Elect. Comm. in Probab. 13 (2008), 415-421

ELECTRONIC COMMUNICATIONS in PROBABILITY

ON ASYMPTOTIC GROWTH OF THE SUPPORT OF FREE MULTIPLICATIVE CONVOLUTIONS

VLADISLAV KARGIN

Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012 email: kargin@cims.nyu.edu

Submitted October 25, 2007, accepted in final form June 25, 2008

AMS 2000 Subject classification: 46L54, 15A52

Keywords: Free probability, free multiplicative convolution

Abstract

Let μ be a compactly supported probability measure on \mathbb{R}^+ with expectation 1 and variance V. Let μ_n denote the n-time free multiplicative convolution of measure μ with itself. Then, for large n the length of the support of μ_n is asymptotically equivalent to eVn, where e is the base of natural logarithms, e = 2.71...

1 Preliminaries and the main result

First, let us recall the definition of the free multiplicative convolution. Let a_k denote the moments of a compactly-supported probability measure μ , $a_k = \int t^k d\mu$, and let the ψ -transform of μ be $\psi_{\mu}(z) = \sum_{k=1}^{\infty} a_k z^k$. The inverse ψ -transform is defined as the functional inverse of $\psi_{\mu}(z)$ and denoted as $\psi_{\mu}^{(-1)}(z)$. It is a well-defined analytic function in a neighborhood of z=0, provided that $a_1 \neq 0$.

Suppose that μ and ν are two probability measures supported on $\mathbb{R}^+ = \{x | x \geq 0\}$ and let $\psi_{\mu}^{(-1)}(z)$ and $\psi_{\nu}^{(-1)}(z)$ be their inverse ψ -transforms. Then, as it was first shown by Voiculescu in [5], the function

$$f(z) := (1 + z^{-1}) \psi_{\mu}^{(-1)}(z) \psi_{\nu}^{(-1)}(z)$$

is the inverse ψ -transform of a probability measure supported on \mathbb{R}^+ . (Voiculescu used a variant of the inverse ψ -transform, the S-transform.) This new probability measure is called the free multiplicative convolution of measures μ and ν , and denoted as $\mu \boxtimes \nu$.

The significance of this convolution operation can be seen from the fact that if μ and ν are the distributions of singular values of two free operators X and Y, then $\mu \boxtimes \nu$ is the distribution of singular values of the product operator XY (assuming that the algebra containing X and Y is tracial). For more details about free convolutions and free probability theory, the reader can consult [2], [4], or [6].

We are interested in the support of the n-time free multiplicative convolution of the measure

 μ with itself, which we denote as μ_n :

$$\mu_n = \underbrace{\mu \boxtimes \ldots \boxtimes \mu}_{n\text{-times}}.$$

Let L_n denote the upper boundary of the support of μ_n .

Theorem 1. Suppose that μ is a compactly-supported probability measure on \mathbb{R}^+ , with the expectation 1 and variance V. Then

$$\lim_{n \to \infty} \frac{L_n}{n} = eV,$$

where e denotes the base of natural logarithms, e = 2.71...

Remarks: 1) Let X_i be operators in a von Neumann algebra \mathcal{A} with trace E. Assume that X_i are free in the sense of Voiculescu and identically distributed, and let $\Pi_n = X_1 \dots X_n$. It is known that if μ is the spectral probability measure of $X_i^*X_i$, then μ_n is the spectral probability measure of $\Pi_n^*\Pi_n$. Assume further that $E(X_i^*X_i) = 1$ and $E\left((X_i^*X_i)^2\right) = 1 + V$, and define $\|\Pi_n\|_2 =: [E(\Pi_n^*\Pi_n)]^{1/2}$. Then our theorem implies that

$$\lim_{n \to \infty} \frac{\|\Pi_n\|}{\|\Pi_n\|_2} = \sqrt{eVn}$$

for all sufficiently large n. This result also holds if we relax the assumption $E(X_i^*X_i) = 1$ and define

$$V = \frac{E((X_i^* X_i)^2)}{[E(X_i^* X_i)]^2} - 1.$$

2) Theorem 1 improves the author's result in [3], where it was shown that $L_n/n \leq cL$ where c is a certain absolute constant and L is the upper bound of the support of μ . Theorem 1 shows that the asymptotic growth in the support of free multiplicative convolutions μ_n is controlled by the variance of μ and not by the length of its support.

