ON ASYMPTOTIC GROWTH OF THE SUPPORT OF FREE MULTIPLICATIVE CONVOLUTIONS

VLADISLAV KARGIN
Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012
email: kargin@cims.nyu.edu

Submitted October 25, 2007, accepted in final form June 25, 2008
AMS 2000 Subject classification: 46L54, 15A52
Keywords: Free probability, free multiplicative convolution

Abstract

Let μ be a compactly supported probability measure on \mathbb{R}^{+}with expectation 1 and variance V. Let μ_{n} denote the n-time free multiplicative convolution of measure μ with itself. Then, for large n the length of the support of μ_{n} is asymptotically equivalent to $e V n$, where e is the base of natural logarithms, $e=2.71 \ldots$

1 Preliminaries and the main result

First, let us recall the definition of the free multiplicative convolution. Let a_{k} denote the moments of a compactly-supported probability measure $\mu, a_{k}=\int t^{k} d \mu$, and let the ψ-transform of μ be $\psi_{\mu}(z)=\sum_{k=1}^{\infty} a_{k} z^{k}$. The inverse ψ-transform is defined as the functional inverse of $\psi_{\mu}(z)$ and denoted as $\psi_{\mu}^{(-1)}(z)$. It is a well-defined analytic function in a neighborhood of $z=0$, provided that $a_{1} \neq 0$.
Suppose that μ and ν are two probability measures supported on $\mathbb{R}^{+}=\{x \mid x \geq 0\}$ and let $\psi_{\mu}^{(-1)}(z)$ and $\psi_{\nu}^{(-1)}(z)$ be their inverse ψ-transforms. Then, as it was first shown by Voiculescu in [5], the function

$$
f(z):=\left(1+z^{-1}\right) \psi_{\mu}^{(-1)}(z) \psi_{\nu}^{(-1)}(z)
$$

is the inverse ψ-transform of a probability measure supported on \mathbb{R}^{+}. (Voiculescu used a variant of the inverse ψ-transform, the S-transform.) This new probability measure is called the free multiplicative convolution of measures μ and ν, and denoted as $\mu \boxtimes \nu$.
The significance of this convolution operation can be seen from the fact that if μ and ν are the distributions of singular values of two free operators X and Y, then $\mu \boxtimes \nu$ is the distribution of singular values of the product operator $X Y$ (assuming that the algebra containing X and Y is tracial). For more details about free convolutions and free probability theory, the reader can consult [2], [4], or [6].
We are interested in the support of the n-time free multiplicative convolution of the measure
μ with itself, which we denote as μ_{n} :

$$
\mu_{n}=\underbrace{\mu \boxtimes \ldots \boxtimes \mu}_{n \text {-times }}
$$

Let L_{n} denote the upper boundary of the support of μ_{n}.
Theorem 1. Suppose that μ is a compactly-supported probability measure on \mathbb{R}^{+}, with the expectation 1 and variance V. Then

$$
\lim _{n \rightarrow \infty} \frac{L_{n}}{n}=e V
$$

where e denotes the base of natural logarithms, $e=2.71 \ldots$
Remarks: 1) Let X_{i} be operators in a von Neumann algebra \mathcal{A} with trace E. Assume that X_{i} are free in the sense of Voiculescu and identically distributed, and let $\Pi_{n}=X_{1} \ldots X_{n}$. It is known that if μ is the spectral probability measure of $X_{i}^{*} X_{i}$, then μ_{n} is the spectral probability measure of $\Pi_{n}^{*} \Pi_{n}$. Assume further that $E\left(X_{i}^{*} X_{i}\right)=1$ and $E\left(\left(X_{i}^{*} X_{i}\right)^{2}\right)=1+V$, and define $\left\|\Pi_{n}\right\|_{2}=:\left[E\left(\Pi_{n}^{*} \Pi_{n}\right)\right]^{1 / 2}$. Then our theorem implies that

$$
\lim _{n \rightarrow \infty} \frac{\left\|\Pi_{n}\right\|}{\left\|\Pi_{n}\right\|_{2}}=\sqrt{e V n}
$$

for all sufficiently large n. This result also holds if we relax the assumption $E\left(X_{i}^{*} X_{i}\right)=1$ and define

$$
V=\frac{E\left(\left(X_{i}^{*} X_{i}\right)^{2}\right)}{\left[E\left(X_{i}^{*} X_{i}\right)\right]^{2}}-1
$$

