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Abstract

We show that there exist Lévy processes (X t , t ≥ 0) and reals y > 0 such that for small t, the

probability P(X t > y) has an expansion involving fractional powers or more general functions of

t. This constrats with previous results giving polynomial expansions under additional assumptions.

1 The Brownian case

1.1 Main result

Let (X t , t ≥ 0) be a real-valued Lévy process with Lévy measure Π and let y > 0. It is well-known

(see for example [B], Chapter 1) that when t → 0,

P(X t ≥ y)∼ tΠ(y) (1)

whenever Π(y)> 0 and Π is is continuous at y , where Π stands for the tail of Π: for every z > 0,

Π(z) = Π([z,∞))

It has been proved that under additional assumptions, which in particular include the smoothness

of Π, one gets more precise expansions of the probability P(X t ≥ y) and that these are polynomial

in t. See [L, P, RW, FH2] among others.

The problem of relating Π to the marginals of the process have several applications. The paper

[RW], as well as [FH1], is concerned with problems of mathematical finance. Applications of

statistical nature can be found in [F]. From a more theoretical point of view, this relation plays

an important role when studying small-time behaviour of Lévy processes, which involves fine

properties of the Lévy measure (see for instance Section 4 in [BDM]).

Our goal is to exhibit some examples where this expansion involves more general functions of t,

such as fractional powers, powers of the logarithm and so on. We shall focus on the case when X
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has the form X t = St + Yt where (Yt , t ≥ 0) is a compound Poisson process with Lévy measure Π

and (St , t ≥ 0) is a stable process, S and Y being independent. Assume first that

X t = Bt + Yt

where (Bt , t ≥ 0) is a standard Brownian motion. Then we have:

Theorem 1. (i) Suppose that Π has a continuous density f on [y−δ, y)∪(y, y+δ] for some δ > 0.

Suppose that

f+ := lim
x→0+

f (y + x) 6= f− := lim
x→0−

f (y + x)

Then as t → 0,

P(X t ≥ y)− t

�

Π(z)−
Π({z})

2

�

∼ λt3/2

�

( f− − f+)E(G)

2

�

where G is the absolute value of a standard gaussian random variable.

(ii) Define the functions g−, g+ : R+→ R+ by

g+(x) = Π((y, y + x))

g−(x) = Π((y − x , y))

Suppose that

x2 = o(|g+(x)− g−(x)|)
as x → 0+. Then as t → 0,

P(X t ≥ y)− t

�

Π(z)−
Π({z})

2

�

∼
tE[g−(

p
tG)− g+(

p
tG)]

2

Remarks
(i) Suppose that for small x > 0,

g+(x) = ax + cxα| log x |β + o(xα| log x |β )

g−(x) = ax + c′xγ| log x |δ + o(xγ| log x |δ)
with the conditions that (c,α,β) 6= (c′γ,δ) and 1 <min(α,γ) < 2. Then x2 = o(|g+(x)− g−(x)|)
and the conclusion of (ii) applies. For example, if α < γ, this gives the estimate

P(X t ≥ y)− t

�

Π(z)−
Π({z})

2

�

∼−
cE(Gα| log G|β )

2
t1+(α/2)| log t|β

Of course, one could take any slowly varying function instead of the logarithm. On the other hand,

if Π has a density that is twice differentiable in the neighbourhood of y , then |g+(x)− g−(x)| =
O(x2) and (ii) does not apply.

(ii) For a fixed time t, adding Bt to Yt has a smoothing effect on the probability measure P(X t ∈
d x). In turn, if we fix y and consider the function hy : t 7→ P(X t ≥ y), the effect of adding Bt to

Yt is counter-regularizing. Indeed, hy would be analytic in the absence of Brownian motion while

it is not twice differentiable in the presence of Brownian motion. This is not very intuitive in our

view.

