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Abstract: Nonparametric density estimation is an unsupervised learning
problem. In this work we propose a two-step procedure that casts the den-
sity estimation problem in the first step into a supervised regression prob-
lem. The advantage is that we can afterwards apply supervised learning
methods. Compared to the standard nonparametric regression setting, the
proposed procedure creates, however, dependence among the training sam-
ples. To derive statistical risk bounds, one can therefore not rely on the
well-developed theory for i.i.d. data. To overcome this, we prove an oracle
inequality for this specific form of data dependence. As an application, it
is shown that under a compositional structure assumption on the underly-
ing density, the proposed two-step method achieves convergence rates that
are faster than the standard nonparametric rates. A simulation study illus-
trates the finite sample performance.
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1. Introduction

Machine learning distinguishes between supervised and unsupervised learning
tasks [11, 50]. In the supervised framework, the dataset consists of input-output
pairs. No outputs are observed in the unsupervised setting. For supervised learn-
ing, classical examples are regression and classification; for unsupervised learn-
ing, commonly encountered problems are density estimation and clustering. The
apparent difference between supervised and unsupervised tasks resulted in ma-
chine learning methods that either apply to the supervised or to the unsuper-
vised framework. While neural nets can be applied in both scenarios, the under-
lying methodology is mostly unrelated: In the supervised context, deep learning
is applied to reconstruct the function mapping the inputs to the outputs; in the
unsupervised framework, neural networks are employed for instance in ODE-
based models for density estimation [29, 55, 47] or for feature extraction, e.g.
by making use of variational autoencoders [38]. Moreover, generative Al meth-
ods such as generative adversarial networks (GANs) or diffusion models invoke
neural networks and can be viewed as density estimators [21, 16, 64, 15, 69, 54].

While there has been previous work transforming density estimation into a
binary classification problem, see Section 14.2.4 in [31] and [30], in this article,
we show how unsupervised multivariate density estimation can be cast into a
supervised regression problem. For that, we generate suitable response variables
from the data in a first step. Rewriting the problem as supervised learning task
allows us to borrow strength from supervised learning methods. We demonstrate
this by fitting deep ReLU networks. In the theoretical deep learning literature,
it has been shown that supervised deep networks can outperform other methods
if the target function exhibits some compositional structure. Making the link to
supervised learning allows us to exploit this property also for density estimation.
This is highly desirable as a compositional structure is frequently imposed in
modelling of densities. Examples include copula models [1, 51] and Bayesian
network models [41], see also Section 4.
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Theorem 3.1 is our main theoretical contribution and establishes an oracle
inequality for supervised regression methods applied to nonparametric density
estimation. The key technical difficulty in the proof is to deal with the de-
pendence incurred by generating the response variables in the first step of the
proposed method. To control the dependence, we use a Poissonization argument.
Applying the derived oracle inequality, we show in Theorem 3.4 that deep ReLLU
networks can obtain fast convergence rates, given that the underlying density
has a compositional structure. For sufficiently smooth densities, the convergence
rates are, up to logarithmic factors in the sample size, the same as the recently
obtained minimax rates in the nonparametric regression model under composi-
tional structure on the regression function, [61]. But there are also smoothness
regimes where the convergence rate is slower by a polynomial order in the sam-
ple size if compared to the nonparametric regression case. This is due to the first
step in the construction of the estimator that transforms the density estimation
problem into a supervised regression problem. But still then there are scenarios
where the convergence rate is considerably faster than doing off-the-shelf kernel
density estimation without taking the underlying compositional structure of the
density into account.

The paper is structured as follows. Section 2 describes the construction of
suitable response variables from the data. In Section 3 we present a suitable
oracle inequality for non-i.i.d. data. Furthermore, we provide convergence rates
in the case that the regression estimator is a deep neural network and the
underlying density are compositional functions. In Section 4 we shortly discuss
some density models that exhibit compositional structure. A small (exploratory)
simulation is provided in Section 5. Section 6 summarizes related literature.
Almost all proofs are deferred to the Appendix.

1.1. Notation

We denote vectors and vector valued functions by bold letters. For a vector
X = (@1,...,2,)" we define |x|oc = max;—1__i |7, [x1 = Zle |z;]. and
|x|o = Zle L{z,20}- For partial derivatives we use multi-index notation, that
is, if o = (@1,...,aq) € {0,1,2,...}% we set 9% := 921 ...92¢. We denote
the supremum norm of a function f : D — R by [|f|lcc = supyep |f(x)]. As
commonly defined in nonparametric statistics, for a real number z € R, |z] is
the largest integer < x and [x] is the smallest integer > 2. The minimum and
maximum of two real numbers x, y are also denoted by the respective expressions
x Ay and z V y. For two sequences (ay,)n and (by,)n, we write a, < b, if there
exists a constant C' such that a,, < Cb,, for all n. Moreover, a,, < b, means that
an < by, and by, < a,. If no basis is specified, then log = In.

2. Conversion into a supervised regression problem

We consider nonparametric density estimation on the hypercube [0,1]¢, where
we observe 2n i.i.d. random vectors X; € [0,1]¢ which are distributed accord-
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ing to an unknown density fy from a nonparametric class. The density esti-
mation problem is to recover this density fo from the data Xq,...,Xs,. Here
the sample size 2n is chosen for notational convenience, as we will do data
splitting. It is moreover convenient to rename the second half of the dataset

and denote it by X/,..., X/ . Thus, we are observing the 2n i.i.d. random vec-
tors (Xq,...,Xp, X),...,X!). In the first step of the proposed method, the
second half of the sample X/,..., X! is used to compute an undersmoothed

kernel density estimator. From that we construct a response variable Y; for
each of the remaining datapoints X;. The response variables Y; can be inter-
preted as noisy versions of fo(X;). The augmented data (X1,Y1),...,(X,,Y,)
are now viewed as a nonparametric regression problem with the unknown den-
sity fo as regression function. Thus, any nonparametric regression technique
could be applied to recover the regression function fy from the supervised data
(X1, Y1),...,(X,,Y,). Here we propose to fit a deep neural network. This is mo-
tivated by previous work which has shown that deep neural networks can adapt
to various forms of structural constraints and avoid the curse of dimensionality
[39, 57, 7, 61, 40]. As we will argue below, such structural constraints occur in
modelling of multivariate densities. Fitting a neural network to the regression
data (X1,Y7),...,(X,,Y,) is therefore natural.

In nonparametric statistics, a function K : R — R is called a kernel if K is
integrable with [ K (u)du = 1. If for some positive integer s, we moreover have
vanishing moments [u‘K(u)du=0forall¢ =1,...,s,and [ |u[**!|K(u)|du <
00, then K is called a kernel of order s. We now outline the two steps of the
method.

Step 1: Choose a kernel K with | K| < oo and support on [—1,1]. For
a bandwidth h,, satisfying (log(n)/n)'/?* < h, < 2(log(n)/n)'/¢ and such that
h, ! is a positive integer for all n > 1 (existence of such a sequence is guaranteed
by Lemma 7.1), consider the multivariate kernel density estimator based on the
subsample X1, ..., X], with X} = (X;,,... ,Xé)d)T given by

n d /
frpE(X) = ﬁ Ik <XZ;L—;CET) ; (2.1)
and using the notation x = (x1,...,24). For i = 1,...,n, define
Yi = froe(X). (2:2)
Setting €; :=Y; — fo(X;), we obtain the regression model
Y= foX;)+e, i=1,...,n. (2.3)

Step 2: Compute an estimator fbased on the data (X1,Y7),..., (X, Ys).

