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Abstract

Using the linear programming approach to stochastic control introduced in [6] and
[10], we provide a semigroup property for some set of probability measures leading
to dynamic programming principles for stochastic control problems. An abstract
principle is provided for general bounded costs. Linearized versions are obtained
under further (semi)continuity assumptions.
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1 Introduction

Linear programming tools have been efficiently used to deal with stochastic con-
trol problems (see [3], [4], [11], [12], [13], [14] and references therein). An approach
relying mainly on Hamilton-Jacobi(-Bellman) equations has been developed in [9] for de-
terministic control systems. This approach has been generalized to controlled Brownian
diffusions (cf. [6] for infinite horizon, discounted control problems and [10] for Mayer
and optimal stopping problems). The control processes and the associated solutions
(and, eventually stopping times) can be embedded into a space of probability measures
satisfying a convenient condition. This condition is given in terms of the coefficient
functions. Using Hamilton-Jacobi-Bellman techniques, it is proven in [6] and [10] that
minimizing continuous cost functionals with respect to the new set of constraints leads
to the same value. These formulations turn out to provide the generalized solution of
the (discontinuous) Hamilton-Jacobi-Bellman equation. For further details, the reader
is referred to [10] and references therein.

For regular cost functionals, the dynamic programming principle has been exten-
sively studied (e.g. [7], [15]). In general, dynamic programming principles are rather
difficult to prove if the regularity of the value function is not known a priori. An alterna-
tive is to use a weak formulation where the value function is replaced by a test function
(cf. [5]). This short paper aims at giving another approach to the dynamic programming
principles based on linear programming techniques (cf. [6], [10]).

We begin by briefly recalling the linearization techniques from [10] for Lipschitz-
continuous cost functionals in section 2.1. As a by-product, this allows to characterize
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the set of constraints as the closed convex hull of occupational measures associated
to control processes. We give the linear programming formulation of the value in the
case of lower and upper semicontinuous cost functionals and specify the connections
between classical value function, primal and dual values (in section 2.2). Using the
characterization of the set of constraints, we prove a semigroup property (section 3.1).
This property follows naturally from the structure of the sets of constraints. We derive
a dynamic programming principle for general bounded cost functionals in section 3.2.
In the upper semicontinuous (or convex, lower semicontinuous) setting, we provide a
further linearized inequality. This becomes an equality providing a linearized program-
ming principle if the cost functionals are continuous.

2 Linear formulations for finite horizon stochastic control prob-
lems

We let (Ω,F ,P) be a complete probability space endowed with a filtration F = (Ft)t≥0

satisfying the usual assumptions and W be a standard, d-dimensional Brownian motion
with respect to this filtration. We denote by T > 0 a finite time horizon and we let U be
a compact metric space. We consider the stochastic control system{

dXt,x,u
s = b (s,Xt,x,u

s , us) ds+ σ (s,Xt,x,u
s , us) dWs, for all s ∈ [t, T ] ,

Xt,x,u
t = x ∈ RN , (2.1)

where t ∈ [0, T ] . Throughout the paper, we use the following standard assumption on
the coefficient functions b : RN+1 × U −→ RN and σ : RN+1 × U −→ RN×d :

(i) the functions b and σ are bounded and uniformly continuous on RN+1 × U,
(ii) there exists a real constant c > 0 such that

|b (t, x, u)− b (s, y, u)|+ |σ (t, x, u)− σ (s, y, u)| ≤ c
(
|x− y|+ |t− s|δ0

)
,

(2.2)
for all (s, t, x, y, u) ∈ R2 × R2N × U, and for some positive δ0 > 0. We recall that an
admissible control process is any F−progressively measurable process with values in
the compact metric space U. We let U denote the class of all admissible control pro-
cesses on [0, T ]×Ω. Under the assumption (2.2), for every (t, x) ∈ [0, T ]×RN and every
admissible control process u ∈ U , there exists a unique solution to (2.1) starting from
(t, x) denoted by Xt,x,u

· .

2.1 Lipschitz continuous cost functionals

In this subsection, we recall the basic tools that allow to identify the primal and
dual linear formulations associated to (finite horizon) stochastic control problems. The
results can be found in [10] (see also [6] for the infinite time horizon).