Proof of Theorem 1
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Let λ be the total mass of Π. For every y > 0 one can write

P(X t ≥ y) = e−λt
P(Bt ≥ y) +λte−λt

P(Bt + Z1 ≥ y)

+
(λt)2e−λt

2
P(Bt + Z1 + Z2 ≥ y)

+ . . . (2)

where the random variables Zn are iid with common law λ−1Π. As t → 0, for every integer n≥ 0,

P(Bt ≥ y) = o(tn). Moreover,

λte−λt
P(Bt + Z1 ≥ y) = λtP(Bt + Z1 ≥ y) +O(t2)

Hence, as t → 0,

P(X t ≥ y) = λtP(Bt + Z1 ≥ y) +O(t2)

Since P(Bt + Z1 ≥ y) = P(Z1 ≥ y − Bt), we have

P(Bt + Z1 ≥ y) = λ−1Π(y) + P(Z1 ∈ [y − Bt , y), Bt > 0)

−P(Z1 ∈ [y, y + |Bt |), Bt < 0)

The stability property Bt

d
=
p

tB1 entails

P(Bt + Z1 ≥ y)−λ−1Π(y) =
1

2

�

P(Z1 ∈ [y −
p

tG, y))− P(Z1 ∈ [y, y +
p

tG))
�

where G is the absolute value of a standard gaussian random variable. Under the assumptions of

(i), as t → 0,

P(Z1 ∈ [y −
p

tG, y)) = λ−1 f−
p

tE(G) + o(
p

t)

and

P(Z1 ∈ [y, y +
p

tG)) = λ−1Π({y}) +λ−1 f+
p

tE(G) + o(
p

t)

Therefore

P(Bt + Z1 ≥ y)−λ−1

�

Π(z)−
Π({z})

2

�

=
λ−1
�

f−
p

tE(G)− f+
p

tE(G)
�

2
+ o(
p

t)

and, together with (2), this entails (i). The proof of (ii) is similar. Remark that proving (ii) does

not involve the existence of the expectation E(G). �

1.2 Additional remarks

As a slight generalization of Theorem 1, we have:

Proposition 1. With the same notation as in Theorem 1, suppose that there exists an integer n ≥ 1

such that for every i < 2n,

f (i)(y+) = f (i)(y−)
but that

f (2n)(y+) 6= f (2n)(y−)
Then there exist some constants ck, 1≤ k ≤ 2n+ 2 such that as t → 0,

P(X t ≥ y) =

n+1
∑

k=1

ck tk + cn+2 tn+(3/2) + o(tn+(3/2))
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Proof
The proof is exactly the same as in Theorem 1. The estimate

λ[P(Z1 ∈ [y −
p

tG, y))− P(Z1 ∈ [y, y +
p

tG))] +Π({y})

=

n
∑

i=1

[ f (2i−1)(y−) + f (2i−1)(y+)]E(G2i)t i

(2i)!

+

n
∑

i=1

[ f (2i)(y−)− f (2i)(y+)]E(G2i+1)t i+(1/2)

(2n+ 1)!

+ o(tn+(1/2)) (3)

shows that in (2), the term

λte−λt
P(Bt + Z1 ≥ y)

gives rise to a singularity as stated in the proposition. On the other hand, it is clear that the other

terms in (2) yield polynomial terms of degree at least n+2 in the small t asymptotics. This proves

the proposition. �

Thanks to the estimate (3), we can see that the expression of the coefficients ck involves the

successive derivatives of f at y . This fact was first observed by Figueroa and Houdré [FH2] in

the more general context of a Lévy process whose Lévy measure may have infinite mass near

0. Our method enables us to recover their result in the particular case when X t has the form

X t = Bt + Yt . On the other hand, we do not assume any regularity of the Lévy measure Π outside

a neighbourhood of y , in contrast to [FH2].

It appears that the function hy : t 7→ P(X t ≥ y) “feels” the irregularities of the derivatives of f of

even order but not the irregularities of the derivatives of f of odd order. In particular, if Π has an

atom of mass, say m at y but if the measure Π−mδy is smooth at y , then hy is smooth at 0. Thus

in that case, the largest possible irregularity of Π at y is not reflected by an irregularity of hy . This

may seem counter-intuitive.

