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Abstract: Nonparametric density estimation is an unsupervised learning
problem. In this work we propose a two-step procedure that casts the den-
sity estimation problem in the first step into a supervised regression prob-
lem. The advantage is that we can afterwards apply supervised learning
methods. Compared to the standard nonparametric regression setting, the
proposed procedure creates, however, dependence among the training sam-
ples. To derive statistical risk bounds, one can therefore not rely on the
well-developed theory for i.i.d. data. To overcome this, we prove an oracle
inequality for this specific form of data dependence. As an application, it
is shown that under a compositional structure assumption on the underly-
ing density, the proposed two-step method achieves convergence rates that
are faster than the standard nonparametric rates. A simulation study illus-
trates the finite sample performance.
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1. Introduction

Machine learning distinguishes between supervised and unsupervised learning
tasks [11, 50]. In the supervised framework, the dataset consists of input-output
pairs. No outputs are observed in the unsupervised setting. For supervised learn-
ing, classical examples are regression and classification; for unsupervised learn-
ing, commonly encountered problems are density estimation and clustering. The
apparent difference between supervised and unsupervised tasks resulted in ma-
chine learning methods that either apply to the supervised or to the unsuper-
vised framework. While neural nets can be applied in both scenarios, the under-
lying methodology is mostly unrelated: In the supervised context, deep learning
is applied to reconstruct the function mapping the inputs to the outputs; in the
unsupervised framework, neural networks are employed for instance in ODE-
based models for density estimation [29, 55, 47] or for feature extraction, e.g.
by making use of variational autoencoders [38]. Moreover, generative AI meth-
ods such as generative adversarial networks (GANs) or diffusion models invoke
neural networks and can be viewed as density estimators [21, 16, 64, 15, 69, 54].

While there has been previous work transforming density estimation into a
binary classification problem, see Section 14.2.4 in [31] and [30], in this article,
we show how unsupervised multivariate density estimation can be cast into a
supervised regression problem. For that, we generate suitable response variables
from the data in a first step. Rewriting the problem as supervised learning task
allows us to borrow strength from supervised learning methods. We demonstrate
this by fitting deep ReLU networks. In the theoretical deep learning literature,
it has been shown that supervised deep networks can outperform other methods
if the target function exhibits some compositional structure. Making the link to
supervised learning allows us to exploit this property also for density estimation.
This is highly desirable as a compositional structure is frequently imposed in
modelling of densities. Examples include copula models [1, 51] and Bayesian
network models [41], see also Section 4.



A supervised deep learning method for nonparametric density estimation 5603

Theorem 3.1 is our main theoretical contribution and establishes an oracle
inequality for supervised regression methods applied to nonparametric density
estimation. The key technical difficulty in the proof is to deal with the de-
pendence incurred by generating the response variables in the first step of the
proposed method. To control the dependence, we use a Poissonization argument.
Applying the derived oracle inequality, we show in Theorem 3.4 that deep ReLU
networks can obtain fast convergence rates, given that the underlying density
has a compositional structure. For sufficiently smooth densities, the convergence
rates are, up to logarithmic factors in the sample size, the same as the recently
obtained minimax rates in the nonparametric regression model under composi-
tional structure on the regression function, [61]. But there are also smoothness
regimes where the convergence rate is slower by a polynomial order in the sam-
ple size if compared to the nonparametric regression case. This is due to the first
step in the construction of the estimator that transforms the density estimation
problem into a supervised regression problem. But still then there are scenarios
where the convergence rate is considerably faster than doing off-the-shelf kernel
density estimation without taking the underlying compositional structure of the
density into account.

The paper is structured as follows. Section 2 describes the construction of
suitable response variables from the data. In Section 3 we present a suitable
oracle inequality for non-i.i.d. data. Furthermore, we provide convergence rates
in the case that the regression estimator is a deep neural network and the
underlying density are compositional functions. In Section 4 we shortly discuss
some density models that exhibit compositional structure. A small (exploratory)
simulation is provided in Section 5. Section 6 summarizes related literature.
Almost all proofs are deferred to the Appendix.

1.1. Notation

We denote vectors and vector valued functions by bold letters. For a vector
x = (x1, . . . , xk)� we define |x|∞ = maxi=1,...,k |xi|, |x|1 =

∑k
i=1 |xi|. and

|x|0 =
∑k

i=1 1{xi �=0}. For partial derivatives we use multi-index notation, that
is, if α = (α1, . . . , αd) ∈ {0, 1, 2, . . .}d we set ∂α := ∂α1

x1
. . . ∂αd

xd
. We denote

the supremum norm of a function f : D → R by ‖f‖∞ = supx∈D |f(x)|. As
commonly defined in nonparametric statistics, for a real number x ∈ R, �x� is
the largest integer < x and �x� is the smallest integer ≥ x. The minimum and
maximum of two real numbers x, y are also denoted by the respective expressions
x ∧ y and x ∨ y. For two sequences (an)n and (bn)n, we write an � bn if there
exists a constant C such that an ≤ Cbn for all n. Moreover, an  bn means that
an � bn and bn � an. If no basis is specified, then log = ln.

2. Conversion into a supervised regression problem

We consider nonparametric density estimation on the hypercube [0, 1]d, where
we observe 2n i.i.d. random vectors Xi ∈ [0, 1]d which are distributed accord-
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ing to an unknown density f0 from a nonparametric class. The density esti-
mation problem is to recover this density f0 from the data X1, . . . ,X2n. Here
the sample size 2n is chosen for notational convenience, as we will do data
splitting. It is moreover convenient to rename the second half of the dataset
and denote it by X′

1, . . . ,X′
n. Thus, we are observing the 2n i.i.d. random vec-

tors (X1, . . . ,Xn,X′
1, . . . ,X′

n). In the first step of the proposed method, the
second half of the sample X′

1, . . . ,X′
n is used to compute an undersmoothed

kernel density estimator. From that we construct a response variable Yi for
each of the remaining datapoints Xi. The response variables Yi can be inter-
preted as noisy versions of f0(Xi). The augmented data (X1, Y1), . . . , (Xn, Yn)
are now viewed as a nonparametric regression problem with the unknown den-
sity f0 as regression function. Thus, any nonparametric regression technique
could be applied to recover the regression function f0 from the supervised data
(X1, Y1), . . . , (Xn, Yn). Here we propose to fit a deep neural network. This is mo-
tivated by previous work which has shown that deep neural networks can adapt
to various forms of structural constraints and avoid the curse of dimensionality
[39, 57, 7, 61, 40]. As we will argue below, such structural constraints occur in
modelling of multivariate densities. Fitting a neural network to the regression
data (X1, Y1), . . . , (Xn, Yn) is therefore natural.

In nonparametric statistics, a function K : R → R is called a kernel if K is
integrable with

∫
K(u) du = 1. If for some positive integer s, we moreover have

vanishing moments
∫
u�K(u) du = 0 for all � = 1, . . . , s, and

∫
|u|s+1|K(u)| du <

∞, then K is called a kernel of order s. We now outline the two steps of the
method.

Step 1: Choose a kernel K with ‖K‖∞ < ∞ and support on [−1, 1]. For
a bandwidth hn satisfying (log(n)/n)1/d ≤ hn ≤ 2(log(n)/n)1/d and such that
h−1
n is a positive integer for all n > 1 (existence of such a sequence is guaranteed

by Lemma 7.1), consider the multivariate kernel density estimator based on the
subsample X′

1, . . . ,X′
n with X′

� = (X ′
�,1, . . . , X

′
�,d)� given by

f̂KDE(x) := 1
nhd

n

n∑
�=1

d∏
r=1

K

(
X ′

�,r − xr

hn

)
, (2.1)

and using the notation x = (x1, . . . , xd). For i = 1, . . . , n, define

Yi := f̂KDE(Xi). (2.2)

Setting εi := Yi − f0(Xi), we obtain the regression model

Yi = f0(Xi) + εi, i = 1, . . . , n. (2.3)

Step 2: Compute an estimator f̂ based on the data (X1, Y1), . . . , (Xn, Yn).

Definition 2.1. We refer to any such f̂ as two-stage nonparametric density
estimator. If the kernel is of order s, we call f̂ the two-stage nonparametric
density estimator with kernel of order s.
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Both f̂ and the kernel density estimator f̂KDE are estimators for f0. How-
ever, because of the small bandwidth, the kernel density estimator severely
undersmooths. The variance of f̂KDE(x) at a given point x is known to scale
with 1/(nhd

n)  1/ log(n). This means that the noise variables εi scale with
1/
√

log(n) in the sample size. Therefore, the denoising happens in the second
step of the proposed two-step procedure.

Although the notation seems to suggest that (2.3) is the standard nonpara-
metric regression framework, all data points depend on the underlying kernel
density estimator f̂KDE. The pairs (X1, Y1), . . . , (Xn, Yn) are henceforth depen-
dent and thus not i.i.d. To deal with this dependence is the main technical
challenge in the analysis of the proposed method.

The kernel density estimator in Step 1 undersmooths and does not require
knowledge of the true smoothness. The conditions on the kernel K are standard.
Taking a kernel of order s together with an optimal bandwidth choice is known
to lead to optimal convergence rates if the smoothness of the density is at most
s+ 1. The fact that the bandwidth is chosen such that h−1

n is a positive integer
allows us to partition [0, 1] into h−1

n disjoint intervals of length hn.
For fitting a function to the data (X1, Y1), . . . , (Xn, Yn) in the second step of

the procedure, machine learning methods aim to minimize a loss. For regression,
the most common choice is the least squares loss 1

n

∑n
i=1

(
Yi−f(Xi)

)2. The least
squares estimator f̂n over a function class F for the density f0 is defined as any
global minimizer of the least squares loss

f̂n ∈ arg min
f∈F

1
n

n∑
i=1

(
Yi − f(Xi)

)2
.

Due to the nonconvex energy landscape, neural network training usually does
not find the global minimum. The difference between training error of the es-
timator and training error of the global minimum is commonly referred to as
optimization error. For any estimator f̂ taking values in a function class F ,
and data generated from the nonparametric regression model with regression
function f0, we consider here the optimization error

Δn(f̂ , f0) := Ef0

[
1
n

n∑
i=1

(Yi − f̂(Xi))2 − inf
f∈F

1
n

n∑
i=1

(Yi − f(Xi))2
]
, (2.4)

where the expectation is taken over the full data set, making Δn(f̂ , f0) deter-
ministic.

The risk of an estimator f̃ is given by

R(f̃ , f0) := Ef0,X

[
(f̃(X) − f0(X))2

]
=

∫
Ef0

[
(f̃(x) − f0(x))2

]
f0(x) dx.

(2.5)
Here X d= X1 is independent of the data and Ef0,X is the expectation with
respect to the joint distribution of X and the data set. We denote by EX the
expectation with respect to X.
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3. Main results

We assume that the density f0 belongs to the class of β-Hölder smooth functions
on R

d with support on [0, 1]d. For β > 0 and a domain D ⊆ R
d, the ball of β-

Hölder functions with radius Q is defined as

Hβ
d (D, Q) :=

{
f : D → R :

∑
γ: 0≤|γ|1<β

‖∂γf‖∞

+
∑

γ:|γ|1=�β	
sup

x,y∈D,x �=y

|∂γf(x) − ∂γf(y)|
|x − y|β−�β	

∞
≤ Q

}
,

(3.1)
where ‖ · ‖∞ denotes the supremum norm on D, ∂γ = ∂γ1

x1
. . . ∂γd

xd
, and γ =

(γ1, . . . , γd) ∈ {0, 1, 2, . . .}d. To define the partial derivatives if D is not an open
set, we assume that there exists an open set U ⊃ D and an extension of f on U
for which the partial derivatives ∂γ for all γ with |γ|1 < β are defined. The class
of β-Hölder smooth densities on R

d and support on [0, 1]d can subsequently be
defined as

Cβ
d (Q) :=

{
f ∈ Hβ

d (Rd, Q) : supp f ⊆ [0, 1]d,
∫

[0,1]d
f(x) dx = 1, f ≥ 0

}
.

We define the class of β-Hölder smooth densities on [0, 1]d by restricting β-
Hölder smooth densities on R

d to [0, 1]d,

Cβ
d ([0, 1]d, Q) :=

{
f |[0,1]d : f ∈ Cβ

d (Q)
}
.

Below we assume that the true density lies in this space. The condition that
densities in this space can be extended to smooth functions on R

d is imposed to
avoid (technical) difficulties of the kernel density estimator near the boundary
of [0, 1]d. For a reference dealing with the behaviour of kernel estimators near
boundaries, see Section 2.11 of [74].

We state the oracle inequality for estimators taking values in an abstract
function class F(F ) ⊆ {f : ‖f‖∞ ≤ F}. For that, we denote by NF (δ) the
covering number of a class F(F ) with respect to the supremum norm. More
specifically, NF (δ) is the smallest number of supremum norm balls with radius
δ and centers contained in F that are necessary to cover F .

Theorem 3.1. For n ≥ 3, consider the density estimation model defined by
(2.1)-(2.3) with density f0 in the Hölder class Cβ

d ([0, 1]d, Q). Let f̂ be a two-
stage nonparametric density estimator with kernel of order �β� as defined in
Definition 2.1. If f̂ takes values in the function class F = F(F ), with F ≥
max{Q, 1}, then there exist constants C1, C2, C3 only depending on F,K, d,Q, β
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such that for any δ > 0,

R(f̂ , f0) ≤C1
log2(n) log(n ∨NF (δ))

n
+ C2δ + C3

(
log(n)

n

) 2β
d

+ 6Δn(f̂ , f0)

+ 7 inf
f∈F

EX
[
(f(X) − f0(X))2

]
.

As common for oracle inequalities, the upper bound contains an approxima-
tion term, a complexity term involving the metric entropy, and the optimization
error Δn(f̂ , f0). For neural networks and other parametrizable function classes,
the metric entropy log(NF (δ)) depends only logarithmically on δ and one can
choose δ = 1/n, making the C2δ term negligibly small.

If compared to oracle inequalities for i.i.d. data, the bound contains more-
over the term C3(log(n)/n)2β/d that is due to the bandwidth choice hn 
(log(n)/n)1/d and a term of the order h2β

n that can be traced back to Proposi-
tion 7.3. To decrease the order of the C3(log(n)/n)2β/d term, it is tempting to
aim for a smaller bandwidth hn � n−1/d. However, even if the data points are
equally spaced in [0, 1]d, the distance of two neighboring data points is n−1/d.
Thus for bandwidth hn � n−1/d, it follows from the definition of the kernel
density estimator in (2.1) that the estimated density degenerates into separate
spikes centered around the data points X′

1, . . . ,X′
n. As a consequence, a gener-

ated response variables Yi will likely either be extremely large or attain a value
near zero and the two-step method that we propose will not work anymore.

Compared to oracle inequalities for i.i.d. data in the nonparametric regression
model, the main difficulty in the proof of the previous theorem is to deal with
the various sources of dependence. The dependence of the noise variables εi =
Yi − f0(Xi) on Xi does not cause major issues, see the proof of Lemma 7.2 for
details. However, evaluating the kernel density estimator at two deterministic
points f̂KDE(x) and f̂KDE(x′) leads to highly dependent random variables if x
and x′ are close and the dependence does not vanish even if x and x′ are far
away. The rationale behind the latter is that if f̂KDE(x) > f0(x), then it is a
bit more likely that f̂KDE(x′) < f0(x′) as

∫
f̂KDE(x) − f0(x) dx = 1 − 1 = 0.

To control this dependence, it is common to use Poissonization techniques, cf.
[72] Section 3.5.2., [26], and [23] Section 8.3. To explain the idea underlying
Poissonization, consider a Poisson point process on [0, 1]d. For two disjoint sets
A,B ⊂ [0, 1]d, the number of points that fall in set A and the number of points
that fall in set B are independent random variables. Also many statistics can be
shown to produce independent random variables if they are separately applied
to the points in A and the points in B. The Poissonization trick is now to
pretend that we do not have n data points X′

1, . . . ,X′
n but M data points,

that is, we observe X′
1, . . . ,X′

M for M an independently generated Poisson
random variable with intensity n. Then, X′

1, . . . ,X′
M can be interpreted as

the points of a Poisson point process with intensity x �→ nf0(x). We can now
also redefine the kernel density estimator f̂KDE for X′

1, . . . ,X′
M, by keeping

the same normalization 1/n but summing over � = 1, . . . ,M. Because we have
chosen the kernel to have support in [−1, 1], f̂KDE(x) only depends on the



5608 T. Bos and J. Schmidt-Hieber

subset D(x) := {X′
i : |X′

i − x|∞ ≤ hn, i = 1, . . . ,M} ⊆ {X′
1, . . . ,X′

M}. If
|x − y|∞ > 2hn, then D(x) and D(y) are disjoint sets and one can even show
that the statistics f̂KDE(x) and f̂KDE(y) are independent. To control the change
of probability going from n to M observations, we can apply the following result:

Lemma 3.2. For M and X′
1,X′

2, . . . as above, for any function h, and any
measurable set A,

P

( n∑
i=1

h(X′
i) ∈ A

)
≤

√
2eπnP

( M∑
i=1

h(X′
i) ∈ A

)
.

