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Abstract

This paper provides a countable representation for a class of infinite-dimensional diffusions which
extends the infinitely-many-neutral-alleles model and is related to the two-parameter Poisson-
Dirichlet process. By means of Gibbs sampling procedures, we define a reversible Moran-type
population process. The associated process of ranked relative frequencies of types is shown to
converge in distribution to the two-parameter family of diffusions, which is stationary and er-
godic with respect to the two-parameter Poisson-Dirichlet distribution. The construction provides
interpretation for the limiting process in terms of individual dynamics.

1 Introduction

The two-parameter Poisson-Dirichlet process, introduced in [19] and further developed in [20]
and [22], provides a family of random probability measures which generalises the Dirichlet pro-
cess, due to [13], and which has found various applications, among which fragmentation and
coalescent theory, excursion theory, combinatorics, machine learning and Bayesian statistics. See,
among others, [2], [21], [17], [25] and references therein. A definition of the two-parameter
Poisson-Dirichlet process can be given as follows. Let α be a finite non null measure on a complete
and separable metric space X, endowed with its Borel sigma algebra B(X). Call θ = α(X) the
total mass of α, and let σ ∈ [0, 1). For k = 1, 2, . . . , let Vk be independent Beta(1−σ,θ + kσ)
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random variables, and define a sequence of weights (q1, q2, . . . ) by

q1 = V1, qi = Vi

i−1
∏

k=1

(1− Vk), i ≥ 2. (1)

The sequence (q1, q2, . . . ) is said to have GEM(θ ,σ) distribution, which generalises the one param-
eter GEM distribution named after Griffiths, Engen and McCloskey. The sequence of descending
order statistics (q(1), q(2), . . . ) is said to have Poisson-Dirichlet distribution with parameters (θ ,σ),
denoted here by Πθ ,σ. The GEM(θ ,σ) distributed sequence (q1, q2, . . . ) is also obtained as a size-
biased permutation of (q(1), q(2), . . . ). The case Πθ ,0 is the (one parameter) Poisson-Dirichlet distri-
bution (see [16]), which is the law of the ranked atoms of a Dirichlet process. Let (Y1, Y2, . . . ) be
i.i.d. observations from the normalised measure ν0 = α/α(X), which we assume to be diffuse, and
denote with δx a point mass at x . A random probability measure µ is said to be a two-parameter
Poisson-Dirichlet process with parameters (θ ,σ), denoted here µ∼ Π̃θ ,σ, if

µ(·) d
=
∞
∑

i=1

qiδYi
(·). (2)

The right-hand side of (2) is known as the stick-breaking representation of the two-parameter
Poisson-Dirichlet process, the reason being apparent from (1). This extends the constructive def-
inition of the Dirichlet process, corresponding to Π̃θ ,0, which is due to [24] and is obtained from
(2) by letting σ = 0 in (1). [20] provides a prediction scheme which generates a sequence
of random variables from a two-parameter Poisson-Dirichlet process. Let ν0 be as above. Let
(X1, X2, . . . ) ∈ X∞ be such that X1 ∼ ν0 and, for every n≥ 1, given X1 = x1, . . . , Xn = xn,

Xn+1| x1, . . . , xn ∼
θ +σKn

θ + n
ν0 +

Kn
∑

j=1

n j −σ
θ + n

δx∗j
(3)

where 0 ≤ σ < 1, θ > −σ, Kn is the number of distinct values (x∗1, . . . , x∗Kn
) in the vector

(x1, . . . , xn), and n j is the cardinality of the cluster associated with x∗j . Then X1, . . . , Xn given
µ are i.i.d. µ, where µ∼ Π̃θ ,σ. Observe that the rule (3) is non degenerate also when

σ =−κ < 0 and θ = mκ for some κ > 0 and m= 2,3, . . . . (4)

In this case, the number of distinct values or species in the n-sized vector is bounded above by
m, and Πmκ,−κ is m-dimensional symmetric Dirichlet. If n0 = min{n ∈ N : Kn = m}, then for all
n > n0 the new samples are just copies of past observations. When σ = 0, (3) reduces to the
Blackwell-MacQueen Pólya-urn scheme (see [4]; see also [15]), which generates a sequence of
random variables from Π̃θ ,0. The Blackwell-MacQueen case is also obtained when (4) holds by
taking the limit for m going to infinity for fixed θ = mκ.
The two-parameter Poisson-Dirichlet distribution has been recently shown to be the stationary
measure of a certain class of diffusion processes taking values in the closure ∇∞ of the infinite
dimensional ordered simplex

∇∞ =
�

z = (z1, z2, . . . ) ∈ [0, 1]∞ : z1 ≥ z2 ≥ · · · ≥ 0,
∞
∑

i=1

zi = 1
�

. (5)

See [18]. More specifically, a class of infinite dimensional diffusions with infinitesimal operator

Lθ ,σ =
∞
∑

i, j=1

zi(δi j − z j)
∂ 2

∂ zi∂ z j
−
∞
∑

i=1

(θzi +σ)
∂

∂ zi
, (6)
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on an appropriately defined domain, is obtained as the limit of certain Markov chains, defined
on the space of partitions of the natural numbers, based on the two-parameter generalisation
of the Ewens sampling formula due to [19]. When σ = 0, (6) is the infinitesimal operator of
the infinitely-many-neutral-alleles model, studied by [9], which is an unlabeled version of the
Fleming-Viot measure-valued diffusion without selection nor recombination, but the diffusion with
operator Lθ ,σ seems to fall outside the class of Fleming-Viot processes. See [12] for a review.
Fleming-Viot processes also arise naturally as limits in distribution of certain Markov processes,
often referred to as countable constructions or particle processes, which retain local information,
i.e. relative to single individuals, rather than pooling it into a probability measure. Examples are
[6],[7],[8] and [23].
The aim of this paper is to provide interpretation for (6) in terms of a countable construction
of particles, which specifies individual dynamics. By means of simple ideas related to the Gibbs
sampler (see, e.g., [14]), we construct a fixed-size right-continuous population process, driven by
Pitman’s prediction scheme (3), which is reversible with respect to the joint law of a sequence
sampled from (3). The associated process of ranked relative frequencies of types is shown to
converge in distribution, under suitable conditions, to the diffusion with operator (6).
The paper is organised as follows. In Section 2 the Gibbs sampler is briefly introduced. Section
3 defines the particle process, the associated process of relative frequencies of types, and proves
weak convergence. In Section 4 we deal with the stationary properties of both the particle and the
simplex-valued diffusion.

