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Abstract

In this paper we provide some sharp asymptotic results for a stochastic model of species survival
recently proposed by Guiol, Machado, and Schinazi.

1 Introduction and statement of results

Recently, Guiol, Machado, and Schinazi [7] proposed a new mathematical framework for modeling
species survival which is closely related to the discrete Bak-Sneppen evolution model. In the
original Bak-Sneppen model [3] a finite number of species are arranged in a circle, each species
being characterized by its location and a parameter representing the fitness of the species and
taking values between zero and one. The number of species and their location on the circle are
fixed and remain unchanged throughout the evolution of the system. At discrete timesn =0,1,...,
the species with the lowest fitness and its two immediate neighbors update simultaneously their
fitness values at random. The Bak-Sneppen evolution model is often referred to as an “ecosystem"
because of the local interaction between different species. The distinguishing feature of the model,
shown through numerical simulations in [3], is the emergence of self-organized criticality [1, 2, 6,
9] regardless the simplicity of the underlying evolution mechanism. The Bak-Sneppen model has
attracted significant attention over the past few decades, but it has also been proven to be difficult
for analytical study. See for instance [6] for a relatively recent survey of the model.

The asymptotic behavior of the Bak-Sneppen model, as the number of species gets arbitrarily large,
was conjectured on the basis of computer simulations in [3]. It appears that the distribution of
the fitness is asymptotically uniform on an interval (f., 1) for some critical parameter f,, the value
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of which is close to 2/3 [1, 9].

Guiol, Machado, and Schinazi [7] were able to prove a similar result for a related model with a
stochastically growing number of species. Their analysis is based on a reduction to the study of a
certain random walk, which allows them to build a proof using well-known results from the theory
of random walks. The main result of [7] is thus based on general properties of Markov chains,
and suitable variations of the result can in principle be carried out to other similar models.

In this paper we focus on the model introduced in [7] as is (see also the recent work of the same
authors [8]). Our aim is to elucidate the underlying mechanism responsible for the phenomenon
described in [7] by sharpening the estimates that lead to the major qualitative statement therein.
We proceed with a description of the Guiol, Machado, and Schinazi (GMS) model. In contrast to
the Bak-Sneppen model, the number of species in the GMS model is random and changes in time,
and only the species with the lowest fitness is randomly replaced. The local interaction between
species is not considered in the GMS model, and therefore the spatial structure of the population
is of no importance.

Let p > % be given and denote ¢ = 1 — p. Let Z, denote the set of non-negative integers and
let X = (X, : n € Z,) be a discrete-time birth and death process with the following transition
probabilities: from each state, X,, increases by 1 with probability p; from each state different than
0, X,, decreases by 1 with probability ¢ = (1 —p); finally, at 0, X,, stays put with probability q. Thus
X is a nearest-neighbor transient random walk on the integer lattice Z, with holding times and
reflection barrier at zero. A jump to the right represents birth of a new species, whereas a jump to
the left represents death of an existing species. Thus X,, represents the number of species alive at
time n. Throughout the paper we assume that X, = 0 with probability one.

When a new species is born, it is assigned a fitness. The fitness is a uniform [0, 1] random variable
independent on the fitness of all previously born species as well as of the path of the process X.
When X jumps to the left, the species with the lowest fitness is eliminated. We remark that, in a
different context, a similar model was considered by Liggett and Schinazi in [10].

Fix f € (0,1). We examine the model by considering two coupled random processes, L = (L,, :
n € Z,) (for lower or left) and R = (R,, : n € Z) (respectively, for right), where L, denotes the
number of species alive at time n whose fitness is less than f while R,, denotes the number of the
remaining species alive at time n.

Observe that L, increases by 1 if X,, does and the newborn species has fitness less than f, and
L, decreases by 1 whenever X, decreases by one and L, is not zero. The value of L, remains
unchanged when either X,, increases by 1 and the newborn species has fitness at least f or X,
decreases by 1 and L, = 0.

