MOMENT ESTIMATES FOR LÉVY PROCESSES

HARALD LUSCHGY

Universität Trier, FB IV-Mathematik, D-54286 Trier, Germany. email: luschgy@uni-trier.de

GILLES PAGÈS

Laboratoire de Probabilités et Modèles aléatoires, UMR 7599, Université Paris 6, case 188, 4, pl. Jussieu, F-75252 Paris Cedex 5.
email: gilles.pages@upmc.fr
Submitted September 13, 2007, accepted in final form June 9, 2008
AMS 2000 Subject classification: 60G51, 60G18.
Keywords: Lévy process increment, Lévy measure, α-stable process, Normal Inverse Gaussian process, tempered stable process, Meixner process.

Abstract

For real Lévy processes $\left(X_{t}\right)_{t \geq 0}$ having no Brownian component with Blumenthal-Getoor index β, the estimate $\mathbb{E} \sup _{s \leq t}\left|X_{s}-a_{p} s\right|^{p} \leq C_{p} t$ for every $t \in[0,1]$ and suitable $a_{p} \in \mathbb{R}$ has been established by Millar [$\overline{6}]$ for $\beta<p \leq 2$ provided $X_{1} \in L^{p}$. We derive extensions of these estimates to the cases $p>2$ and $p \leq \beta$.

1 Introduction and results

We investigate the L^{p}-norm (or quasi-norm) of the maximum process of real Lévy processes having no Brownian component. A (càdlàg) Lévy process $X=\left(X_{t}\right)_{t \geq 0}$ is characterized by its so-called local characteristics in the Lévy-Khintchine formula. They depend on the way the "big" jumps are truncated. We will adopt in the following the convention that the truncation occurs at size 1. So that

$$
\begin{equation*}
\mathbb{E} e^{i u X_{t}}=e^{-t \Psi(u)} \text { with } \Psi(u)=-i u a+\frac{1}{2} \sigma^{2} u^{2}-\int\left(e^{i u x}-1-i u x \mathbf{1}_{\{|x| \leq 1\}}\right) d \nu(x) \tag{1.1}
\end{equation*}
$$

where $u, a \in \mathbb{R}, \sigma^{2} \geq 0$ and ν is a measure on \mathbb{R} such that $\nu(\{0\})=0$ and $\int x^{2} \wedge 1 d \nu(x)<+\infty$. The measure ν is called the Lévy measure of X and the quantities $\left(a, \sigma^{2}, \nu\right)$ are referred to as the characteristics of X. One shows that for $p>0, \mathbb{E}\left|X_{1}\right|^{p}<+\infty$ if and only if $\mathbb{E}\left|X_{t}\right|^{p}<+\infty$ for every $t \geq 0$ and this in turn is equivalent to $\mathbb{E} \sup _{s \leq t}\left|X_{s}\right|^{p}<+\infty$ for every $t \geq 0$. Furthermore,

$$
\begin{equation*}
\mathbb{E}\left|X_{1}\right|^{p}<+\infty \text { if and only if } \int_{\{x \mid>1\}}|x|^{p} d \nu(x)<+\infty \tag{1.2}
\end{equation*}
$$

(see [7]). The index β of the process X introduced in [2] is defined by

$$
\begin{equation*}
\beta=\inf \left\{p>0: \int_{\{|x| \leq 1\}}|x|^{p} d \nu(x)<+\infty\right\} . \tag{1.3}
\end{equation*}
$$

Necessarily, $\beta \in[0,2]$. This index is often called Blumenthal-Getoor index of X.
In the sequel we will assume that $\sigma^{2}=0$, i.e. that X has no Brownian component. Then the Lévy-Itô decomposition of X reads

$$
\begin{equation*}
X_{t}=a t+\int_{0}^{t} \int_{\{|x| \leq 1\}} x(\mu-\lambda \otimes \nu)(d s, d x)+\int_{0}^{t} \int_{\{|x|>1\}} x \mu(d s, d x) \tag{1.4}
\end{equation*}
$$

where λ denotes the Lebesgue measure and μ is the Poisson random measure on $\mathbb{R}_{+} \times \mathbb{R}$ associated with the jumps of X by

$$
\mu=\sum_{t \geq 0} \varepsilon_{\left(t, \Delta X_{t}\right)} \mathbf{1}_{\left\{\triangle X_{t} \neq 0\right\}},
$$

$\triangle X_{t}=X_{t}-X_{t-}, \triangle X_{0}=0$ and where ε_{z} denotes the Dirac measure at $z($ see [4], [7]).
Theorem 1. Let $\left(X_{t}\right)_{t \geq 0}$ be a Lévy process with characteristics ($a, 0, \nu$) and BlumenthalGetoor index β. Assume either $-p \in(\beta, \infty)$ such that $\mathbb{E}\left|X_{1}\right|^{p}<+\infty$
or

$$
\begin{aligned}
&-p=\beta \text { provided } \beta>0 \text { and } \int_{\{|x| \leq 1\}}|x|^{\beta} d \nu(x)<+\infty \text {. Then, for every } t \geq 0 \\
& \mathbb{E} \sup _{s \leq t}\left|Y_{s}\right|^{p} \leq C_{p} t \quad \text { if } p<1 \\
& \mathbb{E} \sup _{s \leq t}\left|X_{s}-s \mathbb{E} X_{1}\right|^{p} \leq C_{p} t \quad \text { if } 1 \leq p \leq 2
\end{aligned}
$$

for a finite real constant C_{p}, where $Y_{t}=X_{t}-t\left(a-\int_{\{|x| \leq 1\}} x d \nu(x)\right)$. Furthermore, for every $p>2$,

$$
\mathbb{E} \sup _{s \leq t}\left|X_{s}\right|^{p}=O(t) \quad \text { as } \quad t \rightarrow 0
$$

If X_{1} is symmetric one observes that $Y=X$ since the symmetry of X_{1} implies $a=0$ and the symmetry of ν (see [7]). We emphasize that in view of the Kolmogorov criterion for continuous modifications, the above bounds are best possible as concerns powers of t. In case $p>\beta$ and $p \leq 2$, these estimates are due to Millar [6]. However, the Laplace-transform approach in [6] does not work for $p>2$. Our proof is based on the Burkholder-Davis-Gundy inequality.
For the case $p<\beta$ we need some assumptions on X. Recall that a measurable function $\varphi:(0, c] \rightarrow(0, \infty)(c>0)$ is said to be regularly varying at zero with index $b \in \mathbb{R}$ if, for every $t>0$,

$$
\lim _{x \rightarrow 0} \frac{\varphi(t x)}{\varphi(x)}=t^{b}
$$

This means that $\varphi(1 / x)$ is regularly varying at infinity with index $-b$. Slow variation corresponds to $b=0$. One defines on $(0, \infty)$ the tail function $\underline{\nu}$ of the Lévy measure ν by $\underline{\nu}(x):=\nu\left([-x, x]^{c}\right)$.

