A COUNTEREXAMPLE FOR THE OPTIMALITY OF KENDALL-CRANSTON COUPLING

KAZUMASA KUWADA
Department of Mathematics, Faculty of Science, Ochanomizu University, Tokyo 112-8610, Japan
email: kuwada@math.ocha.ac.jp
KARL-THEODOR STURM
Institute for Applied Mathematics, University of Bonn, Wegelerstrasse 6, 53115 Bonn, Germany
email: sturm@uni-bonn.de

Submitted November 24 2005, accepted in final form September 292006
AMS 2000 Subject classification: 60D05, 58J65
Keywords: Brownian motion, manifold, optimal coupling, Kendall-Cranston coupling

Abstract

We construct a Riemannian manifold where the Kendall-Cranston coupling of two Brownian particles does not maximize the coupling probability.

1 Introduction

Given two stochastic processes X_{t} and Y_{t} on a state space M, a coupling $Z_{t}=\left(Z_{t}^{(1)}, Z_{t}^{(2)}\right)$ is a process on $M \times M$ so that $Z^{(1)}$ or $Z^{(2)}$ has the same distribution as X or Y respectively. Of particular interest in many applications is the distribution of the coupling time $T(Z):=$ $\inf \left\{t>0 ; Z_{s}^{(1)}=Z_{s}^{(2)}\right.$ for all $\left.s>t\right\}$. The goal is to make the coupling probability $\mathbb{P}[T(Z) \leq t]$ as large as possible by taking a suitable coupling. When X and Y are Brownian motions on a Riemannian manifold, Kendall [3] and Cranston [1] constructed a coupling by using the Riemannian geometry of the underlying space. Roughly speaking, under their coupling, infinitesimal motion $\Delta Y_{t} \in T_{Y_{t}} M$ at time t is given as a sort of reflection of ΔX_{t} via the minimal geodesic joining X_{t} and Y_{t}. Their coupling has the advantage of controlling the coupling probability by using geometric quantities such as the Ricci curvature. As a result, KendallCranston coupling produces various estimates for heat kernels, harmonic maps, eigenvalues etc. under natural geometric assumptions.
On the other hand, there is the question of optimality. We say that a coupling Z of X and Y is optimal at time t if

$$
\mathbb{P}[T(Z) \leq t] \geq \mathbb{P}[T(\tilde{Z}) \leq t]
$$

holds for any other coupling \tilde{Z}. Though Kendall-Cranston coupling has a good feature as mentioned, in general there is no reason why it should be optimal.

The Kendall-Cranston coupling is optimal if the underlying space has a good symmetry. For example, in the case $M=\mathbb{R}^{d}$, the Kendall-Cranston coupling $\left(Z^{(1)}, Z^{(2)}\right)$ is nothing but the mirror coupling. It means that $Z_{t}^{(2)}=\Psi\left(Z_{t}^{(1)}\right)$ up to the time they meet, where Ψ is a reflection with respect to a hyperplane in \mathbb{R}^{d} so that $\Psi\left(X_{0}\right)=Y_{0}$. It is well known that the mirror coupling is optimal. Indeed, it is the only coupling which is optimal and Markovian [2]. More generally, the same result holds if there is a sort of reflection structure like a map Ψ on \mathbb{R}^{d} (see [4]).
In this paper, we show that the Kendall-Cranston coupling is not optimal in general.
Theorem 1.1 For each $t>0$, there is a complete Riemannian manifold M where the KendallCranston coupling of two Brownian motions X. and Y. with specified starting points is not optimal.

The proof of Theorem 1.1 is reduced to the case $t=1$ by taking a scaling of Riemannian metric. We construct a manifold M in the next section and prove Theorem 1.1 in section 3.

Notation: Given a Riemannian manifold N we denote by $B_{r}^{N}(x)$ or simply $B_{r}(x)$ the open ball in N of radius r centered at x.
Given a Brownian motion $\left(X_{t}\right)_{t \geq 0}$ on N we denote by $\tau_{A}=\inf \left\{t>0: X_{t} \in A\right\}$ the hitting time of a set $A \subset N$. We remark that, throughout this article, τ_{A} always stands for the hitting time for the process $\left(X_{t}\right)_{t \geq 0}$ even when we consider a coupled motion $\left(X_{t}, Y_{t}\right)_{t \geq 0}$.