2) Theorem 1 improves the author's result in [3], where it was shown that $L_{n} / n \leq c L$ where c is a certain absolute constant and L is the upper bound of the support of μ. Theorem 1 shows that the asymptotic growth in the support of free multiplicative convolutions μ_{n} is controlled by the variance of μ and not by the length of its support.
The idea of proof of Theorem 1 is based on the fact that the radius of convergence of Taylor series for $\psi_{n}(z)$ is $1 / L_{n}$. Therefore the function $\psi_{n}(z)$ must have a singularity at the boundary of the disc $|z|=1 / L_{n}$. Since all the coefficients in this Taylor series are real and positive, the singularity is $z_{n}=1 / L_{n}$. Therefore, the study of L_{n} is equivalent to the study of the singularity of $\psi_{n}(z)$ which is located on \mathbb{R}^{+}and which is closest to 0 .
By Proposition 5.2 in [1], we know that for all sufficiently large n, the measure μ_{n} is absolutely continuous on $\mathbb{R}^{+} \backslash\{0\}$, and its density is analytic at all points where it is different from zero. For these n, the singularity of $\psi_{n}(z)$ is neither an essential singularity nor a pole. Hence, the problem is reduced to finding a branching point of $\psi_{n}(z)$ which is on \mathbb{R}^{+}and closest to zero. The branching point of $\psi_{n}(z)$ equals a critical value of $\psi_{n}^{(-1)}(u)$. Since by Voiculescu's theorem,

$$
\psi_{n}^{(-1)}(u)=\left(\frac{1+u}{u}\right)^{n-1}\left[\psi^{(-1)}(u)\right]^{n}
$$

therefore we can find critical points of $\psi_{n}^{(-1)}(u)$ from the equation

$$
\frac{d}{d u}\left[n \log \psi^{(-1)}(u)+(n-1) \log \left(\frac{1+u}{u}\right)\right]=0
$$

or

$$
\begin{equation*}
\frac{d}{d u} \log \psi^{(-1)}(u)=\left(1-\frac{1}{n}\right) \frac{1}{u(1+u)} \tag{1}
\end{equation*}
$$

Thus, our task is to estimate the root u_{n} of this equation which is real, positive and closest to 0 , and then study the asymptotic behavior of $z_{n}=\psi_{n}^{(-1)}\left(u_{n}\right)$ as $n \rightarrow \infty$. This study will be undertaken in the next section.

2 Proof of Theorem 1

Notation: L and L_{n} are the least upper bounds of the support of measures μ and μ_{n}, respectively; V and V_{n} are variances of these measures; $\psi(z)$ and $\psi_{n}(z)$ are ψ-transforms for measures μ and μ_{n}, and $\psi^{(-1)}(u)$ and $\psi_{n}^{(-1)}(u)$ are functional inverses of these ψ-transforms. When we work with ψ-transforms, we use letters t, x, y, z to denote variables in the domain of ψ-transforms, and b, u, v, w to denote the variables in their range.

In our analysis we need some facts about functions $\psi(z)$ and $\psi^{(-1)}(u)$. Let the support of a measure μ be inside the interval $[0, L]$, and let μ have expectation 1 and variance V. Note that for $z \in(0,1 / L)$, the function $\psi(z)$ is positive, increasing, and convex. Correspondingly, for $u \in(0, \psi(1 / L))$, the function $\psi^{(-1)}(u)$ is positive, increasing and concave.

Lemma 2. For all positive z such that $z<1 /(2 L)$, it is true that

$$
\begin{aligned}
\left|\psi(z)-z-(1+V) z^{2}\right| & \leq c_{1} z^{3} \\
\left|\psi^{\prime}(z)-1-2(1+V) z\right| & \leq c_{2} z^{2}
\end{aligned}
$$

where c_{1} and c_{2} depend only on L.
Proof: Clearly, $E\left(X^{k}\right) \leq L^{k}$. Using the Taylor series for $\psi(z)$ and $\psi^{\prime}(z)$, we find that for all positive z such that $z<1 /(2 L)$,

$$
\left|\psi(z)-z-(1+V) z^{2}\right| \leq \frac{L^{3}}{1-L z} z^{3}
$$

and

$$
\left|\psi^{\prime}(z)-1-2(1+V) z\right| \leq L^{3} \frac{3-2 L z}{(1-L z)^{2}} z^{2}
$$

which implies the statement of this lemma. QED.
Lemma 3. For all positive u such that $u<1 /(12 L)$, it is true that

$$
\left|\psi^{(-1)}(u)-u+(1+V) u^{2}\right| \leq c_{3} u^{3}
$$

where c_{3} depends only on L.
Proof: Let the Taylor series for $\psi^{(-1)}(u)$ be