Theorem 2. Let $\left(X_{t}\right)_{t \geq 0}$ be a Lévy process with characteristics $(a, 0, \nu)$ and index β such that $\beta>0$ and $\mathbb{E}\left|X_{1}\right|^{p}<+\infty$ for some $p \in(0, \beta)$. Assume that the tail function of the Lévy measure satisfies

$$
\begin{equation*}
\exists c \in(0,1], \quad \underline{\nu} \leq \varphi \text { on }(0, c] \tag{1.5}
\end{equation*}
$$

where $\varphi:(0, c] \rightarrow(0, \infty)$ is a regularly varying function at zero of index $-\beta$. Let $l(x)=x^{\beta} \varphi(x)$ and assume that $l(1 / x), x \geq 1 / c$ is locally bounded. Let $\underline{l}(x)=\underline{l}_{\beta}(x)=l\left(x^{1 / \beta}\right)$.
(a) Assume $\beta>1$. Then as $t \rightarrow 0$, for every $r \in(\beta, 2], q \in[p \vee 1, \beta)$,

$$
\begin{gathered}
\mathbb{E} \sup _{s \leq t}\left|X_{s}\right|^{p}=O\left(t^{p / \beta}\left[\underline{l}(t)^{p / r}+\underline{l}(t)^{p / q}\right]\right) \quad \text { if } \quad \beta<2, \\
\mathbb{E} \sup _{s \leq t}\left|X_{s}\right|^{p}=O\left(t^{p / \beta}\left[1+\underline{l}(t)^{p / q}\right]\right) \quad \text { if } \quad \beta=2 .
\end{gathered}
$$

If ν is symmetric then this holds for every $q \in[p, \beta)$.
(b) Assume $\beta<1$. Then as $t \rightarrow 0$, for every $r \in(\beta, 1], q \in[p, \beta)$

$$
\mathbb{E} \sup _{s \leq t}\left|Y_{s}\right|^{p}=O\left(t^{p / \beta}\left[\underline{l}(t)^{p / r}+\underline{l}(t)^{p / q}\right]\right)
$$

where $Y_{t}=X_{t}-t\left(a-\int_{\{|x| \leq 1\}} x d \nu(x)\right)$. If ν is symmetric this holds for every $r \in(\beta, 2]$.
(c) Assume $\beta=1$ and ν is symmetric. Then as $t \rightarrow 0$, for every $r \in(\beta, 2], q \in[p, \beta)$

$$
\mathbb{E} \sup _{s \leq t}\left|X_{s}-a s\right|^{p}=O\left(t^{p / \beta}\left[\underline{l}(t)^{p / r}+\underline{l}(t)^{p / q}\right]\right)
$$

It can be seen from strictly α-stable Lévy processes where $\beta=\alpha$ that the above estimates are best possible as concerns powers of t.
Observe that condition (1.5) is satisfied for a broad class of Lévy processes. For absolutely continuous Lévy measures one may consider the condition

$$
\begin{equation*}
\exists c \in(0,1], 1_{\{0<|x| \leq c\}} \nu(d x) \leq \psi(|x|) 1_{\{0<|x| \leq c\}} d x \tag{1.6}
\end{equation*}
$$

where $\psi:(0, c] \rightarrow(0, \infty)$ is a regularly varying function at zero of index $-(\beta+1)$ and $\psi(1 / x)$ is locally bounded, $x \geq 1 / c$. It implies that the tail function of the Lévy measure is dominated, for $x \leq c$, by $2 \int_{x}^{c} \psi(s) d s+\underline{\nu}(c)$, a regularly varying function at zero with index $-\beta$, so that (1.5) holds with $\varphi(x)=C x \psi(x)$ (see [1], Theorem 1.5.11).

Important special cases are as follows.
Corollary 1.1. Assume the situation of Theorem 2 (with ν symmetric if $\beta=1$) and let U denote any of the processes $X, Y,\left(X_{t}-a t\right)_{t \geq 0}$.
(a) Assume that the slowly varying part l of φ is decreasing and unbounded on $(0, c]$ (e.g. $\left.(-\log x)^{a}, a>0\right)$. Then as $t \rightarrow 0$, for every $\varepsilon \in(0, \beta)$,

$$
\mathbb{E} \sup _{s \leq t}\left|U_{s}\right|^{p}=O\left(t^{p / \beta} \underline{l}(t)^{p /(\beta-\varepsilon)}\right)
$$

(b) Assume that l is increasing on ($0, c]$ satisfying $l(0+)=0\left(e . g . \quad(-\log x)^{-a}, a>0, c<1\right)$ and $\beta \in(0,2)$. Then as $t \rightarrow 0$, for every $\varepsilon>0$,

$$
\mathbb{E} \sup _{s \leq t}\left|U_{s}\right|^{p}=O\left(t^{p / \beta} \underline{l}(t)^{p /(\beta+\varepsilon)}\right)
$$

The remaining cases $p=\beta \in(0,2)$ if $\beta \neq 1$ and $p \leq 1$ if $\beta=1$ are solved under the assumption that the slowly varying part of the function φ in (1.5) is constant.