To any (t, x) ∈ [0, T ) × RN and any u ∈ U , we associate the (expectation of the)
occupational measures

γ1
t,T,x,u (A×B × C) =

1

T − t
E

[∫ T

t

1A×B×C
(
s,Xt,x,u

s , us
)
ds

]
,

γ2
t,T,x,u (D) = E

[
1D
(
Xt,x,u
T

)]
,

for all Borel subsets A × B × C × D ⊂ [t, T ] × RN × U ×RN . Also, we can define
γ1
T,T,x,u = δT,x,uT

, γ2
T,T,x,u = δx. We denote by

Γ (t, T, x) =
{
γt,T,x,u =

(
γ1
t,T,x,u, γ

2
t,T,x,u

)
∈ P

(
[t, T ]×RN × U

)
× P

(
RN
)

: u ∈ U
}
.
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Here, P (X ) stands for the set of probability measures on the metric space X . Due to
the assumption (2.2), there exists a positive constant C0 such that, for every T > 0,

every (t, x) ∈ [0, T )×RN and every u ∈ U , one has

sup
s∈[t,T ]

E
[∣∣Xt,x,u

s

∣∣2] ≤ eC0(T−t)
(
|x|2 + C0 (T − t)

)
. (2.3)

Therefore, 
∫
RN |y|2 γ1

t,T,x,u ([t, T ] , dy, U) ≤ eC0(T−t)
(
|x|2 + C0 (T − t)

)
,∫

RN |y|2 γ2
t,T,x,u (dy) ≤ eC0(T−t)

(
|x|2 + C0 (T − t)

)
.

(2.4)

We define

Θ (t, T, x) =


γ ∈ P

(
[t, T ]×RN × U

)
× P

(
RN
)

: ∀φ ∈ C1,2
b

(
[0, T ]×RN

)
,∫

[t,T ]×RN×U×RN

[
(T − t)Lvφ (s, y)

+φ (t, x)− φ (T, z)

]
γ1 (ds, dy, dv) γ2 (dz) = 0,


(2.5)

where

Lvφ (s, y) =
1

2
Tr
[
(σσ∗) (s, y, v)D2φ (s, y)

]
+ 〈b (s, y, v) , Dφ (s, y)〉+ ∂tφ (s, y) ,

for all (s, y) ∈ [0, T ] ×RN , v ∈ U and all φ ∈ C1,2
(
[0, T ]×RN

)
. Itô’s formula applied to

test functions φ ∈ C1,2
b

(
[0, T ]×RN

)
yields

Γ (t, T, x) ⊂ Θ (t, T, x) .

Moreover, the set Θ (t, T, x) is convex and a closed subset of P
(
[t, T ]×RN × U

)
×

P
(
RN
)
. For further details, the reader is referred to [10].

Let us suppose that f : R×RN × U −→ R, g : RN −→ R are bounded and uniformly
continuous such that

|f (t, x, u)− f (s, y, u)|+ |g (x)− g (y)| ≤ c (|x− y|+ |t− s|) , (2.6)

for all (s, t, x, y, u) ∈ R2 ×R2N × U, and for some positive c > 0. We introduce the usual
value function

V (t, x) = inf
u∈U

E

[∫ T

t

f
(
s,Xt,x,u

s , us
)
ds+ g

(
Xtx,u
T

)]
(2.7)

= inf
γ∈Γ(t,T,x)

(T − t)
∫

[t,T ]×RN×U

f (s, y, u) γ1 (ds, dy, du) +

∫
RN

g (y) γ2 (dy)

 ;

and the primal linearized value function

Λ (t, x) = inf
γ∈Θ(t,T,x)

(T − t)
∫

[t,T ]×RN×U

f (s, y, u) γ1 (ds, dy, du) +

∫
RN

g (y) γ2 (dy)

 ,

(2.8)
for all (t, x) ∈ [0, T ]×RN . We also consider the dual value function

µ∗ (t, x) = sup


µ ∈ R : ∃φ ∈ C1,2

b

(
[0, T ]×RN

)
s.t. ∀ (s, y, v, z) ∈ [t, T ]×RN × U ×RN ,
µ ≤ (T − t) (Lvφ (s, y) + f (s, y, u)) + g (z)− φ (T, z) + φ (t, x) ,

 (2.9)

for all (t, x) ∈ [0, T ]×RN . The following result is a slight generalization of theorem 4 in
[10]. The proof is very similar and will be omitted.
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Theorem 2.1. (see [10], theorem 4). Under the assumptions (2.2) and (2.6),

V = Λ = µ∗.

Since this result holds true for arbitrary (regular) functions f and g, a standard
separation argument yields:

Corollary 2.2. The set of constraints Θ (t, T, x) is the closed, convex hull of Γ (t, T, x) :

Θ (t, T, x) = coΓ (t, T, x) . (2.10)

The closure is taken with respect to the usual (narrow) convergence of probability mea-
sures.

