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Abstract

Let X be an N -parameter additive Lévy process in IRd with Lévy exponent (Ψ1, · · · , ΨN ) and
let λd denote Lebesgue measure in IRd. We show that

E{λd(X(IRN
+ ))} > 0 ⇐⇒

∫

IRd

N∏

j=1

Re

(
1

1 + Ψj(ξ)

)
dξ < ∞.

This was previously proved by Khoshnevisan, Xiao and Zhong [1] under a sector condition.

1 Introduction and Proof

Let X1
t1 , X2

t2 , · · · , XN
tN

be N independent Lévy processes in IRd with their respective Lévy
exponents Ψj, j = 1, 2, · · · , N . The random field

Xt = X1
t1 + X2

t2 + · · · + XN
tN

, t = (t1, t2, · · · , tN) ∈ IRN
+

is called the additive Lévy process. Let λd denote Lebesgue measure in IRd.

Theorem 1.1 Let X be an additive Lévy process in IRd with Lévy exponent (Ψ1, · · · , ΨN).
Then

E{λd(X(IRN
+ ))} > 0 ⇐⇒

∫

IRd

N∏

j=1

Re

(
1

1 + Ψj(ξ)

)
dξ < ∞. (1.1)

Recently, Khoshnevisan, Xiao and Zhong [1] proved that if

Re




N∏

j=1

1

1 + Ψj(ξ)



 ≥ θ

N∏

j=1

Re

(
1

1 + Ψj(ξ)

)
(1.2)
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for some constant θ > 0 then Theorem 1.1 holds. In fact the proof of Theorem 1.1 does not
need any condition.

Proof of Theorem 1.1: Define

EΨ(µ) = (2π)−d

∫

IRd

|µ̂(ξ)|2
N∏

j=1

Re

(
1

1 + Ψj(ξ)

)
dξ

where µ is a probability measure on a compact set F ⊂ IRd and µ̂(ξ) =
∫
IRd eiξ·xµ(dx). Let

F = {0} ⊂ IRd and δ0 be the point mass at 0 ∈ IRd. We first quote a key lemma of [1]:

Lemma 5.5 Suppose X is an additive Lévy process in IRd that satisfies Condition (1.3), and

that
∫
IRd

∏N
j=1 |1 + Ψj(ξ)|−1dξ < +∞, where Ψ = (Ψ1, · · · , ΨN) denotes the Lévy exponent of

X. Then, for all compact sets F ⊂ IRd, and for all r > 0,

E{λd(X([0, r]N ⊕ F )} ≤ θ−2(4e2r)N · CΨ(F ),

where θ > 0 is the constant in Condition (1.3).

By reviewing the whole process of the proof of Theorem 1.1 of [1] given by Khoshnevisan, Xiao
and Zhong, our Theorem 1.1 certainly follows if we instead prove the following statement:

Let X be any additive Lévy process in IRd. If
∫
IRd

∏N
j=1 |1 + Ψj(ξ)|−1dξ < +∞, then

E{λd(X([0, r]N ))} ≤ cN,d,r

EΨ(δ0)
(1.3)

for some constant cN,d,r ∈ (0,∞) depending on N, d, r only.

Clearly, all we have to do is to complete Eq. (5.11) of [1] without bothering ourselves with
Condition (1.3) of [1]. Since δ0 is the only probability measure on F = {0}, letting η → 0, k →
∞, and ε → 0 and using the integrability condition

∫
IRd

∏N
j=1 |1 + Ψj(ξ)|−1dξ < +∞ yield

EΨ(δ0) ≥ c1

∣∣∣∣∣

∫

IRd

Re

(
N∏

i=1

1

1 + Ψi(ξ)

)
dξ

∣∣∣∣∣

2

E{λd(X([0, r]N ))} (1.4)

where c1 ∈ (0,∞) is a constant depending on N, d, r only.
Consider the 2N−1 similar additive Lévy processes (including Xt itself) X±

t = X1
t1 ± X2

t2 ±
· · · ± XN

tN
. Here, ± is merely a symbol for each possible arrangement of the minus signs; e.g.,

