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Abstract
This paper presents a very simple and self-contained proof of disorder irrelevance for inhomoge-
neous pinning models with return exponent α ∈ (0, 1/2). We also give a new upper bound for the
contact fraction of the disordered model at criticality.

1 Introduction and presentation of the main result

Pinning/wetting models with quenched disorder describe the random interaction between a di-
rected polymer and a one-dimensional defect line. In absence of interaction, the polymer spatial
configuration is modeled by (n, Sn)n≥0, where (Sn)n≥0 is a Markov Chain (law P) in a certain state
space Σ (e.g. a simple symmetric random walk in Zd for the d + 1 dimensional polymer), and the
initial condition is some fixed element of Σ which by convention we call 0. The defect line, on
the other hand, is just {0} × Z+. The polymer/line interaction is the following : each time the
polymer touches the line (i.e., each time Sn = 0) it gets an energy reward/penalty which can be
either positive or negative.

The interaction with the defect line only changes the law of the return time to zero of (Sn)n≥0, but
does not change the law of the excursions conditionally to the time of the set of visits to zero. For
this reason, we focus on τ ⊂ N the set of times where Sn = 0 (this is the pinning configuration)
and forget about the original Markov chain. Alternatively, we may consider τ = (τn)n≥0 as an
increasing sequence starting from zero that may contain only finitely many terms (if n <∞ is the
number of element of τ, we write by convention τk =∞ for k > n).

Under P, τ is a renewal sequence, i.e., τ0 = 0 and the variables τn+1−τn (conditioned to τn <∞)
are i.i.d. distributed.

The most interesting cases for pinning problems are the case where the law of the inter-arrival
times to 0 of the Markov chain have power-law decay, more precisely
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P(τ1 = n) =
L(n)
n1+α , (1.1)

with α > 0 and L a slowly varying function, i.e. a measurable function from (0,∞) to (0,∞)
such that limx→∞ L(xu)/L(x) = 1 for all u > 0 (see [4] for more informations on slowly varying
functions). We keep this assumption throughout all the paper.

Now we are ready to define our model in a simple manner: given (ωn)n∈N, a typical realization of
a sequence of i.i.d. centered random variables with unit variance which have exponential moments
(see (1.7), let P denote the associated law), h ∈ R and β ≥ 0, we consider the sequence of measure
Pβ ,h,ω

N on τ defined by

dPβ ,h,ω
N

dP
(τ) :=

1

Zβ ,h,ω
N

exp

 

N
∑

n=1

(h+ βωn)1{n∈τ}

!

, (1.2)

where

Zβ ,h,ω
N := E



exp

 

N
∑

n=1

(h+ βωn)1{n∈τ}

!

 , (1.3)

is the renormalization factor (partition function) that makes Pβ ,h,ω
N a probability law. The term

h+ βωn corresponds to the energy reward/penalty for a return to zero at step n. We want to
understand the typical behavior of τ under the measure Pβ ,h,ω

N for large N . To that purpose, a key
quantity is the quenched free energy of the system

Fq(β , h) := lim
N→∞

1

N
E log Zβ ,h,ω

N = lim
N→∞

1

N
log Zβ ,h,ω

N , (1.4)

where the existence of the limit and the second inequality hold P − a.s. The existence of these
limits follows from some superadditivity properties of the system (see e.g. [13, Chapter 4]). The
function h 7→ Fq(β , h) is non-negative, convex, and non-decreasing. A phase transition in h occurs
in the system at the value

hc(β) := inf
�

h : Fq(β , h)> 0
	

, (1.5)

which we refer to as the quenched critical point.
It is known that h< hc(β) corresponds to the delocalized phase, where there is at most O(log(N))
contact with the defect line before N with large probability, whereas h> hc(β) corresponds to the
localized phase where the number point in τ∩ [0, N] under Pβ ,ω,h

N is of order N (We refer to [13,
Chapters 7,8] for further literature and discussion of this point). We write F(h) for Fq(0, h) and hc
for hc(0).
In analogy with the quenched free energy, the annealed free energy is defined by

Fa(β , h) := lim
N→∞

1

N
logEZβ ,h,ω

N = F(h+λ(β)). (1.6)

(the second equality is obtained by using Fubini’s theorem) where

λ(β) := logE[exp(βω1)]<∞. (1.7)

We define also the annealed critical point for the free energy by

ha
c (β) := inf{h : Fa(h,β)> 0}= hc −λ(β). (1.8)
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By Jensen inequality, the annealed free-energy dominates the annealed one. Indeed

