Elect. Comm. in Probab. 13 (2008), 422-434

ELECTRONIC COMMUNICATIONS in PROBABILITY

# MOMENT ESTIMATES FOR LÉVY PROCESSES

HARALD LUSCHGY

Universität Trier, FB IV-Mathematik, D-54286 Trier, Germany. email: luschgy@uni-trier.de

GILLES PAGÈS

Laboratoire de Probabilités et Modèles aléatoires, UMR 7599, Université Paris 6, case 188, 4, pl. Jussieu, F-75252 Paris Cedex 5. email: gilles.pages@upmc.fr

Submitted September 13, 2007, accepted in final form June 9, 2008

AMS 2000 Subject classification: 60G51, 60G18.

Keywords: Lévy process increment, Lévy measure,  $\alpha$ -stable process, Normal Inverse Gaussian process, tempered stable process, Meixner process.

Abstract

For real Lévy processes  $(X_t)_{t\geq 0}$  having no Brownian component with Blumenthal-Getoor index  $\beta$ , the estimate  $\mathbb{E} \sup_{s\leq t} |X_s - a_p s|^p \leq C_p t$  for every  $t \in [0, 1]$  and suitable  $a_p \in \mathbb{R}$  has been established by Millar [6] for  $\beta provided <math>X_1 \in L^p$ . We derive extensions of these estimates to the cases p > 2 and  $p \leq \beta$ .

## 1 Introduction and results

We investigate the  $L^p$ -norm (or quasi-norm) of the maximum process of real Lévy processes having no Brownian component. A (càdlàg) Lévy process  $X = (X_t)_{t\geq 0}$  is characterized by its so-called local characteristics in the Lévy-Khintchine formula. They depend on the way the "big" jumps are truncated. We will adopt in the following the convention that the truncation occurs at size 1. So that

$$\mathbb{E} e^{iuX_t} = e^{-t\Psi(u)} \text{ with } \Psi(u) = -iua + \frac{1}{2}\sigma^2 u^2 - \int (e^{iux} - 1 - iux\mathbf{1}_{\{|x| \le 1\}}) d\nu(x)$$
(1.1)

where  $u, a \in \mathbb{R}, \sigma^2 \ge 0$  and  $\nu$  is a measure on  $\mathbb{R}$  such that  $\nu(\{0\}) = 0$  and  $\int x^2 \wedge 1 d\nu(x) < +\infty$ . The measure  $\nu$  is called the Lévy measure of X and the quantities  $(a, \sigma^2, \nu)$  are referred to as the characteristics of X. One shows that for  $p > 0, \mathbb{E} |X_1|^p < +\infty$  if and only if  $\mathbb{E} |X_t|^p < +\infty$  for every  $t \ge 0$  and this in turn is equivalent to  $\mathbb{E} \sup_{s \le t} |X_s|^p < +\infty$  for every  $t \ge 0$ . Furthermore,

$$\mathbb{E} |X_1|^p < +\infty \text{ if and only if } \int_{\{x|>1\}} |x|^p d\nu(x) < +\infty$$
(1.2)

1

(see [7]). The index  $\beta$  of the process X introduced in [2] is defined by

$$\beta = \inf\{p > 0 : \int_{\{|x| \le 1\}} |x|^p d\nu(x) < +\infty\}.$$
(1.3)

Necessarily,  $\beta \in [0, 2]$ . This index is often called Blumenthal-Getoor index of X. In the sequel we will assume that  $\sigma^2 = 0$ , *i.e.* that X has no Brownian component. Then the Lévy-Itô decomposition of X reads

$$X_t = at + \int_0^t \int_{\{|x| \le 1\}} x(\mu - \lambda \otimes \nu)(ds, dx) + \int_0^t \int_{\{|x| > 1\}} x\mu(ds, dx)$$
(1.4)

where  $\lambda$  denotes the Lebesgue measure and  $\mu$  is the Poisson random measure on  $\mathbb{R}_+ \times \mathbb{R}$ associated with the jumps of X by

$$\mu = \sum_{t \ge 0} \varepsilon_{(t, \triangle X_t)} \mathbf{1}_{\{\triangle X_t \neq 0\}},$$

 $\Delta X_t = X_t - X_{t-}, \Delta X_0 = 0$  and where  $\varepsilon_z$  denotes the Dirac measure at z (see [4], [7]).

**Theorem 1.** Let  $(X_t)_{t>0}$  be a Lévy process with characteristics  $(a, 0, \nu)$  and Blumenthal-Getoor index  $\beta$ . Assume either

 $-p \in (\beta, \infty)$  such that  $\mathbb{E}|X_1|^p < +\infty$ or

 $-p = \beta \text{ provided } \beta > 0 \text{ and } \int_{\{|x| \le 1\}} |x|^{\beta} d\nu(x) < +\infty. \text{ Then, for every } t \ge 0$ 
$$\begin{split} \mathbb{E} \sup_{s \le t} |Y_s|^p &\le C_p t \qquad \text{if } p < 1, \\ \mathbb{E} \sup_{s \le t} |X_s - s \mathbb{E} X_1|^p &\le C_p t \qquad \text{if } 1 \le p \le 2 \end{split}$$

for a finite real constant  $C_p$ , where  $Y_t = X_t - t \left( a - \int_{\{|x| \le 1\}} x d\nu(x) \right)$ . Furthermore, for every p > 2, F