Remark 2.3. 1. Due to the inequality (2.4), Prohorov’s theorem yields that coΓ (t, T, x)

is relatively compact and, thus, Θ (t, T, x) is compact. Moreover,
∫
RN |y|2 γ1 ([t, T ] , dy, U) ≤ eC0(T−t)

(
|x|2 + C0 (T − t)

)
,∫

RN |y|2 γ2 (dy) ≤ eC0(T−t)
(
|x|2 + C0 (T − t)

)
,

(2.11)

for all γ =
(
γ1, γ2

)
∈ Θ (t, T, x) .

2. In fact, similar estimates can be obtained for any p ≥ 2. The set Θ (t, T, x) can then
be defined by taking test functions whose derivatives have at most quadratic growth
(C1,2

2 ). Moreover, we can impose a bounded moment of order 2 + δ > 2. In this case, the
set of constraints Θ (t, T, x) is also the closed, convex hull of Γ (t, T, x) with respect to
the Wasserstein distance W2.

2.2 Semicontinuous cost functionals

In the case when f and g are only semicontinuous, one can still define V , Λ and µ∗.
One can also (formally) consider the associated Hamilton-Jacobi-Bellman equation{

−∂tV (t, x) +H
(
t, x,DV (t, x) , D2V (t, x)

)
= 0, (2.12)

for all (t, x) ∈ (0, T )×RN , and V (T, ·) = g (·) on RN , where the Hamiltonian is given by

H (t, x, p, A) = sup
u∈U

{
−1

2
Tr (σσ∗ (t, x, u)A)− 〈b (t, x, u) , p〉 − f (t, x, u)

}
, (2.13)

for all (t, x, p, A) ∈ R × RN × RN × SN . We recall that SN stands for the family of
symmetric N × N−type matrix. The following theorem states the connection between
these various functions and the equation (2.12). Proofs for these results can be found
in section 4 of [10]. They are based on inf/sup-convolutions and the compactness of
Θ (t, T, x).

Theorem 2.4. If the functions f and g are bounded and lower semicontinuous, then
the primal and dual value functions coincide Λ = µ∗. The common value is the smallest
bounded l.s.c. viscosity supersolution of (2.12).

If the functions f and g are bounded and upper semicontinuous, then V coincides
with Λ. The common value is the largest bounded u.s.c. viscosity subsolution of (2.12).

In the l.s.c. case, the assertions are given by theorem 7 in [10]. The u.s.c. case is
covered by theorem 8 in [10].
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Remark 2.5. If the functions f and g are bounded and lower semicontinuous (but
not continuous), V and Λ might not coincide. Under usual convexity assumptions, Λ

coincides with the weak formulation of V (i.e.

Λ (t, x) = inf
π=(Ω,F,(Ft)t≥0,P,W,u)

Eπ

[∫ T

t

f
(
s,Xt,x,u

s , us
)
ds+ g

(
Xt,x,u
T

)]
.

For further details, the reader is referred to proposition 12 and example 13 in [10]. If
the functions f and g are bounded and upper semicontinuous, then V and µ∗ may not
coincide (cf. example 9 in [10]).

Remark 2.6. In the case of control problems with semicontinuous cost and governed
by a deterministic equation

x′(t) = f (t, x(t), u (t)) ,

the standard assumption is convexity of the dynamics. In this case, the value function
is also semicontinuous (see for instance [2, 8]). Moreover, if the cost is continuous, the
value function associated to the previous dynamics coincides with the value function
associated to the convexified differential inclusion

x′(t) ∈ F (t, x (t)) , F (t, x) = co (f (t, x, u) : u ∈ U) .

because of Fillipov’s theorem (see for instance [1]). However, when the dynamics is not
convex and the cost is l.s.c. the value functions associated to the previous dynamics
might not coincide. Consequently, in order to obtain the existence of optimal trajecto-
ries/controls and to characterize the l.s.c. value function as the generalized solution
(smallest bounded l.s.c. viscosity supersolution) to the associated Hamilton-Jacobi sys-
tem, one would have to consider the convexified differential inclusion. This definition is
similar to (2.8).

In the stochastic framework, one can reason in a similar way, by taking the weak
limit of solutions (i.e. the closed convex hull of occupational measures). This set turns
out to be Θ introduced in our paper. We emphasize that the actual procedure is some-
what reversed: we consider the explicit set and deduce that it is the closed convex hull
of occupational measures. It is our opinion that this is the natural method allowing to
obtain good properties of the value function whenever the cost is semicontinuous (or
just bounded).

