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Abstract
In this paper, we provide the sharp asymptotics for the quantization radius (maximal radius) for a
sequence of optimal quantizers for random variables X in (Rd ,‖·‖) with radial exponential tails.
This result sharpens and generalizes the results developed for the quantization radius in [4] for
d ≥ 2, where the weak asymptotics is established for similar distributions in the Euclidean case.
Furthermore, we introduce quantization balls, which provide a more general way to describe the
asymptotic geometric structure of optimal codebooks, and extend the terminology of the quanti-
zation radius.

1 Introduction and results

We consider (Rd ,‖·‖) equipped with an arbitrary norm and a random variable X in Rd such that
for some r > 0 the r-th moment E‖X‖r is finite. For some natural number n ∈N, the quantization
problem consists in finding a set α= {a1, . . . , an} that minimizes

er(X , (Rd ,‖·‖),α) = er(X ,Rd ,α) := (E min
1≤i≤n





X − ai







r
)

1
r

over all subsets α ⊂Rd with card(α)≤ n. Such sets α are called n-codebooks or n-quantizers. The
corresponding number

en,r(X , (Rd ,‖·‖)) = en,r(X ,Rd) := inf
α⊂E,card(α)≤n

er(X ,Rd ,α)

is called the n-th L r -quantization error of X in Rd , an n-quantizer α fulfilling

er(X ,Rd ,α) = en,r(X ,Rd)

is called r-optimal n-quantizer. In the present setting, the existence of optimal quantizers is guar-
anteed (see [1, Lemma 4.10]). For a given n-quantizer α, the nearest neighbor projection is given
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by

πα :Rd → α, x 7→
n
∑

i=1

a1Ca(α)(x),

where the Voronoi partition {Ca(α), a ∈ α} is defined as a Borel partition of Rd satisfying

Ca(α)⊂ Va(α) := {x ∈Rd : ‖x − a‖=min
b∈α
‖x − b‖}.

The random variable πα(X ) is called the α-quantization of X . One easily verifies that πα(X ) is the
best quantization of X in α⊂Rd , that is for every random variable Y with values in α we have

er(X ,Rd ,α) =
�

E




X −πα(X )






r� 1
r ≤
�

E‖X − Y ‖r� 1
r .

One typically is interested in the behavior of en,r(X ,Rd) when n tends to infinity. By finiteness of
E‖X‖r , we deduce that en,r(X ,Rd) is finite as well. Considering the dense and countable subset
{q1, q2, . . . }=Qd ⊂Rd , we estimate

0≤ lim
n→∞

E min
1≤i≤n





X − qi







r
= E lim

n→∞
min

1≤i≤n





X − qi







r
= 0, (1.1)

and derive that en,r(X ,Rd) tends to zero as n tends to infinity.
Naturally, one may now ask for a more precise description of this convergence. To answer this
question, it will be convenient to write an s bn for sequences (an)n∈N and (bn)n∈N if an

bn

n→∞−−→ 1,

an ® bn if lim supn→∞
an

bn
≤ 1 and an t bn if 0< lim infn→∞

an

bn
≤ limsupn→∞

an

bn
<∞.

Let E‖X‖r+δ < ∞ for some δ > 0 and h be the non-vanishing Lebesgue-continuous part of the
density of the distribution PX . Then, the sharp asymptotics of the quantization error is given by

en,r(X ,Rd)s n−
1
d Q r(d)

1
r

�
∫

Rd

h
d

d+r (x)dλ(x)

�
d+r
rd

, n→∞. (1.2)

The numbers Q r(d) ∈ (0,∞), depending on r, d and ‖·‖, are usually unknown, unless in some
special cases, for example d = 1, 2. The corresponding quantization coefficient Q r(PX ) ∈ (0,∞) is
defined as the limit

Q r(P
X ) = lim

n→∞
er

n,r(X ,Rd)n
r
d .

