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Abstract

Let X be an N-parameter additive Lévy process in R? with Lévy exponent (Uq,---,¥y) and
let \g denote Lebesgue measure in R?. We show that

>d§<oo.

N ~ 1

This was previously proved by Khoshnevisan, Xiao and Zhong [1] under a sector condition.

1 Introduction and Proof

Let thl, le27 e ,ng be N independent Lévy processes in R? with their respective Lévy

exponents ¥;, j=1,2,---,N. The random field

X=X + X2+ + X[\

tn?

t=(t1,ta, - ,tn) € RY

is called the additive Lévy process. Let Aq denote Lebesgue measure in RY.

Theorem 1.1 Let X be an additive Lévy process in R with Lévy exponent Uy, ,UnN).
Then
N 1
E{q(X(RY 0 Re(———)d . 1.1
DX RY))} > <=>/Rr_[ (o) < (1)

Recently, Khoshnevisan, Xiao and Zhong [1] proved that if

o a 1
felll =7 ) = 011 (7o) -2

i=1
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for some constant 8 > 0 then Theorem 1.1 holds. In fact the proof of Theorem 1.1 does not
need any condition.

Proof of Theorem 1.1: Define

N
Ey(u) = (2m)~¢ /Rd ZSly .HlRe (%\I@(@‘)) “

where 1 is a probability measure on a compact set F ¢ R¢ and ji(€) = Jra € " p(dx). Let
F = {0} ¢ R? and & be the point mass at 0 € R%. We first quote a key lemma of [1]:

Lemma 5. 5 Suppose X is an additive Lévy process in R? that satisfies Condition (1.8), and
that [pa [T.q 114 ;(&)] 71 dE < +oo, where U = (¥y,--- , Uy) denotes the Lévy exponent of
X. Then, for all compact sets F C R, and for all v > 0,

E{a(X([0,7]Y © F)} < 07%(4e*)N - Cy(F),
where 0 > 0 is the constant in Condition (1.3).

By reviewing the whole process of the proof of Theorem 1.1 of [1] given by Khoshnevisan, Xiao
and Zhong, our Theorem 1.1 certainly follows if we instead prove the following statement:

Let X be any additive Lévy process in R®. If Jra Ty 1+ 58|71 dE < 400, then
CN.d,r
B (0.1) < £t 13)

for some constant cy 4. € (0,00) depending on N, d, r only.

Clearly, all we have to do is to complete Eq. (5.11) of [1] without bothering ourselves with
Condition (1.3) of [1]. Since g is the only probability measure on F' = {0}, letting n — 0, k —
00, and € — 0 and using the integrability condition [ H;V:1 |1+ W, (&) 1dE < o0 yield

/ Re ﬂ* d
R pel Sl 21(9)

where ¢; € (0,00) is a constant depending on N, d, r only.

Consider the 2V~ similar additive Lévy processes (including X, itself) X; : Xt11 + Xf2
E XN v Here, & is merely a symbol for each possible arrangement of the minus signs; e.g.,

X1 — X2+ X3 X' - X?2 - X3 X'+ X2+ X3 and so on. Let ¥* be the Lévy exponent for

X Since —X7 has Lévy exponent W5, Eg+ (1) = Eg(p) for all X and

_E;V:ysj_s' i() —
ZRQ(/Rfe v Eds> 2N1HR (1+\IJ(§)>>O

where the first summation Y is taken over the collection of all the X;5. On the other hand,

/ / 1 =551 S8 ~5)6) 1 (s ()
]RN ]RN

2

E{Aa(X([0,7]7))} (1.4)

Eu(do) > a1
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remains unchanged for all Xti as long as p is an N—fold product measure on ]Rf . Proposition
10.3 of [1] and Theorem 2.1 of [1] together state that for any additive Lévy process X,

b ([ ev©a)

where A" is the restriction of the Lebesgue measure Ay in RY to [0,7]Y and ki, ky € (0,00)
are two constants depending only on r;, N, d, 7. Note that \" is an N—fold product measure
on ]Rf . Thus, there exists a constant ¢y € (0, 00) depending only on N and 7 such that

E{Xa(X([0,7]%))} < c2E{Xa(X([0,7]7))}

< B (0.} < o (] o <§>d§>_1 ,

for all X;". Since |142| = |1+Z| where z is a complex number, [ Hj\[:l [1+T (€)1 dE < +oo
as well. Therefore, by (1.4),

_ Ew (o)
2 f\/ B (0. 717)))

Ey=(do)
=2 \/ ED(XE (0, 7))}
> ey /R Re /RN erlsﬂ-s“ﬁ(@ds) dg
e~ Tt s5—s-WE(E) s
Z/Rd Re </Rf d ) d¢

S H e (1 )

= 2N71\/a(27'r)d&1;(50).
(1.3) follows, so does the theorem. [

> Ja

2 Applications

2.1 The Range of An Additive Lévy Process

As the first application, we use Theorem 1.1 to compute dimgy X (]Rf ). Here, dimpy denotes
the Hausdorff dimension. To begin, we introduce the standard d-parameter additive a-stable
Lévy process in R for o € (0,1) :

Sy =8, +SE+-+ 8¢

tq?
that is, the S’ are independent standard a-stable Lévy processes in R? with the common Lévy

exponent |£|*.