The idea of proof of Theorem 1 is based on the fact that the radius of convergence of Taylor series for $\psi_n(z)$ is $1/L_n$. Therefore the function $\psi_n(z)$ must have a singularity at the boundary of the disc $|z| = 1/L_n$. Since all the coefficients in this Taylor series are real and positive, the singularity is $z_n = 1/L_n$. Therefore, the study of L_n is equivalent to the study of the singularity of $\psi_n(z)$ which is located on \mathbb{R}^+ and which is closest to 0.

By Proposition 5.2 in [1], we know that for all sufficiently large n, the measure μ_n is absolutely continuous on $\mathbb{R}^+\setminus\{0\}$, and its density is analytic at all points where it is different from zero. For these n, the singularity of $\psi_n(z)$ is neither an essential singularity nor a pole. Hence, the problem is reduced to finding a branching point of $\psi_n(z)$ which is on \mathbb{R}^+ and closest to zero. The branching point of $\psi_n(z)$ equals a critical value of $\psi_n^{(-1)}(u)$. Since by Voiculescu's theorem,

$$\psi_n^{(-1)}(u) = \left(\frac{1+u}{u}\right)^{n-1} \left[\psi^{(-1)}(u)\right]^n,$$

therefore we can find critical points of $\psi_n^{(-1)}(u)$ from the equation

$$\frac{d}{du} \left[n \log \psi^{(-1)}(u) + (n-1) \log \left(\frac{1+u}{u} \right) \right] = 0,$$

or

$$\frac{d}{du}\log\psi^{(-1)}(u) = \left(1 - \frac{1}{n}\right)\frac{1}{u(1+u)}.$$
 (1)

Thus, our task is to estimate the root u_n of this equation which is real, positive and closest to 0, and then study the asymptotic behavior of $z_n = \psi_n^{(-1)}(u_n)$ as $n \to \infty$. This study will be undertaken in the next section.

2 Proof of Theorem 1

Notation: L and L_n are the least upper bounds of the support of measures μ and μ_n , respectively; V and V_n are variances of these measures; $\psi(z)$ and $\psi_n(z)$ are ψ -transforms for measures μ and μ_n , and $\psi^{(-1)}(u)$ and $\psi^{(-1)}_n(u)$ are functional inverses of these ψ -transforms. When we work with ψ -transforms, we use letters t, x, y, z to denote variables in the domain of ψ -transforms, and b, u, v, w to denote the variables in their range.

In our analysis we need some facts about functions $\psi(z)$ and $\psi^{(-1)}(u)$. Let the support of a measure μ be inside the interval [0, L], and let μ have expectation 1 and variance V. Note that for $z \in (0, 1/L)$, the function $\psi(z)$ is positive, increasing, and convex. Correspondingly, for $u \in (0, \psi(1/L))$, the function $\psi^{(-1)}(u)$ is positive, increasing and concave.

Lemma 2. For all positive z such that z < 1/(2L), it is true that

$$|\psi(z) - z - (1+V)z^2| \le c_1 z^3,$$

 $|\psi'(z) - 1 - 2(1+V)z| \le c_2 z^2,$

where c_1 and c_2 depend only on L.

Proof: Clearly, $E(X^k) \leq L^k$. Using the Taylor series for $\psi(z)$ and $\psi'(z)$, we find that for all positive z such that z < 1/(2L),

$$\left| \psi(z) - z - (1+V)z^2 \right| \le \frac{L^3}{1-Lz}z^3,$$

and

$$|\psi'(z) - 1 - 2(1+V)z| \le L^3 \frac{3 - 2Lz}{(1 - Lz)^2} z^2,$$

which implies the statement of this lemma. QED.

Lemma 3. For all positive u such that u < 1/(12L), it is true that

$$\left| \psi^{(-1)}(u) - u + (1+V)u^2 \right| \le c_3 u^3,$$

where c_3 depends only on L.