X1 − X2 + X3, X1 − X2 − X3, X1 + X2 + X3 and so on. Let Ψ± be the Lévy exponent for
X±

t . Since −Xj has Lévy exponent Ψj , EΨ±(µ) = EΨ(µ) for all X±
t and

∑
Re

(∫

IRN
+

e−
P

N
j=1 sj−s·Ψ±(ξ)ds

)
= 2N−1

N∏

j=1

Re

(
1

1 + Ψj(ξ)

)
> 0

where the first summation
∑

is taken over the collection of all the X±
t . On the other hand,

Qµ(ξ) =

∫

IRN
+

∫

IRN
+

e−
P

N
j=1 |tj−sj |Ψj(sgn(tj−sj)ξ)µ(ds)µ(dt)
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remains unchanged for all X±
t as long as µ is an N−fold product measure on IRN

+ . Proposition
10.3 of [1] and Theorem 2.1 of [1] together state that for any additive Lévy process X ,

k1

(∫

IRd

Qλr(ξ)dξ

)−1

≤ E{λd(X([0, r]N ))} ≤ k2

(∫

IRd

Qλr (ξ)dξ

)−1

,

where λr is the restriction of the Lebesgue measure λN in IRN to [0, r]N and k1, k2 ∈ (0,∞)
are two constants depending only on r, N, d, π. Note that λr is an N−fold product measure
on IRN

+ . Thus, there exists a constant c2 ∈ (0,∞) depending only on N and r such that

E{λd(X([0, r]N ))} ≤ c2E{λd(X
±([0, r]N ))}

for all X±
t . Since |1+z| = |1+z̄| where z is a complex number,

∫
IRd

∏N
j=1 |1+Ψ±

j (ξ)|−1dξ < +∞
as well. Therefore, by (1.4),

2N−1√c2

√
EΨ(δ0)

E{λd(X([0, r]N ))}

≥
∑

√
EΨ±(δ0)

E{λd(X±([0, r]N ))}

≥ √
c1

∑
∣∣∣∣∣

∫

IRd

Re

(∫

IRN
+

e−
P

N
j=1 sj−s·Ψ±(ξ)ds

)
dξ

∣∣∣∣∣

≥ √
c1

∣∣∣∣∣
∑∫

IRd

Re

(∫

IRN
+

e−
P

N
j=1 sj−s·Ψ±(ξ)ds

)
dξ

∣∣∣∣∣

= 2N−1√c1

∫

IRd

N∏

j=1

Re

(
1

1 + Ψj(ξ)

)
dξ

= 2N−1√c1(2π)dEΨ(δ0).

(1.3) follows, so does the theorem. �

2 Applications

2.1 The Range of An Additive Lévy Process
As the first application, we use Theorem 1.1 to compute dimH X(IRN

+ ). Here, dimH denotes
the Hausdorff dimension. To begin, we introduce the standard d-parameter additive α-stable
Lévy process in IRd for α ∈ (0, 1) :

Sα
t = S1

t1 + S2
t2 + · · · + Sd

td
,

that is, the Sj are independent standard α-stable Lévy processes in IRd with the common Lévy
exponent |ξ|α.

Theorem 2.1 Let X be any N -parameter additive Lévy process in IRd with Lévy exponent
(Ψ1, · · · , ΨN). Then

dimH X(IRN
+ ) = sup



β ∈ (0, d) :

∫

IRd

|ξ|β−d
N∏

j=1

Re

(
1

1 + Ψj(ξ)

)
dξ < ∞



 a.s. (2.1)
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Proof Let Cβ denote the Riesz capacity. By Theorem 7.2 of [1], for all β ∈ (0, d) and S1−β/d

independent of X,

ECβ(X(IRN
+ )) > 0 ⇐⇒ E{λd(S

1−β/d(IRd
+) + X(IRN

+ ))} > 0. (2.2)

Note that S1−β/d + X is a (d + N, d)−additive Lévy process. Thus, by Theorem 1.1 and the

fact that β < d and Re
(

1
1+Ψj(ξ)

)
∈ (0, 1], we have for all β ∈ (0, d),

ECβ(X(IRN
+ )) > 0 ⇐⇒

∫

IRd

|ξ|β−d
N∏

j=1

Re

(
1

1 + Ψj(ξ)

)
dξ < ∞. (2.3)

Thanks to the Frostman theorem, it remains to show that Cβ(X(IRN
+ )) > 0 is a trivial event.