$$
\psi^{(-1)}(u)=u-(1+V) u^{2}+\sum_{k=3}^{\infty} d_{k} u^{k}
$$

Using the Lagrange inversion formula, it is possible to prove that

$$
\left|d_{k}\right| \leq \frac{3}{2}(6 L)^{k-1}
$$

see, e.g., proof of Lemmas 3 and 4 in [3]. This implies that the Taylor series for $\psi^{(-1)}(u)$ are convergent in the disc $|u|<(6 L)^{-1}$. Hence, in this disc,

$$
\left|\sum_{k=3}^{\infty} d_{k} u^{k}\right| \leq\left|\frac{54 L^{2}}{1-6 L u} u^{3}\right|
$$

which implies the statement of this lemma. QED.
The proof of Theorem 1 uses the following proposition. Its purpose is to estimate the critical point of $\psi_{n}^{(-1)}(u)$ from below. Later, we will see that this estimate gives the asymptotically correct order of magnitude of the critical point.

Proposition 4. Let u_{n} be the critical point of $\psi_{n}^{(-1)}(u)$ which belongs to \mathbb{R}^{+}and which is closest to 0 . Then for all $\varepsilon>0$, there exists such $n_{0}(L, V, \varepsilon)$, that for all $n>n_{0}$,

$$
u_{n} \geq \frac{1}{n(1+2 V+\varepsilon)}
$$

Proof of Proposition 4:

Claim: Let ε be an arbitrary positive constant. Let $x_{n}=(n(1+2 V+2 \varepsilon))^{-1}$ and $b_{n}=$ $\psi\left(x_{n}\right)$. Then for all $n \geq n_{0}(\varepsilon, L, V)$ and all $u \in\left[0, b_{n}\right]$, the following inequality is valid:

$$
\begin{equation*}
\frac{d}{d u} \log \psi^{(-1)}(u)>\frac{n-1}{n} \frac{1}{u(1+u)} \tag{2}
\end{equation*}
$$

If this claim is valid, then since u_{n} is the smallest positive root of equation (1), therefore we can conclude that $u_{n}>b_{n}=\psi\left(x_{n}\right)$. By Lemma 2, it follows that for all sufficiently large n

$$
u_{n}>\psi\left(\frac{1}{n(1+2 V+2 \varepsilon)}\right)>\frac{1}{n(1+2 V+\varepsilon)}
$$

(Indeed, note that the last inequality has 2ε and ε on the left-hand and right-hand side, respectively. Since Lemma 2 implies that $\psi(z) \sim z$ for small z, therefore this inequality is valid for all sufficiently large n.)
Hence, Proposition 4 follows from the claim, and it remains to prove the claim.
Proof of Claim: Let us re-write inequality (2) as

$$
\begin{equation*}
\frac{1}{z \psi^{\prime}(z)}>\frac{n-1}{n} \frac{1}{\psi(z)(1+\psi(z))} \tag{3}
\end{equation*}
$$

where $z=\psi^{(-1)}(u)$.
Using Lemma 2, we infer that inequality (3) is implied by the following inequality:

$$
\frac{1}{z} \frac{1}{1+2(1+V) z+c_{2} z^{2}}>\frac{n-1}{n} \frac{1}{\psi(z)(1+\psi(z))}
$$

where c_{2} depends only on L. Note that $\psi(z) \geq z$ because the first moment of μ is 1 and all other moments are positive. Therefore, it is enough to show that

$$
\frac{1}{1+2(1+V) z+c_{2} z^{2}}>\frac{n-1}{n} \frac{1}{1+z} .
$$

for $z \leq(n(1+2 V+2 \varepsilon))^{-1}$ and all sufficiently large n. Let us write this inequality as

$$
\frac{1}{n-1}+\frac{1}{n-1} z>(1+2 V) z+c_{2} z^{2}
$$

If we fix an arbitrary $\varepsilon>0$, then clearly for all $z \leq(n(1+2 V+2 \varepsilon))^{-1}$ this inequality holds if n is sufficiently large. QED.
This completes the proof of Proposition 4.
Now let us proceed with the proof of Theorem 1 .
Let u_{n} be the critical point of $\psi_{n}^{(-1)}(u)$, which is positive and closest to zero, and let $y_{n}=$ $\psi^{(-1)}\left(u_{n}\right)$. We know that y_{n} is a root of the equation

$$
\begin{equation*}
\frac{1}{z \psi^{\prime}(z)}=\left(1-\frac{1}{n}\right) \frac{1}{\psi(z)(1+\psi(z))} \tag{4}
\end{equation*}
$$