Definition 2.1. We refer to any such f as two-stage nonparametric density
estimator. If the kernel is of order s, we call f the two-stage nonparametric
density estimator with kernel of order s.
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Both f and the kernel density estimator fKDE are estimators for fy. How-
ever, because of the small bandwidth, the kernel density estimator severely
undersmooths. The variance of fkpgr(x) at a given point x is known to scale
with 1/(nh%) < 1/log(n). This means that the noise variables ¢; scale with
1/4/log(n) in the sample size. Therefore, the denoising happens in the second
step of the proposed two-step procedure.

Although the notation seems to suggest that (2.3) is the standard nonpara-
metric regression framework, all data points depend on the underlying kernel
density estimator fxpg. The pairs (X1,Y7),...,(X,,Ys) are henceforth depen-
dent and thus not i.i.d. To deal with this dependence is the main technical
challenge in the analysis of the proposed method.

The kernel density estimator in Step 1 undersmooths and does not require
knowledge of the true smoothness. The conditions on the kernel K are standard.
Taking a kernel of order s together with an optimal bandwidth choice is known
to lead to optimal convergence rates if the smoothness of the density is at most
s+ 1. The fact that the bandwidth is chosen such that h,,! is a positive integer
allows us to partition [0, 1] into h,; ! disjoint intervals of length h,,.

For fitting a function to the data (X1,Y7),..., (X, Y,) in the second step of
the procedure, machine learning methods aim to minimize a loss. For regression,
the most common choice is the least squares loss % Sy (Yi —f (XZ-))Q. The least

squares estimator fn over a function class F for the density fy is defined as any
global minimizer of the least squares loss

n

fn € arg min E Z (Y; — f(Xi))z.

fer n i=1

Due to the nonconvex energy landscape, neural network training usually does
not find the global minimum. The difference between training error of the es-
timator and training error of the global minimum is commonly referred to as
optimization error. For any estimator f taking values in a function class F,
and data generated from the nonparametric regression model with regression
function fy, we consider here the optimization error
1 I
= — Iy 2 : 2
An(f. fo) = Ey, lﬁ _Z;(n — f(X)? = jnf Z;<Y - F(X2) ] . (29
1= 1=
where the expectation is taken over the full data set, making An(f, fo) deter-
ministic. _
The risk of an estimator f is given by

ROF. ) 1= Bppox [(F0) = £0(X0)] = [ By, () = o] o).
(2.5)

Here X £ X, is independent of the data and Ef, x is the expectation with
respect to the joint distribution of X and the data set. We denote by Ex the
expectation with respect to X.
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3. Main results

We assume that the density fo belongs to the class of -Holder smooth functions
on R? with support on [0, 1]¢. For 8 > 0 and a domain D C R?, the ball of -
Holder functions with radius @ is defined as

Hg(D,Q) = {f:D—HR: Z 107 fll oo

v: 0< |yl <B

FY e Ié"’f(X)—f‘?"f(y)ISQ}

o) YDAy [x—yla

(3.1)
where || - [|oc denotes the supremum norm on D, 97 = 9)'...9)¢, and v =
(71,---57va) € {0,1,2,...}9. To define the partial derivatives if D is not an open
set, we assume that there exists an open set &/ O D and an extension of f on U
for which the partial derivatives 97 for all 4 with |y|; < 8 are defined. The class
of B-Holder smooth densities on RY and support on [0, 1]¢ can subsequently be

defined as

0,1)¢

clQ) = {f € Hi(RY,Q) : supp f C [0, 1]d,/[ f(x)dx=1,f> 0}.

We define the class of B-Hélder smooth densities on [0,1]¢ by restricting j-
Holder smooth densities on R¢ to [0, 1]¢,

C10,11%,Q) i={ flioe : f € CHQ)}

Below we assume that the true density lies in this space. The condition that
densities in this space can be extended to smooth functions on R¢ is imposed to
avoid (technical) difficulties of the kernel density estimator near the boundary
of [0,1]¢. For a reference dealing with the behaviour of kernel estimators near
boundaries, see Section 2.11 of [74].

We state the oracle inequality for estimators taking values in an abstract
function class F(F) C {f : ||f]l«« < F}. For that, we denote by Nz(d) the
covering number of a class F(F) with respect to the supremum norm. More
specifically, N=(9) is the smallest number of supremum norm balls with radius

0 and centers contained in F that are necessary to cover F.

Theorem 3.1. For n > 3, consider the density estimation model defined by
(2.1)-(2.3) with density fo in the Holder class Cg([O, 119,Q). Let f be a two-
stage nonparametric density estimator with kernel of order |B] as defined in
Definition 2.1. If j/': takes values in the function class F = F(F), with F >
max{Q, 1}, then there exist constants C1,Ca, Cs only depending on F\ K,d,Q, 8
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such that for any § > 0,

.:L‘g

R(]?v fo) <C1

+7 inf Ex [(f(X) — fo(X))]

log* (n) log:l VNFOD | s+ <1°g(”)) +6A,(f, fo)

n

As common for oracle inequalities, the upper bound contains an approxima-
tion term, a complexity term involving the metric entropy, and the optimization
error A, (f, fo). For neural networks and other parametrizable function classes,
the metric entropy log(N7(d)) depends only logarithmically on § and one can
choose ¢ = 1/n, making the Cyd term negligibly small.

If compared to oracle inequalities for i.i.d. data, the bound contains more-
over the term Cy(log(n)/n)?*/¢ that is due to the bandwidth choice h, =
(log(n)/n)Y/? and a term of the order h2? that can be traced back to Proposi-
tion 7.3. To decrease the order of the C3(log(n)/n)?#/¢ term, it is tempting to
aim for a smaller bandwidth h,, < n~'/?¢. However, even if the data points are
equally spaced in [0,1]?, the distance of two neighboring data points is n~/¢.
Thus for bandwidth h, < n~'/%, it follows from the definition of the kernel
density estimator in (2.1) that the estimated density degenerates into separate
spikes centered around the data points X/,..., X/ . As a consequence, a gener-
ated response variables Y; will likely either be extremely large or attain a value
near zero and the two-step method that we propose will not work anymore.

