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Abstract

We give a probabilistic interpretation for the Barnes G-function which appears in random matrix
theory and in analytic number theory in the important moments conjecture due to Keating-Snaith
for the Riemann zeta function, via the analogy with the characteristic polynomial of random uni-
tary matrices. We show that the Mellin transform of the characteristic polynomial of random uni-
tary matrices and the Barnes G-function are intimately related with products and sums of gamma,
beta and log-gamma variables. In particular, we show that the law of the modulus of the char-
acteristic polynomial of random unitary matrices can be expressed with the help of products of
gamma or beta variables. This leads us to prove some non standard type of limit theorems for the
logarithmic mean of the so called generalized gamma convolutions.

1 Introduction, motivation and main results

The Barnes G-function, which was first introduced by Barnes in [3] (see also [1]), may be defined
via its infinite product representation
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where γ is the Euler constant.
From (1.1), one can easily deduce the following (useful) development of the logarithm of G (1+ z)
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for |z|< 1:
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(1.2)

where ζ denotes the Riemann zeta function.
The Barnes G-function has been prominent in the theory of asymptotics of Toeplitz operators since
the 1960’s and the work of Szegö, Widom, etc. (see e.g. [7] for historical details and more
references) and it has recently occurred as well in the work of Keating and Snaith [16] in their
celebrated moments conjecture for the Riemann zeta function. More precisely, they consider the
set of unitary matrices of size N , endowed with the Haar probability measure, and they prove the
following results.

Proposition 1.1 (Keating-Snaith [16]). If Z denotes the characteristic polynomial of a generic ran-

dom unitary matrix of size N, considered at any given point of the unit circle, then the following

hold:

1. For λ any complex number satisfying Re(λ)> −1/2,
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2. For Re(λ)>−1
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. (1.4)

Then, using a random matrix analogy (now called the "Keating-Snaith philosophy"), they make
the following conjecture for the moments of the Riemann zeta function (see [16],[18]):

lim
T→∞

1
�
log T

�λ2

1

T

∫ T

0

dt

����ζ
�

1

2
+ it

�����
2λ

= M (λ)A(λ) ,

where M (λ) is the "random matrix factor"

M (λ) =
(G (1+λ))2

G (1+ 2λ)

and A(λ) is the arithmetic factor
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where, as usual, P is the set of prime numbers.
Due to the importance of this conjecture, as discussed in several papers in [18], it seems interesting
to obtain probabilistic interpretations of the non arithmetic part of the conjecture. More precisely,
the aim of this paper is twofold:

• to give a probabilistic interpretation of the "random matrix factor" M (λ), and more generally
of the Barnes G-function;
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• to understand better the nature of the limit theorem (1.4) and its relations with (general-
ized) gamma variables.

To this end, we first give a probabilistic translation in Theorem 1.2 of the infinite product (1.1) in
terms of a limiting distribution involving gamma variables (we note that, although concerning the
Gamma function, similar translations have been presented in [12] and [11]). Let us recall that a
gamma variable γa with parameter a > 0 is distributed as

P
�
γa ∈ dt

�
=

ta−1 exp (−t)dt

Γ(a)
, t > 0 (1.6)

and has Laplace transform

E
�
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��
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1
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and Mellin transform
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Theorem 1.2. If
�
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�
n≥1 are independent gamma random variables with respective parameters n,

then for z such that Re(z)>−1,
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where

A=

Ç
e

2π
. (1.10)

The next theorem gives an identity in law for the characteristic polynomial which shall lead to a
probabilistic interpretation of the "random matrix factor":

Theorem 1.3. Let Λ denote the generic matrix of U (N), the set of unitary matrices, fitted with the

Haar probability measure, and ZN (Λ) = det (I −Λ). Then the Mellin transform formula (1.3), due

to Keating-Snaith, translates in probabilistic terms as
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law
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Æ
γ jγ
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(1.11)

where all variables in sight are assumed to be independent, and γ j , γ
′
j

are gamma random variables

with parameter j.

The Barnes G-function now comes into the picture via the following limit results:

Theorem 1.4. Let
�
γn

�
n≥1 be independent gamma random variables with respective parameters n;

then the following hold:

1. for any λ, with Re(λ)>−1, we have:
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and ψ (z) =
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Γ (z)
.
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2. consequently, from (1.12), together with (1.11), we recover the limit theorem (1.4) of Keating

and Snaith.

Remark 1.5. Let us take z = iu in Theorem 1.2 and λ = iu in Theorem 1.4, where u ∈ R. Then

both convergences can be interpreted as follows: the characteristic functions of
∑N

n=1(
γn

n
− 1) and∑N

j=1(logγ j − ψ( j)), when renormalized by the characteristic function of a Gaussian distribution

with mean 0 and variance log N, converge to some limit functions. This fact has been the starting

point of the investigations in [13] about a new mode of convergence in probability theory and number

theory, called mod-Gaussian convergence.