Proof of Lemma 3.2. We have

P

( n∑
i=1

h(X′
i) ∈ A

)
= P

( M∑
i=1

h(X′
i) ∈ A

∣∣∣∣M = n

)
≤

P
(∑M

i=1 h(X′
i) ∈ A

)
P(M = n) .

Since M is a Poisson(n) random variable we have that P(M = n) = nne−n/n!.
By Stirling’s formula, see for example [60], n! ≤

√
2πn(n/e)ne1/(12n)

≤
√

2eπn(n/e)n and 1/P(M = n) ≤
√

2eπn.

While Poissonization removes dependence, the factor
√

2eπn arises in the
bounds.

3.1. Neural networks

We study the effect of fitting a deep ReLU network in the regression step of the
proposed two-step procedure. We rely on the mathematical formulation of deep
neural networks introduced in [61] and briefly recall the details for completeness
of the exposition. The rectified linear unit (ReLU) activation function is σ(x) :=
max{x, 0}. For any vectors v = (v1, . . . , vr)�,y = (y1, . . . , yr)� ∈ R

r, we define
the shifted activation function σvy := (σ(y1−v1), . . . , σ(yr−vr))�. The number
of hidden layers is specified by L and the width of the layers is denoted by the
width vector p = (p0, . . . , pL+1) ∈ N

L+2. A network with network architecture
(L,p) is any function of the form

f : Rp0 → R
pL+1 , x �→ f(x) = WLσvL

WL−1σvL−1 . . .W1σv1W0x, (3.2)

where Wj is a pj+1 × pj weight matrix and vj ∈ R
pj is a shift vector. We use

the convention that v0 := (0, . . . , 0)� ∈ R
p0 . Denote the maximum entry norm

of a matrix W by ‖W‖∞. The class of ReLU networks with architecture (L,p)
and parameters bounded in absolute value by one is

F(L,p) :=
{
f is of the form (3.2) : max

j∈{0,...,L}

(
‖Wj‖∞ ∨ |vj |∞

)
≤ 1

}
.

For a matrix W denote the counting norm (number of non-zero entries) of W
by ‖W‖0. We are interested in sparsely connected neural networks where the
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number of non-zero or active parameters is small compared to the total number
of parameters. For this we define the class of s-sparse networks, that are bounded
in uniform norm by F , as

F(L,p, s, F ) :=
{
f is of the form (3.2) : max

j∈{0,...,L}

(
‖Wj‖∞ ∨ |vj |∞

)
≤ 1,

L∑
j=0

‖Wj‖0 + |vj |0 ≤ s, ‖|f |∞‖∞ ≤ F

}
.

Definition 3.3 (Two-stage neural network density estimator). If the two-stage
nonparametric density estimator f̂ fits in the second step a neural network from
the class F(L,p, s, F ) to the augmented sample (X1, Y1), . . . , (Xn, Yn), then we
refer to f̂ as two-stage neural network density estimator. If the kernel in the
first step of the procedure is of order s, we call f̂ a two-stage neural network
density estimator with kernel of order s.

The larger the sample size n, the more parameters we can fit. The convergence
guarantees below suggest choices for the quantities L,p, s that increase in n and
depend on structural properties of the true density f .

3.2. Structural constraints: compositions of functions

Deep neural networks are built by composing individual layers. Previously de-
rived statistical theory has shown that they are well-suited to pick up compo-
sitional structure in the regression function, [39, 57, 7, 61, 40]. In this work we
follow the composition structure introduced in [61] and impose it on the mul-
tivariate density f0, that is, we assume that f0 = gq ◦ gq−1 ◦ . . . ◦ g1 ◦ g0, with
gi : [ai, bi]di → [ai+1, bi+1]di+1 . Denote by gi = (gij)�j=1,...,di+1

the components
of gi and let ti be the maximal number of variables on which each of the gij
depends. It always holds that ti ≤ di and for certain models, ti can be much
smaller than di. Section 4 provides examples of densities where this is the case.
As we consider density estimation on [0, 1]d, it follows that d0 = d, a0 = 0,
b0 = 1 and dq+1 = 1. Since gij depends on ti variables, we also interpret gij as
a function [ai, bi]ti → [ai+1, bi+1] whenever this is convenient. Denote by αi the
smoothness of each of the functions gij . Then gij ∈ Hαi

ti ([ai, bi]ti , Qi) and the
space of compositions of these smooth functions is given by

G(q,d, t,α, Q′) :=
{
f = gq ◦ . . . ◦ g0 : gi = (gij)j : [ai, bi]di → [ai+1, bi+1]di+1 ,

gij ∈ Hαi
ti ([ai, bi]ti , Q′), for some |ai|, |bi| ≤ Q′

}
,

(3.3)
with d := (d0, . . . , dq+1), t := (t0, . . . , tq), and α := (α0, . . . , αq).

If two functions h, g : R → R have respective smoothness αh, αg ≤ 1 then it
follows from the definition of the Hölder space that the composition f := g ◦ h
has smoothness at least αhαg. For αh > 1 or αf > 1, this is not necessarily true
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anymore. It turns out that the convergence rates for a compositional function in
G(q,d, t,α, Q′) are governed by a notion of effective smoothness indices which
are defined as

α∗
i := αi

q∏
�=i+1

(α� ∧ 1).

Indeed, in the nonparametric regression model with i.i.d. observations the min-
imax estimation rate is up to log(n)-terms

φn := max
i=0,...,q

n
− 2α∗

i
2α∗

i +ti , (3.4)

cf. Theorem 1 and Theorem 3 in [61]. A function can be represented as a compo-
sition in different ways. In the function representation f = gq ◦ . . .◦g0, the αi, ti
and the components g0, . . . , gq are not identifiable. Since we are only interested
in estimating the density f0 this does not constitute a problem.

The oracle inequality in Theorem 3.1 together with the approximation and
covering entropy bound results for deep ReLU networks from [61] yields a con-
vergence rate result for the proposed two-stage neural networks estimator. Recall
that Δn(f̂n, f0) is the optimization error defined in (2.4).

Theorem 3.4 (Convergence rates). For n ≥ 3, consider the density estimation
model defined by (2.1)-(2.3) with density f0 in the Hölder class Cβ

d ([0, 1]d, Q) ∩
G(q,d, t,α, Q). Let f̂n be a two-stage neural network density estimator with
kernel of order �β� as defined in Definition 3.3 for the neural network class
F(L, (p0, . . . , pL+1), s, F ) with parameters satisfying

(i) F ≥ max{Q, 1},
(ii)

∑q
i=1

αi+ti
2α∗

i +ti
log2(4ti ∨ 4αi) log2(n) ≤ L � nφn,

(iii) nφn � mini=1,...,L pi,
(iv) s  nφn log(n).

Then there exists a constant C4, only depending on q,d,α, t, F, β,K and the
implicit constants in (ii), (iii), and (iv), such that

R(f̂n, f0) ≤ C4Lmax
(
φn log4(n), n−2β/d

)
+ 6Δn(f̂n, f0).

Any admissible compositional structure f = gq ◦ . . . ◦ g0 leads to an upper
bound on the risk. The estimator achieves therefore the fastest convergence rate
among all possible representations.

To analyze the estimation risk, we will now ignore the optimization error
Δn(f̂n, f0) and focus on the statistical estimation rate Lmax(φn log4(n), n−2β/d).
Choosing depth L  log(n), the convergence rate for the learned network f̂ is
thus φn + n−2β/d, up to log(n)-factors. The n−2β/d-term is due to the kernel
density estimator in the first step and already occurs in the general oracle in-
equality, see also the discussion after Theorem 3.1.

If the density exhibits a compositional structure, it is now of interest to
understand which of the two terms φn and n−2β/d will drive the convergence
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rate. If the compositional structure is strong enough to make φn small but β is
small compared to d, then n−2β/d dominates the convergence rate. This is faster
than the standard nonparametric rate n−2β/(2β+d) for estimation of a β-smooth
function but still suffers from the curse of dimensionality.

If 2β ≥ d, then n−2β/d = O(n−1). Since φn � n−1, the rate is in this case
always of order φn (up to log-factors). The condition 2β ≥ d appears frequently
in the literature on nonparametric statistics and empirical risk minimization.
For d = 1, 2β > 1 is known to be a necessary condition for nonparametric den-
sity estimation and nonparametric regression to be asymptotically equivalent if
all densities are bounded from below [53, 58]. The condition 2β ≥ d seems also
necessary to ensure that the nonparametric least squares estimator achieves the
optimal nonparametric rate n−2β/(2β+d), see e.g. Section 6.1 in [63]. Barron [6]
showed that shallow neural networks can circumvent the curse of dimensional-
ity under a Fourier criterion. A sufficient, but not necessary condition for this
Fourier criterion to be finite is that the partial derivatives up to the least integer
β such that 2β ≥ d + 2 are square-integrable, see Example 15 in Section IX of
[5].

Instead of the proposed two-step method, it seems tempting to further iterate
the estimation procedure by generating new response variables Y ′

i := f̂n(Xi),
i = 1, . . . , n, from the estimator f̂n and running another neural network fit on
the newly generated supervised sample (X1, Y

′
1), . . . , (Xn, Y

′
n). We believe that

this can, however, not improve the convergence rate. The reason is that the new
network fit cannot decrease the bias that was already present in the estimator f̂n.
The rate in Theorem 3.4 is obtained by balancing different terms. In particular
the squared approximation error that is closely related to the squared bias is
of the order of the convergence rate. Thus, if the bias cannot be reduced by
another neural network fit also the convergence rate cannot be improved.

In the next section, we provide more explicit examples of densities that satisfy
the compositional assumption and attain the convergence rate φn.

4. Examples of multivariate densities with compositional structure

Compositional structures arise naturally in density modelling. One possibility
to see this is to rewrite the joint density f as a product

f(x1, . . . , xd) = f(xd|x1, . . . , xd−1) · . . . · f(x2|x1)f(x1).

Each factor f(xi|x1, . . . , xi−1) is a function of i variables. But the effective num-
ber of variables can be much smaller under conditional independence of the vari-
ables. When X = (X1, . . . , Xd)� is generated for instance from a Markov chain,
Xi only depends on Xi−1 and the density is a product of bivariate conditional
densities

f(x1, . . . , xd) = f(xd|xd−1) · . . . · f(x2|x1)f(x1). (4.1)
Such a structure could occur if the individual data vectors are recordings from a
time series, that is, every observation Xi = (Xi,1, . . . , Xi,d)� contains measure-
ments of the same quantity taken at d different time instances. We now assume
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that the density is of the form

f(x1, . . . , xd) =
∏
I∈R

ψI(xI), (4.2)

with R ⊆ {S ⊂ {1, . . . , d}, 1 ≤ |S| ≤ r}, r a given number, xI = (xi)i∈I , and
ψI non-negative functions. Observe that |R| ≤

∑r
s=1

(
d
s

)
.

Lemma 4.1. Consider a density f of the form (4.2). If all the functions ψI

in the decomposition satisfy ψI ∈ Hγ
rI ([0, 1]rI , Q) for some rI ≤ r, then the

density f can be rewritten as a composition g1 ◦ g0 of the form (3.3), with
(d0, d1) = (d, |R|), (t0, t1) = (r, |R|), (α0, α1) = (γ, ζ), and ζ arbitrarily large.

Ignoring here and in the rest of this section the optimization error, under the
combined conditions of Lemma 4.1 and Theorem 3.4, the proposed two-stage
neural network density estimator achieves, up to log(n)-factors, the convergence
rate

n− 2γ
2γ+r ∨ n− 2β

d , (4.3)

with β the (global) Hölder smoothness of the joint density f . If β = γ, that is,
the effective smoothness γ coincides with the global Hölder smoothness β of f ,
then the achieved rate is n− 2γ

2γ+r if γ ≥ (d − r)/2 and n− 2β
d if γ ≤ (d − r)/2.

We always have β ≥ γ. If β > γ, we conjecture that in most cases there exists
a different factorization of the density f with β-smooth ψI .

Next, we discuss three examples of models that are of the form (4.2).
Independent variables: If X = (X1, . . . , Xd) is a vector containing inde-

pendent random variables, the joint density is given by

f(x1, . . . , xd) =
d∏

i=1
fi(xi), (4.4)

where fi is the marginal density of Xi. We assume that fi is α-Hölder smooth. If
we are unaware of the independence and simply use multivariate kernel density
estimators to estimate f , we will suffer from the curse of dimensionality as
demonstrated for Gaussian densities and Gaussian kernels in Chapter 7 of [65].

Observe that (4.4) is of the form (4.2), with R the set of singletons. Thus
under the combined conditions of Lemma 4.1 and Theorem 3.4, we get, up to
log(n)-factors, the convergence rate n−2α/(2α+1) ∨ n−2β/d, with β the (global)
Hölder smoothness of the joint density f . The construction in Lemma 4.1 implies
that β ≥ α. The next result shows that in this case we necessarily have equality
β = α. In other words the smoothness of the joint density f has to be equal to
the (effective) smoothness of the least smooth marginal density.

Lemma 4.2. Let α > 0. Consider a density f of the form (4.4) with fi, i =
1, . . . , d probability density functions on [0, 1]. If f is α-Hölder smooth, then
f1, . . . , fd are α-Hölder smooth.
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Graphical models: Let (X1, . . . , Xd) be a d-dimensional random vector.
An undirected graphical model (or Markov random field) is defined by a graph
with d nodes representing the d random variables. In this graph, no edge between
node i and j is drawn if and only if Xi, Xj are conditionally independent given
all the other variables {X1, . . . , Xd} \ {Xi, Xj}. A clique in a graph is any fully
connected subgraph. When the joint density f(x1, . . . , xd) is strictly positive
with respect to a σ-finite product measure, the Hammersley-Clifford theorem
states that

f(x1, . . . , xd) =
∏
C∈C

ψC(xC), (4.5)

where C is the set of all cliques in the graph and ψC are suitable functions
called potentials [10, 44]. As we consider densities supported on [0, 1]d, one can
take as dominating product measure the uniform distribution on (0, 1)d and the
condition requires that the density is strictly positive on (0, 1)d. There is no
clear link between the potentials and marginal densities.

Assuming that the true density f0 satisfies (4.5) with largest clique size r and
all potentials having Hölder smoothness γ, Lemma 4.1 implies that, under the
conditions of Theorem 3.4, the two-stage neural network density estimator is
able to exploit the underlying low-dimensional structure and achieves the rate
n−2γ/(2γ+r) ∨ n−2β/d, up to log(n)-factors.

Bayesian networks: Bayesian network models are widely used to model
for instance medical expert systems [41, 32] and causal relationships [56]. As in
the previous section, consider a d-dimensional random vector (X1, . . . , Xd). In a
Bayesian network, the dependence relationships of the variables are encoded in
a directed acyclic graph with nodes {1, . . . , d} [56, 41, 11, 42]. A directed acyclic
graph (DAG) is a directed graph that contains no cycles, meaning one cannot
visit the same node twice by following a path along the direction of the edges.
The parents pa(i) of a node i are all nodes that have an edge pointing to node
i. The ancestors of node i are all nodes j such that there exists a path along
the direction of edges that starts at node j and ends at node i.

The DAG underlying a Bayesian network is constructed such that each vari-
able Xi is conditionally independent of all its ancestors given the parents
Xpa(i) := {Xj : j ∈ pa(i)} in the graph. The joint density can now be writ-
ten as product of conditional densities

f(x1, . . . , xd) = fd
(
xd|xpa(d)

)
· . . . · f1

(
x1|xpa(1)

)
. (4.6)

In particular, if X1, . . . , Xd are generated from a Markov chain, this can be
represented by the DAG X1 → X2 → . . . → Xd. Thus pa(j) = {j − 1} for
j > 1, and we obtain the factorization property f(x1, . . . , xd) = f(xd|xd−1) · . . . ·
f(x2|x1)f(x1).

Assuming that the true density f0 satisfies (4.6), that no node in the DAG
has more than r parents, and all conditional densities fd

(
xi|xpa(i)

)
have Hölder

smoothness γ, Lemma 4.1 shows that, under the conditions of Theorem 3.4, the
two-stage neural network estimator achieves the convergence rate n−2γ/(2γ+r+1)∨
n−2β/d, up to log(n)-factors.
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4.1. Copulas

Copulas are widely employed to model dependencies between variables and to
construct multivariate distributions, [52, 18, 19]. Denote by F the multivariate
distribution function, with marginals F1(x1), . . . , Fd(xd) and density f . Sklar’s
theorem states that there exists a (unique) d-dimensional copula C (a multi-
variate distribution function with uniformly distributed marginals on [0, 1]) such
that F (x) = C(F1(x1), . . . , Fd(xd)). The density f can then be rewritten by the
chain rule as

f(x) = c
(
F1(x1), . . . , Fd(xd)

) d∏
i=1

fi(xi), (4.7)

where fi(xi) = F ′
i (xi) is the marginal density with respect to xi and c is the

density of C (assuming that all these densities exist). For a reference, see Section
2.3 of [52].