3 A linear formulation for the dynamic programming principle

3.1 A semigroup property

We fix x0 ∈ RN . Let us consider t1, t2 ≥ 0 such that 0 < t1 + t2 ≤ T, where T > 0 is
a fixed terminal time. By analogy to Θ (t, T, x) for x ∈ RN , we define sets of constraints
starting from measures. If γ ∈ P

(
[0, t1]×RN × U

)
× P

(
RN
)
, we define the set

Θ (t1, t1 + t2, γ) =

η =
(
η1, η2

)
∈ P

(
[t1, t1 + t2]×RN × U

)
× P

(
RN
)

:

∀φ ∈ C1,2
b

(
R+ ×RN

)
,∫

RN

φ (t1, x) γ2 (dx) +
∫

[t1,t1+t2]×RN×U
t2Luφ (s, y) η1 (dsdydu)

−
∫
RN

φ (t1 + t2, z) η
2 (dz) = 0,∫

RN

|y|2 η1 ([t1, t1 + t2] , dy, U) ≤ eC0(t1+t2)
(
|x0|2 + C0 (t1 + t2)

)
,∫

RN

|z|2 η2 (dz) ≤ eC0(t1+t2)
(
|x0|2 + C0 (t1 + t2)

)
.


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The reader is invited to notice that x can be identified with γt,t,x,u, for all u ∈ U .

Proposition 3.1. For every t1, t2 ≥ 0 such that t1 + t2 ≤ T and every γ =
(
γ1, γ2

)
∈

Θ (0, t1, x0) , the set Θ (t1, t1 + t2, γ) is nonempty, convex and compact with respect to
the usual (weak *) convergence of probability measures.

Proof. We only need to prove that Θ (t1, t1 + t2, γ) is nonempty. Convexity and closed-
ness is obvious from the definition, while the second-order moment inequalities guar-
antee relative compactness (due to Prohorov’s theorem). We consider an arbitrary test
function φ ∈ C1,2

b

(
R+ ×RN

)
. We begin by assuming that γ = γ0,t1,x0,u, for some ad-

missible control process u ∈ U . We define a couple of probability measures
(
η1, η2

)
∈

P
(
[t1, t1 + t2]×RN × U

)
× P

(
RN
)

by setting

η1 (dsdydu) =
t1 + t2
t2

1[t1,t1+t2] (s) γ1
0,t1+t2,x0,u (dsdydu) , η2 = γ2

0,t1+t2,x0,u.

One has∫
RN

φ (t1, x) γ2 (dx) +

∫
[t1,t1+t2]×RN×U

t2Luφ (s, y) η1 (dsdydu)−
∫
RN

φ (t1 + t2, z) η
2 (dz)

= E

φ(t1, X0,x0,u
t1

)
+

t1+t2∫
t1

Lusφ
(
s,X0,x0,u

s

)
ds− φ

(
t1 + t2, X

0,x0,u
t1+t2

) = 0 (3.1)

Therefore, combining (3.1) with (2.3), the assertion of our proposition holds true for
occupational couples.

To prove the result for general couples γ =
(
γ1, γ2

)
∈ Θ (0, t1, x0) , we will use Corol-

lary 2.2. Whenever γ =
(
γ1, γ2

)
∈ Θ (0, t1, x0) , there exists a family of convex combina-

tions (
kn∑
i=1

αinγ0,t1,x0,ui
n

)
n≥0

converging to γ. One defines

η1
n =

t1 + t2
t2

kn∑
i=1

αinγ
1
0,t1+t2,x0,ui

n
, η2

n =

kn∑
i=1

αinγ
2
0,t1+t2,x0,ui

n
,

for n ≥ 0. Inequality (2.3) (also (2.4)) yields the existence of a subsequence con-
verging to some η =

(
η1, η2

)
∈ P

(
[t1, t1 + t2]×RN × U

)
× P

(
RN
)
. One notices that

η ∈ Θ (t1, t1 + t2, γ) .

Definition 3.2. Whenever γ ∈ Θ (0, t1, x0) and η ∈ Θ (t1, t1 + t2, γ) , we define
η ◦ γ ∈ P

(
[0, t1 + t2]×RN × U

)
× P

(
RN
)

by setting:

(η ◦ γ)
1

(A, dydu) = t1
t1+t2

γ1 (A ∩ [0, t1] , dydu) + t2
t1+t2

η1 (A ∩ [t1, t1 + t2] , dydu) ,

(η ◦ γ)
2

= η2,

for all Borel sets A ⊂ [0, t1 + t2] .