Remark that the first-order estimate (1) does not enable us to detect the presence or absence of a

Brownian part in the process X . In turn, looking at finer estimates, we can see that the presence of

a Brownian part is felt either through the fact that for some y , the function hy : t 7→ P(X t ≥ y) is

not smooth, or through the fact that the functions hy are smooth for all y but that their expression

involves the derivatives of f .

Our last remark concerns the case when Π has a Dirac mass at y . In that case, Theorem 1 states

that

P(X t ≥ z)∼ t

�

Π(z)−
Π({z})

2

�

and the function z 7→ Π(z)−Π({z})/2 is discontinuous at y . However, since X has a Brownian

component, the law of X t has a smooth density for every t > 0 and so the function z 7→ P(X t ≥ z) is

continuous at y . The compatibility between these two observations is explained in the following:

Proposition 2. With the same notation as in Theorem 1, suppose that for some y > 0, Π({y}) > 0

and that Π has a continuous density f on R− {y}. Then for every fixed c > 0, as t → 0,

P(X t ≥ y + c
p

t)∼ t

�

Π(y)−
Π({y})P(G ≤ c)

2

�
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Of course, a similar result holds for c < 0.

Proof
The same arguments as in the proof of Theorem 1 give

P(X t ≥ y + c
p

t)− tΠ(y + c
p

t) ∼
λt

2

�

P(Z1 ∈ [y +
p

t(c − G), y +
p

tc))

− P(Z1 ∈ [y +
p

tc, y +
p

t(c + G)))
�

Using the regularity of Π on R− {y}, we get the estimates

P(Z1 ∈ [y +
p

t(c − G), y +
p

tc)) = λ−1Π({y})P(G ≥ c) +O(
p

t),

P(Z1 ∈ [y +
p

tc, y +
p

t(c + G))) = O(
p

t)

and

Π(y + c
p

t) = Π(y)−Π({y}) +O(
p

t)

This gives the result. �

2 The stable case

Consider now the process

X t = Yt + St

where S is a stable process of index α ∈ (0,2) and Y is an independent compound Poisson process

with Lévy measure Π. Let ν be the Lévy measure of X and denote by ν the tail of ν .

Theorem 2. (i) Let g+, g− be as in Theorem 1. Suppose that when t → 0,

t = o
�

E[g−(t
1/αS1)1{S1>0} − g+(t

1/α|S1|1{S1<0}]
�

Then for small t > 0,

P(X t ≥ y)− t
�

ν(y)− P(S1 < 0)Π({y})
�

∼ tE
�

g−(t
1/αS1)1{S1>0} − g+(t

1/α|S1|1{S1<0}
�

(ii) Suppose that there exist β > α, a ∈ R, b,δ0 > 0 such that if |x |< δ0,

¯

¯Π(y + x)−Π(y)− ax
¯

¯< bxβ (4)

Then there exists a real c such that as t → 0,

P(X t ≥ y) = t
�

ν(y)− P(S1 < 0)Π({y})
�

+ c t2 + o(t2) (5)

Remarks
(i) Suppose that α > 1. Then Theorem 2 (i) applies for example when g+(x) ∼ ax , g−(x) ∼ bx

in the neighbourhood of 0, with a 6= b. Another instance is the case when

g+(x) = ax + cxη| log x |β + o(xη| log x |β)

g−(x) = ax + c′xγ| log x |δ + o(xγ| log x |δ)
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with the conditions that (c,α,β) 6= (c′γ,δ) and 1<min(η,γ) < α.

(ii) Likewise, in the case when α < 1, choosing

g+(x) = cxη| log x |β + o(xη| log x |β )

g−(x) = c′xγ| log x |δ + o(xγ| log x |δ)
with (c,α,β) 6= (c′γ,δ) and α/2 < min(η,γ) < α provides an example in which the conditions

of Theorem 2 (i) are satisfied. Remark that Π does not have a bounded density, which is not

surprising. Indeed, Theorem 2.2 in [FH2] shows, in the general framework of a Lévy process with

bounded variation, that if the Lévy measure is bounded outside a neighbourhood of 0, then an

estimate of the form (5) always holds.