2 The Gibbs sampler

The Gibbs sampler (see, e.g., [14]), also known as “heat bath” or “Glauber dynamics”, is a special
case of the Metroplis-Hastings algorithm, which in turn belongs to the class of Markov chain Monte
Carlo (MCMC) procedures. These are often applied to solve integration and optimisation problems
in large dimensional spaces. Suppose for example that an integral of some function f : X→ Rd

with respect to some distribution π ∈ P (X) is to be evaluated, and Monte Carlo integration turns
out to be unfeasible. Then MCMC methods provide a way of constructing a stationary Markov
chain with π as the invariant measure. One can then run the chain, discard the first, say, N
iterations, and regard the successive output from the chain as approximate correlated samples
from π. The size of N is determined according to the convergence properties of the chain.
The Gibbs sampler is one of the most widely used MCMC schemes, and has found a wide range of
applications in Bayesian computation. The construction of a Gibbs sampler is as follows. Consider
a law π = π(dx1, . . . , dxn) defined on (Xn,B(Xn)), and assume that the conditional distributions
π(dx i |x1, . . . , x i−1, x i+1, . . . , xn) are available for every 1 ≤ i ≤ n. Then, given an initial set of
values (x0

1 , . . . , x0
n), the vector is iteratively updated as follows:

x1
1 ∼ π(dx1|x0

2 , . . . , x0
n)

x1
2 ∼ π(dx2|x1

1 , x0
3 , . . . , x0

n)
...

x1
n ∼ π(dxn|x1

1 , . . . , x1
n−1)

x2
1 ∼ π(dx1|x1

2 , . . . , x1
n),

and so on. Under some regularity conditions, this algorithm produces a Markov chain with equi-
librium law π(dx1, . . . , dxn). The above updating rule is known as a deterministic scan. If instead



504 Electronic Communications in Probability

the components are updated in a random order, called random scan, one also gets reversibility
with respect to π.

3 Countable representation

For n ≥ 2, define a Markov chain on Xn as follows. Given any initial state of the chain, at each
transition an index 1 ≤ i ≤ n is chosen uniformly and the component x i is updated with a sample
of size one from the predictive distribution for x i derived from the Pitman urn scheme, leaving all
other components unchanged. From (3), by the exchangeability of the sequence, this predictive is

X i |x(−i) ∼
θ +σKn−1,i

θ + n− 1
ν0 +

1

θ + n− 1

Kn−1,i
∑

j=1

(n j −σ)δx∗j
(7)

where θ and σ are as above, x(−i) = (x1, . . . , x i−1, x i+1, . . . , xn) and Kn−1,i denotes the number
of distinct values in the subvector x(−i). We are thus constructing a stationary chain on Xn via a
Gibbs sampler performed on x= (x1, . . . , xn) by means of a uniform random scan. Embed now the
chain in continuous time by superimposing it to a Poisson process of intensity λn > 0, dependent
on the vector size, which governs the holding times between successive updates. This simple
construction yields a continuous-time pure-jump Markov process corresponding to a contraction
semigroup {T θ ,σ

n (t)}, on the set Ĉ(Xn) of continuous functions on Xn which vanish at infinity,
given by

T θ ,σ
n (t) f (x) =

∫

Xn

f (y)T̃ (t,x, dy) (8)

where T̃ : [0,∞) × Xn ×B(X)n → [0,1] is a transition function defined in terms of (7). The
infinitesimal generator of the process is

Aθ ,σ
n f (x) =

n
∑

i=1

λn(θ +σKn−1,i)

n(θ + n− 1)

∫

�

f (ηi(x|y))− f (x)
�

ν0(dy) (9)

+
n
∑

i=1

Kn−1,i
∑

j=1

λn(n j −σ)
n(θ + n− 1)

�

f (ηi(x|x∗j ))− f (x)
�

with domain D(Aθ ,σ
n ) = { f : f ∈ Ĉ(Xn)}, where ηi is defined as

ηi(x|y) = (x1, . . . , x i−1, y, x i+1, . . . , xn).

It can be easily checked that {T θ ,σ
n (t)} is also positive, conservative, and strongly continuous in

the supremum norm, hence (9) is the generator of a Feller process. Let µn : Xn→P (X), given by

µn(t) =
1

n

n
∑

i=1

δx i(t), (10)

be the empirical measure associated to the vector (x1, . . . , xn) at time t ≥ 0. Then µn(·) :=
{µn(t), t ≥ 0} defines a measure-valued process with sample paths in the space DP (X)([0,∞)) of
right-continuous functions from [0,∞) to P (X) with left limits. For every m≤ n let now

µ(m) =
1

[n]m

∑

1≤ j1 6=···6= jm≤n

δx j1
,...,x jm
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where [n]m = n(n − 1) . . . (n − m + 1), and define Φki and Φk∗ i , both from Ĉ(Xn) to Ĉ(Xn−1),
respectively as

Φki f (x) = f (ηi(x|xk)), 1≤ k 6= i ≤ n

and
Φk∗ i f (x) = f (ηi(x|x∗k)), 1≤ i ≤ n, 1≤ k ≤ Kn−1,i .