Compared to oracle inequalities for i.i.d. data in the nonparametric regression
model, the main difficulty in the proof of the previous theorem is to deal with
the various sources of dependence. The dependence of the noise variables ¢; =
Y: — fo(X;) on X; does not cause major issues, see the proof of Lemma 7.2 for
details. However, evaluating the kernel density estimator at two deterministic
points fkpr(x) and fxpr(x’) leads to highly dependent random variables if x
and x’ are close and the dependence does not vanish even if x and x’ are far
away. The rationale behind the latter is that if fkpr(x) > fo(x), then it is a
bit more likely that fxpg(x') < fo(x') as ffKDE(x) —fox)dx=1-1=0.
To control this dependence, it is common to use Poissonization techniques, cf.
[72] Section 3.5.2., [26], and [23] Section 8.3. To explain the idea underlying
Poissonization, consider a Poisson point process on [0, 1]. For two disjoint sets
A, B C [0,1]4, the number of points that fall in set A and the number of points
that fall in set B are independent random variables. Also many statistics can be
shown to produce independent random variables if they are separately applied
to the points in A and the points in B. The Poissonization trick is now to
pretend that we do not have n data points X/,..., X! but M data points,
that is, we observe X1,...,X’,, for M an independently generated Poisson
random variable with intensity n. Then, X/,..., X\, can be interpreted as
the points of a Poisson point process with intensity x — nfo(x). We can now
also redefine the kernel density estimator fKDE for X1,..., X', by keeping
the same normalization 1/n but summing over £ = 1,..., M. Because we have
chosen the kernel to have support in [—1,1], fKDE(x) only depends on the
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subset D(x) = {X] : |X]| — X[oo < hp,i = 1,...,. M} C {X],.... X (}. If
|X — ¥|oo > 2hy, then D(x) and D(y) are disjoint sets and one can even show
that the statistics fKDE(x) and fxpr (y) are independent. To control the change
of probability going from n to M observations, we can apply the following result:

Lemma 3.2. For M and X, X}, ... as above, for any function h, and any
measurable set A,

P(ih(xg) € A) < \/ﬁl@(ih(X;) S A).

Proof of Lemma 3.2. We have

P(ih(x;) eA) (Zh (X)) GA‘Mn) < BZiLhXD) € 4).

P(M =n)

Since M is a Poisson(n) random variable we have that P(M =n) = n"e " /nl.
By Stirling’s formula, see for example [60], n! < +/27wn(n/e)"e/(127)

< V2emn(n/e)” and 1/P(M =n) < /2emn. O

While Poissonization removes dependence, the factor v/2emn arises in the
bounds.

3.1. Neural networks

We study the effect of fitting a deep ReLLU network in the regression step of the
proposed two-step procedure. We rely on the mathematical formulation of deep
neural networks introduced in [61] and briefly recall the details for completeness
of the exposition. The rectified linear unit (ReLU) activation function is o(z) :=
max{z,0}. For any vectors v = (vy,...,v:) ",y = (Y1,--.,%:) " € R", we define
the shifted activation function ovy := (o(y1 —v1),...,0(y-—2v,)) . The number
of hidden layers is specified by L and the width of the layers is denoted by the
width vector p = (po,...,pr1+1) € NFF2, A network with network architecture
(L, p) is any function of the form

f:RPO - RPEHL x5 f(x) = Wroy, Wr_10v,_, - .. Wioy, Wox, (3.2)

where W; is a pj41 X p; weight matrix and v; € R/ is a shift vector. We use
the convention that v := (0,...,0)" € RPo, Denote the maximum entry norm
of a matrix W by ||W||s. The class of ReLU networks with architecture (L, p)
and parameters bounded in absolute value by one is

F(L,p) :== {f is of the form (3.2) : max ([|[Wjlle V [Vj]oo) < 1}.
j€{0,....L}

For a matrix W denote the counting norm (number of non-zero entries) of W
by ||[Wlo. We are interested in sparsely connected neural networks where the
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number of non-zero or active parameters is small compared to the total number
of parameters. For this we define the class of s-sparse networks, that are bounded
in uniform norm by F', as

F(L,p,s, F) = {f is of the form (3.2) : max ([|[Wjlle V [Vjloo) <1,
§€{0,. L}

EEREE)

L
S lo + W3l < 5, [ [Elsclloe < F}
=0

Definition 3.3 (Two-stage neural network density estimator). If the two-stage
nonparametric density estimator fﬁts in the second step a neural network from
the class F(L, p, s, F') to the augmented sample (X1, Y1),...,(X,,Y,), then we
refer to f as two-stage neural network density estimator. If the kernel in the
first step of the procedure is of order s, we call f a two-stage neural network
density estimator with kernel of order s.

The larger the sample size n, the more parameters we can fit. The convergence
guarantees below suggest choices for the quantities L, p, s that increase in n and
depend on structural properties of the true density f.

3.2. Structural constraints: compositions of functions

Deep neural networks are built by composing individual layers. Previously de-
rived statistical theory has shown that they are well-suited to pick up compo-
sitional structure in the regression function, [39, 57, 7, 61, 40]. In this work we
follow the composition structure introduced in [61] and impose it on the mul-
tivariate density fo, that is, we assume that fo = g;0g94,-10...0 g1 0 go, with
gi + [ai, bi]% = [aig1,biy1]%+1. Denote by g; = (9ij);—; 4., the components
of g; and let ¢; be the maximal number of variables on which each of the g;;
depends. It always holds that ¢; < d; and for certain models, ¢; can be much
smaller than d;. Section 4 provides examples of densities where this is the case.
As we consider density estimation on [0, 1}‘1, it follows that dy = d, ag = 0,
bp =1 and dg41 = 1. Since g;; depends on ¢; variables, we also interpret g;; as
a function [a;, b;]% — [ai11, b1 1] whenever this is convenient. Denote by «; the
smoothness of each of the functions g;;. Then g;; € H{' ([as, b;]%,Q;) and the
space of compositions of these smooth functions is given by

Glg,d,t,0,Q") = {f =0g0...060:Gi = (gi); : [ai, bi]™ — @i, bisa]?+1,

9ij € He ([ai,bi]",Q"), for some |ayl, |b;] < Q'},
(3.3)
with d := (do,...,dg+1), t := (to,...,ty), and a = (ao, . . ., aq).
If two functions h, g : R — R have respective smoothness o, ay < 1 then it
follows from the definition of the Holder space that the composition f :=go h
has smoothness at least apay. For a, > 1 or oy > 1, this is not necessarily true
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anymore. [t turns out that the convergence rates for a compositional function in
G(g,d,t,a, Q') are governed by a notion of effective smoothness indices which

are defined as
q

af ==y H (g A 1).

l=i+1

Indeed, in the nonparametric regression model with i.i.d. observations the min-
imax estimation rate is up to log(n)-terms

¢n = max n SRS (3.4)

cf. Theorem 1 and Theorem 3 in [61]. A function can be represented as a compo-
sition in different ways. In the function representation f = g4o...0go, the oy, t;
and the components go, ..., g, are not identifiable. Since we are only interested
in estimating the density fy this does not constitute a problem.

The oracle inequality in Theorem 3.1 together with the approximation and
covering entropy bound results for deep ReLU networks from [61] yields a con-
vergence rate result for the proposed two-stage neural networks estimator. Recall
that A, (fn, fo) is the optimization error defined in (2.4).

Theorem 3.4 (Convergence rates). Forn > 3, consider the density estimation
model defined by (2.1)-(2.3) with density fo in the Holder class Cg([(), 114,Q) N

G(g,d,t,a, Q). Let ]?n be a two-stage neural network density estimator with
kernel of order |B| as defined in Definition 3.3 for the neural network class
F(L, (po,---,pL+1),8, F) with parameters satisfying

(i) F > max{Q,1},

(i) 23:1 zi}tf; logy (4t; V 4a) logy(n) < L S noy,

(11t) non, S min,—1 1 p;,

(iv) s < ney,log(n).
Then there exists a constant Cy, only depending on q,d, o, t, F, 3, K and the
implicit constants in (i), (iii), and (iv), such that

R(fas fo) < CaLmax (9, 1og" (), n™9/7) 62, (Fo. fo).

Any admissible compositional structure f = g4 0...0 go leads to an upper
bound on the risk. The estimator achieves therefore the fastest convergence rate
among all possible representations.