Theorem 2.1 Let X be any N-parameter additive Lévy process in R? with Lévy exponent
(\Ifl, s ,‘I’N). Then

N
dimy X(RY) = sup < 8 € (0,d) : /Rd |€|P—4 HRe <1+%(§)> d¢ < o0 ) a.s. (2.1)
j=1 J
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Proof Let Cs denote the Riesz capacity. By Theorem 7.2 of [1], for all 3 € (0,d) and S'~#/¢
independent of X,

ECs(X(RY)) > 0 <= E{ (S P4RL) + X(RY))} > 0. (2.2)

Note that S'=#/¢ + X is a (d + N, d)—additive Lévy process. Thus, by Theorem 1.1 and the
fact that 3 < d and Re (ﬁ(f)) € (0,1], we have for all 8 € (0,d),

N
ECs(X(RY)) >0 = /Rd |€|P—4 H Re < ) d¢ < . (2.3)

1
1+ (8)
Thanks to the Frostman theorem, it remains to show that Cg(X (RY)) > 0 is a trivial event.

Let s denote the Riesz energy. By Plancherel’s theorem, given any 8 € (0,d), there is a
constant c¢q .3 € (0,00) such that

&) = s [ 10O IS ag (24)

holds for all probability measures v in R?; see Mattila [3; Lemma 12.12]. Consider the 1-killing
occupation measure

O(A) = /]R 1(_Xt (= A)e_ Z;VZI tjdt, A C Rd'

N
+

Clearly, O is a probability measure supported on X (]Rf ). It is easy to verify that

E|O(¢)? —ﬁRe (%\P(é‘) '

It follows from (2.4) that

i 1
_ B—d
BE(0) =can [ e HRG(H%(&)) & <

when EC3(X (RY)) > 0. Therefore, £3(0) < oo a.s. Hence, C3(X(RY)) >0as. O

2.2 The Set of k-Multiple Points

First, we mention a g-potential density criterion: Let X be an additive Lévy process and
assume that X has an a.e. positive g-potential density on R? for some q > 0. Then for all
Borel sets F' C ]Rd,

P {FﬂX((o, o) V) £ (2)} > 0= B {\(F - X((0,00)M))} > 0. (2.5)

The argument is elementary but crucially hinges on the property: Xpi:—Xsp, t € ]Rf (indepen-
dent of X3) can be replaced by X for all b € ]Rf ; moreover, the second condition “a.e. positive
on R? is absolutely necessary for the direction <= in (2.5); see for example Proposition 6.2

of [1].
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Let X',---, X" be k independent Lévy processes in R?. Define

Zy= (X} - X}, XE X7, t=(ta,te, o, ty) € REL
Z is a k-parameter additive Lévy process taking values in R,
Theorem 2.2 Let (X'; Uy), ---, (X¥; W) be k independent Lévy processes in Re for
k > 2. Assume that Z has an a.e. positive q-potential density for some q > 0. [A special case
is that if for each j =1,---  k, X7 has a one-potential density qu > 0, A\g-a.e., then Z has an

a.e. positive 1-potential density on ]Rd(k_l)./ Then

k
P(ﬂ X7((0,00)) # 0) > 0 <=

: 1
/Rd(“) Jl_[Re (1 +9;(5 - §j—1)) Ay dlpy < 00 (2.6)

=1
with & = & = 0.
Proof For any R%valued random variable X and &, & € RY, eil(€1:6) (X,=X)] — (il61—&)- X

In particular, the Lévy process (X7, —X7) has Lévy exponent ¥;(&; — &). It follows that the
corresponding integral in (1.1) for Z equals

u 1
/]Rd(k—l) 31;[1 Re (1 +0,(& — 5].1)) d&y - dg—

with & = &, = 0. Clearly,

k
P(() X7((0,00)) # 0) > 0 <= P(0 € Z((0,00)")) > 0.