Theorem 3. Let $\left(X_{t}\right)_{t \geq 0}$ be a Lévy process with characteristics $(a, 0, \nu)$ and index β such that $\beta \in(0,2)$ and $\mathbb{E}\left|X_{1}\right|^{\beta}<+\infty$ if $\beta \neq 1$ and $\mathbb{E}\left|X_{1}\right|^{p}<+\infty$ for some $p \leq 1$ if $\beta=1$. Assume that the tail function of the Lévy measure satisfies

$$
\begin{equation*}
\exists c \in(0,1], \exists C \in(0, \infty), \quad \underline{\nu}(x) \leq C x^{-\beta} \quad \text { on }(0, c] . \tag{1.7}
\end{equation*}
$$

Then as $t \rightarrow 0$

$$
\begin{aligned}
& \mathbb{E} \sup _{s \leq t}\left|X_{s}\right|^{\beta}=O(t(-\log t)) \text { if } \beta>1 \\
& \mathbb{E} \sup _{s \leq t}\left|Y_{s}\right|^{\beta}=O(t(-\log t)) \text { if } \beta<1
\end{aligned}
$$

and

$$
\mathbb{E} \sup _{s \leq t}\left|X_{s}\right|^{p}=O\left((t(-\log t))^{p}\right) \quad \text { if } \quad \beta=1, p \leq 1
$$

where the process Y is defined as in Theorem 2.
The above estimates are optimal (see Section 3). Condition (1.7) is satisfied if

$$
\begin{equation*}
\exists c \in(0,1], \exists C \in(0, \infty), \mathbf{1}_{\{0<|x| \leq c\}} \nu(d x) \leq \frac{C}{|x|^{\beta+1}} \mathbf{1}_{\{0<|x| \leq c\}} d x \tag{1.8}
\end{equation*}
$$

The paper is organized as follows. Section 2 is devoted to the proofs of Theorems 1,2 and 3. Section 3 contains a collection of examples.

2 Proofs

We will extensively use the following compensation formula (see e.g. [4])

$$
\mathbb{E} \int_{0}^{t} \int f(s, x) \mu(d s, d x)=\mathbb{E} \sum_{s \leq t} f\left(s, \Delta X_{s}\right) \mathbf{1}_{\left\{\Delta X_{s} \neq 0\right\}}=\int_{0}^{t} \int f(s, x) d \nu(x) d s
$$

where $f: \mathbb{R}_{+} \times \mathbb{R} \rightarrow \mathbb{R}_{+}$is a Borel function.
Proof of Theorem 1. Since $\mathbb{E}\left|X_{1}\right|^{p}<+\infty$ and $p>\beta$ (or $p=\beta$ provided $\int_{\{|x| \leq 1\}}|x|^{\beta} d \nu(x)<$ $+\infty$ and $\beta>0$), it follows from (1.2) that

$$
\int|x|^{p} d \nu(x)<+\infty
$$

CASE $1(0<p<1)$. In this case we have $\beta<1$ and hence $\int_{\{x \mid \leq 1\}}|x| d \nu(x)<+\infty$. Consequently, X a.s. has finite variation on finite intervals. By (1.4),

$$
Y_{t}=X_{t}-t\left(a-\int_{\{|x| \leq 1\}} x d \nu(x)\right)=\int_{0}^{t} \int x \mu(d s, d x)=\sum_{s \leq t} \triangle X_{s}
$$

so that, using the elementary inequality $(u+v)^{p} \leq u^{p}+v^{p}$,

$$
\sup _{s \leq t}\left|Y_{s}\right|^{p} \leq\left(\sum_{s \leq t}\left|\triangle X_{s}\right|\right)^{p} \leq \sum_{s \leq t}\left|\triangle X_{s}\right|^{p}=\int_{0}^{t} \int|x|^{p} \mu(d s, d x)
$$

Consequently,

$$
\mathbb{E} \sup _{s \leq t}\left|Y_{s}\right|^{p} \leq t \int|x|^{p} d \nu(x) \text { for every } t \geq 0
$$

CASE $2(1 \leq p \leq 2)$. Introduce the martingale

$$
M_{t}:=X_{t}-t \mathbb{E} X_{1}=X_{t}-t\left(a+\int_{\{|x|>1\}} x d \nu(x)\right)=\int_{0}^{t} \int x(\mu-\lambda \otimes \nu)(d s, d x) .
$$

It follows from the Burkholder-Davis-Gundy inequality (see [5], p. 524) that

$$
\mathbb{E} \sup _{s \leq t}\left|M_{s}\right|^{p} \leq C \mathbb{E}[M]_{t}^{p / 2}
$$

for some finite constant C. Since $p / 2 \leq 1$, the quadratic variation $[M]$ of M satisfies

$$
[M]_{t}^{p / 2}=\left(\sum_{s \leq t}\left|\triangle X_{s}\right|^{2}\right)^{p / 2} \leq \sum_{s \leq t}\left|\triangle X_{s}\right|^{p}
$$

so that

$$
\mathbb{E} \sup _{s \leq t}\left|M_{s}\right|^{p} \leq C t \int|x|^{p} d \nu(x) \text { for every } t \geq 0
$$

CASE 3: $p>2$. One considers again the martingale Lévy process $M_{t}=X_{t}-t \mathbb{E} X_{1}$. For $k \geq 1$ such that $2^{k} \leq p$, introduce the martingales

$$
N_{t}^{(k)}:=\int_{0}^{t} \int|x|^{2^{k}}(\mu-\lambda \otimes \nu)(d s, d x)=\sum_{s \leq t}\left|\triangle X_{s}\right|^{2^{k}}-t \int|x|^{2^{k}} d \nu(x)
$$

Set $m:=\max \left\{k \geq 1: 2^{k}<p\right\}$. Again by the Burkholder-Davis-Gundy inequality

$$
\begin{aligned}
\mathbb{E} \sup _{s \leq t}\left|M_{s}\right|^{p} & \leq C \mathbb{E}[M]_{t}^{p / 2} \\
& =C \mathbb{E}\left(t \int x^{2} d \nu(x)+N_{t}^{(1)}\right)^{p / 2} \\
& \leq C\left(t^{p / 2}\left(\int x^{2} d \nu(x)\right)^{p / 2}+\mathbb{E}\left|N_{t}^{(1)}\right|^{p / 2}\right) \\
& \leq C\left(t+\mathbb{E}\left|N_{t}^{(1)}\right|^{p / 2}\right)
\end{aligned}
$$

for every $t \in[0,1]$ where C is a finite constant that may vary from line to line. Applying successively the Burkholder-Davis-Gundy inequality to the martingales $N^{(k)}$ and exponents $p / 2^{k}>1,1 \leq k \leq m$, finally yields

$$
\mathbb{E} \sup _{s \leq t}\left|M_{s}\right|^{p} \leq C\left(t+\mathbb{E}\left[N^{(m)}\right]_{t}^{p / 2^{m+1}}\right) \text { for every } t \in[0,1]
$$

