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Abstract

Jiang, Dickey, and Kuo [12] gave the multivariate c-characteristic function and showed that it

has properties similar to those of the multivariate Fourier transformation. We first give the mul-

tivariate c-characteristic function of a random functional of a Ferguson-Dirichlet process over the

unit sphere. We then find out its probability density function using properties of the multivariate

c-characteristic function. This new result would generalize that given by [11].

1 Introduction

Ferguson [5] introduced the Ferguson-Dirichlet process and studied its applications to nonpara-

metric Bayesian inference. He also showed that when the prior distribution is a Ferguson-Dirichlet

process with parameter µ, then the posterior distribution, given the sample s1, s2, . . . , sn, is also

a Ferguson-Dirichlet process having parameter µ+
∑n

j=1
δs j

, where δs j
denotes point mass at s j .

The most natural use of random functionals of a Ferguson-Dirichlet process is to make Bayesian

inferences concerning the parameters of a statistical population. Hence, the expression for the

probability density function of any random functional of a Ferguson-Dirichlet process can be em-

ployed both for prior and posterior Bayesian analyses. Further applications related to the random

functional can be seen in [3] and other references. For example, random means and random

variances of a Ferguson-Dirichlet process can be used for smooth Bayesian nonparametric density

estimation (see [15]) and for quality control problems (see [4] for further discussions), respec-

tively.

Research on the distribution of a random functional of a Ferguson-Dirichlet process has been

ongoing for decades. A partial list of papers in this area are [2, 3, 8, 9, 11, 12, 14, 16, 17]. In

particular, [11] gave the distribution of a random functional of a Ferguson-Dirichlet process over

the unit circle. In this paper, we shall use the multivariate c-characteristic function, a tool given
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by [12], to generalize the result to the case over the unit sphere in three-dimension.

In Section 2, we first review the definition of the multivariate c-characteristic function and some

of its properties. We then compute a multivariate c-characteristic function of an interesting dis-

tribution. The multivariate c-characteristic function of the random mean of a Ferguson-Dirichlet

process over the unit sphere is given in Section 3. Using the uniqueness property of the mul-

tivariate c-characteristic function, we then determine the distribution of the random mean of a

Ferguson-Dirichlet process over the unit sphere. Conclusions are given in Section 4.

2 Multivariate c-characteristic function

Jiang [10] first gave a univariate c-characteristic function. Jiang, Dickey, and Kuo [12] general-

ized it to a multivariate c-characteristic function, which can be very useful when a distribution is

difficult to deal with by traditional characteristic function. See [12] for detailed results. First, we

state the definition of the multivariate c-characteristic function.

Definition 1. If u = (u1, . . . ,uL)
′ is a random vector on a subset S of A= [−a1, a1]×· · ·×[−aL , aL],

its multivariate c-characteristic function is defined as

g(t ; u, c) = E[(1− it · u)−c], |t |< a−1,

where c > 0, a =
Æ

∑L

i=1
a2

i
, t ′ = (t1, . . . , tL), |t | =

Æ

∑L

i=1
t2

i
, and t · u is the inner product of t

and u.

The above assumptions that c is positive and u has a bounded support are needed in [12, Lemma 2.2],

which shows that, for any positive c, there is a one-to-one correspondence between g(t ; u, c) and

the distribution of u.

Next, we give the multivariate c-characteristic function of an interesting distribution in the next

lemma.

Lemma 2. Let u = (u1,u2,u3)
′ be a distribution on the inside of a unit ball, i.e., {(u1,u2,u3) |

u2
1
+ u2

2
+ u2

3
< 1}, with the probability density function

f (u) =
−e

4π2r
(1+ r)−(1+r)/2(1− r)−(1−r)/2

�

−π sin
πr

2
+ ln

1− r

1+ r
cos
πr

2

�

,

where r = |u|. Then the multivariate 1-characteristic function of u is

g(t ; u, 1) = exp

 

∞
∑

n=1

(−t2
1
− t2

2
− t2

3
)n

2n(2n+ 1)

!