Since Z has an a.e. positive g-potential density, by (2.5)
P(0 € Z((0,00)%)) > 0 <= E{Aapr—1)(Z((0,00)"))} > 0.
(2.6) now follows from Theorem 1.1. [

For each 3 € (0,d) and S'~#/¢ independent of X1, --- , X* define

Zf»ﬁ _ (th1 _ Stlo_ﬁ/detzg _ Xt117 R 7thk _ Xk_l)7

th—1
t= (to,tl,tz, s ,tk) S ]Ri—i_k, to € ]Ri
Z5P is a k + d parameter additive Lévy process taking values in IR

Theorem 2.3 Let (X'; Uy), ---, (XF: W) be k independent Lévy processes in R for
k > 2. Assume that for each 3 € (0,d), Z°P has an a.e. positive q-potential density on R* for
some q > 0. (q might depend on 3.) [A special case is that if for each j =1,--- k, X7 has a
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one-potential density ujl > 0, Ag-a.e., then Z5P has an a.e. positive 1-potential density on R
for all B € (0,d).] If P(ﬂ?zl X7((0,00)) # 0) > 0, then almost surely dimg ﬂle X7((0,00))
is a constant on {ﬂ?zl X7((0,00)) # 0} and

k
dim gy ﬂ X79((0,00)) = sup{3 € (0,d) :
Jj=1
k o k 1
o7 150 T (g st <ok )

Proof According to the argument, Eq. (4.96)-(4.102), in Proof of Theorem 3.2. of Khosh-
nevisan, Shieh, and Xiao [2], it suffices to show that for all 3 € (0,d) and S'~#/¢ independent
of X1 ... XF

k
P [ﬂ X7((0,00)) () S P74((0, 00)%) # (/)] >0 =

j=1

k k 1
yB—d
/de(l + |;§J|) jl;[lRe (1 - \Ifj(gj)> déydey - - dj, < oo. (2.8)

Similarly, the corresponding integral in (1.1) for Z°? equals

1 k 1
/de FETEOTE Y R <1 . 57-_1>> deodgy -+ - di—

with &, = 0. Since Z%# has an a.e. positive g-potential density, by (2.5) and Theorem 1.1
k

P X7((0,00)) ()8 4((0,00)") # 0| >0 =

j=1

P(0 € Z%8((0,00)f 1)) > 0 = E{Aa(Z%7((0,00)" 1))} > 0 =

1 k 1
fo T IR (o —gy) e e <o

with & = 0. Note that

1 k 1
/de WJ‘:IRG <1 + (& - §j—1)) oty -+~ diy—1 < 0

- 1
B—d
— /de(l + o) _jI:I1 Re (1 (6 = €j1)) d€odgy - - - dé—1 < 0.
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Finally, use the cyclic transformation: §; — &1 =}, j =1,k — 1, {1 = &, to obtain

: 1
ﬁid DY m
[ a+la ERG(H%@ ) déoder - din <

k k 1
Hyps—d — | dgde, - dE < . O
<:>/de(1+|;€g|) jl:[lRe<1+\Ijj(§§')> §1d&s §e <

Let X be a Lévy process in R?. Fix any path X;(w). A point z* € R? is said to be a k-multiple
point of X (w) if there exist k distinct times t1, %o, - , ¢ such that X3, (w) = Xp,(w) = -+ =
Xt (w) = 2. Denote by Ey the set of k-multiple points of X (w). It is well known that Ej
can be identified with ﬂ§:1 X7((0,00)) where the X7 are i.i.d. copies of X. Thus, Theorem
2.2 and Theorem 2.3 imply the next theorem.

Theorem 2.4 Let (X, V) be any Lévy process in R?. Assume that X has a one-potential
density u' > 0, Ag-a.e. Let E} be the k-multiple-point set of X. Then

1
(Ek #@) >0 <= e 1) e(1+\11(§j_§j1)) dgl-“dfkfl < 0 (29)

with & = & = 0. If P(Ey # 0) > 0, then almost surely dimpg Ey is a constant on {Ey # 0}
and
dimy E) = sup{g € (0,d) :

k B k 1
/de(l + |;€j|)ﬁ djl;[l Re (T\P(@)> dgydéy - - déy, < oo} (2.10)

2.8 Intersection of Two Independent Subordinators
Let X;, t > 0 be a process with Xy = 0, taking values in IR. First, we ask this question:
What is a condition on X such that for all sets F' C (0, c0),

P(F()X((0,00)) # 0) > 0 <= E{\(F — X((0,00)))} >0 ?

For subordinators, still the existence and positivity of a g-potential density (¢ > 0) is the only
known useful condition to this question.

Let o be a subordinator. Take an independent copy o~ of —o. We then define a process ¢ on
R by 65 = 05 for s > 0 and 6, = o_, for s < 0. Note that & is a process of the property:
Ft4b — Op, t > 0 (independent of &;) can be replaced by o for all b € R.