Using $p \leq 2^{m+1}$, one gets

$$
\left[N^{(m)}\right]_{t}^{p / 2 m+1}=\left(\sum_{s \leq t}\left|\triangle X_{s}\right|^{2^{m+1}}\right)^{p / 2^{m+1}} \leq \sum_{s \leq t}\left|\triangle X_{s}\right|^{p}
$$

so that

$$
\mathbb{E} \sup _{s \leq t}\left|M_{s}\right|^{p} \leq C\left(t+t \int|x|^{p} d \nu(x)\right) \quad \text { for every } t \in[0,1]
$$

This implies $\mathbb{E} \sup _{s \leq t}\left|X_{s}\right|^{p}=O(t)$ as $t \rightarrow 0$.
Proof of Theorems 2 and 3. Let $p \leq \beta$ and fix $c \in(0,1]$. Let $\nu_{1}=\mathbf{1}_{\{|x| \leq c\}} \cdot \nu$ and $\nu_{2}=1_{\{|x|>c\}} \cdot \nu$. Construct Lévy processes $X^{(1)}$ and $X^{(2)}$ such that $X \stackrel{d}{=} X^{(1)}+X^{(2)}$ and $X^{(2)}$ is a compound Poisson process with Lévy measure ν_{2}. Then $\beta=\beta(X)=\beta\left(X^{(1)}\right), \beta\left(X^{(2)}\right)=0$, $\mathbb{E}\left|X^{(1)}\right|^{q}<+\infty$ for every $q>0$ and $\mathbb{E}\left|X_{1}^{(2)}\right|^{p}<+\infty$. It follows e.g. from Theorem 1 that for every $t \geq 0$,

$$
\begin{gather*}
\mathbb{E} \sup _{s \leq t}\left|X_{s}^{(2)}\right|^{p} \leq C_{p} t \quad \text { if } p<1, \tag{2.1}\\
\mathbb{E} \sup _{s \leq t}\left|X^{(2)}-s \mathbb{E} X_{1}^{(2)}\right|^{p} \leq C_{p} t \quad \text { if } 1 \leq p \leq 2
\end{gather*}
$$

where $\mathbb{E} X_{1}^{(2)}=\int x d \nu_{2}(x)=\int_{\{|x|>c\}} x d \nu(x)$.
As concerns $X^{(1)}$, consider the martingale
$Z_{t}^{(1)}:=X_{t}^{(1)}-t E X_{1}^{(1)}=X_{t}^{(1)}-t\left(a-\int x \mathbf{1}_{\{c<|x| \leq 1\}} d \nu(x)\right)=\int_{0}^{t} \int x\left(\mu_{1}-\lambda \otimes \nu_{1}\right)(d s, d x)$
where μ_{1} denotes the Poisson random measure associated with the jumps of $X^{(1)}$. The starting idea is to separate the "small" and the "big" jumps of $X^{(1)}$ in a non homogeneous way with respect to the function $s \mapsto s^{1 / \beta}$. Indeed one may decompose $Z^{(1)}$ as follows

$$
Z^{(1)}=M+N
$$

where

$$
M_{t}:=\int_{0}^{t} \int x \mathbf{1}_{\left\{|x| \leq s^{1 / \beta}\right\}}\left(\mu_{1}-\lambda \otimes \nu_{1}\right)(d s, d x)
$$

and

$$
N_{t}:=\int_{0}^{t} \int x \mathbf{1}_{\left\{|x|>s^{1 / \beta}\right\}}\left(\mu_{1}-\lambda \otimes \nu_{1}\right)(d s, d x)
$$

are martingales. Observe that for every $q>0$ and $t \geq 0$,

$$
\begin{aligned}
\int_{0}^{t} \int|x|^{q} \mathbf{1}_{\left\{|x|>s^{1 / \beta}\right\}} d \nu_{1}(x) d s & =\int|x|^{q}\left(|x|^{\beta} \wedge t\right) d \nu_{1}(x) \\
& \leq \int_{\{|x| \leq c\}}|x|^{\beta+q} d \nu(x)<+\infty
\end{aligned}
$$

Consequently,

$$
N_{t}=\int_{0}^{t} \int x \mathbf{1}_{\left\{|x|>s^{1 / \beta}\right\}} d \mu_{1}(s, x)-g(t)
$$

where $g(t):=\int_{0}^{t} \int x \mathbf{1}_{\left\{|x|>s^{1 / \beta}\right\}} d \nu_{1}(x) d s$. Furthermore, for every $r>\beta$ or $r=2$ and $t \geq 0$

$$
\begin{equation*}
\int_{0}^{t} \int|x|^{r} \mathbf{1}_{\left\{|x| \leq s^{1 / \beta}\right\}} d \nu_{1}(x) d s \leq t \int_{\{|x| \leq c\}}|x|^{r} d \nu(x)<+\infty . \tag{2.2}
\end{equation*}
$$

In the sequel let C denote a finite constant that may vary from line to line.
We first claim that for every $t \geq 0, r \in(\beta, 2] \cap[1,2]$ and for $r=2$,

$$
\begin{equation*}
\mathbb{E} \sup _{s \leq t}\left|M_{s}\right|^{p} \leq C\left(\int_{0}^{t} \int|x|^{r} \mathbf{1}_{\left\{|x| \leq s^{1 / \beta}\right\}} d \nu_{1}(x) d s\right)^{p / r} \tag{2.3}
\end{equation*}
$$

In fact, it follows from the Burkholder-Davis-Gundy inequality and from $p / r \leq 1, r / 2 \leq 1$ that

$$
\begin{aligned}
\mathbb{E} \sup _{s \leq t}\left|M_{s}\right|^{p} & \leq\left(\mathbb{E} \sup _{s \leq t}\left|M_{s}\right|^{r}\right)^{p / r} \\
& \leq C\left(\mathbb{E}[M]_{t}^{r / 2}\right)^{p / r} \\
& =C\left(\mathbb{E}\left(\sum_{s \leq t}\left|\triangle X_{s}^{(1)}\right|^{2} \mathbf{1}_{\left\{\left|\Delta X_{s}^{(1)}\right| \leq s^{1 / \beta}\right\}}\right)^{r / 2}\right)^{p / r} \\
& \leq C\left(\mathbb{E} \sum_{s \leq t}\left|\triangle X_{s}^{(1)}\right|^{r} \mathbf{1}_{\left\{\left|\Delta X_{s}^{(1)}\right| \leq s^{1 / \beta}\right\}}\right)^{p / r} \\
& =C\left(\int_{0}^{t} \int|x|^{r} \mathbf{1}_{\left\{|x| \leq s^{1 / \beta}\right\}} d \nu_{1}(x) d s\right)^{p / r}
\end{aligned}
$$