Notice that when it is not at zero, the process L evolves as a nearest-neighbor random walk with
probability pf of jumping to the right, probability q of going to the left, and probability 1 —pf —q
of staying put. When at zero, L, jumps to the right with probability pf, and stays put with the
complementary probability 1 — pf. Thus L is itself a death and birth process. Since p > g, Markov
chain L is positive recurrent if pf < g, null-recurrent if pf = g, and is otherwise transient. In what
follows we will denote the critical value q/p of the parameter f by f,.

It is shown in [7] that with probability one we have

1
lim — - #{species alive at time n with fitness within (a, b)} = p(b — a), @)
n—oo n
for any interval (a, b) C (f,,1). That is, the distribution of alive species with fitness higher than f,
approaches the uniform law on (f,, 1), while each species with fitness less than the critical value
f. disappears after a finite (random) time.
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Figure 1: Transition probabilities for G

We sharpen (1) by proving the following theorem. Recall that f, = q/p. Consider the process
B = (B, : n€Z,), where B, is the total number of species born by time n with fitness at least f.
Observe that B is a non-decreasing Markov chain (formed by sums of i.i.d. Bernoulli variables),
which jumps one step up with probability p(1—f) (equal to p—gq for f = f.) and stays put with the
complementary probability (which is equal to 2q for f = f,). Hence by the law of large numbers,
limB,/n=p(1—f)a.s., and (1) is immediate from the the next result.

Theorem 1. Suppose that f = f,. Then
B,—R
1. limsup ———— =1, a.s.

n—oo  /4qninlnn

2. % = |N(0,1)|, where N (0, 1) denotes a mean-zero Gaussian random variable with vari-
2qn

ance one, and = stands for convergence in distribution.

2 Proof of Theorem 1

There is no loss of generality assuming that X is obtained recursively from an i.i.d. sequence of
Bernoulli random variables J = (J,, : n € Z,) with P(J, = 1) = q, P(J, = 0) = p, as follows:
Xy =0 and for n € Z, we have

Xp1 =X, +(1—-J,)—J,(1=s,), wheres, := 1ix —o}- 2)
Here and henceforth we use the standard notation 1, for the indicator of event A.
Let G = (G, : n € Z,) be a Markov chain on Z, X {0, 1} formed by the pairs G, = (L,,J,,). Figure
1 illustrates the transition mechanism of G.
2.1 Reduction from B, —R,, to an occupation time of G

Let A = (A, : n € Z,) be the process defined through A, = B, —R,,. Notice that A, increases by
1 if and only if R,, decreases by 1, and otherwise stays put. Since

{Rys1 — Ry = =1} = (X100 — X, = —1}( {L, =0},
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we have

App— A= 1{X,,+1—X,,=—1}1{L,,=0}'

Thus by (2), Apq — A, = (1 —5,)J,, 15, —q;- Hence we have for n €N,

n—1 n-1 n
A= Z(l _Si)Jil{Lizo} =Mn-1— Z*]isi’ where 7, := ZJil{L;o}-
i=0 i=0 i=0

Observe that 7, is the occupation time (number of visits) of G at state (0, 1) up to time n. Further-
more, since X is transient,

00 00
ZsiJi < Zsi < 00, a.s.

i=0 i=0

Therefore, since L and consequently G are recurrent (and thus A, is a non-decreasing sequence
converging to +o0o with probability one), it suffices to show that Theorem 1 holds with A, =
B, — R, replaced by n, in its statement.