Lemma 4.3. Consider a density f of the form (4.7). If c ∈ Hγc

d ([0, 1]d, Qc)
and fi ∈ Hγ0

1 ([0, 1], Q), for i = 1, . . . , d, then, the density f can be rewritten as
a composition g2 ◦ g1 ◦ g0 of the form (3.3), with (d0, d1, d2) = (d, 2d, d + 1),
(t0, t1, t2) = (1, d, d + 1), (α0, α1, α2) = (γ0, γc, γ), and γ arbitrarily large.

Assume that the true density is of the form (4.7), that β = γc ∧ γ0, and that
all the conditions on the kernel and the network architecture underlying Theo-
rem 3.4 are satisfied. Applying the decomposition of the density in Lemma 4.3,
Theorem 3.4 yields the convergence rate n−2γ0/(2γ0+1) ∨n−2γc/(2γc+d) ∨n−2β/d,
up to log(n)-factors. When γc and γ0 satisfy γc/d ≥ γ0 ≥ (d− 1)/2, the conver-
gence rate becomes n−2γ0/(2γ0+1) (up to log(n)-factors). If instead, the copula
density c is smoother than the marginals, in the sense that γc > γ0 = β, then
the obtained convergence rate is faster than the standard nonparametric rate
n−2β/(2β+d) for estimation of β-Hölder smooth functions.

As example, consider the d-variate Farlie-Gumbel-Morgenstern copula family
with parameter vector θ, which has copula density

cθ(u1, . . . , ud) = 1 +
d∑

r=2

∑
1≤j1<···<jr≤d

θj1...jr

r∏
k=1

(1 − 2ujk),

for a parameter vector θ satisfying |θ|∞ ≤ 1 and

1 +
d∑

r=2

∑
1≤j1<···<jr≤d

θj1...jr

r∏
k=1

ξjk ≥ 0 for all ξjk ∈ {−1, 1},

[34, 22, 24]. The double summation sums over all 2d−d−1 subsets of {1, . . . , d}
with at least two elements. Since the input of the copula comes from the distribu-
tion functions of the marginals, it holds that (u1, . . . , ud) ∈ [0, 1]d. This implies
vj := (1− 2uj) ∈ [−1, 1], and by Lemma 8.1, v �→

∏r
k=1 vjk ∈ Hγc

d ([−1, 1]d, 2d),
for all γc ≥ d+1. Together with the chain rule, this yields u �→

∏r
k=1(1−2ujk) ∈
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Fig 1: Example of a regular vine on four variables. Another example is given in
Figure 2.

Hγc

d ([−1, 1]d, 4d). The derivative of a sum is the sum of the derivatives and
therefore the triangle inequality and |θ|∞ ≤ 1 imply for the copula density
cθ ∈ Hγc

d ([−1, 1]d, (2d − d)4d), for all γc ≥ d + 1. For this family of copulas, the
effective smoothness of the composition is thus determined by the smoothness
of the marginals and the convergence rate becomes n−2γ0/(2γ0+1) ∨ n−2β/d.

Explicit low-dimensional copula structures can be imposed using the fact that
a d-dimensional copula density factorizes into a product of d(d− 1)/2 bivariate
(conditional) copula densities [51, 8, 1, 20]. The key ingredient in this argument
is to successively rewrite the conditional densities using the formula fX|Y (x|y) =
cX,Y (FX(x), FY (y))fX(x), where cX,Y denotes the bivariate copula density of
(X,Y ). The decomposition into bivariate copulas is not unique. Already for
three variables (X,Y, Z), there are two possible decompositions, namely

fX|Y,Z(x|y, z) = cX,Y |Z
(
FX|Z(x|z), FY |Z(y|z) | z

)
fX|Z(x|z)

and a second decomposition that interchanges the roles of y and z. The so-called
simplifying assumption [70, 51, 20] states that all the bivariate copulas in the
decomposition are independent of the conditioned variables, in other words

ci,j|k
(
Fi|k(xi|xk), Fj|k(xj |xk)

∣∣xk

)
= ci,j|k

(
Fi|k(xi|xk), Fj|k(xj |xk)

)
.

For the remainder of this section, we will assume that the simplifying assumption
holds.

A way to define such decompositions is by relying on regular vines, [51, 8, 1,
20]. A vine on d variables X1, . . . , Xd is a set of trees (T1, . . . , Tr), such that the
nodes of the first tree T1 are u1, . . . , ud. The nodes of the tree Ti, for i = 2, . . . , r,
are (a subset of) the edges of the tree Ti−1. For a regular vine it furthermore
holds that r = d− 1, that two edges in a tree can only be joined by an edge in
the next tree if these edges share a common node, and that the set of nodes of
Ti has to be equal to the set of edges of Ti−1.

Any regular vine on (X1, . . . , Xd) defines a factorization of a d-dimensional
copula, by associating a bivariate copula density to each edge in any of the trees.
Copulas defined in this way are called vine-copulas.

Figure 1 shows an example of a regular vine with four variables. Regular vines
such as the one in Figure 1, where each tree has one node that has an edge to all
other nodes in that tree, are known as canonical-vines [1] or C-vines [20]. The
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Fig 2: Structure of the first tree of the D-vine copula used in the simulation.

density corresponding to a canonical vine on d variables (up to renumbering the
variables) is given by

d∏
k=1

fk(xk)
d−1∏
j=1

d−j∏
i=1

cj,j+i|1,...,j−1

(
Fj|1,...,j−1(xj |x1, . . . , xj−1),

Fj+i|1,...,j−1(xj+i|x1, . . . , xj−1)
)
.

Another type of regular vine is the D-vine, [1, 20]. In a D-vine no node in any
tree is connected to more than two edges. Figure 2 shows the first tree of a
D-vine on d variables. The density corresponding to a D-vine on d variables (up
to renumbering the variables) is given by

d∏
k=1

fk(xk)
d−1∏
j=1

d−j∏
i=1

ci,i+j|i+1,...,i+j−1

(
Fi|i+1,...,i+j−1(xi|xi+1, . . . , xi+j−1),

Fi+j|i+1,...,i+j−1(xi+j |xi+1, . . . , xi+j−1)
)
.

If two random variables X1, X2 are conditionally independent given X3, then
c1,2|3 = 1. If such conditional independence relations hold, one can simplify the
vine-structure. For example consider the vine on four variables in Figure 1. In
the (very simplified) case that X2 and X3 are independent given X1, that X2
and X4 are independent given X1, and that X3 and X4 are independent given
(X1, X2), only the bivariate copulas on the edges of the first tree (Figure 1a)
appear in the decomposition, cf. Section 3 of [1]. More generally, suppose that
there exists a canonical vine on d variables such that the bivariate (conditional)
copula densities associated with all the trees except the first one are equal to
one, then under the simplifying assumption, the decomposition becomes

f(x) =
d∏

k=1

fk(xk)
d∏

i=2
c1,i

(
F1(x1), Fi(xi)

)
. (4.8)

Here X1 is the root of the first tree, which can always be achieved by renumber-
ing the variables. In the case of a D-vine, the decomposition (up to renumbering)
becomes

f(x) =
d∏

k=1
fk(xk)

d−1∏
i=1

ci,i+1
(
Fi(xi), Fi+1(xi+1)

)
. (4.9)

Lemma 4.4. Consider a density f of the form (4.8) or (4.9). If fi ∈ Hγ
1 ([0, 1],

Q), for all i = 1, . . . , d, and all bivariate copula densities are in Hγc

2 ([0, 1]2, Q),
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then, the function f can be written as a composition g2◦g1◦g0, with (d0, d1, d2) =
(d, 2d, 2d − 1), (t0, t1, t2) = (1, 2, 2d − 1), (α0, α1, α2) = (γ, γc, ζ), where ζ is
arbitrarily large.

If we assume that γc = γ = β, then under the combined conditions of The-
orem 3.4 and Lemma 4.4, the proposed two-stage neural network estimator
achieves the convergence rate n−2γ/(2γ+2)∨n−2γ/d up to log(n) factors. If d > 2,
this rate is faster than the nonparametric estimation rate n−2γ/(2γ+d). Further-
more when γ = γc ≥ d/2−1, the rate equals n−2γ/(2γ+2), up to log(n)-factors. If
instead we assume that γc ≥ 2γ = 2β, that is, the copulas have at least twice the
Hölder smoothness of the marginals, then the rate becomes n−2γ/(2γ+1)∨n−2γ/d,
up to log(n)-factors.

4.2. Mixture distributions

If the true density is a mixture and all mixture components can be estimated by
a fast convergence rate, it should be possible to also estimate the true density
with a fast rate. An example are multi-view models [66, 4, 36, 73], that assume
a true density of the form

f0(x) =
r∑

j=1
aj

d∏
k=1

fj,k(xk),

with non-negative mixture weights a1, . . . ar summing up to one and univariate
densities fj,k, j = 1, . . . , r; k = 1, . . . , d.

Below we assume more generally that the true density is a mixture density
of the form

f0 = a1f1 + . . . + arfr (4.10)

with densities fj in the compositional Hölder space G(qj ,dj , tj ,αj , Q
′) defined

in (3.3). In particular, we allow the parameters qj , dj = (d0,j , . . . , dqj+1,j),
tj = (t0,j , . . . , tqj ,j), and αj = (α0,j , . . . , αqj ,j) to depend on j. Compositional
spaces are not closed under linear combinations and therefore there is no natural
embedding of f into the compositional spaces of the fj ’s. As shown next, the
convergence rate for estimation of f still coincides with the maximum among
all convergence rates for estimation of individual mixture components fj . Set
α∗
i,j := αi,j

∏qj
�=i+1(α�,j ∧ 1) and φ�

n := maxj=1,...,r φn,j , where

φn,j := max
i=0,...,qj

n
−

2α∗
i,j

2α∗
i,j+ti,j

is the rate (3.4) for estimation of fj .

Theorem 4.5 (Convergence rates for mixture distributions). Consider the
density estimation model defined by (2.1)-(2.3) with density f0 =

∑r
i=1 aifi,

where a1, . . . ar are non-negative mixture weights summing up to one, and with
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fj ∈ Cβ
d ([0, 1]d, Q)∩G(qj ,dj , tj ,αj , Q), for all j = 1, . . . , r. Let f̂n be a two-stage

neural network density estimator with kernel of order �β� as defined in Defini-
tion 3.3 for the neural network class F(L, (p0, . . . , pL+1), s, F ) with parameters
satisfying

(i) F ≥ max{Q, 1},
(ii) maxj=1,...,r

∑qj
i=1

αi,j+ti,j
2α∗

i,j+ti,j
log2(4ti,j ∨ 4αi,j) log2(n) ≤ L � nφ�

n,
(iii) nφ�

n � mini=1,...,L pi,
(iv) s  nφ�

n log(n).
If n is large enough, then there exists a constant C6, only depending on
r, (qj ,dj , tj ,αj)rj=1, F , β, K and the implicit constants in (ii), (iii), and (iv)
such that

R(f̂n, f0) ≤ C6Lmax
(
φ�
n log4(n), n− 2β

d

)
+ 6Δn(f̂n, f0).

5. Simulations

5.1. Methods

In a numerical simulation study we compare the proposed two-stage neural net-
work density estimator (named SD for Split Data) as described in Definition 3.3
to two other methods. The FD (full data) method follows the same construc-
tion as the two-stage neural network estimator but uses for both steps the full
dataset without sample splitting. Thus, we have twice as many data for the
individual steps, but also incur additional dependence between the regression
variables as each of the constructed response variables Yi depends on the entire
dataset (instead of only on the kernel dataset and the corresponding Xi from
the regression set). The neural network based methods are moreover compared
to a multivariate kernel density estimator (KDE).

As suggested by the theory, for the first step in the SD and FD method, the
bandwidths for the kernel density estimator are chosen of the form
c1(log(n)/n)1/d and c2(log(2n)/(2n))1/d. For the KDE method, the bandwidth
is c3n

−1/(2β+d). The constants c1, c2, c3 are determined based on the average
of the optimal bandwidths found by 50-fold cross-validation, taking as search
space the interval [0.05, 1.1] with stepsize 0.005, on five independently gener-
ated datasets with sample size n = 200 from the true density. Taking n = 200
for the calibration is natural as it is the smallest sample size in the simulation
environment.

5.2. Densities

For the different simulation settings, we generate data from five densities. These
densities are called Naive Bayes mixing (NBm), Naive Bayes shifting (NBs),
Binary Tree mixing (BTm), Binary Tree shifting (BTs) and Copula (C).
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Fig 3: DAG for the Naive Bayes network (a) and the Bayesian network with
binary tree structure (b).

5.2.1. NBm, NBs, BTm, BTs

The densities (NBm) and (NBs) are so-called Naive Bayes networks [41] with
DAGs displayed in Figure 3a and density factorization

f(x1, . . . , xd) = fd(xd|x1) · . . . · f2(x2|x1)f1(x1). (5.1)

The densities (BTm) and (BTs) are Bayesian networks with DAGs displayed in
Figure 3b and density factorization

f(x1, . . . , xd) = f1(x1)
d∏

j=2
fj(xj |x�(j−1)/2�). (5.2)

For the density f1, we use the exponential of a standard Brownian motion on
[0, 1], normalized such that f1 integrates to one. We use two different types of
conditional densities. The mixing conditional density has mixture weights from
the conditioned variable,

fj(xj |xi) = xihj(xj) + (1 − xi)hj(1 − xj), (5.3)

with hj a density supported on [0, 1]. The shifting conditional density incorpo-
rates a shift determined by the conditioned variable,

fj(xj |xi) = hj

(
max{xj − xi/4, 0}

)
, (5.4)

with hj a density supported on the interval [0, 3/4], so that the support of
fj(·|xi) is ensured to lie in [0, 1].

For the densities (NBm) and (BTm) all conditional densities fj(·|·) in the
factorization are mixing densities (5.3). For the densities (NBs) and (BTs) the
conditional densities fj(·|·) in the factorization are shifting densities (5.4) if j is
divisible by 3 and mixing densities (5.3) otherwise.

It remains to choose the density hj in (5.3) and (5.4). We consider scenarios
containing both smooth and rough densities. For (NBm), (NBs), (BTm) and
(BTs) and all j such that j − 1 is not divisible by 3, we set

hj(x) =
(
1 − 2x− 1

d

)
1
(
0 ≤ x ≤ 1

)
. (5.5)
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Viewed as functions on [0, 1], these densities have arbitrarily large Hölder smooth-
ness. The densities take values between 1 − 1/d and 1 + 1/d ensuring that in
higher dimensions the joint densities, which are products, neither become ex-
tremely small or large.

For (NBm) and (BTm) and all j > 1 such that j−1 is divisible by 3, we take
as densities hj the exponential of the Brownian motion on [0, 1], normalized such
that hj integrates to one. Brownian motion has Hölder smoothness 1/2 − η for
any η ∈ (0, 1/2), but is almost surely not 1/2-Hölder smooth [48]. This means
that these densities have low regularity.

For (NBs) and (BTs) and all j > 1 such that j − 1 is divisible by 3, we
take as densities hj the paths of the exponential of the Brownian motion on
[0, 1] multiplied with the function x �→ ρ(x) = max(0, (4x/3)(1 − 4x/3)) and
normalized such that hj integrates to one. Multiplication with ρ ensures that
the support of these densities is in [0, 3/4], as required in the definition (5.4).

The conditional densities fj defined in (5.3) and (5.4) can be interpreted as
compositional functions.

Lemma 5.1. Consider the mixing conditional density fj in (5.3). If hj ∈
Hγj

1 ([0, 1], Q), then fj can be written as the composition g1 ◦ g0, with (d0, d1) =
(2, 3), (t0, t1) = (1, 3), and (α0, α1) = (γj , ζ), with ζ arbitrarily large.

Lemma 5.2. Consider the shifting conditional density fj in (5.4) If hj ∈
Hγj

1 ([0, 3/4], Q), then fj can be written as g1◦g0, with (d0, d1) = (2, 1), (t0, t1) =
(2, 1), (α0, α1) = (1, γj).

The (NBm), (NBs), (BTm) and (BTs) joint densities are thus compositions
where the components with low regularity are all univariate functions, making
the rate φn dimensionless. The factorization in (5.1) and the composition of
Lemma 4.1 combined with the composition in Lemma 5.1 shows this for the
(NBm) model. The factorization in (5.1) and the composition Lemma 4.1 com-
bined with the compositions in Lemma 5.1 and Lemma 5.2 show this for the
(NBs) model. The factorization in (5.2) and the composition of Lemma 4.1 com-
bined with Lemma 5.1 shows this for the (BTm) model and the factorization
in (5.2) and the composition of Lemma 4.1 combined with the compositions in
Lemma 5.1 and Lemma 5.2 show this for the (BTs) model.

