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Abstract

We revisit the work of [Bourgain et al., 1992] – referred to as “BKKKL” in the title – about
influences on Boolean functions in order to give a precise statement of threshold phenomenon
on the product space {1, . . . , r}N, generalizing one of the main results of [Talagrand, 1994].

1 Introduction

The theory of threshold phenomena can be traced back to [Russo, 1982], who described it as an
“approximate zero-one law”(see also [Margulis, 1974], [Kahn et al., 1988] and [Talagrand, 1994]).
These phenomena occur on {0, 1}n equipped with the probability measure µp which is the
product of n Bernoulli measures with the same parameter p ∈ [0, 1]. We say that an event
A ⊂ {0, 1}n is increasing if the indicator function of A is coordinate-wise nondecreasing. When
the influence of each coordinate on an increasing event A is small (see the definition of γ here-
after), and when the parameter p goes from 0 to one, the probability that A occurs, µp(A),
grows from near zero to near one on a short interval of values of p: this is the threshold phe-
nomenon. The smaller the maximal influence of a coordinate on A is, the smaller is the bound
obtained on the length of the interval of values of p. More precisely, for any j in {1, . . . , n},
define Aj to be the set of configurations in {0, 1}n which are in A and such that j is pivotal
for A in the following sense:

Aj = {x ∈ {0, 1}n s.t. x ∈ A, and Tj(x) 6∈ A} ,

where Tj(x) is the configuration in {0, 1}n obtained from x by“flipping” coordinate j to 1−xj .
It is shown in [Talagrand, 1994], Corollary 1.3, that if you denote by γ the maximum over p
and j of the probabilities µp(Aj), then, for every p1 < p2,

µp1
(A)(1 − µp2

(A)) ≤ γK(p2−p1) , (1)
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where K is a universal constant. This result was also derived independently by [Friedgut and Kalai, 1996],
and both results were built upon an earlier paper by [Kahn et al., 1988], where one can
find an important breakthrough with the use of Bonami-Beckner’s hypercontractivity esti-
mates. A much simpler proof, giving the best constants up to now, was obtained later by
[Falik and Samorodnitsky, 2007], and their result will be one of the main tool that we shall
use in this paper. See also [Rossignol, 2006] for a more complete description of threshold
phenomena, and [Friedgut, 2004, Hatami, 2006] for related questions when the event A is not
monotone.

This kind of phenomenon is interesting in itself, but has also been proved useful as a theoretical
tool, notably in percolation (see [Bollobás and Riordan, 2006c, Bollobás and Riordan, 2006b,
Bollobás and Riordan, 2006a, van den Berg, 2007]). It seems to be partly folklore that this
phenomenon occurs on other product spaces than {0, 1}n. Notably, Theorem 5 in [Bollobás and Riordan, 2006a]
gives a threshold result for symmetric functions on {1, 2, 3}n with an extremely short proof,
mainly pointing to [Friedgut and Kalai, 1996]. A strongly related result is [Bourgain et al., 1992],
where it is proved that for any subset A of a product probability space of dimension n, there
is one coordinate that has influence of order at least log n/n on A. Although the result in
[Bourgain et al., 1992] is stated in terms of influences and not in terms of threshold phenom-
ena, the proof can be rephrased and slightly adapted to show that threshold phenomena occur
on various product spaces.

Being asked by Rob van den Berg for a reference on generalizations of (1) to {1, . . . , r}N, we
could not find a truly satisfying one. The work of [Paroissin and Ycart, 2003] is close in spirit
to what we were looking for, but is stated only for symmetric sets in finite dimension. Also,
Theorem 3.4 in [Friedgut and Kalai, 1996] is even closer to what we need but is not quite
adapted to {1, . . . , r}N since the quantity γ = maxj µp(Aj) is replaced by the maximum of all
influences, which is worse than the equivalent of γ in {1, . . . , r}N. The purpose of the present
note is to provide an explicit statement of the threshold phenomenon on {1, . . . , r}N, with a
rigorous, detailed proof. We insist strongly on the fact that the spirit of what is written in
this note can be seen as already present in [Bourgain et al., 1992], [Friedgut and Kalai, 1996]
and [Talagrand, 1994].