This result is known as the Zador Theorem. Its final proof was completed by Graf and Luschgy and
can be found in [1, Chapter 6].
As good as the asymptotics of the quantization error can be estimated, as difficult it is to describe
the geometric structure of optimal codebooks, or to give at least some asymptotic results on this.
For a random variable X with an unbounded support, one easily sees that any sequence αn of
n-codebooks satisfying

er(X ,Rd ,αn)
n→∞−→ 0

must also fulfill
ρ(αn) :=max{‖a‖ : a ∈ αn}

n→∞−→ ∞.

Again, one may ask to describe this behavior more precisely, e.g. for sequences (αn)n∈N of r-
optimal n-quantizers for X . Pagès and Sagna [4] investigated this behavior (they called ρn :=
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ρ(αn) the maximal radius) for central symmetric (with respect to the Euclidean norm) distribu-
tions with exponential and polynomial tails in the Euclidean Rd . For d = 1 and r ≥ 1 they derived
the sharp asymptotics for distributions with exponential tails. They also gave the weak asymp-
totics, in case d ≥ 2 or r < 1, as well as the sharp logarithmic asymptotics of the maximal radius
given polynomial tails. Finally, they formulated a conjecture for the true sharp rate for distribu-
tions with radial exponential tails.
In this paper, we proof this conjecture and extend the results for distributions having radial expo-
nential tails to distributions having the density

f (x) =
1

K
‖x‖c

0 exp(−θ ‖x‖k
0), x ∈Rd . (1.3)

Furthermore, we provide the sharp asymptotics of the quantization radius (which will be our ter-
minology for the maximal radius) of a sequence of r-optimal n-quantizers in (Rd ,‖·‖), for arbitrary
norms ‖·‖ ,‖·‖0 and arbitrary positive r. This result extends the formulation of the conjecture to
arbitrary norms as well as cases in which the quantizing norm ‖·‖ does not coincide with the norm
‖·‖0 in equation (1.3). The latter extension seems to be more important since it includes, for
example, normal distributions having a regular non-unit covariance matrix. Furthermore, we in-
troduce quantization balls which provide a more general way to describe the asymptotic geometric
structure of optimal codebooks and extend the terminology of the quantization radius.
The paper is organized as follows: In section 2 we introduce the basic notations and provide some
technical support for the following section. In section 3 we formulate the main theorem and give
the proof for the lower an upper bound (section 3.1 and 3.2). We also transfer the result to the
important example of a general normal distribution in (Rd ,‖·‖2). In section 4 we provide some
numerical illustrations of the results.

Notations:

• Throughout this paper, we consider a probability space (Ω,F ,P), (Rd ,‖·‖) for some d ∈N
equipped with arbitrary norm ‖·‖ and a Borel random variable X in (Rd ,‖·‖) with finite r-th
moment E‖X‖r <∞ for some r > 0.

• For an arbitrary norm ‖·‖0 and any s > 0 we set B‖·‖0
(x , s) := {y ∈Rd :





y − x






0 < s}.

• For an arbitrary norm ‖·‖0 we will denote by dist‖·‖0
(·, ·) : Rd ×Rd → [0,∞) the distance

function with respect to the norm ‖·‖0.

2 Basics and definitions

The notations B(0,1) = B‖·‖(0, 1) and dist(·, ·) = dist‖·‖(·, ·) will be used throughout this section.

Definition 2.1. 1. For a finite codebook α⊂Rd we define the quantization radius by

ρ(α) :=max{‖a‖ with a ∈ α}.

2. Let (αn)n∈N be a sequence of r-optimal n-quantizers for the random variable X in (Rd ,‖·‖).
We call a subsetB =B(X , r,αn) a quantization ball for X in (Rd ,‖·‖) of order r if

B = lim inf
n→∞

conv(αn)
ρ(αn)

= limsup
n→∞

conv(αn)
ρ(αn)

,
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where conv denotes the convex hull and

lim inf
n→∞

An =
⋃

n∈N

⋂

m≥n

Am,

limsup
n→∞

An =
⋂

n∈N

⋃

m≥n

Am.

IfB is independent of (αn)n∈N we callB the quantization ball.

3. The survival function for the random variable X is given by

F :R+→ [0,1], x 7→ P(‖X‖> x).