Exactly as for M, one gets for every $t \geq 0$ and every $q \in[p, 2] \cap[1,2]$ that

$$
\begin{equation*}
\mathbb{E} \sup _{s \leq t}\left|N_{s}\right|^{p} \leq C\left(\int_{0}^{t} \int|x|^{q} \mathbf{1}_{\left\{|x|>s^{1 / \beta}\right\}} d \nu_{1}(x) d s\right)^{p / q} \tag{2.4}
\end{equation*}
$$

If ν is symmetric then (2.4) holds for every $q \in[p, 2]$ (which of course provides additional information in case $p<1$ only). Indeed, $g=0$ by the symmetry of ν so that

$$
N_{t}=\int_{0}^{t} \int x \mathbf{1}_{\left\{|x|>s^{1 / \beta}\right\}} d \mu_{1}(s, x)
$$

and for $q \in[p, 1]$

$$
\begin{aligned}
\mathbb{E} \sup _{s \leq t}\left|\int_{0}^{s} \int x \mathbf{1}_{\left\{|x|>u^{1 / \beta}\right\}} \mu_{1}(d u, d x)\right|^{p} & \leq\left(\mathbb{E} \sup _{s \leq t}\left|\int_{0}^{t} \int x \mathbf{1}_{\left\{|x|>u^{1 / \beta}\right\}} \mu_{1}(d u, d x)\right|^{q}\right)^{p / q}(2.5) \\
& \leq\left(\mathbb{E} \sum_{s \leq t}\left|\triangle X_{s}^{(1)}\right|^{q} \mathbf{1}_{\left\{\left|\Delta X_{s}^{(1)}\right|>s^{1 / \beta}\right\}}\right)^{p / q} \\
& =\left(\int_{0}^{t} \int|x|^{q} \mathbf{1}_{\left\{|x|>s^{1 / \beta}\right\}} d \nu_{1}(x) d s\right)^{p / q} .
\end{aligned}
$$

In the case $\beta<1$ we consider the process

$$
\begin{aligned}
Y_{t}^{(1)} & :=Z_{t}^{(1)}+t \int x d \nu_{1}(x)=X_{t}^{(1)}-t\left(a-\int_{\{|x| \leq 1\}} x d \nu(x)\right) \\
& =M_{t}+N_{t}+t \int x d \nu_{1}(x) \\
& =\int_{0}^{t} \int x \mathbf{1}_{\left\{|x| \leq s^{1 / \beta}\right\}} \mu_{1}(d s, d x)+\int_{0}^{t} \int x \mathbf{1}_{\left\{|x|>s^{1 / \beta}\right\}} \mu_{1}(d s, d x) .
\end{aligned}
$$

Exactly as in (2.5) one shows that for $t \geq 0$ and $r \in(\beta, 1]$

$$
\begin{equation*}
\mathbb{E} \sup _{s \leq t}\left|\int_{0}^{s} \int x \mathbf{1}_{\left\{|x| \leq u^{1 / \beta}\right\}} \mu_{1}(d u, d x)\right|^{p} \leq\left(\int_{0}^{t} \int|x|^{r} \mathbf{1}_{\left\{|x| \leq s^{1 / \beta}\right\}} d \nu_{1}(x) d s\right)^{p / r} \tag{2.6}
\end{equation*}
$$

Combining (2.1) and (2.3) - (2.6) we obtain the following estimates. Let

$$
Z_{t}=X_{t}-t\left(a-\int x \mathbf{1}_{\{c<|x| \leq 1\}} d \nu(x)\right) .
$$

CASE 1: $\beta \geq 1$ and $p<1$. Then for every $t \geq 0, r \in(\beta, 2] \cup\{2\}, q \in[1,2]$,

$$
\begin{align*}
\mathbb{E} \sup _{s \leq t}\left|Z_{s}\right|^{p} \leq & C\left(t+\left(\int_{0}^{t} \int|x|^{r} \mathbf{1}_{\left\{|x| \leq s^{1 / \beta}\right\}} d \nu_{1}(x) d s\right)^{p / r}\right. \\
& \left.+\left(\int_{0}^{t} \int|x|^{q} \mathbf{1}_{\left\{|x|>s^{1 / \beta}\right\}} d \nu_{1}(x) d s\right)^{p / q}\right) \tag{2.7}
\end{align*}
$$

If ν is symmetric (2.7) is even valid for every $q \in[p, 2]$.
CASE 2: $\beta \geq 1$ and $p \geq 1$. Then for every $t \geq 0, r \in(\beta, 2] \cup\{2\}, q \in[p, 2]$,

$$
\begin{align*}
\mathbb{E} \sup _{s \leq t}\left|X_{s}-s \mathbb{E} X_{1}\right|^{p} \leq & C\left(t+\left(\int_{0}^{t} \int|x|^{r} \mathbf{1}_{\left\{|x| \leq s^{1 / \beta}\right\}} d \nu_{1}(x) d s\right)^{p / r}\right. \\
& \left.+\left(\int_{0}^{t}|x|^{q} \mathbf{1}_{\left\{|x|>s^{1 / \beta}\right\}} d \nu_{1}(x) d s\right)^{p / q}\right) \tag{2.8}
\end{align*}
$$

CASE 3: $\beta<1$. Then for every $t \geq 0, r \in(\beta, 1], q \in[p, 1]$

$$
\begin{align*}
\mathbb{E} \sup _{s \leq t}\left|Y_{s}\right|^{p} \leq & C\left(t+\left(\int_{0}^{t} \int|x|^{r} \mathbf{1}_{\left\{|x| \leq s^{1 / \beta}\right\}} d \nu_{1}(x) d s\right)^{p / r}\right. \\
& \left.+\left(\int_{0}^{t}|x|^{q} \mathbf{1}_{\left\{|x|>s^{1 / \beta}\right\}} d \nu_{1}(x) d s\right)^{p / q}\right) \tag{2.9}
\end{align*}
$$