Our goal will be accomplished in two steps. The first one, presented in section 2, is a general
functional inequality on the countable product [0, 1]N equipped with its Lebesgue measure.
Then, in section 3, we present the translation of this result into a threshold phenomenon on
{1, . . . , r}N. This is the main result of this note, stated in Corollary 3.1.

2 A functional inequality on [0, 1]N, following [Bourgain et al., 1992]

In [Talagrand, 1994], inequality (1) is derived from a functional inequality on ({0, 1}n, µp)
(Theorem 1.5 in [Talagrand, 1994]). Falik and Samorodnitsky’s main result is also a functional
inequality on ({0, 1}n, µp), with a slightly different flavour but the same spirit: it improves
upon the classical Poincaré inequality essentially when the discrete partial derivatives of the
function at hand have low L1-norm with respect to their L2-norm. Such inequalities have
been extended to some continuous settings in [Benaim and Rossignol, 2006], where they were
called “modified Poincaré inequalities”. The discrete partial derivative is then replaced by a
semi-group which is required to satisfy a certain hypercontractivity property.

In this section, we take a different road to generalize the modified Poincaré inequality of
Talagrand (Theorem 1.5 in [Talagrand, 1994]). This is done by combining the approach of
[Bourgain et al., 1992] and [Falik and Samorodnitsky, 2007]. This is also very close in spirit
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to what is done in [Friedgut, 2004]. We will obtain a functional inequality on [0, 1]N equipped
with the Lebesgue measure, which can be seen as a modified Poincaré inequality. All measures
considered in this section are Lebesgue measures on Lebesgue measurable sets.
First, we need some notations. Let (xi,j)i≥1

j≥0
be independent symmetric Bernoulli random

variables. For each j, the random variable
∑

i≥1
xi,j

2i is uniformly distributed on [0, 1], whereas
∑m

i=1
xi,j

2i is uniformly distributed on { k
2m ; k = 0, . . . , 2m − 1}. For positive integers m and n,

define a random variable Xm,n with values in [0, 1]N as follows:

(Xm,n)j =







∑m
i=1

xi,j

2i if j ≤ n

∑

i≥1
xi,j

2i if j > n

For any real function f on [0, 1]N, we define the following random variables:

∆m,n
i,j f = f(Xm,n) − Exi,j

[f(Xm,n)] ,

where Exi,j
denotes the expectation with respect to xi,j only. Define λ to be the Lebesgue

measure on [0, 1], and if f belongs to L2([0, 1]N, λ⊗N), denote by V arλ(f) the variance of f
with respect to λ⊗N.
Finally, define, for any positive integer n and any real numbers y1, . . . , yn:

fn(y0, . . . , yn) =

∫

f(y0, . . . , yn, yn+1, . . .)
⊗

k≥n+1

dλ(yk) .

We shall use the following hypothesis on f :

For every integer n, fn is Riemann-integrable. (2)

The following result can be seen as a generalization of Theorem 1.5 in [Talagrand, 1994].

Theorem 2.1. Let f be a real measurable function on [0, 1]N. Define, for p ≥ 0:

Np(f) = lim sup
n→∞

lim sup
m→∞

n
∑

j=0

m
∑

i=1

E(|∆m,n
i,j f |p)

2

p .

Suppose that f belongs to L2([0, 1]N), and satisfies hypothesis (2). Then,

N2(f) ≥
1

2
V arλ(f) log

V arλ(f)

N1(f)
.

Proof : Denote by Y m,n the first n coordinates of Xm,n. Theorem 2.2 in [Falik and Samorodnitsky, 2007]
implies that:

n
∑

j=0

m
∑

i=1

E(∆m,n
i,j f2) ≥

1

2
V ar(fn(Y m,n)) log

V ar(fn(Y m,n))
∑n

j=0

∑m
i=1 E(|∆m,n

i,j f |)2
.

