Elect. Comm. in Probab. 14 (2009), 358-371

ELECTRONIC COMMUNICATIONS in PROBABILITY

A NOTE ON NEW CLASSES OF INFINITELY DIVISIBLE DISTRIBUTIONS ON \mathbb{R}^d

MAKOTO MAEJIMA

Department of Mathematics, Faculty and Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

email: maejima@math.keio.ac.jp

GENTA NAKAHARA

Department of Mathematics, Faculty and Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

email: genta.nakahara@gmail.com

Submitted January 3, 2009, accepted in final form August 19, 2009

AMS 2000 Subject classification: 60E07

Keywords: infinitely divisible distribution on \mathbb{R}^d , stochastic integral representation.

Abstract

This paper introduces and studies a family of new classes of infinitely divisible distributions on \mathbb{R}^d with two parameters. Depending on parameters, these classes connect the Goldie–Steutel–Bondesson class and the class of generalized type G distributions, connect the Thorin class and the class M, and connect the class M and the class of generalized type G distributions. These classes are characterized by stochastic integral representations with respect to Lévy processes.

1 Introduction

Let $I(\mathbb{R}^d)$ be the class of all infinitely divisible distributions on \mathbb{R}^d . $\widehat{\mu}(z), z \in \mathbb{R}^d$, denotes the characteristic function of $\mu \in I(\mathbb{R}^d)$ and |x| denotes the Euclidean norm of $x \in \mathbb{R}^d$. We use the Lévy-Khintchine triplet (A, v, γ) of $\mu \in I(\mathbb{R}^d)$ in the sense that

$$\widehat{\mu}(z) = \exp\left\{-2^{-1}\langle z, Az\rangle + \mathrm{i}\langle \gamma, z\rangle + \int_{\mathbb{R}^d} \left(e^{\mathrm{i}\langle z, x\rangle} - 1 - \mathrm{i}\langle z, x\rangle(1 + |x|^2)^{-1}\right)\nu(dx)\right\}, \quad z \in \mathbb{R}^d,$$

where *A* is a symmetric nonnegative-definite $d \times d$ matrix, $\gamma \in \mathbb{R}^d$ and ν is a measure (called the Lévy measure) on \mathbb{R}^d satisfying

$$v(\{0\}) = 0 \text{ and } \int_{\mathbb{R}^d} (|x|^2 \wedge 1) v(dx) < \infty.$$

The following polar decomposition is a basic result on the Lévy measure of $\mu \in I(\mathbb{R}^d)$. Let ν be the Lévy measure of some $\mu \in I(\mathbb{R}^d)$ with $0 < \nu(\mathbb{R}^d) \le \infty$. Then there exist a measure λ on

 $S = \{x \in \mathbb{R}^d : |x| = 1\}$ with $0 < \lambda(S) \le \infty$ and a family $\{v_{\xi} : \xi \in S\}$ of measures on $(0, \infty)$ such that $v_{\xi}(B)$ is measurable in ξ for each $B \in \mathcal{B}((0, \infty)), 0 < v_{\xi}((0, \infty)) \le \infty$ for each $\xi \in S$, and

$$v(B) = \int_{S} \lambda(d\xi) \int_{0}^{\infty} 1_{B}(r\xi) v_{\xi}(dr), \ B \in \mathcal{B}(\mathbb{R}^{d} \setminus \{0\}). \tag{1.1}$$

Here λ and $\{v_\xi\}$ are uniquely determined by v up to multiplication of measurable functions $c(\xi)$ and $\frac{1}{c(\xi)}$, respectively, with $0 < c(\xi) < \infty$. We say that v has the polar decomposition (λ, v_ξ) and v_ξ is called the radial component of v. (See, e.g., Barndorff-Nielsen et al. (2006), Lemma 2.1.) A real-valued function f defined on $(0,\infty)$ is said to be completely monotone if it has derivatives $f^{(n)}$ of all orders and for each $n=0,1,2,...,(-1)^n f^{(n)}(r) \geq 0, r>0$. Bernstein's theorem says that f on $(0,\infty)$ is completely monotone if and only if there exists a (not necessarily finite) measure Q on $[0,\infty)$ such that $f(r)=\int_{[0,\infty)}e^{-ru}Q(du)$. (See, e.g., Feller (1966), p.439.) In this paper, we introduce and study the following classes.

Definition 1.1. (The class $J_{\alpha,\beta}(\mathbb{R}^d)$.) Let $\alpha < 2$ and $\beta > 0$. We say that $\mu \in I(\mathbb{R}^d)$ belongs to the class $J_{\alpha,\beta}(\mathbb{R}^d)$ if v = 0 or $v \neq 0$ and, in case $v \neq 0$, v_{ξ} in (1.1) has expression

$$v_{\varepsilon}(dr) = r^{-\alpha - 1} g_{\varepsilon}(r^{\beta}) dr, \ r > 0,$$
 (1.2)

where $g_{\xi}(x)$ is measurable in ξ , is completely monotone in x on $(0, \infty)$ λ -a.e. ξ , not identically zero and $\lim_{x\to\infty} g_{\xi}(x) = 0$ λ -a.e. ξ .

Remark 1.2. If $\alpha \leq 0$, then automatically $\lim_{x\to\infty} g_{\xi}(x) = 0$ λ -a.e. ξ , because of the finiteness of $\int_{|x|>1} v(dx)$. So, when we consider the classes $B(\mathbb{R}^d)$, $G(\mathbb{R}^d)$, $T(\mathbb{R}^d)$ and $M(\mathbb{R}^d)$ appearing later, we do not have to write this condition explicitly.

Remark 1.3. The integrability condition of the Lévy measure $\int_{\mathbb{R}^d} (|x|^2 \wedge 1) v(dx) < \infty$ implies that

$$\int_{0}^{\infty} (r^{2} \wedge 1)r^{-\alpha - 1} g_{\xi}(r^{\beta}) dr < \infty, \ \lambda \text{-a.e. } \xi, \tag{1.3}$$

so we do not have to assume (1.3) in the definition. It is automatically satisfied.

Remark 1.4. The classes $J_{\alpha,1}(\mathbb{R}^d)$, $\alpha < 2$, are studied in Sato (2006b).

Before mentioning our motivation of this study, we state a general result on the relations among the classes $J_{\alpha,\beta}(\mathbb{R}^d)$, $\alpha < 2$, $\beta > 0$.

Theorem 1.5. (i) Fix $\alpha < 2$ and let $0 < \beta_1 < \beta_2$. Then

$$J_{\alpha,\beta_1}(\mathbb{R}^d) \subset J_{\alpha,\beta_2}(\mathbb{R}^d).$$

(ii) Fix $\beta > 0$ and let $\alpha_1 < \alpha_2 < 2$. Then

$$J_{\alpha_2,\beta}(\mathbb{R}^d) \subset J_{\alpha_1,\beta}(\mathbb{R}^d).$$

Proof. For the proof of (i), we need the following lemma.

