A PROOF OF A CONJECTURE OF BOBKOV AND HOUDRE

S. KWAPIEN and M.PYCIA

Department of Mathematics, Warsaw University, ul.Banacha 2, 02-097 Warsaw, Poland.
e-mail: kwapstan@mimuw.edu.pl, mpycia@mimuw.edu.pl

W. SCHACHERMAYER

Department of Statistics, University of Vienna, Bruennerstrasse 72, A-1210 Wien, Austria. e-mail: wschach@stat1.bwl.univie.ac.at

AMS 1991 Subject classification: 60E05
Keywords and phrases: Gaussian Distribution, Characterization.

Abstract

S.G. Bobkov and C. Houdré recently posed the following question on the Internet ([1]): Let X, Y be symmetric i.i.d. random variables such that:

$$
\mathbb{P}\left\{\frac{|X+Y|}{\sqrt{2}} \geq t\right\} \leq \mathbb{P}\{|X| \geq t\}
$$

for each $t>0$. Does it follow that X has finite second moment (which then easily implies that X is Gaussian)? In this note we give an affirmative answer to this problem and present a proof. Using a different method K. Oleszkiewicz has found another proof of this conjecture, as well as further related results.

We prove the following:
Theorem. Let X, Y be symmetric i.i.d random variables. If, for each $t>0$,

$$
\begin{equation*}
\mathbb{P}\{|X+Y| \geq \sqrt{2} t\} \leq \mathbb{P}\{|X| \geq t\} \tag{1}
\end{equation*}
$$

then X is Gaussian.
Proof. Step 1. $\mathbb{E}\left\{|X|^{p}\right\}<\infty$ for $0 \leq p<2$.
For this purpose it will suffice to show that, for $p<2, X$ has finite weak p'th moment, i.e., that there are constants C_{p} such that

$$
\mathbb{P}\{|X| \geq t\} \leq C_{p} t^{-p}
$$

To do so, it is enough to show that, for $\epsilon>0, \delta>0$, we can find t_{0} such that, for $t \geq t_{0}$, we have

$$
\begin{equation*}
\mathbb{P}\{|X| \geq(\sqrt{2}+\epsilon) t\} \leq \frac{1}{2-\delta} \mathbb{P}\{|X| \geq t\} \tag{2}
\end{equation*}
$$

Fix $\epsilon>0$. Then:

$$
\begin{aligned}
\mathbb{P}\{\mid X & +Y \mid \geq \sqrt{2} t\}=2 \mathbb{P}\{X+Y \geq \sqrt{2} t\} \\
& \geq 2 \mathbb{P}\{X \geq(\sqrt{2}+\epsilon) t, Y \geq-\epsilon t, \text { or } Y \geq(\sqrt{2}+\epsilon) t, X \geq-\epsilon t\} \\
& =2(2 \mathbb{P}\{X \geq(\sqrt{2}+\epsilon) t\} \mathbb{P}\{Y \geq-\epsilon t\}-\mathbb{P}\{X \geq(\sqrt{2}+\epsilon) t\} \mathbb{P}\{Y \geq(\sqrt{2}+\epsilon) t\}) \\
& =2 \mathbb{P}\{|X| \geq(\sqrt{2}+\epsilon) t\}\left(\mathbb{P}\{Y \geq-\epsilon t\}-\frac{1}{2} \mathbb{P}\{X \geq(\sqrt{2}+\epsilon) t\}\right) \\
& \geq(2-\delta) \mathbb{P}\{|X| \geq(\sqrt{2}+\epsilon) t\}
\end{aligned}
$$

where $\delta>0$ may be taken arbitrarily small for t large enough. Using (1) we obtain inequality (2).

Step 2. Let $\alpha_{1}, \ldots, \alpha_{n}$ be real numbers such that $\alpha_{1}^{2}+\ldots+\alpha_{n}^{2} \leq 1$ and let $\left(X_{i}\right)_{i=1}^{\infty}$ be i.i.d. copies of X; then

$$
\mathbb{E}\left\{\left|\alpha_{1} X_{1}+\ldots+\alpha_{n} X_{n}\right|\right\} \leq \sqrt{2} \mathbb{E}\{|X|\}
$$

We shall repeatedly use the following result:
Fact: Let S and T be symmetric random variables such that $\mathbb{P}\{|S| \geq t) \leq \mathbb{P}\{|T| \geq t$), for all $t>0$, and let the random variable X be independent of S and T. Then

$$
\mathbb{E}\{|S+X|\} \leq \mathbb{E}\{|T+X|\}
$$

Indeed, for fixed $x \in \mathbb{R}$, the function $h(s)=\frac{|s+x|+|s-x|}{2}$ is symmetric and non-decreasing in $s \in \mathbb{R}_{+}$and therefore

$$
\left.\left.\mathbb{E}\{|S+x|\}=\mathbb{E}\left\{\frac{|S+x|+|S-x|}{2}\right\} \leq \mathbb{E}\left\{\frac{|T+x|+|T-x|}{2}\right\}=\mathbb{E} \| T+x \right\rvert\,\right\}
$$

Now take a sequence $\beta_{1}, \ldots, \beta_{n} \in\left\{2^{-k / 2}: k \in \mathbb{N}_{0}\right\}$, such that $\alpha_{i} \leq \beta_{i}<\sqrt{2} \alpha_{i}$. Then $\beta_{1}^{2}+\ldots+\beta_{n}^{2} \leq 2$ and

$$
\mathbb{E}\left\{\left|\alpha_{1} X_{1}+\ldots+\alpha_{n} X_{n}\right|\right\} \leq \mathbb{E}\left\{\left|\beta_{1} X_{1}+\ldots+\beta_{n} X_{n}\right|\right\}
$$