Notice that E(fn(Y m,n)) is a Riemann-sum of fn over [0, 1]n. Since fn is Riemann-integrable,
V ar(fn(Y m,n)) converges to V ar(fn(U0, . . . , Un)) when m goes to infinity, where U0, . . . , Un

are independent random variables with uniform distribution on [0, 1]. Then, this is for instance
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a consequence of Doob’s convergence theorems for martingales bounded in L2, fn(U1, . . . , Un)
converges in L2 to f as n tends to infinity. Thus,

lim
n→∞

lim
m→∞

V ar(fn(Y m,n)) = V arλ(f) .

The theorem follows. ¤

If a function f is coordinate-wise nondecreasing, we shall say it is increasing. Now, we can
get a simplified version of Theorem 2.1 for increasing functions. To this end, let us define the
random variable X∞ with values in [0, 1]N as follows:

∀j ≥ 0, (X∞)j =
∑

i≥1

xi,j

2i
,

and let:
∆∞

i,jf = f(X∞) − Exi,j
[f(X∞)] .

Corollary 2.2. Let f be a real measurable function on [0, 1]N, increasing for the coordinate-
wise partial order. Define, for p ≥ 0:

Mp(f) =
∞
∑

j=0

∞
∑

i=1

E(|∆∞
i,jf |

p)
2

p .

Then,

M2(f) ≥
1

2
V arλ(f) log

V arλ(f)

M1(f)
.

Proof : We only need to show that f satisfies the hypotheses of Theorem 2.1, and that Np(f) ≤
Mp(f), at least when p equals 1 and 2. Since f is coordinate-wise increasing, so is fn for every
n, and thus hypothesis (2) is satisfied. The function f is trivially in L2([0, 1]N, λ⊗N) since it
is a real measurable increasing function on [0, 1]N, and therefore is bounded. We shall use the
following notation: for ε ∈ {0, 1}, f(Xm,n|xi,j = ε) denotes the value of f at Xm,n where the
value of xi,j is forced to be ε, and for t ∈ [0, 1], f(Xm,n|yj = t) denotes the value of f at Xm,n

where the value of (Xm,n)j is replaced by t. We also use the notation E(xi′,j)i′<i
(g(Xm,n)) to

denote the expectation with respect to the random variables (xi′,j)i′<i. For j ≤ n, and p ≥ 1,

E(xi′,j)i′≤i
(|∆m,n

i,j f |p) =
1

2p
E(xi′,j)i′<i

(|f(Xm,n|xi,j = 1) − f(Xm,n|xi,j = 0)|p) , (3)

=
1

2p

∑

ε∈{0,1}i−1

1

2i−1

∣

∣

∣

∣

∣

f

(

Xm,n

∣

∣

∣

∣

∣

yj =

i−1
∑

i′=1

εi′

2i′
+

1

2i
+

∑

i′>i

xi′,j

2i′

)

− f

(

Xm,n

∣

∣

∣

∣

∣

yj =

i−1
∑

i′=1

εi′

2i′
+

∑

i′>i

xi′,j

2i′

)∣

∣

∣

∣

∣

p

,

=
1

2p+i−1

2i−1−1
∑

k=0

∣

∣

∣

∣

∣

f

(

Xm,n

∣

∣

∣

∣

∣

yj =
k

2i−1
+

1

2i
+

∑

i′>i

xi′,j

2i′

)

− f

(

Xm,n

∣

∣

∣

∣

∣

yj =
k

2i−1
+

∑

i′>i

xi′,j

2i′

)
∣

∣

∣

∣

∣

p

,
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Let us define tk = k
2i +

∑

i′>i

xi′,j

2i′
. Notice that tk < tk+1. Then,

E(xi′,j)i′≤i
(|∆m,n

i,j f |p) =
1

2p+i−1

2i−1−1
∑

k=0

|f(Xm,n|yj = t2k+1) − f(Xm,n|yj = t2k)|p ,

≤
(2‖f‖∞)p−1

2p+i−1

2i−1−1
∑

k=0

|f(Xm,n|yj = t2k+1) − f(Xm,n|yj = t2k)| ,

≤
‖f‖p

∞

2i−1
,

since f is increasing. Thus, when n and j are fixed, (E(|∆m,n
i,j f |p 1Ii≤m)2)i≥1 is dominated

by (22−2i‖f‖2p
∞)i≥1, whose sum converges. On the other hand, since f is coordinate-wise

increasing, the function yj 7→ f((yi)i≥1) is Riemann-integrable for any fixed (yi)i6=j and any
j. Thus,

lim
m∞

E(|∆m,n
i,j f |p) = E(|∆∞

i,jf |
p) .