4. For s ≥ 0 we define the generalized survival function by

F s :R+→ [0,E‖X‖s], x 7→ E1‖X‖>x ‖X‖
s .

5. The random variable X is said to have an (r, r + ν)-distribution in (Rd ,‖·‖) if for every
sequence of r-optimal n-quantizers (αn)n∈N

lim inf
n→∞

en,r+ν(X ,Rd)

er+ν(X ,Rd ,αn)
> 0.

Since we will focus on distributions with radial exponential tails in the following, we provide
relevant results for the survival functions and the (r, r + ν)-distribution properties for random
variables having this density type.

Lemma 2.2. Let PX = f λd with f having the shape

f (x) = K−1 ‖x‖c exp(−θ ‖x‖k), x ∈Rd ,

for constants θ , k > 0, c >−d and the norming constant

K :=

∫

Rd

‖x‖c exp(−θ ‖x‖k)dλd(x).

Then, for every s ≥ 0
F s(x)s Cθ ,c,k,‖·‖x

s+c+d−k exp(−θ x k), x →∞,

for some constant Cθ ,c,k,‖·‖ ∈ (0,∞).

Proof. Since λd(B(0, r)) = λd(rB(0, 1)) = rdλd(B(0, 1)), we have

(λd)‖·‖(d x) = Vd,‖·‖d xd−1λ(d x),

with Vd,‖·‖ := λd(B(0,1)). We obtain

F s(x) = E(‖X‖
s 1‖X‖>x) = K−1

∫

‖y‖>x





y






s+c
exp(−θ





y






k
)dλd(y)

= K−1dVd,‖·‖

∫ ∞

x

ud+c+s−1 exp(−θuk)dλ(u).
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Integration by parts yields

F s(x) = K−1dVd,‖·‖
xd+c+s−k

θk
exp(−θ x k) + xd+c+s−k exp(−θ x k)O

�

1

x k

�

,

and thus the assertion with Cθ ,c,k,‖·‖ :=
K−1dVd,‖·‖

θk
.

For the following lemma, see [2, Example 1].

Lemma 2.3. Let PX = f λd with f having the shape

f (x) = K−1 ‖x‖c
0 exp(−θ ‖x‖k

0), x ∈Rd ,

for constants θ , k > 0, c > −d, an arbitrary norm ‖·‖0 and a norming constant K. Then, X has an
(r, r + ν)-distribution in (Rd ,‖·‖) for all ν < d.

The proof of the following result is based on the proof in [4] of a similar result in the Euclidean
case.

Proposition 2.4. Assume that PX ≥ ε01B(x0,r0)λ
d for some ε0, r0 > 0. Then, for any b < 1

2

Cr,d,b,‖·‖,X n−
r+d

d ® er
n,r(X ,Rd)− er

n+1,r(X ,Rd), n→∞,

where

Cr,d,b,‖·‖,X = ((1− b)r − br) bdε0

� r0

2

�r+d
Q r+d(U(B(0,1))).

Proof. Let y ∈ B(x0, r0

2
) and define δn = δn(y,αn) = dist(y,αn) for a sequence of r-optimal n-

quantizers αn for X . We set βn := αn ∪ {y}. For any b < 1
2

er
n,r(X ,Rd)− er

n+1,r(X ,Rd)≥
∫

dist(x ,αn)
r dPX (x)−

∫

dist(x ,βn)
r dPX (x)

≥
∫

B(y,δn b)

dist(x ,αn)
r − dist(x ,βn)

r dPX (x)

≥
∫

B(y,δn b)

(δn(1− b))r − (δn b)r dPX (x)

= ((1− b)r − br)δr
nP

X (B(y,δn b))

≥ ((1− b)r − br)δr+d
n bdε0Vd,‖·‖,

where Vd,‖·‖ := λd(B‖·‖(0, 1)). Integration over B(x0, r0

2
) with respect to dλd(y) yields

er
n,r(X ,Rd)− er

n+1,r(X ,Rd)≥
((1− b)r − br) bdε0Vd,‖·‖

λd(B(0, r0

2
))

