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Abstract

We extend the inductive approach to the lace expansion, previously developed to study models
with critical dimension 4, to be applicable more generally. In particular, the result of this note
has recently been used to prove Gaussian asymptotic behaviour for the Fourier transform of
the two-point function for sufficiently spread-out lattice trees in dimensions d > 8, and it is
potentially also applicable to percolation in dimensions d > 6.

1 Motivation

The lace expansion has been used since the mid-1980s to study a wide variety of problems in
high-dimensional probability, statistical mechanics, and combinatorics [12]. One of the most
flexible approaches to the lace expansion is the inductive method, first developed in [2] in
the context of weakly self-avoiding walks in dimensions d > 4, and subsequently extended
to a much more general setting in [6]. The inductive approach of [6] was successfully used to
prove Gaussian asymptotic behavior for the Fourier transform of the critical two-point function
cn(x; zc) for a sufficiently spread-out model of self-avoiding walk in dimensions d > 4 [8]. Up
to a constant, cn(x; zc) is the probability that a randomly chosen n-step self-avoiding walk
ends at x. Other models to which [6] applies include sufficiently spread-out models of oriented
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percolation in dimensions d > 4 [7], where the corresponding quantity is the critical two-
point function τn(x; zc) = P((0, 0) → (x, n)), and self-avoiding walks with nearest-neighbour
attraction in dimensions d > 4 [13]. More generally, an inductive analysis of lace expansion
recursions has been useful in studying the contact process [5] (extension to continuous time),
self-interacting random walks (such as excited random walk) [3] and the ballistic behavior of
1-dimensional weakly self-avoiding walk [1].
As it is stated in [6], the general inductive method is limited to models with critical dimension
4. Thus it does not apply directly to percolation, which has critical dimension 6, or to lattice
trees, which have critical dimension 8. In this paper, we show that the method and results of
[6] are robust to appropriate changes in various parameters and exponents, so that one can
indeed extend the results to more general critical dimensions.
Our extension has been applied already to prove Gaussian asymptotic behavior for the two-
point function tn(x; zc) for sufficiently spread-out lattice trees in dimensions d > dc = 8 in [9,
10]. Up to a constant, tn(x; zc) is the probability (under a particular critical weighting scheme)
that a randomly chosen finite lattice tree contains the point x, with the unique path in the tree
from 0 to x consisting of exactly n bonds. The asymptotic behavior of the Fourier transform
of the two-point function provides a first but significant step towards proving convergence of
the finite-dimensional distributions of the associated sequence of measure-valued processes to
those of the canonical measure of super-Brownian motion [10, 11].
A possible future application of our results is to study the critical two-point function τn(x; zc)
for sufficiently spread-out percolation in dimensions d > dc = 6. Here, τn(x; zc) is the probabil-
ity that x is in the open cluster of the origin, with the open path of minimum length connecting
the origin and x consisting of exactly n bonds, or, alternatively, with the open path connecting
the origin and x containing exactly n bonds that are pivotal for the connection.

2 The recursion relation

The lace expansion typically gives rise to a recursion relation for a sequence fn depending on
parameters k ∈ [−π, π]d and positive z. We may assume that f0 = 1. The recursion relation
takes the form

fn+1(k; z) =

n+1∑

m=1

gm(k; z)fn+1−m(k; z) + en+1(k; z), (n ≥ 0), (1)

with given sequences gm(k; z) and en+1(k; z). The goal is to understand the behaviour of the
solution fn(k; z) of (1).
A rough idea of the behaviour we seek to prove can be obtained from the following (nonrigorous)
argument. Suppose for simplicity that D(x) is uniformly distributed on a finite box centred

at the origin (so that
∑

x D(x) = 1), that g1(k; 1) = D̂(k) ≈ 1 − |k|2σ2/(2d), and that

em, gm+1 ≈ 0 for m ≥ 1. Then we have fn+1 ≈ g1fn, so fn(k) ≈ g1(k)n ≈
(
1 − |k|2σ2

2d

)n

, and

thus

fn

(
k√
σ2n

; 1

)
≈

(
1 − |k|2

2dn

)n

→ e−
|k|2

2d , as n → ∞.