$$\mathbb{E} \sup_{s \le t} |X_s|^p = O(t) \qquad as \qquad t \to 0.$$

If  $X_1$  is symmetric one observes that Y = X since the symmetry of  $X_1$  implies a = 0 and the symmetry of  $\nu$  (see [7]). We emphasize that in view of the Kolmogorov criterion for continuous modifications, the above bounds are best possible as concerns powers of t. In case  $p > \beta$  and  $p \leq 2$ , these estimates are due to Millar [6]. However, the Laplace-transform approach in [6] does not work for p > 2. Our proof is based on the Burkholder-Davis-Gundy inequality. For the case  $p < \beta$  we need some assumptions on X. Recall that a measurable function  $\varphi:(0,c]\to (0,\infty)$  (c>0) is said to be regularly varying at zero with index  $b\in\mathbb{R}$  if, for every t > 0,

$$\lim_{x \to 0} \frac{\varphi(tx)}{\varphi(x)} = t^b.$$

This means that  $\varphi(1/x)$  is regularly varying at infinity with index -b. Slow variation corresponds to b = 0. One defines on  $(0, \infty)$  the tail function  $\nu$  of the Lévy measure  $\nu$  by  $\underline{\nu}(x) := \nu([-x, x]^c).$ 

**Theorem 2.** Let  $(X_t)_{t\geq 0}$  be a Lévy process with characteristics  $(a, 0, \nu)$  and index  $\beta$  such that  $\beta > 0$  and  $\mathbb{E} |X_1|^p < +\infty$  for some  $p \in (0, \beta)$ . Assume that the tail function of the Lévy measure satisfies

$$\exists c \in (0,1], \qquad \underline{\nu} \le \varphi \quad on \quad (0,c] \tag{1.5}$$

where  $\varphi: (0, c] \to (0, \infty)$  is a regularly varying function at zero of index  $-\beta$ . Let  $l(x) = x^{\beta}\varphi(x)$ and assume that  $l(1/x), x \ge 1/c$  is locally bounded. Let  $\underline{l}(x) = \underline{l}_{\beta}(x) = l(x^{1/\beta})$ .

(a) Assume  $\beta > 1$ . Then as  $t \to 0$ , for every  $r \in (\beta, 2]$ ,  $q \in [p \lor 1, \beta)$ ,

$$\mathbb{E} \sup_{s \le t} |X_s|^p = O(t^{p/\beta}[\underline{l}(t)^{p/r} + \underline{l}(t)^{p/q}]) \quad if \quad \beta < 2$$
$$\mathbb{E} \sup_{s < t} |X_s|^p = O(t^{p/\beta}[1 + \underline{l}(t)^{p/q}]) \quad if \quad \beta = 2.$$

If  $\nu$  is symmetric then this holds for every  $q \in [p, \beta)$ .

(b) Assume  $\beta < 1$ . Then as  $t \to 0$ , for every  $r \in (\beta, 1], q \in [p, \beta)$ 

$$\mathbb{E} \sup_{s \le t} |Y_s|^p = O(t^{p/\beta}[\underline{l}(t)^{p/r} + \underline{l}(t)^{p/q}])$$

where  $Y_t = X_t - t \left( a - \int_{\{|x| \le 1\}} x d\nu(x) \right)$ . If  $\nu$  is symmetric this holds for every  $r \in (\beta, 2]$ .

(c) Assume  $\beta = 1$  and  $\nu$  is symmetric. Then as  $t \to 0$ , for every  $r \in (\beta, 2], q \in [p, \beta)$ 

$$\mathbb{E} \sup_{s \le t} |X_s - as|^p = O(t^{p/\beta}[\underline{l}(t)^{p/r} + \underline{l}(t)^{p/q}]).$$

It can be seen from strictly  $\alpha$ -stable Lévy processes where  $\beta = \alpha$  that the above estimates are best possible as concerns powers of t.

Observe that condition (1.5) is satisfied for a broad class of Lévy processes. For absolutely continuous Lévy measures one may consider the condition

$$\exists c \in (0,1], 1_{\{0 < |x| < c\}} \nu(dx) \le \psi(|x|) 1_{\{0 < |x| < c\}} dx \tag{1.6}$$

where  $\psi: (0, c] \to (0, \infty)$  is a regularly varying function at zero of index  $-(\beta + 1)$  and  $\psi(1/x)$  is locally bounded,  $x \ge 1/c$ . It implies that the tail function of the Lévy measure is dominated, for  $x \le c$ , by  $2\int_x^c \psi(s)ds + \underline{\nu}(c)$ , a regularly varying function at zero with index  $-\beta$ , so that (1.5) holds with  $\varphi(x) = C x \psi(x)$  (see [1], Theorem 1.5.11).

Important special cases are as follows.

**Corollary 1.1.** Assume the situation of Theorem 2 (with  $\nu$  symmetric if  $\beta = 1$ ) and let U denote any of the processes X, Y,  $(X_t - at)_{t \ge 0}$ .

(a) Assume that the slowly varying part l of  $\varphi$  is decreasing and unbounded on (0,c] (e.g.  $(-\log x)^a, a > 0)$ . Then as  $t \to 0$ , for every  $\varepsilon \in (0, \beta)$ ,

$$\mathbb{E} \sup_{s \le t} |U_s|^p = O(t^{p/\beta} \underline{l}(t)^{p/(\beta-\varepsilon)}).$$

(b) Assume that l is increasing on (0, c] satisfying l(0+) = 0 (e.g.  $(-\log x)^{-a}, a > 0, c < 1$ ) and  $\beta \in (0, 2)$ . Then as  $t \to 0$ , for every  $\varepsilon > 0$ ,

$$\mathbb{E} \sup_{s \le t} |U_s|^p = O(t^{p/\beta} \underline{l}(t)^{p/(\beta+\varepsilon)}).$$

The remaining cases  $p = \beta \in (0, 2)$  if  $\beta \neq 1$  and  $p \leq 1$  if  $\beta = 1$  are solved under the assumption that the slowly varying part of the function  $\varphi$  in (1.5) is constant.