2 Construction of the manifold

We take three parameter $R>0, \zeta>0$ and $\delta>0$ such that $\zeta<R / 4$ and $\delta<\zeta / 3$. Let $C=\mathbb{R} \times S^{1}$ be a cylinder with a flat metric such that the length of a circle S^{1} equals ζ. For simplicity of notation, we write $z=(r, \theta)$ for $z \in C$ where $r \in \mathbb{R}$ and $\theta \in(-\zeta / 2, \zeta / 2]$ such that the Riemannian metric is written as $d r^{2}+d \theta^{2}$. If appropriate, any $\theta \in \mathbb{R}$ will be regarded $\bmod \zeta$ and considered as element of $(-\zeta / 2, \zeta / 2]$. We put

$$
M_{1}:=\left([-R, \infty) \times S^{1}\right) \backslash B_{\delta}^{C}((0, \zeta / 2)) \subset C
$$

and write $\partial_{1,0}:=\partial B_{\delta}^{C}((0, \zeta / 2))$ as well as $\partial_{1,2}:=\{-R\} \times S^{1}$ (see Fig.1). Let C^{\prime} be a copy of C. Then we put analogously

$$
M_{2}:=\left((-\infty, R] \times S^{1}\right) \backslash B_{\delta}^{C^{\prime}}((0,0)) \subset C^{\prime}
$$

and write $\partial_{2,0}:=\partial B_{\delta}^{C^{\prime}}((0,0))$ as well as $\partial_{2,1}:=\{R\} \times S^{1}$. Let $M_{0}=S^{1} \times[-1,1]$ be another cylinder. We write $z \in M_{0}$ by $z=(\varphi, r)$ where $\varphi \in(0,2 \pi]$ and $r \in[-1,1]$. Now we define a C^{∞}-manifold M (see Fig.2) by $M=M_{0} \sqcup M_{1} \sqcup M_{2} / \sim$, where the identification " \sim " means

$$
\begin{aligned}
\partial_{1,2} \ni(-R, \theta) & \sim(R, \zeta / 2-\theta) \in \partial_{2,1} & & \text { for } \theta \in(-\zeta / 2, \zeta / 2], \\
\partial_{1,0} \ni(\delta \cos \varphi, \zeta / 2-\delta \sin \varphi) & \sim(\varphi,-1) \in M_{0} & & \text { for } \varphi \in(0,2 \pi], \\
\partial_{2,0} \ni(\delta \cos \varphi, \delta \sin \varphi) & \sim(\varphi, 1) \in M_{0} & & \text { for } \varphi \in(0,2 \pi] .
\end{aligned}
$$

We endow M with a C^{∞}-metric g such that (M, g) becomes a complete Riemannian manifold and:
(i) $\left.g\right|_{M_{1}}$ coincides with the metric on M_{1} inherited from C,

Fig. 1

Fig. 2
(ii) $\left.g\right|_{M_{2}}$ coincides with the metric on M_{2} inherited from C^{\prime},
(iii) $\left.g\right|_{M_{0}}$ is invariant under maps $(\theta, r) \mapsto(\theta,-r)$ and $(\theta, r) \mapsto(\theta+\varphi, r)$ on M_{0},
(iv) $d((-1,0),(1,0))=\zeta$ for $z_{1}=(-1,0), z_{2}=(1,0) \in M_{0}$
where d is the distance function on M.