The above argument is, however, overly simplistic, and misses important effects on the asymp-
totic behaviour of the solution to (1) due to the presence of em(k; z) and gm(k; z). The in-
ductive method of [6] details specific bounds on gm and en+1 that ensure that there exists
a critical value zc and positive constants A, v such that the true asymptotic behaviour is
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fn

(
k√

vσ2n
; zc

)
→ Ae−

|k|2

2d . Verification of these bounds has been carried out for sufficiently

spread-out models of self-avoiding walk [8], oriented percolation [7] and the contact process [5],
by estimating certain Feynman diagrams in dimensions d > 4. The required bounds are typi-
cally of the form |hm(k, z)| ≤ Cmb− d

2 , for some functions hm and exponent b ≥ 0 that varies
from bound to bound. What turns out to be important in the analysis is that d

2 = 2 + d−4
2 is

greater than 2 when d > 4.

In our analysis we introduce two new parameters θ(d), p∗ and a set B ⊂ [1, p∗]. We will discuss
the significance of p∗ and B following Assumption D in the next section. The most important
parameter, θ(d), takes the place of d

2 in exponents appearing in various bounds. As in [6] we
require that θ > 2. In [10], the result of this note is applied to lattice trees with the choice
θ = 2 + d−8

2 , with d > 8. In general, when the critical dimension is dc, we expect that the

correct parameter value is θ = 2 + d−dc

2 , e.g., we expect that θ = 2 + d−6
2 is the appropriate

choice for percolation. A detailed proof of the results in this note is available in [4], however,
most of the changes to the proof in [6] simply involve replacing d

2 in [6] with θ in [4]. In this
note we state the new assumptions and results explicitly, but for the sake of brevity, we present
only significant changes in the proof and refer the reader to [6] when the changes are merely
cosmetic.

The remainder of this note is organised as follows. In Section 3 we state the Assumptions S,
D, Eθ, and Gθ on the quantities appearing in the recursion relation, and the main theorem
to be proved. In Section 4, we introduce the induction hypotheses on fn that will be used to
prove the main theorem. We then discuss the necessary changes to the advancement of the
induction hypotheses of [6]. Once the induction hypotheses have been advanced, the main
theorem follows without difficulty.

3 Assumptions and main result

Suppose that for z > 0 and k ∈ [−π, π]d, we have f0(k; z) = 1 and that (1) holds for all n ≥ 0,
where the functions gm and em are to be regarded as given. Fix θ > 2.

The first assumption, Assumption S, remains unchanged from [6]. It requires that the functions
appearing in the recursion relation (1) respect the lattice symmetries of reflection and rotation,
and that fn remains bounded in a weak sense.

Assumption S. For every n ∈ N and z > 0, the mapping k 7→ fn(k; z) is symmetric under
replacement of any component ki of k by −ki, and under permutations of the components of k.
The same holds for en(·; z) and gn(·; z). In addition, for each n, |fn(k; z)| is bounded uniformly
in k ∈ [−π, π]d and z in a neighbourhood of 1 (both the bound and the neighbourhood may
depend on n).

The next assumption, Assumption D, is only cosmetically changed from [6]. It introduces a
probability mass function D = DL on Z

d which defines an underlying random walk model
and involves a non-negative parameter L which will typically be large. This serves to spread
out the steps of the random walk over a large set. An example of a family of D’s obeying the
assumption is taking D uniform on a box of side 2L + 1 centred at the origin. In particular,
Assumption D implies that D has a finite second moment, and we define

σ2 ≡ −∇2D̂(0) =
∑

x

|x|2D(x), (2)



294 Electronic Communications in Probability

where D̂(k) =
∑

x∈Zd D(x)eik·x is the Fourier transform of D, and ∇2 =
∑d

j=1
∂2

∂k2
j

with

k = (k1, . . . , kd).

Assumption D. We assume that

f1(k; z) = zD̂(k) and e1(k; z) = 0.

