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Abstract

We derive a class of ergodic transformations of self-similar Gaussian processes that are Volterra,
i.e. of type Xt =

∫ t

0 zX(t, s)dWs, t ∈ [0,∞), where zX is a deterministic kernel and W is a
standard Brownian motion.

1 Introduction

Let (Xt)t∈[0,∞) be a continuous Volterra Gaussian process on a complete probability space
(Ω,F , P). This means that

Xt =

∫ t

0

zX(t, s)dWs, a.s., t ∈ [0,∞), (1.1)

where the kernel zX ∈ L2
loc

(

[0,∞)2
)

is Volterra, i.e. zX(t, s) = 0, s ≥ t, and (Wt)t∈[0,∞) is a
standard Brownian motion. Clearly, X is centered and

RX(s, t) := CovP (Xs, Xt) =

∫ s

0

zX(s, u)zX(t, u)du, 0 ≤ s ≤ t < ∞.

We assume that X is β-self-similar for some β > 0, i.e.

(Xat)t∈[0,∞)
d
=
(

aβXt

)

t∈[0,∞)
, a > 0, (1.2)

where
d
= denotes equality of finite-dimensional distributions. Furthermore, we assume that zX

is non-degenerate in the sense that the family {zX(t, ·) | t ∈ (0,∞)} is linearly independent
and generates a dense subspace of L2 ([0,∞)). Then

Γt(X) := span{Xs | s ∈ [0, t]} = Γt(W ), t ∈ (0,∞), (1.3)
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where the closure is in L2(P), or equivalently,

F
X = F

W ,

where F
X :=

(

FX
t

)

t∈[0,∞)
denotes the completed natural filtration of X .

We assume implicitly that (Ω,F , P) is the coordinate space of X , which means that Ω =
{ω : [0,∞) → R |ω is continuous}, F = FX

∞ := σ(Xt | t ∈ [0,∞)) and P is the probability
measure with respect to which the coordinate process Xt(ω) = ω(t), ω ∈ Ω, t ∈ [0,∞), is a
centered Gaussian process with covariance function RX . Recall that a measurable map

Z : (Ω,F , P) → (Ω,F , P)

X(ω) 7→ Z(X(ω))

is a measure-preserving transformation, or endomorphism, on (Ω,F , P) if P
Z = P, or equi-

valently, if Z(X)
d
= X . If Z is also bijective and Z−1 is measurable, then it is an automorphism.

Processes of the above type are a natural generalization of the nowadays in connection with
finance and telecommunications extensively studied fractional Brownian motion with Hurst
index H ∈ (0, 1), or H-fBm. The H-fBm, denoted by

(

BH
t

)

t∈[0,∞)
, is the continuous, centered

Gaussian process with covariance function

RBH

(s, t) =
1

2

(

s2H + t2H − |s − t|2H
)

, s, t ∈ [0,∞).

For H = 1
2 , fBm is standard Brownian motion. H-fBm is H-self-similar and has stationary

increments. The non-degenerate Volterra kernel is given by

zBH (t, s) = c(H)(t − s)H− 1

2 · 2F1

(

1

2
− H, H − 1

2
, H +

1

2
, 1 − t

s

)

, 0 < s < t < ∞,

where c(H) :=

(

2HΓ( 3

2
−H)

Γ(H+ 1

2 )Γ(2−2H)

)
1

2

with Γ denoting the Gamma function, and 2F1 is the

Gauss hypergeometric function. In 2003, Molchan (see [8]) showed that the transformation

Zt

(

BH
)

:= BH
t − 2H

∫ t

0

BH
s

s
ds, t ∈ [0,∞), (1.4)

is measure-preserving and satisfies

ΓT

(

Z
(

BH
))

= ΓT

(

Y H
)

, T > 0, (1.5)

where

Y H
t := MH

t − t

T
ξH
T , t ∈ [0, T ]. (1.6)

Here, MH
t :=

√
2 − 2H

∫ t

0
s

1

2
−HdWs, t ∈ [0,∞), is the fundamental martingale of BH and

ξH
T := 2H

∫ T

0

(

s
T

)2H−1
dMH

s .

In this work, we present a class of measure-preserving transformations (on the coordinate
space) of X , which generalizes this result. Moreover, we show that these measure-preserving
transformations are ergodic.
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2 Ergodic transformations

First, we introduce the class of measure-preserving transformations:

Theorem 2.1. Let α > −1
2 . Then the transformation

Zα
t (X) := Xt − (2α + 1)tβ−α− 1

2

∫ t

0

sα−β− 1

2 Xsds, t ∈ [0,∞), (2.1)

is an automorphism on the coordinate space of X. The inverse is given by

Zα,−1
t (X) = Xt − (2α + 1)tα+β+ 1

2

∫ ∞

t

Xss
−β−α− 3

2 ds, a.s., t ∈ [0,∞). (2.2)

The integrals on the right-hand sides are L2(P)-limits of Riemann sums.