Also, let the intensity rate of the Poisson process underlying the holding times be

λn = n(θ + n− 1) (11)

which is positive for θ >−σ and n≥ 2. This provides the correct rescaling in (9). Alternatively we
could take any λn = O (n2) and get the same result in the limit (see also discussion after equation
(14) for the rescaling choice). Then, taking F ∈ C(P (X)) to be F(µ) = 〈 f ,µ(n)〉, with f ∈ D(Aθ ,σ

n )
and 〈 f ,µ〉=

∫

f dµ, the generator of the empirical-measure-valued process µn(·) is

Aθ ,σ
n F(µ) =(θ +σKn−1,i)

n
∑

i=1

〈Pi f − f ,µ(n)〉+
∑

1≤k 6=i≤n

〈Φki f − f ,µ(n)〉

−σ
n
∑

i=1

Kn−1,i
∑

j=1

〈Φ j∗ i f − f ,µ(n)〉

where P g(x) =
∫

g(y)ν0(dy), for g ∈ Ĉ(X), and Pi f denotes P applied to the i-th coordinate of
f . This can be written as the sum Aθ ,σ

n F(µ) = Aθn F(µ) +Aσn F(µ) where

Aθn F(µ) = θ
n
∑

i=1

〈Pi f − f ,µ(n)〉+
∑

1≤k 6=i≤n

〈Φki f − f ,µ(n)〉

and

Aσn F(µ) =σKn−1,i

n
∑

i=1

〈Pi f − f ,µ(n)〉 −σ
n
∑

i=1

Kn−1,i
∑

j=1

〈Φ j∗ i f − f ,µ(n)〉

=σ
n
∑

i=1

Kn−1,i〈Pi f −Qn,i
i f ,µ(n)〉.

Here, the operator Qn,i is defined, for g ∈ Ĉ(X), as

Qn,i g(x) =

∫

g(y)µ∗n,i(dy), µ∗n,i =
1

Kn−1,i

Kn−1,i
∑

j=1

δx∗j

and Qn,i
j f is Qn,i applied to the j-th coordinate of f . Note that when F(µ) = 〈 f ,µ(m)〉, m ≤ n, Aθn

equals

Aθn F(µ) = θ
m
∑

i=1

〈Pi f − f ,µ(m)〉+
∑

1≤k 6=i≤m

〈Φki f − f ,µ(m)〉

which, as n tends to infinity, converges to

Aθ F(µ) = θ
m
∑

i=1

〈Pi f − f ,µm〉+
∑

1≤k 6=i≤m

〈Φki f − f ,µm〉.
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This is twice the generator of the Fleming-Viot process without selection nor recombination and
with parent independent mutation with rate θ/2. Note that by taking λ′n = λn/2 instead of (11),
yields Aθ/2. Of course, Aθ is also obtained as the infinite population limit of Aθ ,σ

n when σ = 0
(and F(µ) = 〈 f ,µ(m)〉, m≤ n). Thus the special case of the Pitman urn scheme with σ = 0, i.e. the
Blackwell-MacQueen urn, provides, via a Gibbs sampler construction, the neutral diffusion model.
When F(µ) is of the form F(µ) = g(〈 f1,µ〉, . . . , 〈 fm,µ〉), for m ∈ N, g ∈ C2(Rm), and f1, . . . , fm ∈
Ĉ(X), we can write Aθ ,σ

n as

Aθ ,σ
n F(µ) =θ

m
∑

i=1

[〈P fi ,µ〉 − 〈 fi ,µ〉] gzi
(〈 f1,µ〉, . . . , 〈 fm,µ〉)

+
∑

1≤k 6=i≤m

[〈 fi f j ,µ〉 − 〈 fi ,µ〉〈 f j ,µ〉] gziz j
(〈 f1,µ〉, . . . , 〈 fm,µ〉)

+σ
m
∑

i=1

Kn−1,i[〈P fi ,µ〉 − 〈Qn,i fi ,µ〉] gzi
(〈 f1,µ〉, . . . , 〈 fm,µ〉)

which, again, converges when σ = 0 to the familiar generator of the neutral diffusion model (cf.,
e.g., [11]). Now, define the first and second derivatives of F(µ) as

∂ F(µ)
∂ µ(x)

= lim
ε↓0

1

ε
[F(µ+ εδx)− F(µ)],

∂ 2F(µ)
∂ µ(x)∂ µ(y)

= lim
ε1↓0
ε2↓0

1

ε1ε2
[F(µ+ ε1δx + ε2δx)− F(µ)].

Then Aθ ,σ
n can also be written

Aθ ,σ
n F(µ) =

∫

(θ +σKn−1,x)B
�

∂ F(µ)
∂ µ(·)

�

µ(dx) (12)

+

∫ ∫

�

µ(dx)δx(y)−µ(dx)µ(dy)
� ∂ 2F(µ)
∂ µ(x)∂ µ(y)

−σ
∫

Kn−1,x C (n)
�

∂ F(µ)
∂ µ(·)