5.2.2. Simulation setup for copula density model

For the copula model, the density (C) is associated to a D-vine copula of the
form (4.9), that is,

f(x) =
d∏

k=1
fk(xk)

d−1∏
i=1

ci,i+1
(
Fi(xi), Fi+1(xi+1)

)
. (5.6)

The bivariate copula densities ci,i+1 are chosen from the bivariate Farlie-
Gumbel-Morgenstern copula family

ci,i+1
(
Fi(xi), Fi+1(xi+1)

)
= 1 + θi

(
1 − 2Fi(xi)

)(
1 − 2Fi+1(xi+1)

)
,
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with parameter θi := −1 + 2(i − 1)/(d − 2), if −1 + 2(i − 1)/(d − 2) �= 0 and
θi := 1/100 otherwise. As shown in Section 4.1, these copula densities have
arbitrarily large Hölder smoothness. The marginal densities fk are displayed in
Figure 4. The smoothness of this density is determined by the square root, which

Fig 4: Marginal density fk(x) in the simulated copula model. The right panel
shows the graph of the density for d = 2.

has Hölder smoothness 1/2. The right panel of Figure 4 displays the graph for
d = 2. This marginal density is appealing as it has a closed-form expression
for the density and the c.d.f. The dependency on d of the marginals ensures
that the marginal densities remain between 1 − 1/d and 1 + 1/d in order to
prevent numerical instability. Since the Farlie-Gumbel-Morgenstern copula is
infinitely smooth, we get from Lemma 4.4 that the effective smoothness of the
joint density generated from this vine-copula approach is equal to 1/2 and thus
the rate φn in Theorem 3.4 becomes n−1/2, up to log(n)-factors.

5.3. Neural network training setup

For both the SD and FD method, we train neural networks with width vec-
tor p = (d, �(2n)1/2�, �(2n)1/2�, . . . , �(2n)1/2�, 1) and depth L = �log2(2n)�.
Since the derived convergence rate of the two-stage neural network estimator
is φn = nη′−1/2, for any η′ ∈ (0, 1/2), in the (NBm), (NBs), (BTm) and (BTs)
settings, and φn = n−1/2 in the (C) setting, this choice of the network width
satisfies the bound in Theorem 3.4. The chosen depth is of the order log(n) sug-
gested by the theory, but there might be a mismatch regarding the constants
in the lower bound of Condition (ii) in Theorem 3.4. Since the proof of this
result does not optimize the constants, we find it more appealing to work with
the generic choice L = �log2(2n)� in the simulations. Furthermore, Theorem 3.4
imposes a sparsity condition on the networks as well as a condition on the max-
imum norm of the parameters. In the simulation study we use �2-penalization
on the weight matrices and the Glorot uniform initialization [28] to ensure that
the parameter values do not become too large. Although these methods do not
provide a hard guarantee that the condition on the maximum norm is satisfied,
they work reasonably well in practice and the number of learned network pa-
rameters exceeding in absolute value one is small compared to the total number
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Fig 5: Test errors for the naive Bayes model. SD in blue, FD in red, KDE black
bars. The test error of the network with the lowest training error is indicated
by the filled square. The black dashed line is the test error of the zero function.
Notice that in the individual plots, the y-axis has different starting points.

of network parameters. We use pruning (using the TensorFlow model optimiza-
tion package) to enforce sparsity. The fraction of zero network parameters is
chosen as 1 − 2m log(m)φm/p, with p the total number of network parameters
and m = 2n for the FD method and m = n for the SD method.

The source code is available on GitHub [12].

5.4. Simulation results

For each of the five densities described in Section 5.2, we generate four training
samples, with respective sample sizes 200, 1000, 5000, 25000. For both the SD
and FD method, 50 neural networks are trained with different random initial-
ization on each training sample. Repeating the network fit on the same sample
highlights the variation of test performance with respect to the initialization
and the achieved training loss. We compare the performance of all the methods
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Fig 6: Test errors for the Bayesian network model. SD in blue, FD in red,
KDE black bars. The test error of the network with the lowest training error is
indicated by the filled square. The black dashed line is the test error of the zero
function. Notice that in the individual plots, the y-axis has different starting
points.

on 106 test samples that are always drawn from the same distribution as the
training samples. This sample is only used for computing the test error and
none of the methods has access to the test samples during training. Figures 5-7
report the test errors for the five different settings.

For the smaller sample sizes, the neural network fit is sometimes the zero
function. These reconstructions generate the circles on top of the dashed lines in
the plots. The theory claims that among the sparsely connected neural networks
that satisfy all the imposed conditions, the one with small training error should
perform particularly well. To see whether there is an effect, we mark for every
simulation setting the test error of the network with the smallest training error
by a filled square. The simulations show that for the FD method, this network
fit is often near the first quartile in the box plots and thus indeed performs
particularly well among the different random initializations.
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Fig 7: Test errors for the Copula model. SD in blue, FD in red, KDE black bars.
The test error of the network with the lowest training error is indicated by the
filled square. The black dashed line is the test error of the zero function. Notice
that in the individual plots, the y-axis has different starting points.

To further investigate the relation between training error and test error, we
plot for the (NBs) model in dimension four (Figure 8) and twelve (Figure 9)
the training error versus the test error of all networks, for both the SD and
FD method and for each of the four considered sample sizes. The linear line
displaying the least squares regression fit has positive slope, except for the SD
method with sample size 1000 (in both dimensions four and twelve). While
fitting a line might not be fully justified given the outliers and the parabola-
shaped data, there seems indeed to be a connection between lower training error
and improved generalization (lower test error). Interestingly, there are also a few
fits with large training error and small test error.

Let us now compare the network fits with the smallest training error (indi-
cated by a blue or red square in Figures 5-7) to the kernel density estimator. To
estimate the joint density depending on four variables, the neural network fits
based on the FD method with the lowest training error seem to perform best
for all sample sizes. For density estimation on [0, 1]12, the picture is less clear
as there are sample sizes for which the KDE method achieves a comparable or
even better test error. The test error of the SD method is consistently higher.
In dimension 4, it decreases, however, faster than the test errors of the FD
and KDE method. Based on the comparison, we do advise to use the two-step
method without data splitting and to pick the reconstruction with the smallest
training loss based on different random initializations.

While the idea to transform an unsupervised learning problem into a super-
vised learning problem and using supervised learning methods is appealing, we
feel that considerable future effort is required to transform this into stable and
efficient algorithms.
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Fig 8: Scatterplot of the test error versus the training error for the (NBs) model
in 4 dimensions. The line shows the linear least squares regression fit.

Fig 9: Scatterplot of the test error versus the training error for the (NBs) model
in 12 dimensions. The line shows the linear least squares regression fit.

6. Related literature

A more direct method for nonparametric density estimation is to use a class
of candidate densities F and estimate the density by a maximizer of the log-
likelihood

arg max
f∈F

n∑
i=1

log f(Xi),
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which is equivalent to minimizing the negative log-likelihood or cross-entropy

arg min
f∈F

−
n∑

i=1
log f(Xi).

In principle, F could be a class of neural networks that is normalized or con-
strained to yield (approximately) probability density functions. For general
classes F , nonparametric maximum likelihood estimators have been analyzed in
the literature [71]. A major drawback of this approach is the instability in low-
density regions that is caused by the divergence of the logarithm limx↓0 log(x).
For this reason, all convergence rate results that we are aware of require that the
densities are bounded away from zero. This is rather restrictive as for machine
learning applications, one often expects large low- or even zero-density regions.
Note that the derived convergence guarantees for the proposed two-step non-
parametric density estimator do not require the true density to be bounded
away from zero.

Methods based on augmenting data via data generated response variables
have been explored in various areas in statistics: [37, 43] construct pseudo-
outcomes to estimate treatment effects in causal models; [17, 75] use non-
parametric methods for imputation of missing data; and [76] deploys pseudo-
outcomes for model selection under covariate shift. Relating generative AI to
density estimation [54], diffusion models [67, 68] transform the density estima-
tion problem into nonparametric regression of the score functions for different
levels of injected noise in the sample.

Our method is inspired by previous work on asymptotic equivalence that links
the (unsupervised) nonparametric density estimation problem to a (supervised)
regression-type model. More precisely, it is shown that if the univariate densi-
ties f are defined on [0, 1], are more than 1/2-smooth and are bounded away
from zero, then, the statistical model converges in the Le Cam distance to the
statistical problem, where we want to recover f by observing (Yt)t∈[0,1] with

dYt = 2
√

f(t) dt + n−1/2dWt, for all t ∈ [0, 1], (6.1)

and W is a Brownian motion. On a high level, convergence in Le Cam distance
means that the asymptotic statistical properties are in both models the same.
Model (6.1) behaves similarly as observing n i.i.d. pairs (Ui, Yi) with Ui uniform
on [0, 1] and Yi = 2

√
f(Ui) + εi for independent noise variables εi ∼ N (0, 1).

This establishes the possibility to transfer nonparametric density estimation into
a regression model without losing information regarding asymptotic results.

While the original proof for the asymptotic equivalence statement was non-
constructive [53], follow-up work [14, 58] has identified a transformation map-
ping the observations in the nonparametric density model to the process (Yt)t∈[0,1]
satisfying (6.1). The two key steps in the construction are a Poissonization step,
mapping the density estimation problem with n observations to density estima-
tion with M ∼ Poisson(n) observations, followed by a step that constructs the
response variables (Yt)t∈[0,1] via a Haar wavelet decomposition and a quantile
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coupling argument. While the asymptotic equivalence literature motivates our
two-step density estimation method and its analysis, there are still many dif-
ferences as asymptotic equivalence focuses on bounding the Le Cam distance,
whereas we are proposing a specific method to use supervised deep learning for
nonparametric density estimation.

The proposed two-step procedure is moreover related to Lindsey’s method
which transforms parametric estimation in exponential families into a Poisson
regression problem [45, 46, 25]. The first step of this method discretizes the
sample space into disjoint bins. The bin counts follow a multinomial distribu-
tion that is then approximated by the Poisson distribution. Assuming Poisson
distributed bin counts, maximum likelihood estimation of the parameters re-
sults then in a Poisson regression problem. A benefit of Lindsey’s transforma-
tion is that the normalization constant of the exponential family vanishes. This
constant is an integral over the entire domain and hard to compute in high di-
mensions [49, 27]. While Lindsey’s method returns one observation per bin and
has been formulated for exponential families, the proposed method in this work
focuses on nonparametric densities and artificially creates a supervised dataset
by computing a response vector for each of the datapoints. Approximation of
the bin counts by the Poisson distribution occurs in our approach in the proof.

While finalizing the article, we became aware of the similar two-step den-
sity estimation method [33] proposed in the pattern recognition literature. For
the first step, the authors use the band limited maximum likelihood density
estimator proposed in [2]. However, this article provides no theory.

Beyond the mentioned connections to asymptotic equivalence, Lindsey’s
method, and [33], we are unaware of any other density estimation method that is
similar to ours. It is important to emphasize that the success of such a two-step
procedure relies on a regression method that achieves faster rates than direct
density estimation. While this is the case here, for more traditional function
spaces, direct density estimation can be shown to be already rate optimal.

7. Proofs for Section 3

Lemma 7.1. If n > 1, then there exists a hn, such that (log(n)/n)1/d ≤ hn ≤
2(log(n)/n)1/d and h−1

n is a positive integer.

Proof. For all x ≥ 0, we have x < 1 + x ≤ ex and thus logn/n < 1 as well as
0 < un := 2(logn/n)1/d < 2 for all n > 1. For all y > 0, one can find an integer
r such that y/2 ≤ 2r ≤ y. If y < 2, we must have r ≤ 0. Thus, there exists an
integer s ≤ 0 such that un/2 ≤ 2s ≤ un. Set hn = 2s. Since s ≤ 0, we must have
h−1
n = 2−s, which is an integer.

7.1. Proof of Theorem 3.1

The response variables Yi in the regression model (2.3) are identically dis-
tributed, but they are not jointly independent as they all depend through the
kernel density estimator on the subsample (X′

�)n�=1.
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To deal with the dependence induced by the kernel density estimator, we par-
tition the hypercube [0, 1]d into h−d

n hypercubes with sidelength hn. By construc-
tion h−1

n is an integer and therefore no boundary issues arise. The centers of these
h−d
n hypercubes are given by the vectors hn(k1−1/2, k2−1/2, . . . , kd−1/2)� ∈

[0, 1]d with k1, k2, . . . , kd ∈ {1, . . . , h−1
n }. By numbering these points (the spe-

cific numbering of the points is irrelevant), we assign to each center an index in
J := {1, . . . , h−d

n }. The j-th bin Bj is then the | · |∞-norm ball of radius hn/2
around the j-th center C(Bj) in this index set. To avoid that boundary points
are in two bins, we include a boundary point only if is not already included in a
bin with smaller index in the ordering induced by J . This construction gives a
partition of [0, 1]d. As each bin is a hypercube with sidelength hn, the Lebesgue
measure is hd

n (in R
d). The neighborhood of a bin Bj , denoted by NB(Bj), is

the union of all bins whose centers are at most | · |∞-distance hn away from the
center of Bj , in other words,

NB(Bj) =
⋃

�:|C(Bj)−C(B�)|∞≤hn

B� . (7.1)

In two dimensions this neighborhood is also known as the Moore neighborhood.
Up to boundary effects, NB(Bj) is a | · |∞-ball with radius 3

2hn,{
x ∈ [0, 1]d : |x − C(Bj)| <

3
2hn

}
⊆ NB(Bj)

⊆
{
x ∈ [0, 1]d : |x − C(Bj)| ≤

3
2hn

}
.

We further subdivide the bins into equivalence classes. For all sufficiently large
n, hn ≤ 1/3 and the hypercube [0, 3hn]d contains exactly 3d bins. Denote by
(js)3

d

s=1 the indices of these bins and define the index set Js ⊂ J by

Js :=
{
� ∈ J : C(B�) − C(Bjs)

3hn
∈ Z

d
}
.

Suppose there exists j ∈ Js ∩ Js′ for s �= s′. Then, it follow that (C(Bjs′ ) −
C(Bjs))/(3hn) ∈ Z

d. This is impossible since C(Bjs) ∈ (0, 3hn)d for all s.
Therefore, the sets Js must be mutually disjoint. On the other hand, for ev-
ery center C(B�), there exists a center C(Bjs) in (0, 3hn)d such that (C(B�) −
C(Bjs))/(3hn) ∈ Z

d. Hence,
⋃

s Js = J .
Fix a j ∈ J . Since the kernel K in the kernel density estimator has bandwidth

hn and support contained in [−1, 1], the point estimator f̂KDE(x) only depends
on the data points from the kernel data set (X′

�)n�=1 that are in NB(Bj).
More generally, for two different indices j, j̃ ∈ Js, j �= j̃ and points x1 ∈ Bj ,

x2 ∈ Bj̃ , the point estimators f̂KDE(x1) and f̂KDE(x2) depend on {X′
� : X′

� ∈
NB(Bj), � = 1, . . . , n} and {X′

� : X′
� ∈ NB(Bj̃), � = 1, . . . , n}, respectively.

The latter two sets are dependent if n is fixed (knowing that a data point is
in one of the bins means that there can be at most n − 1 in any of the other
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bins). If we instead assume that the sample size of the data set (X′
�)n�=1 is

not n but M with M ∼ Poisson(n), then {X′
� : X′

� ∈ A, � = 1, . . . ,M} and
{X′

� : X′
� ∈ B, � = 1, . . . ,M} are independent, whenever A and B are disjoint

sets. This will formally be shown in the proof of Lemma 7.2. Using Poisson
point process theory, we also show in the proof of Lemma 7.2 that f̂KDE(x1)
and f̂KDE(x2) are independent.

Proving oracle inequalities for the risk R(f̃ , f0) := Ef0,X[(f̃(X) − f0(X))2]
in the standard i.i.d. setting typically first derives an oracle inequality for the
empirical risk R̂n(f̂ , f0) as

R̂n(f̂ , f0) := Ef0

[
1
n

n∑
i=1

(
f̂(Xi) − f0(Xi)

)2]
.

Here empirical refers to the fact that the estimator f̂ is evaluated at the data
points X1, . . . ,Xn. The derivation of an oracle inequality for the empirical risk
can be further subdivided into several steps. The bound below refers to the step
where our setting and the i.i.d. case differ the most. The proof (presented in
Section 10) relies heavily on the construction of the bins above combined with
Poissonization. Recall that εi = Yi − f(Xi).
Lemma 7.2. Consider the framework of Theorem 3.1. For any fixed f ∈ F and
any n ∈ N, δ > 0 satisfying log2(n) log(n ∨NF (δ)) ≤ n,∣∣∣∣Ef0

[
2
n

n∑
i=1

εi(f̂(Xi) − f(Xi))
]∣∣∣∣

≤ 2d+614e2‖K‖2d
∞F 33 7d

2

·
(√

R̂n(f̂ , f0) log(n)
√

log(n ∨NF (δ))
n

+ log(n) log(n ∨NF (δ))
n

+ δ

)
+ 46F 22d‖K‖d∞

n
+ 8h2β

n F 2d2β‖K‖2d
1 + EX[(f0(X) − f(X))2]

4 + R̂n(f̂ , f0)
4 .