Proof. First, note that RX is continuous. Furthermore, by combining Hölder’s inequality and
(1.2), we have that

∣

∣RX(s, t)
∣

∣ ≤ EP(X1)
2sβtβ , s, t ∈ (0,∞).

Hence, the double Riemann integrals

∫ t

0

∫ t

0

(us)α−β− 1

2 RX(u, s)duds

and
∫ ∞

t

∫ ∞

t

(us)−β−α− 3

2 RX(u, s)duds

are finite. Thus, the integrals in (2.1) and (2.2) are well-defined (see [5], section 1).
Second, we show that Zα is a measure-preserving transformation. Let Yt := exp(−βt)Xexp(t)

and Y α
t := exp(−βt)Zα

exp(t)(X), t ∈ R, denote the Lamperti transforms of X and Zα(X),

respectively. Hence, the process (Yt)t∈R is stationary. By substituting v := ln(s), we obtain
that

Y α
t = exp(−βt)

(

Xexp(t) − (2α + 1) exp

((

β − α − 1

2

)

t

)
∫ exp(t)

0

sα−β− 1

2 Xsds

)

= Yt − (2α + 1) exp

((

−α − 1

2

)

t

)
∫ t

−∞

exp

(

v

(

α − β +
1

2

))

Xexp(v)dv

= Yt − (2α + 1) exp

((

−α − 1

2

)

t

)
∫ t

−∞

exp

(

v

(

α +
1

2

))

Yvdv

=

∫ ∞

−∞

hα(t − v)Yvdv, a.s., t ∈ R,

where

hα(x) := δ0(x) − (2α + 1)1(0,∞)(x) exp

(

−
(

α +
1

2

)

x

)

, x ∈ R.

Thus, Y α is a linear, non-anticipative, time-invariant transformation of Y . The spectral dis-
tribution function of Y α is given by (see [13], p. 151)

dFα(λ) =
∣

∣Hα(λ)
∣

∣

2
dF (λ), λ ∈ R,
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where Hα(λ) :=
∫

R
exp(−iλx)hα(x)dx denotes the Fourier transform of hα and F is the

spectral distribution function of Y . We have that (see [3], p. 14 and p. 72)

∣

∣Hα(λ)
∣

∣ =

∣

∣

∣

∣

∣

1 − (2α + 1)

(

α + 1
2 − iλ

(

1
2 + α

)2
+ λ2

)∣

∣

∣

∣

∣

=

∣

∣

∣

∣

− 1
2 − α + iλ

1
2 + α + iλ

∣

∣

∣

∣

= 1, λ ∈ R,

i.e. Fα ≡ F . It follows from this that (Y α
t )t∈R

d
= (Yt)t∈R, or equivalently, (Zα

t (X))t∈[0,∞)
d
=

(Xt)t∈[0,∞).
Third, by splitting integrals and using Fubini’s theorem, we obtain that

Zα,−1
t (Zα(X)) = Xt = Zα

t

(

Zα,−1(X)
)

, a.s., t ∈ [0,∞).

Remark 2.2. Theorem 2.1 generalizes (1.4). In fact, ZH− 1

2

(

BH
)

= Z
(

BH
)

, H ∈ (0, 1).

Remark 2.3. Theorem 2.1 holds true for general continuous centered β-self-similar Gaussian
processes.

Next, we present two auxiliary lemmas concerning the structure of zX :

Lemma 2.4. Let (Xt)t∈[0,∞) be a Volterra Gaussian process with a non-degenerate Volterra
kernel zX. Then the following are equivalent:
1. X is β-self-similar, i.e.

∫ s

0

zX(at, au)zX(as, au)du = a2β−1

∫ s

0

zX(t, u)zX(s, u)du, 0 < s ≤ t < ∞, a > 0.

2. It holds that
zX(at, as) = aβ− 1

2 zX(t, s), 0 < s < t < ∞, a > 0.

3. There exists FX ∈ L2
(

(0, 1), (1 − x)2β−1dx
)

such that

zX(t, s) = (t − s)β− 1

2 FX

(s

t

)

, 0 < s < t < ∞.

