
Elect. Comm. in Probab. 13 (2008), 272–279

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

INTERNAL DIFFUSION-LIMITED AGGREGATION ON
NON-AMENABLE GRAPHS

WILFRIED HUSS1

Department of Mathematical Structure Theory, TU Graz, Steyrergasse 30/III, A - 8010 Graz
email: huss@finanz.math.tugraz.at

Submitted January 31, 2008, accepted in final form April 28, 2008

AMS 2000 Subject classification: Primary: 60K35, Secondary: 82B24, 82B41
Keywords: Interacting particle systems - Random Walks on graphs

Abstract

The stochastic growth model Internal Diffusion Limited Aggregation was defined in 1991 by
Diaconis and Fulton. Several shape results are known when the underlying state space is the
d-dimensional lattice, or a discrete group with exponential growth. We prove an extension
of the shape result of Blachère and Brofferio for Internal Diffusion Limited Aggregation on a
wide class of Markov chains on non-amenable graphs.

1 Introduction

Let X be a infinite, locally finite connected graph, and let P = {p(x, y)}x,y∈X be the transition
matrix of an irreducible random walk on X that is adapted to the graph structure, i.e. p(x, y)
is positive if and only if x is a neighbour of y in X. We use X to denote both the graph as
well as its vertex set, since the neighbourhood relation of X is also encoded in the transition
matrix P . We write {Sj(n)}j∈N for the trajectories of independent realizations of the random
walk (X,P ), with a common starting point Sj(0) = o.
The Internal Diffusion Limited Aggregation (iDLA) is a stochastic process of increasing subsets
{A(t)}t∈N of X, which are defined by the following rule:

A(0) = {o}
P[A(t + 1) = A(t) ∪ {x}| A(t)] = P

o[St+1(σt+1) = x].

Here σt = inf{k ≥ 0 : St(n) 6∈ A(t − 1)}, is the time of the first exit of the random walk from
the set A(t − 1).
This means that at time t a random walk St is started at the root o, and evolves as long as it
stays inside the iDLA-cluster A(t− 1). When St leaves A(t− 1) for the first time, the random
walk stops, and the point outside of the cluster that is visited by St is added to the new cluster
A(t).
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This growth model was introduced by Diaconis and Fulton [1] in 1991. Several shape results
and estimates for the fluctuations around the limiting shape for Z

d as the underlying graph
have been obtained by Lawler, Bramson and Griffeath [2], Lawler [3] and Blachère [4]. In
2004 Blachère [5] obtained a shape result for the iDLA model with symmetric random walk
on discrete groups of polynomial growth, although with less precise bounds than in the case
of Z

d. Finally in 2007 Blachère and Brofferio [6] proved a similar shape result for iDLA on
finitely generated groups with exponential growth.
In all cases where iDLA dynamics has been studied so far, a common behaviour for the limiting
shape of the clusters emerged. Namely, the boundary of the limiting shape can be described
as the level lines of the Green function, that is the sets of the form

{x ∈ X : G(o, x) = N},

where N is a positive constant.
This correspondence has been made particularly clear by Blachère and Brofferio [6], with the
introduction of the hitting distance, a left invariant metric on finitely generated groups, which
is defined as

dH(x, y) = − lnF (x, y),

where F (x, y) is the probability that y is hit in finite time by a random walk starting in x.
Further work on the hitting distance and its connections with random walk entropy and the
Martin boundary has been done by Blachère, Häıssinsky and Mathieu [7].
In this note we extend the result of Blachère and Brofferio to a class of random walks on
general non-amenable graphs.