Theorem 1.2 can be naturally extended to the more general case of sums of the form
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are independent, with the same distribution as a given random variable

Y , where Y is a generalized gamma convolution variable (in short GGC), that is an infinitely
divisible R+-valued random variable whose Lévy measure is of the form

ν (dx) =

�
dx

x

��∫
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�
, (1.14)

where µ (dξ) is a Radon measure on R+, called the Thorin measure associated to Y . We shall
further assume that ∫

µ (dξ)
1

ξ2
<∞,

which, as we shall see is equivalent to the existence of a second moment for Y .
The GGC variables have been studied by Thorin [21] and Bondesson [6], see, e.g., [14] for a
recent survey of this topic.

Theorem 1.6. Let Y be a GGC variable, and let
�
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as in (1.13). We note
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Limit results such as (1.12) and (1.15) are not standard in Probability theory: they have been the
starting point for the authors of [13] to build a little theory for such limit theorems which also
appear in number theory (in particular a probabilistic interpretation of the arithmetic factor (1.5)
is given in [13]). The rest of the paper is organized as follows:

• in Section 2, we prove Theorems 1.2, 1.3 and 1.4. We also give an interpretation of Theorem
1.2 in terms of Bessel processes as well as an important Lévy-Khintchine type representation
for 1/G (1+ z).

• in Section 3, we shall introduce generalized gamma convolution variables and prove Theo-
rem 1.6 as a natural extension of Theorem 1.2.

2 Proofs of Theorems 1.2, 1.3 and 1.4 and additional proba-

bilistic aspects of the Barnes G-function

2.1 Proof of Theorem 1.2 and interpretation in terms of Bessel processes

2.1.1 Proof of Theorem 1.2

The proof of Theorem 1.2 is rather straightforward. We simply use the fact that for Re(z)>−1
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which from (1.1) converges, as N →∞, towards
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which proves formula (1.9).
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2.1.2 An interpretation of Theorem 1.2 in terms of Bessel processes

Let
�
R2n (t)

�
t≥0 denote a BES(2n) process, starting from 0, with dimension 2n; we need to con-

sider the sequence
�
R2n

�
n=1,2,... of such independent processes. It is well known (see [19] for

example) that:
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We now wish to write the LHS of (2.2) in terms of functional of a sum of squared Ornstein-
Uhlenbeck processes; indeed, if we write, from (2.1):
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2.2 Proof of Theorem 1.3

Formula (1.11) follows from the Keating-Snaith formula (1.3) once one recalls formula (1.8) for
the Mellin transform of a gamma variable.

2.3 The characteristic polynomial and beta variables

One can use the beta-gamma algebra (see, e.g., Chaumont-Yor [10], p.93-98, and the references
therein) and (1.11) to represent (in law) the characteristic polynomial as products of beta vari-
ables. More precisely,

Theorem 2.1. With the notations of Theorem 1.3, we have

|ZN |
law
= 2N
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Æ
β j

2
, j

2
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2
, j−1

2


 , (2.3)

where all the variables in sight are assumed to be independent beta variables.

Remark 2.2. The above splitting result was at the origin of the geometric interpretation of the law of

ZN given in [8].

Proof. a) To deduce from (1.11) the result stated in the theorem, we use the following factoriza-
tion

γ j

law
=
Æ
γ jγ
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j
ξ j , (2.4)

where on the RHS, we have
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Thus after simplification on both sides of (1.12) by
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Æ
γ jγ
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j
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law
=
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which yields (2.3).
b) To be complete, it now remains to prove (2.4). First, the duplication formula for the gamma
function yields (see e.g. [10] p. p93-98):
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= 2

q
γ j

2
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.

Second, we use the beta-gamma algebra to write
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Thus (2.4) follows easily.
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Remark 2.3. In the above Theorem, the factor 2N can be explained by the fact that the characteristic

polynomial of a unitary matrix is, in modulus, smaller than 2N . Hence the products of beta variables

appearing on the RHS of the formula (2.3) measure how much the modulus of the characteristic

polynomial deviates from the largest value it can take.

2.4 A Lévy-Khintchine type representation of 1/G (1+ z)

In this subsection, we give a Lévy-Khintchine representation type formula for 1/G (1+ z) which
was already discovered by Barnes ([3], p. 309) and which will be used next to prove Theorem
1.4.

Proposition 2.4 ([3], p. 309). For any z ∈ C, such that Re(z)>−1, one has

1
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 .