Lemma 1.6. (See Feller (1966), p.441, Corollary 2.) Let ϕ be a completely monotone function on $(0, \infty)$ and let ψ be a nonnegative function on $(0, \infty)$ whose derivative is completely monotone. Then $\phi(\psi)$ is completely monotone.

Let $h_{\xi}(x) = g_{\xi}(x^{\beta_1/\beta_2}), x > 0$, where g_{ξ} is the one in (1.2), which is completely monotone on $(0,\infty)$. Since $\psi(x) = x^{\beta_1/\beta_2}, x > 0$, has a completely monotone derivative, it follows from Lemma 1.6 that $h_{\xi}(x)$ is completely monotone. Suppose $\mu \in J_{\alpha,\beta_1}(\mathbb{R}^d)$ and let g_{ξ} be the one in (1.2). Since $g_{\xi}(r^{\beta_1}) = h_{\xi}(r^{\beta_2})$, where h_{ξ} is completely monotone as has been just shown above, we have $\mu \in J_{\alpha,\beta_2}(\mathbb{R}^d)$. This proves (i).

To prove (ii), suppose that $\mu \in J_{\alpha_2,\beta}(\mathbb{R}^d)$. Then $v_{\xi}(dr) = r^{-\alpha_2-1}g_{\xi}(r^{\beta})dr$, r > 0, as in (1.2), where g_{ξ} is completely monotone on $(0,\infty)$ λ -a.e. ξ . Note that

$$h_{\xi}(x) = x^{-(\alpha_2 - \alpha_1)/\beta} g_{\xi}(x)$$

is completely monotone, because x^{-p} , p > 0, is completely monotone and the product of two completely monotone functions is also completely monotone. We now have

$$v_{\varepsilon}(dr) = r^{-\alpha_2 - 1} g_{\varepsilon}(r^{\beta}) dr = r^{-\alpha_1 - 1} h_{\varepsilon}(r^{\beta}) dr,$$

and thus μ also belongs to $J_{\alpha_1,\beta}(\mathbb{R}^d)$. This proves (ii). \square

The motivations for studying the classes $J_{\alpha,\beta}(\mathbb{R}^d)$ are the following.

I. The classes connecting the Goldie–Steutel–Bondesson class and the class of generalized type *G* distributions.

Let $\alpha = -1$ and consider the classes $J_{-1,\beta}(\mathbb{R}^d)$, $\beta > 0$. A distribution $\mu \in I(\mathbb{R}^d)$ is said to be of generalized type G if v_{ξ} in (1.2) has expression $v_{\xi}(dr) = g_{\xi}(r^2)dr$ for some completely monotone function g_{ξ} on $(0,\infty)$, and denote by $G(\mathbb{R}^d)$ the class of all generalized type G distributions on \mathbb{R}^d . Let $I_{\text{sym}}(\mathbb{R}^d) = \{\mu \in I(\mathbb{R}^d) : \mu \text{ is symmetric in the sense that } \mu(B) = \mu(-B), B \in \mathcal{B}(\mathbb{R}^d)\}$.

Remark 1.7. A distribution $\mu \in G(\mathbb{R}^d) \cap I_{\text{sym}}(\mathbb{R}^d)$ is a so-called type G distribution, which is, in one dimension, a variance mixture of the standard normal distribution with a positive infinitely divisible mixing distribution.

Remark 1.8. $G(\mathbb{R}^d) = J_{-1,2}(\mathbb{R}^d)$.

Remark 1.9. The Goldie-Steutel-Bondesson class denoted by $B(\mathbb{R}^d)$ is $J_{-1,1}(\mathbb{R}^d)$. (For details on $B(\mathbb{R}^d)$, see Barndorff-Nielsen et al. (2006).)

Therefore, by Theorem 1.5 (i) with $\alpha = -1$, for $1 < \beta < 2$,

$$B(\mathbb{R}^d) \subset J_{-1,\beta}(\mathbb{R}^d) \subset G(\mathbb{R}^d),$$

and hence $\{J_{-1,\beta}(\mathbb{R}^d), 1 \leq \beta \leq 2\}$ is a family of classes of infinitely divisible distributions on \mathbb{R}^d connecting $B(\mathbb{R}^d)$ and $G(\mathbb{R}^d)$ with continuous parameter $\beta \in [1,2]$.

II. The classes connecting the Thorin class and the class $M(\mathbb{R}^d)$.

Let $\alpha = 0$ and consider the classes $J_{0,\beta}(\mathbb{R}^d)$, $\beta > 0$.

Remark 1.10. The Thorin class denoted by $T(\mathbb{R}^d)$ is $J_{0,1}(\mathbb{R}^d)$. (For details on $T(\mathbb{R}^d)$, see also Barndorff-Nielsen et al. (2006).)

Remark 1.11. The class $M(\mathbb{R}^d)$ is defined by $J_{0,2}(\mathbb{R}^d)$. (The class $M(\mathbb{R}^d) \cap I_{\text{sym}}(\mathbb{R}^d)$ is studied in Aoyama et al. (2008).)

By Theorem 1.5 (i) with $\alpha = 0$, for $1 < \beta < 2$,

$$T(\mathbb{R}^d) \subset J_{0,\beta}(\mathbb{R}^d) \subset M(\mathbb{R}^d),$$

and hence $\{J_{0,\beta}(\mathbb{R}^d), 1 \leq \beta \leq 2\}$ is a family of classes of infinitely divisible distributions on \mathbb{R}^d connecting $T(\mathbb{R}^d)$ and $M(\mathbb{R}^d)$ with continuous parameter $\beta \in [1,2]$.

III. The classes connecting the classes $M(\mathbb{R}^d)$ and $G(\mathbb{R}^d)$.

Let $\beta=2$ and consider the classes $J_{\alpha,2}(\mathbb{R}^d)$, $\alpha<2$. Then, by Theorem 1.5 (ii) with $\beta=2$, for $-1\leq \alpha\leq 0$

$$M(\mathbb{R}^d) \subset J_{\alpha,2}(\mathbb{R}^d) \subset G(\mathbb{R}^d),$$

and hence $\{J_{\alpha,2}(\mathbb{R}^d), -1 \le \alpha \le 0\}$ is a family of classes of infinitely divisible distributions on \mathbb{R}^d connecting $M(\mathbb{R}^d)$ and $G(\mathbb{R}^d)$ with continuous parameter $\alpha \in [-1,0]$.

IV. The classes connecting the classes $T(\mathbb{R}^d)$ and $B(\mathbb{R}^d)$.

Let $\beta=1$ and consider the classes $J_{\alpha,1}(\mathbb{R}^d)$, $\alpha<2$. Then, by Theorem 1.5 (ii) with $\beta=1$, for $-1\leq \alpha\leq 0$

$$T(\mathbb{R}^d) \subset J_{\alpha,1}(\mathbb{R}^d) \subset B(\mathbb{R}^d),$$

and hence $\{J_{\alpha,1}(\mathbb{R}^d), -1 \leq \alpha \leq 0\}$ is a family of classes of infinitely divisible distributions on \mathbb{R}^d connecting $T(\mathbb{R}^d)$ and $B(\mathbb{R}^d)$ with continuous parameter $\alpha \in [-1,0]$. (This fact is already mentioned in Sato (2006b).)