3 Comparison of coupling probabilities

Let M be the manifold constructed above (with suitably chosen parameters R, ζ and δ) and fix two points $x=(0, \zeta / 6) \in M_{1}$ and $y=(0, \zeta / 3) \in M_{2}$.
In this paper, the construction of Kendall-Cranston coupling is due to von Renesse [5]. We will try to explain his idea briefly. His approach is based on the approximation by coupled geodesic random walks $\left\{\hat{\Xi}^{k}\right\}_{k \in \mathbb{N}}$ starting in (x, y) whose sample paths are piecewise geodesic. Given their positions after $(n-1)$-th step, one determines its next direction ξ_{n} according to the uniform distribution on a small sphere in the tangent space and the other does it as the reflection of ξ_{n} along a minimal geodesic joining their present positons. We obtain a KendallCranston coupling $\left(X_{t}, Y_{t}\right)$ by taking the (subsequential) limit in distribution of them. We will construct another Brownian motion $\left(\hat{Y}_{t}\right)_{t \geq 0}$ on M starting in y, again defined on the same probability space as we construct $\left(X_{t}, Y_{t}\right)$ such that

$$
\mathbb{P}(X \text { and } Y \text { meet before time } 1)<\mathbb{P}(X \text { and } \hat{Y} \text { meet before time } 1) .
$$

In other words, if \mathbb{Q} denotes the distribution of (X, Y) and $\widehat{\mathbb{Q}}$ denotes the distribution of (X, \hat{Y}) then

Proposition 3.1 $\mathbb{Q}[T \leq 1]<\hat{\mathbb{Q}}[T \leq 1]$.
Our construction of the process \hat{Y} will be as follows. We define a map $\Phi: M_{1} \rightarrow M_{2}$ by $\Phi((r, \theta))=(-r, \zeta / 2-\theta)$ and then put
(i) $\hat{Y}_{t}=\Phi\left(X_{t}\right)$ for $t \in\left[0, \tau_{\partial_{1,0}} \wedge T\right)$;
(ii) X and \hat{Y} move independently for $t \in\left[\tau_{\partial_{1,0}}, T\right)$ in case $\tau_{\partial_{1,0}}<T$;
(iii) $\hat{Y}_{t}=X_{t}$ for $t \in[T, \infty)$.

Note that $\tau_{\partial_{1,2}}=T$ holds when $\tau_{\partial_{1,2}} \leq \tau_{\partial_{1,0}}$ under $\hat{\mathbb{Q}}$.
Set $H=S^{1} \times\{0\} \subset M_{0} \subset M$. For $z_{1}, z_{2} \in M$ and $A \subset M$, minimal length of paths joining z_{1} and z_{2} which intersect A is denoted by $d\left(z_{1}, z_{2} ; A\right)$. We define a constant L_{0} by

$$
L_{0}:=\inf \left\{L \in(\delta, R] ; \begin{array}{l}
d\left(z_{1}, z_{2} ; H\right) \geq d\left(z_{1}, z_{2} ; \partial_{1,2}\right) \\
\text { for some } z_{1}=(L, \theta) \in M_{1}, z_{2}=(L, \zeta / 2-\theta) \in M_{2}
\end{array}\right\}
$$

Lemma 3.2 $R-\zeta<L_{0}<R$.
Proof. First we show $L_{0}<R$. Let $z_{1}=(R, 0) \in M_{1}$ and $z_{2}=(R, \zeta / 2) \in M_{2}$. Obviously there is a path of length $2 R$ joining z_{1} and z_{2} across $\partial_{1,2}$. Thus we have $d\left(z_{1}, z_{2} ; \partial_{1,2}\right) \leq 2 R$. By symmetry of M,

$$
d\left(z_{1}, z_{2} ; H\right)=2 d\left(z_{1}, H\right)=2\left(d\left(z_{1}, \partial_{1,0}\right)+\frac{\zeta}{2}\right)=2\left(\sqrt{R^{2}+\zeta^{2} / 4}-\delta\right)+\zeta>2 R
$$

where the second equality follows from the third and fourth properties of g and the last inequality follows from the choice of δ. These estimates imply $L_{0}<R$.
Next, let $z_{1}^{\prime}=(R-\zeta, \theta) \in M_{1}$ and $z_{2}^{\prime}=(R-\zeta, \zeta / 2-\theta) \in M_{2}$. In the same way as observed above, we have

$$
d\left(z_{1}^{\prime}, z_{2}^{\prime} ; H\right)=2\left(\sqrt{(R-\zeta)^{2}+\theta^{2}}-\delta\right)+\zeta \leq 2 R-2 \delta
$$

