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Abstract

The scale-invariant spacings lemma due to Arratia, Barbour and Tavaré establishes the distri-
butional identity of a self-similar Poisson process and the set of spacings between the points
of this process. In this note we connect this result with properties of a certain set of extreme
points of the unit Poisson process in the positive quadrant.

1 Introduction

For fixed k > 0 let T (k) be the self-similar (or scale-invariant) Poisson point process on R+,
with intensity function k/t. Let S(k) be the point process of spacings in T (k), meaning that
the generic point of S(k) is a difference t− s, where t > s are some consequitive points of T (k)

(so [s, t] ∩ T (k) = {s, t}). The scale-invariant spacings lemma due to Arratia, Barbour and
Tavaré [2, Lemma 7.1] asserts that

the ABT lemma : S(k) =d T (k). (1)

In this note we re-derive this remarkable result from the perspective of the theory of records,
and connect it with the circle of ideas around Ignatov’s theorem [7, 10, 11, 15, 17]. We choose
the framework of the Poisson point process in the positive quadrant since this setting is very
geometric and allows us to exploit various symmetry properties of the Lebesgue measure. The
connection between k-records and k-corners in Proposition 6 and the intensity formula (5) are
new.

See [2, 3, 13, 14] for other occurrences of the self-similar Poisson process in combinatorial
probability.
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2 Corners and records

Let P be the Poisson point process in R
2
+ with unit intensity. All point processes considered

here have no multiple points, a feature which enables us to treat these processes as random
sets rather than counting measures. We shall interpret an atom a = (t, x) ∈ P as the value
x observed at time t. With probability one no two atoms of P lie on the same vertical or
horizontal line, hence there is a one-to-one correspondence between observation times and
observed values. The coordinate projections will be denoted τ(a) = t and ξ(a) = x. The
process P is locally finite, however this does not apply to its projections: for every interval
]s, t[ (0 < s < t) there are infinitely many atoms with τ(a) ∈ ]s, t[ , and for every interval ]x, y[
(0 < x < y) there are infinitely many atoms with ξ(a) ∈ ]x, y[ .

For k a positive integer, a point a ∈ R
2
+ is said to be a k-corner of P if

(I) either a ∈ P and there are k − 1 points b ∈ P strictly south-west from a,

(II) or a /∈ P, there are k − 2 points b ∈ P strictly south-west from a (i.e. in the open
south-west quadrant with apex a), a point c ∈ P strictly west from a and a point d ∈ P
strictly south from a.

To interpret the definition geometrically, suppose a light source allocated at point a ∈ R
2
+

illuminates the area south-west from a including the edges. Generate a rectangular grid, dense
in the quadrant, by drawing all vertical and horizontal lines through atoms of P. The k-corners
are the points a of the grid which illuminate exactly k atoms of P.

We denote C(k) the set of k-corners and denote R(k) its subset defined by the condition (I)
alone. Obviously, C(1) = R(1), but for k > 1 the inclusion R(1) ⊂ C(1) is strict almost surely.
Following [15] we call the points a ∈ R(k) k-records. For a ∈ P the initial rank of a is one bigger
the number of atoms b ∈ P strictly south-west from a, hence a k-record is an observation of
initial rank k.

Notably, τ(C(k)) =d ξ(C(k)) and τ(R(k)) =d ξ(R(k)). This is seen from the fact that the
reflection (t, x) 7→ (x, t) about the bisectrix preserves both the coordinatewise partial order
and the Lebesgue measure, hence preserves the law of P.

Let M
(k)
t be the k-th smallest value observed before t, which is the k-th minimal point of

the Poisson process {ξ(a) : a ∈ P ∩ ([0, t] × [0,∞[)}. It is easily seen that (M
(k)
t , t > 0)

is a nonincreasing piecewise-constant càdlàg process, whose flats start at the k-corners of P.

Indeed, M
(k)
t < M

(k)
t− means that there is an atom (t, x) ∈ P with t ∈ τ(∪i≤kR

(i)); then

x = M
(k)
t if (t, x) is a k-record, and M

(k)
t = M

(k−1)
t− if the initial rank of (t, x) is less than k.

Furthermore, if (t, x) ∈ P is a j-record for j < k then M
(k)
t > x and M

(k)
s = x for s the time

of the (k − j)th observation in ]t,∞[×[0, x]. It follows that ξ(∪j≤kR
(j)) = ξ(C(k)), and by

symmetry also that τ(∪j≤kR
(j)) = τ(C(k)). However, despite the coincidence of projections,

the point processes C(k) and ∪j≤kR
(k) are very different.

Remark 1. The term ‘k-record’ in the existing literature is ambiguous. By some authors
(see e.g. [16]) a k-record is a new value of the kth minimum caused by an observation of the
initial rank at most k, and this corresponds to the historically first usage of the term in [9]. By
other authors (especially in the work on Ignatov’s theorem, see [7] for a survey) a k-record is
an observation of the initial rank exactly k. According to [1], these are k-records of types 2 and
1, respectively. Looking in the earlier work on the order properties of multivariate samples
[4], the k-records (in the sense of [7], or of type 1 in [1]) correspond to ‘the kth layer 3rd



Corners and Records of the Poisson Process in Quadrant 189

quadrant admissible points’. Thus our k-records are as in [7, 17] (hence type 1 in [1]), while
our k-corners are the ‘k-records’ in the sense of [16] (hence type 2 in [1]).