2 Stochastic integral characterizations for $J_{\alpha,\beta}(\mathbb{R}^d)$

The purpose of this paper is to characterize the classes $J_{\alpha,\beta}(\mathbb{R}^d)$ by stochastic integral representations. For that, we first define mappings from $I(\mathbb{R}^d)$ into $I(\mathbb{R}^d)$ and investigate the domains of those mappings.

We introduce the following function $G_{\alpha,\beta}(u)$. For $\alpha < 2$ and $\beta > 0$, let

$$G_{\alpha,\beta}(u) = \int_u^\infty x^{-\alpha-1} e^{-x^{\beta}} dx, \quad u \ge 0,$$

and let $G_{\alpha,\beta}^*(t)$ be the inverse function of $G_{\alpha,\beta}(u)$, that is, $t = G_{\alpha,\beta}(u)$ if and only if $u = G_{\alpha,\beta}^*(t)$. Let $\{X_t^{(\mu)}\}$ be a Lévy process on \mathbb{R}^d with the law $\mu \in I(\mathbb{R}^d)$ at t = 1. We consider the stochastic integrals

$$\int_0^{G_{\alpha,\beta}(0)} G_{\alpha,\beta}^*(t) dX_t^{(\mu)}, \quad \text{where} \quad G_{\alpha,\beta}(0) = \begin{cases} \beta^{-1} \Gamma(-\alpha \beta^{-1}), & \text{if } \alpha < 0, \\ \infty, & \text{if } \alpha \ge 0. \end{cases}$$

As to the definition of stochastic integrals of non-random measurable functions f which are $\int_0^T f(t) dX_t^{(\mu)}$, $T < \infty, \mu \in I(\mathbb{R}^d)$, we follow the definition in Sato (2004, 2006a), whose idea is to define a stochastic integral with respect to \mathbb{R}^d -valued independently scatted random measure induced by a Lévy process on \mathbb{R}^d . The improper stochastic integral $\int_0^\infty f(t) dX_t^{(\mu)}$ is defined as the

limit in probability of $\int_0^T f(t) dX_t^{(\mu)}$ as $T \to \infty$ whenever the limit exists. See also Sato (2006b). In the following, $\mathcal{L}(X)$ stands for "the law of X". If we write

$$\Psi_{\alpha,\beta}(\mu) = \mathscr{L}\left(\int_0^{G_{\alpha,\beta}(0)} G_{\alpha,\beta}^*(t) dX_t^{(\mu)}\right),$$

then $\Psi_{\alpha,\beta}$ can be considered as a mapping with domain $\mathfrak{D}(\Psi_{\alpha,\beta})$ being the class of $\mu \in I(\mathbb{R}^d)$ for which $\int_0^{G_{\alpha,\beta}(0)} G_{\alpha,\beta}^*(t) dX_t^{(\mu)}$ is definable.

Theorem 2.1. *If* α < 0, then $\mathfrak{D}(\Psi_{\alpha,\beta}) = I(\mathbb{R}^d)$.

By Proposition 3.4 in Sato (2006a), since $G_{\alpha,\beta}(0) < \infty$ for $\alpha < 0$, if $\int_0^{G_{\alpha,\beta}(0)} \left(G_{\alpha,\beta}^*(t)\right)^2 dt < \infty, \text{ then } \int_0^{G_{\alpha,\beta}(0)} G_{\alpha,\beta}^*(t) dX_t^{(\mu)} \text{ is well-defined. Actually,}$

$$\int_0^{G_{\alpha,\beta}(0)} \left(G_{\alpha,\beta}^*(t)\right)^2 dt = -\int_0^\infty u^2 dG_{\alpha,\beta}(u) = \int_0^\infty u^{1-\alpha} e^{-u^\beta} du < \infty.$$

To determine the domain of $\Psi_{\alpha,\beta}$, $\alpha \geq 0$, we need the following result by Sato (2006b). In the following, $a(t) \sim b(t)$ means that $\lim_{t\to\infty} a(t)/b(t) = 1$, $a(t) \approx b(t)$ means that $0 < \infty$ $\liminf_{t\to\infty} a(t)/b(t) \leq \limsup_{t\to\infty} a(t)/b(t) < \infty \text{ and } I_{\log}(\mathbb{R}^d) = \{\mu \in I(\mathbb{R}^d) : t \in I(\mathbb{R}^d) : t \in I(\mathbb{R}^d) \}$ $\int_{\mathbb{D}^d} \log^+ |x| \mu(dx) < \infty$, where $\log^+ |x| = (\log |x|) \vee 0$.

Proposition 2.2. (Sato (2006b), Theorems 2.4 and 2.8.) *Let* $p \ge 0$. *Denote*

$$\Phi_{\varphi_p}(\mu) = \mathcal{L}\left(\int_0^\infty \varphi_p(t)dX_t^{(\mu)}\right).$$

Suppose that φ_p is locally square-integrable with respect to Lebesgue measure on $[0,\infty)$ and satisfies (1) $\varphi_0(t) \approx e^{-ct}$ as $t \to \infty$ with some c > 0, (2) $\varphi_p(t) \approx t^{-1/p}$ as $t \to \infty$ for $p \in (0,1) \cup (1,\infty)$,

- (3) $\varphi_1(t) \approx t^{-1}$ as $t \to \infty$ and for some $t_0 > 0$, c > 0 and $\psi(t)$, $\varphi_1(t) = t^{-1}\psi(t)$ for $t > t_0$ with $\int_{t_0}^{\infty} t^{-1} |\psi(t) \psi(t)|^2 dt$ $c|dt < \infty$.

Then

- (i) If p = 0, then $\mathfrak{D}(\Phi_{\omega_0}) = I_{\log}(\mathbb{R}^d)$.
- (ii) If $0 , then <math>\mathfrak{D}(\Phi_{\varphi_p}) = \{ \mu \in I(\mathbb{R}^d) : \int_{\mathbb{R}^d} |x|^p \mu(dx) < \infty \} =: I_p(\mathbb{R}^d)$.
- (iii) If p = 1, then $\mathfrak{D}(\Phi_{\varphi_1}) = \{ \mu \in I(\mathbb{R}^d) : \int_{\mathbb{R}^d} |x| \mu(dx) < \infty \}$

 $\lim_{T\to\infty}\int_{t_0}^T t^{-1}dt \int_{|x|>t} x\nu(dx) \text{ exists in } \mathbb{R}^d, \int_{\mathbb{R}^d} x\mu(dx)=0\}=:I_1^*(\mathbb{R}^d).$

- (iv) If $1 , then <math>\mathfrak{D}(\Phi_{\varphi_n}) = \{ \mu \in I(\mathbb{R}^d) : \int_{\mathbb{R}^d} |x|^p \mu(dx) < \infty, \int_{\mathbb{R}^d} x \mu(dx) = 0 \}$
- (v) If $p \ge 2$, then $\mathfrak{D}(\Phi_{\varphi_n}) = {\{\delta_0\}}$, where δ_0 is the distribution with the total mass at

We apply Proposition 2.2 to our problem. First we note that when $\alpha < 2$, $G_{\alpha\beta}^*(t)$ is locally squareintegrable with respect to Lebesgue measure on $[0, \infty)$.