**Theorem 3.** Let  $(X_t)_{t\geq 0}$  be a Lévy process with characteristics  $(a, 0, \nu)$  and index  $\beta$  such that  $\beta \in (0, 2)$  and  $\mathbb{E} |X_1|^{\beta} < +\infty$  if  $\beta \neq 1$  and  $\mathbb{E} |X_1|^p < +\infty$  for some  $p \leq 1$  if  $\beta = 1$ . Assume that the tail function of the Lévy measure satisfies

$$\exists c \in (0,1], \ \exists C \in (0,\infty), \qquad \underline{\nu}(x) \le Cx^{-\beta} \quad on \quad (0,c].$$

$$(1.7)$$

Then as  $t \to 0$ 

$$\begin{split} \mathbb{E} \sup_{s \leq t} |X_s|^{\beta} &= O(t(-\log t)) \quad if \ \beta > 1, \\ \mathbb{E} \sup_{s \leq t} |Y_s|^{\beta} &= O(t(-\log t)) \quad if \ \beta < 1 \end{split}$$

and

$$\mathbb{E} \sup_{s \le t} |X_s|^p = O((t(-\log t))^p) \quad if \quad \beta = 1, \ p \le 1$$

where the process Y is defined as in Theorem 2.

The above estimates are optimal (see Section 3). Condition (1.7) is satisfied if

$$\exists c \in (0,1], \ \exists C \in (0,\infty), \ \mathbf{1}_{\{0 < |x| \le c\}} \nu(dx) \le \frac{C}{|x|^{\beta+1}} \mathbf{1}_{\{0 < |x| \le c\}} dx.$$
(1.8)

The paper is organized as follows. Section 2 is devoted to the proofs of Theorems 1, 2 and 3. Section 3 contains a collection of examples.

## 2 Proofs

We will extensively use the following compensation formula (see e.g. [4])

$$\mathbb{E} \int_0^t \int f(s,x)\mu(ds,dx) = \mathbb{E} \sum_{s \le t} f(s,\Delta X_s) \mathbf{1}_{\{\Delta X_s \neq 0\}} = \int_0^t \int f(s,x)d\nu(x)ds$$

where  $f : \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}_+$  is a Borel function.

**Proof of Theorem 1.** Since  $\mathbb{E} |X_1|^p < +\infty$  and  $p > \beta$  (or  $p = \beta$  provided  $\int_{\{|x| \le 1\}} |x|^\beta d\nu(x) < +\infty$  and  $\beta > 0$ ), it follows from (1.2) that

$$\int |x|^p d\nu(x) < +\infty.$$

CASE 1 (0 \beta < 1 and hence  $\int_{\{x|\leq 1\}} |x| d\nu(x) < +\infty$ . Consequently, X a.s. has finite variation on finite intervals. By (1.4),

$$Y_t = X_t - t\left(a - \int_{\{|x| \le 1\}} x d\nu(x)\right) = \int_0^t \int x\mu(ds, dx) = \sum_{s \le t} \triangle X_s$$

so that, using the elementary inequality  $(u+v)^p \leq u^p + v^p$ ,

$$\sup_{s \le t} |Y_s|^p \le \left(\sum_{s \le t} |\triangle X_s|\right)^p \le \sum_{s \le t} |\triangle X_s|^p = \int_0^t \int |x|^p \mu(ds, dx).$$

Consequently,

$$\mathbb{E} \sup_{s \le t} |Y_s|^p \le t \int |x|^p d\nu(x) \text{ for every } t \ge 0.$$

CASE 2  $(1 \le p \le 2)$ . Introduce the martingale

$$M_t := X_t - t \mathbb{E} X_1 = X_t - t \left( a + \int_{\{|x|>1\}} x d\nu(x) \right) = \int_0^t \int x(\mu - \lambda \otimes \nu) (ds, dx).$$

It follows from the Burkholder-Davis-Gundy inequality (see [5], p. 524) that

$$\mathbb{E} \sup_{s \le t} |M_s|^p \le C \mathbb{E} [M]_t^{p/2}$$

for some finite constant C. Since  $p/2 \leq 1$ , the quadratic variation [M] of M satisfies

$$[M]_t^{p/2} = \left(\sum_{s \le t} |\triangle X_s|^2\right)^{p/2} \le \sum_{s \le t} |\triangle X_s|^p$$

so that

$$\mathbb{E} \sup_{s \le t} |M_s|^p \le Ct \int |x|^p d\nu(x) \text{ for every } t \ge 0$$

CASE 3: p > 2. One considers again the martingale Lévy process  $M_t = X_t - t \mathbb{E} X_1$ . For  $k \ge 1$  such that  $2^k \le p$ , introduce the martingales

$$N_t^{(k)} := \int_0^t \int |x|^{2^k} (\mu - \lambda \otimes \nu) (ds, dx) = \sum_{s \le t} |\Delta X_s|^{2^k} - t \int |x|^{2^k} d\nu(x).$$

Set  $m := \max\{k \ge 1 : 2^k < p\}$ . Again by the Burkholder-Davis-Gundy inequality

$$\mathbb{E} \sup_{s \le t} |M_s|^p \le C \mathbb{E} [M]_t^{p/2}$$

$$= C \mathbb{E} \left( t \int x^2 d\nu(x) + N_t^{(1)} \right)^{p/2}$$

$$\le C \left( t^{p/2} \left( \int x^2 d\nu(x) \right)^{p/2} + \mathbb{E} |N_t^{(1)}|^{p/2} \right)$$

$$\le C \left( t + \mathbb{E} |N_t^{(1)}|^{p/2} \right)$$

for every  $t \in [0, 1]$  where C is a finite constant that may vary from line to line. Applying successively the Burkholder-Davis-Gundy inequality to the martingales  $N^{(k)}$  and exponents  $p/2^k > 1, 1 \le k \le m$ , finally yields

$$\mathbb{E} \sup_{s \le t} |M_s|^p \le C(t + \mathbb{E} [N^{(m)}]_t^{p/2^{m+1}}) \text{ for every } t \in [0,1]$$

Using  $p \leq 2^{m+1}$ , one gets

$$[N^{(m)}]_t^{p/2m+1} = \left(\sum_{s \le t} |\Delta X_s|^{2^{m+1}}\right)^{p/2^{m+1}} \le \sum_{s \le t} |\Delta X_s|^p$$

so that

$$\mathbb{E} \sup_{s \le t} |M_s|^p \le C\left(t + t \int |x|^p d\nu(x)\right) \quad \text{for every } t \in [0, 1].$$

This implies  $\mathbb{E} \sup_{s < t} |X_s|^p = O(t)$  as  $t \to 0$ .