∫

B(x0, r0
2
)

dist(y,αn)
r+d dλd(y)

≥
((1− b)r − br) bdε0

� r0

2

�d

∫

B(x0,1)

dist(z,
2αn

r0
)r+d

� r0

2

�2d+r
dλd(z)

≥ ((1− b)r − br) bdε0

� r0

2

�d+r
er+d

n,r+d(U(B(0,1)),Rd),

with U(B(0,1)) denoting the uniform distribution on B(0, 1). The assertion follows in view of the
Zador Theorem.
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3 The main theorem

For this section, let X be a random variable in (Rd ,‖·‖) with PX = f λd and f having the shape

f (x) = g(‖x‖0) := K−1 ‖x‖c
0 exp(−θ ‖x‖k

0), x ∈Rd , (3.1)

for constants θ , k > 0, c > −d, an arbitrary norm ‖·‖0 and a norming constant K . Note, that

g : [0,∞) → [0,∞] has a global supremum in y∗ :=
�

max(c,0)
θk

�
1
k , which holds as a maximum if

c ≥ 0, g is increasing on [0, y∗] and decreasing on [y∗,∞). Furthermore, we set for n ∈N

φ(n) = φr,d,θ ,k(n) :=
�

r + d

θd
log(n)

�
1
k

.

Theorem 3.1. For any sequence of r-optimal n-quantizers (αn)n∈N for X in (Rd ,‖·‖) it holds

ρ(αn)s φ(n) sup
x∈B‖·‖0 (0,1)

‖x‖ , n→∞,

and the quantization ballB is given by

B =
1

supx∈B‖·‖0 (0,1) ‖x‖
B‖·‖0
(0,1).

Remark 3.2. We see that the asymptotics of the quantization radius and the quantization ball
are independent of the sequence of quantizers (αn)n∈N. Furthermore, the quantization ball is
independent of the choice of r and, except for a scaling factor, of the underlying norm ‖·‖.
Example 3.3. We consider (Rd ,‖·‖) = (Rd ,‖·‖2). Let PX be a centered d-dimensional normal dis-
tribution with regular covariance matrix Σ and corresponding non increasing ordered eigenvalues
λ1 ≥ · · · ≥ λd > 0. Its density is given by

f (x) =
1

p

�

(2π)d detΣ
�

exp(−
1

2








Σ−
1
2 x









2

2
),

where ‖·‖2 denotes the Euclidean norm in Rd . Thus, it has the form (3.1) with c = 0,θ = 1
2
, k = 2

and ‖·‖0 =







Σ−
1
2 ·









2
. The operator norm of the natural embedding j : (Rd ,‖·‖0) → (Rd ,‖·‖2)

is given as the root of the biggest eigenvalue λ1 of the covariance matrix. Using Theorem 3.1
we obtain the asymptotics of the quantization radius for any sequence of r-optimal n-quantizers

(αn)n∈N for X
d
= N(0,Σ) of order r as

ρ(αn)s
p

λ1φr,d, 1
2

,2(n), n→∞,

and the quantization ball is given as the normalized unit ball in (Rd ,‖·‖0)

1
p

λ1

B





Σ−
1
2 ·









2

(0,1).

The proof of Theorem 3.1 consists of two parts, one for the lower and one for the upper bound.
For convenience we will denote by C ∈ [1,∞) the smallest constant satisfying 1

C
‖·‖ ≤ ‖·‖0 ≤ C ‖·‖.
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3.1 Lower bound

Proposition 3.4. Let (αn)n∈N be a sequence of r-optimal n-quantizers for the random variable X in
(Rd ,‖·‖). Then, for every δ ∈ (0, 1) and every sequence (bn)n∈N ∈ B‖·‖0

(0, 1−δ)

dist
‖·‖

�

αn, bnφ(n)
�

→ 0, n→∞. (3.2)

Proof. Assume that there is a δ ∈ (0, 1) and a sequence (bn)n∈N ∈ B‖·‖0
(0,1−δ) such that (3.2)

does not hold. Then, there exists an ε > 0 and a strictly increasing subsequence (n j) j∈N ∈ NN
satisfying