To analyze the estimation risk, we will now ignore the optimization error
An(fn, fo) and focus on the statistical estimation rate L max (¢, log*(n),n=28/4).
Choosing depth L = log(n), the convergence rate for the learned network f is
thus ¢, + n=2#/4 up to log(n)-factors. The n=28/d_term is due to the kernel
density estimator in the first step and already occurs in the general oracle in-
equality, see also the discussion after Theorem 3.1.

If the density exhibits a compositional structure, it is now of interest to
understand which of the two terms ¢, and n=28/¢ will drive the convergence
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rate. If the compositional structure is strong enough to make ¢,, small but 5 is
small compared to d, then n=2#/¢ dominates the convergence rate. This is faster
than the standard nonparametric rate n=2%/(26+d) for estimation of a B-smooth
function but still suffers from the curse of dimensionality.

If 28 > d, then n—28/d = O(n~1). Since ¢, > n~1, the rate is in this case
always of order ¢,, (up to log-factors). The condition 23 > d appears frequently
in the literature on nonparametric statistics and empirical risk minimization.
For d =1, 28 > 1 is known to be a necessary condition for nonparametric den-
sity estimation and nonparametric regression to be asymptotically equivalent if
all densities are bounded from below [53, 58]. The condition 23 > d seems also
necessary to ensure that the nonparametric least squares estimator achieves the
optimal nonparametric rate n~2%/(26+4) see e.g. Section 6.1 in [63]. Barron [6]
showed that shallow neural networks can circumvent the curse of dimensional-
ity under a Fourier criterion. A sufficient, but not necessary condition for this
Fourier criterion to be finite is that the partial derivatives up to the least integer
B such that 28 > d + 2 are square-integrable, see Example 15 in Section IX of
[5].

Instead of the proposed two-step method, it seems tempting to further iterate

the estimation procedure by generating new response variables Y, := ﬁl(Xi),

1 =1,...,n, from the estimator f, and running another neural network fit on
the newly generated supervised sample (X1,Y7),...,(X,,Y, ). We believe that
this can, however, not improve the convergence rate. The reason is that the new
network fit cannot decrease the bias that was already present in the estimator f,.
The rate in Theorem 3.4 is obtained by balancing different terms. In particular
the squared approximation error that is closely related to the squared bias is
of the order of the convergence rate. Thus, if the bias cannot be reduced by
another neural network fit also the convergence rate cannot be improved.

In the next section, we provide more explicit examples of densities that satisfy
the compositional assumption and attain the convergence rate ¢, .

4. Examples of multivariate densities with compositional structure

Compositional structures arise naturally in density modelling. One possibility
to see this is to rewrite the joint density f as a product

flze, ... xq) = f(zalzr, . yxa—1) -+ - faz|xr) fzq).

Each factor f(x;|z1,...,2;—1) is a function of ¢ variables. But the effective num-
ber of variables can be much smaller under conditional independence of the vari-
ables. When X = (X7,...,X4)" is generated for instance from a Markov chain,

X; only depends on X;_; and the density is a product of bivariate conditional
densities

flz, .. xq) = f(xalza—1) - ... fza]z1) f(21)- (4.1)
Such a structure could occur if the individual data vectors are recordings from a

time series, that is, every observation X; = (X, 1,...,X;q)' contains measure-
ments of the same quantity taken at d different time instances. We now assume
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that the density is of the form

fay, . xa) = ] ¢r(an), (4.2)

IeER

with R C {S C {1,...,d},1 <|S| < r}, r a given number, z; = (z;)icr, and
1 non-negative functions. Observe that |R| <>\, (g)

Lemma 4.1. Consider a density [ of the form (4.2). If all the functions 1
in the decomposition satisfy ¢y € H] ([0,1]"7,Q) for some r; < r, then the
density f can be rewritten as a composition g1 o go of the form (3.3), with
(do,d1) = (d,|R]), (to,t1) = (r,|R]), (a0, 01) = (7,¢), and ¢ arbitrarily large.

Ignoring here and in the rest of this section the optimization error, under the
combined conditions of Lemma 4.1 and Theorem 3.4, the proposed two-stage
neural network density estimator achieves, up to log(n)-factors, the convergence
rate

n" i \/nf%, (4.3)

with 5 the (global) Holder smoothness of the joint density f. If 8 = -y, that is,
the effective smoothness v coincides with the global Holder smoothness (8 of f,
then the achieved rate is n~ =7 if v > (d—r)/2 and n=% if y < (d— r)/2.
We always have 5 > ~. If 8 > -, we conjecture that in most cases there exists
a different factorization of the density f with S-smooth ;.

Next, we discuss three examples of models that are of the form (4.2).

Independent variables: If X = (X3,...,X,) is a vector containing inde-
pendent random variables, the joint density is given by

d

f(@1,... 2a) = Hfi(%‘), (4.4)

i=1

where f; is the marginal density of X;. We assume that f; is a-Holder smooth. If
we are unaware of the independence and simply use multivariate kernel density
estimators to estimate f, we will suffer from the curse of dimensionality as
demonstrated for Gaussian densities and Gaussian kernels in Chapter 7 of [65].

Observe that (4.4) is of the form (4.2), with R the set of singletons. Thus
under the combined conditions of Lemma 4.1 and Theorem 3.4, we get, up to
log(n)-factors, the convergence rate n=2¢/(2a+1) v n=26/d with A the (global)
Holder smoothness of the joint density f. The construction in Lemma 4.1 implies
that 8 > a. The next result shows that in this case we necessarily have equality
B = «a. In other words the smoothness of the joint density f has to be equal to
the (effective) smoothness of the least smooth marginal density.

Lemma 4.2. Let a > 0. Consider a density f of the form (4.4) with f;, i =
1,...,d probability density functions on [0,1]. If f is a-Holder smooth, then
fi,.-., fa are a-Holder smooth.
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Graphical models: Let (Xi,...,Xy) be a d-dimensional random vector.
An undirected graphical model (or Markov random field) is defined by a graph
with d nodes representing the d random variables. In this graph, no edge between
node ¢ and j is drawn if and only if X;, X; are conditionally independent given
all the other variables {X1,..., X4} \ {X;, X;}. A clique in a graph is any fully
connected subgraph. When the joint density f(x1,...,2q) is strictly positive
with respect to a o-finite product measure, the Hammersley-Clifford theorem
states that

f@r,.za) = [] volzo), (4.5)

cec

where C is the set of all cliques in the graph and ¢ are suitable functions
called potentials [10, 44]. As we consider densities supported on [0, 1], one can
take as dominating product measure the uniform distribution on (0,1)% and the
condition requires that the density is strictly positive on (0,1)¢. There is no
clear link between the potentials and marginal densities.

Assuming that the true density fy satisfies (4.5) with largest clique size r and
all potentials having Holder smoothness v, Lemma 4.1 implies that, under the
conditions of Theorem 3.4, the two-stage neural network density estimator is
able to exploit the underlying low-dimensional structure and achieves the rate
n=27/ 1)y p=28/4 up to log(n)-factors.

Bayesian networks: Bayesian network models are widely used to model
for instance medical expert systems [41, 32] and causal relationships [56]. As in
the previous section, consider a d-dimensional random vector (X71,...,Xy). In a
Bayesian network, the dependence relationships of the variables are encoded in
a directed acyclic graph with nodes {1,...,d} [56, 41, 11, 42]. A directed acyclic
graph (DAG) is a directed graph that contains no cycles, meaning one cannot
visit the same node twice by following a path along the direction of the edges.
The parents pa(i) of a node i are all nodes that have an edge pointing to node
1. The ancestors of node i are all nodes j such that there exists a path along
the direction of edges that starts at node j and ends at node 1.