With this lemma in place, we can prove in Section 10 the following bound on
the empirical risk. This is similar to step (III) in the oracle inequality of Lemma
4 in [61].
Proposition 7.3. Consider the framework of Theorem 3.1. For any fixed f ∈ F
and any n ∈ N, δ > 0 satisfying log2(n) log(n ∨NF (δ)) ≤ n,

R̂n(f̂ , f0) ≤ δ2d+638e2‖K‖2d
∞F 33 9d

2

+ 10
3 EX

[
(f(X) − f0(X))2

]
+ 8

3Δn(f̂ , f0)

+ 2d+638e2‖K‖2d
∞F 33 7d

2 log(n) log(n ∨NF (δ))
n

+ 124F 22d‖K‖d∞
n

+ 22h2β
n F 2d2β‖K‖2d

1

+ 4d+7192e4‖K‖4d
∞F 637d log2(n) log(n ∨NF (δ))

n
.
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We now have all ingredients to finish the proof of Theorem 3.1.

Proof of Theorem 3.1. If log2(n) log(n∨NF (δ)) ≥ n, the statement follows with
C1 = 4F 2 by observing that R(f̂ , f0) ≤ 4F 2.

It remains to consider the case log2(n) log(n ∨ NF (δ)) ≤ n. The proof of
Lemma 4, Part (I) in [61] states that for any ε ∈ (0, 1],

(1 − ε)R̂n(f̂ , f0) −
F 2

nε

(
15 log

(
NF (δ)

)
+ 75

)
− 26δF

≤ R(f̂ , f0) ≤ (1 + ε)
(
R̂n(f̂ , f0) + (1 + ε)F

2

nε

(
12 log(NF (δ)) + 70

)
+ 26δF

)
.

(7.2)
This lemma, derived for the standard nonparametric regression problem, relates
the risk to its empirical counterpart. The inequality and its proof only depend
on the Xi and on the function class F , not on the noise or the response variables
Yi. Since in our regression model (2.3) the variables Xi are i.i.d. (the dependence
is induced by the response variables Yi and εi), this inequality is still valid.

Substituting the bound on R̂n(f̂ , f0) from Proposition 7.3 in (7.2), choosing
ε = 1 and f as a minimizer over F of EX

[
(f(X) − f0(X))2

]
, using the fact that

hn ≤ 2(log(n)/n)1/d, and replacing the explicit constants by C1, C2, C3 yields
the result.

7.2. Proof of Theorem 3.4

The following lemma provides a bound on the covering entropy.

Lemma 7.4 (Lemma 5 combined with Remark 1 of [61]). For any δ > 0

log
(
NF(L,p,s,∞)(δ)

)
≤ (s + 1) log

(
22L+5δ−1(L + 1)p2

0p
2
L+1s

2L) .
The proof of Theorem 1 in [61] (see [62] for the precise statement) derives

the following bound for the approximation error for function approximation in
the function class G(q,d, t,α, Q′) by sparsely connected deep ReLU networks.

Theorem 7.5. For every function g ∈ G(q,d, t,α, Q′) and whenever
(i)

∑q
i=1

αi+ti
2α∗

i +ti
log2(4ti ∨ 4αi) log2(n) ≤ L � nφn,

(ii) nφn � mini=1,...,L pi,
(iii) s  nφn log(n),
(iv) F ≥ max{Q′, 1},

then there exists a neural network H ∈ F(L,p, s, F ) and a constant C8 only
depending on q,d, t,α, F and the implicit constants in (i), (ii) and (iii), such
that

‖g −H‖2
∞ ≤ C8φn.

We now have all the necessary ingredients to prove Theorem 3.4
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Proof of Theorem 3.4. We apply the general oracle inequality in Theorem 3.1
with the choice δ = n−1 to the neural network class F(L,p, s, F ) with parameter
constraints as in the statement of the theorem. For the approximation error in
the oracle inequality, we use Theorem 7.5. For the covering entropy, the bound
from Lemma 7.4 gives log

(
n∨NF(L,p,s,∞)( 1

n )
)
� (s+1)L log(n)  nLφn log2(n).

Since L � log(n), we have (log(n)/n)2β/d � L(n−2β/d ∨ n−1). As φn � n−1,
Lφn log4(n) + (log(n)/n)2β/d � Lmax(φn log4(n), n−2β/d). Thus, Theorem 3.1
yields

R(f̂n, f0) ≤C1
log2(n) log(n ∨NF(L,p,s,∞)( 1

n ))
n

+ C2δ + C3

(
log(n)

n

) 2β
d

+ 6Δn(f̂n, f0) + 7 inf
f∈F(L,p,s,F )

EX
[
(f(X) − f0(X))2

]
≤C4Lmax

(
φn log4(n), n− 2β

d

)
+ 6Δn(f̂n, f0),

for a sufficiently large constant C4, only depending on q,d,α, t, F, β,K and the
implicit constants in (ii), (iii), and (iv). This completes the proof.

8. Proofs for Section 4

Lemma 8.1. Let m ≤ m′ be positive integers and Q > 0. Then f : [−Q,Q]m′ →
R with f(x) :=

∏m
i=1 xi is in Hγ

m′([−Q,Q]m′
, (Q + 1)m), for all γ ≥ m + 1.

Proof. To compute the Hölder norm, it is sufficient to consider the function g :
[−Q,Q]m → R with g(x1, . . . , xm) :=

∏m
i=1 xi. Observe that |∂0g(x)| = |g(x)| ≤

Qm, ∂xjg(x) =
∏m

i=1,i �=j xi and ∂xj∂xjg = 0, for i = 1, . . . ,m. This means that
for all α ∈ Z

m
≥0 it holds that ∂αg = 0 if αj ≥ 2 for some j ∈ {1, . . . ,m}.

Rephrased, ∂αg �= 0 if and only if α ∈ {0, 1}m. Furthermore for α ∈ {0, 1}m,
|∂αg(x)| = |

∏
i:αi=0 xi| ≤ Qm−|α|0 , where | · |0 denotes the counting norm.

There are
(

m
m−|α|0

)
ways to distribute m− |α|0 zeros over a vector of length m.

Hence for γ ≥ m + 1, we get by the binomial theorem

∑
α:|α|1<γ

‖∂αg‖∞ ≤
m∑

k=0

(
m

k

)
Qk = (Q + 1)m.

If |α|1 > m, then there exists at least one j such that αj ≥ 2 implying that
∂αg = 0 in this case. In the case that |α|1 = m, then either there exists a j
such that αj ≥ 2, so ∂αg = 0, or α is the vector with only ones, in which case
∂αg = 1. Hence, γ ≥ m + 1 yields∑

α:|α|1=�γ	
sup

x,y∈[−Q,Q]m,x �=y

|∂αg(x) − ∂αg(y)|
|x − y|γ−�γ	

∞
= 0.

Together with the definition of the Hölder ball in (3.1), the statement follows.
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Proof of Lemma 4.1. The function g0 = (g0,1, . . . , g0,|R|) is given by g0,I = ψI

for all I ∈ R. From ψI ∈ Hγ
rI ([0, 1]rI , Q) with rI ≤ r and |I| ≤ r, it fol-

lows that t0 = r and α0 = γ. The function g1(u1, . . . , u|R|) =
∏|R|

i=1 ui is
the product of |R| different factors in [−Q,Q]. Applying Lemma 8.1 yields
g1 ∈ Hζ

|R|([−Q,Q]|R|, (Q + 1)|R|) for all ζ ≥ |R| + 1. So t1 = |R| and α1 is
arbitrarily large.

Proof of Lemma 4.2. Since f is α-Hölder smooth, there exists a constant Q such
that f ∈ Hα

d ([0, 1]d, Q). Thus for any k = 0, 1, . . . , �α�,

∂k

∂xk
j

f(x) =
(∏

i �=j

fi(xi)
)
f

(k)
j (xj). (8.1)

Since
∏

i �=j fi is a density on [0, 1]d−1, it is nonnegative and C :=
∏

i �=j ‖fi‖∞ >

0, with ‖ · ‖∞ the supremum norm on [0, 1]d. Since fj only depends on xj and
f is α-Hölder smooth, for any k = 0, 1, . . . , �α�,

Q

C
≥ 1
C

sup
(x1,...,xd)∈[0,1]d

∣∣∣∣(∏
i �=j

fi(xi)
)
f

(k)
j (xj)

∣∣∣∣≥
∏

i �=j ‖fi‖∞
C

∥∥∥f (k)
j

∥∥∥
∞

=
∥∥∥f (k)

j

∥∥∥
∞

.

(8.2)
Similarly, by the α-Hölder smoothness of f and (8.1),

Q

C
≥ 1

C
sup

x,y∈[0,1]d,x �=y

∣∣∣∣ ∂�α�

∂x
�α�
j

f(x) − ∂�α�

∂x
�α�
j

f(y)
∣∣∣∣

|x − y|α−�α	
∞

≥
∏

i �=j ‖fi‖∞
C

sup
x,y∈[0,1],x �=y

∣∣∣f (�α	)
j (x) − f

(�α	)
j (y)

∣∣∣
|x− y|α−�α	 .

(8.3)

From (8.2) and (8.3), it follows that fj ∈ Hα
1 ([0, 1], (�α� + 1)Q/C).

Proof of Lemma 4.3. For the compositional sparse classes defined in (3.3), we
also interpret gij as a function [ai, bi]ti → [ai+1, bi+1] if gij depends on ti vari-
ables.

The function g0 = (g0,1, . . . , g0,2d) is given by g0,i(xi) = fi(xi)/‖fi‖∞ for i =
1, . . . , d and g0,i(xi−d) = Fi−d(xi−d) for i = d+1, . . . , 2d. Each of these functions
is univariate, so t0 = 1. Since Fi−d is the c.d.f. of fi−d, it holds that Fi−d ∈
Hγ0+1

1 ([0, 1], Q + 1). Thus, α0 = γ0. The function g1 = (g1,1, . . . , g1,d+1) is the
identity function g1,i(yi) = yi for i = 1, . . . , d and g1,d+1(v) = c(vd+1, . . . , v2d),
so t1 = d. For i = 1, . . . , d, the domain of g1,i is [0, 1], so g1,i ∈ Hγ

1 ([0, 1], 2), for all
γ ≥ 2. Moreover, by assumption, g1,d+1 ∈ Hγc

d ([0, 1]d, Qc). This means that the
Hölder smoothness of g1,i can be chosen to be arbitrarily large and consequently
g1,d+1 has the smallest Hölder smoothness among the component functions of g1.
Thus, α1 = γc. Set Q′ := Qc∨1, then g2(u, y1, . . . , yd) = (

∏d
i=1 ‖fi‖∞)u

∏d
i=1 yi

is the product of d + 1 different factors in [−Q′, Q′]d+1. Applying Lemma 8.1
yields g2 ∈ Hγ

d+1([−Q′, Q′]d+1, Qd(Q′ + 1)d+1) for all γ ≥ d + 2. So, t2 = d + 1
and the smoothness index α2 can be taken to be arbitrarily large.
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Proof of Lemma 4.4. The function g0 = (g0,1, . . . , g0,2d) is given by g0,i(xi) =
fi(xi)/‖fi‖∞ for i = 1, . . . , d and g0,i(xi−d) = Fi−d(xi−d) for i = d + 1, . . . , 2d.
Recall that fi ∈ Hγ

1 ([0, 1], Q), for all i = 1, . . . , d. Since Fi−d is the c.d.f. of fi−d,
it holds that Fi−d ∈ Hγ+1

1 ([0, 1], Q + 1). So t0 = 1 and α0 = γ.
The function g1 = (g1,1, . . . , g1,d+(d−1)) satisfies g1,i(ui) = ui (the identity

function) for i = 1, . . . , d. For f of the form (4.8) it holds that g1,i(ud+1, ui+1) =
c1,i+1−d(ud+1, ui+1) for i = d+ 1, . . . , d+ (d− 1) and for f of the form (4.9) we
have that g1,i(ui, ui+1) = ci−d,i+1−d(ui, ui+1) for i = d + 1, . . . , d + (d− 1). For
i = 1, . . . , d, we can define g1,i on [0, 1]. Since g1,i is in this case the identity,
treating the cases 0 < β ≤ 1 and β > 1 separately, we find g1,i ∈ Hβ

1 ([0, 1], 3),
for all β > 0. By definition all bivariate copula densities are in Hγc

2 ([0, 1]2, Q).
This means that t1 = 2 and α1 = γc.

To realize the function

g2(u1, . . . , ud, y1, . . . , yd−1) =
( d∏

i=1
‖fi‖∞

) d∏
k=1

uk

d−1∏
j=1

yj ,

we need to multiply 2d − 1 inputs. Now, g2 can be defined on [0, Q ∨ 1]2d−1.
Invoking Lemma 8.1 and

∏d
i=1 ‖fi‖∞ ≤ Qd, it holds that g2 ∈ Hζ

2d−1([0, Q ∨
1]2d−1, (Q+1)3d−1) for all ζ ≥ 2d, so t2 = 2d−1 and α2 is arbitrarily large.

8.1. Proof of Theorem 4.5

We work in the density estimation model as defined in Section 2 with mixture
density f0 =

∑r
j=1 ajfj , where a1, . . . ar are non-negative mixture weights sum-

ming up to one, and densities fj ∈ Cβj

d ([0, 1]d, Q)∩G(qj ,dj , tj ,αj , Q), for all j =
1, . . . , r,. Recall that α∗

i,j := αi,j

∏qj
�=i+1(α�,j ∧ 1), and φ�

n := maxj=1,...,r φn,j ,
where

φn,j := max
i=0,...,qj

n
−

2α∗
i,j

2α∗
i,j+ti,j .

Lemma 8.2 (Approximation of mixtures). Whenever
(i) maxj=1,...,r

∑qj
i=1

αi,j+ti,j
2α∗

i,j+ti,j
log2(4ti,j ∨ 4αi,j) log2(n) ≤ L � nφ�

n,

(ii) nφ�
n � mini=1,...,L pi,

(iii) s  nφ�
n log(n),

(iv) F ≥ max{Q, 1},
then, for n large enough, there exists a network H ∈ F(L,p, s, F ) and a constant
C only depending on (qj ,dj , tj ,αj)rj=1, r, F and the implicit constants in (i),
(ii) and (iii) such that ∥∥∥∥ r∑

j=1
ajfj −H

∥∥∥∥2

∞
≤ Cφ�

n.

Proof. For positive constants cL, cp, cs�, csu, let L�, p� = (p�0, . . . , p�L�+1), and
s� be such that
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(i’) maxj=1,...,r
∑qj

i=1
αi,j+ti,j
2α∗

i,j+ti,j
log2(4ti,j ∨ 4αi,j) log2(n) ≤ L� ≤ cLnφ

�
n

(ii’) nφ�
n ≤ cp mini=1,...,L� p�i

(iii’) cs�nφ
�
n log(n) ≤ s� ≤ csunφ

�
n log(n).

For n large enough (depending on cL, cp, cs�, (qj , tj ,αj)rj=1, r), we have
(I) cLnφ

�
n ≤ (cs�/(2r))nφ�

n log(n),
(II) nφ�

n > rcp,
(III) �cLnφn,j� ≥

∑qj
i=1

αi,j+ti,j
2α∗

i,j+ti,j
log2(4ti,j ∨ 4αi,j) log2(n), for all j = 1, . . . , r,

(IV) (cs�/(4r))nφn,j log(n) ≥ 1, for all j = 1, . . . , r.
For j = 1, . . . , r define Lj := min{L�, �cLnφn,j�}, pi,j := �p�i /r� (for 1 ≤ i ≤

Lj), and sj := �s�φn,j/(2rφ�
n)�. Recall that φ�

n = maxj=1,...,r φn,j . Using the
definition of Lj and (III) yields

qj∑
i=1

αi,j + ti,j
2α∗

i,j + ti,j
log2(4ti,j ∨ 4αi,j) log2(n) ≤ Lj ≤ cLnφn,j .

Using (ii’), (II), and the definitions of φ∗
n and pj , we get that

nφn,j ≤ nφ∗
n ≤ 2cpr min

i=1,...,Lj

�p∗i /r� = 2cpr min
i=1,...,Lj

pi,j .

From (IV), v ≤ 2v − 1 for all v ≥ 1, the definition sj = �s�φn,j/(2rφ�
n)�, (iii’),

and �u� ≥ u− 1 for all u ∈ R, it follows that

cs�
4r nφn,j log(n) ≤ cs�

2r nφn,j log(n) − 1 ≤ sj ≤
csu
2r nφn,j log(n).

This means that for j = 1, . . . , r, the class F(Lj ,pj , sj , F ) and the function
fj ∈ Cβ

d ([0, 1]d, Q) ∩ G(qj ,dj , tj ,αj , Q) satisfy the conditions of Theorem 7.5.
Applying Theorem 7.5 gives us that for each j = 1 . . . , r there exist a network
Hj ∈ F(Lj ,pj , sj , F ) such that ‖fj − Hj‖2

∞ ≤ C8,jφn,j . Since aj is in [0, 1],
multiplying the last weight matrix of Hj with aj yields a network ajHj in the
same network class as Hj such that ‖ajfj − ajHj‖2

∞ ≤ C8,jφn,j .
Whenever Lj < L�, we can synchronize the depth by adding additional layers

with 1 × 1 weight matrices and weight parameters = 1, such that

ajσ(Hj) = σ(ajHj) ∈ F
(
L∗, (pj , 1, . . . , 1︸ ︷︷ ︸

(L�−Lj) times

), sj + (L� − Lj), F
)
.