(iii) The examples provided for α < 1 also work when α = 1. Besides, when α = 1, consider the

case when y > 1/2, Π is supported on [y − 1/2, y + 1/2] and for 0≤ x ≤ 1/2,

g+(x) =
ax

(−1+ log x)2

g−(x) =
bx

(−1+ log x)2

with b 6= a. Then it is easily seen that Π has bounded density and that the conditions of Theorem

2 (i) are satisfied. Of course, the difference with the case α < 1 is that when α = 1, the process

has infinite variation.

(iv) Theorem 2 (ii) indicates that, loosely speaking, adding St instead of Bt to Yt is more regular-

izing for the function hy : t 7→ P(X t ≥ y). Moreover, the smaller α is, the easier it is to satisfy (4).

Proof of Theorem 2
The proof of (i) is the same as the proof of Theorem 1 (ii). Recall that this proof does not use

the existence of E(G), and thus can be mimicked even in the case when α ≤ 1, in which E(S1)

does not exist. On the other hand, the proof of Proposition 1 cannot be reproduced in the stable

case. Indeed, an analogue of (3) no longer holds, since one would have to replace G with |S1| but

E|S1|n =∞ if n≥ 2.

Let us prove (ii). To simplify the notation, we assume that Π has total mass 1. Recall that there

exists a family (cn) of reals such that for every N ≥ 1,

P(St ∈ d y) =

N
∑

n=1

cn tn y−nα−1 + o(tN ) (6)

as t → 0. See Zolotarev [Z], Chapter 2.5. As in the proof of Theorem 1,

P(X t ≥ y) = e−t
P(St ≥ y) + te−t

P(St + Z1 ≥ y) +
t2e−t

2
P(St + Z1 + Z2 ≥ y) + o(t2)

Remark that

te−t
P(St + Z1 ≥ y) = tP(St + Z1 ≥ y)− t2

P(St + Z1 ≥ y) + o(t2)

and
t2e−t

2
P(St + Z1 + Z2 ≥ y) =

t2

2
P(St + Z1 + Z2 ≥ y) + o(t2)
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Together with (6), this entails

P(X t ≥ y) = At + Bt2 + tP(St + Z1 ≥ y) + o(t2) (7)

for some constants A and B. The key point is to show that

P(St + Z1 ≥ y) = Π(y) + C t + o(t) (8)

for some constant C . Let us first handle the case when α > 1. As already seen,

P(St + Z1 ≥ y)−Π(y) = P(Z1 ∈ [y − t1/αS1, y),S1 > 0)

−P(Z1 ∈ [y, y + |t1/αS1|),S1 < 0)

Let us consider the first term of the right-hand side:

I1 := P(Z1 ∈ [y − t1/αS1, y),S1 > 0) =

∫ ∞

0

g(x)P(Z1 ∈ [y − t1/αx , y))d x

where g denotes the density of S1. Put

F(z) = P(Z1 ∈ [y − z, y))− az (9)

Then

I1 = at1/α

∫ ∞

0

x g(x)d x +

∫ ∞

0

g(x)F(t1/αx)d x

Let δ > 0 and cut the last integral as follows:

∫ ∞

0

g(x)F(t1/αx)d x =

∫ δt−1/α

0

+

∫ ∞

δt−1/α

By a change of variable, the second integral can be rewritten as

∫ ∞

δt−1/α

g(x)F(t1/αx)d x = t−1/α

∫ ∞

δ

g(zt−1/α)F(z)dz

Using Zolotarev’s estimate (6) yields g(zt−1/α)∼ K(zt−1/α)−1−α for some K > 0 and thus we get