�

µ(dx) +
Rn(F)

n

where Kn−1,x is analogous to Kn−1,i referred to the atom x ,

B f (x) =

∫

X
[ f (y)− f (x)]ν0(dy) (13)

is the unit rate mutation operator, C (n) is

C (n) f (x) =

∫

X
[ f (y)− f (x)]µ∗n,x(dy), (14)

and Rn(F) is a bounded remainder. The operator Aθ ,σ
n does not seem to be well-behaved in the

limit, due to the multiplicative term in the Aσn part. An inspection of (7), which generates the
particles, reveals the heuristics underlying this phenomenon. The probability of sampling a new
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species can be split into two terms, θ/(θ + n − 1) and σKn−1,i/(θ + n − 1). For large n, the
two terms are of order n−1 and n−1+σ respectively, since Kn is of order nσ (see [20]). With
appropriate changes, similar considerations can be made for the empirical part of (7). The point
here is that it is seemingly unfeasible to rescale the process with a rate able to retain, in the
limit, all terms as well-defined infinite-dimensional genetic mechanisms. For instance, choosing
λn = O (n2−σ), yields in the limit a degenerate measure-valued process with constant mutation
rate and no resampling. Conversely, letting λn = O (n`), with ` > 2−σ, in the attempt to preserve
the resampling, leads to a process with infinite mutation rate. Note that we have no degrees of
freedom on σ, which cannot depend on n by definition of the two-parameter Poisson-Dirichlet
process. This makes the characterization of the limit of (10) a difficult task.
A way of overcoming this problem is to restrict the framework. When we have a vector of size
n ≥ 1, let F(µ) in (12) be given by F(µ) = g(〈φ1,µ〉, . . . , 〈φn,µ〉), where g ∈ C2(Rn) and φ j(·) =
1x∗j
(·) is the indicator function of x∗j , 1 ≤ j ≤ n. That is 〈φi ,µ〉 = µ({x∗j }) = z j is the relative

frequency of the j-th observed type. Hence we can identify P (X) with the simplex

∆n =
�

z= (z1, . . . , zn) ∈ [0, 1]n :
n
∑

i=1

zi = 1
�

. (15)

Note that g has n − Kn null arguments when there are Kn different types in the vector. In this
case we regard ∆Kn

as a subspace of ∆n and g(z1, . . . , zKn
, 0, . . . , 0) as C(∆n)-valued rather than

C(∆Kn
)-valued, since Kn is a function of (x1, . . . , xn). Within this more restricted framework, (12)

reduces to the operator

A θ ,σ
n =

Kn
∑

i=1

(θ +σK̃n−1,i)
� Kn
∑

j=1

b(Kn)
ji z j

�

∂

∂ zi
+

Kn
∑

i, j=1

zi(δi j − z j)
∂ 2

∂ zi∂ z j
(16)

−σ
Kn
∑

i=1

K̃n−1,i

� Kn
∑

j=1

c(Kn)
ji z j

�

∂

∂ zi
+

Rn

n

with domain
D(A θ ,σ

n ) = {g ∈ C2(∆n)}. (17)

Here K̃n−1,i denotes the number of non null components in the vector (z1, . . . , zKn
) after zi is up-

dated to zi−n−1. Furthermore, (θ+σK̃n−1,i)b
(Kn)
ji is the intensity of a mutation from type j to type

i when there are Kn different types, with b(Kn)
ii = −

∑

j 6=i b(Kn)
i j , and −σK̃n−1,ic

(Kn)
ji is the analog for

the operator (14).

Remark 3.1. Recall from the introduction that the prediction scheme (3) is non degenerate also
when σ = −κ < 0 and θ = mκ for some κ > 0 and m ≥ 2. It can be easily seen that in this case
(16) becomes

Ã θ ,σ
n =

Kn
∑

i=1

(κ(m− K̃n−1,i)
� Kn
∑

j=1

b(Kn)
ji z j

�

∂

∂ zi
+

Kn
∑

i, j=1

zi(δi j − z j)
∂ 2

∂ zi∂ z j

+κ
Kn
∑

i=1

K̃n−1,i

� Kn
∑

j=1

c(Kn)
ji z j

�

∂

∂ zi
+

Rn

n



508 Electronic Communications in Probability

which, for n tending to infinity, since K̃n−1,i eventually reaches m with probability one, converges
to

Ã θ ,σ =θ
m
∑

i=1

� m
∑

j=1

cm
ji z j

�

∂

∂ zi
+

m
∑

i, j=1

zi(δi j − z j)
∂ 2

∂ zi∂ z j
.

This is the neutral-alleles-model with m types, which can be dealt with as in [9]. In particular,
for m going to infinity and θ = mκ kept fixed, one obtains, under appropriate conditions, the
infinitely-many-neutral-alleles-model, whose stationary distribution is the one parameter Poisson-
Dirichlet distribution. This is consistent with the fact that the same limit applied to (3) yields the
Blackwell-MacQueen urn scheme. �

When the mutation is governed by (13) we have bi j = ν0({ j})− δi j (cf., e.g., [11]). Also, from
(14) we have ci j = µ∗i ({ j})− δi j = K̃−1

n−1,i − δi j . When the distribution ν0 of the allelic type of a
mutant is diffuse, these parameters yield

A θ ,σ
n =− θ

Kn
∑

i=1

zi
∂

∂ zi
+

Kn
∑

i, j=1

zi(δi j − z j)
∂ 2

∂ zi∂ z j

+σ
Kn
∑

i=1

K̃n−1,i

� Kn
∑

j=1

�

−δi j −
�

1

K̃n−1,i
−δi j

��

z j

�

∂

∂ zi
+

Rn

n

which in turn equals

A θ ,σ
n =

Kn
∑

i, j=1

zi(δi j − z j)
∂ 2

∂ zi∂ z j
−

Kn
∑

i=1

(θzi +σ)
∂

∂ zi
+

Rn

n
. (18)

Alternatively we could take the mutation to be symmetric, that is b(Kn)
ji = (Kn − 1)−1, for j 6= i, so

that
∑

1≤ j≤Kn

b(Kn)
ji z j =−

∑

1≤ j 6=i≤Kn

b(Kn)
i j z j +

∑

1≤ j 6=i≤Kn

b(Kn)
ji z j =

1− zi

Kn − 1
− zi

This choice yields a different operatorA θ ,σ
n but is equivalent in the limit for n→∞.