E log Zβ ,h,ω
N ≤ logEZβ ,h,ω

N . (1.9)

So that

Fq(β , h)≤ Fa(β , h)
hc(β)≥ ha

c (β).
(1.10)

The behavior of the polymer measure for β = 0 (the homogeneous pinning model) is very well
understood (see [11, 13]). In this case, the model possesses the property of being exactly solvable:
one has an explicit formula for the free energy (and therefore, also for the annealed free energy
for all β). In particular one has hc =− logP[τ1 <∞] (hc = 0 when τ is recurrent) and

lim
h→(hc)+

log F(h)
log(h− hc)

= 1∨α−1. (1.11)

The quantity 1∨α−1 is the critical exponent for the annealed free energy.

The Harris criterion (formulated by A.B. Harris [16]), predicts that for disordered systems, whether
the quenched and annealed systems have the same critical behavior at high temperature (i.e. for
low β) depends on the critical exponent of the annealed free energy. More precisely: it says that
disorder is relevant (for all β) if the critical exponent is smaller than 2 and irrelevant (for small
values of β) if the critical exponent is larger than 2. In view of (1.11), this corresponds, for our
pinning model to α > 1/2 and α < 1/2 respectively.
While a priori, the Harris approach yields a prediction only on critical exponents, when specialized
to pinning models it yields the stronger prediction (see in particular [9, 12]) that if α < 1/2,
then both the annealed critical exponent of the free energy coincides with the quenched critical
exponent and that the two critical points (annealed and quenched) coincide. On the other hand,
if α > 1/2 quenched and annealed free energy exponent and critical point are expected to differ.
Various mathematical confirmations have been given for the validity of Harris criterion for pinning
models (see [15, 1, 19, 8, 2]), and recently, the marginal case α = 1/2 for which Harris criterion
gives no prediction has been solved [14].
In this note, we present a simple martingale method that proves the validity of Harris criterion in
the case α < 1/2. Stronger versions of this result have been proved by Alexander [1] for Gaussian
environment, an alternative approach was found later by Toninelli [19], but our new method
considerably simplifies the proof and does not need any assumption on the environment (whereas
both other papers focused on the Gaussian case). We do not cover the special case α = 0 which
was treated by Alexander and Zygouras [3]. Our method allows us also to derive new results
about the property of the trajectories at the critical point hc(β). We present now our main result.

Theorem 1.1. If α ∈ (0,1/2) or if α= 1/2 and L is such that

∞
∑

n=1

1

nL(n)2
<∞, (1.12)

there exists β2 > 0 such that for all β ≤ β2, hc(β) = ha
c (β), and

lim
h→ha

c (β)
+

log Fq(β , h)
log(h− ha

c (β))
= α−1. (1.13)
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Remark 1.2. Note that it suffices to prove lim suph→ha
c (β)

+
log(F(β ,h))

log(h−ha
c (β))
≤ α−1, which implies hc(β)≥

ha
c (β). The rest of the statement is implied by (1.10) and (1.11).

We give an explicit lower-bound for β2 in Proposition 1.6. Theorem 1.1 follows from Propositions
1.3, 1.5 and 1.6 that we prove in the next section. The first proposition links the expected number
of contacts at the critical point and the critical exponent for the free energy.

Proposition 1.3. Consider γ > 0. If h0 and β are such that F(β , h0) = 0 and if there exists c > 0
such that

lim inf
N→∞

P
h

Pβ ,h0,ω
N (|τ∩ [0, N]|> Nγ)> c

i

> c, (1.14)

then hc(β) = h0 and for any θ > γ−1

lim inf
h→h+0

F(β , h)(h− h0)
−θ =∞. (1.15)

In the same way, if there exists c > 0 such that

lim sup
N→∞

P
h

Pβ ,h0,ω
N (|τ∩ [0, N]|> Nγ)> c

i

> c (1.16)

then hc(β) = h0 and for any θ > γ−1

limsup
h→h+0

Fq(β , h)(h− h0)
−θ =∞. (1.17)

This result (the lim sup version) combined with a following result of Giacomin and Toninelli [15,
Theorem 2.1] gives the following consideration on polymer measure at the critical point.

Corollary 1.4. If one of the following conditions is satisfied

(i) The law of ω1 has bounded support.