(This is equation (1) in a slightly different form.) After a re-arrangement, we can re-write this equation as

$$
\begin{equation*}
\frac{\psi(z)}{z}(1+\psi(z))=\left(1-\frac{1}{n}\right) \psi^{\prime}(z) \tag{5}
\end{equation*}
$$

On the other hand, from the proof of Proposition 4 we know that $u_{n} \geq b_{n}=\psi\left(x_{n}\right)$, so that monotonicity of $\psi^{(-1)}$ implies

$$
y_{n}=\psi^{(-1)}\left(u_{n}\right) \geq x_{n}=\frac{1}{n(1+2 V+\varepsilon)}
$$

Let us look for a root of equation (5) in the range $\left[x_{n}, c / n\right]$ where c is a fixed positive number. Let us make a substitution $z=t / n$ in equation (5) and use Lemma 2. We get:

$$
\left(1+(1+V) \frac{t}{n}+O\left(n^{-2}\right)\right)\left(1+\frac{t}{n}+O\left(n^{-2}\right)\right)=\left(1-\frac{1}{n}\right)\left(1+2(1+V) \frac{t}{n}+O\left(n^{-2}\right)\right)
$$

After a simplification, we get

$$
t-\frac{1}{V}+O\left(n^{-1}\right)=0
$$

Hence, for a fixed $c>1$ and all sufficiently large n, the root is unique in the interval $[0, c]$ and given by the expression

$$
t=\frac{1}{V}+O\left(n^{-1}\right)
$$

Therefore,

$$
y_{n}=\frac{1}{V n}+O\left(n^{-2}\right)
$$

By Lemma 2, this implies that

$$
u_{n}=\psi\left(y_{n}\right)=\frac{1}{V n}+O\left(n^{-2}\right)
$$

This is the critical point of $\psi_{n}^{(-1)}(u)$.
The next step is to estimate the critical value of $\psi_{n}^{(-1)}(u)$, which is $z_{n}=\psi_{n}^{(-1)}\left(u_{n}\right)$. We write:

$$
z_{n}=u_{n}\left[\frac{\psi^{(-1)}\left(u_{n}\right)}{u_{n}}\right]^{n}\left(1+u_{n}\right)^{n-1}
$$

Using Lemma 3, we infer that

$$
\begin{aligned}
z_{n}= & u_{n}\left[1-(1+V) u_{n}+O\left(n^{-2}\right)\right]^{n}\left(1+u_{n}\right)^{n-1} \\
= & \left(\frac{1}{V n}+O\left(n^{-2}\right)\right) \\
& \times\left[1-(1+V) \frac{1}{V n}+O\left(n^{-2}\right)\right]^{n} \\
& \times\left[1+\frac{1}{V n}+O\left(n^{-2}\right)\right]^{n} \\
\sim & \frac{1}{e V n}
\end{aligned}
$$

as $n \rightarrow \infty$. Here e denotes the base of the natural logarithm: $e=2.71 \ldots$.
Hence,

$$
\lim _{n \rightarrow \infty} \frac{L_{n}}{n}=\lim _{n \rightarrow \infty} \frac{1}{n z_{n}}=e V
$$

QED.

3 Conclusion

Let me conclude with a slightly different formulation of the main result. Suppose that X_{i} are free, identically distributed random variables in a tracial non-commutative W^{*}-probability space with a faithful trace E. We proved that if $E\left(X_{i}^{*} X_{i}\right)=1$, then the asymptotic growth in the square of the norm of products $\Pi_{n}=X_{n} \ldots X_{1}$ is linear in n with the rate equal to $e\left(E\left(X_{i}^{*} X_{i} X_{i}^{*} X_{i}\right)-1\right)$.

References

[1] Belinschi S. T. and H. Bercovici (2005). Partially defined semigroups relative to multiplicative free convolution. International Mathematics Research Notices. 2005 65101. MR2128863
[2] Hiai F. and D. Petz (2000). The Semicircle Law, Free Random Variables And Entropy. American Mathematical Society, Providence. MR1746976
[3] Kargin V. (2007). The norm of products of free random variables. Probability Theory and Related Fields. 139 397-413. MR2322702
[4] Nica A. and R. Speicher (2006). Lectures on the Combinatorics of Free Probability. Cambridge University Press. MR2266879
[5] Voiculescu D. (1987). Multiplication of Certain Non-commuting Random Variables. Journal of Operator Theory. 18 223-235. MR0915507
[6] Voiculescu D., Dykema K. and A. Nica (1992). Free Random Variables. American Mathematical Society, Providence. MR1217253