Proposition 3.2. Let Z (n)(·) be a ∆n-valued process with infinitesimal operator A θ ,σ
n defined by

(17) and (18). Then Z (n)(·) is a Feller Markov process with sample paths in D∆n
([0,∞)).

Proof. Denote with P θ ,σ
n the joint distribution of an n-sized vector whose components are se-

quentially sampled from (3). Let X (n)(·) be the Markov process corresponding to (8). Then X (n)(·)
has marginal distributions P θ ,σ

n (see also Corollary 4.2 below). Also, given x ∈ Xn, from the
exchangeability of the P θ ,σ

n -distributed vector it follows that T̃ (t,x, B) = T̃ (t, π̃x, π̃B), for every
permutation π̃ of {1, . . . , n} and B ∈ B(X)n. By Lemma 2.3.2 of [5], X (n)(t) is an exchangeable
Feller process on Xn. The result now follows from Proposition 2.3.3 of [5].

The remainder of the section is dedicated to prove the existence of a suitably defined limiting
process, which will coincide with that in [18], and the weak convergence of the process of ranked
frequencies. In the following section we will then show that the limiting process is stationary and
ergodic with respect to the two-parameter Poisson-Dirichlet distribution.
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For every z ∈∆n with Kn positive components, define ρn :∆n→∇∞ as

ρn(z) = (z(1), . . . , z(Kn), 0, 0, . . . ) (19)

where z(1) ≥ · · · ≥ z(Kn) are the the descending order statistics of z and ∇∞ is (5). Let also

∇n =
�

z= (z1, z2, . . . ) ∈ ∇∞ : zn+1 = 0
�

and define the operator

Bθ ,σ
n =

Kn
∑

i, j=1

zi(δi j − z j)
∂ 2

∂ zi∂ z j
−

Kn
∑

i=1

(θzi +σ)
∂

∂ zi
+

Rn

n
,

with Rn as in (18) and domain

D(Bθ ,σ
n ) = {g ∈ C(∇n) : g ◦ρn ∈ C2(∆n)}.

Proposition 3.3. The closure in C(∇n) of Bθ ,σ
n generates a strongly continuous, positive, conserva-

tive, contraction semigroup {Tn(t)} on C(∇n). Given νn ∈ P (∆n), let Z (n)(·) be as in Proposition
3.2, with initial distribution νn. Then ρn(Z (n)(·)) is a strong Markov process corresponding to {Tn(t)}
with initial distribution νn ◦ρ−1

n and sample paths in D∇n
([0,∞)).

Proof. Let {Sn(t)} be the Feller semigroup corresponding to Z (n)(·). Then the proof is the same
as that of Proposition 2.4 of [9]. In particular, it can be shown that {Sn(t)} maps the set of
permutation-invariant continuous functions on ∆n into itself. This, together with the observation
that for every such f there is a unique g ∈ C(∇n) such that g = f ◦ρ−1

n and g ◦ρn = f , allows to
define a strongly continuous, positive, conservative, contraction semigroup {Tn(t)} on C(∇n) by
Tn(t) f = [Sn(t)( f ◦ρn)]◦ρ−1

n . Then ρn(Z (n)(·)) inherits the strong Markov property from Z (n)(·),
and is such that E[ f (ρn(Z (n)(t + s)))|ρn(Z (n)(u)), u≤ s] = Tn(t) f (ρn(Z (n)(s))).

Define now the operator

Bθ ,σ =
∞
∑

i, j=1

zi(δi j − z j)
∂ 2

∂ zi∂ z j
−
∞
∑

i=1

(θzi +σ)
∂

∂ zi
(20)

with domain defined as

D(Bθ ,σ) = {subalgebra of C(∇∞) generated by functions ϕm :∇∞→ [0,1],

where ϕ1 ≡ 1 and ϕm(z) =
∑

i≥1
zm

i , m≥ 2}. (21)

Here ∇∞ is the closure of ∇∞, namely

∇∞ =
�

z= (z1, z2, . . . ) ∈ [0,1]∞ : z1 ≥ z2 ≥ · · · ≥ 0,
∞
∑

i=1

zi ≤ 1
�

which is compact, so that the set C(∇∞) of real-valued continuous functions on ∇∞ with the

supremum norm
�

�

�

�

�

� f
�

�

�

�

�

�= supx∈∇∞ | f (x)| is a Banach space. Functions ϕm are assumed to be evalu-

ated in ∇∞ and extended to ∇∞ by continuity. We will need the following result, whose proof can
be found in the Appendix.



510 Electronic Communications in Probability

Proposition 3.4. For M ≥ 1, let LM be the subset of D(Bθ ,σ) given by polynomials with degree not
higher than M. ThenBθ ,σ maps LM into LM .

Then we have the following.

Proposition 3.5. LetBθ ,σ be defined as in (20) and (21). The closure in C(∇∞) ofBθ ,σ generates
a strongly continuous, positive, conservative, contraction semigroup {T (t)} on C(∇∞).