Note that the length of a path joining z_{1}^{\prime} and z_{2}^{\prime} which intersects both of $\partial_{1,2}$ and H is obviously greater than $d\left(z_{1}^{\prime}, z_{2}^{\prime} ; H\right)$. Thus, in estimating $d\left(z_{1}^{\prime}, z_{2}^{\prime} ; \partial_{1,2}\right)$, it is sufficient to consider all paths joining z_{1}^{\prime} and z_{2}^{\prime} across $\partial_{1,2}$ which do not intersect H. Such a path must intersect both $\{\delta\} \times S^{1} \subset M_{1}$ and $\{-\delta\} \times S^{1} \subset M_{1}$ (see Fig.3). Thus we have

$$
\begin{aligned}
d\left(z_{1}^{\prime}, z_{2}^{\prime} ; \partial_{1,2}\right) & \geq d\left(z_{1}^{\prime},\{\delta\} \times S^{1}\right)+d\left(\{-\delta\} \times S^{1}, \partial_{1,2}\right)+d\left(\partial_{2,1}, z_{2}^{\prime}\right) \\
& \geq(R-\zeta-\delta)+(R-\delta)+\zeta \\
& =2 R-2 \delta
\end{aligned}
$$

Hence, the conclusion follows.
Set $M_{1}^{\prime}:=M_{1} \cap\left[-L_{0}, L_{0}\right] \times S^{1} \subset C$ and $M_{2}^{\prime}:=M_{2} \cap\left[-L_{0}, L_{0}\right] \times S^{1} \subset C^{\prime}$. We define a submanifold $M^{\prime} \subset M$ with boundary by $M^{\prime}=M_{0} \sqcup M_{1}^{\prime} \sqcup M_{2}^{\prime} / \sim$ (see Fig.4). Let $\Psi: M^{\prime} \rightarrow M^{\prime}$ be the reflection with respect to H. For instance, for $z=(r, \theta) \in M_{1}^{\prime}, \Psi(z)=(r, \zeta / 2-\theta) \in M_{2}^{\prime}$. Note that Ψ is an isometry, $\Psi \circ \Psi=\operatorname{id}$ and $\left\{z \in M^{\prime} ; \Psi(z)=z\right\}=H$.
Let X^{\prime} be the given Brownian motion starting in x and now stopped at ∂M^{\prime}, i.e. $X_{t}^{\prime}=X_{t \wedge \tau_{\partial M^{\prime}}}$. Define a stopped Brownian motion starting in y by $Y_{t}^{\prime}=\Psi\left(X_{t}^{\prime}\right)$ for $t<\tau_{H}$ and by $Y_{t}=X_{t}$ for $t \geq \tau_{H}$ (that is, the two Brownian particles coalesce after τ_{H}). Then we can prove the following lemma.

Lemma 3.3 The law of $\left(X_{t \wedge \tau_{\partial M^{\prime}}}, Y_{t \wedge \tau_{\partial M^{\prime}}}\right)_{t \geq 0}$ coincides with that of $\left(X_{t}^{\prime}, Y_{t}^{\prime}\right)_{t \geq 0}$.
Proof. Note that the minimal geodesic in M joining z and $\Psi(z)$ must intersect H for every $z \in M^{\prime}$ by virtue of the choice of L_{0}. Thus, by the symmetry of M^{\prime} with respect to H, coupled geodesic random walks $\hat{\Xi}^{k}$ are in E defined by

$$
E:=\left\{\left(z^{(1)}, z^{(2)}\right) \in C([0, \infty) \rightarrow M \times M) ; z_{t}^{(2)}=\Psi\left(z_{t}^{(1)}\right) \text { before } z^{(1)} \text { exits from } M^{\prime}\right\}
$$

(cf. Theorem 5.1 in [4]). Since E is closed in $C([0, \infty) \rightarrow M \times M),(X ., Y$.) $\in E$ holds \mathbb{P}-almost surely by taking a (subsequential) limit in distribution of $\left\{\hat{\Xi}^{k}\right\}_{k \in \mathbb{N}}$. Thus the conclusion follows.