**Proof of Theorems 2 and 3.** Let  $p \leq \beta$  and fix  $c \in (0,1]$ . Let  $\nu_1 = \mathbf{1}_{\{|x| \leq c\}} \cdot \nu$  and  $\nu_2 = \mathbf{1}_{\{|x| > c\}} \cdot \nu$ . Construct Lévy processes  $X^{(1)}$  and  $X^{(2)}$  such that  $X \stackrel{d}{=} X^{(1)} + X^{(2)}$  and  $X^{(2)}$  is a compound Poisson process with Lévy measure  $\nu_2$ . Then  $\beta = \beta(X) = \beta(X^{(1)}), \beta(X^{(2)}) = 0$ ,  $\mathbb{E} |X^{(1)}|^q < +\infty$  for every q > 0 and  $\mathbb{E} |X^{(2)}_1|^p < +\infty$ . It follows e.g. from Theorem 1 that for every  $t \geq 0$ ,

$$\mathbb{E} \sup_{s \le t} |X_s^{(2)}|^p \le C_p t \quad \text{if } p < 1,$$

$$(2.1)$$

$$\mathbb{E} \sup_{s \le t} |X^{(2)} - s \mathbb{E} X_1^{(2)}|^p \le C_p t \quad \text{if } 1 \le p \le 2$$

where  $\mathbb{E} X_1^{(2)} = \int x d\nu_2(x) = \int_{\{|x|>c\}} x d\nu(x).$ As concerns  $X^{(1)}$ , consider the martingale

$$Z_t^{(1)} := X_t^{(1)} - tEX_1^{(1)} = X_t^{(1)} - t\left(a - \int x\mathbf{1}_{\{c < |x| \le 1\}} d\nu(x)\right) = \int_0^t \int x(\mu_1 - \lambda \otimes \nu_1)(ds, dx)$$

where  $\mu_1$  denotes the Poisson random measure associated with the jumps of  $X^{(1)}$ . The starting idea is to separate the "small" and the "big" jumps of  $X^{(1)}$  in a non homogeneous way with respect to the function  $s \mapsto s^{1/\beta}$ . Indeed one may decompose  $Z^{(1)}$  as follows

$$Z^{(1)} = M + N$$

where

$$M_t := \int_0^t \int x \mathbf{1}_{\{|x| \le s^{1/\beta}\}} (\mu_1 - \lambda \otimes \nu_1) (ds, dx)$$

and

$$N_t := \int_0^t \int x \mathbf{1}_{\{|x| > s^{1/\beta}\}} (\mu_1 - \lambda \otimes \nu_1) (ds, dx)$$

are martingales. Observe that for every q > 0 and  $t \ge 0$ ,

$$\int_{0}^{t} \int |x|^{q} \mathbf{1}_{\{|x|>s^{1/\beta}\}} d\nu_{1}(x) ds = \int |x|^{q} (|x|^{\beta} \wedge t) d\nu_{1}(x)$$
  
$$\leq \int_{\{|x|\leq c\}} |x|^{\beta+q} d\nu(x) < +\infty$$

Consequently,

$$N_t = \int_0^t \int x \mathbf{1}_{\{|x| > s^{1/\beta}\}} d\mu_1(s, x) - g(t)$$

where  $g(t) := \int_0^t \int x \mathbf{1}_{\{|x| > s^{1/\beta}\}} d\nu_1(x) ds$ . Furthermore, for every  $r > \beta$  or r = 2 and  $t \ge 0$  $\int_0^t \int |x|^r \mathbf{1}_{\{|x| \le s^{1/\beta}\}} d\nu_1(x) ds \le t \int_{\{|x| \le c\}} |x|^r d\nu(x) < +\infty.$ (2.2)

In the sequel let C denote a finite constant that may vary from line to line. We first claim that for every  $t \ge 0, r \in (\beta, 2] \cap [1, 2]$  and for r = 2,

$$\mathbb{E} \sup_{s \le t} |M_s|^p \le C \left( \int_0^t \int |x|^r \mathbf{1}_{\{|x| \le s^{1/\beta}\}} d\nu_1(x) ds \right)^{p/r}.$$
(2.3)

In fact, it follows from the Burkholder-Davis-Gundy inequality and from  $p/r \le 1, r/2 \le 1$  that

$$\begin{split} \mathbb{E} \sup_{s \leq t} |M_s|^p &\leq \left( \mathbb{E} \sup_{s \leq t} |M_s|^r \right)^{p/r} \\ &\leq C \left( \mathbb{E} [M]_t^{r/2} \right)^{p/r} \\ &= C \left( \mathbb{E} \left( \sum_{s \leq t} |\Delta X_s^{(1)}|^2 \mathbf{1}_{\{|\Delta X_s^{(1)}| \leq s^{1/\beta}\}} \right)^{r/2} \right)^{p/r} \\ &\leq C \left( \mathbb{E} \sum_{s \leq t} |\Delta X_s^{(1)}|^r \mathbf{1}_{\{|\Delta X_s^{(1)}| \leq s^{1/\beta}\}} \right)^{p/r} \\ &= C \left( \int_0^t \int |x|^r \mathbf{1}_{\{|x| \leq s^{1/\beta}\}} d\nu_1(x) ds \right)^{p/r}. \end{split}$$