Proof. For f ∈ C(∇∞), let rn f = f |∇n
be the restriction of f to ∇n. Then for every g ∈ D(Bθ ,σ)

we have |Bθ ,σ
n rn g − rnBθ ,σg| ≤ n−1Rn, where Rn is bounded. Hence

�

�

�

�

�

�Bθ ,σ
n rn g − rnBθ ,σg

�

�

�

�

�

�→ 0, g ∈ D(Bθ ,σ) (22)

as n → ∞. From Proposition 3.3 and the Hille-Yosida Theorem it follows that Bθ ,σ
n is dissipa-

tive for every n ≥ 1. Hence (22), together with the fact that
�

�

�

�

�

�rn g − g
�

�

�

�

�

� → 0 for n → ∞ for

all g ∈ C(∇∞), implies that Bθ ,σ is dissipative. Furthermore, D(Bθ ,σ) separates the points
of ∇∞. Indeed ϕm(z) is the (m − 1)-th moment of a random variable distributed according to
νz =

∑

i≥1 ziδzi
+ (1−

∑

i≥1 zi)δ0, for z ∈ ∇∞, and ϕm(z) = ϕm(y) for m ≥ 2 implies all moments
are equal, hence z = y. The Stone-Weierstrass theorem then implies that D(Bθ ,σ) is dense in
C(∇∞). Proposition 3.4, together with Proposition 1.3.5 of [10], then implies that the closure
of Bθ ,σ generates a strongly continuous contraction semigroup {T (t)} on C(∇∞). Also, since
Bθ ,σϕ1 =Bθ ,σ1 = 0, {T (t)} is conservative. Finally, (22) and Theorem 1.6.1 of [10] imply the
strong semigroup convergence

�

�

�

�

�

�Tn(t)rn g − rnT (t)g
�

�

�

�

�

�→ 0, g ∈ C(∇∞) (23)

uniformly on bounded intervals, from which the positivity of {T (t)} follows.

We are now ready to prove the convergence in distribution of the process of ranked relative fre-
quencies of types.

Theorem 3.6. Given νn ∈ P (∆n), let {Z (n)(·)} be a sequence of Markov processes such that, for every
n ≥ 2, Z (n)(·) is as in Proposition 3.2 with initial distribution νn and sample paths in D∆n

([0,∞)).
Also, let ρn : ∆n → ∇∞ be as in (19), Yn(·) = ρn(Z (n)(·)) be as in Proposition 3.3, and {T (t)}
be as in Proposition 3.5. Given ν ∈ P (∇∞), there exists a strong Markov process Y (·), with initial
distribution ν , such that

E( f (Y (t + s))|Y (u), u≤ s) = T (t) f (Y (s)), f ∈ C(∇∞),

and with sample paths in D∇∞([0,∞)). If also νn ◦ρ−1
n ⇒ ν , then Yn(·)⇒ Y (·) in D∇∞([0,∞)) as

n→∞.

Proof. The result follows from (23) and Theorem 4.2.11 of [10].

Remark 3.7. The statement of Theorem 3.6 can be strengthened. From [18] it follows that the
sample paths of Y (·) belong to C∇∞([0,∞)) almost surely. Then [3] (cf. Chapter 18) implies that
ρn(Z (n)(·))⇒ Y (·) in the uniform topology. �
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4 Stationarity

Denote with

P θ ,σ
n (dx) = ν0(dx1)

n
∏

i=2

(θ +σKi−1)ν0(dx i) +
∑Ki−1

k=1(nk −σ)δx∗k
(dx i)

θ + i− 1
(24)

the joint law of an n-sized sequential sample from the Pitman urn scheme (3), and with pn(dx i |x(−i))
the conditional distribution in (7).

Proposition 4.1. For n ≥ 1, let X (n)(·) be the Xn-valued particle process with generator (9). Then
X (n)(·) is reversible with respect to P θ ,σ

n .

Proof. Let q(x, dy) denote the infinitesimal transition kernel given by q(x, dy) = limt↓0 t−1 T̃ (t,x, dy).
When T̃ (t,x, dy) is as in (8) and λn as in (11), we have

P θ ,σ
n (dx)q(x, dy) =P θ ,σ

n (dx)
1

n

n
∑

i=1

λn pn(dyi |x(−i))
∏

k 6=i

δxk
(yk) (25)

=
1

n

n
∑

i=1

λnP
θ ,σ

n−1 (dx−i)pn(dx i |x(−i))pn(dyi |x(−i))
∏

k 6=i

δxk
(yk)

=
1

n

n
∑

i=1

λnP
θ ,σ

n−1 (dy−i)pn(dx i |y−i)pn(dyi |y−i)
∏

k 6=i

δyk
(xk)

=P θ ,σ
n (dy)

1

n

n
∑

i=1

λnpn(dx i |y−i)
∏

k 6=i

δyk
(xk)

which is P θ ,σ
n (dy)q(y, dx), giving the result.

Integrating out with respect to x both sides of (25) immediately yields the following.

Corollary 4.2. Let X (n)(·) be the Xn-valued particle process with generator (9). Then X (n)(·) has
invariant law P θ ,σ

n .

We turn now to the stationary properties of the infinite-dimensional process of Theorem 3.6.

Proposition 4.3. Let Y (·) be as in Theorem 3.6. Then Y (·) has at most one stationary distribution.

Proof. See Appendix.

Theorem 4.4. Let Y (·) be as in Theorem 3.6. Then the two-parameter Poisson-Dirichlet distribution
Πθ ,σ is an invariant law for Y (·).

Proof. In view of Corollary 4.2 assume, without loss of generality, that P θ ,σ
n is the initial law of

X (n)(·). Hence, for every n ≥ 1 and every t ≥ 0, X (n)(t) is an n-sized i.i.d. sample from µ ∼ Π̃θ ,σ,
given µ. But n−1

∑

i≥1 δx i(t) ⇒ µ almost surely, with µ ∼ Π̃θ ,σ (see [1], Lemma 2.15). Also,
µ =

∑

j≥1 q jδYj
almost surely, where Yj are i.i.d. samples from a common diffuse distribution

ν0, and (q1, q2, . . . ) ∼ GEM(θ ,σ), hence (q(1), q(2), . . . ) ∼ Πθ ,σ (see [20], Proposition 11 and
subsequent discussion). It follows that q( j) is the frequency of the j-th largest species in an infinite-
sized sample from (3), from which Y (t) ∼ Πθ ,σ, for every t ≥ 0. Recall now from Proposition
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3.5 that D(Bθ ,σ) separates points of ∇∞. Then Theorems 3.4.5 and 4.1.6 of [10] respectively
imply that D(Bθ ,σ) is separating and that Y (·) is the only solution of the C∇∞([0,∞))-martingale
problem for (Bθ ,σ,ν). The fact that Πθ ,σ is an invariant law for Y (·) is then implied by Lemma
4.9.1 of [10].