In particular, this implies that g1(k; z) = zD̂(k). In addition, we also assume:
(i) D is normalised so that D̂(0) = 1, and has 2 + 2ǫ moments for some 0 < ǫ < θ − 2, i.e.,

∑

x∈Zd

|x|2+2ǫD(x) < ∞. (3)

(ii) There is a constant C such that, for all L ≥ 1,

sup
x∈Zd

D(x) ≤ CL−d and σ2 ≤ CL2. (4)

(iii) Let a(k) = 1 − D̂(k). There exist constants η, c1, c2 > 0 such that

c1L
2|k|2 ≤ a(k) ≤ c2L

2|k|2 (‖k‖∞ ≤ L−1), (5)

a(k) > η (‖k‖∞ ≥ L−1), (6)

a(k) < 2 − η (k ∈ [−π, π]d). (7)

Assumptions E and G of [6] are adapted to general θ > 2 as follows. The relevant bounds on
fm, which a priori may or may not be satisfied, are that for some p∗ ≥ 1 and some nonempty
B ⊂ [1, p∗], we have for every p ∈ B,

‖D̂2fm(·; z)‖p ≤ K

L
d
p m

d
2p

∧θ
, |fm(0; z)| ≤ K, |∇2fm(0; z)| ≤ Kσ2m, (8)

for some positive constant K, where the norm is defined by ‖f‖p
p = (2π)−d

∫
[−π,π]d

|f(k)|pddk.

The bounds in (8) are identical to the ones in [6, (1.27)], except the first bound, which only
appears in [6] with p = 1 and θ = d

2 . It may be that B = {p∗} (i.e. B is a singleton), and then
p = p∗. This is the case in [10], where the choices p∗ = 2 and B = {2} are sufficient, as only
the p = 2 case in (8) is required to estimate the diagrams arising from the lace expansion and
verify the assumptions Eθ, Gθ which follow below. The set B allows for the possibility that in
other applications a larger collection of ‖ ·‖p norms may be required to verify the assumptions.
Let

β = β(p∗) = L− d
p∗ .

Since p∗ < ∞, β(p∗) is small for large L.

Assumption Eθ. There is an L0, an interval I ⊂ [1−α, 1+α] with α ∈ (0, 1), and a function
K 7→ Ce(K), such that if (8) holds for some K > 1, L ≥ L0, z ∈ I and for all 1 ≤ m ≤ n, then
for that L and z, and for all k ∈ [−π, π]d and 2 ≤ m ≤ n + 1, the following bounds hold:

|em(k; z)| ≤ Ce(K)βm−θ, |em(k; z) − em(0; z)| ≤ Ce(K)a(k)βm−θ+1.

Assumption Gθ. There is an L0, an interval I ⊂ [1−α, 1+α] with α ∈ (0, 1), and a function
K 7→ Cg(K), such that if (8) holds for some K > 1, L ≥ L0, z ∈ I and for all 1 ≤ m ≤ n, then
for that L and z, and for all k ∈ [−π, π]d and 2 ≤ m ≤ n + 1, the following bounds hold:

|gm(k; z)| ≤ Cg(K)βm−θ, |∇2gm(0; z)| ≤ Cg(K)σ2βm−θ+1,
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|∂zgm(0; z)| ≤ Cg(K)βm−θ+1,

|gm(k; z) − gm(0; z) − a(k)σ−2∇2gm(0; z)| ≤ Cg(K)βa(k)1+ǫ′m−θ+1+ǫ′ ,

with the last bound valid for any ǫ′ ∈ [0, ǫ], with 0 < ǫ < θ − 2 given by (3).

Our main result is the following theorem. (There is a misprint in [6, Theorem 1.1(a)] whose
restrictions should require γ, δ < d−4

2 rather than γ, δ < d−4
4 ; our assumption ǫ < θ − 2 makes

the restriction redundant here.)