Exactly as for M, one gets for every  $t \ge 0$  and every  $q \in [p, 2] \cap [1, 2]$  that

$$\mathbb{E} \sup_{s \le t} |N_s|^p \le C \left( \int_0^t \int |x|^q \mathbf{1}_{\{|x| > s^{1/\beta}\}} d\nu_1(x) ds \right)^{p/q}.$$
 (2.4)

If  $\nu$  is symmetric then (2.4) holds for every  $q \in [p, 2]$  (which of course provides additional information in case p < 1 only). Indeed, g = 0 by the symmetry of  $\nu$  so that

$$N_t = \int_0^t \int x \mathbf{1}_{\{|x| > s^{1/\beta}\}} d\mu_1(s, x)$$

and for  $q \in [p, 1]$ 

$$\mathbb{E} \sup_{s \leq t} \left| \int_{0}^{s} \int x \mathbf{1}_{\{|x| > u^{1/\beta}\}} \mu_{1}(du, dx) \right|^{p} \leq \left( \mathbb{E} \sup_{s \leq t} \left| \int_{0}^{t} \int x \mathbf{1}_{\{|x| > u^{1/\beta}\}} \mu_{1}(du, dx) \right|^{q} \right)^{p/q} (2.5)$$

$$\leq \left( \mathbb{E} \sum_{s \leq t} \left| \triangle X_{s}^{(1)} \right|^{q} \mathbf{1}_{\{|\Delta X_{s}^{(1)}| > s^{1/\beta}\}} \right)^{p/q}$$

$$= \left( \int_{0}^{t} \int |x|^{q} \mathbf{1}_{\{|x| > s^{1/\beta}\}} d\nu_{1}(x) ds \right)^{p/q}.$$

In the case  $\beta < 1$  we consider the process

$$\begin{aligned} Y_t^{(1)} &:= Z_t^{(1)} + t \int x d\nu_1(x) = X_t^{(1)} - t \left( a - \int_{\{|x| \le 1\}} x d\nu(x) \right) \\ &= M_t + N_t + t \int x d\nu_1(x) \\ &= \int_0^t \int x \mathbf{1}_{\{|x| \le s^{1/\beta}\}} \mu_1(ds, dx) + \int_0^t \int x \mathbf{1}_{\{|x| > s^{1/\beta}\}} \mu_1(ds, dx). \end{aligned}$$

Exactly as in (2.5) one shows that for  $t\geq 0$  and  $r\in (\beta,1]$ 

$$\mathbb{E} \sup_{s \le t} \left| \int_0^s \int x \mathbf{1}_{\{|x| \le u^{1/\beta}\}} \mu_1(du, dx) \right|^p \le \left( \int_0^t \int |x|^r \mathbf{1}_{\{|x| \le s^{1/\beta}\}} d\nu_1(x) ds \right)^{p/r}.$$
 (2.6)

Combining (2.1) and (2.3) - (2.6) we obtain the following estimates. Let

$$Z_t = X_t - t \left( a - \int x \mathbf{1}_{\{c < |x| \le 1\}} d\nu(x) \right).$$

CASE 1:  $\beta \ge 1$  and p < 1. Then for every  $t \ge 0, r \in (\beta, 2] \cup \{2\}, q \in [1, 2], q \in [1,$ 

$$\mathbb{E} \sup_{s \leq t} |Z_s|^p \leq C \left( t + \left( \int_0^t \int |x|^r \mathbf{1}_{\{|x| \leq s^{1/\beta}\}} d\nu_1(x) ds \right)^{p/r} + \left( \int_0^t \int |x|^q \mathbf{1}_{\{|x| > s^{1/\beta}\}} d\nu_1(x) ds \right)^{p/q} \right).$$
(2.7)

If  $\nu$  is symmetric (2.7) is even valid for every  $q \in [p, 2]$ .

CASE 2:  $\beta \ge 1$  and  $p \ge 1$ . Then for every  $t \ge 0, r \in (\beta, 2] \cup \{2\}, q \in [p, 2],$ 

$$\mathbb{E} \sup_{s \leq t} |X_s - s \mathbb{E} X_1|^p \leq C \left( t + \left( \int_0^t \int |x|^r \mathbf{1}_{\{|x| \leq s^{1/\beta}\}} d\nu_1(x) ds \right)^{p/r} + \left( \int_0^t |x|^q \mathbf{1}_{\{|x| > s^{1/\beta}\}} d\nu_1(x) ds \right)^{p/q} \right).$$
(2.8)

CASE 3:  $\beta < 1$ . Then for every  $t \ge 0, r \in (\beta, 1], q \in [p, 1]$ 

$$\mathbb{E} \sup_{s \leq t} |Y_s|^p \leq C \left( t + \left( \int_0^t \int |x|^r \mathbf{1}_{\{|x| \leq s^{1/\beta}\}} d\nu_1(x) ds \right)^{p/r} + \left( \int_0^t |x|^q \mathbf{1}_{\{|x| > s^{1/\beta}\}} d\nu_1(x) ds \right)^{p/q} \right).$$
(2.9)

If  $\nu$  is symmetric then  $Y = Z = (X_t - at)_{t \ge 0}$  and (2.9) is valid for every  $r \in (\beta, 2], q \in [p, 2]$ .