3 Projections and intensity

The process (M
(k)
t , t > 0) is Markovian, with a familiar kind of dynamics [5, 6, 10, 11, 12].

Given Mt = x, the residual life-time in x is E/x and the new state when the transition occurs
is Bx, where the random variables E and B are independent, E is exponential(1), and B is
beta(k, 1) with density

P(B ∈ dz) = kzk−1dz z ∈ [0, 1]. (2)

The marginal distributions have gamma densities

P(M
(k)
t ∈ dx) =

e−tx(tx)k−1tdx

Γ(k)
, x > 0. (3)

A self-similarity property

(cM
(k)
t , t > 0) =d (M

(k)
t/c , t > 0), c > 0 (4)

follows from the invariance of the Lebesgue measure under the hyperbolic shifts (t, x) 7→

(t/c, cx). The process ‘enters from infinity’, i.e. has the asymptotic initial value M
(k)
0+ = ∞,

and has the asymptotic terminal value M
(k)
∞− = 0.

In the following result, the assertion about τ(R(1)) is an instance [17, Proposition 4.9], while
the last claim is a specialisation of Ignatov’s theorem in the form of [15, Corollary 5.1].

Proposition 2. The point processes τ(R(k)) for k = 1, 2, . . . are iid Poisson, each with
intensity 1/t. The process τ(C(k)) is Poisson with intensity k/t. The analogous facts are true
for ξ(R(k)) and ξ(C(k)).

Proof. Fix t and let a1, a2, . . . be the points of P ∪ ([0, t]× [0,∞[) labelled by increase of their

x-values M
(1)
t ,M

(2)
t , . . .. Because the initial rank of ak is equal to #{i : i ≤ k, τ(ai) ≤ τ(ak)},

the processes τ(R(k))∩ [0, t] for k = 1, 2, . . . are completely determined by the time projections

(τ(ak), k ∈ N), hence they are jointly independent of the x-projections (M
(k)
t , k ∈ N). On the

other hand, the initial ranks of observations after t depend on P ∩ ([0, t]× [0,∞[) only through

(M
(k)
t , k ∈ N), from which follows that the multivariate point process (τ(R(k)), k ∈ N) on R+

has independent increments, meaning that its restrictions to disjoint intervals are independent
(a property also called complete independence in [8]). The intensity of each τ(R(k)) is readily
identified as 1/t since an observation of initial rank k occurs in [t − dt, t] precisely when ak

arrives on this interval, and since the law of τ(ak) is uniform[0, t]. It follows that each τ(R(k))
is a self-similar Poisson process with intensity 1/t. The multivariate process (τ(R)(k), k ∈ N) is
simple, hence by a standard result from the theory of point processes [8, p. 205] the component
processes τ(R(k))’s are jointly independent.

By symmetry about the bisectrix the above is extended to k-record values. Superposing k iid
Poisson processes yields the result about τ(C(k)) = ∪j≤kτ(R(j)), and finally this is extended
to ξ(C(k)) by symmetry.
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Remark 3. Ignatov’s theorem in its classical form asserts that the point processes of k-
record values, derived from an iid sequence (with some distribution function F ) are iid. By
application of the probability integral transform, the case of arbitrary continuous F is reducible
to the instance of F being uniform[0, 1]. In its turn, the uniform case is readily covered by
Proposition 2, because the values of the observations in the strip P ∩ ([0,∞[×[0, x]), arranged
in their time-order, are iid uniform[0, 1]. For continuous F , this argument for Ignatov’s theorem
seems to be the shortest known. Note that the symmetry between record values and record
times is lost if the Lebesgue measure dtdx in the quadrant is replaced by any other dt · ν(dx)
in R+ × R with nonatomic, sigma-finite ν such that ν[−∞, x] < ∞ for x ∈ R.

Lemma 4. Conditionally given (M
(k)
s , s ≤ t), the vector (M

(1)
t , . . . ,M

(k−1)
t ) is independent

of the observation times (τ(R(j)) ∩ [0, t], j ∈ N) and has the same law as the vector of k − 1

minimal order statistics sampled from the uniform distribution on [0,M
(k)
t ].

Proof. Condition on the location of the last k-corner before t, say (u, x). We have P ∩
( ]u, t[×[0, x]) = ∅. The rectangular grid spanned on k points involved in the definition of
(u, x) is distributed like the product grid generated by k− 1 order statistics from uniform[0, u]
and independent k − 1 order statistics from uniform[0, x]. The grid and the processes P ∩
(]t,∞] × [0, x]), P ∩ ([0, t]× ]x,∞]) are jointly independent, which readily yields the result,

because (M
(k)
s , s ≤ t) is determined by P ∩ ([0, u]× ]x,∞]), and (τ(R(j)) ∩ [0, t], j ∈ N) is

determined by P ∩ ([0, u]× ]x,∞]) and the τ -projection of the grid.