The DAG underlying a Bayesian network is constructed such that each vari-
able X; is conditionally independent of all its ancestors given the parents
Xpai) = {Xj : j € pa(i)} in the graph. The joint density can now be writ-
ten as product of conditional densities

f(SCl, “e ,l’d) = fd (xd|$pa(d)) et f1 (:U1|:L’pa(1)). (46)

In particular, if Xy,..., Xy are generated from a Markov chain, this can be
represented by the DAG X; — X3 — ... — Xg4. Thus pa(j) = {j — 1} for
j > 1, and we obtain the factorization property f(x1,...,zq4) = f(xglTi—1)-..."
fazlzr) f(@1).

Assuming that the true density fy satisfies (4.6), that no node in the DAG
has more than r parents, and all conditional densities fy (mi|mpa(i)) have Hoélder
smoothness v, Lemma 4.1 shows that, under the conditions of Theorem 3.4, the
two-stage neural network estimator achieves the convergence rate n =27/ (2v+r+1y
n~=28/4 up to log(n)-factors.
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4.1. Copulas

Copulas are widely employed to model dependencies between variables and to
construct multivariate distributions, [52, 18, 19]. Denote by F' the multivariate
distribution function, with marginals Fi(x1),. .., Fg(z4) and density f. Sklar’s
theorem states that there exists a (unique) d-dimensional copula C' (a multi-
variate distribution function with uniformly distributed marginals on [0, 1]) such
that F(x) = C(Fi(x1),...,Fi(zq)). The density f can then be rewritten by the

chain rule as
d

Fx) = c(Fi(21),..., Faza)) [ ] filz:), (4.7)
i=1
where f;(z;) = F/(z;) is the marginal density with respect to z; and c is the
density of C' (assuming that all these densities exist). For a reference, see Section
2.3 of [52].

Lemma 4.3. Consider a density f of the form (4.7). If ¢ € H}*([0,1]¢,Q.)
and f; € H1°([0,1],Q), fori=1,...,d, then, the density f can be rewritten as
a composition gs o g1 0 go of the form (3.3), with (do,d1,d2) = (d,2d,d + 1),
(to,t1,t2) = (1,d,d + 1), (g, a1,a2) = (Yo,Ye, ), and v arbitrarily large.

Assume that the true density is of the form (4.7), that 8 = . A 7o, and that
all the conditions on the kernel and the network architecture underlying Theo-
rem 3.4 are satisfied. Applying the decomposition of the density in Lemma 4.3,
Theorem 3.4 yields the convergence rate n=27/(270+1) \/ p=27ve/(2ve+d) \/ p=26/d
up to log(n)-factors. When . and g satisfy v./d > vo > (d —1)/2, the conver-
gence rate becomes n~27/(270+1) (up to log(n)-factors). If instead, the copula
density ¢ is smoother than the marginals, in the sense that . > 79 = 3, then
the obtained convergence rate is faster than the standard nonparametric rate
n~28/(2B+d) for estimation of S-Holder smooth functions.

As example, consider the d-variate Farlie-Gumbel-Morgenstern copula family
with parameter vector 8, which has copula density

r

d
ce(uh...,ud):l—l—z Z lemer(l—Qujk),

r=2 1<j1<--<jr<d k=1

for a parameter vector 0 satisfying |0]. < 1 and

d r
1+>° > 0 [[&. =0 forallg, e{-1,1},

r=2 1<j1<<jr<d k=1

[34, 22, 24]. The double summation sums over all 2¢ —d — 1 subsets of {1,...,d}
with at least two elements. Since the input of the copula comes from the distribu-
tion functions of the marginals, it holds that (uy,...,ug) € [0,1]%. This implies
v; := (1 —2u;) € [-1,1], and by Lemma 8.1, v — [[,_, vj, € H)°([-1,1]¢,2%),
for all . > d+1. Together with the chain rule, this yields u — [],_, (1—2u;,) €
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X3, X4| X1, Xy

(a) First tree (b) Second tree (c) Third tree

Fig 1: Example of a regular vine on four variables. Another example is given in
Figure 2.

H)e([-1,1]¢,4%). The derivative of a sum is the sum of the derivatives and
therefore the triangle inequality and || < 1 imply for the copula density
co € H)e([—1,1]4, (2¢ — d)4%), for all 4, > d + 1. For this family of copulas, the
effective smoothness of the composition is thus determined by the smoothness
of the marginals and the convergence rate becomes n~270/(2v0+1) \/ p=28/d,

Explicit low-dimensional copula structures can be imposed using the fact that
a d-dimensional copula density factorizes into a product of d(d — 1)/2 bivariate
(conditional) copula densities [51, 8, 1, 20]. The key ingredient in this argument
is to successively rewrite the conditional densities using the formula fxy (z|y) =
exy(Fx(x), Fy(y))fx(z), where cx y denotes the bivariate copula density of
(X,Y). The decomposition into bivariate copulas is not unique. Already for
three variables (X,Y, Z), there are two possible decompositions, namely

Ixiyv,z(xly, 2) = ex vz (Fxz(®]2), Fy 1z (y]2) | 2) fx)2(2]2)

and a second decomposition that interchanges the roles of y and z. The so-called
simplifying assumption [70, 51, 20] states that all the bivariate copulas in the
decomposition are independent of the conditioned variables, in other words

Ci gk (Fup (@iler), Fie(zjler) | 2r) = e (B (eilan), Fy(z;ler)).-

For the remainder of this section, we will assume that the simplifying assumption
holds.

A way to define such decompositions is by relying on regular vines, [51, 8, 1,
20]. A vine on d variables X1,..., Xy is a set of trees (T1,...,T,), such that the
nodes of the first tree T} are uq,...,uq. The nodes of the tree T;, for i = 2,...,r,
are (a subset of) the edges of the tree T;_;. For a regular vine it furthermore
holds that » = d — 1, that two edges in a tree can only be joined by an edge in
the next tree if these edges share a common node, and that the set of nodes of
T; has to be equal to the set of edges of T;_;.

Any regular vine on (Xi,...,Xy) defines a factorization of a d-dimensional
copula, by associating a bivariate copula density to each edge in any of the trees.
Copulas defined in this way are called vine-copulas.