Remark 4.5. Let Vk, k ≥ 1 be as in (1) and note that V1 → 1 in mean square for θ and σ jointly
converging to zero, since

Eθ ,σ(V1) =
1−σ
1+ θ

, Varθ ,σ(V1) =
(1−σ)(θ +σ)
(1+ θ)2(2+ θ)

.

Then for θ ,σ = 0, the distribution Πθ ,σ puts all of its mass to the point of∇∞ given by (1,0, 0, . . .).
�

The following proposition shows that the limiting diffusion is ergodic.

Proposition 4.6. Let Y (·) be as in Theorem 3.6. Then Y (·) is ergodic in the sense that

�

�

�

�

�

�T (t)g −
∫

∇∞

gdµ
�

�

�

�

�

�→ 0, g ∈ C(∇∞) (26)

as t →∞, where µ is the unique stationary distribution.

Proof. See Appendix.

Since the two-parameter Poisson-Dirichlet distribution is concentrated on ∇∞ (cf., e.g., [22]), it
follows that (26) can be modified to

�

�

�

�

�

�T (t)g −
∫

∇∞

gdΠθ ,σ

�

�

�

�

�

�→ 0, g ∈ C(∇∞).

Hence eventually the process ends up in ∇∞ with probability one for any initial state belonging to
∇∞.
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Appendix

Proof of Proposition 3.4

Denote with ∂i the partial derivative with respect to zi . For ϕm we have

Bθ ,σϕm =
∞
∑

i, j=1

zi(δi j − z j)∂i jϕm −
∞
∑

i=1

(θzi +σ)∂iϕm (27)
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=
∞
∑

i=1

zi∂iiϕm −
�

∑

i 6= j

ziz j∂i jϕm +
∞
∑

i=1

z2
i ∂iiϕm

�

−
∞
∑

i=1

(θzi +σ)∂iϕm

=[m(m− 1)−mσ]ϕm−1 − [m(m− 1) +mθ]ϕm.

For ϕm1
· · ·ϕmk

we have

Bθ ,σ(ϕm1
· · ·ϕmk

) =
∞
∑

i, j=1

zi(δi j − z j)∂i j(ϕm1
· · ·ϕmk

)−
∞
∑

i=1

(θzi +σ)∂i(ϕm1
· · ·ϕmk

).

The first term on the right-hand side equals

∞
∑

i, j=1

zi(δi j − z j)∂ j

k
∑

h=1

∂iϕmh

∏

6̀=h

ϕm`

=
k
∑

h=1

∞
∑

i, j=1

zi(δi j − z j)

�

∂i jϕmh

∏

6̀=h

ϕm` +
∑

q 6=h

∂iϕmh
∂ jϕmq

∏

6̀=h,q

ϕm`

�

=
k
∑

h=1

� ∞
∑

i=1

zi∂iiϕmh

∏

6̀=h

ϕm` +
∞
∑

i=1

zi

∑

q 6=h

∂iϕmh
∂iϕmq

∏

6̀=h,q

ϕm`

−
∞
∑

i 6= j

ziz j∂i jϕmh

∏

6̀=h

ϕm` −
∞
∑

i=1

z2
i ∂iiϕmh

∏

6̀=h

ϕm`

−
∞
∑

i, j=1

ziz j

∑

q 6=h

∂iϕmh
∂ jϕmq

∏

6̀=h,q

ϕm`

�

=
k
∑

h=1

�

mh(mh− 1)ϕmh−1

∏

6̀=h

ϕm` +
∑

q 6=h

mhmqϕmh+mq−1

∏

6̀=h,q

ϕm`

−mh(mh− 1)
k
∏

`=1

ϕm` −
∑

q 6=h

mhmqϕmh
ϕmq

∏

6̀=h,q

ϕm`

�

.

As for the second term, we have

∞
∑

i=1

(θzi +σ)∂i(ϕm1
· · ·ϕmk

) =
∞
∑

i=1

(θzi +σ)
k
∑

h=1

∂iϕmh

∏

6̀=h

ϕm`

=θ
k
∑

h=1

mh

k
∏

`=1

ϕm` +σ
k
∑

h=1

mhϕmh−1

∏

6̀=h

ϕm` .

Hence

Bθ ,σ(ϕm1
· · ·ϕmk

) =
k
∑

h=1

�

mh(mh− 1)ϕmh−1

∏

6̀=h

ϕm` (28)

+
∑

q 6=h

mhmqϕmh+mq−1

∏

6̀=h,q

ϕm` −
k
∑

h=1

mh(mh− 1)
k
∏

`=1

ϕm`
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−
∑

q 6=h

mhmq

k
∏

`=1

ϕm`

�

− θ
k
∑

h=1

mh

k
∏

`=1

ϕm` −σ
k
∑

h=1

mhϕmh−1

∏

6̀=h

ϕm`

=
k
∑

h=1

[mh(mh− 1)−mhσ]ϕmh−1

∏

6̀=h

ϕm` +
k
∑

h=1

∑

q 6=h

mhmqϕmh+mq−1

∏

6̀=h,q

ϕm`

−
k
∑

h=1

¨�

mh(mh− 1) +mhθ

�

+
∑

q 6=h

mhmq

« k
∏

`=1

ϕm`

so thatBθ ,σ : LM → LM .