Now we deduce Theorem 2. Assume  $p \in (0, \beta)$  and (1.5). The constant c in the above decomposition of X is specified by the constant from (1.5). Then one just needs to investigate the integrals appearing in the right hand side of the inequalities (2.7) - (2.10). One checks that for  $a > 0, s \le c^{\beta}$ 

$$\int |x|^a \mathbf{1}_{\{|x| \le s^{1/\beta}\}} d\nu_1(x) \le a \int_0^{s^{1/\beta}} x^{a-1} \underline{\nu}(x) dx \le a \int_0^{s^{1/\beta}} x^{a-1} \varphi(x) dx$$

and

$$\int |x|^{a} \mathbf{1}_{\{|x|>s^{1/\beta}\}} d\nu_{1}(x) \leq a \int_{s^{1/\beta}}^{c} x^{a-1} \underline{\nu}(x) dx + s^{a/\beta} \underline{\nu}(s^{1/\beta}) \\ \leq a \int_{s^{1/\beta}}^{c} x^{a-1} \varphi(x) dx + s^{\frac{q}{\beta}-1} l(s^{1/\beta}).$$

Now, Theorem 1.5.11 in [1] yields for  $r > \beta$ ,

$$\int_0^{s^{1/\beta}} x^{r-1} \varphi(x) dx \sim \frac{1}{r-\beta} s^{\frac{r}{\beta}-1} l(s^{1/\beta}) \quad \text{as} \quad s \to 0$$

which in turn implies that for small t,

$$\int_{0}^{t} \int |x|^{r} \mathbf{1}_{\{|x| \le s^{1/\beta}\}} d\nu_{1}(x) ds \le r \int_{0}^{t} \int_{0}^{s^{1/\beta}} x^{r-1} \varphi(x) dx ds \qquad (2.10)$$

$$\sim \frac{\beta}{(r-\beta)} t^{r/\beta} l(t^{1/\beta}) \quad \text{as} \quad t \to 0.$$

Similarly, for  $0 < q < \beta$ ,

$$\int_{s^{1/\beta}}^{c} x^{q-1} \varphi(x) dx \sim \frac{1}{\beta - q} s^{\frac{q}{\beta} - 1} l(s^{1/\beta}) \text{ as } s \to 0$$

and thus

$$\begin{split} \int_{0}^{t} \int |x|^{q} \mathbf{1}_{\{|x| > s^{1/\beta}\}} d\nu_{1}(x) ds &\leq q \int_{0}^{t} \int_{s^{1/\beta}}^{c} x^{q-1} \varphi(x) dx ds + \int_{0}^{t} s^{\frac{q}{\beta} - 1} l(s^{1/\beta}) ds \ (2.11) \\ &\sim \frac{\beta^{2}}{(\beta - q)q} t^{q/\beta} l(t^{1/\beta}) \quad \text{as} \quad t \to 0. \end{split}$$

Using (2.2) for the case  $\beta = 2$  and  $t + t^p = o(t^{p/\beta} \underline{l}(t)^{\alpha})$  as  $t \to 0, \alpha > 0$ , for the case  $\beta > 1$  one derives Theorem 2.

As for Theorem 3, one just needs a suitable choice of q in (2.7) - (2.9). Note that by (1.7) for every  $\beta \in (0, 2)$  and  $t \leq c^{\beta}$ ,

$$\int_0^t \int |x|^{\beta} \mathbf{1}_{\{|x| > s^{1/\beta}\}} d\nu_1(x) ds \le \int_0^t \left( C\beta \int_{s^{1/\beta}}^c x^{-1} dx + 1 \right) ds \le C_1 t (-\log t)$$

so that  $q = \beta$  is the right choice. (This choice of q is optimal.) Since by (2.10), for  $r \in (\beta, 2] \ (\neq \emptyset)$ ,

$$\int_{0}^{t} \int |x|^{r} \mathbf{1}_{\{|x| \le s^{1/\beta}\}} d\nu_{1}(x) ds = O(t^{r/\beta})$$
(2.7) - (2.9)

the assertions follow from (2.7) - (2.9).

#### 3 Examples

Let  $K_{\nu}$  denote the modified Bessel function of the third kind and index  $\nu > 0$  given by

$$K_{\nu}(z) = \frac{1}{2} \int_0^\infty u^{\nu-1} \exp\left(-\frac{z}{2}(u+\frac{1}{u})\right) du, \quad z > 0.$$

• The  $\Gamma$ -process is a subordinator (increasing Lévy process) whose distribution  $\mathbb{P}_{X_t}$  at time t > 0 is a  $\Gamma(1, t)$ -distribution

$$\mathbb{P}_{X_t}(dx) = \frac{1}{\Gamma(t)} x^{t-1} e^{-x} \mathbf{1}_{(0,\infty)}(x) dx.$$

The characteristics are given by

$$\nu(dx) = \frac{1}{x} e^{-x} \mathbf{1}_{(0,\infty)}(x) ds$$

and  $a = \int_0^1 x d\nu(x) = 1 - e^{-1}$  so that  $\beta = 0$  and Y = X. It follows from Theorem 1 that

$$\mathbb{E} \sup_{s \le t} X_s^p = \mathbb{E} X_t^p = O(t)$$

for every p > 0. This is clearly the true rate since

$$\mathbb{E} \, X^p_t = \frac{\Gamma(p+t)}{\Gamma(t+1)} t \sim \Gamma(p) \, t \quad \text{as} \quad t \to 0.$$