2 Random walks on non-amenable graphs

Let X be a locally finite, connected graph. We denote by ∼ the neighbourhood relation of X.
Let P = {p(x, y)}x,y∈X be the transition matrix of an irreducible Markov chain on X. We
denote by S(n) the trajectories and by

p(n)(x, y)
def.
= P

x[S(n) = y]

the n-step transition probabilities of the Markov chain (X,P ).
We first recall some basic notions from the theory of random walks. The spectral radius is
defined as

ρ(P )
def.
= lim sup

n→∞
p(n)(x, y)

and is independent of x, y ∈ X, because of irreducibility. It is known that

p(n)(x, x) ≤ ρ(P )n, for all x ∈ X. (1)

The Green function

G(x, y) =

∞
∑

n=0

p(n)(x, y)

denotes the expected number of visits in y, of the random walk starting in x.
For a random walk S(n), let τy be the first hitting time of the point y:

τy
def.
= inf {n ≥ 0 : S(n) = y} ,
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with the convention τy = ∞, if the random walk never visits y. The hitting probability of y,
for a random walk starting in x, is denoted by

F (x, y)
def.
= P

x [τy < ∞] .

A simple calculation shows

G(x, y) = F (x, y)G(y, y).

Definition 2.1. A random walk is called uniformly irreducible, if there are constants ε0 > 0
and N < ∞ such that

x ∼ y implies p(n)(x, y) ≥ ε0 for some n ≤ N.

Definition 2.2. A Markov chain (X,P ) is called reversible, if there exists a measure m :
X → (0,∞), such that

m(x)p(x, y) = m(y)p(y, x), for all x, y ∈ X.

If m is bounded, i.e. there exists a C ∈ (0,∞), such that

C−1 ≤ m(x) ≤ C, for all x ∈ X, (2)

then the Markov chain is called strongly reversible.

Remark 2.3. The simple random walk is strongly reversible if and only if the vertex degree
of X is bounded. And in that case it is also uniformly irreducible.

The following inequality from [8, Lemma 8.1] gives us a generalization of (1) for arbitrary
n-step transition probabilities in the case of strongly reversible Markov chains.

Lemma 2.4. If (X,P ) is strongly reversible then p(n)(x, y) ≤ Cρ(P )n, with C as in Definition
2.2.

Proposition 2.5. For (X,P ) uniformly irreducible, there exists ε0 > 0 such that, for all
neighbours x ∼ y:

F (x, y) ≥ ε0.

Proof. Recall from Definition 2.1, that there exist ε0 > 0 and n ≤ N such that

ε0 ≤ p(n)(x, y) = P
x [S(n) = y] ≤ P

x [τy < ∞] = F (x, y).

The converse is not true in general and it is easy to construct counterexamples. Using some
additional assumptions we can show the following result.

Proposition 2.6. Let (X,P ) be a strongly reversible random walk with ρ(P ) < 1, and such
that there exists a constant ε0 > 0 such that F (x, y) ≥ ε0 for all neighbours x ∼ y ∈ X. Then
the random walk is uniformly irreducible.
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Proof. Suppose that the random walk is not uniformly irreducible. This means that for all
δ > 0, there exist neighbouring points xδ ∼ yδ such that, for all n ∈ N : p(n)(xδ, yδ) < δ.
So, we can construct sequences {xi}i∈N and {yi}i∈N, with xi ∼ yi and

p(n)(xi, yi) <
1

i
, for all n ∈ N. (3)

For n = 0 this implies xi 6= yi.
Lemma 2.4 gives a second bound for the n-step transition probabilities:

p(n)(xi, yi) ≤ Cρ(P )n. (4)

Now we look at the Green function

G(xi, yi) = F (xi, yi)G(yi, yi) ≥ F (xi, yi) ≥ ε0. (5)

But, on the other hand, using (3) and (4)

G(xi, yi) =

∞
∑

n=1

p(n)(xi, yi) ≤
∞
∑

n=1

min

{

1

i
, Cρ(P )n

}

.

Defining Ni =
⌊

− ln(i·C)
ln ρ(P )

⌋

, we can split the above sum in two parts:

G(xi, yi) ≤
Ni
∑

n=1

1

i
+ C

∞
∑

n=Ni+1

ρ(P )n

≤ − ln(i · C)

i · ln ρ(P )
+

C

1 − ρ(P )
ρ(P )Ni+1.