Figure 1 shows an example of a regular vine with four variables. Regular vines
such as the one in Figure 1, where each tree has one node that has an edge to all
other nodes in that tree, are known as canonical-vines [1] or C-vines [20]. The
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X, X X, X X5 Xy Xa, X,

Fig 2: Structure of the first tree of the D-vine copula used in the simulation.

density corresponding to a canonical vine on d variables (up to renumbering the
variables) is given by

d d—1d—j
H fk(xk:) H H Cjj+ill,...,5—1 (Fj\l,,..,j—l(xj‘xly cee 79€j—1)7
k=1 j=11i=1

Fj+i|1,...,j—1(1'j+i|1'17 ceey 33;'71))

Another type of regular vine is the D-vine, [1, 20]. In a D-vine no node in any
tree is connected to more than two edges. Figure 2 shows the first tree of a
D-vine on d variables. The density corresponding to a D-vine on d variables (up
to renumbering the variables) is given by

d d—1d—j
H fr(@r) H H Ciitjli+1,... itj—1 (Fi|i+17...7i+j—1(xi‘xi—&-la e Tigjo1),
k=1 j=11i=1

Fitjlit1,ivj—1(Tigj|Tiga, .. 7xi+j—1)>~

If two random variables X, X5 are conditionally independent given X3, then
c1,2)3 = 1. If such conditional independence relations hold, one can simplify the
vine-structure. For example consider the vine on four variables in Figure 1. In
the (very simplified) case that X5 and X3 are independent given X;, that Xo
and X, are independent given X7, and that X3 and X, are independent given
(X1, X3), only the bivariate copulas on the edges of the first tree (Figure 1a)
appear in the decomposition, cf. Section 3 of [1]. More generally, suppose that
there exists a canonical vine on d variables such that the bivariate (conditional)
copula densities associated with all the trees except the first one are equal to
one, then under the simplifying assumption, the decomposition becomes

d

d
F&) =T fuler) [[ eri(Fi(ar), Fi(zy)). (4.8)
k=1

=2

Here X is the root of the first tree, which can always be achieved by renumber-
ing the variables. In the case of a D-vine, the decomposition (up to renumbering)

becomes
d—1

d
f(x) = H Jr(zr) H Ci,i+1(Fi(xi)7Fi+1(x7;+1)). (4.9)
k=1 7

1

Lemma 4.4. Consider a density f of the form (4.8) or (4.9). If f; € H{([0,1],
Q), for alli=1,...,d, and all bivariate copula densities are in Hj°([0,1]%,Q),
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then, the function f can be written as a composition gaogiogo, with (dg, dy,ds) =
(d,2d,2d — 1), (to,t1,t2) = (1,2,2d — 1), (0, a1,02) = (7,7, (), where ( is
arbitrarily large.

If we assume that 4. = v = 3, then under the combined conditions of The-
orem 3.4 and Lemma 4.4, the proposed two-stage neural network estimator
achieves the convergence rate n =27/ (27+2)yp=27/d yp to log(n) factors. If d > 2,
this rate is faster than the nonparametric estimation rate n=27/Y+4 _ Further-
more when v = 7. > d/2—1, the rate equals n=27/(27+2) up to log(n)-factors. If
instead we assume that v, > 2y = 24, that is, the copulas have at least twice the
Holder smoothness of the marginals, then the rate becomes n =27/ (271 =27/d,
up to log(n)-factors.

4.2. Mixture distributions

If the true density is a mixture and all mixture components can be estimated by
a fast convergence rate, it should be possible to also estimate the true density
with a fast rate. An example are multi-view models [66, 4, 36, 73], that assume
a true density of the form

T d
fox) =Y a; [T finlzr),

j=1 k=

with non-negative mixture weights a1, ... a, summing up to one and univariate
densities fjr, 7=1,...,mk=1,...,d.

Below we assume more generally that the true density is a mixture density
of the form

fo=aifi+...+af. (4.10)

with densities f; in the compositional Holder space G(¢;,d;,t;, o, Q") defined
in (3.3). In particular, we allow the parameters g;, d; = (doj,...,dg;+1,5)
t; = (toy,---stq;5), and aj = (g5, ..., ;) to depend on j. Compositional
spaces are not closed under linear combinations and therefore there is no natural
embedding of f into the compositional spaces of the f;’s. As shown next, the
convergence rate for estimation of f still coincides with the maximum among
all convergence rates for estimation of individual mixture components f;. Set
af =i [Ty (e A1) and ¢} := max;—y,_, ¢n ;, where

iy
bpnj = max n it
1=0,...,q;

is the rate (3.4) for estimation of f;.

Theorem 4.5 (Convergence rates for mixture distributions). Consider the
density estimation model defined by (2.1)-(2.3) with density fo = >.._, ai fi,
where a1, ...a, are non-negative mixture weights summing up to one, and with
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fie Cg([(), 119,Q)NG(q;,dj, t, a;,Q), forallj =1,...,r. Let fn be a two-stage
neural network density estimator with kernel of order |B] as defined in Defini-
tion 3.3 for the neural network class F(L, (po, ... ,PL+1), S, F') with parameters
satisfying

(i) F > max{Q,1},

(ii) maxj—y, S0 Liatlii joo (48, 5V 4y ;) logy(n) < L < ne

=1 2aj ;+t;,; n’
(iii) ney < min—1 .. 1 pi,
(iv) s < ne log(n).
If n is large enough, then there exists a constant Cg, only depending on
(g, dj,t5,05)i_1, F, B, K and the implicit constants in (ii), (i), and (iv)
such that

R(Fus fo) < CoLmax (64 log*(n),n™ % ) + 62, (Fu. fo).

5. Simulations
5.1. Methods

In a numerical simulation study we compare the proposed two-stage neural net-
work density estimator (named SD for Split Data) as described in Definition 3.3
to two other methods. The FD (full data) method follows the same construc-
tion as the two-stage neural network estimator but uses for both steps the full
dataset without sample splitting. Thus, we have twice as many data for the
individual steps, but also incur additional dependence between the regression
variables as each of the constructed response variables Y; depends on the entire
dataset (instead of only on the kernel dataset and the corresponding X; from
the regression set). The neural network based methods are moreover compared
to a multivariate kernel density estimator (KDE).

As suggested by the theory, for the first step in the SD and FD method, the
bandwidths for the kernel density estimator are chosen of the form
c1(log(n)/n)*/4 and cy(log(2n)/(2n))"/?. For the KDE method, the bandwidth
is c3n~1/(28+d) The constants c1,Ca,c3 are determined based on the average
of the optimal bandwidths found by 50-fold cross-validation, taking as search
space the interval [0.05,1.1] with stepsize 0.005, on five independently gener-
ated datasets with sample size n = 200 from the true density. Taking n = 200
for the calibration is natural as it is the smallest sample size in the simulation
environment.

5.2. Densities

For the different simulation settings, we generate data from five densities. These
densities are called Naive Bayes mixing (NBm), Naive Bayes shifting (NBs),
Binary Tree mixing (BTm), Binary Tree shifting (BTs) and Copula (C).
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(a) Naive Bayes DAG (b) Binary tree DAG

Fig 3: DAG for the Naive Bayes network (a) and the Bayesian network with
binary tree structure (b).

5.2.1. NBm, NBs, BTm, BTs

The densities (NBm) and (NBs) are so-called Naive Bayes networks [41] with
DAGs displayed in Figure 3a and density factorization

f(z1,.. . ma) = fa(walry) ..o fo(@a]2r) fr(1). (5.1)

The densities (BTm) and (BTs) are Bayesian networks with DAGs displayed in
Figure 3b and density factorization

d

f@r,.owa) = fule) [ 15 (5leng-1)2). (5.2)

Jj=2

For the density f;, we use the exponential of a standard Brownian motion on
[0, 1], normalized such that f; integrates to one. We use two different types of
conditional densities. The mixing conditional density has mixture weights from
the conditioned variable,

fi(wjlws) = wihj(x;) + (1= 2)h (1 — z5), (5.3)

with h; a density supported on [0,1]. The shifting conditional density incorpo-
rates a shift determined by the conditioned variable,

filajlei) = hj(max{z; —x,;/4,0}), (5.4)

with h; a density supported on the interval [0,3/4], so that the support of
fj(+|z;) is ensured to lie in [0, 1].