Since fj is a density, fj ≥ 0 and ‖ajσ(Hj) − fj‖∞ ≤ ‖ajHj − fj‖∞. We write
p̃j := (pj , 1, . . . , 1). Placing all these networks in parallel yields a network

H ∈ F
(
L�,

r∑
j=1

p̃j ,

r∑
j=1

(
sj + (L� − Lj)

)
, F

)
,



A supervised deep learning method for nonparametric density estimation 5635

such that∥∥∥∥∥∥
r∑

j=1
ajfj −H

∥∥∥∥∥∥
2

∞

≤

⎛⎝ r∑
j=1

‖ajfj − ajHj‖∞

⎞⎠2

≤

⎛⎝ r∑
j=1

√
C8,jφn,j

⎞⎠2

≤ r2 max
j=1,...,r

C8,jφn,j .

A network with width p and sparsity s can always be embedded in a larger
network of the same depth with width p̃ ≥ p (inequalities between vectors
should always be understood as componentwise inequalities) and network spar-
sity s̃ ≥ s. Thus it remains to show that

∑r
j=1 p̃j ≤ p� and

∑r
j=1

(
sj + (L� −

Lj)
)
≤ s�. First consider the width. Using the definitions of pi,j and p̃j , we get

for i = 1, . . . , L� that
∑r

j=1 p̃i,j ≤ rmaxj=1,...,r p̃i,j ≤ rmax{p�i /r, 1}. From (II)
and (ii’), we get that p�i /r > 1. Hence,

∑r
j=1 p̃j ≤ p�. Now consider the sparsity.

By the definition of sj it holds that sj ≤ s�/(2r). From (i’) and (I), we get that
L� ≤ s�/(2r). Hence,

∑r
j=1

(
sj + (L� − Lj)

)
≤

∑r
j=1

(
sj + L�

)
≤ s�.

Proof of Theorem 4.5. The derivative of a sum is the sum of the derivatives.
Furthermore (a1, . . . , ar) are non-negative mixture weights that sum op to one.
Since fj ∈ Cβ

d ([0, 1]d, Q) for j = 1, . . . , r, this means that also f0 ∈ Cβ
d ([0, 1]d, Q).

The statement of the theorem now follows from taking δ = 1/n and the network
class F(L,p, s, F ) as the function class in Theorem 3.1. For the approximation
error in the oracle inequality, we use Lemma 8.2 and for the covering entropy
the bound from Lemma 7.4. Arguing similarly as in the proof of Theorem 3.4,
this yields the result.

9. Proofs for Section 5

Proof of Lemma 5.1. To represent fj(xj |xi) = xihj(xj) + (1 − xi)hj(1 − xj)
as a composition g1 ◦ g0, choose g0(xi, xj) = (xi, hj(xj), hj(1 − xj)). Clearly
t0 = 1. Since [0, 1] � xi �→ xi lies in Hγ

1 ([0, 1], 2), for all γ > 0, we get that
α0 = γj . The function g1 is given by g1(xi, y1, y2) = xiy1 + (1 − xi)y2, so
t1 = 3. The partial derivatives are ∂xig1 = y1 − y2, ∂y1g1 = xi, ∂y2g1 = 1 − xi,
∂xi∂y1g1 = 1 and ∂xi∂y2g1 = −1. All other partial derivatives of g1 vanish. Thus
g1 ∈ Hγ

3 ([0, 1]× [−Q,Q]2, 4(Q+ 1)), for all γ > 3, so α1 is arbitrarily large.

Proof of Lemma 5.2. To represent fj(xj |xi) = hj

(
max{xj−xi/4, 0}

)
as a com-

position g1 ◦ g0, choose g0(xj , xi) = max{0, xj − xi/4}. The derivative of this
function is discontinuous along the line xj−xi/4 = 0. Observe that |max(0, a)−
max(0, a + b)| ≤ |b|, for all real numbers a, b. Hence

|g0(xj , xi) − g0(xj + u, xi + v)|
max(|u|, |v|) ≤ |u− v/4|

max(|u|, |v|) ≤ 5
4 .

Thus g0 ∈ H1
2([0, 1]2, 9/4), so α0 = 1. The function g1 is given by g1(y) = hj(y),

thus t1 = 1 and α1 = γj .
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10. Proofs for Section 7

Proof of Lemma 7.2. The random variable εi = f̂KDE(Xi) − f0(Xi) is not cen-
tered. The first step adds and subtracts Ef0 [εi|Xi] to get the centered random
variable εi−Ef0 [εi|Xi] instead. Together with the triangle inequality, this gives∣∣∣∣∣Ef0

[
2
n

n∑
i=1

εi(f̂(Xi) − f(Xi))
]∣∣∣∣∣

≤
∣∣∣∣∣Ef0

[
2
n

n∑
i=1

(εi − Ef0 [εi|Xi])(f̂(Xi) − f0(Xi))
]∣∣∣∣∣

+

∣∣∣∣∣Ef0

[
2
n

n∑
i=1

(εi − Ef0 [εi|Xi])(f0(Xi) − f(Xi))
]∣∣∣∣∣

+

∣∣∣∣∣Ef0

[
2
n

n∑
i=1

Ef0 [εi|Xi](f̂(Xi) − f(Xi))
]∣∣∣∣∣

=: (I) + (II) + (III).

(10.1)

By the tower rule, we can in (II) first condition the expectation on Xi. Now
(II) = 0 follows from

Ef0

[ (
εi − Ef0

[
εi
∣∣Xi

])
(f0(Xi) − f(Xi))

∣∣∣Xi

]
=

(
Ef0 [εi|Xi] − Ef0 [εi|Xi]

)(
f0(Xi) − f(Xi)

)
= 0.

For real numbers ai, bi, we have (|ai| − |bi|/2)2 ≥ 0 and therefore |aibi| ≤
a2
i + b2i /4 as well as

∑
i |aibi| ≤

∑
i a

2
i + 1

4
∑

i b
2
i . Bringing first the absolute

value inside the expectation and applying this inequality twice, once to the
sequences (2Ef0 [εi|Xi]/

√
n)i and ((f̂(Xi) − f0(Xi))/

√
n)i and once to the se-

quences (2Ef0 [εi|Xi]/
√
n)i and ((f0(Xi) − f(Xi))/

√
n)i yields∣∣∣∣∣Ef0

[
2
n

n∑
i=1

Ef0 [εi|Xi](f̂(Xi) − f(Xi))
]∣∣∣∣∣

(i)=

∣∣∣∣∣Ef0

[
n∑

i=1

2Ef0 [εi|Xi]√
n

(f̂(Xi) − f0(Xi))√
n

]

+ Ef0

[
n∑

i=1

2Ef0 [εi|Xi]√
n

(f0(Xi) − f(Xi))√
n

] ∣∣∣∣∣
≤ 8Ef0

[
1
n

n∑
i=1

(Ef0 [εi|Xi])2
]

+ 1
4Ef0

[
1
n

n∑
i=1

(f0(Xi) − f(Xi))2
]

+ 1
4Ef0

[
1
n

n∑
i=1

(
f̂(Xi) − f0(Xi)

)2
]

(ii)= 8Ef0

[
(Ef0 [ε1|X1])2

]
+ EX[(f0(X) − f(X))2]

4 + R̂n(f̂ , f0)
4 ,
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where for (i) we added and subtracted the same term and (ii) follows from the
definition of R̂n(f̂ , f0) and the fact that the Xi are i.i.d., Proposition 10.1 gives
Ef0 [(Ef0 [ε1|X1])2] ≤ h2β

n F 2d2β‖K‖2d
1 and so

(III) ≤ 8h2β
n F 2d2β‖K‖2d

1 + EX[(f0(X) − f(X))2]
4 + R̂n(f̂ , f0)

4 . (10.2)

It remains to bound

(I) =

∣∣∣∣∣Ef0

[
2
n

n∑
i=1

(εi − Ef0 [εi|Xi])(f̂(Xi) − f0(Xi))
]∣∣∣∣∣

in (10.1). Let us briefly outline the main ideas. A standard strategy to do this
is to use that f̂ ∈ F and bound

(I) ≤ Ef0

[
2
n

sup
f∈F

∣∣∣∣∣
n∑

i=1
(εi − Ef0 [εi|Xi])(f(Xi) − f0(Xi))

∣∣∣∣∣
]
.

The remaining step is then to get the supremum supf∈F out of the expectation.
This is the central problem in empirical process theory. Standard empirical
process techniques consider a covering of F . On each of the balls in the covering
the expectation does not change much, such that one can replace the supremum
by a maximum over the centers of the covering balls plus some remainder terms.
To control the expectation of the maximum over the centers of the balls from
the covering, one can now apply the union bound together with concentration
bounds. While we will follow these steps, there are various technical challenges
that occur because of the dependence in the data.

The covering number of F with supremum norm balls of radius δ > 0 has
been called NF (δ). If NF (δ) < n, then one can add some balls with centers in
F to the covering, to obtain a (not necessarily optimal) covering with

N = n ∨NF (δ)

balls. By assumption, the N centers f1, . . . , fN lie in F . Choose k∗ ∈ {1, . . . , N}
such that

‖f̂ − fk∗‖∞ = min
1≤�≤N

‖f̂ − f�‖∞.

In particular, k∗ is random. Define (IV ) := |Ef0 [ 2
n

∑n
i=1(εi−Ef0 [εi|Xi])(fk∗(Xi)

−f0(Xi))]|. This gives us that∣∣∣∣∣Ef0

[
2
n

n∑
i=1

(εi − Ef0 [εi|Xi])(f̂(Xi) − f0(Xi))
]∣∣∣∣∣

≤
∣∣∣∣∣Ef0

[
2
n

n∑
i=1

(εi − Ef0 [εi|Xi])(f̂(Xi) − fk∗(Xi))
]∣∣∣∣∣ + (IV )

(i)
≤ Ef0

[
2δ
n

n∑
i=1

∣∣εi − Ef0 [εi|Xi]
∣∣] + (IV )

(ii)
≤ 4δ‖K‖d∞2dF + (IV )

(10.3)
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where for (i) we used the property of the δ cover and the triangle inequality,
and for (ii) we used Proposition 10.2.

In the next step we split the term (IV ) into two parts, to separate the case
were the Xi used for the regression are distributed ‘nicely’ (the event A below)
from the case, were we have an extreme concentration of data points Xi (the
event Ac). The (bad) second case can be shown to have small probability. For
the derivation, we use the bins Bj as defined in Section 7.

Define the set Aj as Aj := {
∑n

i=1 1{Xi∈Bj} ≤ 2d+3F log(n)} and the set A
as the intersection

A :=
⋂
j∈J

Aj . (10.4)

The two-stage nonparametric density estimator chooses a bandwidth hn ≤
2(log(n)/n)1/d. This is equivalent to 2d log(n) ≥ nhd

n. Together with the union
bound, it follows that

Pf0(Ac) ≤
∑
j∈J

Pf0(Ac
j)

≤
∑
j∈J

Pf0

( n∑
i=1

1{Xi∈Bj} > (7F + F )nhd
n

)
(iii)
≤

∑
j∈J

Pf0

( n∑
i=1

1{Xi∈Bj} > 7Fnhd
n + npj

)

=
∑
j∈J

Pf0

( n∑
i=1

(
1{Xi∈Bj} − pj

)
> 7Fnhd

n

)

≤
∑
j∈J

Pf0

(∣∣∣∣ n∑
i=1

(
1{Xi∈Bj} − pj

)∣∣∣∣ > 7Fnhd
n

)
,

(10.5)

where for (iii) we used that pj =
∫
Bj

f0(x) dx ≤ Fhd
n is the probability that an

observation falls into bin Bj .
We now apply the moment version of Bernstein’s inequality stated in Propo-

sition 10.4 (i). For any m = 1, . . .

Ef0

[
|1{Xi∈Bj}|m

]
= Ef0

[
1{Xi∈Bj}

]
= pj .

Setting U = 1 and v = nFhd
n ≥ npj , we get from Bernstein’s inequality in

Proposition 10.4 (i) that

Pf0

(∣∣∣∣ n∑
i=1

(
1{Xi∈Bj} − pj

)∣∣∣∣ > 7Fnhd
n

)
≤ 2 exp

(
− 72F 2n2h2d

n

2n(Fhd
n + 7Fhd

n)

)
= 2 exp

(
−49

16Fnhd
n

)
≤ 2 exp(−3nhd

n)
(v)
≤ 2n−3,
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where for (v) we used that by construction of the two-stage nonparametric
density estimator, hd

n ≥ log(n)/n. Combined with (10.5), we find

Pf0(Ac) ≤ 2
∑
j∈J

n−3 ≤ 2n−2,

where the last inequality holds because n ≥ 3 > e implies |J | = h−d
n ≤

n/ logn ≤ n.
With

ξk :=
n∑

i=1

(
εi − Ef0 [εi|Xi]

)(
fk(Xi) − f0(Xi)

)
1A

one can decompose (IV ) as follows∣∣∣∣∣Ef0

[
2
n

n∑
i=1

(
εi − Ef0 [εi|Xi]

)(
fk∗(Xi) − f0(Xi)

)]∣∣∣∣∣
≤

∣∣∣∣Ef0

[
2
n
ξk∗

]∣∣∣∣ +

∣∣∣∣∣Ef0

[
2
n

n∑
i=1

(
εi − Ef0 [εi|Xi]

)(
fk∗(Xi) − f0(Xi)

)
1Ac

]∣∣∣∣∣ .
(10.6)

Moving the absolute value inside, using that fk∗ and f0 are bounded by F and
applying the Cauchy-Schwarz inequality yields∣∣∣∣∣Ef0

[
2
n

n∑
i=1

(εi − Ef0 [εi|Xi])(fk∗(Xi) − f0(Xi))1Ac

]∣∣∣∣∣
≤ 4F

n

n∑
i=1

Ef0 [|εi − Ef0 [εi|Xi]|1Ac ]

≤ 4F
n

n∑
i=1

√
Ef0

[
|εi − Ef0 [εi|Xi]|2

]√
Pf0(Ac)

(∗)
≤ 4F

√
2(65F 222d‖K‖2d

∞)
n

≤ 46F 22d‖K‖d∞
n

.

(10.7)

where for (∗) we used Proposition 10.3 and that Pf0(Ac) ≤ 2n−2, and for the
last inequality we used that 4

√
130 ≤ 46.

It remains to bound the term |Ef0 [ 2
nξk∗ ]|. Let as before N = n ∨NF (δ), set

zk :=
√

log(N) ∨
√
n‖fk − f0‖n, (10.8)

and define zk∗ as zk for k = k∗. The empirical norm of a function g is

‖g‖n :=
(

1
n

n∑
i=1

(g(Xi))2
) 1

2

.



5640 T. Bos and J. Schmidt-Hieber

Using that k∗ is the index of the center of the ball of the δ-cover closest to f̂ , it
holds that

zk∗√
n

=
√

log(N)
n

∨ ‖fk∗ − f0‖n ≤ ‖f̂ − f0‖n + δ +
√

log(N)
n

.

Together with the Cauchy-Schwarz inequality, we obtain

∣∣∣∣Ef0

[
2
n
ξk∗

]∣∣∣∣ ≤ 2√
n
Ef0

[∣∣∣∣ ξk∗√
n

∣∣∣∣]

≤ 2√
n
Ef0

[
‖f̂ − f0‖n + δ +

√
log(N)

n
zk∗√

n

∣∣∣∣∣ ξk∗√
n

∣∣∣∣∣
]

≤2

√
R̂n(f̂ , f0) + δ +

√
log(N)

n√
n

√
Ef0

[
ξ2
k∗

z2
k∗

]
.

(10.9)

For notational ease, define

Ci,k := fk(Xi) − f0(Xi)
nhd

nzk
1A. (10.10)

Since probabilities are always upper bounded by one, we have for any a > 0
and any square integrable random variable T , E[T 2] =

∫∞
0 P

(
T 2 ≥ t

)
dt =∫∞

0 P
(
|T | ≥

√
t
)
dt ≤ a +

∫∞
a

P
(
|T | ≥

√
t
)
dt. Therefore, for any a > 0,

Ef0 [ξ2
k∗/z2

k∗
∣∣X1, . . . ,Xn] ≤ Ef0

[
max

k
ξ2
k/z

2
k

∣∣X1, . . . ,Xn

]
≤ a +

∫ ∞

a

Pf0

(
max

k
|ξk/zk| ≥

√
t
∣∣X1, . . . ,Xn

)
dt.