. (1)

Proof. Let C = {(u1,u2,u3) | u
2
1
+ u2

2
+ u2

3
< 1}. Eq. (1) is equivalent to the following identity

∫

C

(1− it · u)−1 f (u) du = exp

 

∞
∑

n=1

(−t2
1
− t2

2
− t2

3
)n

2n(2n+ 1)

!

.

To prove the above identity, we establish the following four equations first. From [7, p. 105], we

have
∫ 2π

0

(a cosα+ b sinα)n dα=

(

(1/2,n/2)2(a2+b2)n/2π

(n/2)!
, n is even,

0, n is odd,
(2)
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where a and b are real numbers and (a, k) = a(a + 1) · · · (a + k − 1). We also can obtain the

following equation from [6, Eq. 3.621.5],

∫ π

0

sina−1 x cosb−1 x d x =

¨

B(a/2,b/2)

2
, Re a > 0, b > 0 is odd,

0, Re a > 0, b > 0 is even.
(3)

Using integration by parts, we have the following identity,

∫ 1

0

r2n+1(1+ r)−(1+r)/2(1− r)−(1−r)/2

�

−π sin
πr

2

�

dr

= −

∫ 1

0

r2n+1(1+ r)−(1+r)/2(1− r)−(1−r)/2 ln
1− r

1+ r
cos
πr

2
dr (4)

−

∫ 1

0

2(2n+ 1)r2n(1+ r)−(1+r)/2(1− r)−(1−r)/2 cos
πr

2
.

Using [13, Lemma 8 and Example 2], we can obtain the following equality:

exp

 

−

∫ 1

−1

ln(1− i t x)
1

2
d x

!

=

∫ 1

−1

(1− i t x)−1
e

π
(x + 1)−(x+1)/2(1− x)−(1−x)/2 cos

πx

2
d x .

Since

exp

 

−

∫ 1

−1

ln(1− i t x)
1

2
d x

!

= exp

 

∞
∑

n=1

(−t2)n

2n(2n+ 1)

!

and

∫ 1

−1

(1− i t x)−1
e

π
(x + 1)−(x+1)/2(1− x)−(1−x)/2 cos

πx

2
d x

=

∞
∑

n=0

∫ 1

−1

ein tn

π
xn(x + 1)−(x+1)/2(1− x)−(1−x)/2 cos

πx

2
d x ,

and by the fact that the function (x + 1)−(x+1)/2(1− x)−(1−x)/2 cos πx

2
is symmetric at x = 0, we

have

exp

 

∞
∑

n=1

(−t2)n

2n(2n+ 1)

!

=
2e

π

∞
∑

n=0

(−t2)n
∫ 1

0

x2n(x + 1)−(x+1)/2(1− x)−(1−x)/2 cos
πx

2
d x . (5)

Setting

g(r) =
−er

4π2
(1+ r)−(1+r)/2(1− r)−(1−r)/2

�

−π sin
πr

2
+ ln

1− r

1+ r
cos
πr

2

�

,
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and using the spherical coordinate transformation, we have

∫

C

(1− it · u)−1 f (u) du

=

∫ 1

0

∫ 2π

0

∫ π

0

(1− i t1r cosθ sinφ − i t2r sinθ sinφ − i t3r cosφ)−1 sinφg(r) dφ dθ dr

=

∫ 1

0

∞
∑

n=0

(ir)n g(r)

∫ 2π

0

∫ π

0

(t1 cosθ sinφ + t2 sinθ sinφ + t3 cosφ)n sinφ dφ dθ dr

=

∫ 1

0

∞
∑

n=0

(ir)n g(r)

∫ 2π

0

∫ π

0

n
∑

k=0

�

n

k

�

(t1 cosθ + t2 sinθ)k tn−k
3

sink+1φ cosn−kφ dφ dθ dr

=

∫ 1

0

∞
∑

n=0

4π(−t2
1
− t2

2
− t2

3
)nr2n

2n+ 1
g(r) dr (6)

=
2e

π

∞
∑

n=0

(−t2
1
− t2

2
− t2

3
)n
∫ 1

0

r2n(1+ r)−(1+r)/2(1− r)−(1−r)/2 cos
πr

2
dr (7)

= exp

 

∞
∑

n=1

(−t2
1
− t2

2
− t2

3
)n

2n(2n+ 1)

!