Excursion decomposition for the path of L We decompose the path of L into a sequence of
successive excursions away from 0, each one begins at 0 and lasts until (but not including) the
next time when L returns to O from 1. Set V[, = —1 and, for k € N, let V, be the total duration of
the first k excursions of L from 0. That is

Vk = inf{n > Vk—l . Ln = 1’Ln+1 = 0}
For k € N, define
Vi
My = T’Vk - nd—l - Z Jil{L‘ZO}.
i=V,_,+1

Notice that the excursions are independent and identically distributed. Therefore, (u; : k € N) is
an i.i.d. sequence. Let N, = max{k € Z, : V, < m}, m € N. That is, N,, is the number of returns
to O of the process L up to time m. Then for m € N we have

N, Np+1
D << Y e ®
k=1 k=1

where we make the usual convention that 22=1 Ui = 0.

We now compute u := E(u; ) using the fact that the sequence of pairs G,, = (L,,,J,,) forms a Markov
chain, the transition mechanism of which is illustrated in Fig. 1. The value of u is equal to the
expected number of visits by this Markov chain to the state (0, 1) during the period of time starting
at the state (0, 1) with probability g and at (0, 0) with probability p, and lasting until G leaves the
set {(0,0),(0,1)}. We thus have, using first step analysis,

u = E(u)=PWUy=1)-(14+u)+PlJy=0,L;1=0)-u+P(Jy=0,L;=1)-0
q(1+w)+pQQ—fIu+pf.-0=q+u(l—pf.)=q+up.
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Observe that once the Markov chain L is at zero, it will stay put until J, = 0 and the fitness of
the newborn particle is less than f,. Hence u; is stochastically dominated by a geometric random
variable with parameter P(J, = 0,L; = 1) = pf. = q. In particular u < oo, and hence the above
identity implies u = 1. Consequently, using (3) and the law of large numbers, we obtain

N, ~ N, as n — 0o, a.s. @

Here and henceforth, a, ~ b, as n — oo for two sequences of real numbers (a, : n € N) and
(b, : n € N) means, as usual, lim,_,., a,/b, = 1. In what follows, our plan is to prove a law
of iterated logarithm and a central limit theorem for 7, by a reduction to the corresponding
statements for the “inverse” V, of N,,.

Reduction to a simple random walk With each excursion of L away from zero we can associate
a skeleton, which is the path obtained from the excursion by omitting all transitions from a state of
L to itself. The skeleton is an excursion of the simple (nearest-neighbor) symmetric random walk
on Z, with a reflection barrier at zero. Hence, if we let 7 denote the length of the skeleton, then
due to the choice of f, it follows that 7, has the same distribution as the time required for the
simple (nearest-neighbor) symmetric random walk on Z to get back to O starting from O.

Recall that the holding time of L at zero during one excursion is a geometric random variable with
the parameter P(J, = 0,L; = 1) = pf. = q. Let h; be the i.i.d. sequence of holding times at zero
during successive excursions of L from zero. That is, P(h;, = n) = p"~!q, n € N. In what follows
we will use the notation Geom(a) for the geometric distribution with parameter a (for instance,
we could write h;, ~ Geom(q)). The time spent by L at each visit to a site is a geometric random
variable, Geom(2q) for sites different than 0 and Geom(q) for 0.

Notice that the skeleton of the recurrent Markov process L is independent of the holding times at
states visited during the excursion. Therefore, the length of a single excursion itself is a sum of
one Geom(q) random variable plus a sum of 7, — 1 independent Geom(2q) random variables. If
we replace h; with a Geom(2q), then the resulting modified “excursion time" becomes a sum of
Ty copies of a Geom(2q) random variable. Let V! denote the total length of the first m excursions
modified in this way. Clearly, V,, > V. By the law of large numbers,

/

v. -V 1
lim ——™ =E(h;) - E(h}) = —

moso  m 2q°

a.s., (5)

where h is a geometric random variable with parameter 2q. Letting T,, = 22;1 Ty, we obtain

TYTI
’r_ ”
Vm - Z hk’
k=1

where (hy : k € N) is an i.i.d. sequence of random variables, each one distributed as Geom(2q).
Thus, by the law of large numbers,

m

/ Tm
\% ~2—asm—>oo, a.s. 6)
q

Notice that T, is distributed the same as the total length of the first m excursions from zero of a
simple (nearest neighbor) symmetric random walk.
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2.2 Completion of the proof: CLT and LIL for 1,

LIL for ), We need the following result. Although the claim is a “folk fact", we give a short proof
for the sake of completeness.