This goes to 0 for i → ∞, because Ni goes to infinity and ρ(P ) < 1, and gives a contradiction
to the lower bound of the Green function in equation (5).

For a subset K ⊂ X set ∂E(X)
def.
= {(x, y) ∈ X2 : x ∼ y, x ∈ K, y 6∈ K}. The edge-

isoperimetric constant of X is defined as

ιE(X)
def.
= inf

{ |∂EK|
|K| : K ⊂ X finite, K 6= ∅

}

.

A Graph X is called amenable if ιE(x) = 0 and non-amenable if ιE(x) > 0. The following
relation between amenability and the spectral radius of simple random walk is well known
[9, 10]. See [8, Theorem 10.3] for the proof of a more general version of this theorem.

Theorem 2.7. X is non-amenable if and only if ρ(P ) < 1. Here P is the transition operator
of simple random walk on X.

The following theorem (see [8, Theorem 10.3]) will be needed later. For a reversible Markov
chain we define the real Hilbert space ℓ2(X,m) with inner product

〈f, g〉 =
∑

x∈X

f(x)g(x)m(x).
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Theorem 2.8. The following statements are equivalent for reversible Markov chains (X,P ).

(a) The spectral radius ρ(P ) is strictly smaller than 1.

(b) The Green function defines a bounded linear operator on ℓ2(X,m) by

Gf(x) =
∑

y∈X

G(x, y)f(y).

From now on we only consider Markov chains (X,P ) that are uniformly irreducible, strongly
reversible and have ρ(P ) < 1. In this setting we can follow [6] and define the“hitting distance”.
For all x, y ∈ X:

dH(x, y)
def.
= − ln F (x, y).

If X is the Cayley graph of a finitely generated group, and P a symmetric left invariant random
walk on X then dH is a left invariant metric on X, see [6]. For arbitrary graphs this does not
hold anymore, but we can still use dH to define balls of radius Kn, where K = − ln ε0 (with
ε0 as in Definition 2.1):

Bn(x)
def.
= {z ∈ X : dH(x, z) ≤ Kn} ,

and its boundaries as

∂Bn(x)
def.
= {y 6∈ Bn(x) : ∃z ∼ y ∧ z ∈ Bn(x)} .

The constant K is needed in the definition of the balls to ensure that the balls with radius n

and n + 1 are properly nested, i.e:

∂Bn(x) ⊆ Bn+1(x). (6)

Indeed, let y ∈ ∂Bn(x) and z ∈ Bn(x) such that y ∼ z. Then

dH(x, y) = − ln F (x, y) ≤ − ln F (x, z)F (z, y) = d(x, z) − lnF (z, y)

≤ Kn − ln ε0 = K(n + 1).

This implies that y ∈ Bn+1(x).

Proposition 2.9. The balls Bn(x) are finite.

Proof. It suffices to show that limn→∞ F (x, yn) = 0, for all sequences {yn}n∈N with infinitely
many distinct elements. The functions {ex}x∈X with ex(z) = δx(z)m(x)−1/2 form an orthonor-
mal basis of ℓ2(X,m). By Theorem 2.8 the Green function defines a bounded linear operator.
From Bessel’s inequality it follows that for any sequence yn ∈ X, which has infinitely many
distinct elements, 〈Geyn

, ex〉 → 0 as n → ∞.

Because 〈Geyn
, ex〉 = G(x, yn)

√

m(x)
m(yn) and by strong reversibility C−1 ≤

√

m(x)
m(yn) ≤ C, this

is equivalent to G(x, yn) → 0. Since F (x, yn) = G(x,yn)
G(yn,yn) ≤ G(x, yn) the finiteness of Bn(x)

follows.