. (8)

Identity (6) can be obtained by Eqs. (2) and (3). Identities (7) and (8) follow from Eq. (4) and

Eq. (5), respectively.

3 Distribution of a random functional of a Ferguson-Dirichlet

process over the unit sphere

Ferguson [5] first defined the Ferguson-Dirichlet process. Let µ be a finite non-null measure on

(Y,A), where Y is a Borel set in Euclidean space Rn and A is the σ-field of Borel subsets of Y ,

and let U be a stochastic process indexed by elements of A. We say that U is a Ferguson-Dirichlet

process with parameter µ, if for every finite measurable partition {B1, . . . , Bm} of Y , the random

vector (U(B1), . . . , U(Bm)) has a Dirichlet distribution with parameter (µ(B1), . . . ,µ(Bm)), where

µ(B j) > 0 for all j = 1, . . . , m. A random vector v = (v1, . . . , vm)
′ is said to have a Dirichlet

distribution with parameter b = (b1, . . . , bm)
′ where each b j > 0, if v has the probability density

function

f (v ; b) =
Γ(b1 + · · ·+ bm)
∏m

j=1
Γ(b j)

m
∏

j=1

v
b j−1

j
,

for all v in the probability simplex {v | each v j ≥ 0, v1 + · · ·+ vm = 1}.

First, we give a trivariate c-characteristic function expression of any trivariate random functional

of a Ferguson-Dirichlet process over a Borel set Y in Euclidean space in the next lemma.

Lemma 3. Let w =
∫

Y
h(x ) dU(x ) be a random functional where h(x ) = (h1(x ),h2(x ),h3(x ))

′ is

a bounded measurable function defined on a Borel set Y in Euclidean space Rn, and U is a Ferguson-

Dirichlet process with parameter µ on (Y,A). Then the trivariate c-characteristic function of w can



522 Electronic Communications in Probability

be expressed as

g(t ; w , c) = exp

�

−

∫

Y

ln(1− it · h(x )) dµ(x )

�

, where c = µ(Y ).

Proof. For any k ≥ 2, let {Bk1, Bk2, . . . , Bkk} be a partition of Y , bk j ∈ Bk j , vk =max{volume(Bk j) |

1 ≤ j ≤ k}, and limk→∞ vk = 0. Then (U(Bk1), . . . , U(Bkk)) follows a Dirichlet distribution with

parameter (µ(Bk1), . . . ,µ(Bkk)). In addition,
∑k

j=1
U(Bk j) = 1 for all k ≥ 2. Define g k(x ) =

∑k

j=1
h(bk j)δBk j

(x ) and w k =
∫

Y
g k(x ) dU(x ), where δBk j

(x ) is 1, for x ∈ Bk j; and is 0, other-

wise. Then limk→∞ g k(x ) = h(x ) for all x ∈ Y , and w k =
∑k

j=1
g k(bk j)U(Bk j). The trivariate

c-characteristic function of w k can be expressed as

g(t ; w k, c) = E(1− it · w k)
−c

= E



1− i

k
∑

j=1

[t · g k(bk j)]U(Bk j)





−c

= E





k
∑

j=1

U(Bk j)[1− it · g k(bk j)]





−c

= R−c(µ(Bk1), . . . ,µ(Bkk); 1− it · g k(bk1), . . . , 1− it · g k(bkk))

=

k
∏

j=1

(1− it · g k(bk j))
−µ(Bk j),

where R is a Carlson’s multiple hypergeometric function ([1]), and the last equality can be ob-

tained by [1, formula 6.6.5]. Therefore, the limit of the trivariate c-characteristic function of w k ’s,

as k approaches∞, is

lim
k→∞

g(t ; w k, c) = exp



 lim
k→∞

k
∑

j=1

−µ(Bk j) ln(1− it · g k(bk j))





= exp

�

−

∫

Y

ln(1− it · h(x )) dµ(x )

�

.