(10.11)

The ratio ξk/zk can be rewritten as the sum
∑n

�=1 hk(X′
�), where conditionally

on X1, . . . ,Xn,

u �→ hk(u) =
n∑

i=1

( d∏
r=1

K

(
ur −Xi,r

hn

)
−
∫
Rd

d∏
r=1

K

(
vr −Xi,r

hn

)
f0(v) dv

)
Ci,k

is a deterministic function. Now let X̃1, X̃2, . . . be i.i.d. random variables dis-
tributed as X and independent of the data. Let M be a Poisson(n) random
variable independent of the data and of the X̃i. By the union bound and Pois-
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sonization (Lemma 3.2),

Pf0

(
max

k
|ξk/zk| ≥

√
t
∣∣X1, . . . ,Xn

)
≤ N max

k
Pf0

(
|ξk/zk| ≥

√
t
∣∣X1, . . . ,Xn

)
= N max

k
Pf0

(∣∣∣∣ n∑
�=1

hk(X′
�)
∣∣∣∣ ≥ √

t

∣∣∣∣X1, . . . ,Xn

)

≤
√

2eπnN max
k

Pf0

(∣∣∣∣ M∑
�=1

hk(X̃�)
∣∣∣∣ ≥ √

t

∣∣∣∣X1, . . . ,Xn

)
.

(10.12)

With W (Xi) :=
∑M

�=1
∏d

r=1 K( X̃�,r−Xi,r

hn
), we can write

M∑
�=1

hk(X̃�) =
n∑

i=1

(
W (Xi) − Ef0

[
W (Xi)|Xi

])
Ci,k. (10.13)

Next we rewrite the sum over i. For this we use the bins Bj and the in-
dex sets of bins Js as defined in Section 7.1. Using that the bins are dis-
joint and that each bin is in exactly one of the 3d index classes Js, we have∑n

i=1 =
∑3d

s=1
∑

j∈Js

∑
Xi∈Bj

. Here we use
∑

Xi∈Bj
as shorthand notation for∑

1≤i≤n,s.t.Xi∈Bj
. For non-negative random variables U1, . . . , Um, {U1 + . . . +

Um ≥
√
t} ⊆ ∪m

j=1{Uj ≥
√
t/m} and by the union bound P(U1 + . . . + Um ≥√

t) ≤ m · maxj=1,...,m P(Uj ≥
√
t/m). Combined with (10.13),

Pf0

(∣∣∣∣ M∑
�=1

hk(X̃�)
∣∣∣∣ ≥ √

t

∣∣∣∣X1, . . . ,Xn

)
≤ 3d max

s=1,...,3d

Pf0

(
3d
∣∣∣∣ ∑
j∈Js

∑
Xi∈Bj

(
W (Xi) − Ef0

[
W (Xi)|Xi

])
Ci,k

∣∣∣∣ ≥ √
t

∣∣∣∣X1, . . . ,Xn

)
.

Thus, (10.11), (10.12) and the previous display give for any a > 0,

Ef0

[ ξ2
k∗

z2
k∗

∣∣∣X1, . . . ,Xn

]
≤ a+

∫ ∞

a

N3d
√

2eπnmax
k

max
s=1,...,3d

Pf0

(
3d
∣∣∣∣ ∑
j∈Js

∑
Xi∈Bj

(
W (Xi) − Ef0 [W (Xi)|Xi]

)
Ci,k

∣∣∣∣ ≥ √
t

∣∣∣∣X1, . . . ,Xn

)
dt.

(10.14)
We will now apply Bernstein’s inequality in the form of Proposition 10.4 (i)
to the random variables Zj := Zj,k :=

∑
Xi∈Bj

W (Xi)Ci,k. For that we show
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first that, conditionally on X1, . . . ,Xn, the random variables Zj , j ∈ Js with
fixed s are jointly independent. To see this, recall that W (Xi) :=

∑M
�=1

∏d
r=1

K( X̃�,r−Xi,r

hn
). The kernel K has support in [−1, 1]. By the definition of the

neighborhood NB(Bj) in (7.1), Zj only depends on the X̃1, . . . , X̃n that fall into
NB(Bj), that is, Zj =

∑
Xi∈Bj

∑M
�=1

∏d
r=1 K( X̃�,r−Xi,r

hn
)Ci,k1{X̃�∈NB(Bj)}. The

variables Ci,k defined in (10.10) depend on X1, . . . ,Xn but not on X̃1, X̃2, . . .
Working conditionally on X1, . . . ,Xn and interchanging the summations, we
can write Zj =

∑M
�=1 gj(X̃�)1{X̃�∈NB(Bj)}, for suitable real-valued functions

g1, g2, . . . Since the kernel K has support in [−1, 1], it follows from the definition
of Js that if two different indices j and j̃ are both in Js, then {x : gj(x) �=
0} ∩ {x : gj̃(x) �= 0} = ∅.

Consider a random measure of the form N =
∑

k≥1 ξkδVk
, with Vk d-

dimensional random vectors, ξk {0, 1, . . .}-valued random variables, and δu the
point measure at u. Such a random measure is called a point process on R

d if
for every bounded subset A ⊆ R

d, we have P(N(A) < ∞) = 1. A Poisson point
process N with intensity measure μ is a point process such that for any Borel
set A ⊆ R

d, N(A) follows a Poisson distribution with intensity parameter μ(A)
(with the convention N(A) = 0 a.s. if μ(A) = ∞) and for pairwise disjoint Borel
sets A1, . . . , Ak ⊆ R

d, N(A1), . . . ,N(Ak) are (jointly) independent.
For N a Poisson point process and bounded measurable functions ρ1, . . . , ρm :

R
d → R with pairwise disjoint and bounded support {x ∈ R

d : ρi(x) �= 0},
i = 1, . . . ,m, the random variables

∫
ρi dN, i = 1, . . . ,m are jointly independent.

To see this, one can use that bounded measurable functions can be uniformly
approximated by simple functions. Thus, for every i, there exists a sequence
of simple functions (ρ(T )

i )T∈N such that ρ
(T )
i → ρi uniformly as T → ∞ and

one can also choose the support of ρ(T )
i to be contained in the support of ρi.

Write ρ
(T )
i =

∑L
(T )
i

�=1 a
(T )
i� 1A(T )

i�
for pairwise disjoint Borel sets A

(T )
i� contained in

the support of ρi. For any T , (A(T )
i� )i,� are pairwise disjoint sets, the random

variables (N(A(T )
i� ))i,� are thus independent, and so are the integrals

∫
ρ
(T )
i dN =∑L

(T )
i

�=1 a
(T )
i� N(A(T )

i� ), i = 1, . . . ,m. Since the support of ρ(T )
i is contained in the

support of ρi, ρ(T )
i → ρi uniformly, and N({x ∈ R

d : ρi(x) �= 0}) < ∞ almost
surely, we obtain

∫
ρ
(T )
i dN →

∫
ρi dN almost surely as T → ∞. Thus

∫
ρi dN,

i = 1, . . . ,m are jointly independent, as claimed.
It follows from Section 4.9 in [59], the fact that X̃� are i.i.d., and M ∼

Poisson(n), that Ñ :=
∑M

�=1 δX̃�
is a Poisson point process on [0, 1]d. The func-

tions gj1{·∈NB(Bj)} are measurable and bounded with bounded disjoint supports
and thus, the random variables

Zj =
∫

gj1{·∈NB(Bj)} dÑ =
M∑
�=1

gj(X̃�)1{X̃�∈NB(Bj)}, j ∈ Js

are jointly independent.
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To apply Bernstein’s inequality, it remains to check that there exist U and v
such that

∑
j∈Js

Ef0 [|Zj |m|X1, . . . ,Xn] ≤ 1
2m!Um−2v, for m = 2, 3, . . .

We have conditionally on Xi that

Ef0

[∣∣∣∣ ∑
Xi∈Bj

W (Xi)Ci,k

∣∣∣∣m ∣∣∣∣X1, . . . ,Xn

]
(10.15)

= Ef0

[∣∣∣∣ ∑
Xi∈Bj

( M∑
�=1

d∏
r=1

K

(
X̃�,r −Xi,r

hn

))
Ci,k

∣∣∣∣m ∣∣∣∣X1, . . . ,Xn

]
(i)
≤ Ef0

[( ∑
Xi∈Bj

( M∑
�=1

∣∣∣∣ d∏
r=1

K

(
X̃�,r −Xi,r

hn

)∣∣∣∣)|Ci,k|
)m ∣∣∣∣X1, . . . ,Xn

]
(ii)= Ef0

[( ∑
Xi∈Bj

( M∑
�=1

∣∣∣∣ d∏
r=1

K

(
X̃�,r −Xi,r

hn

)∣∣∣∣1{X̃�∈NB(Bj)}

)
|Ci,k|

)m

×
∣∣∣∣X1, . . . ,Xn

]
(iii)
≤ Ef0

[( ∑
Xi∈Bj

( M∑
�=1

‖K‖d∞1{X̃�∈NB(Bj)}

)
|Ci,k|

)m ∣∣∣∣X1, . . . ,Xn

]
(iv)= Ef0

[( M∑
�=1

‖K‖d∞1{X̃�∈NB(Bj)}

)m( ∑
Xi∈Bj

|Ci,k|
)m ∣∣∣∣X1, . . . ,Xn

]
(v)= ‖K‖dm∞

( ∑
Xi∈Bj

|Ci,k|
)m

Ef0

[( M∑
�=1

1{X̃�∈NB(Bj)}

)m]
.

Where (i) follows from the triangle inequality. For (ii) we used that Xi ∈ Bj and
that K has support in [−1, 1], so if X̃� is outside NB(Bj) then

∏d
r=1 K( X̃�,r−Xi,r

hn
)

= 0. For (iii) we use that ‖K‖∞ < ∞ and that all terms are non-negative. The
equality (iv) follows from observing that

∑M
�=1 ‖K‖d∞1{X̃�∈NB(Bj)} does not

depend on i and can be taken out of the sum. Finally (v) follows by taking
all the constants out of the expectation, recalling that Ci,k is σ(X1, . . . ,Xn)-
measurable and noting that

∑M
�=1 1{X̃�∈NB(Bj)} is independent of X1, . . . ,Xn.

Since X̃� are i.i.d. and M ∼ Poisson(n), we have
∑M

�=1 1{X̃�∈NB(Bj)} ∼
Poisson(np̃j), where p̃j denotes the probability that X ∈ NB(Bj). Expressing
the moments of the Poisson distribution as Bell polynomials [3] gives

Ef0

[( M∑
�=1

1{X̃�∈NB(Bj)}

)m]
=

m∑
t=0

(np̃j)t
{
m

t

}
≤ (np̃j ∨ 1)m

m∑
t=0

{
m

t

}
,

where
{
m
t

}
denote the Stirling numbers of the second kind. The m-th Bell

number equals the sum
∑m

t=0
{
m
t

}
. Applying now the bound on Bell numbers
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derived in Theorem 2.1 of [9] gives
m∑
t=0

{
m

t

}
≤

(
m

log(m + 1)

)m

.

Due to m ≥ 2, log(m + 1) ≥ log(3) > 1 and the right hand side of the previous
display can be upper bounded by mm. Using Stirling’s formula ([60]) again,
we get that

√
2πmmme−m ≤ m!. Since m ≥ 2, we have

√
2πm ≥ e and thus

mm ≤ m!em−1. Hence

Ef0

[( M∑
�=1

1{X̃�∈NB(Bj)}

)m]
≤ m!em−1(np̃j ∨ 1)m ≤ m!em−1(F3dnhd

n)m.

The last inequality follows from observing that p̃j ≤ F3dhd
n (the upper bound on

f0 times the Lebesgue measure of NB(Bj)) and that 3dFnhd
n ≥ 3dF log(n) ≥ 1.

Combined with (10.15), this leads to

Ef0

[∣∣∣∣ ∑
Xi∈Bj

W (Xi)Ci,k

∣∣∣∣m∣∣∣∣X1, . . . ,Xn

]

≤ m!em−1(F3dnhd
n)m‖K‖dm∞

( ∑
Xi∈Bj

|Ci,k|
)m

.

The previous inequality suggests to take the parameters v and U in Bernstein’s
inequality as upper bounds of

∑
j∈Js

(e‖K‖d∞)2(F3dnhd
n)2(

∑
Xi∈Bj

|Ci,k|)2 and
maxj e‖K‖d∞3dFnhd

n

∑
Xi∈Bj

|Ci,k|, respectively. To find a convenient expres-
sion for v, observe that∑

j∈Js

(e‖K‖d∞)2(F3dnhd
n)2

( ∑
Xi∈Bj

|Ci,k|
)2

=
∑
j∈Js

(e3d‖K‖d∞F )2n2h2d
n

( ∑
Xi∈Bj

∣∣∣∣ (fk(Xi) − f0(Xi))
nhd

nzk
1A

∣∣∣∣ )2

=
∑
j∈Js

(e3d‖K‖d∞F )2

z2
k

( ∑
Xi∈Bj

|fk(Xi) − f0(Xi)|1A
)2

.

By the Cauchy-Schwarz inequality,( ∑
Xi∈Bj

|fk(Xi) − f0(Xi)|1A
)2

≤
(
1A

∑
Xi∈Bj

12
)( ∑

Xi∈Bj

(
fk(Xi) − f0(Xi)

)2)
≤ 2d+3F log(n)

∑
Xi∈Bj

(
fk(Xi) − f0(Xi)

)2
,

where for the last inequality we used that the definition of the event A in (10.4)
implies

∑
Xi∈Bj

1 ≤ 2d+3F log(n). By (10.8), zk ≥ √
n‖fk − f0‖n. Moreover,
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i=1 =

∑
j∈Js

∑
Xi∈Bj

and thus

∑
j∈Js

(e‖K‖d∞)2(F3dnhd
n)2

( ∑
Xi∈Bj

|Ci,k|
)2

≤
∑
j∈Js

(e3d‖K‖d∞F )2

n‖fk − f0‖2
n

2d+3F log(n)
( ∑

Xi∈Bj

(fk(Xi) − f0(Xi))2
)

= 2d+3 (e3d‖K‖d∞)2

n‖fk − f0‖2
n

F 3 log(n)n‖fk − f0‖2
n

= 2d+3(e3d‖K‖d∞)2F 3 log(n).

Hence we can take v = 2d+3(e3d‖K‖d∞)2F 3 log(n) in Bernstein’s inequality.
To obtain a convenient expression for the U in Bernstein’s inequality, we now

bound
∑

Xi∈Bj
|Ci,k|. Using that by (10.8), zk ≥

√
log(N), that fk and f0 are

bounded by F , and that on the event A,
∑

Xi∈Bj
1 ≤ 2d+3F log(n) gives

∑
Xi∈Bj

|Ci,k| =
∑

Xi∈Bj

|fk(Xi) − f0(Xi)|
nhd

nzk
1A ≤ 2F

nhd
n

√
log(N)

∑
Xi∈Bj

1A

≤ 2d+4F 2 log(n)
nhd

n

√
log(N)

.

Hence it holds that

e‖K‖d∞3dFnhd
n

∑
Xi∈Bj

|Ci,k| ≤
2d+4e‖K‖d∞3dF 3 log(n)√

log(N)
.

The support of the kernel is contained in [−1, 1]. This means that 1 ≤ 2‖K‖∞
and consequently, e3d‖K‖d∞ ≥ 2. Thus, setting U = v/

√
log(N) with v =

2d+3(e3d‖K‖d∞)2F 3 log(n), as above, we obtain

∑
j∈Js

Ef0

[∣∣∣∣ ∑
Xi∈Bj

W (Xi)Ci,k

∣∣∣∣m∣∣∣∣X1, . . . ,Xn

]
≤ m!

2 vUm−2,

for all m = 2, 3, . . .. Consequently we can apply Bernstein’s inequality with those
choices for U and v, conditioned on X1, . . . ,Xn.

Applying Bernstein’s inequality on the sum over the variables Zj , with v and
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the bound U as defined above, we get that

Pf0

(
3d
∣∣∣∣ ∑
j∈Js

∑
Xi∈Bj

(
W (Xi) − Ef0 [W (Xi)|Xi]

)
Ci,k

∣∣∣∣ ≥ √
t

∣∣∣∣X1, . . . ,Xn

)

= Pf0

(∣∣∣∣ ∑
j∈Js

(Zj − Ef0 [Zj |X1, . . . ,Xn])
∣∣∣∣ ≥ 3−d

√
t

∣∣∣∣X1, . . . ,Xn

)

≤ 2 exp
(
− t3−2d

2
(
v + U3−d

√
t
))

= 2 exp

⎛⎝− t3−2d

2v
(
1 + 3−d

√
t/ log(N)

)
⎞⎠ .

If t ≥ 32d log(N), the previous expression can be further bounded by

≤ 2 exp
(
−
√

t log(N)3−d

4v

)
. (10.16)

Observe that this gives us an upper bound that is the same for all collections
of bins Js and all cover centers k. Choosing a = 64v232d log(N) in (10.14) gives

Ef0

[ ξ2
k∗

z2
k∗

∣∣∣X1, . . . ,Xn

]
(i)
≤ 64v232d log(N) + 2N3d

√
2eπn

∫ ∞

64v232d log(N)
exp

(
−
√
t

√
log(N)3−d

4v

)
dt

(ii)= 64v232d log(N) + 4N3d
√

2eπn(16v232d) (2 log(N) + 1)
log(N) exp (−2 log(N))

(iii)
≤ 64v232d log(N) + 1280v233d

(iv)
≤ (2d+510(e‖K‖d∞)2F 3 log(n))237d log(N),

where for (i) we used (10.16) combined with the observation that if
t ≥ 64v232d log(N) then t ≥ 32d log(N), since v ≥ 1. For (ii) we used that∫∞
b2

e−
√
ucdu = 2

∫∞
b

se−scds = 2(bc+1)e−bc/c2. For (iii) we used that log(N) ≥
1 so (2 log(N)+1)/ log(N) ≤ 4 and N = n∨NF (δ) ≥ n,

√
2eπ ≤ 5, log(N) ≥ 1.