(2.5)

Remark 2.5. Note that formula (2.5) cannot be considered exactly as a Lévy-Khintchine representa-

tion. Indeed, the integral featured in (2.5) consists in integrating the function
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exp (−zu)− 1+ zu− u2z2
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against the measure
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u (2 sinh (u/2))2
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since Lévy measures integrate (u2∧1), which is not the case here because of the equivalence: u (2 sinh (u/2))2 ∼
u3, when u→ 0. Due to this singularity, one cannot integrate
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�
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spect to this measure, and one is forced to "bring in" the companion term u2z2

2
under the integral

sign.

2.5 Proof of Theorem 1.4

To prove Theorem 1.4, we shall use the following well known lemma (see e.g. Lebedev [17] and
Carmona-Petit-Yor [9] where this lemma is also used):

Lemma 2.6. For any a > 0, the random variable log
�
γa

�
is infinitely divisible and its Lévy-

Khintchine representation is given, for Re(λ)> −a, by
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We are now in a position to prove Theorem 1.4. We start by proving the first part, i.e. formula
(1.12). Let us write
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Thus with the help of Lemma 2.6, we obtain
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Next, we shall show that:
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together with some integral expression for J∞ (λ), from which it will be easily deduced how J∞ (λ)
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a limit which we shall show to exist and identify to be 1+ γ(= C) with the following lemma:
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Lemma 2.7. We have

∫ ∞
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The result now follows easily from the facts
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where
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We can still rewrite J∞ (λ) as
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�−1

(2.13)

Plugging (2.13) in (2.11) yields the first part of Theorem 1.4:

lim
N→∞

1

Nλ
2/2
E







N∏

j=1

γ j



λ

exp


−λ

N∑

j=1

ψ
�

j
�

 =

 r
2π

e

!λ
1

G (1+λ)

To prove the second part of Theorem 1.4, we use formula (1.11) together with formula (1.12).
Formula (1.11) yields:

1

N2λ2 E







N∏

j=1

γ j




2λ

 =

�
1

Nλ
2 EN

�
|ZN |

2λ
��






1

Nλ
2/2
E







N∏

j=1

γ j



λ






2

 . (2.14)

Multiplying both sides by exp
�
−2λ

∑N

j=1ψ
�

j
��

and using (1.12) we obtain

lim
N→∞

1

Nλ
2 EN

�
|Z |2λ

�
=
(G (1+λ))2

G (1+ 2λ)
,

which completes the proof of Theorem 1.4.

3 Generalized Gamma Convolutions

3.1 Definition and examples

We recall the definition of a GGC variable; see e.g. [6].

Definition 3.1. A random variable Y taking values in R+ is called a GGC variable if it is infinitely

divisible with Lévy measure ν of the form:

ν (dx) =
dx

x

∫
µ (dξ)exp (−ξx) , (3.1)

where µ (dξ) is a Radon measure onR+, called the Thorin measure of Y . That is the Laplace transform

of Y is given by

E[exp(−λY )] = exp(−

∫
ν(dx)(1− e−λx)),

where ν(dx) is given by (3.1).
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Remark 3.2. Y is a selfdecomposable random variable because its Lévy measure can be written as

ν (dx) =
dx

x
h(x) with h a decreasing function (see, e.g. [20], p.95).

Remark 3.3. We shall require Y to have finite first and second moments; these moments can be easily

computed with the help of the Thorin measure µ (dξ):

E [Y ] = µ−1 =

∫
µ (dξ)

1

ξ

σ2 = E
�

Y 2
�
− (E [Y ])2 = µ−2 =

∫
µ (dξ)

1

ξ2
.

Now we give some examples of GGC variables. Of course, γa falls into this category with µ (dξ) =
aδ1 (dξ) where δ1 (dξ) is the Dirac measure at 1.
More generally, the next proposition gives a large set of such variables:

Proposition 3.4. Let f be a nonnegative Borel function such that

∫ ∞

0

du log
�
1+ f (u)

�
<∞,

and let
�
γu

�
denote the standard gamma process. Then the variable Y defined as

Y =

∫ ∞

0

dγu f (u) (3.2)

is a GGC variable.

Proof. It is easily shown, by approximating f by simple functions that

E
�

exp (−λY )
�
= exp

�
−

∫ ∞

0

du

∫ ∞

0

dx

x
exp (−x)

�
1− exp

�
−λ f (u) x

��
�

= exp

�
−

∫ ∞

0

dy

y

�∫ ∞

0

du exp

�
−

y

f (u)

���
1− exp

�
−λy

��
�

which yields the result.

For much more on GGC variables, see [6], [14].