(ii) The law of ω1 has density d(·) with respect to Lebesgue measure and there exists R such that
∫

R
d(x + y) log

�

d(x + y)
d(y)

�

dy ≤ Rx2. (1.18)

Then for any γ > 1/2, and β > 0.

Pβ ,hc(β),ω
N (|τ∩ [0, N]|> Nγ)→ 0 (1.19)

in P probability.

Proof. If (1.19) does not hold, then (1.16) and therefore (1.17), hold for some c > 0 and θ < 2.
But this contradicts the conclusion of [15, Theorem 2.1], that says that

lim sup
h→hc(β)+

Fq(β , h)(h− hc(β))
−2 <∞. (1.20)
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Before presenting the next result, we need some definitions. For the techniques we are to use,
we need the assumption that τ is recurrent. However, if τ is not recurrent, one can consider the
system based on the renewal eτ defined by P(eτ1 = n) = K(n)/(

∑∞
n=1 K(n)) which is recurrent, and

whose free energy curve is just a shift along the h coordinate of the free energy curve associated
to τ, to prove Theorem 1.1 (see [13, Remark 1.19]).
In this framework, one can check easily that the sequence of partition functions of the systems of
size N at the annealed critical point ha(β) =−λ(β)

Zβ ,−λ(β),ω
N = E



exp

 

N
∑

n=1

(βωn −λ(β))1{n∈τ}

!

 , N ∈ N, (1.21)

is a martingale with respect to the filtration (FN )N∈N, where

FN := σ(ωn, n≤ N), (1.22)

is the sigma-algebra generated by the environment seen up to the step N . Since it is non-negative,
it converges almost-surely to a limit

Zβ ,ω
∞ := lim

N→∞
Zβ ,−λ(β),ω

N . (1.23)

The reader can check that the event {Z∞ = 0} belongs to the tail sigma algebra
⋂

N∈Nσ(ωn, n ≥
N), and hence, has probability 0 or 1.
The following result indicates that when the martingale in non-degenerate, disorder does not
affect the behavior of τ at the annealed critical point. It is proved at the end of the paper in
Section 2.2 where we study the infinite volume limit of the polymer measure.

Proposition 1.5. Let β > 0 and τ a recurrent renewal be such that

Zβ ,ω
∞ > 0 P a.s. (1.24)

Then, one has for all γ < α.

lim
N→∞

E
h

Pβ ,−λ(β)
N (|τ∩ [1, N]|> Nγ)

i

= 1. (1.25)

The proof of Theorem 1.1 can be achieved once we have the following criterion for the conver-
gence of the martingale,

Proposition 1.6. Let τ be a recurrent renewal. Let τ(1) and τ(2) denote two independent copies of τ.
If the renewal process τ′ := τ(1) ∩τ(2) is transient, then Zβ ,ω

∞ > 0 P− a.s. for all β < β2 where

β2 := inf
¦

β | λ(2β)− 2λ(β)>− logP⊗2(τ′1 <∞)
©

. (1.26)

Remark 1.7. Using the techniques developed in [17] for hierarchical pinning model with site
disorder we could also prove that when the renewal process τ′ is recurrent, then the martingale
limit Zβ ,ω

∞ = 0, P-a.s. for all β > 0.

Proof. It is sufficient to prove that when β < β2, the martingale Zβ ,−λ(β),ω
N is uniformly integrable

(then E
�

Zβ ,ω
∞

�

= 1 so that the limit cannot be uniformly equal to zero). Here we prove the
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stronger statement that Zβ ,−λ(β),ω
N is bounded in L2. To compute the second moment, one just has

to make use of Fubini’s theorem

E
�
�

Zβ ,−λ(β),ω
N

�2�

= E⊗2



E



exp

 

N
∑

n=1

�

βωn −λ(β)
�

(1{n∈τ(1)} + 1{n∈τ(2)})

!







= E⊗2



exp

 

N
∑

n=1

�

λ(2β)− 2λ(β)
�

1{n∈τ(1)∩τ(2)}

!

 , (1.27)

where P⊗2 is the probability law of τ(1), τ(2) which are two independent copies of τ. The sequence
is bounded from above if and only if

E⊗2



exp

 

∞
∑

n=1

�

λ(2β)− 2λ(β)
�

1{n∈τ(1)∩τ(2)}

!