If ν is symmetric then $Y=Z=\left(X_{t}-a t\right)_{t \geq 0}$ and (2.9) is valid for every $r \in(\beta, 2], q \in[p, 2]$.
Now we deduce Theorem 2. Assume $p \in(0, \beta)$ and (1.5). The constant c in the above decomposition of X is specified by the constant from (1.5). Then one just needs to investigate the integrals appearing in the right hand side of the inequalities (2.7) - (2.10). One checks that for $a>0, s \leq c^{\beta}$

$$
\int|x|^{a} \mathbf{1}_{\left\{|x| \leq s^{1 / \beta}\right\}} d \nu_{1}(x) \leq a \int_{0}^{s^{1 / \beta}} x^{a-1} \underline{\nu}(x) d x \leq a \int_{0}^{s^{1 / \beta}} x^{a-1} \varphi(x) d x
$$

and

$$
\begin{aligned}
\int|x|^{a} \mathbf{1}_{\left\{|x|>s^{1 / \beta}\right\}} d \nu_{1}(x) & \leq a \int_{s^{1 / \beta}}^{c} x^{a-1} \underline{\nu}(x) d x+s^{a / \beta} \underline{\nu}\left(s^{1 / \beta}\right) \\
& \leq a \int_{s^{1 / \beta}}^{c} x^{a-1} \varphi(x) d x+s^{\frac{q}{\beta}-1} l\left(s^{1 / \beta}\right)
\end{aligned}
$$

Now, Theorem 1.5.11 in [1] yields for $r>\beta$,

$$
\int_{0}^{s^{1 / \beta}} x^{r-1} \varphi(x) d x \sim \frac{1}{r-\beta} s^{\frac{r}{\beta}-1} l\left(s^{1 / \beta}\right) \quad \text { as } \quad s \rightarrow 0
$$

which in turn implies that for small t,

$$
\begin{align*}
\int_{0}^{t} \int|x|^{r} \mathbf{1}_{\left\{|x| \leq s^{1 / \beta}\right\}} d \nu_{1}(x) d s & \leq r \int_{0}^{t} \int_{0}^{s^{1 / \beta}} x^{r-1} \varphi(x) d x d s \tag{2.10}\\
& \sim \frac{\beta}{(r-\beta)} t^{r / \beta} l\left(t^{1 / \beta}\right) \text { as } t \rightarrow 0
\end{align*}
$$

Similarly, for $0<q<\beta$,

$$
\int_{s^{1 / \beta}}^{c} x^{q-1} \varphi(x) d x \sim \frac{1}{\beta-q} s^{\frac{q}{\beta}-1} l\left(s^{1 / \beta}\right) \text { as } s \rightarrow 0
$$

and thus

$$
\begin{align*}
\int_{0}^{t} \int|x|^{q} \mathbf{1}_{\left\{|x|>s^{1 / \beta}\right\}} d \nu_{1}(x) d s & \leq q \int_{0}^{t} \int_{s^{1 / \beta}}^{c} x^{q-1} \varphi(x) d x d s+\int_{0}^{t} s^{\frac{q}{\beta}-1} l\left(s^{1 / \beta}\right) d s(2 \tag{2.11}\\
& \sim \frac{\beta^{2}}{(\beta-q) q} t^{q / \beta} l\left(t^{1 / \beta}\right) \quad \text { as } \quad t \rightarrow 0 .
\end{align*}
$$

Using (2.2) for the case $\beta=2$ and $t+t^{p}=o\left(t^{p / \beta} \underline{l}(t)^{\alpha}\right)$ as $t \rightarrow 0, \alpha>0$, for the case $\beta>1$ one derives Theorem 2.

As for Theorem 3, one just needs a suitable choice of q in (2.7) - (2.9). Note that by (1.7) for every $\beta \in(0,2)$ and $t \leq c^{\beta}$,

$$
\int_{0}^{t} \int|x|^{\beta} \mathbf{1}_{\left\{|x|>s^{1 / \beta}\right\}} d \nu_{1}(x) d s \leq \int_{0}^{t}\left(C \beta \int_{s^{1 / \beta}}^{c} x^{-1} d x+1\right) d s \leq C_{1} t(-\log t)
$$

so that $q=\beta$ is the right choice. (This choice of q is optimal.) Since by (2.10), for $r \in(\beta, 2]$ (\neq \emptyset),

$$
\int_{0}^{t} \int|x|^{r} \mathbf{1}_{\left\{|x| \leq s^{1 / \beta}\right\}} d \nu_{1}(x) d s=O\left(t^{r / \beta}\right)
$$

the assertions follow from (2.7) - (2.9).

3 Examples

Let K_{ν} denote the modified Bessel function of the third kind and index $\nu>0$ given by

$$
K_{\nu}(z)=\frac{1}{2} \int_{0}^{\infty} u^{\nu-1} \exp \left(-\frac{z}{2}\left(u+\frac{1}{u}\right)\right) d u, \quad z>0
$$

- The Γ-process is a subordinator (increasing Lévy process) whose distribution $\mathbb{P}_{X_{t}}$ at time $t>0$ is a $\Gamma(1, t)$-distribution

$$
\mathbb{P}_{X_{t}}(d x)=\frac{1}{\Gamma(t)} x^{t-1} e^{-x} \mathbf{1}_{(0, \infty)}(x) d x
$$

The characteristics are given by

$$
\nu(d x)=\frac{1}{x} e^{-x} \mathbf{1}_{(0, \infty)}(x) d s
$$

and $a=\int_{0}^{1} x d \nu(x)=1-e^{-1}$ so that $\beta=0$ and $Y=X$. It follows from Theorem 1 that

$$
\mathbb{E} \sup _{s \leq t} X_{s}^{p}=\mathbb{E} X_{t}^{p}=O(t)
$$

for every $p>0$. This is clearly the true rate since

$$
\mathbb{E} X_{t}^{p}=\frac{\Gamma(p+t)}{\Gamma(t+1)} t \sim \Gamma(p) t \quad \text { as } \quad t \rightarrow 0
$$