Let Eβ denote the Riesz energy. By Plancherel’s theorem, given any β ∈ (0, d), there is a
constant cd,β ∈ (0,∞) such that

Eβ(ν) = cd,β

∫

IRd

|ν̂(ξ)|2|ξ|β−ddξ (2.4)

holds for all probability measures ν in IRd; see Mattila [3; Lemma 12.12]. Consider the 1-killing
occupation measure

O(A) =

∫

IRN
+

1(Xt ∈ A)e−
P

N
j=1 tj dt, A ⊂ IRd.

Clearly, O is a probability measure supported on X(IRN
+ ). It is easy to verify that

E|Ô(ξ)|2 =

N∏

j=1

Re

(
1

1 + Ψj(ξ)

)
.

It follows from (2.4) that

EEβ(O) = cd,β

∫

IRd

|ξ|β−d
N∏

j=1

Re

(
1

1 + Ψj(ξ)

)
dξ < ∞

when ECβ(X(IRN
+ )) > 0. Therefore, Eβ(O) < ∞ a.s. Hence, Cβ(X(IRN

+ )) > 0 a.s. �

2.2 The Set of k-Multiple Points
First, we mention a q-potential density criterion: Let X be an additive Lévy process and
assume that X has an a.e. positive q-potential density on IRd for some q ≥ 0. Then for all
Borel sets F ⊂ IRd,

P
{
F
⋂

X((0,∞)N ) 6= ∅
}

> 0 ⇐⇒ E
{
λd(F − X((0,∞)N ))

}
> 0. (2.5)

The argument is elementary but crucially hinges on the property: Xb+t−Xb, t ∈ IRN
+ (indepen-

dent of Xb) can be replaced by X for all b ∈ IRN
+ ; moreover, the second condition “a.e. positive

on IRd” is absolutely necessary for the direction ⇐= in (2.5); see for example Proposition 6.2
of [1].
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Let X1, · · · , Xk be k independent Lévy processes in IRd. Define

Zt = (X2
t2 − X1

t1 , · · · , Xk
tk

− Xk−1
tk−1

), t = (t1, t2, · · · , tk) ∈ IRk
+.

Z is a k-parameter additive Lévy process taking values in IRd(k−1).

Theorem 2.2 Let (X1; Ψ1), · · · , (Xk; Ψk) be k independent Lévy processes in IRd for
k ≥ 2. Assume that Z has an a.e. positive q-potential density for some q ≥ 0. [A special case
is that if for each j = 1, · · · , k, Xj has a one-potential density u1

j > 0, λd-a.e., then Z has an

a.e. positive 1-potential density on IRd(k−1).] Then

P (
k⋂

j=1

Xj((0,∞)) 6= ∅) > 0 ⇐⇒

∫

IRd(k−1)

k∏

j=1

Re

(
1

1 + Ψj(ξj − ξj−1)

)
dξ1 · · · dξk−1 < ∞ (2.6)

with ξ0 = ξk = 0.

Proof For any IRd-valued random variable X and ξ1, ξ2 ∈ IRd, ei[(ξ1,ξ2)·(X,−X)] = ei(ξ1−ξ2)·X .

In particular, the Lévy process (Xj,−Xj) has Lévy exponent Ψj(ξ1 − ξ2). It follows that the
corresponding integral in (1.1) for Z equals

∫

IRd(k−1)

k∏

j=1

Re

(
1

1 + Ψj(ξj − ξj−1)

)
dξ1 · · ·dξk−1

with ξ0 = ξk = 0. Clearly,

P (

k⋂

j=1

Xj((0,∞)) 6= ∅) > 0 ⇐⇒ P (0 ∈ Z((0,∞)k)) > 0.

Since Z has an a.e. positive q-potential density, by (2.5)

P (0 ∈ Z((0,∞)k)) > 0 ⇐⇒ E{λd(k−1)(Z((0,∞)k))} > 0.

(2.6) now follows from Theorem 1.1. �

For each β ∈ (0, d) and S1−β/d independent of X1, · · · , Xk, define

Z
S,β
t = (X1

t1 − S
1−β/d
t0 , X2

t2 − X1
t1 , · · · , Xk

tk
− Xk−1

tk−1
),

t = (t0, t1, t2, · · · , tk) ∈ IRd+k
+ , t0 ∈ IRd

+.