We now begin to show Proposition 3.1 First we give a lower estimate of $\hat{\mathbb{Q}}[T \leq 1]$. Let

$$
\begin{aligned}
\gamma(a) & :=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} ; x_{2}=a\right\}, a \in \mathbb{R} \\
A(\delta) & :=\bigcup_{n \in \mathbb{Z}} B_{\delta}^{\mathbb{R}^{2}}\left(\left(\zeta\left(n+\frac{1}{3}\right), 0\right)\right)
\end{aligned}
$$

The remark after the definition of $\widehat{\mathbb{Q}}$ implies

$$
\hat{\mathbb{Q}}[T \leq 1] \geq \hat{\mathbb{Q}}\left[T \leq 1, \tau_{\partial_{1,2}}<\tau_{\partial_{1,0}}\right]=\hat{\mathbb{Q}}\left[\tau_{\partial_{1,2}} \leq 1 \wedge \tau_{\partial_{1,0}}\right]
$$

By lifting X_{t} to \mathbb{R}^{2}, the universal cover of C,

$$
\begin{align*}
\hat{\mathbb{Q}}\left[\tau_{\partial_{1,2}} \leq 1 \wedge \tau_{\partial_{1,0}}\right] & =\mathbb{P}^{\mathbb{R}^{2}}\left[\tau_{\gamma(R)} \leq 1 \wedge \tau_{A(\delta)}\right] \\
& \geq \mathbb{P}^{\mathbb{R}^{2}}\left[\tau_{\gamma(R)} \leq 1, \tau_{A(\delta)}>1\right] \\
& \geq \mathbb{P}^{\mathbb{R}}\left[\tau_{R} \leq 1\right]-\mathbb{P}^{\mathbb{R}^{2}}\left[\tau_{A(\delta)} \leq 1\right] \tag{3.1}
\end{align*}
$$

Here $\mathbb{P}^{\mathbb{R}^{2}}$ and $\mathbb{P}^{\mathbb{R}}$ denote the usual Wiener measure for Brownian motion (starting at the origin) on \mathbb{R}^{2} or \mathbb{R}, resp. For simplicity, we write τ_{R} instead of $\tau_{\{R\}}$.

Next we give an upper estimate of $\mathbb{Q}[T \leq 1]$. Let $E:=\left\{\tau_{\partial_{1,0}}<1 \wedge \tau_{\partial M^{\prime}}\right\}$. Then

$$
\mathbb{Q}[E]=\mathbb{P}[E] \leq \mathbb{P}^{\mathbb{R}^{2}}\left[\tau_{A(\delta)}<1\right]
$$

Note that, on $\{T \leq 1\} \cap E^{c}, X$ must hit ∂M^{\prime} before T. It means

$$
\mathbb{Q}\left[\{T \leq 1\} \cap E^{c}\right]=\mathbb{Q}\left[\left\{\tau_{\partial M^{\prime}}<T \leq 1\right\} \cap E^{c}\right] .
$$

By Lemma 3.3] $Y_{\tau_{\partial M^{\prime}}}=\Psi\left(X_{\tau_{\partial M^{\prime}}}\right)$ on E^{c} under \mathbb{Q}. In order to collide two Brownian motions starting at $X_{\tau_{\partial M^{\prime}}}$ and $\Psi\left(X_{\tau_{\partial M^{\prime}}}\right)$, either of them must escape from the flat cylinder of length $2\left(L_{0}-\delta\right)$ where its starting point has distance $L_{0}-\delta$ from the boundary. This observation together with the strong Markov property yields

$$
\begin{aligned}
\mathbb{Q}\left[\left\{\tau_{\partial M^{\prime}}<T \leq 1\right\} \cap E^{c}\right] & =\mathbb{Q}\left[\mathbb{Q}_{\left(\left.X_{\tau_{\partial M^{\prime}}, \Psi\left(X_{\left.\tau_{\partial M^{\prime}}\right)}\right)}[T \leq 1-s]\right|_{s=\tau_{\partial M^{\prime}}} ; \tau_{\partial M^{\prime}}<1 \wedge \tau_{\partial_{1,0}}\right]}\right. \\
& \leq 2 \mathbb{Q}\left[\left.\mathbb{P}^{\mathbb{R}}\left[\tau_{-\left(L_{0}-\delta\right)} \wedge \tau_{L_{0}-\delta}<1-s\right]\right|_{s=\tau_{\partial M^{\prime}}} ; \tau_{\partial M^{\prime}}<1 \wedge \tau_{\partial_{1,0}}\right] \\
& \leq 4 \mathbb{Q}\left[\left.\mathbb{P}^{\mathbb{R}}\left[\tau_{L_{0}-\delta}<1-s\right]\right|_{s=\tau_{\partial M^{\prime}}} ; \tau_{\partial M^{\prime}}<1 \wedge \tau_{\partial_{1,0}}\right] .
\end{aligned}
$$