We introduce the following notations:
Θ (t1, t1 + t2,Θ (0, t1, x0)) = ∪

γ∈Θ(0,t1,x0)
Θ (t1, t1 + t2, γ) ,

Θ (t1, t1 + t2, ·) ◦Θ (0, t1, x0) = {η ◦ γ : γ ∈ Θ (0, t1, x0) , η ∈ Θ (t1, t1 + t2, γ)} ,
Θ (t1, t1 + t2, ·) ◦ Γ (0, t1, x0) = {η ◦ γ : γ ∈ Γ (0, t1, x0) , η ∈ Θ (t1, t1 + t2, γ)}

.
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Remark 3.3. Whenever γ ∈ Θ (0, t1, x0) and η ∈ Θ (t1, t1 + t2, γ) ,it is clear that η ◦ γ ∈
Θ (0, t1 + t2, x0) . Indeed, if φ ∈ C1,2

b

(
R+ ×RN

)
, one gets

φ (0, x0) +

∫
[0,t1]×RN×U

t1Luφ (s, y) γ1 (dsdydu)−
∫
RN

φ (t1, z) γ
2 (dz) = 0, and

∫
RN

φ (t1, z) γ
2 (dz) +

∫
[t1,t1+t2]×RN×U

t2Luφ (s, y) η1 (dsdydu)−
∫
RN

φ (t1 + t2, z) η
2 (dz) = 0.

The conclusion follows by summing the two equalities.

In fact, we can prove that the converse also holds true.

Proposition 3.4. 1. We have the following semigroup property

Θ (t1, t1 + t2, ·) ◦Θ (0, t1, x0) = Θ (0, t1 + t2, x0) ,

for all t1, t2 ≥ 0 such that t1 + t2 ≤ T.
2. Θ (t1, t1 + t2, ·)◦Γ (0, t1, x0) ⊃ Γ (0, t1 + t2, x0) , for all t1, t2 ≥ 0 such that t1+t2 ≤ T .

Proof. We only prove the inclusion

Θ (t1, t1 + t2, ·) ◦Θ (0, t1, x0) ⊃ Θ (0, t1 + t2, x0) .

Let us suppose that γ =
(
γ1, γ2

)
∈ Θ (0, t1 + t2, x0) is an occupational measure associ-

ated to (x0, u) ∈ RN × U . We define
γ1 (A, dydu) = γ1

0,t1,x0,u (A, dydu) = t1+t2
t1

γ1 (A, dydu) , γ2 = γ2
0,t1,x0,u,

η1 (A′, dydu) = t1+t2
t2

γ1
0,t1+t2,x0,u (A′, dydu) = t1+t2

t2
γ1 (A′, dydu) ,

η2 = γ2
0,t1+t2,x0,u = γ2,

for all Borel sets A ⊂ [0, t1] , A′ ⊂ [t1, t1 + t2] . It is clear that

γ =
(
γ1, γ2

)
∈ Θ ( 0, t1, x0) , η =

(
η1, η2

)
∈ Θ (t1, t1 + t2, γ) and γ = η ◦ γ.

The conclusion in the general case follows by recalling that Θ = co (Γ) by construction
similar to proposition 3.1 and due to the compactness arguments.

The following propositions give different ways of constructing elements of Θ (t1, t1 + t2, γ).

Proposition 3.5. If η : RN −→ P
(
[t1, t1 + t2]×RN × U

)
× P

(
RN
)

is measurable and
such that η (z) =

(
η1 (z) , η2 (z)

)
∈ Θ (t1, t1 + t2, z) for all z, then

η =

(∫
RN

η1 (z) (dsdydu) γ2 (dz) ,

∫
RN

η2 (z) (dy) γ2 (dz)

)
∈ Θ (t1, t1 + t2, γ) .

In particular, whenever π = (Bn)n is a partition of RN into Borel sets, the family

Γπ (t1, t1 + t2, γ) ={(∫
RN

η1
un (z) γ2 (dz) ,

∫
RN

η2
un (z) γ2 (dz)

)
: (un) ⊂ U

}
,

with

η1
un (z) =

∑
n

1Bn (z) γ1
t1,t1+t2,z,un , η2

un (z) =
∑
n

1Bn (z) γ2
t1,t1+t2,z,un ,

is a subset of Θ (t1, t1 + t2, γ) .
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Proof. Indeed, if φ ∈ C1,2
b

(
R+ ×RN

)
, for every z ∈ RN ,

φ (t1, z) +

∫
[t1,t1+t2]×RN×U

t2Luφ (s, y) η1 (z) (dsdydu)−
∫
RN

φ (t1 + t2, y) η2 (z) (dy) = 0.