ZS,β is a k + d parameter additive Lévy process taking values in IRdk.

Theorem 2.3 Let (X1; Ψ1), · · · , (Xk; Ψk) be k independent Lévy processes in IRd for
k ≥ 2. Assume that for each β ∈ (0, d), ZS,β has an a.e. positive q-potential density on IRdk for
some q ≥ 0. (q might depend on β.) [A special case is that if for each j = 1, · · · , k, Xj has a
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one-potential density u1
j > 0, λd-a.e., then ZS,β has an a.e. positive 1-potential density on IRdk

for all β ∈ (0, d).] If P (
⋂k

j=1 Xj((0,∞)) 6= ∅) > 0, then almost surely dimH

⋂k
j=1 Xj((0,∞))

is a constant on {⋂k
j=1 Xj((0,∞)) 6= ∅} and

dimH

k⋂

j=1

Xj((0,∞)) = sup{β ∈ (0, d) :

∫

IRdk

(1 + |
k∑

j=1

ξj |)β−d
k∏

j=1

Re

(
1

1 + Ψj(ξj)

)
dξ1dξ2 · · · dξk < ∞}. (2.7)

Proof According to the argument, Eq. (4.96)-(4.102), in Proof of Theorem 3.2. of Khosh-
nevisan, Shieh, and Xiao [2], it suffices to show that for all β ∈ (0, d) and S1−β/d independent
of X1, · · · , Xk,

P




k⋂

j=1

Xj((0,∞))
⋂

S1−β/d((0,∞)d) 6= ∅


 > 0 ⇐⇒

∫

IRdk

(1 + |
k∑

j=1

ξj |)β−d
k∏

j=1

Re

(
1

1 + Ψj(ξj)

)
dξ1dξ2 · · · dξk < ∞. (2.8)

Similarly, the corresponding integral in (1.1) for ZS,β equals

∫

IRdk

1

(1 + |ξ0|1−β/d)d

k∏

j=1

Re

(
1

1 + Ψj(ξj − ξj−1)

)
dξ0dξ1 · · · dξk−1

with ξk = 0. Since ZS,β has an a.e. positive q-potential density, by (2.5) and Theorem 1.1

P




k⋂

j=1

Xj((0,∞))
⋂

S1−β/d((0,∞)d) 6= ∅


 > 0 ⇐⇒

P (0 ∈ ZS,β((0,∞)k+d)) > 0 ⇐⇒ E{λdk(ZS,β((0,∞)k+d))} > 0 ⇐⇒
∫

IRdk

1

(1 + |ξ0|1−β/d)d

k∏

j=1

Re

(
1

1 + Ψj(ξj − ξj−1)

)
dξ0dξ1 · · · dξk−1 < ∞

with ξk = 0. Note that

∫

IRdk

1

(1 + |ξ0|1−β/d)d

k∏

j=1

Re

(
1

1 + Ψj(ξj − ξj−1)

)
dξ0dξ1 · · · dξk−1 < ∞

⇐⇒
∫

IRdk

(1 + |ξ0|)β−d
k∏

j=1

Re

(
1

1 + Ψj(ξj − ξj−1)

)
dξ0dξ1 · · ·dξk−1 < ∞.
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Finally, use the cyclic transformation: ξj − ξj−1 = ξ′j , j = 1, · · · , k − 1, ξk−1 = ξ′k to obtain

∫

IRdk

(1 + |ξ0|)β−d
k∏

j=1

Re

(
1

1 + Ψj(ξj − ξj−1)

)
dξ0dξ1 · · · dξk−1 < ∞

⇐⇒
∫

IRdk

(1 + |
k∑

j=1

ξ′j |)β−d
k∏

j=1

Re

(
1

1 + Ψj(ξ′j)

)
dξ′1dξ′2 · · · dξ′k < ∞. �

Let X be a Lévy process in IRd. Fix any path Xt(ω). A point xω ∈ IRd is said to be a k-multiple
point of X(ω) if there exist k distinct times t1, t2, · · · , tk such that Xt1(ω) = Xt2(ω) = · · · =
Xtk

(ω) = xω. Denote by Eω
k the set of k-multiple points of X(ω). It is well known that Ek

can be identified with
⋂k

j=1 Xj((0,∞)) where the Xj are i.i.d. copies of X . Thus, Theorem
2.2 and Theorem 2.3 imply the next theorem.