By Lemma 3.2 and the definition of ζ and δ, we have $L_{0}-\delta \geq R-\zeta-\delta>2 R / 3$. Thus

$$
\begin{aligned}
\mathbb{Q}\left[\left.\mathbb{P}^{\mathbb{R}}\left[\tau_{L_{0}-\delta}<1-s\right]\right|_{s=\tau_{\partial M^{\prime}}} ; \tau_{\partial M^{\prime}}<1 \wedge \tau_{\partial_{1,0}}\right] & \leq 2 \exp \left(-\frac{\left(L_{0}-\delta\right)^{2}}{2}\right) \mathbb{P}\left[\tau_{\partial M^{\prime}}<1 \wedge \tau_{\partial_{1,0}}\right] \\
& \leq 2 \exp \left(-\frac{2 R^{2}}{9}\right) \mathbb{P}\left[\tau_{\partial M^{\prime}}<1 \wedge \tau_{\partial_{1,0}}\right]
\end{aligned}
$$

By lifting X_{t} to \mathbb{R}^{2}, we have

$$
\mathbb{P}\left[\tau_{\partial M^{\prime}}<1 \wedge \tau_{\partial_{1,0}}\right] \leq \mathbb{P}^{\mathbb{R}^{2}}\left[\tau_{\gamma\left(L_{0}\right)} \wedge \tau_{\gamma\left(-L_{0}\right)}<1 \wedge \tau_{A(\delta)}\right] \leq 2 \mathbb{P}^{\mathbb{R}}\left[\tau_{L_{0}}<1\right] \leq 2 \mathbb{P}^{\mathbb{R}}\left[\tau_{R-\zeta}<1\right]
$$

Here the last inequality follows from Lemma 3.2 Consequently, we obtain

$$
\begin{equation*}
\mathbb{Q}[T \leq 1] \leq \mathbb{P}^{\mathbb{R}^{2}}\left[\tau_{A(\delta)}<1\right]+16 \exp \left(-\frac{2 R^{2}}{9}\right) \mathbb{P}^{\mathbb{R}}\left[\tau_{R-\zeta}<1\right] \tag{3.2}
\end{equation*}
$$

Now take $R>3 \sqrt{2 \log 2}$. After that we choose ζ so small that $\mathbb{P}^{\mathbb{R}}\left[\tau_{R-\zeta}<1\right] \approx \mathbb{P}^{\mathbb{R}}\left[\tau_{R}<1\right]$. Finally we choose δ so small that $\mathbb{P}^{\mathbb{R}^{2}}\left[\tau_{A(\delta)}<1\right] \approx 0$. Then Proposition 3.1 follows from (3.1) and (3.2).

Acknowledgment. This work is based on the discussion when the first-named author stayed in University of Bonn with the financial support from the Collaborative Research Center SFB 611. He would like to thank the institute for hospitality.

References

[1] Cranston, M., "Gradient estimates on manifolds using coupling", J. Funct. Anal. 99 (1991), no.1, 110-124. MR1120916
[2] Hsu, E., Sturm, K.-T., "Maximal coupling of Euclidean Brownian motions" SFB Preprint 85, University of Bonn 2003
[3] Kendall, W., "Nonnegative Ricci curvature and the Brownian coupling property", Stochastics 19 (1986), 111-129 MR0864339
[4] Kuwada, K., "On uniqueness of maximal coupling for diffusion processes with a reflection", to appear in Journal of Theoretical Probability
[5] von Renesse, M.-K., "Intrinsic coupling on Riemannian manifolds and polyhedra", Electron. J. Probab, 9 (2004), no.14, 411-435. MR2080605