Proof. 1 ⇒ 2: For a > 0, let zY (a)(t, s) := a
1

2
−βzX(at, as), 0 < s < t < ∞, and let Yt(a) :=

∫ t

0 zY (a)(t, s)dWs, t ∈ [0,∞). Clearly, zY (a) is non-degenerate. From (1.3), we obtain that

Γt(Y (a)) = Γt(W ), t ∈ (0,∞). From part 1, it follows that X
d
= Y (a). Thus, the process W ′

t :=
∫ t

0 z∗X(t, s)dYs(a), t ∈ [0,∞), where z∗X is the reciprocal of zX and the integral is an abstract
Wiener integral, is a standard Brownian motion with Γt(W

′) = Γt(Y (a)), t ∈ (0,∞). Hence,

Γt(W ) = Γt(W
′), i.e. W and W ′ are indistinguishable. Therefore, Yt(a) =

∫ t

0
zX(t, s)dWs,

a.s., t ∈ (0,∞), i.e. Yt(a) = Xt, a.s., t ∈ [0,∞). In particular, 0 = EP(Yt(a) − Xt)
2 =

∫ t

0

(

zY (a)(t, s) − zX(t, s)
)2

ds, t ∈ (0,∞). Thus, zX(t, ·) ≡ zY (a)(t, ·), t ∈ (0,∞).

2 ⇒ 3: Let GX(t, s) := (t − s)
1

2
−βzX(t, s), 0 < s < t < ∞. From part 2, it follows that

GX(at, as) = GX(t, s), 0 < s < t < ∞, a > 0. Hence, for every (t, s), s < t, the function
GX is constant on the line {(at, as) | a ∈ (0,∞)}, which depends only on the slope s

t
. Thus,

GX(t, s) = FX

(

s
t

)

, 0 < s < t < ∞, for some FX ∈ L2
(

(0, 1), (1 − x)2β−1dx
)

.
3 ⇒ 1: This is trivial.

Lemma 2.5. Let α > −1
2 . Then we have that

tβ−α− 1

2

∫ t

s

uα−β− 1

2 zX(u, s)du = sα

∫ t

s

zX(t, u)u−α−1du, 0 < s < t < ∞.
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Proof. From Lemma 2.4, it follows that the Volterra kernel of X can be written as

zX(t, s) = (t − s)β− 1

2 FX

(s

t

)

, 0 < s < t < ∞,

for some function FX . By substituting first x := s
u

and then v := tx, we obtain that

tβ−α− 1

2

∫ t

s

uα−β− 1

2 zX(u, s)du = tβ−α− 1

2

∫ t

s

uα−β− 1

2 (u − s)β− 1

2 FX

( s

u

)

du

= tβ−α− 1

2 sα

∫ 1

s

t

x−α−1(1 − x)β− 1

2 FX(x)dx

= sα

∫ t

s

(t − v)β− 1

2 FX

(v

t

)

v−α−1dv

= sα

∫ t

s

zX(t, v)v−α−1dv.

The next lemma is the key result for deriving the ergodicity of the measure-preserving trans-
formations:

Lemma 2.6. Let α > −1
2 . Then

Zα
t (X) =

∫ t

0

zX(t, s)dZα
s (W ), a.s., t ∈ [0,∞).

Proof. By combining (1.1) and the stochastic Fubini theorem, using Lemma 2.5, again the
stochastic Fubini theorem, and finally using partial integration, we obtain that

Zα
t (X) = Xt − (2α + 1)

∫ t

0

(

tβ−α− 1

2

∫ t

u

sα−β− 1

2 zX(s, u)ds

)

dWu

= Xt − (2α + 1)

∫ t

0

(

uα

∫ t

u

zX(t, s)s−α−1ds

)

dWu

= Xt − (2α + 1)

∫ t

0

zX(t, s)s−α−1

∫ s

0

uαdWuds

= Xt − (2α + 1)

∫ t

0

zX(t, s)

(

(−α)s−α−1

∫ s

0

uα−1Wududs + s−1Wsds

)

=

∫ t

0

zX(t, s)dZα
s (W ), a.s., t ∈ (0,∞).

In the following, let Zα,n := (Zα)
n

denote the n-th iterate of Zα, n ∈ Z. Also, let

Γ∞(X) := span{Xt | t ∈ [0,∞)}.

For α > − 1
2 , let

Nα
t :=

∫ t

0

sαdWs, t ∈ [0,∞).

Clearly, Nα is an
(

α + 1
2

)

-self-similar F
X -martingale. From Lemma 2.6, it follows that

Zα
t (X) =

∫ t

0

zX(t, s)s−αdZα
s (Nα) , a.s., t ∈ (0,∞). (2.3)



264 Electronic Communications in Probability

The next lemma is an auxiliary result, which was obtained in [7], section 3.2 and Theorem
5.2. (The automorphism Zα on the coordinate space of Nα here corresponds to the (ergodic)
automorphism T (1) on the coordinate space of the martingale M with M := Nα in [7].)

Lemma 2.7. Let α > −1
2 and T > 0.