If there is $i \neq j$ with $\beta_{i}=\beta_{j}$ we may replace $\beta_{1}, \ldots, \beta_{n}$ by $\gamma_{1}, \ldots, \gamma_{n-1}$ with $\sum_{i=1}^{n} \beta_{i}^{2}=$ $\sum_{j=1}^{n-1} \gamma_{j}^{2}$ and

$$
\begin{equation*}
\mathbb{E}\left\{\left|\sum_{i=1}^{n} \beta_{i} X_{i}\right|\right\} \leq \mathbb{E}\left\{\left|\sum_{j=1}^{n-1} \gamma_{j} X_{j}\right|\right\} \tag{3}
\end{equation*}
$$

Indeed, supposing without loss of generality that $i=n-1$ and $j=n$ we let $\gamma_{i}=\beta_{i}$, for $i=1, \ldots, n-2$ and $\gamma_{n-1}=\sqrt{2} \beta_{n-1}=\sqrt{2} \beta_{n}$. With this definition we obtain (3) from (1) and the above mentioned fact.
Applying the above argument a finite number of times we end up with $1 \leq m \leq n$ and numbers $\left(\gamma_{j}\right)_{j=1}^{m}$ in $\left\{2^{-k / 2}: k \in \mathbb{N}_{0}\right\}, \gamma_{i} \neq \gamma_{j}$, for $i \neq j$, satisfying $\sum_{j=1}^{m} \gamma_{j}^{2} \leq 2$ and

$$
\mathbb{E}\left\{\left|\sum_{i=1}^{n} \alpha_{i} X_{i}\right|\right\} \leq \mathbb{E}\left\{\left|\sum_{j=1}^{m} \gamma_{j} X_{j}\right|\right\}
$$

To estimate this last expression it suffices to consider the extreme case $\gamma_{j}=2^{-(j-1) / 2}$, for $j=1, \ldots, m$. In this case - applying again repeatedly the argument used to obtain (3):

$$
\begin{aligned}
\mathbb{E}\left\{\left|\sum_{j=1}^{m} 2^{-(j-1) / 2} X_{j}\right|\right\} & \leq \mathbb{E}\left\{\left|\sum_{j=1}^{m-1} 2^{-(j-1) / 2} X_{j}+2^{-(m-1) / 2} X_{m}\right|\right\} \\
& \leq \mathbb{E}\left\{\left|\sum_{j=1}^{m-2} 2^{-(j-1) / 2} X_{j}+2^{-(m-2) / 2} X_{m}\right|\right\} \\
& \leq \mathbb{E}\left\{\left|X_{1}+X_{2}\right|\right\} \leq \mathbb{E}\left\{\left|\sqrt{2} X_{1}\right|\right\}=\sqrt{2} \mathbb{E}\left\{\left|X_{1}\right|\right\} .
\end{aligned}
$$

Step 3. $\mathbb{E}\left\{X^{2}\right\}<\infty$.
We deduce from Step 2 that for a sequence $\left(\alpha_{i}\right)_{i=1}^{\infty}$ with $\sum_{i=1}^{\infty} \alpha_{i}^{2}<\infty$ the series

$$
\sum_{i=1}^{\infty} \alpha_{i} X_{i}
$$

converges in mean and therefore almost surely. Using the notation

$$
[S]=\left\{\begin{array}{l}
S \text { if }|S| \leq 1, \\
\operatorname{sign}(S) \text { if }|S| \geq 1 .
\end{array}\right.
$$

for a random variable S, we deduce from Kolmogorov's three series theorem that

$$
\sum_{i=1}^{\infty} \mathbb{E}\left\{\left[\alpha_{i} X_{i}\right]^{2}\right\}<\infty
$$

Suppose now that $\mathbb{E}\left\{X^{2}\right\}=\infty$; this implies that for every $C>0$, we can find $\alpha>0$ such that

$$
\mathbb{E}\left\{[\alpha X]^{2}\right\} \geq C \alpha^{2}
$$

¿From this inequality it is straightforward to construct a sequence $\left(\alpha_{i}\right)_{i=1}^{\infty}$ such that

$$
\sum_{i=1}^{\infty} \mathbb{E}\left\{\left[\alpha_{i} X_{i}\right]^{2}\right\}=\infty, \text { while } \sum_{i=1}^{\infty} \alpha_{i}^{2}<\infty,
$$

a contradiction proving Step 3 .
Step 4. Finally, we show how $\mathbb{E}\left\{X^{2}\right\}<\infty$ implies that X is normal. We follow the argument of Bobkov and Houdré [2].
The finiteness of the second moment implies that we must have equality in the assumption of the theorem, i.e.,

$$
\mathbb{P}\{|X+Y| \geq \sqrt{2} t\}=\mathbb{P}\{|X| \geq t\} .
$$

Indeed, assuming that there is strict inequality in (1) for some $t>0$, we would obtain that the second moment of $X+Y$ is strictly smaller than the second moment of $\sqrt{2} X$, which leads to a contradiction:

$$
2 \mathbb{E}\left\{X^{2}\right\}>\mathbb{E}\left\{(X+Y)^{2}\right\}=\mathbb{E}\left\{X^{2}\right\}+\mathbb{E}\left\{Y^{2}\right\}=2 \mathbb{E}\left\{X^{2}\right\} .
$$

Hence, $2^{-n / 2}\left(X_{1}+\ldots+X_{2^{n}}\right)$ has the same distribution as X and we deduce from the Central Limit Theorem that X is Gaussian.

References

[1] S.G. Bobkov, C.Houdré (1995): Open Problem, Stochastic Analysis Digest 15
[2] S.G. Bobkov, C. Houdré (1995): A characterization of Gaussian measures via the isoperimetric property of half-spaces, (preprint).