Theorem 3.1. Let d > dc and θ(d) > 2, and assume that Assumptions S, D, Eθ and Gθ all
hold. There exist positive L0 = L0(d, ǫ), zc = zc(d, L), A = A(d, L), and v = v(d, L), such
that for L ≥ L0, the following statements hold.
(a) Fix γ ∈ (0, 1 ∧ ǫ) and δ ∈ (0, (1 ∧ ǫ) − γ). Then

fn

( k√
vσ2n

; zc

)
= Ae−

|k|2

2d [1 + O(|k|2n−δ) + O(n−θ+2)],

with the error estimate uniform in {k ∈ R
d : a(k/

√
vσ2n) ≤ γn−1 log n}.

(b)

−∇2fn(0; zc)

fn(0; zc)
= vσ2n[1 + O(βn−δ)].

(c) For all p ≥ 1,

‖D̂2fn(·; zc)‖p ≤ C

L
d
p n

d
2p

∧θ
.

(d) The constants zc, A and v obey

1 =

∞∑

m=1

gm(0; zc), A =
1 +

∑∞
m=1 em(0; zc)∑∞

m=1 mgm(0; zc)
, v = −

∑∞
m=1 ∇2gm(0; zc)

σ2
∑∞

m=1 mgm(0; zc)
.

As in the proof of [6, Theorem 1.1], the proof of Theorem 3.1 establishes the bounds (8) for all
non-negative integers m, with z in an m-dependent interval containing zc. Consequently, all
bounds appearing in Assumptions Eθ and Gθ follow as a corollary, for z = zc and all m. Also,
it follows immediately from Theorem 3.1(d) and the bounds of Assumptions Eθ and Gθ that

zc = 1 + O(β), A = 1 + O(β), v = 1 + O(β).

Finally, we remark that it is straightforward to extend [6, Theorem 1.2] for the susceptibility
to our present setting, with the assumption θ > 2 replacing d > 4. On the other hand, the
proof of the local central limit theorem [6, Theorem 1.3] does require θ = d

2 , and does not
extend to the more general setting considered in this paper.

4 Induction hypotheses and their consequences

4.1 Induction hypotheses

Theorem 3.1 is proved via induction on n, as in [6]. The induction hypotheses involve a
sequence vn, which is defined exactly as in [6] as follows. We set v0 = b0 = 1, and for n ≥ 1
we define

bn = − 1

σ2

n∑

m=1

∇2gm(0; z), cn =

n∑

m=1

(m − 1)gm(0; z), vn =
bn

1 + cn
.
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The induction hypotheses also involve several constants. Let θ > 2, and recall from (3) that
ǫ < θ − 2. We fix γ, δ > 0 and λ > 2 according to

0 < γ < 1 ∧ ǫ, 0 < δ < (1 ∧ ǫ) − γ, θ − γ < λ < θ. (9)

Here λ replaces ρ + 2 from [6], which is merely a change of notation.
We also introduce constants K1, . . . ,K5, which are independent of β. We define

K ′
4 = max{Ce(cK4), Cg(cK4),K4}, (10)

where c is a constant determined in the proof of Lemma 4.6 below. To advance the induction,
we need to assume that

K3 ≫ K1 > K ′
4 ≥ K4 ≫ 1, K2 ≥ K1, 3K ′

4, K5 ≫ K4. (11)

Here a ≫ b denotes the statement that a/b is sufficiently large. The amount by which, for
instance, K3 must exceed K1 is independent of β, but may depend on p∗, and is determined
during the course of the advancement of the induction.
Let z0 = z1 = 1, and define zn recursively by

zn+1 = 1 −
n+1∑

m=2

gm(0; zn), n ≥ 1.

For n ≥ 1, we define intervals

In = [zn − K1βn−θ+1, zn + K1βn−θ+1]. (12)

In particular this gives I1 = [1 − K1β, 1 + K1β].
Recall the definition a(k) = 1 − D̂(k). Our induction hypotheses are that the following four
statements hold for all z ∈ In and all 1 ≤ j ≤ n.

(H1) |zj − zj−1| ≤ K1βj−θ.

(H2) |vj − vj−1| ≤ K2βj−θ+1.