- The α-stable Lévy Processes indexed by $\alpha \in(0,2)$ have Lévy measure

$$
\nu(d x)=\left(\frac{C_{1}}{x^{\alpha+1}} \mathbf{1}_{(0, \infty)}(x)+\frac{C_{2}}{|x|^{\alpha+1}} \mathbf{1}_{(-\infty, 0)}(x)\right) d x
$$

with $C_{i} \geq 0, C_{1}+C_{2}>0$ so that $\mathbb{E}\left|X_{1}\right|^{p}<+\infty$ for $p \in(0, \alpha), \mathbb{E}\left|X_{1}\right|^{\alpha}=\infty$ and $\beta=\alpha$. It follows from Theorems 2 and 3 that for $p \in(0, \alpha)$,

$$
\begin{aligned}
\mathbb{E} \sup _{s \leq t}\left|X_{s}\right|^{p} & =O\left(t^{p / \alpha}\right) \quad \text { if } \quad \alpha>1 \\
\mathbb{E} \sup _{s \leq t}\left|Y_{s}\right|^{p} & =O\left(t^{p / \alpha}\right) \quad \text { if } \quad \alpha<1 \\
\mathbb{E} \sup _{s \leq t}\left|X_{s}\right|^{p} & =O\left((t(-\log t))^{p}\right) \quad \text { if } \quad \alpha=1
\end{aligned}
$$

Here Theorem 3 gives the true rate provided X is not strictly stable. In fact, if $\alpha=1$ the scaling property in this case says that $X_{t} \stackrel{d}{=} t X_{1}+C t \log t$ for some real constant $C \neq 0$ (see [7], p.87) so that for $p<1$

$$
\mathbb{E}\left|X_{t}\right|^{p}=t^{p} \mathbb{E}\left|X_{1}+C \log t\right|^{p} \sim|C|^{p} t^{p}|\log t|^{p} \quad \text { as } \quad t \rightarrow 0
$$

Now assume that X is strictly α-stable. If $\alpha<1$, then $a=\int_{|x| \leq 1} x d \nu(x)$ and thus $Y=X$ and if $\alpha=1$, then ν is symmetric (see [7]). Consequently, by Theorem 2, for every $\alpha \in(0,2)$, $p \in(0, \alpha)$,

$$
\mathbb{E} \sup _{s \leq t}\left|X_{s}\right|^{p}=O\left(t^{p / \alpha}\right)
$$

In this case Theorem 2 provides the true rate since the self-similarity property of strictly stable Lévy processes implies

$$
\mathbb{E} \sup _{s \leq t}\left|X_{s}\right|^{p}=t^{p / \alpha} \mathbb{E} \sup _{s \leq 1}\left|X_{s}\right|^{p}
$$

- Tempered stable processes are subordinators with Lévy measure

$$
\nu(d x)=\frac{2^{\alpha} \cdot \alpha}{\Gamma(1-\alpha)} x^{-(\alpha+1)} \exp \left(-\frac{1}{2} \gamma^{1 / \alpha} x\right) \mathbf{1}_{(0, \infty)}(x) d x
$$

and first characteristic $a=\int_{0}^{1} x d \nu(x), \alpha \in(0,1), \gamma>0$ (see [8]) so that $\beta=\alpha, Y=X$ and $\mathbb{E} X_{1}^{p}<+\infty$ for every $p>0$. The distribution of X_{t} is not generally known. It follows from Theorems 1,2 and 3 that

$$
\begin{aligned}
\mathbb{E} X_{t}^{p} & =O(t) \quad \text { if } \quad p>\alpha, \\
\mathbb{E} X_{t}^{p} & =O\left(t^{p / \alpha}\right) \quad \text { if } \quad p<\alpha \\
\mathbb{E} X_{t}^{\alpha} & =O(t(-\log t)) \quad \text { if } \quad p=\alpha .
\end{aligned}
$$

For $\alpha=1 / 2$, the process reduces to the inverse Gaussian process whose distribution $\mathbb{P}_{X_{t}}$ at time $t>0$ is given by

$$
\mathbb{P}_{X_{t}}(d x)=\frac{t}{\sqrt{2 \pi}} x^{-3 / 2} \exp \left(-\frac{1}{2}\left(\frac{t}{\sqrt{x}}-\gamma \sqrt{x}\right)^{2}\right) \mathbf{1}_{(0, \infty)}(x) d x
$$

In this case all rates are the true rates. In fact, for $p>0$,

$$
\begin{aligned}
\mathbb{E} X_{t}^{p} & =\frac{t}{\sqrt{2 \pi}} e^{t \gamma} \int_{0}^{\infty} x^{p-3 / 2} \exp \left(-\frac{1}{2}\left(\frac{t^{2}}{x}+\gamma^{2} x\right)\right) d x \\
& =\frac{t}{\sqrt{2 \pi}} e^{t \gamma}\left(\frac{t}{\gamma}\right)^{p-1 / 2} \int_{0}^{\infty} y^{p-3 / 2} \exp \left(-\frac{t \gamma}{2}\left(\frac{1}{y}+y\right)\right) d y \\
& =\frac{2}{\sqrt{2 \pi}}\left(\frac{1}{\gamma}\right)^{p-1 / 2} t^{p+1 / 2} e^{t \gamma} K_{p-1 / 2}(t \gamma)
\end{aligned}
$$

and, as $z \rightarrow 0$,

$$
\begin{aligned}
K_{p-1 / 2}(z) & \sim \frac{C_{p}}{z^{p-1 / 2}} \quad \text { if } \quad p>\frac{1}{2}, \\
K_{p-1 / 2}(z) & \sim \frac{C_{p}}{z^{1 / 2-p}} \quad \text { if } \quad p<\frac{1}{2}, \\
K_{0}(z) & \sim|\log z|
\end{aligned}
$$

where $C_{p}=2^{p-3 / 2} \Gamma(p-1 / 2)$ if $p>1 / 2$ and $C_{p}=2^{-p-1 / 2} \Gamma\left(\frac{1}{2}-p\right)$ if $p<1 / 2$.