Theorem 2.3. (Case $\alpha = 0$.) $\mathfrak{D}(\Psi_{0,\beta}) = I_{\log}(\mathbb{R}^d)$.

Proof. Note that $t(=G_{\alpha,\beta}(u)) \uparrow \infty$ if and only if $u(=G_{\alpha,\beta}^*(t)) \downarrow 0$, when $\alpha \geq 0$. It is enough to show that for some $C_1 \in (0, \infty)$, $u \sim C_1 e^{-t}$ as $t \to \infty$. We have

$$\frac{u}{e^{-t}} = \frac{u}{\exp\{-G_{0,\beta}(u)\}} = \exp\{G_{0,\beta}(u) + \log u\} = \exp\left\{\int_{u}^{\infty} x^{-1}e^{-x^{\beta}}dx + \log u\right\}
= \exp\left\{\beta^{-1}\int_{u^{\beta}}^{\infty} y^{-1}e^{-y}dy - \beta^{-1}\int_{u^{\beta}}^{1} y^{-1}dy\right\}
= \exp\left\{\beta^{-1}\int_{u^{\beta}}^{1} y^{-1}(e^{-y} - 1)dy + \beta^{-1}\int_{1}^{\infty} y^{-1}e^{-y}dy\right\} \to C_{1},$$

say, as $u \downarrow 0$. Hence $u \sim C_1 e^{-t}$ as $t \to \infty$, and the condition (1) of Proposition 2.2 is satisfied. Thus Proposition 2.2 (i) gives us the assertion.

Theorem 2.4. (*Case* $\alpha \in (0, \infty)$.)

- (i) If $0 < \alpha < 1$, then $\mathfrak{D}(\Psi_{\alpha,\beta}) = I_{\alpha}(\mathbb{R}^d)$.
- (ii) If $\alpha = 1$, then $\mathfrak{D}(\Psi_{1,\beta}) = I_1^*(\mathbb{R}^d)$.
- (iii) If $1 < \alpha < 2$, then $\mathfrak{D}(\Psi_{\alpha,\beta}) = I_{\alpha}^{0}(\mathbb{R}^{d})$. (iv) If $\alpha \geq 2$, then $\mathfrak{D}(\Psi_{\alpha,\beta}) = \{\delta_{0}\}$.

Proof. (i) and (iii). It is enough to show that $u \sim C_2 t^{-1/\alpha}$ as $t \to \infty$ for some $C_2 \in (0, \infty)$. We have, as $t \to \infty$ (equivalently $u \downarrow 0$), for some $C_3 \in (0, \infty)$,

$$\frac{u}{t^{-1/\alpha}} = \frac{u}{\left(G_{\alpha,\beta}(u)\right)^{-1/\alpha}} = \frac{u}{\left(\beta^{-1} \int_{u^{\beta}}^{\infty} y^{-(\alpha/\beta)-1} e^{-y} dy\right)^{-1/\alpha}} \sim \frac{u}{\left(C_3 u^{-\alpha}\right)^{-1/\alpha}} = C_3^{1/\alpha} =: C_2,$$

and the condition (2) of Proposition 2.3 is satisfied. Thus Proposition 2.3 (ii) and (iv) give us the

(ii). Suppose $\beta \neq 1$. (The case $\beta = 1$ is proved in Sato (2006b).) We first have

$$G_{1,\beta}(u) = \int_{u}^{\infty} x^{-2} e^{-x^{\beta}} dx = \int_{u}^{\infty} x^{-2} dx + \int_{u}^{\infty} x^{-2} (e^{-x^{\beta}} - 1) dx$$

$$= \int_{u}^{\infty} x^{-2} dx + \int_{u}^{1} x^{-2} (e^{-x^{\beta}} - 1 + x^{\beta}) du - \int_{u}^{1} x^{-2 + \beta} dx + \int_{1}^{\infty} x^{-2} (e^{-x^{\beta}} - 1) dx$$

$$= u^{-1} + (\beta - 1)^{-1} u^{-1 + \beta} + O(1), \ u \downarrow 0.$$

Thus

$$t = G_{1,\beta}^*(t)^{-1} + (\beta - 1)^{-1} G_{1,\beta}^*(t)^{-1+\beta} + O(1), \ t \to \infty.$$

Therefore.

$$G_{1,\beta}^{*}(t) = t^{-1} + (\beta - 1)^{-1}t^{-1}G_{1,\beta}^{*}(t)^{\beta} + O(t^{-1}G_{1,\beta}^{*}(t)), \ t \to \infty.$$
 (2.1)

We have shown in (i) and (iii) that $u \sim C_2 t^{-1/\alpha}$, but this is also true for $\alpha = 1$. Hence

$$u = G_{1,\beta}^*(t) = C_2 t^{-1} (1 + o(1)), \ t \to \infty.$$
 (2.2)

By substituting (2.2) into (2.1), we have

$$G_{1,\beta}^*(t) = t^{-1} + C_2^{\beta}(\beta - 1)^{-1}t^{-1-\beta} + t^{-1}a(t), \ t \to \infty,$$

= $t^{-1} \left(1 + C_2^{\beta}(\beta - 1)^{-1}t^{-\beta} + a(t) \right), \ t \to \infty,$

where

$$a(t) = \begin{cases} o(t^{-\beta}), \ t \to \infty, & \text{when } 0 < \beta < 1, \\ O(t^{-1}), \ t \to \infty, & \text{when } \beta > 1. \end{cases}$$

Thus

$$G_{1,\beta}^*(t) = t^{-1}\psi(t),$$

where

$$\psi(t) := 1 + C_2^{\beta} (\beta - 1)^{-1} t^{-\beta} + a(t),$$

and

$$\int_{1}^{\infty} t^{-1} |\psi(t) - 1| dt = \int_{1}^{\infty} t^{-1} |C_{2}^{\beta}(\beta - 1)^{-1} t^{-\beta} + a(t)| dt < \infty.$$

Thus the condition (3) of Proposition 2.2 is satisfied with $t_0 = 1$ and c = 1, and Proposition 2.2 (iii) gives us the assertion (iii).

(iv) The same as in Sato (2006b). \Box

We now calculate the Lévy measure of $\widetilde{\mu} = \Psi_{\alpha,\beta}(\mu)$, and note that the mapping $\Psi_{\alpha,\beta}$ is one-to-one.