• The  $\alpha$ -stable Lévy Processes indexed by  $\alpha \in (0,2)$  have Lévy measure

$$\nu(dx) = \left(\frac{C_1}{x^{\alpha+1}} \mathbf{1}_{(0,\infty)}(x) + \frac{C_2}{|x|^{\alpha+1}} \mathbf{1}_{(-\infty,0)}(x)\right) dx$$

with  $C_i \ge 0, C_1 + C_2 > 0$  so that  $\mathbb{E} |X_1|^p < +\infty$  for  $p \in (0, \alpha), \mathbb{E} |X_1|^\alpha = \infty$  and  $\beta = \alpha$ . It follows from Theorems 2 and 3 that for  $p \in (0, \alpha)$ ,

$$\begin{split} \mathbb{E} \sup_{s \leq t} |X_s|^p &= O(t^{p/\alpha}) \quad \text{if} \quad \alpha > 1, \\ \mathbb{E} \sup_{s \leq t} |Y_s|^p &= O(t^{p/\alpha}) \quad \text{if} \quad \alpha < 1, \\ \mathbb{E} \sup_{s \leq t} |X_s|^p &= O((t(-\log t))^p) \quad \text{if} \quad \alpha = 1 \end{split}$$

Here Theorem 3 gives the true rate provided X is not strictly stable. In fact, if  $\alpha = 1$  the scaling property in this case says that  $X_t \stackrel{d}{=} t X_1 + Ct \log t$  for some real constant  $C \neq 0$  (see [7], p.87) so that for p < 1

$$\mathbb{E} |X_t|^p = t^p \mathbb{E} |X_1 + C \log t|^p \sim |C|^p t^p |\log t|^p \quad \text{as} \quad t \to 0.$$

Now assume that X is strictly  $\alpha$ -stable. If  $\alpha < 1$ , then  $a = \int_{|x| \le 1} x d\nu(x)$  and thus Y = X and if  $\alpha = 1$ , then  $\nu$  is symmetric (see [7]). Consequently, by Theorem 2, for every  $\alpha \in (0, 2)$ ,  $p \in (0, \alpha)$ ,

$$\mathbb{E} \sup_{s \le t} |X_s|^p = O(t^{p/\alpha}).$$

In this case Theorem 2 provides the true rate since the self-similarity property of strictly stable Lévy processes implies

$$\mathbb{E} \sup_{s \le t} |X_s|^p = t^{p/\alpha} \mathbb{E} \sup_{s \le 1} |X_s|^p$$

• Tempered stable processes are subordinators with Lévy measure

$$\nu(dx) = \frac{2^{\alpha} \cdot \alpha}{\Gamma(1-\alpha)} x^{-(\alpha+1)} \exp(-\frac{1}{2}\gamma^{1/\alpha}x) \mathbf{1}_{(0,\infty)}(x) dx$$

and first characteristic  $a = \int_0^1 x d\nu(x), \alpha \in (0, 1), \gamma > 0$  (see [8]) so that  $\beta = \alpha, Y = X$  and  $\mathbb{E} X_1^p < +\infty$  for every p > 0. The distribution of  $X_t$  is not generally known. It follows from Theorems 1,2 and 3 that

$$\begin{split} & \mathbb{E} \, X^p_t &= O(t) \quad \text{if} \quad p > \alpha, \\ & \mathbb{E} \, X^p_t &= O(t^{p/\alpha}) \quad \quad \text{if} \quad p < \alpha \\ & \mathbb{E} \, X^\alpha_t &= O(t(-\log t)) \quad \quad \text{if} \quad p = \alpha. \end{split}$$

For  $\alpha = 1/2$ , the process reduces to the *inverse Gaussian process* whose distribution  $\mathbb{P}_{X_t}$  at time t > 0 is given by

$$\mathbb{P}_{X_t}(dx) = \frac{t}{\sqrt{2\pi}} x^{-3/2} \exp\left(-\frac{1}{2}(\frac{t}{\sqrt{x}} - \gamma\sqrt{x})^2\right) \mathbf{1}_{(0,\infty)}(x) dx.$$

In this case all rates are the true rates. In fact, for p > 0,

$$\mathbb{E}X_{t}^{p} = \frac{t}{\sqrt{2\pi}}e^{t\gamma} \int_{0}^{\infty} x^{p-3/2} \exp\left(-\frac{1}{2}(\frac{t^{2}}{x}+\gamma^{2}x)\right) dx$$
$$= \frac{t}{\sqrt{2\pi}}e^{t\gamma} \left(\frac{t}{\gamma}\right)^{p-1/2} \int_{0}^{\infty} y^{p-3/2} \exp\left(-\frac{t\gamma}{2}(\frac{1}{y}+y)\right) dy$$
$$= \frac{2}{\sqrt{2\pi}} \left(\frac{1}{\gamma}\right)^{p-1/2} t^{p+1/2} e^{t\gamma} K_{p-1/2}(t\gamma)$$

and, as  $z \to 0$ ,

$$K_{p-1/2}(z) \sim \frac{C_p}{z^{p-1/2}} \quad \text{if} \quad p > \frac{1}{2},$$
  

$$K_{p-1/2}(z) \sim \frac{C_p}{z^{1/2-p}} \quad \text{if} \quad p < \frac{1}{2},$$
  

$$K_0(z) \sim |\log z|$$

where  $C_p = 2^{p-3/2} \Gamma(p-1/2)$  if p > 1/2 and  $C_p = 2^{-p-1/2} \Gamma(\frac{1}{2}-p)$  if p < 1/2.