Lemma 1.

liminf I =1
R T TR T A

Proof of Lemma 1. Let S = (S, : n € Z.. ) denote the simple symmetric random walk on Z. That is
Sy =0 and

Sn+1 =Sn+§n, TlEZ+,
where (,, : n € Z,) is a sequence of i.i.d. random variables, taking values =1 with equal prob-

abilities. Let y, = O and define inductively v,,,; = inf{k > y,, : S, = m + 1} for m > 0. Let
¢(x) = +/2xInlnx for x > 0. By the law of the iterated logarithm for S,

n
lim sup sup =limsup —— a.s.

S, .
msup o =limsu ¢(yn)‘hm o)

Since ¢ ~1(k) ~ k?/(2InInk) as k — oo, we obtain

liminf Tn

—_— =1 .S.
n-oco n2/(2Ilnlnn) as 2

Let Y,, = ¥Ym+1 — Ym» With the usual convention that the infimum over an empty set is +00. Observe
that y, = Z:OI Y; and that 1 4+ Y; is equal in distribution to the time length of an excursion of S
away from zero. Thus the law of the sequence (T, : n € N) is equal to the law of the sequence
(n+1v, :neN), and we obtain

T, n+vy,

li fo—r———— = fe——"—"=1 .S.
lmnlloro} m?/(2Inlnm) nﬁgl n?/(2lnlnn) as

completing the proof of the lemma. O

Using the lemma along with (5) and (6), we obtain

2qV, 2qV’
hmlnf$ li inf# =1, as.
m—oo m?/(2lnlnm) m—c m?/(2Inlnm)

Consequently, since N is the inverse sequence of V (that is, Vi < k <V, ,;), one can deduce from
it (in the same way as (7) is derived from the usual LIL) that

N
lim sup ——k = 1, as.

k—oo  4/4qklnlnk

Combining this with (4) completes the proof of the law of iterated logarithm for 7,,.
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CLT for n, We now turn to the proof of the central limit theorem. The proof relies on a well-
known limit theorem for a (properly normalized) random sequence T,,. More precisely, we have
(see for instance [5, p. 394]):

lim E(e ?™/™)=¢ ¥  g>0.

m—oo

Therefore, it follows from (5) and (6) that

lim E(e /™) = lim E(e /™) =e V%1  g>o0.

m—oo m—oo

The function ®.(0) = e’c‘@, 6 > 0, with ¢ > 0, is the Laplace transform of a positive stable law
with index 1/2 whose density function is given by (see for instance [5, p. 395])

Cefcz/Zu
o (u) =1z —F/——.
vV 2mud
We will use this formula with the parameter ¢ equal to ¢, := —=. Observe that for all k € N and

7

u>0,
P(Nk S u) = Po(VLuJ+1 > k),

where |u] stands for the integer part of u, that is |u] = max{n € Z, : n < u}. Fix s > 0 and let
u = vks. Then, using the standard notation o(1) to denote a sequence converging to zero when
the underlying index k goes to infinity,

P(Nk < kS) = P(VLWSH»I > k)
V, ks 1 )
= P((L\/%fﬁ >3 (1+ 0(1))) o JZ ¢, (Wdu.

Changing variables from u to t = 1/+/u in the last integral, we obtain

S 9p—t/(2c)
————dt.

0 y/2mc;?

Therefore, as k — oo, the random sequence N,/vk converges weakly to the absolute value of
a centered normal random variable with variance equal to ¢ = 2q. Combining this with (4)
completes the proof of the central limit theorem for 7),,. O
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