(H3) For k such that a(k) ≤ γj−1 log j, fj(k; z) can be written in the form

fj(k; z) =

j∏

i=1

[1 − via(k) + ri(k)] ,

with ri(k) = ri(k; z) obeying

|ri(0)| ≤ K3βi−θ+1, |ri(k) − ri(0)| ≤ K3βa(k)i−δ.

(H4) For k such that a(k) > γj−1 log j, fj(k; z) obeys the bounds

|fj(k; z)| ≤ K4a(k)−λj−θ, |fj(k; z) − fj−1(k; z)| ≤ K5a(k)−λ+1j−θ.

Note that these four statements are those of [6] with the replacement

ρ + 2 7→ λ (13)

in (H4) and the global replacement
d

2
7→ θ. (14)

By global replacement we also mean that d−2
2 7→ θ − 1, d−4

2 7→ θ − 2, etc. whenever such
quantities appear in exponents.
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4.2 Initialisation of the induction

The verification that the induction hypotheses hold for n = 0 remains unchanged from the
p = 1 case, up to the replacements (13-14).

4.3 Consequences of induction hypotheses

The key result of this section is that the induction hypotheses imply (8) for all 1 ≤ m ≤ n,
from which the bounds of Assumptions Eθ and Gθ then follow, for 2 ≤ m ≤ n + 1.
Throughout this note:

• C denotes a strictly positive constant that may depend on d, γ, δ, λ, but not on the Ki, k,
n, and not on β (which must, however, be chosen sufficiently small, possibly depending
on the Ki). The value of C may change from one occurrence to the next.

• We frequently assume β ≪ 1 (i.e., L ≫ 1) without explicit comment.

Lemmas 4.1 and 4.3 are proved in [6] and the proof in our context requires only the global
change (14).

Lemma 4.1. Assume (H1) for 1 ≤ j ≤ n. Then I1 ⊃ I2 ⊃ · · · ⊃ In.

Remark 4.2. The bound [6, (2.19)] is missing a constant. Instead of [6, (2.19)] we use

|si(k)| ≤ K3(2 + C(K2 + K3)β)βa(k)i−δ, (15)

the only difference being that the constant 2 appears here instead of a constant 1 in [6, (2.19)].
This does not affect the proof in [6]. To verify (15), we use the fact that 1

1−x ≤ 1 + 2x for

0 ≤ x ≤ 1
2 and note that for small enough β it follows from [6, (2.20)] that

|si(k)| ≤ [1 + 2K3β] [(1 + |vi − 1|)a(k)ri(0) + |ri(k) − ri(0)|]

≤ [1 + 2K3β]

[
(1 + CK2β)a(k)

K3β

iθ−1
+

K3βa(k)

iδ

]

≤ K3βa(k)

iδ
[1 + 2K3β][2 + CK2β] ≤ K3βa(k)

iδ
[2 + C(K2 + K3)β].

Here we have used the bounds of (H2-H3) as well as the fact that θ − 1 > δ.

Lemma 4.3. Let z ∈ In and assume (H2-H3) for 1 ≤ j ≤ n. Then for k with a(k) ≤
γj−1 log j,

|fj(k; z)| ≤ eCK3βe−(1−C(K2+K3)β)ja(k).

The middle bound of (8) follows, for 1 ≤ m ≤ n and z ∈ Im, directly from Lemma 4.3. We
next state two lemmas which provide the other two bounds of (8). The first concerns the ‖ · ‖p

norms and contains the most significant changes to [6]. As such we present the full proof of
this lemma.

Lemma 4.4. Let z ∈ In and assume (H2), (H3) and (H4). Then for all 1 ≤ j ≤ n, and
p ≥ 1,

‖D̂2fj(·; z)‖p ≤ C(1 + K4)

L
d
p j

d
2p

∧θ
,

where the constant C may depend on p, d.
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Proof. We show that

‖D̂2fj(·; z)‖p
p ≤ C(1 + K4)

p

Ldj
d
2
∧θp

.