B‖·‖(bn j
φ(n j),ε)∩αn j

= ;. (3.3)

We fix 0< ν < d. Using (3.3) we obtain

E








X −παn j
(X )









r+ν
≥
∫

B‖·‖(bn j
φ(n j),ε/2)

min
a∈αn j

‖X − a‖r+ν dP

≥
�ε

2

�r+ν
P

�

X ∈ B‖·‖(bn j
φ(n j),

ε

2
)
�

≥
�ε

2

�r+ν
P

�

X ∈ B‖·‖0
(bn j

φ(n j),
ε

2C
)
�

.

(3.4)

Case 1: There is a subsequence of (n j) j∈N, for convenience also denoted (n j) j∈N, such that







bn j
φ(n j)










0
− ε

2C
≥ y∗ for all j ∈N. Then, by monotonicity of g and (3.4)

E








X −παn j
(X )









r+ν
≥
�ε

2

�r+ν
λd(B‖·‖0

(0,
ε

2C
))g(








bn j
φ(n j)










0
+
ε

2C
).

Taking the (r+ν)-th root and the negative logarithm, we obtain by using the (r, r+ν)-distribution
property

1

d
log(n j)®

θ(







bn j
φ(n j)










0
+ ε

2C
)k

r + ν
®
θ(1−δ)k

r + ν
(r + d)
θd

log(n j), j→∞,

which yields a contradiction by letting ν go to d.

Case 2: There is an N ∈ N such that







bn j
φ(n j)










0
− ε

2C
< y∗ for all j ≥ N . Therefore, with

A := B‖·‖0

�

0, y∗ + ε

C

�

\B‖·‖0
(0, ε

4C
) and (3.4)

E








X −παn j
(X )









r+ν
≥
�ε

2

�r+ν
λd
�

B‖·‖0
(bn j

φ(n j),
ε

2C
)\B‖·‖0

(0,
ε

4C
)
�

inf
x∈A

f (x)

≥
�ε

2

�r+ν
λd
�

B‖·‖0
(0,

ε

2C
)\B‖·‖0

(0,
ε

4C
)
�

inf
x∈A

f (x)

for all j ≥ N , which is a contradiction since infx∈A f (x) =min{g( ε
4C
), g(y∗ + ε

C
)} > 0 and the left

hand side converges to zero as j tends to infinity.

The following corollary provides the lower bound for the main theorem.
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Corollary 3.5. We use the notations from Proposition 3.4. For every δ ∈ (0,1) there exists an nδ ∈N
such that

B‖·‖0
(0,φ(n)(1−δ))⊂ conv(αn), (3.5)

for all n≥ nδ. As an immediate consequence

B‖·‖0
(0,1)⊂ lim inf

n→∞

conv(αn)
φ(n)

. (3.6)

The lower bound for the quantization radius is given by

φ(n) sup
x∈B‖·‖0 (0,1)

‖x‖® ρ(αn), n→∞. (3.7)

Proof. Assume that (3.5) does not hold. Then, there exists a strictly increasing sequence (nk)k∈N ∈
NN and znk

∈ B‖·‖0
(0,φ(nk)(1−δ))\ conv(αnk

), k ∈N. We show that there are xnk
∈ ∂ B‖·‖0

(0,φ(nk)(1−
δ

2
)) satisfying

B‖·‖0
(xnk

,
δ

2
φ(nk))∩αnk

= ;.

By using a separation theorem, we find for every k ∈N a continuous linear fnk
, such that

fnk
(znk
)> fnk

(y) ∀y ∈ conv(αnk
).

Since B‖·‖0
(0, 1) is compact and fnk

continuous, there is x ′nk
∈ B‖·‖0

(0,1) such that

fnk
(x ′nk
) = sup

y∈B‖·‖0 (0,1)

fnk
(y).