∫ ∞

δt−1/α

g(x)F(t1/αx)d x = K t

∫ ∞

δ

F(z)
dz

z1+α
+ H1(δ, t)

where the function H1(δ, t) depends on δ but in any case, H1(δ, t) = o(t). Let us consider the

other integral, namely

I(δ) :=

∫ δt−1/α

0

g(x)F(t1/αx)d x

Then if δ < δ0, the assumption (4) entails that for every x ∈ [0,δ], |F(x)| ≤ bxβ , whence

|I(δ)|< b

∫ δt−1/α

0

tβ/αxβ g(x)d x (10)
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Let us bound, for large M ,
∫ M

0

xβ g(x)d x = E(S
β
1 1{0<S1<M})

Write

E(S
β
1 1{0<S1<M}) =

∫ ∞

0

P(S
β
1 > x ,S1 < M)d x

=

∫ Mβ

0

P(x1/β < S1 < M)d x

≤
∫ Mβ

log M

P(x1/β < S1)d x + log M

Using again (6), we get that if x ≥ log M ,

P(x1/β < S1)≤
K

xα/β

�

1+

�

c

log M

�α/β
�

for some c > 0. Therefore there exists some M1 > 0 such that if M > M1,

∫ M

0

xβ g(x)d x ≤
2KMβ−α

1− (α/β)

Using this estimate together with (10) leads to:

|I(δ)| ≤
2bKδβ−α t

1− (α/β)

whenever δ < δ0 and δt−1/α > M1. Thus for δ, t satisfying these conditions,

¯

¯P(Z1 ∈ [y − t1/αS1, y),S1 > 0)

−at1/α

∫ ∞

0

x g(x)d x − K t

∫ ∞

δ

�

P(Z1 ∈ [y − z, y))− az
� dz

z1+α

¯

¯

¯

¯

¯

≤
2bKδβ−α t

1− (α/β) + H1(δ, t)

Similarly,

¯

¯P(Z1 ∈ [y, y + |t1/αS1|),S1 < 0)− P(S1 < 0)Π({y})

−at1/α

∫ 0

−∞
|x |g(x)d x − K t

∫ ∞

δ

�

P(Z1 ∈ (y, y + z))− az
� dz

z1+α

¯

¯

¯

¯

¯

≤
2bKδβ−α t

1− (α/β) + H2(δ, t)



140 Electronic Communications in Probability

Remark that in the formula above, we have replaced the semi-open interval [y, y + z) with the

open interval (y, y + z) and this accounts for presence of the term P(S1 < 0)Π({y}). Since S is

stable with index α > 1,

∫ ∞

0

x g(x)d x −
∫ 0

−∞
|x |g(x)d x = E(S1) = 0 (11)

and this entails
¯

¯

¯P(St + Z1 ≥ y)−
�

Π(y)− P(S1 < 0)Π({y})
�

−K t

�∫ ∞

δ

[P(Z1 ∈ [y − z, y))− P(Z1 ∈ (y, y + z))]
dz

z1+α

�

¯

¯

¯

¯

¯

≤
4bKδβ−α t

1− (α/β) + H1(δ, t) + H2(δ, t)

Because of the assumption (4),

∫ ∞

δ

[P(Z1 ∈ [y − z, y))− P(Z1 ∈ (y, y + z))]
dz

z1+α

has a limit as δ→ 0. Put

L =

∫ ∞

0

[P(Z1 ∈ [y − z, y))− P(Z1 ∈ (y, y + z]))]
dz

z1+α

Now fix ε > 0. There exists δ1 such that if δ ≤ δ1,

¯

¯

¯

¯

¯

L −
�∫ ∞

δ

[P(Z1 ∈ [y − z, y])− P(Z1 ∈ (y, y + z])]
dz

z1+α

�

¯

¯

¯

¯

¯

≤ ε

Moreover, one can choose δ > 0 such that δ ≤ inf(δ0,δ1) and that

4bKδβ−α

1− (α/β) ≤ ε

For such a choice of δ, if t satisfies δt−1/α > M1, i.e. t < (δ/M)α, we have

|P(St + Z1 ≥ y)− [Π(y)− P(S1 < 0)Π({y})]− K Lt|
≤ 2εt + H1(δ, t) + H2(δ, t)