• The Normal Inverse Gaussian (NIG) process was introduced by Barndorff-Nielsen and has been used in financial modeling (see [8]), in particular for energy derivatives (electricity). The NIG process is a Lévy process with characteristics  $(a, 0, \nu)$  where

$$\nu(dx) = \frac{\delta\alpha}{\pi} \frac{\exp(\gamma x)K_1(\alpha|x|)}{|x|} dx,$$
  
$$a = \frac{2\delta\alpha}{\pi} \int_0^1 \sinh(\gamma x)K_1(\alpha x) dx,$$

 $\alpha > 0, \ \gamma \in (-\alpha, \alpha), \delta > 0$ . Since  $K_1(|z|) \sim |z|^{-1}$  as  $z \to 0$ , the Lévy density behaves like  $\delta \pi^{-1} |x|^{-2}$  as  $x \to 0$  so that (1.8) is satisfied with  $\beta = 1$ . One also checks that  $\mathbb{E} |X_1|^p < +\infty$  for every p > 0. It follows from Theorems 1 and 3 that, as  $t \to 0$ 

$$\mathbb{E} \sup_{s \le t} |X_s|^p = O(t) \quad \text{if} \quad p > 1,$$
  
$$\mathbb{E} \sup_{s \le t} |X_s|^p = O((t(-\log t))^p) \quad \text{if} \quad p \le 1$$

If  $\gamma = 0$ , then  $\nu$  is symmetric and by Theorem 2,

$$\mathbb{E} \sup_{s \le t} |X_s|^p = O(t^p) \quad \text{if} \quad p < 1.$$

The distribution  $\mathbb{P}_{X_t}$  at time t > 0 is given by

$$\mathbb{P}_{X_t}(dx) = \frac{t\delta\alpha}{\pi} \exp(t\,\delta\sqrt{\alpha^2 - \gamma^2} + \gamma x) \frac{K_1(\alpha\sqrt{t^2\delta^2 + x^2})}{\sqrt{t^2\delta^2 + x^2}} dx$$

so that Theorem 3 gives the true rate for  $p=\beta=1$  in the symmetric case. In fact, assuming  $\gamma=0,$  we get as  $t\to 0$ 

$$\mathbb{E} |X_t| = \frac{2t\delta\alpha}{\pi} e^{t\delta\alpha} \int_0^\infty \frac{xK_1(\alpha\sqrt{t^2\delta^2 + x^2})}{\sqrt{t^2\delta^2 + x^2}} dx$$
$$= \frac{2t\delta\alpha}{\pi} e^{t\delta\alpha} \int_{t\delta}^\infty K_1(\alpha y) dy$$
$$\sim \frac{2\delta}{\pi} t \int_{t\delta}^1 \frac{1}{y} dy$$
$$\sim \frac{2\delta}{\pi} t (-\log(t)).$$

• Hyperbolic Lévy motions have been applied to option pricing in finance (see [3]). These processes are Lévy processes whose distribution  $\mathbb{P}_{X_1}$  at time t = 1 is a symmetric (centered) hyperbolic distribution

$$\mathbb{P}_{X_1}(dx) = C \exp(-\delta\sqrt{1 + (x/\gamma)^2}) \, dx, \quad \gamma, \, \delta > 0.$$

Hyperbolic Lévy processes have characteristics  $(0, 0, \nu)$  and satisfy  $\mathbb{E}|X_1|^p < +\infty$  for every p > 0. In particular, they are martingales. Their (rather involved) symmetric Lévy measure

has a Lebesgue density that behaves like  $Cx^{-2}$  as  $x \to 0$  so that (1.8) is satisfied with  $\beta = 1$ . Consequently, by Theorems 1, 2 and 3, as  $t \to 0$ 

$$\begin{split} \mathbb{E} \sup_{s \leq t} |X_s|^p &= O(t) \quad \text{if} \quad p > 1, \\ \mathbb{E} \sup_{s \leq t} |X_s|^p &= O(t^p) \quad \text{if} \quad p < 1, \\ \mathbb{E} \sup_{s \leq t} |X_s| &= O(t \, (-\log t)) \quad \text{if} \quad p = 1 \end{split}$$

• *Meixner processes* are Lévy processes without Brownian component and with Lévy measure given by

$$\nu(dx) = \frac{\delta e^{\gamma x}}{x \sinh(\pi x)} dx, \ \delta > 0, \ \gamma \in (-\pi, \pi)$$

(see [8]). The density behaves like  $\delta/\pi x^2$  as  $x \to 0$  so that (1.8) is satisfied with  $\beta = 1$ . Using (1.2) one observes that  $\mathbb{E} |X_1|^p < +\infty$  for every p > 0. It follows from Theorems 1 and 3 that

$$\begin{split} & \mathbb{E} \sup_{s \leq t} |X_s|^p = O(t) \quad \text{if} \quad p > 1, \\ & \mathbb{E} \sup_{s \leq t} |X_s|^p = O((t \, (-\log t))^p) \quad \text{if} \quad p \leq 1. \end{split}$$

If  $\gamma = 0$ , then  $\nu$  is symmetric and hence Theorem 2 yields

$$\mathbb{E} \sup_{s \le t} |X_s|^p = O(t^p) \quad \text{if} \quad p < 1.$$

#### References

- BINGHAM, N.H., GOLDIE, C.M., TEUGELS, J.L., *Regular Variation*, Cambridge University Press, 1987. MR0898871
- [2] BLUMENTHAL, R.M., GETOOR, R.K., Sample functions of stochastic processes with stationary independent increments, J. of Mathematics and Mechanics 10, 1961, 493-516. MR0123362
- [3] EBERLEIN, E., KELLER, U., Hyperbolic distributions in finance, *Bernoulli* 1, 1995, 281-299.
- [4] JACOD, J., SHIRYAEV, A.N., Limit Theorems for Stochastic Processes, Second Edition, Springer, Berlin, 2003. MR1943877
- [5] KALLENBERG, O., Foundations of Modern Probability, Second Edition, Berlin, 2002. MR1876169
- [6] MILLAR, P.W., Path behaviour of processes with stationary independent increments, Z. Wahrscheinlichkeitstheorie verw. Geb. 17, 1971, 53-73. MR0324781
- [7] SATO, K.-I., Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, 1999. MR1739520
- [8] SCHOUTENS, W., Lévy Processes in Finance, Wiley, Chichester, 2003.