<∞. (1.28)

The quantity
∑∞

n=1 1{n∈τ(1)∩τ(2)} is the total number of return to zero of the renewal τ′ = τ(1)∩τ(2).
It is therefore a geometric random variable. Therefore, (1.28) holds if

λ(2β)− 2λ(β)<− logP(τ′1 <∞). (1.29)

Remark 1.8. The idea of using martingale techniques to prove convergence of the partition func-
tion has been inspired by techniques developed by Bolthausen [5] for directed polymer, which
have been refined since by numerous authors, including Comets and Yoshida [6] to describe prop-
erty of the weak disorder phase.

Proof of Theorem 1.1 when τ is recurrent. First, we show that under the given conditions, τ′ de-
fined above is transient. We compute the expectation of the number of renewal points

E[|τ′ \ {0}|] =
∞
∑

n=1

P⊗2[n ∈ τ′] =
∞
∑

n=1

P[n ∈ τ]2 (1.30)

In [7], it is proved that for α ∈ (0, 1),

P[n ∈ τ] =
α sin(πα)
πL(n)n1−α (1+ o(1)). (1.31)

Therefore, if either α < 1/2 or α = 1/2 and (1.12) holds, E[|τ′ \ {0}|] < ∞ and the process is
transient. We use Proposition 1.5 and 1.6and get that, for all β < β2, (1.25) holds for any γ < α.
Then we use the first part of Proposition 1.3 to get

lim inf
h→−λ(β)+

F(β , h)(h+λ(β))−θ =∞. (1.32)

for any θ > α−1.
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2 Proofs

2.1 Proof of Proposition 1.3

For this proof, one has to introduce the partition function of the system with the end point con-
strained to be pinned (for notational convenience dependence in β , h,ω is omitted when no con-
fusion is possible):

Z c
N := E



exp

 

N
∑

n=1

(βωn + h)1{n∈τ}

!

1{N∈τ}



 . (2.1)

This partition function can be compared to ZN with the following inequalities, for any α+ > α

Z c
N ≤ ZN ≤

�

1+ CN1+α+ exp(−βωn − h)
�

Z c
N . (2.2)

where C is a constant depending only on the law of the renewal and α+ (see the proof [13, Lemma
4.4]). Therefore

lim
N→∞

1

N
E log Z c

N = F(β , h). (2.3)

As E log Z c
N is a super-additive sequence, one has F(β , h)≥ N−1E log Z c

N for every N .
We write u = h− h0. Our aim is to prove that for any ε > 0, for u sufficiently small F(β , h0 + u) ≥
u(γ−ε)

−1
. We fix some ε > 0, and define N = Nu := bu−(γ−ε)

−1
c. Suppose that u is small and such

that
P
n

Pβ ,h0,ω
N (|τ∩ [1, N]|> Nγ)> c

o

≥ c/2. (2.4)

From the definition of the pinning measure we have

Zβ ,h0+u,ω
N

Zβ ,h0,ω
N

= Eβ ,h0,ω
N



exp

 

u
N
∑

n=1

δn

!



≥max
�

exp(Nγu)Pβ ,h0,ω
N {|τ∩ [1, N]| ≥ Nγ} , 1

�

. (2.5)

Taking log and expectation one both sides one gets

E log Zβ ,h0+u,ω
N ≥ E log Zβ ,h0,ω

N +E
�
�

Nγu+ logPβ ,h0,ω
N {|τ∩ [1, N]| ≥ Nγ}

�

+

�

≥ logP(τ1 > N) +
c

2

�

uNγ + log c
�

. (2.6)

where (x)+ = max(x , 0) denotes the positive part, and (x)− = −min(x , 0) denotes the negative
part. To get the second line we only used (2.4) and bounded Zβ ,h0,ω

N from below by the probability
of having no contacts in [0, N]. We want to bound the constrained partition function so we use
(2.2)

E log(Z c
N )
β ,h0+u,ω ≥ E log Zβ ,h0+u,ω

N −E
�

log
�

1+ CN1+α+ exp(−βωn − h)
��

≥ E log Zβ ,h0+u,ω
N − (1+α+) log N − C ′, (2.7)

where C ′ is a constant that can be chosen uniform in h ≥ h0, and that depends on β and C .
Altogether, using (2.6) and P(τ1 > N)≥ N−α+ when N is large enough (cf. (1.1)), this gives us

E
�

log(Z c
N )
β ,h0+u,ω

�

≥−(1+ 2α+) log N − C ′′ +
c

2
uNγ. (2.8)
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Now, using the fact that u ≥ N−γ+ε/2, one sees that for N large enough (i.e. u small enough),
E
�

log(Z c
N )
β ,h0+u,ω

�

≥ 1, so that

F(β , h0 + u)≥
1

N
E
�

log(Z c
N )
β ,h0+u,ω

�

≥ N−1
u ≥ u(γ−ε)

−1
. (2.9)

To finish the proof, we notice that under condition (1.14), (2.4) (and therefore (2.9)) holds for
all small u, and that under condition (1.16), it holds for a sequence of values of u that tends to
zero.