Theorem 2.4 Let (X, Ψ) be any Lévy process in IRd. Assume that X has a one-potential
density u1 > 0, λd-a.e. Let Ek be the k-multiple-point set of X. Then

P (Ek 6= ∅) > 0 ⇐⇒
∫

IRd(k−1)

k∏

j=1

Re

(
1

1 + Ψ(ξj − ξj−1)

)
dξ1 · · ·dξk−1 < ∞ (2.9)

with ξ0 = ξk = 0. If P (Ek 6= ∅) > 0, then almost surely dimH Ek is a constant on {Ek 6= ∅}
and

dimH Ek = sup{β ∈ (0, d) :

∫

IRdk

(1 + |
k∑

j=1

ξj |)β−d
k∏

j=1

Re

(
1

1 + Ψ(ξj)

)
dξ1dξ2 · · · dξk < ∞}. (2.10)

2.3 Intersection of Two Independent Subordinators
Let Xt, t ≥ 0 be a process with X0 = 0, taking values in IR+. First, we ask this question:
What is a condition on X such that for all sets F ⊂ (0,∞),

P (F
⋂

X((0,∞)) 6= ∅) > 0 ⇐⇒ E{λ1(F − X((0,∞)))} > 0 ?

For subordinators, still the existence and positivity of a q-potential density (q ≥ 0) is the only
known useful condition to this question.
Let σ be a subordinator. Take an independent copy σ− of −σ. We then define a process σ̃ on
IR by σ̃s = σs for s ≥ 0 and σ̃s = σ−

−s for s < 0. Note that σ̃ is a process of the property:
σ̃t+b − σ̃b, t ≥ 0 (independent of σ̃b) can be replaced by σ for all b ∈ IR.

Let Xt, t ≥ 0 be any process in IRd. Then the q-potential density is nothing but the density
of the expected q-occupation measure with respected to the Lebesgue measure. (When q = 0,
assume that the expected 0-occupation measure is finite on the balls.) Since the reference
measure is Lebesgue, one can easily deduce that if u is a q-potential density of X , then u(−x)

is a q-potential density of −X . Consequently, if we define X̃s = Xs for s ≥ 0 and X̃s = X−
−s for

s < 0 where X− is an independent copy of −X, then u(x) + u(−x) is a q-potential density of

X̃. Conversely, if X̃ has a q-potential density, then it has to be the form u(x)+u(−x), where u
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is a q-potential density of X . If σ is a subordinator, after a little thought we can conclude that
σ̃ has an a.e. positive q-potential density on IR if and only if σ has an a.e. positive q-potential
density on IR+.

Lemma 2.5 If a subordinator σ has an a.e. positive q-potential density for some q ≥ 0 on
IR+, then for all Borel sets F ⊂ (0,∞),

P (F
⋂

σ((0,∞)) 6= ∅) > 0 ⇐⇒ E{λ1(F − σ((0,∞)))} > 0. (2.11)

Proof Assume that E{λ1(F − σ((0,∞)))} > 0. From the above discussion, σ̃ has an a.e.
positive q-potential density. Moreover, σ̃ is a process of the property: σ̃t+b − σ̃b, t ≥ 0
(independent of σ̃b) can be replaced by σ for all b ∈ IR. It follows from the standard q-potential
density argument that P (F

⋂
σ̃(IR\{0}) 6= ∅) > 0. But F ⊂ (0,∞) and σ̃((−∞, 0]) ⊂ (−∞, 0].

Thus, P (F
⋂

σ((0,∞)) 6= ∅) > 0. The direction =⇒ in (2.11) is elementary since σ has a
q-potential density. �

Theorem 2.6 Let σ1 and σ2 be two independent subordinators having the Lévy exponents Ψ1

and Ψ2, respectively. Assume that σ1 has an a.e. positive q-potential density for some q ≥ 0
on IR+. Then

P [σ1((0,∞))
⋂

σ2((0,∞)) 6= ∅] > 0 ⇐⇒
∫ ∞

−∞

Re

(
1

Ψ1(x)

)
Re

(
1

1 + Ψ2(x)

)
dx < ∞. (2.12)

Note that our result does not require any continuity condition on the q-potential density.