Lemma 2.5. Let $\alpha < 2$ and $\beta > 0$. Let $\mu \in \mathfrak{D}(\Psi_{\alpha,\beta})$ and $\widetilde{\mu} = \Psi_{\alpha,\beta}(\mu)$, and let ν and $\widetilde{\nu}$ be the Lévy measures of μ and $\widetilde{\mu}$, respectively.

(1) We have

$$\widetilde{v}(B) = \int_0^\infty v(s^{-1}B)s^{-\alpha-1}e^{-s^{\beta}}ds, \quad B \in \mathcal{B}(\mathbb{R}^d \setminus \{0\}). \tag{2.3}$$

(2) If $v \neq 0$, and v has polar decomposition (λ, v_{ξ}) , then a polar decomposition of $\tilde{v} = (\tilde{\lambda}, \tilde{v}_{\xi})$ is given by $\tilde{\lambda} = \lambda$ and $\tilde{v}_{\xi}(dr) = r^{-\alpha-1}\tilde{g}_{\xi}(r^{\beta})dr$, where

$$\widetilde{g}_{\xi}(u) = \int_0^\infty r^{\alpha} e^{-u/r^{\beta}} \nu_{\xi}(dr). \tag{2.4}$$

(3) \tilde{g}_{ξ} in (2.4) satisfies the requirements of g_{ξ} in (1.2).

Proof. Suppose $\mu \in \mathfrak{D}(\Psi_{\alpha,\beta})$ and $\widetilde{\mu} = \Psi_{\alpha,\beta}(\mu)$.

(1) We see that (by using Proposition 2.6 of Sato (2006b)),

$$\begin{split} \widetilde{v}(B) &= \int_{0}^{G_{\alpha,\beta}(0)} dt \int_{\mathbb{R}^{d}} 1_{B}(x G_{\alpha,\beta}^{*}(t)) v(dx) = -\int_{0}^{\infty} dG_{\alpha,\beta}(s) \int_{\mathbb{R}^{d}} 1_{B}(x s) v(dx) \\ &= \int_{0}^{\infty} s^{-\alpha - 1} e^{-s^{\beta}} ds \int_{\mathbb{R}^{d}} 1_{s^{-1}B}(x) v(dx) = \int_{0}^{\infty} v(s^{-1}B) s^{-\alpha - 1} e^{-s^{\beta}} ds, \end{split}$$

which is (2.3).

(2) Next assume that $v \neq 0$ and v has polar decomposition $(\lambda, v_{\varepsilon})$. Then, we have

$$\begin{split} \widetilde{v}(B) &= \int_0^\infty s^{-\alpha-1} e^{-s^\beta} ds \int_S \lambda(d\xi) \int_0^\infty \mathbf{1}_{s^{-1}B}(r\xi) v_\xi(dr) \\ &= \int_S \lambda(d\xi) \int_0^\infty v_\xi(dr) r^{-1} \int_0^\infty (u/r)^{-\alpha-1} e^{-(u/r)^\beta} \mathbf{1}_B(u\xi) du \\ &= \int_S \lambda(d\xi) \int_0^\infty \mathbf{1}_B(u\xi) u^{-\alpha-1} \widetilde{g}_\xi(u^\beta) du, \end{split}$$

where $\tilde{\lambda} = \lambda$ and

$$\widetilde{g}_{\xi}(u) = \int_{0}^{\infty} r^{\alpha} e^{-u/r^{\beta}} v_{\xi}(dr), \qquad (2.5)$$

which is (2.4). The finiteness of \widetilde{g}_{ξ} is trivial for $\alpha \leq 0$. For $\alpha > 0$, since $\mu \in \mathfrak{D}(\Psi_{\alpha,\beta})$, we have that $\int_{\mathbb{R}^d} |x|^{\alpha} \mu(dx) < \infty$. When $\alpha > 0$, note that $\int_{\mathbb{R}^d} |x|^{\alpha} \mu(dx) < \infty$ implies $\int_1^{\infty} r^{\alpha} v_{\xi}(dr) < \infty$, (see, e.g. Sato (1999), Theorem 25.3). Hence the integral \widetilde{g}_{ξ} exists.

$$\widetilde{Q}(B) = \int_{0}^{\infty} r^{\alpha} 1_{B}(r^{-\beta}) v_{\xi}(dr),$$

then it follows that $\widetilde{g}_{\xi}(u) = \int_0^\infty e^{-uy} \widetilde{Q}(dy)$, and thus \widetilde{g}_{ξ} is completely monotone by Bernstein's theorem. If $\alpha \leq 0$, then automatically $\lim_{u \to \infty} \widetilde{g}_{\xi}(u) = 0$ λ -a.e. ξ , since

$$\infty > \int_{|x|>1} \widetilde{v}(dx) = \int_{S} \lambda(d\xi) \int_{1}^{\infty} u^{-\alpha-1} \widetilde{g}_{\xi}(u^{\beta}) du.$$

When $\alpha>0$, since $\int_1^\infty r^\alpha v_\xi(dr)<\infty$, the assertion that $\lim_{u\to\infty}\widetilde{g}_\xi(u)=0$ λ -a.e. ξ also follows from (2.5) by the dominated convergence theorem. The proof of the lemma is thus concluded. \square

Remark 2.6. (2.3) can be written as, by introducing a transformation $\Upsilon_{\alpha,\beta}$ of Lévy measures as $\widetilde{v} = \Upsilon_{\alpha,\beta}(v)$. Then this $\Upsilon_{\alpha,\beta}$ is a generalized Upsilon transformation discussed in Barndorff-Nielsen et al. (2008) with the dilation measure $\tau(ds) = s^{-\alpha-1}e^{-s^{\beta}}ds$.

Theorem 2.7. For each $\alpha < 2$ and $\beta > 0$, the mapping $\Psi_{\alpha,\beta}$ is one-to-one.

The proof is carried out in the same way as for Proposition 4.1 of Sato (2006b).

We are now ready to discuss stochastic integral characterizations of the classes $J_{\alpha,\beta}(\mathbb{R}^d)$, by showing that $J_{\alpha,\beta}(\mathbb{R}^d)$ is the range of the mapping $\Psi_{\alpha,\beta}$. However, in this paper, we restrict ourselves to the case $\alpha<1$, because in the case $1\leq\alpha<2$, $J_{\alpha,\beta}(\mathbb{R}^d)$ is strictly bigger than the range $\Psi_{\alpha,\beta}(\mathfrak{D}(\Psi_{\alpha,\beta}))$ and more deep calculations would be needed. (See, e.g., Sato (2006b) and Maejima et al. (2009).) Also, the classes appearing in our motivation of introducing the classes $J_{\alpha,\beta}(\mathbb{R}^d)$ are restricted to the case $\alpha\leq0$.