Then, integrating with respect to γ2, one gets∫
RN

φ (t1, z) γ
2 (dz) +

∫
[t1,t1+t2]×RN×U

t2Luφ (s, y) η1 (dsdydu)−
∫
RN

φ (t1 + t2, y) η2 (dy) = 0.

Also, due to (2.11), we have

∫
RN

|y|2 η2 (dy) =

∫
RN

∫
RN

|y|2 η2 (z) (dy)

 γ2 (dz) ≤
∫
RN

eC0t2
(
|z|2 + C0t2

)
γ2 (dz)

≤ eC0t2
[
C0t2 + eC0t1

(
|x0|2 + C0t1

)]
≤ eC0(t1+t2)

(
|x0|2 + C0 (t1 + t2)

)
.

Similar estimates hold true for
∫

[t1,t1+t2]×RN×U
|y|2 η1 (dsdydu) and the first assertion fol-

lows.
Whenever u ∈ U , standard estimates yield that the function z 7→ γt1,t1+t2,z,u is con-

tinuous (thus measurable). The last assertion follows from 1.

Proposition 3.6. For ε > 0,we consider a partition (Bεn) ofRN and a family (xεn)n ⊂ RN
such that |x− xεn| ≤ ε, for all x ∈ Bεn. If γn ∈ Θ (t1, t1 + t2, x

ε
n) , we introduce

ηε,1 =
∑
n

γ2 (Bεn) γ1
n

=

∫
RN

∑
n

γ1
n1Bε

n
(z) γ2 (dz)

 , ηε,2 =
∑
n

γ2 (Bεn) γ2
n, η

ε =
(
ηε,1, ηε,2

)
.

Then the family (ηε)ε ⊂ P
(
[t1, t1 + t2]×RN × U

)
× P

(
RN
)

is relatively compact and
any limit η is in Θ (t1, t1 + t2, γ).

Proof. First, let us notice that, whenever x ∈ Bεn,

|xεn|
2 ≤ (|x|+ ε)

2 ≤ (1 + ε) |x|2 +
(
ε+ ε2

)
.

Due to (2.11), one has∫
RN

|y|2 ηε,2 (dy) ≤
∫
RN

∑
n

1Bε
n

(z) eC0t2
(
|xεn|

2
+ C0t2

)
γ2 (dz)

≤
∫
RN

eC0t2
(
|z|2 (1 + ε) +

(
ε+ ε2

)
+ C0t2

)
γ2 (dz)

≤ (1 + ε)eC0(t1+t2)
(
|x0|2 + ε+ C0 (t1 + t2)

)
.

Similar estimates hold true for ηε,1. Prohorov’s theorem yields the relative compactness.
Moreover, if η is a limit as ε→ 0 of some subsequence,∫

RN

|y|2 η2 (dy) ≤ eC0(t1+t2)
(
|x0|2 + C0 (t1 + t2)

)
.
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Furthermore, if φ ∈ C1,2
b ,∣∣∣∣∣∣∣

∫
RN

φ (t1, z) γ
2 (dz) +

∫
[t1,t1+t2]×RN×U

t2Luφ (s, y) ηε,1 (dsdydu)−
∫
RN

φ (t1 + t2, z) η
ε,2 (dz)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
RN

[
φ (t1, z)−

∑
n

1Bε
n

(z)φ (t1, x
ε
n)

]
γ2 (dz)

∣∣∣∣∣∣ ≤ cε,
for some constant c depending only on φ. We conclude that η ∈ Θ (t1, t1 + t2, γ) .

3.2 Dynamic programming principles

Let us now return to the primal value function introduced by (2.8). If γ =
(
γ1, γ2

)
∈

Θ (t0, t0, x0) , then γ2 = δx0
and it seems natural to impose

Λ (t0, γ) = Λ (t0, x0) .

