(Rik).

By (3.2), for m > 2d
d−1 , this characteristic function is integrable, which means Sm =

Y1 + Y2 + · · · + Ym has a bounded density, pdm(x), x ∈ Rd. In fact, for m even, by the
arithmetic-geometric mean and Jensen’s inequalities,

||pdm||∞ ≤
1

(2π)d

∫
Rd

∣∣∣∣∣
m∏
i=1

ψd(Rik)

∣∣∣∣∣ dk
≤ 1

(2π)d
1

m

m∑
i=1

∫
Rd

(ψd(Rik))
m
dk

=
1

(2π)d
1

m

m∑
i=1

1

Rdi

∫
Rd

(ψd(k))
m
dk

≤ 1

(2πl)d

∫
Rd

(ψd(k))
m
dk

≤(1 + o(1))

(√
d

2πm

1

l

)d
.

where the last line follows from Lemma 3.1. This completes the proof.

We can now prove the main result, Theorem2.1.

Proof. We use the Lèvy decoupage technique [1] to decompose the random variables
Xi, based on whether |Xi| ≥ l or |Xi| < l. Set

pi = P (|Xi| ≥ l).

Recall that we are assuming that pi ≥ 1
2 , i = 1, 2, · · · , n. For i = 1, 2, · · · , n, let the

random variables {Ui : 1 ≤ i ≤ n} and {Vi : 1 ≤ i ≤ n} be independent with

L(Ui) = L(|Xi| | |Xi| ≥ l), L(Vi) = L(|Xi| | |Xi| < l).
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Also take Bernoulli random variables {ηi : 1 ≤ i ≤ n} independent of the {Ui : 1 ≤ i ≤ n}
and the {Vi : 1 ≤ i ≤ n} with

P (ηi = 1) = 1− P (ηi = 0) = pi.

Then, as above, take {Ỹi : 1 ≤ i ≤ n} to be uniformly distributed on the unit sphere in
Rd and independent of the previously defined random variables. In an obvious notation
we may take the probability measure P as P = P(U,V )×Pη×PỸ and our original random
variables may be represented as

Xi = (ηiUi + (1− ηi)Vi)Ỹi.

For 1 ≤ i ≤ n, set

Y 1
i = ηiUiỸi

and

Y 0
i = (1− ηi)ViỸi.

Notice that {Y 1
i : 1 ≤ i ≤ n, ηi 6= 0} satisfies the conditions of Lemma3.2 with respect

to the probability measure Pη ×PỸ a.s.. Denote the vector of outcomes of the sequence
{ηi : 1 ≤ i ≤ n} by

ζn = (η1, η2, · · · , ηn) .

Then for a given deterministic sequence (α1, α2, α3, · · · , αn) ∈ {0, 1}n, define

pη(α) ≡ P (ζn = (α1, α2, α3, · · · , αn)) = Πn
i=1p

αi
i (1− pi)1−αi .

By Bernstein’s inequality or it’s generalization due to Hoeffding, [9], given 0 < ε < 1,

Pη

(
n∑
i=1

ηi < (1− ε)
n∑
i=1

pi

)
=Pη

(
n∑
i=1

(ηi − pi) < −ε
n∑
i=1

pi

)

≤Pη

(
|
n∑
i=1

(ηi − pi)| > ε

n∑
i=1

pi

)

≤2 exp

{
−

2ε2(
∑n
i=1 pi)

2

n

}
.

(3.6)

We then have

Pη × PỸ (Sn ∈ x+Q(L)) =
∑

α∈{0,1}n
pη(α)PỸ

(
n∑
i=1

(αiUi + (1− αi)Vi)Ỹi ∈ x+Q(L)

)

≤
∑

α∈{0,1}n,
∑n

i=1 αi<(1−ε)
∑n

i=1 pi

pη(α)

+
∑

α∈{0,1}n,
∑n

i=1 αi≥(1−ε)
∑n

i=1 pi

(pη(α)

× PỸ

(
n∑
i=1

(αiUi + (1− αi)Vi)Ỹ i ∈ x+Q(L)

))
.

(3.7)

It easily follows from Fubini’s theorem that if Z is independent of Sn, then for any Q

sup
x
P (Sm + Z ∈ x+Q) ≤ sup

x
P (Sm ∈ x+Q). (3.8)
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Using Lemma3.2 with m = [(1 − ε)
∑n
i=1 pi] which we may assume is even, we con-

clude from (3.8) that for each α ∈ {0, 1}n for which
∑n
i=1 αi ≥ (1 − ε)

∑n
i=1 pi we have

P(U,V ) a.s.

sup
x
PỸ

(
n∑
i=1

(αiUi + (1− αi)Vi)Ỹi ∈ x+Q(L)

)
≤ sup

x
PỸ

(
n∑
i=1

αiUiỸi ∈ x+Q(L)

)

≤(1 + o(1))

(√
d

2π

1

l

)d(
(1− ε)

n∑
i=1

pi

)− d
2

|Q|.

(3.9)

Thus, from (3.6), (3.7) and (3.9), it follows that as
∑n
i=1 pi →∞, one has P(U,V ) a.s.

Pη × PỸ (Sn ∈ x+Q(L)) ≤2 exp

{
−

2ε2(
∑n
i=1 pi)

2

n

}

+ (1 + o(1))

(√
d

2π

L

l

)d(
(1− ε)

n∑
i=1

pi

)− d
2

.

Now integrate with respect to P(U,V ) to complete the proof.
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