Proof By Lemma 2.5 and Theorem 1.1,

P [σ1((0,∞))
⋂

σ2((0,∞)) 6= ∅] > 0 ⇐⇒

∫ ∞

−∞

Re

(
1

1 + Ψ1(x)

)
Re

(
1

1 + Ψ2(x)

)
dx < ∞.

Since σ1 is transient,
∫
|x|≤1

Re
(

1
Ψ1(x)

)
dx < ∞. The proof is therefore completed. �

2.4 A Fourier Integral Problem

This part of content can be found in Section 6 of [1]. It is an independent Fourier integral
problem. Neither computing the Hausdorff dimension nor proving the existence of 1-potential
density needs the discussion below. [But this Fourier integral problem might be of novelty to
those who want to replace the Lévy exponent by the 1-potential density.] Let X be an additive
Lévy process. Here is the question. Suppose that K : IRd → [0,∞] is a symmetric function

with K(x) < ∞ for x 6= 0 that satisfies K ∈ L1 and K̂(ξ) = k1

∏N
j=1 Re

(
1

1+Ψj(ξ)

)
. Under

what conditions, can

∫ ∫
K(x − y)µ(dx)µ(dy) = k2

∫
|µ̂(ξ)|2

N∏

j=1

Re

(
1

1 + Ψj(ξ)

)
dξ (2.13)
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hold for all probability measures µ in IRd? Here, k1, k2 ∈ (0,∞) are two constants. Consider

the function K in the following example. Define X̃
j
tj

= −Y
j
−tj

for tj < 0 and X̃
j
tj

= X
j
tj

for

tj ≥ 0, where Y j is an independent copy of Xj and the Y j are independent of each other and

of X as well. Then X̃t = X̃1
t1 + X̃2

t2 + · · ·+ X̃N
tN

, t ∈ IRN is a random field on IRN . Assume that

X̃ has a 1-potential density K. So, K ∈ L1 and a direct check verifies that K is symmetric.

By the definition of K, K̂(ξ) =
∫
IRN e−

PN
j=1 |tj |Eeiξ· eXtdt. Evaluating this integral quadrant by

quadrant and using the identity
∑∏N

j=1
1

1+z±

j

= 2N
∏N

j=1 Re
(

1
1+zj

)
for Re(zj) ≥ 0 (where

∑
is taken over the 2N permutations of conjugate) yield K̂(ξ) = k1

∏N
j=1 Re

(
1

1+Ψj(ξ)

)
> 0.

If K̂ ∈ L1 (even though this case is less interesting), on one hand by Fubini,

∫
|µ̂(ξ)|2K̂(ξ)dξ =

∫ ∫ ∫
e−iξ·(x−y)K̂(ξ)dξµ(dx)µ(dy)

and on the other hand by inversion (assuming the inversion holds everywhere by modification
on a null set),

∫ ∫
K(x − y)µ(dx)µ(dy) = (2π)−d

∫ ∫ ∫
e−iξ·(x−y)K̂(ξ)dξµ(dx)µ(dy).

Thus, (2.13) holds automatically in this case. If K is continuous at 0 and K(0) < ∞, then

K̂ ∈ L1. This is a standard fact. Since K ∈ L1 and K̂ > 0, a bottom line condition needed to
prove (2.13) is that K is continuous at 0 on [0,∞]. This paper makes no attempt to solve the
general case K(0) = ∞.

Remark Lemma 6.1 of [1] is not valid. The assumption that

Re
(∏N

j=1
1

1+Ψj(ξ)

)
> 0 cannot justify either equation in (6.4) of [1]. Fortunately, Lemma 6.1

played no role in [1], because Theorem 7.2 of [1] is an immediate consequence of the well-known
identity (2.4) of the present paper and Theorem 1.5 of [1]. Nevertheless [1] indeed showed that
the 1-potential density of an isotropic stable additive process is comparable to the Riesz kernel
at 0, and therefore the 1-potential density is continuous at 0 on [0,∞].

References

[1] D. Khoshnevisan, Y. Xiao and Y. Zhong, Measuring the range of an additive Lévy process,
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