Therefore, by Lebesgue’s dominated convergence theorem,

lim
m∞

m
∑

i=1

E(|∆m,n
i,j f |p)

2

p =
∞
∑

i=1

E(|∆∞
i,jf |

p)
2

p ,

which implies Np(f) = Mp(f). The result follows from Theorem 2.1. ¤

3 Threshold phenomenon on {1, . . . , r}N

Let r be a positive integer. Let I =]a, b[ be a connected open subset of R with a < b, and for
every t in I, let µt be a probability measure on {1, . . . , r}, νt,n be the product measure µ⊗n

t on
Hn = {1, . . . , r}n and νt,N be the product measure µ⊗N

t on HN = {1, . . . , r}N. We suppose that
for every k in {1, . . . , r}, the function t 7→ µt({k}) is differentiable on I, and that for every k
in {2, . . . , r}, t 7→ µt({k, k + 1, . . . , r}) is strictly increasing. Then, we suppose that:

lim
t→a

µt({1}) = 1, and lim
t→b

µt({r}) = 1 .

The following result is a generalization of Corollary 1.3 in [Talagrand, 1994].

Corollary 3.1. Let A be an increasing measurable subset of {1, . . . , r}N. Let t1 ≤ t2 be two
real numbers of I. Define:

γt := sup
j

νt,N(Aj) ,

γ∗ = sup
t∈[t1,t2]

{

max{γt, γt log
1

γt
}

}

,

and

S∗ = inf
t∈[t1,t2]

inf
k=2,...,r

d

dt
µt({k, k + 1, . . . , r}) .

Then,

νt1,N(A)(1 − νt2,N(A)) ≤ γ
S∗(t2−t1)
∗ .
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Proof : Let f = 1IA. Suppose first that A depends only on a finite number of coordinates.
Then,

d

dt
νt,N(A) =

∑

j≥0

∫ r
∑

k=1

µ′
t(k)f(x|xj = k) dνt,N(x) ,

where µ′
t(k) = d

dtµt({k}). Define, for any k ∈ {1, . . . , r},

St,k :=

r
∑

l=k

µ′
t(l) =

d

dt
µt({k, k + 1, . . . , r}) .

By hypothesis, St,k ≥ 0 for any k in {2, . . . , r}. Notice also that St,1 = 0. Letting St,r+1 := 0,
we have:

r
∑

k=1

µ′
t(k)f(x|xj = k) =

r
∑

k=1

(St,k − St,k+1)f(x|xj = k) ,

=
r

∑

k=2

St,k(f(x|xj = k) − f(x|xj = k − 1)) .

Define:

S∗
t = inf

k=2,...,r
St,k > 0 .

Since f is the indicator function of an increasing event A in HN,

r
∑

k=1

µ′
t(k)f(x|xj = k) ≥ S∗

t (f(x|xj = r) − f(x|xj = 1)) .

Thus,
d

dt
νt,N(A) ≥ S∗

t

∑

j≥0

∫

f(x|xj = r) − f(x|xj = 1) dνt,N(x) . (4)

Now, we do not suppose anymore that A depends on finitely many coordinates. Define, for
any real function g on [0, 1],

d+

dt
g(t) = lim inf

t′↓t

g(t′) − g(t)

t′ − t
.

It is a straightforward generalization of Russo’s formula for general increasing events (see
(2.28) in [Grimmett, 1999], and the proof p. 44) to obtain from inequality (4) that when A is
measurable, and f = 1IA,:

d+

dt
νt,N(A) ≥ S∗

t

∑

j≥0

∫

f(x|xj = r) − f(x|xj = 1) dνt,N(x) . (5)

Define I(f) the total sum of influences for the event A:

I(f) =
∑

j≥0

∫

f(x|xj = r) − f(x|xj = 1) dνt,N(x) .
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Let (uj)j≥0 be a sequence in [0, 1]N. Define a function Ft from [0, 1]N to {1, . . . , r}N as follows:

∀j ∈ N, ∀i ∈ {1, . . . , r}, (Ft(u))j = i if µt({1, . . . , i − 1}) ≤ uj < µt({1, . . . , i}) .