Theorem 2.8. Let $\alpha < 1$ and $\beta > 0$. The range of the mapping $\Psi_{\alpha,\beta}$ equals $J_{\alpha,\beta}(\mathbb{R}^d)$, that is,

$$J_{\alpha,\beta}(\mathbb{R}^d) = \Psi_{\alpha,\beta}(\mathfrak{D}(\Psi_{\alpha,\beta})).$$

Remark 2.9. This theorem is already known for $\alpha = -1,0$ and $\beta = 1$ in Theorems A and C of Barndorff-Nielsen et al. (2006) and for $\alpha < 1$ and $\beta = 1$ in Theorem 4.2 of Sato (2006b).

Proof of Theorem 2.8. We first show that $\Psi_{\alpha,\beta}(\mathfrak{D}(\Psi_{\alpha,\beta})) \subset J_{\alpha,\beta}(\mathbb{R}^d)$. Suppose $\mu \in \mathfrak{D}(\Psi_{\alpha,\beta})$ and $\widetilde{\mu} = \Psi_{\alpha,\beta}(\mu)$, and let ν and $\widetilde{\nu}$ be the Lévy measures of μ and $\widetilde{\mu}$, respectively. Thus, if $\nu = 0$, then $\widetilde{\nu} = 0$ and $\widetilde{\mu} \in J_{\alpha,\beta}(\mathbb{R}^d)$. When $\nu \neq 0$, it follows from Lemma 2.5 that $\widetilde{\mu} \in J_{\alpha,\beta}(\mathbb{R}^d)$.

Next we show that $J_{\alpha,\beta}(\mathbb{R}^d) \subset \Psi_{\alpha,\beta}(\mathfrak{D}(\Psi_{\alpha,\beta}))$. Suppose $\widetilde{\mu} \in J_{\alpha,\beta}(\mathbb{R}^d)$ with the Lévy-Khintchine triplet $(\widetilde{A},\widetilde{v},\widetilde{\gamma})$. If $\widetilde{v}=0$, then $\widetilde{\mu}=\Psi_{\alpha,\beta}(\mu)$ for some $\mu\in\mathfrak{D}(\Psi_{\alpha,\beta})$. Thus, suppose that $\widetilde{v}\neq 0$. Then, in a polar decomposition $(\widetilde{\lambda},\widetilde{v}_{\xi})$ of \widetilde{v} , we have $\widetilde{v}_{\xi}(dr)=r^{-\alpha-1}\widetilde{g}_{\xi}(r^{\beta})dr$, where $\widetilde{g}_{\xi}(v)$ is completely monotone in v>0 $\widetilde{\lambda}$ -a.e. ξ , and is measurable in ξ . Thus by Bernstein's theorem, there are measures \widetilde{Q}_{ξ} on $[0,\infty)$ such that

$$\widetilde{g}_{\xi}(v) = \int_{[0,\infty)} e^{-vu} \widetilde{Q}_{\xi}(du).$$

In general, \widetilde{Q}_{ξ} is a measure on $[0,\infty)$, but since $\lim_{\nu\to\infty}\widetilde{g}_{\xi}(\nu)=0$ $\widetilde{\lambda}$ -a.e. ξ , \widetilde{Q}_{ξ} does not have a point mass at 0, and hence \widetilde{Q}_{ξ} is a measure on $(0,\infty)$. We see that

$$\widetilde{v}(B) = \int_{S} \widetilde{\lambda}(d\xi) \int_{0}^{\infty} 1_{B}(r\xi) r^{-\alpha - 1} \widetilde{g}_{\xi}(r^{\beta}) dr$$

$$= \int_{S} \widetilde{\lambda}(d\xi) \int_{0}^{\infty} 1_{B}(r\xi) r^{-\alpha - 1} dr \int_{0}^{\infty} e^{-r^{\beta} u} \widetilde{Q}_{\xi}(du).$$
(2.6)

Since $\int_{\mathbb{R}^d} (|x|^2 \wedge 1) \widetilde{v}(dx) < \infty$, we have

$$\int_{S} \widetilde{\lambda}(d\xi) \int_{0}^{1} r^{1-\alpha} dr \int_{1}^{\infty} e^{-r^{\beta}u} \widetilde{Q}_{\xi}(du) + \int_{S} \widetilde{\lambda}(d\xi) \int_{1}^{\infty} r^{-\alpha-1} dr \int_{0}^{1} e^{-r^{\beta}u} \widetilde{Q}_{\xi}(du) < \infty.$$

Hence, we have, by the change of variables $r \to v$ by $r^{\beta}u = v$,

$$\int_0^1 r^{1-\alpha} dr \int_1^\infty e^{-r^{\beta} u} \widetilde{Q}_{\xi}(du) = \int_1^\infty \widetilde{Q}_{\xi}(du) \int_0^1 r^{1-\alpha} e^{-r^{\beta} u} dr$$

$$= \beta^{-1} \int_1^\infty u^{(\alpha-2)/\beta} \widetilde{Q}_{\xi}(du) \int_0^u v^{-1+(2-\alpha)/\beta} e^{-v} dv \ge C_4 \int_1^\infty u^{(\alpha-2)/\beta} \widetilde{Q}_{\xi}(du),$$

where

$$C_4 = \beta^{-1} \int_0^1 v^{-1 + (2 - \alpha)/\beta} e^{-\nu} d\nu \in (0, \infty).$$

Thus

$$\int_{S} \widetilde{\lambda}(d\xi) \int_{1}^{\infty} u^{(\alpha-2)/\beta} \widetilde{Q}_{\xi}(du) < \infty. \tag{2.7}$$

We also have for any $\alpha < 1$,

$$\int_{1}^{\infty} r^{-\alpha - 1} dr \int_{0}^{1} e^{-r^{\beta} u} \widetilde{Q}_{\xi}(du) = \int_{0}^{1} \widetilde{Q}_{\xi}(du) \int_{1}^{\infty} r^{-\alpha - 1} e^{-r^{\beta} u} dr$$
(2.8)

$$=\beta^{-1}\int_0^1 u^{\alpha/\beta}\widetilde{Q}_{\xi}(du)\int_u^{\infty} v^{-1-(\alpha/\beta)}e^{-v}dv \geq C_5\int_0^1 u^{\alpha/\beta}\widetilde{Q}_{\xi}(du),$$

where

$$C_5 = \beta^{-1} \int_1^\infty v^{-1 - (\alpha/\beta)} e^{-\nu} d\nu \in (0, \infty).$$

Thus

$$\int_{S} \widetilde{\lambda}(d\xi) \int_{0}^{1} u^{\alpha/\beta} \widetilde{Q}_{\xi}(du) < \infty. \tag{2.9}$$

In addition, if $\alpha = 0$, (2.8) is turned out to be

$$\int_{1}^{\infty} r^{-1} dr \int_{0}^{1} e^{-r^{\beta} u} \widetilde{Q}_{\xi}(du) = \beta^{-1} \int_{0}^{1} \widetilde{Q}_{\xi}(du) \int_{u}^{1} v^{-1} e^{-v} dv$$

$$\geq (\beta e)^{-1} \int_{0}^{1} \widetilde{Q}_{\xi}(du) \int_{u}^{1} v^{-1} dv = (\beta e)^{-1} \int_{0}^{1} (-\log u) \widetilde{Q}_{\xi}(du).$$