The two following proofs are modifications of proofs in [9] adapted for the two-parameter case.

Proof of Proposition 4.3

If µ is a stationary distribution for the Markov process with generatorBθ ,σ we have
∫

∇∞

Bθ ,σ f dµ= 0 (29)

for every f ∈ D(Bθ ,σ) (cf. [10], Proposition 4.9.2). From (27) we have
∫

∇∞

Bθ ,σϕ2dµ=

∫

∇∞

[(2− 2σ)− (2+ 2θ)ϕ2]dµ

so that
∫

∇∞

ϕ2dµ=
1−σ
1+ θ

(30)

and assuming
∫

∇∞
ϕm−1dµ is determined, we have

∫

∇∞

Bθ ,σϕmdµ=

∫

∇∞

�

[m(m− 1)−mσ]ϕm−1 − [m(m− 1) +mθ]ϕm

�

dµ

=[m(m− 1)−mσ]

∫

∇∞

ϕm−1dµ− [m(m− 1) +mθ]

∫

∇∞

ϕmdµ

from which
∫

∇∞

ϕmdµ=
m− 1−σ
m− 1+ θ

∫

∇∞

ϕm−1dµ=
(1−σ)(m−1)

(1+ θ)(m−1)
.

Hence
∫

∇∞
ϕmdµ is the (m−1)-th moment of a Beta(1−σ,θ+σ). In general, assume degree(ϕm1

· · ·ϕmk
) =

M and all
∫

∇∞
ϕm′1
· · ·ϕm′

`
dµ, with ` ≤ k, such that degree(ϕm′1

· · ·ϕm′
`
) = M − 1 are determined.

From (28) we have
∫

∇∞

Bθ ,σ(ϕm1
· · ·ϕmk

)dµ
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=
k
∑

h=1

Cσ,h

∫

∇∞

ϕmh−1

∏

6̀=h

ϕm`dµ+
∑

q 6=h

C ′h,q

∫

∇∞

ϕmh+mq−1

∏

6̀=h,q

ϕm`dµ

− C ′′θ ,1,...,k

∫

∇∞

ϕm1
· · ·ϕmk

dµ

for appropriate constants Cσ,h, C ′h,q, C ′′θ ,1,...,k depending on θ ,σ, m1, . . . , mk, so that
∫

∇∞

ϕm1
· · ·ϕmk

dµ

=
k
∑

h=1

Cσ,h

C ′′
θ ,1,...,k

∫

∇∞

ϕmh−1

∏

6̀=h

ϕm`dµ+
∑

q 6=h

C ′h,q

C ′′
θ ,1,...,k

∫

∇∞

ϕmh+mq−1

∏

6̀=h,q

ϕm`dµ

is determined. It follows that
∫

∇∞
ϕm1
· · ·ϕmk

dµ is uniquely determined for all m1, . . . , mk ≥ 2 and
k ≥ 1, and so is µ.

Proof of Proposition 4.6

It suffices to show the result for all ϕm1
. . .ϕmk

, for k ≥ 1, ϕm(z) =
∑

i≥1 zm
i and z ∈ ∇∞, and use

the fact that the algebra generated by (1,ϕ2,ϕ3, . . .) is dense in C(∇∞), as shown in the proof of
Proposition 3.5. From (27) we have

Bθ ,σϕ2 = (2− 2σ)− (2+ 2θ)ϕ2

and letting {T (t)} be the semigroup of Proposition 3.5 for f ∈ D(Bθ ,σ)we have that dT (t) f /dt =
Bθ ,σT (t) f for t ≥ 0 (cf. [10], Proposition 1.1.5). Hence

dT (t)ϕ2

dt
= 2(1−σ)− 2(1+ θ)T (t)ϕ2

from which the general solution is

T (t)ϕ2 = 2(1−σ)e−2(1+θ)t

∫ t

0

e2(1+θ)sds+κe−2(1+θ)t

where κ is a constant and the initial condition T (0)ϕ2 = ϕ2 yields κ= ϕ2 from which

T (t)ϕ2 =
1−σ
1+ θ

e−2(1+θ)t[e2(1+θ)t − 1] +ϕ2e−2(1+θ)t

which converges to (1 − σ)/(1 + θ) uniformly on z ∈ ∇∞ as t → ∞. This and (30) imply
�

�

�

�

�

�T (t)ϕ2 −
∫

∇∞
ϕ2dµ

�

�

�

�

�

� → 0 as t → ∞, where µ here is the stationary distribution Π̃θ ,σ. Take

now fM = ϕm1
. . .ϕmk

such that degree(ϕm1
· · ·ϕmk

) = M , and assume (26) holds for all fM−1 =
ϕm′1

. . .ϕm′
`
, `≤ k, such that degree(ϕm′1

· · ·ϕm′
`
) = M − 1. From (28) we have

Bθ ,σ fM = fM−1 −κ′ fM (31)

so that, as above,

T (t) fM = e−κ
′ t

∫ t

0

eκ
′sT (s) fM−1ds+ e−κ

′ t fM .
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Also, from (29) applied to (31) we have
∫

fM−1dµ−κ′
∫

fM dµ= 0 so that

∫

∇∞

fM dµ= e−κ
′ t

∫ t

0

eκ
′s

∫

∇∞

fM−1dµds+ e−κ
′ t

∫

∇∞

fM dµ.

Then we have

�

�

�

�

�

�T (t) fM −
∫

∇∞

fM dµ
�

�

�

�

�

�≤ κ′′e−κ
′ t + e−κ

′ t

∫ t

0

eκ
′s
�

�

�

�

�

�T (s) fM−1 −
∫

∇∞

fM−1dµ
�

�

�

�

�

�ds

giving the result.
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