For j = 1 the result holds since |f1(k)| = |zD̂(k)| ≤ z ≤ 2, and, since p ≥ 1, it therefore follows
from (4) and the Parseval relation that ‖D̂2f1(·; z)‖p

p ≤ 2p‖D̂2p‖1 ≤ 2p‖D̂2‖1 = 2p‖D‖2
2 ≤

2pCL−d. We may therefore assume that j ≥ 2 where needed in what follows, so that in
particular log j ≥ log 2.
Fix z ∈ In and 1 ≤ j ≤ n, and define

R1 = {k ∈ [−π, π]d : a(k) ≤ γj−1 log j, ‖k‖∞ ≤ L−1},
R2 = {k ∈ [−π, π]d : a(k) ≤ γj−1 log j, ‖k‖∞ > L−1},
R3 = {k ∈ [−π, π]d : a(k) > γj−1 log j, ‖k‖∞ ≤ L−1},
R4 = {k ∈ [−π, π]d : a(k) > γj−1 log j, ‖k‖∞ > L−1}.

The set R2 is empty if j is sufficiently large. Then

‖D̂2fj‖p
p =

4∑

i=1

∫

Ri

(
D̂(k)2|fj(k)|

)p ddk

(2π)d
.

We will treat each of the four terms on the right side separately.
On R1, we use (5) in conjunction with Lemma 4.3 and the fact that D̂(k)2 ≤ 1, to obtain for
all p > 0,

∫

R1

(
D̂(k)2|fj(k)|

)p ddk

(2π)d
≤

∫

R1

Ce−cpj(L|k|)2 ddk

(2π)d

≤
∫

Rd

Ce−cpj(L|k|)2dk ≤ C

Ld(pj)d/2
≤ C

Ldjd/2
.

Here we have used the substitution k′
i = Lki

√
pj. On R2, we use Lemma 4.3 and (6) to

conclude that for all p > 0, there is an α(p) > 1 such that
∫

R2

(
D̂(k)2|fj(k)|

)p ddk

(2π)d
≤ C

∫

R2

α−j ddk

(2π)d
= Cα−j |R2|,

where |R2| denotes the volume of R2. For j ≥ 2, j−1 log j takes its largest value when j = 3,
so |R2| is maximal when j = 3 and

|R2| ≤
∣∣∣{k : a(k) ≤ γ log 3

3 }
∣∣∣ ≤

∣∣∣{k : D̂(k) ≥ 1 − γ log 3
3 }

∣∣∣ ≤
(

1
1− γ log 3

3

)2

‖D̂2‖1 ≤
(

1
1− γ log 3

3

)2

CL−d,

using (4) in the last step. Therefore α−j |R2| ≤ CL−dj−d/2 since α−jj
d
2 ≤ C(α, d) for every j,

and ∫

R2

(
D̂(k)2|fj(k)|

)p ddk

(2π)d
≤ CL−dj−d/2.

On R3 and R4, we use (H4). As a result, the contribution from these two regions is bounded
above by (

K4

jθ

)p 4∑

i=3

∫

Ri

D̂(k)2p

a(k)λp

ddk

(2π)d
.



Extension of inductive approach to lace expansion 299

We first consider R3, where we apply D̂(k)2 ≤ 1. Recall that we can restrict our attention to
j ≥ 2. From (5), k ∈ R3 implies that L2|k|2 > Cj−1 log j, and we have the upper bound

CKp
4

jθpL2λp

∫

R3

1

|k|2λp
ddk ≤ CKp

4

jθpL2λp

∫ C
L

q

C log j

L2j

rd−1−2λpdr. (16)

For d > 2λp, we have an upper bound on (16) of

CKp
4

jθpL2λp

∫ C
L

0

rd−1−2λpdr ≤ CKp
4

jθpL2λp

(
C

L

)d−2λp

≤ CKp
4

jθpLd
. (17)