Thus, when $\alpha = 0$,

$$\int_{S} \widetilde{\lambda}(d\xi) \int_{0}^{1} (-\log u) \widetilde{Q}_{\xi}(du) < \infty. \tag{2.10}$$

Furthermore,

$$\int_1^\infty r^{-\alpha-1}dr\int_0^1 e^{-r^\beta u}\widetilde{Q}(du)\geq \int_1^\infty r^{-\alpha-1}e^{-r^\beta}dr\int_0^1 \widetilde{Q}_\xi(du)=C_6\int_0^1 \widetilde{Q}_\xi(du),$$

where

$$C_6 := \int_1^\infty r^{-\alpha - 1} e^{-r^{\beta}} dr \in (0, \infty).$$

Thus we have

$$\int_{S} \widetilde{\lambda}(d\xi) \int_{0}^{1} \widetilde{Q}_{\xi}(dr) < \infty. \tag{2.11}$$

Define

$$v_{\xi}(B) = \int_{0}^{\infty} u^{\alpha/\beta} 1_{B} \left(u^{-1/\beta} \right) \widetilde{Q}_{\xi}(du), \quad B \in \mathcal{B}((0, \infty)). \tag{2.12}$$

Then, it follows from (2.7) and (2.9) that

$$\int_{S} \widetilde{\lambda}(d\xi) \int_{0}^{\infty} (r^{2} \wedge 1) v_{\xi}(dr) = \int_{S} \widetilde{\lambda}(d\xi) \int_{0}^{\infty} u^{\alpha/\beta} (u^{-2/\beta} \wedge 1) \widetilde{Q}_{\xi}(du) \qquad (2.13)$$

$$= \int_{S} \widetilde{\lambda}(d\xi) \left(\int_{0}^{1} u^{\alpha/\beta} \widetilde{Q}_{\xi}(du) + \int_{1}^{\infty} u^{(\alpha-2)/\beta} \widetilde{Q}_{\xi}(du) \right) < \infty.$$

Define v by

$$v(B) = \int_{S} \widetilde{\lambda}(d\xi) \int_{0}^{\infty} 1_{B}(r\xi) v_{\xi}(dr). \tag{2.14}$$

Then, by (2.13), ν is the Lévy measure of some infinitely divisible distribution μ , and μ belongs to $\mathfrak{D}(\Psi_{\alpha,\beta})$ and satisfies

$$\widetilde{v}(B) = \int_{0}^{G_{\alpha,\beta}(0)} v((G_{\alpha,\beta}^{*}(t))^{-1}B)dt.$$
 (2.15)

To show (2.15), by (2.6), (2.12) and (2.14), we have

$$\begin{split} \widetilde{v}(B) &= \int_{S} \widetilde{\lambda}(d\xi) \int_{0}^{\infty} 1_{B}(r\xi) r^{-\alpha-1} dr \int_{0}^{\infty} e^{-r^{\beta}u} \widetilde{Q}_{\xi}(du) \\ &= \int_{S} \widetilde{\lambda}(d\xi) \int_{0}^{\infty} 1_{B}(u^{-1/\beta}s\xi) s^{-\alpha-1} e^{-s^{\beta}} ds \int_{0}^{\infty} u^{\alpha/\beta} \widetilde{Q}_{\xi}(du) \\ &= \int_{0}^{\infty} s^{-\alpha-1} e^{-s^{\beta}} ds \int_{S} \widetilde{\lambda}(d\xi) \int_{0}^{\infty} 1_{B}(u^{-1/\beta}s\xi) u^{\alpha/\beta} \widetilde{Q}_{\xi}(du) \\ &= \int_{0}^{\infty} s^{-\alpha-1} e^{-s^{\beta}} ds \int_{S} \widetilde{\lambda}(d\xi) \int_{0}^{\infty} 1_{B}(rs\xi) v_{\xi}(dr) \\ &= \int_{0}^{\infty} s^{-\alpha-1} e^{-s^{\beta}} ds \int_{S} \widetilde{\lambda}(d\xi) \int_{0}^{\infty} 1_{s^{-1}B}(r\xi) v_{\xi}(dr) \\ &= \int_{0}^{\infty} v(s^{-1}B) s^{-\alpha-1} e^{-s^{\beta}} ds = -\int_{0}^{\infty} v(s^{-1}B) dG_{\alpha,\beta}(s) \\ &= \int_{0}^{G_{\alpha,\beta}(0)} v((G_{\alpha,\beta}^{*}(t))^{-1}B) dt. \end{split}$$

To show that $\mu \in \mathfrak{D}(\Psi_{\alpha,\beta})$, it is enough to show that $\int_{|x|>1} |x|^{\alpha} v(dx) < \infty$, which is if and only if $\mu \in I_{\alpha}(\mathbb{R}^d)$, when $0 < \alpha < 1$, and $\int_{|x|>1} \log |x| v(dx) < \infty$, which is if and only if $\mu \in I_{\log}(\mathbb{R}^d)$, when $\alpha = 0$, (see Sato (1999), Theorem 25.3). Note that by (2.12) we see, for any nonnegative measurable function f on $(0,\infty)$,

$$\int_0^\infty f(r)v_\xi(dr) = \int_0^\infty u^{\alpha/\beta} f(u^{-1/\beta}) \widetilde{Q}_\xi(du).$$

Thus if we choose $f(r) = I[r > 1]r^{\alpha}$, where I[A] is the indicator function of the set A, then v in (2.14) satisfies that for $\alpha > 0$

$$\int_{|x|>1} |x|^{\alpha} v(dx) = \int_{S} \widetilde{\lambda}(d\xi) \int_{1}^{\infty} r^{\alpha} v_{\xi}(dr) = \int_{S} \widetilde{\lambda}(d\xi) \int_{0}^{1} \widetilde{Q}_{\xi}(du) < \infty$$
 (2.16)

due to (2.11). When $\alpha = 0$,

$$\int_{|x|>1} \log|x| v(dx) = \int_{S} \widetilde{\lambda}(d\xi) \int_{1}^{\infty} \log r v_{\xi}(dr)
= \int_{S} \widetilde{\lambda}(d\xi) \int_{0}^{1} \log u^{-1/\beta} \widetilde{Q}_{\xi}(du) = \beta^{-1} \int_{S} \widetilde{\lambda}(d\xi) \int_{0}^{1} (-\log u) \widetilde{Q}_{\xi}(du) < \infty$$
(2.17)

due to (2.10).