For the densities (NBm) and (BTm) all conditional densities f;(-|-) in the
factorization are mixing densities (5.3). For the densities (NBs) and (BTs) the
conditional densities f;(:|-) in the factorization are shifting densities (5.4) if j is
divisible by 3 and mixing densities (5.3) otherwise.

It remains to choose the density h; in (5.3) and (5.4). We consider scenarios
containing both smooth and rough densities. For (NBm), (NBs), (BTm) and
(BTs) and all j such that j — 1 is not divisible by 3, we set

hj(z):<172x71

Ji0 <z <), (5.5)
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Viewed as functions on [0, 1], these densities have arbitrarily large Holder smooth-
ness. The densities take values between 1 — 1/d and 1 + 1/d ensuring that in
higher dimensions the joint densities, which are products, neither become ex-
tremely small or large.

For (NBm) and (BTm) and all j > 1 such that j —1 is divisible by 3, we take
as densities h; the exponential of the Brownian motion on [0, 1], normalized such
that h; integrates to one. Brownian motion has Holder smoothness 1/2 — n for
any 1 € (0,1/2), but is almost surely not 1/2-Hélder smooth [48]. This means
that these densities have low regularity.

For (NBs) and (BTs) and all j > 1 such that j — 1 is divisible by 3, we
take as densities h; the paths of the exponential of the Brownian motion on
[0,1] multiplied with the function = +— p(x) = max(0, (4x/3)(1 — 4x/3)) and
normalized such that h; integrates to one. Multiplication with p ensures that
the support of these densities is in [0, 3/4], as required in the definition (5.4).

The conditional densities f; defined in (5.3) and (5.4) can be interpreted as
compositional functions.

Lemma 5.1. Consider the mizing conditional density f; in (5.3). If h; €
H17([0,1],Q), then f; can be written as the composition g1 o go, with (do,d1) =
(2,3), (to,t1) = (1,3), and (ap, 1) = (74, C), with ¢ arbitrarily large.

Lemma 5.2. Consider the shifting conditional density f; in (5.4) If h; €
H17(10,3/4],Q), then f; can be written as g10go, with (do,dy) = (2,1), (to,t1) =
(27 ]-): (a07a1) = (177])

The (NBm), (NBs), (BTm) and (BTs) joint densities are thus compositions
where the components with low regularity are all univariate functions, making
the rate ¢, dimensionless. The factorization in (5.1) and the composition of
Lemma 4.1 combined with the composition in Lemma 5.1 shows this for the
(NBm) model. The factorization in (5.1) and the composition Lemma 4.1 com-
bined with the compositions in Lemma 5.1 and Lemma 5.2 show this for the
(NBs) model. The factorization in (5.2) and the composition of Lemma 4.1 com-
bined with Lemma 5.1 shows this for the (BTm) model and the factorization
in (5.2) and the composition of Lemma 4.1 combined with the compositions in
Lemma 5.1 and Lemma 5.2 show this for the (BTs) model.

5.2.2. Simulation setup for copula density model
For the copula model, the density (C) is associated to a D-vine copula of the
form (4.9), that is,

d—1

d
f(x) = H Jr(zr) H Cii+1 (Fi(ﬂ?i),Fi+1(CCi+1)). (5.6)
k=1 3

i—1

The bivariate copula densities c;;y; are chosen from the bivariate Farlie-
Gumbel-Morgenstern copula family

Ciit1 (F5(2), Fipa(zig1)) = 1+ 0;(1 — 2F5(x;)) (1 — 2F;11(zi41)),
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with parameter 6; := —1+2(i — 1)/(d — 2), if =1 +2(: —1)/(d — 2) # 0 and
0; := 1/100 otherwise. As shown in Section 4.1, these copula densities have
arbitrarily large Holder smoothness. The marginal densities fj are displayed in
Figure 4. The smoothness of this density is determined by the square root, which

I+45 -3/ 2 ifo<z<i
I+ -2 /a-1 ifl<acl
fk;(-l’): 1 1 3 e 1 3
l—ggt+gy/1—2 H3<5z<y

1 1 3 e 3
l-—g5g+gVe— 1 if s <z<1.

L L L L
0 0.2 0.4 0.6 0.8 1

Fig 4: Marginal density fi(z) in the simulated copula model. The right panel
shows the graph of the density for d = 2.

has Holder smoothness 1/2. The right panel of Figure 4 displays the graph for
d = 2. This marginal density is appealing as it has a closed-form expression
for the density and the c.d.f. The dependency on d of the marginals ensures
that the marginal densities remain between 1 — 1/d and 1 + 1/d in order to
prevent numerical instability. Since the Farlie-Gumbel-Morgenstern copula is
infinitely smooth, we get from Lemma 4.4 that the effective smoothness of the
joint density generated from this vine-copula approach is equal to 1/2 and thus
the rate ¢,, in Theorem 3.4 becomes n~'/2, up to log(n)-factors.

5.3. Neural network training setup

For both the SD and FD method, we train neural networks with width vec-
tor p = (d,[(2n)Y?],[(2n)"/2],...,[(2n)/?],1) and depth L = [log,(2n)].
Since the derived convergence rate of the two-stage neural network estimator
is ¢, = n" ~Y2 for any 1’ € (0,1/2), in the (NBm), (NBs), (BTm) and (BTs)
settings, and ¢,, = n~/2 in the (C) setting, this choice of the network width
satisfies the bound in Theorem 3.4. The chosen depth is of the order log(n) sug-
gested by the theory, but there might be a mismatch regarding the constants
in the lower bound of Condition (ii) in Theorem 3.4. Since the proof of this
result does not optimize the constants, we find it more appealing to work with
the generic choice L = [log,(2n)] in the simulations. Furthermore, Theorem 3.4
imposes a sparsity condition on the networks as well as a condition on the max-
imum norm of the parameters. In the simulation study we use {s-penalization
on the weight matrices and the Glorot uniform initialization [28] to ensure that
the parameter values do not become too large. Although these methods do not
provide a hard guarantee that the condition on the maximum norm is satisfied,
they work reasonably well in practice and the number of learned network pa-
rameters exceeding in absolute value one is small compared to the total number
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Fig 5: Test errors for the naive Bayes model. SD in blue, FD in red, KDE black
bars. The test error of the network with the lowest training error is indicated
by the filled square. The black dashed line is the test error of the zero function.
Notice that in the individual plots, the y-axis has different starting points.

of network parameters. We use pruning (using the TensorFlow model optimiza-
tion package) to enforce sparsity. The fraction of zero network parameters is
chosen as 1 — 2mlog(m)e., /p, with p the total number of network parameters
and m = 2n for the FD method and m = n for the SD method.

The source code is available on GitHub [12].

5.4. Simulation results

For each of the five densities described in Section 5.2, we generate four training
samples, with respective sample sizes 200, 1000, 5000, 25000. For both the SD
and FD method, 50 neural networks are trained with different random initial-
ization on each training sample. Repeating the network fit on the same sample
highlights the variation of test performance with respect to the initialization
and the achieved training loss. We compare the performance of all the methods
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Fig 6: Test errors for the Bayesian network model. SD in blue, FD in red,
KDE black bars. The test error of the network with the lowest training error is
indicated by the filled square. The black dashed line is the test error of the zero
function. Notice that in the individual plots, the y-axis has different starting
points.

on 108 test samples that are always drawn from the same distribution as the
training samples. This sample is only used for computing the test error and
none of the methods has access to the test samples during training. Figures 5-7
report the test errors for the five different settings.