For (iv) we substituted v = 2d+3(e3d‖K‖d∞)2F 3 log(n) and used that
√

1344 =
4
√

84 and
√

84 ≤ 10.
Together with (10.9), this yields∣∣∣∣Ef0

[
2
n
ξk∗

]∣∣∣∣
≤2

√
R̂n(f̂ , f0) + δ +

√
log(N)

n√
n

√
Ef0

[
ξ2
k∗

z2
k∗

]
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≤ 2

√
R̂n(f̂ , f0) + δ +

√
log(N)

n√
n

√
(2d+510e2‖K‖2d

∞F 3 log(n))2 37d log(N)

=
(√

R̂n(f̂ , f0) + δ +
√

log(N)
n

)
2d+610e2‖K‖2d

∞F 3 log(n)
√

37d log(N)
n

.

Inserting this bound in (10.6) together with (10.7) gives a bound for (IV). To-
gether with (10.3) and (10.2) and combining the terms with δ, using that by
assumption log2(n) log(N) = log2(n) log(n∨NF (δ)) ≤ n, finishes the proof.

Proof of Proposition 7.3. Expanding the square yields(
f̂(Xi) − f0(Xi)

)2 =
(
f̂(Xi) − Yi + Yi − f0(Xi)

)2
= (f̂(Xi) − Yi)2 + 2(f̂(Xi) − Yi)(Yi − f0(Xi)) + (Yi − f0(Xi))2.

We use this identity to rewrite the definition R̂n(f̂ , f0) = Ef0 [ 1
n

∑n
i=1(f̂(Xi) −

f0(Xi))2]. Applying moreover that for any fixed f ∈ F , we have by definition
of Δn(f̂ , f0) that

Ef0

[
1
n

n∑
i=1

(Yi − f̂(Xi))2
]
≤ Ef0

[
1
n

n∑
i=1

(Yi − f(Xi))2
]

+ Δn(f̂ , f0)

yields

R̂n(f̂ , f0)

= Ef0

[
1
n

n∑
i=1

(
(f̂(Xi) − Yi)2 + 2(f̂(Xi) − Yi)(Yi − f0(Xi)) + (Yi − f0(Xi))2

)]

≤ Ef0

[
1
n

n∑
i=1

(
(f(Xi) − Yi)2 + 2(f̂(Xi) − Yi)(Yi − f0(Xi)) + (Yi − f0(Xi))2

)]
+ Δn(f̂ , f0)

= Ef0

[
1
n

n∑
i=1

(
(f(Xi) − Yi)2 + 2(f(Xi) − Yi)(Yi − f0(Xi)) + (Yi − f0(Xi))2

)]

+ Ef0

[
2
n

n∑
i=1

(Yi − f0(Xi))(f̂(Xi) − f(Xi))
]

+ Δn(f̂ , f0)

= Ef0

[
1
n

n∑
i=1

(f(Xi) − f0(Xi))2
]

+ Ef0

[
2
n

n∑
i=1

(Yi − f0(Xi))(f̂(Xi) − f(Xi))
]

+ Δn(f̂ , f0)

= EX
[
(f(X) − f0(X))2

]
+ Ef0

[
2
n

n∑
i=1

εi(f̂(Xi) − f(Xi))
]

+ Δn(f̂ , f0),
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where for the last equality we used that the Xi are independent and have the
same distribution as X.

Combined with Lemma 7.2, this yields

R̂n(f̂ , f0) ≤ EX
[
(f(X) − f0(X))2

]
+
√
R̂n(f̂ , f0)2d+614e2‖K‖2d

∞F 3 log(n)
√

37d log(n ∨NF (δ))
n

+ 2d+614e2‖K‖2d
∞F 33 7d

2 log(n) log(n ∨NF (δ))
n

+ δ2d+614e2‖K‖2d
∞F 33 7d

2 + 46F 22d‖K‖d∞
n

+ 8h2β
n F 2d2β‖K‖2d

1 + EX[(f0(X) − f(X))2]
4 + R̂n(f̂ , f0)

4 + Δn(f̂ , f0).

Rewriting this and upper bounding constants, yields

R̂n(f̂ , f0) ≤
5
3EX

[
(f(X) − f0(X))2

]
+
√

R̂n(f̂ , f0)2d+619e2‖K‖2d
∞F 3 log(n)

√
37d log(n ∨NF (δ))

n

+ 2d+619e2‖K‖2d
∞F 33 7d

2 log(n) log(n ∨NF (δ))
n

+ δ2d+619e2‖K‖2d
∞F 33 7d

2

+ 62F 22d‖K‖d∞
n

+ 11h2β
n F 2d2β‖K‖2d

1 + 4
3Δn(f̂ , f0).

For real numbers a, c, ρ, satisfying |a| ≤ 2
√
ac + ρ, we have |a| ≤ 2

√
ac + ρ ≤

1
2 |a|+2c2+ρ and thus |a| ≤ 2ρ+4c2. Applying this inequality with a = R̂n(f̂ , f0),

c = 2d+619e2‖K‖2d
∞F 3 log(n)

√
37d log(n ∨NF (δ))

n
,

and

ρ =δ2d+619e2‖K‖2d
∞F 33 7d

2 + 62F 22d‖K‖d∞
n

+ 2d+619e2‖K‖2d
∞F 33 7d

2 log(n) log(n ∨NF (δ))
n

+ 11h2β
n F 2d2β‖K‖2d

1 + 4
3Δn(f̂ , f0) + 5

3EX
[
(f(X) − f0(X))2

]
yields the result.

Proposition 10.1. |Ef0 [εi|Xi]| ≤ hβ
nd

β‖K‖d1F .
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Proof. By the construction of the εi in (2.2) and (2.3), εi = f̂KDE(Xi) −
f0(Xi). Using moreover the definition of the multivariate kernel density esti-
mator in (2.1) and writing |v|α for |v1|α1 · . . . · |vd|αd , we obtain

∣∣Ef0 [εi|Xi]
∣∣ =

∣∣∣∣∣Ef0

[
1

nhd
n

n∑
�=1

d∏
r=1

K

(
X ′

�,r −Xi,r

hn

)
− f0(Xi)

∣∣∣∣∣Xi

]∣∣∣∣∣
(i)=

∣∣∣∣∣ 1
hd
n

∫
[0,1]d

f0(u)
d∏

r=1
K

(
ur −Xi,r

hn

)
du − f0(Xi)

∣∣∣∣∣
(ii)=

∣∣∣∣∣
∫
Rd

(
d∏

r=1
K (vr)

)
f0(Xi,1 + v1hn, . . . , Xi,d + vdhn) dv − f0(Xi)

∣∣∣∣∣
(iii)=

∣∣∣∣∣
∫
Rd

(
d∏

r=1
K (vr)

)(
f0(Xi,1 + v1hn, . . . , Xi,d + vdhn) − f0(Xi)

)
dv

∣∣∣∣∣
(iv)=

∣∣∣∣∣
∫
Rd

(
d∏

r=1
K (vr)

)

×
( ∑

α:|α|1≤�β	−1,α �=0

(hnv)α

α! (∂αf0)(Xi)

+
∑

α:|α|1=�β	

(hnv)α

α! (∂αf0)(Xi + hnτ(v)v)
)
dv

∣∣∣∣∣
(v)=

∣∣∣∣∣
∫
Rd

(
d∏

r=1
K (vr)

)

×
( ∑

α:|α|1=�β	

(hnv)α

α!
(
(∂αf0)(Xi + hnτ(v)v) − (∂αf0)(Xi)

))
dv

∣∣∣∣∣
(vi)
≤ h�β	

n

∫
Rd

∣∣∣∣ d∏
r=1

K (vr)
∣∣∣∣

×
( ∑

α:|α|1=�β	

|v|α
α!

∣∣(∂αf0)(Xi + hnτ(v)v) − (∂αf0)(Xi)
∣∣) dv

(vii)
≤ h�β	

n

∫
[−1,1]d

∣∣∣∣ d∏
r=1

K (vr)
∣∣∣∣( ∑

α:|α|1=�β	

|v|α
α! |hnτ(v)v|β−�β	

∞ F

)
dv

(viii)
≤ hβ

nF

∫
[−1,1]d

∣∣∣∣ d∏
r=1

K (vr)
∣∣∣∣ ∑
α:|α|1=�β	

1
α! dv

(ix)
≤ hβ

n‖K‖d1dβF.
Here we used for (i) that the X′

� are i.i.d. and independent of Xi. For (ii) we
substituted the transformed variables vr = (ur − Xi,r)/hn and used that f0
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vanishes outside [0, 1]d, since f0 has support in [0, 1]d and is continuous on R
d.

For (iii) we used that a kernel integrates to 1 and that f0(Xi) is a constant
with respect to the integration variables. Step (iv) applies �β�-order Taylor
expansion, that is, for a suitable τ(v) ∈ (0, 1),

f0(Xi + hnv) = f0(Xi) +
∑

α:|α|1≤�β	−1,α �=0

(hnv)α

α! (∂αf0)(Xi)

+
∑

α:|α|1=�β	

(hnv)α

α! (∂αf0)(Xi + hnτ(v)v),

see Theorem 2.2.5 in [35]. For (v) we used that K is a kernel of order �β� and
therefore

∫
vmK(v) dv = 0 for all m = 1, . . . , �β�. For (vi) we used that h

�β	
n

appears in every term of the sum. Jensen’s inequality and triangle inequality are
moreover applied to move the absolute value inside the integral and the sum.
For (vii) we used that f0 is in the β-Hölder ball with radius F and that K has
support contained in [−1, 1]. For (viii) we used that |τ(v)| ≤ 1. To see (ix),
observe that for the multinomial distribution with number of trials �β� and d
event probabilities (1/d, . . . , 1/d), we have

1 =
∑

α:|α|1=�β	

�β�!
α!

(1
d

)α1
· . . . ·

(1
d

)αd

= �β�!d−�β	
∑

α:|α|1=�β	

1
α!

≥ d−β
∑

α:|α|1=�β	

1
α! .

Proposition 10.2. Ef0 [|εi − Ef0 [εi|Xi]|] ≤ F‖K‖d∞2d+1.

Proof. By definition, εi = Yi − f0(Xi). Together with conditioning on Xi, tri-
angle inequality and Jensen’s inequality this yields

Ef0 [|εi − Ef0 [εi|Xi]|] = Ef0 [|Yi − Ef0 [Yi|Xi]|]
≤ 2Ef0 [Ef0 [|Yi||Xi]]

≤ 2
n∑

�=1

1
nhd

n

Ef0

[
Ef0

[
d∏

r=1

∣∣∣∣K (
X ′

�,r −Xi,r

hn

)∣∣∣∣ ∣∣∣Xi

]]
.

(10.17)

Using that ‖f0‖∞ ≤ F and the kernel K is supported on [−1, 1], we get by
substitution

Ef0

[
d∏

r=1

∣∣∣∣K (
X ′

�,r −Xi,r

hn

)∣∣∣∣ ∣∣∣Xi

]
≤ F

∫
Rd

d∏
r=1

∣∣∣∣K (
ur −Xi,r

hn

)∣∣∣∣ du
= Fhd

n

∫
Rd

d∏
r=1

∣∣K(vr)
∣∣ dv
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≤ F‖K‖d∞2dhd
n.

Proposition 10.3. Ef0

[
|εi − Ef0 [εi|Xi]|2

]
≤ 65F 222d‖K‖2d

∞.

Proof. By definition, εi = Yi − f0(Xi). For a non-negative random-variable T ,
it holds that E[T 2] =

∫∞
0 P(T 2 ≥ t) dt =

∫∞
0 P(T ≥

√
t) dt. Therefore

Ef0

[
|εi − Ef0 [εi|Xi]|2

]
= Ef0

[∣∣Yi − Ef0 [Yi|Xi]
∣∣2]

= Ef0

[
Ef0

[∣∣Yi − Ef0 [Yi|Xi]
∣∣2 ∣∣∣Xi

]]
= Ef0

[ ∫ ∞

0
Pf0

(∣∣Yi − Ef0 [Yi|Xi]
∣∣ ≥ √

t
∣∣∣Xi

)
dt

]
.

The probability can also be written as∫ ∞

0
Pf0

(∣∣Yi − Ef0 [Yi|Xi]
∣∣ ≥ √

t
∣∣∣Xi

)
dt

=
∫ ∞

0
Pf0

(∣∣∣∣∣
n∑

�=1

(
d∏

r=1
K

(
X ′

�,r −Xi,r

hn

)

−
∫

[0,1]d
f0(u)

d∏
r=1

K

(
ur −Xi,r

hn

)
du

)∣∣∣∣∣ ≥ nhd
n

√
t

∣∣∣∣∣Xi

)
dt.

This is a sum of i.i.d. random variables minus their expectation (conditionally
on Xi). Using that ‖f0‖∞ ≤ F and the kernel K is supported on [−1, 1], we get
using substitution

Ef0

[
d∏

r=1
K2

(
X ′

�,r −Xi,r

hn

) ∣∣∣Xi

]
≤ F

∫
Rd

d∏
r=1

K2
(
ur −Xi,r

hn

)
du

= Fhd
n

∫
Rd

d∏
r=1

K2(vr) dv

≤ F‖K‖2d
∞2dhd

n.

Applying the bounded variable version of Bernstein’s inequality in Proposi-
tion 10.4 (ii) with v = nF‖K‖2d

∞2dhd
n and b = 3‖K‖d∞ (that is, b/3 = ‖K‖d∞),

we get that∫ ∞

0
Pf0

(∣∣∣∣∣
n∑

�=1

(
d∏

r=1
K

(
X ′

�,r −Xi,r

hn

)

−
∫

[0,1]d
f0(u)

d∏
r=1

K

(
ur −Xi,r

hn

)
du

)∣∣∣∣∣ ≥ nhd
n

√
t

)
dt
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≤
∫ ∞

0
1 ∧ 2 exp

(
− n2h2d

n t

2(n‖K‖2d
∞F2dhd

n + ‖K‖d∞nhd
n

√
t)

)
dt

=
∫ ∞

0
1 ∧ 2 exp

(
− nhd

nt

2(‖K‖2d
∞F2d + ‖K‖d∞

√
t)

)
dt

(∗)
≤ F 222d‖K‖2d

∞ + 2
∫ ∞

F 222d‖K‖2d
∞

exp
(
− nhd

n

√
t

4‖K‖d∞

)
dt

(∗∗)= F 222d‖K‖2d
∞ +

64‖K‖2d
∞

(
F2d‖K‖d

∞nhd
n

4‖K‖d
∞

+ 1
)

exp
(
−F2d‖K‖d

∞nhd
n

4‖K‖d
∞

)
n2h2d

n

(∗∗∗)
≤ F 222d‖K‖2d

∞ + 64‖K‖2d
∞(F2d + 1)

(∗∗∗∗)
≤ 65F 222d‖K‖2d

∞,

where we used for (∗) that 2(‖K‖2d
∞F2d + ‖K‖d∞

√
t) ≤ 4‖K‖d∞

√
t whenever

t ≥ F 222d‖K‖2d
∞. For (∗∗) we used that

∫∞
b2

e−a
√
u du = 2

∫∞
b

se−sads = 2(ba +
1)e−ba/a2, with a = nhd

n/(4‖K‖d∞) and b = F2d‖K‖d∞. For (∗∗∗), we used that
nhd

n ≥ log(n) ≥ 1 and that 0 < exp(−x) ≤ 1 for x ≥ 0. For (∗ ∗ ∗∗), we used
that F2d + 1 ≤ 2F2d ≤ F22d ≤ F 222d. The result follows from observing that
E[c] = c, for any real number c.

Proposition 10.4. Given independent random variables Z1, . . . , Zn.

(i) (moment version) If for some constants U and v the moment bounds∑n
i=1 E[|Zi|m] ≤ 1

2m!Um−2v hold for all m = 2, 3, . . ., then

P

(∣∣∣∣ n∑
i=1

(Zi − E[Zi])
∣∣∣∣ > t

)
≤ 2e−

t2
2v+2Ut .

(ii) (bounded version) If for some constants b and v, the bounds |Zi| ≤ b and∑n
i=1 E[|Zi|2] ≤ v hold for all i = 1, . . . , n, then,

P

(∣∣∣∣ n∑
i=1

(Zi − E[Zi])
∣∣∣∣ > t

)
≤ 2e−

t2
2v+2bt/3 .

These formulations of Bernstein’s inequality are based on Corollary 2.11 and
Equation (2.10) in [13].
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