We set xnk
:= x ′nk

φ(nk)(1−
δ

2
). Hence, xnk

∈ ∂ B‖·‖0
(0,φ(nk)(1−

δ

2
)) and for y ∈ B‖·‖0

(xnk
, δ

2
φ(nk))

fnk
(y) = fnk

(xnk
) + fnk

(y − xnk
)≥ fnk

(x ′nk
)φ(n)(1−

δ

2
)

− sup
y∈B‖·‖0 (0,1)

fnk
(y)φ(n)

δ

2
= fnk

(x ′nk
)φ(n)(1−δ)≥ fnk

(znk
),

and thus

B‖·‖0
(xnk

,
δ

2
φ(nk))∩αnk

= ;.

Equivalence of the norms implies

B‖·‖(xnk
,
δ

2C
φ(nk))∩αnk

= ;,

which is a contradiction to Proposition 3.4. (3.6) follows by (3.5) and

B‖·‖0
(0,1) =

⋃

δ>0

B‖·‖0
(0, (1−δ))⊂ lim inf

n→∞

conv(αn)
φ(n)

.

By continuity of ‖·‖0 we choose x∗ ∈ B‖·‖0
(0,1) such that ‖x∗‖ = supy∈B‖·‖0 (0,1)





y




. By (3.5) it

follows for δ ∈ (0, 1)




x∗




φ(n)(1−δ)® ρ(αn), n→∞

and thus (3.7).
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3.2 Upper bound

Proposition 3.6. Let (αn)n∈N be a sequence of r-optimal n-quantizers for X in (Rd ,‖·‖). Then, for
every δ > 0 there exists an nδ ∈N such that

αn ⊂ B‖·‖0
(0,φ(n)(1+δ)), (3.8)

for all n≥ nδ.

Proof. Assume that there is a strictly increasing subsequence (nk)k∈N ∈NN with

ank
∈ αnk

∩ B‖·‖0
(0,φ(nk)(1+δ))

c . (3.9)

Step 1: We show that
Vank
(αnk
)⊂ B‖·‖0

(0,φ(nk)(1+ ε))
c

for some ε > 0, k0 ∈N and all k ≥ k0. With (3.9), we obtain

dist
‖·‖0

(ank
, B‖·‖0

(0,φ(nk)(1+
δ

2
)))≥

δ

2
φ(nk),

which implies in view of equivalence of the norms

dist
‖·‖
(ank

, B‖·‖0
(0,φ(nk)(1+

δ

2
)))≥

δ

2C
φ(nk). (3.10)

On the other hand, it holds with ε := δ

12C2

dist
‖·‖
(αnk
\{ank

}, xnk
)≤

δ

4C
φ(nk), (3.11)

for all sequences xnk
∈ B‖·‖0

(0,φ(nk)(1+ ε)) since, by choosing bnk
:= xnk

1−ε
1+ε

in Proposition 3.4,
there exists a k0 ∈N such that

dist
‖·‖

�

αnk
, bnk

�

≤ εφ(nk), ∀k ≥ k0,

which leads for every k ≥ k0 to

dist
‖·‖
(αnk

, xnk
)≤ dist

‖·‖
(αnk

, bnk
) +




bnk
− xnk







≤
δ

12C2φ(nk) +

�

�

�

�

1− ε
1+ ε

− 1

�

�

�

�





xnk







≤
δ

12C
φ(nk) +

�

�

�

�

1− ε
1+ ε

− 1

�

�

�

�

C




xnk







0

≤
δ

12C
φ(nk) + 2εCφ(nk)

≤
δ

4C
φ(nk).

Combining (3.10) and (3.11) we obtain

Vank
(αnk
)⊂ B‖·‖0

(0,φ(nk)(1+ ε))
c (3.12)
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for all k ≥ k0.
Step 2: By choosing in Proposition 3.4 bn = 0 for n ∈ N, we find a sequence cnk

∈ αnk
with

εk :=




cnk





→ 0. By using (3.12) and Proposition 2.4, we get for some constant K > 0

Kn
− d+r

d
k ® er

nk−1,r(X , E)− er
nk ,r(X , E)

≤ E







X − fαnk
\{ank

}(X )









r
−E








X − fαnk
(X )









r

≤
∫

X∈Vank
(αnk
)