If t0 < t ≤ T and γ ∈ Θ (t0, t, x0) we extend Λ to initial measures by setting

Λ (t, γ) = inf
η∈Θ(t,T,γ)

(T − t)
∫

[t,T ]×RN×U

f (s, y, u) η1 (dsdydu) +

∫
RN

g (z) η2 (dz)

 . (3.2)

Proposition 3.7. If f and g are l.s.c. and bounded, then the restriction of the functional
γ 7→ Λ (t, γ) to Θ (t0, t, x0) is convex, for all t0 < t ≤ T and all x0 ∈ RN .

Proof. We introduce the functional χ : P
(
[t, T ]×RN × U

)
× P

(
RN
)
−→ R given by

χ (η) = (T − t)
∫

[t,T ]×RN×U

f (s, y, u) η1 (dsdydu) +

∫
RN

g (z) η2 (dz) ,

for all η ∈ P
(
[t, T ]×RN × U

)
× P

(
RN
)
. Then

Λ (t, γ) = inf
η∈Θ(t,T,γ)

χ (η) ,

for all γ ∈ Θ (t0, t, x0) . If f and g are l.s.c., χ is l.s.c. Whenever γ ∈ Θ (t0, t, x0) , using
the compactness of Θ (t, T, γ), one gets the existence of some η ∈ Θ (t, T, γ) such that

Λ (t, γ) = χ (η) .

If γ1, γ2 ∈ Θ (t0, t, x0) and α ∈ [0, 1] , then there exist ηi ∈ Θ (t, T, γi) such that Λ (t, γi) =

χ (ηi) . Moreover, αη1 + (1− α) η2 ∈ Θ (t, T, αγ1 + (1− α) γ2). This implies that the func-
tional γ 7→ Λ (t, γ) is convex.

We can now state and prove the dynamic programming principle(s) for the value
function Λ. In the bounded case, an abstract DPP is obtained. Under further assump-
tions, the DPP has a linear form. We only have an inequality if the cost functions are
semicontinuous and one gets a linear DPP in the uniformly continuous framework. This
is just a first step in studying the equations that would characterize the discontinuous
value function.

Theorem 3.8. (Dynamic Programming Principles)
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1. Let us suppose that the functions f and g are bounded. Then, the following
equality holds true

Λ (t0, x0) = inf
γ∈Θ(t0,t,x0)

(t− t0)

∫
[t0,t]×RN×U

f (s, y, u) γ1 (dsdydu) + Λ (t, γ)

 , (3.3)

for all x0 ∈ RN and all t ∈ (t0, T ) .

2. If f and g are bounded and u.s.c, then

Λ (t0, x0) ≥ inf
γ∈Θ(t0,t,x0)

(t− t0)

∫
[t0,t]×RN×U

f (s, y, u) γ1 (dsdydu) +

∫
RN

Λ (t, y) γ2 (dy)

 .

The same holds true if {(σσ∗ (t, x, u) , b (t, x, u) , f (t, x, u)) : u ∈ U} is convex and f and g
are bounded and l.s.c.

3. If f and g are bounded and Lipschitz-continuous,

Λ (t0, x0) = inf
γ∈Θ(t0,t,x0)

(t− t0)

∫
[t0,t]×RN×U

f (s, y, u) γ1 (dsdydu) +

∫
RN

Λ (t, y) γ2 (dy)

 ,

for all x0 ∈ RN and all t ∈ (t0, T ) .

Remark 3.9. If f and g are bounded and Lipschitz-continuous, Λ coincides with the
classical value function V (cf. Theorem 4 in [10]), being, therefore, uniformly continu-
ous. The method can be extended to uniformly continuous cost functions.

Proof. Let us fix x0 ∈ RN and t ∈ (0, T ] . To simplify notation, we assume that t0 = 0.

1. Proposition 3.4 and definition (3.2) yield

Λ (0, x0) = inf
γ∈Θ(0,t,x0)
η∈Θ(t,T,γ)

T ∫
[0,T ]×RN×U

f (s, y, u) (η ◦ γ)
1

(dsdydu) +

∫
RN

g (z) (η ◦ γ)
2

(dz)


= inf
γ∈Θ(0,t,x0)

t ∫
[0,t]×RN×U

f (s, y, u) γ1 (dsdydu) + Λ (t, γ)

 .