For d = 2λp, (16) is

CKp
4

jθpL2λp

∫ C
L

q

C log j

L2j

1

r
dr ≤ CKp

4

jθpL2λp
log

(
C

√
L2j

L
√

log j

)
=

CKp
4

jθpL2λp
log

(
Cj

log j

)
, (18)

and θp = θd
2λ > d

2 since λ < θ. This gives an upper bound in this case of CKp
4 j−

d
2 L−d. Lastly,

for d < 2λp, since λ < θ, (16) is bounded, as required, by

CKp
4

jθpL2λp

∫ ∞
q

C log j

CL2j

rd−1−2λpdr ≤ CKp
4

jθpL2λp

(
CL2j

log j

) 2λp−d
2

≤ CKp
4

j
d
2 Ld

. (19)

On R4, we use (4), p ≥ 1, D̂(k)2 ≤ 1, and (6) to obtain the bound

CKp
4

jθp

∫

[−π,π]d
D̂(k)2p ddk

(2π)d
≤ CKp

4

jθp

∫

[−π,π]d
D̂(k)2

ddk

(2π)d
≤ CKp

4

jθpLd
.

This completes the proof.

Lemma 4.5. Let z ∈ In and assume (H2) and (H3). Then, for 1 ≤ j ≤ n,

|∇2fj(0; z)| ≤ (1 + C(K2 + K3)β)σ2j.

The proof is identical to [6]. We merely point out one inconsequential correction to the first
line of [6, (2.35)]: a constant 2 is missing and it should read

∇2si(0) = 2

d∑

l=1

lim
t→0

si(tel) − si(0)

t2
. (20)

The next lemma, whose proof proceeds exactly as in [6] with d
2 replaced by θ, is the key to

advancing the induction, as it provides bounds for en+1 and gn+1. Recall that K ′
4 was defined

in (10).

Lemma 4.6. Let z ∈ In, and assume (H2), (H3) and (H4). For k ∈ [−π, π]d, 2 ≤ j ≤ n + 1,
and ǫ′ ∈ [0, ǫ], the following hold:
(i) |gj(k; z)| ≤ K ′

4βj−θ,
(ii) |∇2gj(0; z)| ≤ K ′

4σ
2βj−θ+1,

(iii) |∂zgj(0; z)| ≤ K ′
4βj−θ+1,

(iv) |gj(k; z) − gj(0; z) − a(k)σ−2∇2gj(0; z)| ≤ K ′
4βa(k)1+ǫ′j−θ+1+ǫ′ ,

(v) |ej(k; z)| ≤ K ′
4βj−θ,

(vi) |ej(k; z) − ej(0; z)| ≤ K ′
4a(k)βj−θ+1.
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5 The induction advanced

The advancement of the induction is carried out as in [6] with a few minor changes corre-
sponding to the global replacement (14), and also (13) for (H4). Full details can be found in
[4], and here we only point out the main places where changes are required.
In adapting [6, (3.2)], we use the fact that

∑∞
m=2 m−θ+1 < ∞, since θ > 2, and in adapting [6,

(3.26)], we use
∑n

j=n+2−m j−θ+1 ≤ C(n+2−m)−θ+2. For [6, (3.40)], we apply ǫ′ ≤ ǫ < θ−2 to

conclude that
∑∞

m=2 m−θ+1+ǫ′ < ∞. To adapt [6, (3.43)], we use the fact that δ+γ < 1∧(θ−2),
by (9), to conclude that there exists a q > 1 sufficiently close to 1 so that

(n + 1)−δ ≥ (n + 1)γq−1 log(n + 1) ×
{

(n + 1)0∨(3−θ), (θ 6= 3)

log(n + 1), (θ = 3).

Other similar bounds required to verify (H3) (corresponding to [6, (3.50)–(3.51)] and [6, (3.58)]
for example) also follow from δ + γ < 1 ∧ (θ − 2). For (H4), using the fact that γ + λ− θ > 0,
there exists q′ close to 1 so that for a(k) ≤ γn−1 log n,

C

nθ

nλ

nq′γ+λ−θ
≤ C

nθa(k)λ
.

This corresponds to [6, (3.62)], and is used to advance the first and second bounds of (H4).

Once the induction has been advanced, the proof of Theorem 3.1 is then completed exactly as
in [6], with the global replacement (14). Full details can be found in [4].
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