- The Normal Inverse Gaussian (NIG) process was introduced by Barndorff-Nielsen and has been used in financial modeling (see [8]), in particular for energy derivatives (electricity). The NIG process is a Lévy process with characteristics ($a, 0, \nu$) where

$$
\begin{aligned}
\nu(d x) & =\frac{\delta \alpha}{\pi} \frac{\exp (\gamma x) K_{1}(\alpha|x|)}{|x|} d x \\
a & =\frac{2 \delta \alpha}{\pi} \int_{0}^{1} \sinh (\gamma x) K_{1}(\alpha x) d x
\end{aligned}
$$

$\alpha>0, \gamma \in(-\alpha, \alpha), \delta>0$. Since $K_{1}(|z|) \sim|z|^{-1}$ as $z \rightarrow 0$, the Lévy density behaves like $\delta \pi^{-1}|x|^{-2}$ as $x \rightarrow 0$ so that (1.8) is satisfied with $\beta=1$. One also checks that $\mathbb{E}\left|X_{1}\right|^{p}<+\infty$ for every $p>0$. It follows from Theorems 1 and 3 that, as $t \rightarrow 0$

$$
\begin{aligned}
& \mathbb{E} \sup _{s \leq t}\left|X_{s}\right|^{p}=O(t) \quad \text { if } \quad p>1 \\
& \mathbb{E} \sup _{s \leq t}\left|X_{s}\right|^{p}=O\left((t(-\log t))^{p}\right) \quad \text { if } \quad p \leq 1
\end{aligned}
$$

If $\gamma=0$, then ν is symmetric and by Theorem 2,

$$
\mathbb{E} \sup _{s \leq t}\left|X_{s}\right|^{p}=O\left(t^{p}\right) \quad \text { if } \quad p<1
$$

The distribution $\mathbb{P}_{X_{t}}$ at time $t>0$ is given by

$$
\mathbb{P}_{X_{t}}(d x)=\frac{t \delta \alpha}{\pi} \exp \left(t \delta \sqrt{\alpha^{2}-\gamma^{2}}+\gamma x\right) \frac{K_{1}\left(\alpha \sqrt{t^{2} \delta^{2}+x^{2}}\right)}{\sqrt{t^{2} \delta^{2}+x^{2}}} d x
$$

so that Theorem 3 gives the true rate for $p=\beta=1$ in the symmetric case. In fact, assuming $\gamma=0$, we get as $t \rightarrow 0$

$$
\begin{aligned}
\mathbb{E}\left|X_{t}\right| & =\frac{2 t \delta \alpha}{\pi} e^{t \delta \alpha} \int_{0}^{\infty} \frac{x K_{1}\left(\alpha \sqrt{t^{2} \delta^{2}+x^{2}}\right)}{\sqrt{t^{2} \delta^{2}+x^{2}}} d x \\
& =\frac{2 t \delta \alpha}{\pi} e^{t \delta \alpha} \int_{t \delta}^{\infty} K_{1}(\alpha y) d y \\
& \sim \frac{2 \delta}{\pi} t \int_{t \delta}^{1} \frac{1}{y} d y \\
& \sim \frac{2 \delta}{\pi} t(-\log (t))
\end{aligned}
$$

- Hyperbolic Lévy motions have been applied to option pricing in finance (see [3]). These processes are Lévy processes whose distribution $\mathbb{P}_{X_{1}}$ at time $t=1$ is a symmetric (centered) hyperbolic distribution

$$
\mathbb{P}_{X_{1}}(d x)=C \exp \left(-\delta \sqrt{1+(x / \gamma)^{2}}\right) d x, \quad \gamma, \delta>0
$$

Hyperbolic Lévy processes have characteristics $(0,0, \nu)$ and satisfy $\mathbb{E}\left|X_{1}\right|^{p}<+\infty$ for every $p>0$. In particular, they are martingales. Their (rather involved) symmetric Lévy measure
has a Lebesgue density that behaves like $C x^{-2}$ as $x \rightarrow 0$ so that (1.8) is satisfied with $\beta=1$. Consequently, by Theorems 1,2 and 3 , as $t \rightarrow 0$

$$
\begin{aligned}
\mathbb{E} \sup _{s \leq t}\left|X_{s}\right|^{p} & =O(t) \quad \text { if } \quad p>1 \\
\mathbb{E} \sup _{s \leq t}\left|X_{s}\right|^{p} & =O\left(t^{p}\right) \quad \text { if } \quad p<1, \\
\mathbb{E} \sup _{s \leq t}\left|X_{s}\right| & =O(t(-\log t)) \quad \text { if } \quad p=1 .
\end{aligned}
$$

- Meixner processes are Lévy processes without Brownian component and with Lévy measure given by

$$
\nu(d x)=\frac{\delta e^{\gamma x}}{x \sinh (\pi x)} d x, \delta>0, \gamma \in(-\pi, \pi)
$$

(see [8]). The density behaves like $\delta / \pi x^{2}$ as $x \rightarrow 0$ so that (1.8) is satisfied with $\beta=1$. Using (1.2) one observes that $\mathbb{E}\left|X_{1}\right|^{p}<+\infty$ for every $p>0$. It follows from Theorems 1 and 3 that

$$
\begin{aligned}
& \mathbb{E} \sup _{s \leq t}\left|X_{s}\right|^{p}=O(t) \quad \text { if } \quad p>1 \\
& \mathbb{E} \sup _{s \leq t}\left|X_{s}\right|^{p}=O\left((t(-\log t))^{p}\right) \quad \text { if } \quad p \leq 1 .
\end{aligned}
$$

If $\gamma=0$, then ν is symmetric and hence Theorem 2 yields

$$
\mathbb{E} \sup _{s \leq t}\left|X_{s}\right|^{p}=O\left(t^{p}\right) \quad \text { if } \quad p<1
$$

References

[1] Bingham, N.H., Goldie, C.M., Teugels, J.L., Regular Variation, Cambridge University Press, 1987. MR0898871
[2] Blumenthal, R.M., Getoor, R.K., Sample functions of stochastic processes with stationary independent increments, J. of Mathematics and Mechanics 10, 1961, 493-516. MR0123362
[3] Eberlein, E., Keller, U., Hyperbolic distributions in finance, Bernoulli 1, 1995, 281299.
[4] Jacod, J., Shiryaev, A.N., Limit Theorems for Stochastic Processes, Second Edition, Springer, Berlin, 2003. MR1943877
[5] Kallenberg, O., Foundations of Modern Probability, Second Edition, Berlin, 2002. MR1876169
[6] Millar, P.W., Path behaviour of processes with stationary independent increments, Z. Wahrscheinlichkeitstheorie verw. Geb. 17, 1971, 53-73. MR0324781
[7] Sato, K.-I., Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, 1999. MR1739520
[8] Schoutens, W., Lévy Processes in Finance, Wiley, Chichester, 2003.