3.2 Proof of Theorem 1.6

We now prove Theorem 1.6, which is a natural extension for Theorem 1.2. Recall that in (1.13),
we have defined SN as

SN =

N∑

n=1

�
Yn −E

�
Yn

��

where

Yn =
1

n

�
y
(n)

1 + . . .+ y (n)
n

�
,
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and where
�

y
(n)

i

�
1≤i≤n<∞

are independent, with the same distribution as a given GGC variable Y ,

which has a second moment. For any λ ≥ 0, we have

E
�

exp
�
−λSN

��
=

N∏

n=1

�
eϕ
�
λ

n

��n

(3.3)

where

eϕ (λ) = E
�

exp (−λ (Y −E [Y ]))
�

. (3.4)

Now, using the form (3.1) of the Lévy-Khintchine representation for Y , we obtain

N∏

n=1

�
eϕ
�
λ

n

��n

= exp

(
−

N∑

n=1

n

∫
ν (dx)

�
1−

λ

n
x − exp

�
−
λ

n
x

��)

= exp

�
−

∫
µ (dξ) IN (ξ,λ)

�
. (3.5)

where:

IN (ξ,λ) =

N∑

n=1

n

∫ ∞

0

dx

x
exp (−ξx)

�
1−

λ

n
x − exp

�
−
λ

n
x

��

=

N∑

n=1

n

∫ ∞

0

dy

y
exp
�
−nξy

��
1−λy − exp

�
−λy

��

=

∫ ∞

0

dy

y

 
N∑

n=1

n exp
�
−nξy

�
!
�
1−λy − exp

�
−λy

��
.

Some elementary calculations yield:

N∑

n=1

n exp (−na) =
exp (a)

�
1− exp (−aN)

�
�
exp (a)− 1

�2
−

N exp (−aN)
�
exp (a)− 1

� .

Consequently, taking a = ξy in the formula for IN (ξ,λ), we can write it as

IN (ξ,λ) = JN (ξ,λ)− RN (ξ,λ) (3.6)

where

JN (ξ,λ) =

∫ ∞

0

dy

y

�
1−λy − exp

�
−λy

��
�

exp
�
ξy
��

1− exp
�
−ξyN

��
�
exp
�
ξy
�
− 1
�2

�
(3.7)

and

RN (ξ,λ) =

∫ ∞

0

dy

y

�
1−λy − exp

�
−λy

��
�

N exp
�
−ξyN

�
�
exp
�
ξy
�
− 1
�
�

. (3.8)

It is clear that

lim
N→∞

RN (ξ,λ) = 0.
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Now we study JN (ξ,λ) when N →∞. Let us "bring in" the additional term
λ2 y2

2
; more precisely,

we rewrite JN (ξ,λ) as

JN (ξ,λ) =

∫ ∞

0

dy

y

�
1−λy +

λ2 y2

2
− exp

�
−λy

�
��

exp
�
ξy
��

1− exp
�
−ξyN

��
�
exp
�
ξy
�
− 1
�2

�

−
λ2

2

∫
dy y

exp
�
ξy
��

1− exp
�
−ξyN

��
�
exp
�
ξy
�
− 1
�2

.

(3.9)

Hence:

JN (ξ,λ) = o(1)+

∫ ∞

0

dy

y

1
�
2 sinh

�
ξy/2

��2

�
1−λy +

λ2 y2

2
− exp

�
−λy

�
�
−
λ2

2
KN (ξ) , (3.10)

where

KN (ξ) =

∫
dy y

exp
�
ξy
��

1− exp
�
−ξyN

��
�
exp
�
ξy
�
− 1
�2

=
1

ξ2

∫ ∞

0

u exp (−u)
�
1− exp (−u)

�2

�
1− exp (−Nu)

�
du.

Moreover, from Lemma 2.7, we have

KN (ξ) =
1

ξ2

�
log N + 1+ γ+ o(1)

�
. (3.11)

Now using the above asymptotics, and integrating with respect to µ (dξ) (see (3.5)), we obtain

N∏

n=1

�
eϕ
�
λ

n

��n

=

exp

¨
o(1) +

λ2

2
µ−2

�
log N + 1+ γ

�
−

∫ ∞

0

dy

y
Σµ
�

y
�
�

1−λy +
λ2 y2

2
− exp

�
−λy

�
�«

.

(3.12)

Hence we have finally proved that if λ > 0,

1

N
λ2σ2

2

E
�

exp
�
−λSN

��
−−−−→

N→∞
H (λ) , (3.13)

where the functionH (λ) is given by

H (λ) = exp

¨
λ2σ2

2

�
1+ γ

�
+

∫ ∞

0

dy

y
Σµ
�

y
�
�

exp
�
−λy

�
− 1+λy −

λ2 y2

2

�«
, (3.14)

with

Σµ
�

y
�
=

∫
µ (dξ)

1
�

2 sinh

�
ξy

2

��2
, (3.15)

which is Theorem 1.6.
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