Proof: Let the Taylor series for $\psi^{(-1)}(u)$ be

$$\psi^{(-1)}(u) = u - (1+V)u^2 + \sum_{k=3}^{\infty} d_k u^k.$$

Using the Lagrange inversion formula, it is possible to prove that

$$|d_k| \le \frac{3}{2} (6L)^{k-1},$$

see, e.g., proof of Lemmas 3 and 4 in [3]. This implies that the Taylor series for $\psi^{(-1)}(u)$ are convergent in the disc $|u| < (6L)^{-1}$. Hence, in this disc,

$$\left| \sum_{k=3}^{\infty} d_k u^k \right| \le \left| \frac{54L^2}{1 - 6Lu} u^3 \right|,$$

which implies the statement of this lemma. QED.

The proof of Theorem 1 uses the following proposition. Its purpose is to estimate the critical point of $\psi_n^{(-1)}(u)$ from below. Later, we will see that this estimate gives the asymptotically correct order of magnitude of the critical point.

Proposition 4. Let u_n be the critical point of $\psi_n^{(-1)}(u)$ which belongs to \mathbb{R}^+ and which is closest to 0. Then for all $\varepsilon > 0$, there exists such $n_0(L, V, \varepsilon)$, that for all $n > n_0$,

$$u_n \ge \frac{1}{n\left(1 + 2V + \varepsilon\right)}.$$

Proof of Proposition 4:

Claim: Let ε be an arbitrary positive constant. Let $x_n = (n(1+2V+2\varepsilon))^{-1}$ and $b_n = \psi(x_n)$. Then for all $n \geq n_0(\varepsilon, L, V)$ and all $u \in [0, b_n]$, the following inequality is valid:

$$\frac{d}{du}\log\psi^{(-1)}(u) > \frac{n-1}{n}\frac{1}{u(1+u)}.$$
(2)

If this claim is valid, then since u_n is the smallest positive root of equation (1), therefore we can conclude that $u_n > b_n = \psi(x_n)$. By Lemma 2, it follows that for all sufficiently large n

$$u_n > \psi\left(\frac{1}{n(1+2V+2\varepsilon)}\right) > \frac{1}{n(1+2V+\varepsilon)}.$$

(Indeed, note that the last inequality has 2ε and ε on the left-hand and right-hand side, respectively. Since Lemma 2 implies that $\psi(z) \sim z$ for small z, therefore this inequality is valid for all sufficiently large n.)

Hence, Proposition 4 follows from the claim, and it remains to prove the claim.

Proof of Claim: Let us re-write inequality (2) as

$$\frac{1}{z\psi'(z)} > \frac{n-1}{n} \frac{1}{\psi(z)(1+\psi(z))},\tag{3}$$

where $z = \psi^{(-1)}(u)$.

Using Lemma 2, we infer that inequality (3) is implied by the following inequality:

$$\frac{1}{z} \frac{1}{1+2(1+V)z+c_2 z^2} > \frac{n-1}{n} \frac{1}{\psi(z)(1+\psi(z))},$$

where c_2 depends only on L. Note that $\psi(z) \geq z$ because the first moment of μ is 1 and all other moments are positive. Therefore, it is enough to show that

$$\frac{1}{1+2\left(1+V\right)z+c_{2}z^{2}}>\frac{n-1}{n}\frac{1}{1+z}.$$

for $z \leq (n(1+2V+2\varepsilon))^{-1}$ and all sufficiently large n. Let us write this inequality as

$$\frac{1}{n-1} + \frac{1}{n-1}z > (1+2V)z + c_2z^2.$$

If we fix an arbitrary $\varepsilon > 0$, then clearly for all $z \leq (n(1 + 2V + 2\varepsilon))^{-1}$ this inequality holds if n is sufficiently large. QED.

This completes the proof of Proposition 4.

Now let us proceed with the proof of Theorem 1.