In addition, by the Dominated Convergence Theorem, we have limk→∞ w k = w . By [12, Theo-

rem 2.4], we conclude that

g(t ; w , c) = exp

�

−

∫

Y

ln(1− it · h(x )) dµ(x )

�

.

In the rest of this section, we study the random functional u =
∫

X
x dU(x ), where X is the

unit sphere in R3. We use Lemma 3 in the following theorem to first establish the trivariate

c-characteristic function of u.

Theorem 4. Let X = {(x1, x2, x3) | x
2
1
+ x2

2
+ x2

3
= 1}, and U be a Ferguson-Dirichlet process over

X with uniform measure µ as its parameter, where µ(X ) = c. Then the trivariate c-characteristic
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function of the random functional u =
∫

X
x dU(x ) can be expressed as

g(t ; u, c) = exp

 

∞
∑

n=1

c

2n(2n+ 1)
(−t2

1
− t2

2
− t2

3
)n

!

, where t = (t1, t2, t3)
′.

Proof. First, we give the following two equations, which are about Appell’s notations and can be

shown easily.

Γ(a+ n) = Γ(a)(a, n), (9)

(a, 2n) = 22n

�

a

2
, n

�
�

a+ 1

2
, n

�

. (10)

By Lemma 3, we have

g(t ; u, c)

= exp

�

−c

4π

∫

X

ln(1− it · x ) dx

�

= exp

 

−c

4π

∫ π

0

∫ 2π

0

ln(1− i t1 cosθ1 − i t2 sinθ1 cosθ2 − i t3 sinθ1 sinθ2) sinθ1 dθ2 dθ1

!

= exp

 

c

4π

∞
∑

n=1

in

n

∫ π

0

∫ 2π

0

(t1 cosθ1 + t2 sinθ1 cosθ2 + t3 sinθ1 sinθ2)
n sinθ1 dθ2 dθ1

!

= exp

 

c

4π

∞
∑

n=1

in

n

n
∑

k=0

�

n

k

�
∫ π

0

∫ 2π

0

(t1 cosθ1)
k sinn−k+1 θ1(t2 cosθ2 + t3 sinθ2)

n−k dθ2 dθ1

!

= exp

 

c

2

∞
∑

n=1

(−1)n

2n

n
∑

k=0

�

2n

2k

�

(1/2, n− k)(t2
2
+ t2

3
)n−k

(n− k)!
t2k
1

B(n− k+ 1, k+ 1/2)

!

= exp

 

∞
∑

n=1

c

2n(2n+ 1)
(−t2

1
− t2

2
− t2

3
)n

!

.

The fifth identity can be obtained by Eqs. (2) and (3). The last identity follows from Eqs. (9) and

(10).

By [12, Lemma 2.2], Lemma 2, and Theorem 4, we can obtain the following corollary.

Corollary 5. The probability density function of u =
∫

X
x dU(x ), where U is a Ferguson-Dirichlet

process over the unit sphere X with uniform probability measure as its parameter, is

f (u) =
−e

4π2r
(1+ r)−(1+r)/2(1− r)−(1−r)/2

�

−π sin
πr

2
+ ln

1− r

1+ r
cos
πr

2

�

,

where r =
p

u2
1 + u2

2 + u2
3 and u2

1
+ u2

2
+ u2

3
< 1.

4 Conclusions

In this paper, we obtain the trivariate c-characteristic function expression for a random functional

of a Ferguson-Dirichlet process over any finite three-dimensional space. We also obtain the prob-

ability density function of the random functional of a Ferguson-Dirichlet process with uniform

probability measure parameter over the unit sphere. This generalizes [11, Theorem 2].
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