Remark 5. The kth sample from the uniform distribution hits each of the k spacings
generated by k − 1 order statistics with probability 1/k. Thus Lemma 4 implies that each
τ(Ri) is a pointwise Bernoulli thinning with probability 1/k of the process τ(C(k)), for any
k ≥ i. Once the independence of increments of the superposition process τ(C(k)) = ∪i≤kτ(R(i))
is acquired, these facts can be used to avoid the most subtle part of our proof of Proposition
2: the reference to the general result that the independence of increments of a multivariate
process and simplicity imply independence of the marginal point processes.

We compute next the density pm(a1, . . . , am) of the event that there are m k-corners at lo-
cations a1 = (t1, x1), . . . , am = (tm, xm), with t1 < . . . < tm, x1 > . . . > xm, and no further
k-corners occur between t1 and tm. This event occurs when Mt1− = x for some x > x1 and
the process at time t1 decrements to x1, then spends the time t2 − t1 at x1, then decrements
to x2 and so on, hence the infinitesimal probability of the event in focus is

1

Γ(k)

∫ ∞

x1

(t1x)k−1e−t1xt1dx (xdt1) k
(x1

x

)k−1 dx1

x

x1e
−(t2−t1)x1dt2 k

(

x2

x1

)k−1
dx2

x1
· · ·

xm−1e
−(tm−tm−1)xm−1dtm k

(

xm

xm−1

)k−1
dxm

xm−1
,

which after massive cancellation results in

pm(a1, . . . , am) =
km

Γ(k)
(t1xm)k−1 exp

[

−x1t1 − (t2 − t1)x1 − . . . − (tm − tm−1)xm)
]

. (5)
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The expression in the right-hand side is invariant under the substitution t1 ↔ xm, . . . , tm ↔ x1,
which is equivalent to our observation that the law of C(k) is preserved by the reflection about
the bisectrix.
The m = 1 instance of (5) is the intensity of C(k),

p1(t, x) =
k

Γ(k)
(tx)k−1e−tx, (6)

which being compared with the (obvious) intensity function (tx)k−1e−tx/Γ(k) of the k-record
process R(k) makes us wonder where the factor k is coming from. The structure of the processes
R(k) (which are neither independent nor identically distributed) is apparently more complex

than that of C(k)’s. In particular, the process (R
(k)
t , t > 0) of the value of the last k-record

observed before t is not even Markovian for k > 1: the law of the life-time at value x is that
of the (infinite-mean) random sum x−1(E1 + . . . + EN ), where all variables are independent,
Ej ’s are unit exponential, and N is the first success time in a series of Bernoulli trials with
‘harmonic’ success probabilities 1/k, 1/(k + 1), . . . (explicitly, P(N = n) = 1/((n + 1)(n + 2))
for k = 2, but no simple formula exists for k > 2). Still, R(k) can be accessed through C(k):

Proposition 6. The law of R(k) is that of a pointwise Bernoulli thinning of C(k) with
probability 1/k.

Proof. Like the thinning argument in Remark 5, this is a consequence of Lemma 4.

This explains, of course, the factor k in (6).

4 An argument for the ABT lemma

By Proposition 2 we can identify T (k) with τ(C(k)) and S(k) with the set of life-times of

(M
(k)
t , t > 0). Let J (k) be a planar process having points (s, x) where x ∈ ξ(C(k)) and s is the

life-time of (M
(k)
t , t > 0) at x. Because the projection ξ(C(k)) is a Poisson process, we conclude

that J (k) is a marked Poisson process (same as the one denoted R in [2, p. 47]) with intensity
(k/x)(xe−sx) = ke−sx; therefore by symmetry of the intensity τ(J (k)) =d ξ(J (k)) =d ξ(C(k)),
and (1) now follows from Proposition 2.
A novelty of this argument is in exploiting the distributional identity of two projections of
C(k). This allowed us to avoid the computational part of the proof in [2], where one needed
to derive the Poisson character of the process T (k) from its definition by partial summations
over J (k).
Our proof of (1) based on the k-corners of the unit Poisson process in R

2
+ works only for

integer k. For general k > 0 one can argue by interpolation from the integer values, since all
distributions involved depend on the parameter k analytically.
An alternative approach for arbitrary k > 0 is to directly define a self-similar Markov process

(M
(k)
t , t > 0) with transitions as described in Section 3 and marginal distributions (3), see

[6] (to fit exactly in the framework of [6], one should consider the reciprocal process 1/M
(k)
t

which ‘enters from 0+’). The consistency of such definition amounts to checking, by means
of a moments formula (see e.g. [12, Equation 8]), that beta(k, 1) distribution for B indeed
corresponds to the gamma marginals (3). From this description of the process, one can derive

(5) and from this conclude about the t ↔ x symmetry of the graph of t 7→ M
(k)
t .
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Analogous self-similar processes can be constructed for more general distributions of the stick-
breaking factor like our B. The case of beta distribution (2) is, in fact, very special in that
only for this distribution of B the set of jump-times (and the range) of a self-similar process
is Poisson, see [12, Proposition 8].

Acknowledgement The author is indebted to a referee for helpful remarks.
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