2.2 Weak disorder, the infinite volume limit

It is shown in [13, Chapter 7] that the limiting polymer measure Pβ ,h,ω
∞ = limN→∞ Pβ ,h,ω

N exists in a
weak sense. In this section, we propose to describe accurately this measure at the annealed critical
point, when the limit of the martingale Zβ ,ω

∞ is non-degenerate.
Let θ be the shift operator acting on the environment defined by

θω := (ωn+1)n∈N. (2.10)

Let GN be the sigma-algebra generated by τ ∩ [0, N]. For any fixed set τ̄ =
�

τ̄1, τ̄2, . . . , τ̄n
	

⊂
[0, N], τ̄1 < τ̄2 < · · ·< τ̄n define

P̄β ,ω
∞ (τ∩ [0, N] = τ̄) =

1

Zβ ,ω
∞

n
∏

i=1

K(τ̄i − τ̄i−1)exp
�

βωτ̄i
−λ(β)

�

∞
∑

j=N+1

K( j−τn)Z
β ,θ jω
∞ . (2.11)

One can check that this definition is coherent so that P̄β ,ω
∞ defines a probability measure on

∨

N∈NGN . Moreover we have (and it is straightforward from the definition)

Proposition 2.1. When β is such that Zβ ,ω
∞ > 0 P − a.s., The sequence of measures Pβ ,−λ(β),ω

N
converges weakly to P̄β ,ω

∞ , P-almost surely.

What we want to show is that when N is large, the measure Eβ ,−λ(β),ω
N is, in a sense, very close

to the annealed measure. The complete method developed in [6] could be applied here to prove
that τ has a scaling limit under Eβ ,−λ(β),ω

N (the regenerative set of an α stable process, just like
the annealed model see [13, Chapter 2]). We bound ourselves to show that P̄β ,ω

∞ inherits all the
almost-sure features of P. More precisely

Proposition 2.2. The measure PP̄β ,ω
∞ is absolutely continuous with respect to P.

Proposition 2.2 follows from the generalization of Proposition 1.5 below (the second equality).

Lemma 2.3. Let An be a sequence of events with An ∈ Gn such that lim
n→∞

P(An) = 0. Then

lim
n→∞

sup
N

E
h

Pβ ,−λ(β),ω
N (An)

i

= lim
n→∞

E
�

P̄β ,ω
∞ (An)

�

= 0. (2.12)

Proof. The proof is very similar to the one of [6, Lemma 4.2]. We include it here for the sake

of completeness. We only prove limn→∞ supN E
h

Pβ ,−λ(β),ω
N (An)

i

, the other one being similar and
simpler. Let δ > 0 be arbitrary

E
h

Pβ ,−λ(β),ω
N (An)

i

= E
h

Pβ ,−λ(β),ω
N (An)1Zβ ,−λ(β),ω

N ≥δ

i

+P
�

Zβ ,−λ(β),ω
N < δ

�

. (2.13)
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The first term on the right hand side can be bounded from above by

δ−1E
h

Zβ ,−λ(β),ω
N Pβ ,−λ(β),ω

N (An)
i

= δ−1P(An), (2.14)

which vanishes when n goes large. As for the second-term, since (Zβ ,−λ(β),ω
N )−1 converges almost

surely, it is tight sequence, and hence

lim
δ→0

sup
N

P
�

Zβ ,−λ(β),ω
N < δ

�

= 0. (2.15)

Proof of Proposition 1.5. We just have to use the preceding Lemma with An := {|τ ∩ [0, n]| ≤
nγ} = {τbnγc+1 > n}, γ < α. It is a standard computation to prove that limn→∞ P[An]→ 0: from
[10, XI.5 pp.373 and XIII.6 Theorem 2 (b) pp.448] that τk/ak converges to in law to an α-stable

distribution, where ak is such that kL(ak)a
−α
k → 1. limn→∞ P[An]→ 0, follows from ak = o(k

1
γ ).

Therefore
lim

N→∞
E
h

Pβ ,−λ(β),ω
N (AN )

i

= 0. (2.16)
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