Finally, since H1(δ, t) + H2(δ, t) = o(t), one may choose t small enough so that

H1(δ, t) + H2(δ, t)≤ εt

and thus we have proved that if t is small enough,

|P(St + Z1 ≥ y)− [Π(y)− P(S1 < 0)Π({y})]− K Lt| ≤ 3εt

which proves (8) in the case α > 1.
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When α= 1, we replace (9) with

F(z) = P(Z1 ∈ [y − z, y))− az1(|z|<1)

The proof then goes along the same lines. The only difference is that (11) is replaced by the

following equality:
∫ 1

0

x g(x)d x −
∫ 0

−1

|x |g(x)d x

which uses the symmetry of S.

Finally, when α < 1, starting again from (7), we can directly evaluate, using a change of variable

together with (6),

P(Z1 ∈ [y − t1/αS1, y),S1 > 0) =

∫ ∞

0

g(x)P(Z1 ∈ [y − t1/αx , y))

∼ K t

∫ ∞

0

dz

z1+α
P(Z1 ∈ [y − z, y))

The latter integral is convergent at 0 thanks to the assumptions of the theorem and this concludes

the proof in the case α < 1. �

Finally, let us state the analogue of Proposition 2 in the case when X t = St + Yt :

Proposition 3. Suppose that for some y > 0, Π({y}) > 0 and that Π has a continuous density on

R− {y}. Then for every fixed c > 0, as t → 0,

P(X t ≥ y + c t1/α)∼ t
�

Π(y)− P(0< S1 ≤ c)Π({y})
�

Here again, a similar result holds for c < 0.

Acknowledgments. I thank José Figueroa-López and Christian Houdré for very interesting dis-

cussions.

References

[B] J. Bertoin. Lévy processes. Cambridge University Press, 1996. MR1406564

[BDM] Bertoin, J.; Doney, R. A.; Maller, R. A. Passage of Lévy processes across power law bound-

aries at small times. Ann. Probab. 36 (2008), no. 1, 160–197.

[F] J.E. Figueróa-Lopez. Nonparametric estimation for Lévy models based on discrete-

sampling. To appear in the IMS Volume for the 3rd Erich L. Lehmann Symposium, 2008.

Available at www.stat.purdue.edu/ figueroa.

[FH1] Figueroa-López, J.E.; Houdré, Christian. Risk bounds for the non-parametric estimation of

Lévy processes. High dimensional probability, 96–116, IMS Lecture Notes Monogr. Ser., 51,

Inst. Math. Statist., Beachwood, OH, 2006.

[FH2] J.E. Figueroa-López and C. Houdré, Small-time expansions for the transition distribution

of Lévy processes. Preprint, 2008

http://www.ams.org/mathscinet-getitem?mr=1406564


142 Electronic Communications in Probability

[L] R. Léandre. Densité en temps petit d’un processus de sauts. Séminaire de probabilités XXI,

Lecture Notes in Math. J. Azéma, P.A. Meyer, and M. Yor (eds), 1987.

[P] J. Picard. Density in small time for Lévy processes. ESAIM: Probability and Statistics, 357–

389, 1997. MR1486930

[RW] L. Rüschendorf and J. Woerner. Expansion of transition distributions of Lévy processes in

small time. Bernoulli, 8 :81–96, 2002. MR1884159

[Z] V. M. Zolotarev. One-dimensional stable distributions. Translations of Mathematical Mono-

graphs, 65. American Mathematical Society, Providence, RI, 1986. MR0854867

http://www.ams.org/mathscinet-getitem?mr=1486930
http://www.ams.org/mathscinet-getitem?mr=1884159
http://www.ams.org/mathscinet-getitem?mr=0854867