Let u_n be the critical point of $\psi_n^{(-1)}(u)$, which is positive and closest to zero, and let $y_n = \psi^{(-1)}(u_n)$. We know that y_n is a root of the equation

$$\frac{1}{z\psi'(z)} = \left(1 - \frac{1}{n}\right) \frac{1}{\psi(z)\left(1 + \psi(z)\right)}.\tag{4}$$

(This is equation (1) in a slightly different form.) After a re-arrangement, we can re-write this equation as

$$\frac{\psi(z)}{z}(1+\psi(z)) = \left(1-\frac{1}{n}\right)\psi'(z). \tag{5}$$

On the other hand, from the proof of Proposition 4 we know that $u_n \geq b_n = \psi(x_n)$, so that monotonicity of $\psi^{(-1)}$ implies

$$y_n = \psi^{(-1)}(u_n) \ge x_n = \frac{1}{n(1+2V+\varepsilon)}$$

Let us look for a root of equation (5) in the range $[x_n, c/n]$ where c is a fixed positive number. Let us make a substitution z = t/n in equation (5) and use Lemma 2. We get:

$$\left(1+\left(1+V\right)\frac{t}{n}+O\left(n^{-2}\right)\right)\left(1+\frac{t}{n}+O\left(n^{-2}\right)\right)=\left(1-\frac{1}{n}\right)\left(1+2\left(1+V\right)\frac{t}{n}+O\left(n^{-2}\right)\right).$$

After a simplification, we get

$$t - \frac{1}{V} + O(n^{-1}) = 0.$$

Hence, for a fixed c > 1 and all sufficiently large n, the root is unique in the interval [0, c] and given by the expression

$$t = \frac{1}{V} + O\left(n^{-1}\right).$$

Therefore,

$$y_n = \frac{1}{Vn} + O\left(n^{-2}\right).$$

By Lemma 2, this implies that

$$u_n = \psi(y_n) = \frac{1}{Vn} + O(n^{-2}).$$

This is the critical point of $\psi_n^{(-1)}(u)$.

The next step is to estimate the critical value of $\psi_n^{(-1)}(u)$, which is $z_n = \psi_n^{(-1)}(u_n)$. We write:

$$z_n = u_n \left[\frac{\psi^{(-1)}(u_n)}{u_n} \right]^n (1 + u_n)^{n-1}.$$

Using Lemma 3, we infer that

$$z_{n} = u_{n} \left[1 - (1+V) u_{n} + O(n^{-2}) \right]^{n} (1+u_{n})^{n-1}$$

$$= \left(\frac{1}{Vn} + O(n^{-2}) \right)$$

$$\times \left[1 - (1+V) \frac{1}{Vn} + O(n^{-2}) \right]^{n}$$

$$\times \left[1 + \frac{1}{Vn} + O(n^{-2}) \right]^{n}$$

$$\sim \frac{1}{eVn},$$

as $n \to \infty$. Here e denotes the base of the natural logarithm: e = 2.71.... Hence,

$$\lim_{n \to \infty} \frac{L_n}{n} = \lim_{n \to \infty} \frac{1}{nz_n} = eV.$$

QED.

3 Conclusion

Let me conclude with a slightly different formulation of the main result. Suppose that X_i are free, identically distributed random variables in a tracial non-commutative W^* -probability space with a faithful trace E. We proved that if $E(X_i^*X_i) = 1$, then the asymptotic growth in the square of the norm of products $\Pi_n = X_n \dots X_1$ is linear in n with the rate equal to $e(E(X_i^*X_iX_i^*X_i) - 1)$.

References

- [1] Belinschi S. T. and H. Bercovici (2005). Partially defined semigroups relative to multiplicative free convolution. *International Mathematics Research Notices.* **2005** 65-101. MR2128863
- [2] HIAI F. AND D. PETZ (2000). The Semicircle Law, Free Random Variables And Entropy. American Mathematical Society, Providence. MR1746976
- [3] KARGIN V. (2007). The norm of products of free random variables. *Probability Theory* and Related Fields. **139** 397-413. MR2322702
- [4] NICA A. AND R. SPEICHER (2006). Lectures on the Combinatorics of Free Probability. Cambridge University Press. MR2266879

- [5] Voiculescu D. (1987). Multiplication of Certain Non-commuting Random Variables. Journal of Operator Theory. 18 223-235. MR0915507
- [6] VOICULESCU D., DYKEMA K. AND A. NICA (1992). Free Random Variables. American Mathematical Society, Providence. MR1217253