Let X;, t > 0 be any process in R?. Then the g-potential density is nothing but the density
of the expected g-occupation measure with respected to the Lebesgue measure. (When ¢ = 0,
assume that the expected 0-occupation measure is finite on the balls.) Since the reference
measure is Lebesgue, one can easily deduce that if u is a q-) potential density of X, then u(—zx)
is a g-potential density of —X. Consequently, if we define X = X, for s > 0 and X = X_, for
s < 0 where X~ is an independent copy of —X, then u(z) 4+ u(—z) is a g-potential den81ty of
X. Conversely, if X has a g-potential density, then it has to be the form u(z)+u(—z), where u
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is a g-potential density of X. If ¢ is a subordinator, after a little thought we can conclude that
0 has an a.e. positive g-potential density on R if and only if ¢ has an a.e. positive g-potential
density on R.

Lemma 2.5 If a subordinator o has an a.e. positive q-potential density for some g > 0 on
R, then for all Borel sets F C (0, 00),

P(F()((0,00)) # 0) > 0 <= E{\(F — o((0,0)))} > 0. (2.11)

Proof Assume that E{\(F — 0((0,00)))} > 0. From the above discussion, & has an a.e.
positive g-potential density. Moreover, ¢ is a process of the property: &i4p — dp, t > 0
(independent of 63) can be replaced by o for all b € R. It follows from the standard ¢g-potential
density argument that P(F [ (IR\{0}) # @) > 0. But F C (0,00) and &((—o0,0]) C (—o0,0].
Thus, P(F'(c((0,00)) # @) > 0. The direction = in (2.11) is elementary since o has a
g-potential density. O

Theorem 2.6 Let o' and o2 be two independent subordinators having the Lévy exponents ¥,
and Uy, respectively. Assume that o' has an a.e. positive q-potential density for some ¢ > 0
on Ry. Then

Plo'((0,00)[)0?((0,00)) # 0] > 0 =

/-Z fte (Wll(w)) e <1 + \;2(;5)) du < oo (2.12)

Note that our result does not require any continuity condition on the ¢-potential density.

Proof By Lemma 2.5 and Theorem 1.1,

Plo*((0,00)[)0?((0,00)) # 0] > 0 =

e (e )R (i ) <

Re(

Since ¢ is transient, |

lz[<1

\1,11(1)) dr < oo. The proof is therefore completed. [

2.4 A Fourier Integral Problem

This part of content can be found in Section 6 of [1]. It is an independent Fourier integral
problem. Neither computing the Hausdorff dimension nor proving the existence of 1-potential
density needs the discussion below. [But this Fourier integral problem might be of novelty to
those who want to replace the Lévy exponent by the 1-potential density.] Let X be an additive
Lévy process. Here is the question. Suppose that K : R? — [0,00] is a symmetric function

with K(z) < oo for z # 0 that satisfies K € L' and K(£) = ky vazl Re( Under
what conditions, can

//K x —y)u(dx)p(dy) —k2/|u 1R (%\Py(f)) d¢ (2.13)

7))
1+v;(8) ) -
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hold for all probability measures p in R%? Here, ki, k2 € (0,00) are two constants. Consider
the function K in the following example. Define X I = —YJ for t; < 0 and Xg = X}, I for
t; > 0, where Y7 is an 1ndependent copy of X7 and the Y7 are 1ndependent of each other and
of X as well. Then X, = thl +X S+ —I—XtN, t € R" is a random field on RY. Assume that
X has a 1-potential density K. So, K € L' and a direct check verifies that K is symmetric.
By the definition of K, IA( = f NE it IthEeif'X‘ dt. Evaluating this integral quadrant by

quadrant and using the 1dent1ty EH; 1 1+z =2N H] 1 Re (1+z ) for Re(z;) > 0 (where

S is taken over the 2V permutations of conjugate) yield K (&) = ki HFl Re ( > 0.

1
1+9; (f))
If K € L' (even though this case is less interesting), on one hand by Fubini,

[l PR©dc= [ [ [ et nR@©dutannutan)

and on the other hand by inversion (assuming the inversion holds everywhere by modification
on a null set),

[ [ G-yt = @n [ [ [ Ri@agutinntay)

Thus, (2.13) holds automatically in this case. If K is continuous at 0 and K(0) < oo, then
K € L'. This is a standard fact. Since K € L' and K > 0, a bottom line condition needed to
prove (2.13) is that K is continuous at 0 on [0, oo]. This paper makes no attempt to solve the
general case K(0) = oo.

Remark Lemma 6.1 of [1] is not valid. The assumption that

Re (HJ 1 H‘P;(E)) > 0 cannot justify either equation in (6.4) of [1]. Fortunately, Lemma 6.1

played no role in [1], because Theorem 7.2 of [1] is an immediate consequence of the well-known
identity (2.4) of the present paper and Theorem 1.5 of [1]. Nevertheless [1] indeed showed that
the 1-potential density of an isotropic stable additive process is comparable to the Riesz kernel
at 0, and therefore the 1-potential density is continuous at 0 on [0, oc].
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