X − cnk







r
dP

≤
∫

X∈B‖·‖0 (0,φ(nk)(1+ε))c
2r(‖X‖r +





cnk







r
)dP

≤
∫

X∈B‖·‖0 (0,φ(nk)(1+ε))c
2r C ‖X‖r

0 dP+

∫

X∈B‖·‖0 (0,φ(nk)(1+ε))c
2rεr

kdP,

as k→∞. Applying Lemma 2.2 with s = 0 and s = r leads to

Kn
− d+r

d
k ® 2r Cθ ,c,k,‖·‖0

�

φ(nk)(1+ ε)
�d+c−k×

exp(−θφ(nk)
k(1+ ε)k)(C

�

φ(nk)(1+ ε)
�r + εr

k),

as k→∞. Finally, taking the negative logarithm we get

θ(φ(nk)(1+ ε))
k ®

d + r

d
log(nk), k→∞.

This is equivalent to
(1+ ε)k ≤ 1,

which yields a contradiction.

The following corollary provides the upper bound for the main theorem. It follows from Proposi-
tion 3.6, the definition of lim sup and a similar argumentation as for (3.6) and (3.7).

Corollary 3.7. We use the notations from Proposition 3.6. For every δ > 0 exists an nδ ∈ N such
that

αn ⊂ conv(αn)⊂ B‖·‖0
(0,φ(n)(1+δ)) (3.13)

for all n≥ nδ. This immediately leads to

lim sup
n→∞

conv(αn)
φ(n)

⊂ B‖·‖0
(0,1).

The upper bound for the quantization radius is given by

ρ(αn)® φ(n) sup
x∈B‖·‖0 (0,1)

‖x‖ , n→∞. (3.14)
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Proof of Theorem 3.1. From equation (3.7) and (3.14) we obtain the asymptotics

ρ(αn)s φ(n) sup
x∈B‖·‖0 (0,1)

‖x‖ , n→∞. (3.15)

Then, (3.15), (3.5) and (3.13) yield for every δ′ > 0 an nδ′ such that for all n≥ nδ′

B‖·‖0
(0, (1−δ′))

supx∈B‖·‖0 (0,1) ‖x‖
⊂

conv(αn)
ρ(αn)

⊂
B‖·‖0
(0, (1+δ′))

supx∈B‖·‖0 (0,1) ‖x‖
.

The definition of lim inf and lim sup,
⋃

δ>0

B‖·‖0
(0, (1−δ)) = B‖·‖0

(0,1)

and
⋂

δ>0

B‖·‖0
(0, (1+δ)) = B‖·‖0

(0,1) = {x : ‖x‖0 ≤ 1}

give the assertion.

4 Numerical illustration

Finally, we want to illustrate some of our results. For the computation of the optimal codebooks
presented below, we used the CLVQ-Algorithm, see [3]. We consider the Euclidean R2, r = 2 and

X
d
= N(0,Σ) with eigenvalues λ1 = 1 and λ2 =

1
4
. The figures show the 2-optimal n-quantizers for

n = 50,250, 1000. The two ellipses in the figures are the scaled quantization balls Bρ(αn) and
Bφ(n) with φ(n) as in section 3.
As already mentioned in [4] for the unit-covariance case, we see that in this case the quantization
radius ρ(αn) seems for finite n to be smaller than its asymptotic equivalent φ(n) as well.
Furthermore, we observe that for small n the convex hull of αn does not completely fill the ellipse
Bρ(αn), whereas for growing n almost the whole ellipse seems to be filled by conv(αn).
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Figure 1: 2-optimal 50-quantizer for X
d
= N(0,Σ), eigenvalues λ1 = 1 and λ2 =

1
4
, ‖·‖= ‖·‖2

Figure 2: 2-optimal 250-quantizer for X
d
= N(0,Σ), eigenvalues λ1 = 1 and λ2 =

1
4
, ‖·‖= ‖·‖2
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Figure 3: 2-optimal 1000-quantizer for X
d
= N(0,Σ), eigenvalues λ1 = 1 and λ2 =

1
4
, ‖·‖= ‖·‖2
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