1. It holds that
ΓT (Zα (Nα)) = ΓT

(

Nα,T
)

,

where N
α,T
t := Nα

t −
(

t
T

)2α+1
Nα

T , t ∈ [0, T ], is a bridge of Nα, i.e. a process satisfying

LawP

(

Nα,T
)

= LawP (Nα |Nα
T = 0), and ΓT

(

Nα,T
)

:= span
{

N
α,T
t | t ∈ [0, T ]

}

.
2. We have that

ΓT (Nα) = ⊥n∈N0
span

{

Zα,n
T

(

Nα
)}

(2.4)

and
Γ∞ (Nα) = ⊥n∈Z span

{

Zα,n
T

(

Nα
)}

. (2.5)

Here, ⊥ denotes the orthogonal direct sum.

By combining (2.3) and part 1 of Lemma 2.7, we obtain the following:

Lemma 2.8. Let α > −1
2 and T > 0. Then

ΓT (Zα (X)) = ΓT

(

Nα,T
)

.

Remark 2.9. Lemma 2.8 is a generalization of identity (1.5). Indeed, we have that Y H
t =√

2 − 2H
∫ t

0
s1−2HdN

H− 1

2
,T

s , a.s., t ∈ [0, T ], where Y H is the process defined in (1.6). Y H is a

bridge (of some process) if and only if H = 1
2 .

The following generalizes part 2 of Lemma 2.7:

Lemma 2.10. Let α > −1
2 and T > 0. Then we have that

ΓT (X) = ⊕n∈N0
span {Zα,n

T (X)}
and

Γ∞ (X) = ⊕n∈Z span {Zα,n
T (X)}.

Proof. We assume that X 6= Nα. By iterating (2.3) and (2.4), we obtain that

Zα,n
T (X) ∈ ΓT (Zα,n (X)) = ΓT

(

Zα,n
(

Nα
))

= ⊥i≥n span
{

Zα,i
T

(

Nα
)

}

, n ∈ Z.

Moreover, XT 6⊥ Nα
T , hence Zα,n

T (X) 6⊥ Zα,n
T (Nα), n ∈ Z, and therefore,

Zα,n
T (X) 6∈ ⊥i≥n+1 span

{

Zα,i
T (Nα)

}

, n ∈ Z.

From (2.4) and (2.5), it follows that the systems {Zα,n
T (X)}

n∈N0

and {Zα,n
T (X)}

n∈Z
are free

and complete in ΓT (X) and Γ∞(X), respectively.

Remark 2.11. The process X is an F
X -Markov process if and only if there exists α > −1

2
and a constant c(X), such that

Xt = c(X) · tβ− 1

2
−α

∫ t

0

sαdWs, a.s., t ∈ (0,∞). (2.6)

The free complete system {Zα,n
T (X)}

n∈Z
is orthogonal if and only if (2.6) is satisfied.
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From Lemma 2.10, we obtain the following:

Corollary 2.12. Let α > −1
2 and T > 0. Then

FX
T =

∨

n∈N0

σ
(

Zα,n
T (X)

)

.

Furthermore,

F = FX
∞ =

∨

n∈Z

σ
(

Zα,n
T (X)

)

.

Recall that an automorphism Z is a Kolmogorov automorphism, if there exists a σ-algebra
A ⊆ F , such that Z−1A ⊆ A, ∨m∈ZZmA = F and ∩m∈N0

Z−mA = {Ω, ∅}. A Kolmogorov
automorphism is strongly mixing and hence ergodic (see [11], Propositions 5.11 and 5.9 on p.
63 and p. 62). The ergodicity of Zα is hence a consequence of the following:

Theorem 2.13. Let α > −1
2 and T > 0. The automorphisms Zα and Zα,−1 are Kolmogorov

automorphisms with A = ∨n∈−Nσ
(

Zα,n
T (X)

)

and A = FX
T , respectively.

Proof. Zα is a Kolmogorov automorphism with A = ∨n∈−Nσ
(

Zα,n
T (X)

)

:

First, Zα,−1A = ∨n∈−Nσ
(

Zα,n−1
T (X)

)

⊆ A.

Second, ∨m∈ZZα,mA = ∨m∈Z ∨n∈−N σ
(

Zα,m+n
T (X)

)

= F .

Third, let {Yn}n∈−N denote the Hilbert basis of ⊕n∈−N span {Zα,n
T (X)} which is obtained

from {Zα,n
T (X)}

n∈−N
via Gram-Schmidt orthonormalization. By using Kolmogorov’s zero-

one law (see [12], p. 381), we obtain that ∩m∈N0
Zα,−mA = ∩m∈N0

(

∨n≤−m−1σ
(

Zα,n
T (X)

))

=

∩m∈N0

(

∨n≤−m−1σ
(

Yn

))

= {Ω, ∅}.
Similarly, one shows that Zα,−1 is a Kolmogorov automorphism with A = FX

T .
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