Of course, under λN, Ft(u) has distribution νt,N. Define gt to be the increasing, measurable
function f ◦ Ft on [0, 1]N. Using Corollary 2.2,

M2(gt) ≥
1

2
V arλ(gt) log

V arλ(gt)

M1(gt)
. (6)

First, notice that:
V arλ(gt) = V ar(f) = νt,N(A)(1 − νt,N(A)) . (7)

Then, according to equation (3), and since gt is increasing and non-negative,

∞
∑

i=1

E(|∆m,n
i,j gt|

2) ≤
1

4

∞
∑

i=1

1

2i−1
E(gt(X

m,n|yj = 1) − gt(X
m,n|yj = 0)) ,

=
1

2

∫

f(x|xj = r) − f(x|xj = 1) dνt,N(x) .

Thus,

M2(gt) ≤
1

2
I(f) , (8)

Similarly,
∑

j≥0

∞
∑

i=1

E(|∆∞
i,jgt|) ≤ I(f) . (9)

For any j in N, define Aj to be the set of configurations in {1, . . . , r}N which are in A and such
that j is pivotal for A:

Aj = {x : x ∈ A, and f(x|xj = 1) = 0} .

Since gt is increasing,

E(|∆∞
i,jgt|) = E(gt(X

∞) − gt(X
∞|xi,j = 0)) ,

≤ E(gt(X
∞) − gt(X

∞|yj = 0)) ,

=

∫

f(x) − f(x|xj = 1) dνt,N(x) .

and thus, for any i ≥ 1,
E(|∆∞

i,jgt|) ≤ νt,N(Aj) . (10)

Define γt := supj νt,N(Aj). From (9) and (10), we get:

M1(gt) ≤ γtI(f) .

This inequality together with (6), (7) and (8) leads to:

I(f) ≥ V ar(f) log
V ar(f)

γtI(f)
. (11)
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Therefore,
• either I(f) > V ar(f) log 1

γt
,

• or I(f) ≤ V ar(f) log 1
γt

, and in this case, plugging this inequality into the right-hand side

of (11),

I(f) ≥ V ar(f) log
1

γt log 1
γt

.

In any case, defining γ∗
t = sup{γt, γt log 1

γt
}, it follows from (5) that:

d+

dt
νt,N(A) ≥ S∗

t νt,N(A)(1 − νt,N(A)) log
1

γ∗
t

.

Now, let γ∗ = supt∈[t1,t2] γ
∗
t and S∗ = inft∈[t1,t2]S∗

t
. We get:

d+

dt

[

log
νt,N(A)

1 − νt,N(A)
− tS∗ log

1

γ∗

]

≥ 0 ,

for any t in [t1, t2[. It follows from Proposition 2, p. 19 in [Bourbaki, 1949] (it is important to
notice that the proof of this Proposition works without modification if the function f equals
g + h where g is increasing and h continuous, and if the right-derivative is replaced by d+/dt)
that:

log
νt2,N(A)(1 − νt1,N(A))

νt1,N(A)(1 − νt2,N(A))
≥ (t2 − t1)S

∗ log
1

γ∗
,

νt1,N(A)(1 − νt2,N(A))

νt2,N(A)(1 − νt1,N(A))
≤ γ

S∗(t2−t1)
∗ ,

and the result follows. ¤

Remark: If one wants a cleaner version of the upperbound of Corollary 3.1 in terms of

η∗ := supt∈[t1,t2] supj νt,N(Aj), simple calculus shows that γ∗ ≤ η
1−1/e
∗ ≤ η

1/2
∗ , which leads to:

νt1,N(A)(1 − νt2,N(A)) ≤ η
S∗(t2−t1)/2
∗ .
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