2. In the upper semicontinuous case, due to [10], proposition 11,

Λ (s, x) = V w (s, x) , (3.4)

for all (s, x) ∈ [0, T ]×RN . Here, V w is the weak value function and it is defined on the

family of weak control processes Uw =
{
π : π =

(
Ω,F , (Ft)t≥0 ,P,W, u

)}
. It is known

by the classical optimality principles (see, for example [15], chapter 4, lemma 3.2 and
theorem 3.3) that

V w (0, x0) ≥ inf
π∈Uw

Eπ
[∫ t

0

f
(
s,X0,x0,u

s , us
)
ds+ V w

(
t,X0,x0,u

t

)]
. (3.5)

To every weak control π we can associate, as before, an occupational couple

γ1
0,t,x0,π (A×B × C) =

1

t
Eπ
[∫ t

0

1A×B×C
(
s,X0,x0,u

s , us
)
ds

]
,
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γ2
0,t,x0,π (D) = Pπ

(
X0,x0,u
t ∈ D

)
for all Borel subsets A × B × C × D ⊂ [0, t] × RN × U ×RN . As in the strong case,
γ0,t,x0,π ∈ Θ (0, t, x0) . With this notation, the inequality (3.5) gives

V w (0, x0) ≥ inf
γ∈Θ(0,t,x0)

t ∫
[0,t]×RN×U

f (s, y, u) γ1 (dsdydu) +

∫
RN

V w (t, y) γ2 (dy)

 ,

and, we conclude using (3.4). In the l.s.c. case, one uses [10], proposition 12.
3. Let us fix for the moment γ ∈ Θ (0, t, x0) . For ε > 0, we consider a partition (Bεn)

of RN and a family (xεn)n ⊂ RN such that |x− xεn| ≤ ε, for all x ∈ Bεn. We denote by ω
the continuity modulus of Λ (t, ·) . Then

Λ (t, z) + ω (ε) ≥
∑
n

1Bε
n

(z) Λ (t, xεn) , (3.6)

for all z ∈ RN . For every n, by compactness of Θ (t, T, xεn), there exists an optimal
measure γn ∈ Θ (t, T, xεn) such that

Λ (t, xεn) = (T − t)
∫

[t,T ]×RN×U

f (s, y, u) γ1
n (dsdydu) +

∫
RN

g (y) γ2
n (dy) .

We introduce

ηε,1 =
∑
n

γ2 (Bεn) γ1
n, η

ε,2 =
∑
n

γ2 (Bεn) γ2
n, η

ε =
(
ηε,1, ηε,2

)
.

Due to (3.6), one has

(T − t)
∫

[t,T ]×RN×U

f (s, y, u) ηε,1 (dsdydu) +

∫
RN

g (y) ηε,2 (dy) ≤
∫
RN

Λ (t, z) γ2 (dz) + ω (ε) .

(3.7)
Due to proposition 3.6, (ηε)ε>0 is relatively compact and there exists some subsequence,
still denoted (ηε) converging to some η ∈ Θ (t, T, γ). Proposition 3.4 yields η ◦ γ ∈
Θ (0, t, x0). Passing to the limit in (3.7) and recalling that f and g are continuous, one
has

Λ (0, x0) ≤ T
∫

[0,T ]×RN×U

f (s, y, u) (η ◦ γ)
1

(dsdydu) +

∫
RN

g (y) (η ◦ γ)
2

(dy)

= t

∫
[0,t]×RN×U

f (s, y, u) γ1 (dsdydu) + (T − t)
∫

[t,T ]×RN×U

f (s, y, u) η1 (dsdydu)

+

∫
RN

g (y) η2 (dy) ≤ t
∫

[0,t]×RN×U

f (s, y, u) γ1 (dsdydu) +

∫
RN

Λ (t, z) γ2 (dz) .

Taking the infimum over γ ∈ Θ (0, t, x0) we finally get

Λ (0, x0) ≤ inf
γ∈Θ(0,t,x0)

t ∫
[0,t]×RN×U

f (s, y, u) γ1 (dsdydu) +

∫
RN

Λ (t, z) γ2 (dz)

 .

The proof is completed by 2.
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In the deterministic framework (σ = 0), if γ is an occupational couple associated to
x0 and u ∈ U , then, Θ (t, T, γ) = Θ

(
t, T, xt0,x0,u

t

)
and, by definition,∫

RN

Λ (t, x) γ2 (dx) = Λ
(
t, xt0,x0,u

t

)
= Λ (t, γ) .

Thus, in general,

Λ (t0, x0) ≤ inf
γ∈Γ(t0,t,x0)

(t− t0)

∫
[t0,t]×RN×U

g (s, y, u) γ1 (dsdydu) +

∫
RN

Λ (t, x) γ2 (dx)

 .

It follows from the second assertion of the previous theorem that we have equality for
u.s.c. costs and the proof of 3 is much simpler.
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