To simplify the notation we write Bn = Bn(o) and ∂Bn = ∂Bn(o). Denote by V (n) the size of
the ball of radius n:

V (n) = |Bn|.
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Proposition 2.10. For all finite subsets A ⊂ X the following estimates hold:

∑

x∈A

F (x, y) ≤ J · c−1
ρ ln|A|, (7)

∑

y∈A

F (x, y) ≤ J · c−1
ρ ln|A|, (8)

with cρ = − ln ρ(P ) and some constant J > 0, which does not depend on A.

Proof. We have

F (x, y) =
G(x, y)

G(y, y)
≤ G(x, y).

Therefore, using the estimate of Lemma 2.4:

∑

x∈A

F (x, y) ≤
∑

x∈A

∞
∑

n=0

p(n)(x, y) =
∞
∑

n=0

∑

x∈A

p(n)(x, y)

≤
∑

n≤c−1

ρ ln|A|

∑

x∈A

m(y)

m(x)
p(n)(y, x) +

∑

n>c−1

ρ ln|A|

∑

x∈A

C · ρ(P )n.

For M = sup
{

m(x)
m(y) : x, y ∈ X

}

we get:

∑

x∈A

F (x, y) ≤ M · c−1
ρ ln|A| + C|A|

∫ ∞

c−1

ρ ln|A|
e−cρtdt

= M · c−1
ρ ln|A| + C · c−1

ρ

≤ J · c−1
ρ ln|A|.

The second estimate can be derived in the same way, but without the need to apply reversibility.

The next proposition gives some estimates of the size of the balls.

Proposition 2.11. There exist constants Cl, Cu > 0, such that

Cle
Kn ≤ V (n) ≤ CuneKn, for all n ≥ n0.

Proof. Since for x 6∈ Bn−1 the distance dH(o, x) > K(n − 1):

∑

x∈∂Bn−1

F (o, x) ≤ |∂Bn−1| · e−K(n−1). (9)

Every random walk that leaves the ball Bn−1 has to hit at least one point of ∂Bn−1(n). Because
the balls are finite the random walk leaves Bn−1 with probability 1, hence

∑

x∈∂Bn−1

F (o, x) ≥ 1.

Using (9) and (6), it implies that

eK(n−1) ≤ |∂Bn−1| ≤ |Bn| = V (n).
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Choosing Cl = e−K , gives the lower bound of the proposition.
To prove the upper bound, consider the following inequality

|Bn| · e−Kn ≤
∑

x∈Bn

F (o, x) ≤ J · c−1
ρ · ln|Bn|, (10)

which follows from the definition of the balls Bn and Proposition 2.10. With the finiteness of
the balls this implies that |Bn| = O(eK′n). Further, (10) gives for some constants C̃ and Cu:

|Bn| ≤ J · c−1
ρ eKn ln|Bn|

≤ J · c−1
ρ eKn ln

(

C̃eK′n
)

≤ J · c−1
ρ eKn

(

K ′n + ln C̃
)

≤ CuneKn.

3 Internal diffusion limited aggregation

We can now formulate our main result, which connects the shape of the internal DLA clusters
to the balls with respect to the hitting distance.

Theorem 3.1. Let the sequence of random subsets {A(n)}n ∈ N be the internal DLA process
on a strongly reversible, uniformly irreducible Markov chain with spectral radius strictly smaller
than 1. Then for any ε > 0 and all constants CI ≥ 1+ε

K and CO >
√

3,

P
[

∃nε s.t. ∀n ≥ nε : Bn−CI ln n ⊆ A(V (n)) ⊆ Bn+CO

√
n

]

= 1.

The proof of Theorem 3.1 is the same as the proof the equivalent statement for groups with
exponential growth [6, Theorem 3.1]. We just need to replace [6, Proposition 2.3] with Propo-
sition 2.10 and Proposition 2.11, which give an equivalent statement in our setting.
For the estimate of the outer error of Theorem 3.1, the upper bound in Proposition 2.11 is
tighter than the analog statement in [6, Proposition 2.3] because of non-amenability (see also
[6, Remark 2.4]), which in turn leads to a smaller constant CO.
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