Notice again that

$$\int_0^{G_{\alpha,\beta}(0)} \left(G_{\alpha,\beta}^*(t)\right)^2 dt = -\int_0^\infty u^2 dG_{\alpha,\beta}(u) = \int_0^\infty u^{1-\alpha} e^{-u^\beta} du < \infty.$$

Define *A* and γ by

$$\widetilde{A} = \left(\int_0^{G_{\alpha,\beta}(0)} G_{\alpha,\beta}^*(t)^2 dt \right) A \tag{2.18}$$

and

$$\widetilde{\gamma} = \int_{0}^{G_{\alpha,\beta}(0)} G_{\alpha,\beta}^{*}(t) dt \left(\gamma + \int_{\mathbb{R}^{d}} x \left(\frac{1}{1 + |G_{\alpha,\beta}^{*}(t)x|^{2}} - \frac{1}{1 + |x|^{2}} \right) v(dx) \right). \tag{2.19}$$

Here we have to check the finiteness of this integral. We first have

$$\int_0^{G_{\alpha,\beta}(0)} G_{\alpha,\beta}^*(t)dt = -\int_0^\infty udG_{\alpha,\beta}(u) = \int_0^\infty u^{-\alpha}e^{-u^{\beta}}du < \infty,$$

since $\alpha < 1$. Below, $C_7, C_8 \in (0, \infty)$ are suitable constants. Recall $\alpha < 1$. When $\alpha \neq 0$, we have

$$\int_{0}^{a,\beta}(0) G_{a,\beta}^{*}(t) dt \int_{\mathbb{R}^{d}} |x| \left| \frac{1}{1 + |G_{a,\beta}^{*}(t)x|^{2}} - \frac{1}{1 + |x|^{2}} \right| v(dx)
= \int_{0}^{\infty} u^{-\alpha} e^{-u^{\beta}} du \int_{\mathbb{R}^{d}} |x| \left| \frac{1}{1 + |ux|^{2}} - \frac{1}{1 + |x|^{2}} \right| v(dx)
\leq \int_{0}^{\infty} u^{-\alpha} (1 + u^{2}) e^{-u^{\beta}} du \int_{\mathbb{R}^{d}} \frac{|x|^{3}}{(1 + |ux|^{2})(1 + |x|^{2})} v(dx)
\leq \int_{0}^{\infty} u^{-\alpha} (1 + u^{2}) e^{-u^{\beta}} du
\times \left(\int_{|x| \leq 1} |x|^{2} v(dx) + \int_{|x| > 1, |ux| \leq 1} |x| v(dx) + \int_{|x| > 1, |ux| > 1} \frac{|x|}{|ux|^{2}} v(dx) \right)
= C_{7} + \int_{|x| > 1} |x| v(dx) \int_{0}^{1/|x|} u^{-\alpha} (1 + u^{2}) e^{-u^{\beta}} du
+ \int_{|x| > 1} v(dx) \int_{1/|x|}^{1/|x|} u^{-\alpha - 1} (1 + u^{2}) e^{-u^{\beta}} du
\leq C_{7} + \int_{|x| > 1} |x| v(dx) \int_{0}^{1/|x|} 2u^{-\alpha} du
+ \int_{|x| > 1} v(dx) \left\{ \left(\int_{1/|x|}^{1} + \int_{1}^{\infty} \right) u^{-\alpha - 1} (1 + u^{2}) e^{-u^{\beta}} du \right\}
\leq C_{7} + 2(1 - \alpha)^{-1} \int_{|x| > 1} |x|^{\alpha} v(dx)
+ \int_{|x| > 1} v(dx) \left\{ \int_{1/|x|}^{1} 2u^{-\alpha - 1} du + \int_{1}^{\infty} u^{-\alpha - 1} (1 + u^{2}) e^{-u^{\beta}} du \right\}$$
(2.20)

$$= C_7 + 2(1 - \alpha)^{-1} \int_{|x| > 1} |x|^{\alpha} v(dx)$$

$$+ \int_{|x| > 1} v(dx) \left\{ -2\alpha^{-1} (1 - |x|^{\alpha}) + C_8 \right\}$$

$$= C_7 + 2(1 - \alpha)^{-1} \int_{|x| > 1} |x|^{\alpha} v(dx)$$

$$+ 2\alpha^{-1} \int_{|x| > 1} |x|^{\alpha} v(dx) + (C_8 - 2\alpha^{-1}) \int_{|x| > 1} v(dx) < \infty, \tag{2.21}$$

by (2.16). When $\alpha = 0$, since

$$\int_{1/|x|}^{1} u^{-\alpha-1} du = \int_{1/|x|}^{1} u^{-1} du = \log|x|,$$

in (2.20), we have

$$\int_{|x|>1} \log|x| \nu(dx) \tag{2.22}$$

instead of $\int_{|x|>1} |x|^{\alpha} v(dx)$ in (2.21) in the calculation above. The finiteness of (2.22) is assured by (2.17).

Thus γ can be defined. Hence, if we denote by μ an infinitely divisible distribution having the Lévy-Khintchine triplet (A, v, γ) above, then by (2.15), (2.18) and (2.19), we see that

$$\widetilde{\mu} = \mathscr{L}\left(\int_0^{G_{\alpha,\beta}(0)} G_{\alpha,\beta}^*(t) dX_t^{(\mu)}\right),$$

concluding that $\widetilde{\mu} \in \Psi_{\alpha,\beta}(\mathfrak{D}(\Psi_{\alpha,\beta}))$. This completes the proof. \square

Acknowledgment The authors greatly appreciate the referee's detailed comments, which improved the paper very much.

References

- [1] T. Aoyama, M. Maejima and J. Rosiński (2008). A subclass of type *G* selfdecomposable distributions, *J. Theoret. Probab.*, **21**, 14–34. MR2384471 MR2384471
- [2] O.E. Barndorff-Nielsen, M. Maejima and K. Sato (2006). Some classes of multivariate infinitely divisible distributions admitting stochastic integral representations, *Bernoulli*, **12**, 1–33. MR2202318 MR2202318
- [3] O.E. Barndorff-Nielsen, J. Rosiński and S. Thorbjørnsen, (2008): General Υ transformations. *ALEA Lat. Am. J. Probab. Math. Statist.* **4**, 131-165. MR2421179 MR2421179
- [4] W. Feller (1966). An Introduction to Probability Theory and Its Applications, Vol. II, 2nd ed., John Wiley & Sons. MR0210154 MR0210154

- [5] M. Maejima, M. Matsui and M. Suzuki (2009). Classes of infinitely divisible distributions on \mathbb{R}^d related to the class of selfdecomposable distributions, to appear in *Tokyo J. Math*.
- [6] K. Sato (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press. MR1739520 MR1739520
- [7] K. Sato (2004) Stochastic integrals in additive processes and application to semi-Lévy processes, *Osaka J. Math.* **41**, 211–236. MR2040073 MR2040073
- [8] K. Sato (2006a). Additive processes and stochastic integrals, *Illinois J. Math.* **50**, 825–851. MR2247848 MR2247848
- [9] K. Sato (2006b). Two families of improper stochastic integrals with respect to Lévy processes, *ALEA Lat. Am. J. Probab. Math. Statist.* **1** 47–87. MR2235174 MR2235174