For the smaller sample sizes, the neural network fit is sometimes the zero
function. These reconstructions generate the circles on top of the dashed lines in
the plots. The theory claims that among the sparsely connected neural networks
that satisfy all the imposed conditions, the one with small training error should
perform particularly well. To see whether there is an effect, we mark for every
simulation setting the test error of the network with the smallest training error
by a filled square. The simulations show that for the FD method, this network
fit is often near the first quartile in the box plots and thus indeed performs
particularly well among the different random initializations.
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Fig 7: Test errors for the Copula model. SD in blue, FD in red, KDE black bars.
The test error of the network with the lowest training error is indicated by the
filled square. The black dashed line is the test error of the zero function. Notice
that in the individual plots, the y-axis has different starting points.

To further investigate the relation between training error and test error, we
plot for the (NBs) model in dimension four (Figure 8) and twelve (Figure 9)
the training error versus the test error of all networks, for both the SD and
FD method and for each of the four considered sample sizes. The linear line
displaying the least squares regression fit has positive slope, except for the SD
method with sample size 1000 (in both dimensions four and twelve). While
fitting a line might not be fully justified given the outliers and the parabola-
shaped data, there seems indeed to be a connection between lower training error
and improved generalization (lower test error). Interestingly, there are also a few
fits with large training error and small test error.

Let us now compare the network fits with the smallest training error (indi-
cated by a blue or red square in Figures 5-7) to the kernel density estimator. To
estimate the joint density depending on four variables, the neural network fits
based on the FD method with the lowest training error seem to perform best
for all sample sizes. For density estimation on [0,1]*2, the picture is less clear
as there are sample sizes for which the KDE method achieves a comparable or
even better test error. The test error of the SD method is consistently higher.
In dimension 4, it decreases, however, faster than the test errors of the FD
and KDE method. Based on the comparison, we do advise to use the two-step
method without data splitting and to pick the reconstruction with the smallest
training loss based on different random initializations.

While the idea to transform an unsupervised learning problem into a super-
vised learning problem and using supervised learning methods is appealing, we
feel that considerable future effort is required to transform this into stable and
efficient algorithms.
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6. Related literature

A more direct method for nonparametric density estimation is to use a class
of candidate densities F and estimate the density by a maximizer of the log-

likelihood

arg max
feF

1=

log f(X.),
1
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which is equivalent to minimizing the negative log-likelihood or cross-entropy

argmin — log f(X;).
gmin =3 log /(X

In principle, F could be a class of neural networks that is normalized or con-
strained to yield (approximately) probability density functions. For general
classes F, nonparametric maximum likelihood estimators have been analyzed in
the literature [71]. A major drawback of this approach is the instability in low-
density regions that is caused by the divergence of the logarithm lim, ¢ log(z).
For this reason, all convergence rate results that we are aware of require that the
densities are bounded away from zero. This is rather restrictive as for machine
learning applications, one often expects large low- or even zero-density regions.
Note that the derived convergence guarantees for the proposed two-step non-
parametric density estimator do not require the true density to be bounded
away from zero.

Methods based on augmenting data via data generated response variables
have been explored in various areas in statistics: [37, 43] construct pseudo-
outcomes to estimate treatment effects in causal models; [17, 75] use non-
parametric methods for imputation of missing data; and [76] deploys pseudo-
outcomes for model selection under covariate shift. Relating generative Al to
density estimation [54], diffusion models [67, 68] transform the density estima-
tion problem into nonparametric regression of the score functions for different
levels of injected noise in the sample.

Our method is inspired by previous work on asymptotic equivalence that links
the (unsupervised) nonparametric density estimation problem to a (supervised)
regression-type model. More precisely, it is shown that if the univariate densi-
ties f are defined on [0,1], are more than 1/2-smooth and are bounded away
from zero, then, the statistical model converges in the Le Cam distance to the
statistical problem, where we want to recover f by observing (Y);c[o,1) with

dY, = 2\/f(t)dt + n~Y2dW,, for all t € [0,1], (6.1)

and W is a Brownian motion. On a high level, convergence in Le Cam distance
means that the asymptotic statistical properties are in both models the same.
Model (6.1) behaves similarly as observing n i.i.d. pairs (U;, ;) with U; uniform
on [0,1] and Y; = 24/ f(U;) + ¢; for independent noise variables ¢; ~ N (0, 1).
This establishes the possibility to transfer nonparametric density estimation into
a regression model without losing information regarding asymptotic results.
While the original proof for the asymptotic equivalence statement was non-
constructive [53], follow-up work [14, 58] has identified a transformation map-
ping the observations in the nonparametric density model to the process (Y;):e[o,1]
satisfying (6.1). The two key steps in the construction are a Poissonization step,
mapping the density estimation problem with n observations to density estima-
tion with M ~ Poisson(n) observations, followed by a step that constructs the
response variables (Y;);e0,1] via a Haar wavelet decomposition and a quantile
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coupling argument. While the asymptotic equivalence literature motivates our
two-step density estimation method and its analysis, there are still many dif-
ferences as asymptotic equivalence focuses on bounding the Le Cam distance,
whereas we are proposing a specific method to use supervised deep learning for
nonparametric density estimation.

The proposed two-step procedure is moreover related to Lindsey’s method
which transforms parametric estimation in exponential families into a Poisson
regression problem [45, 46, 25]. The first step of this method discretizes the
sample space into disjoint bins. The bin counts follow a multinomial distribu-
tion that is then approximated by the Poisson distribution. Assuming Poisson
distributed bin counts, maximum likelihood estimation of the parameters re-
sults then in a Poisson regression problem. A benefit of Lindsey’s transforma-
tion is that the normalization constant of the exponential family vanishes. This
constant is an integral over the entire domain and hard to compute in high di-
mensions [49, 27]. While Lindsey’s method returns one observation per bin and
has been formulated for exponential families, the proposed method in this work
focuses on nonparametric densities and artificially creates a supervised dataset
by computing a response vector for each of the datapoints. Approximation of
the bin counts by the Poisson distribution occurs in our approach in the proof.

While finalizing the article, we became aware of the similar two-step den-
sity estimation method [33] proposed in the pattern recognition literature. For
the first step, the authors use the band limited maximum likelihood density
estimator proposed in [2]. However, this article provides no theory.

Beyond the mentioned connections to asymptotic equivalence, Lindsey’s
method, and [33], we are unaware of any other density estimation method that is
similar to ours. It is important to emphasize that the success of such a two-step
procedure relies on a regression method that achieves faster rates than direct
density estimation. While this is the case here, for more traditional function
spaces, direct density estimation can be shown to be already rate optimal.

7. Proofs for Section 3

Lemma 7.1. Ifn > 1, then there exists a h,, such that (log(n)/n)*/? < h, <
2(log(n)/n)Y/? and h;;' is a positive integer.

Proof. For all x > 0, we have x < 14+ x < ¢ and thus logn/n < 1 as well as
0 < uy := 2(logn/n)*/® < 2 for all n > 1. For all y > 0, one can find an integer
r such that y/2 < 2" <y. If y < 2, we must have r < 0. Thus, there exists an
integer s < 0 such that u,/2 < 2% < u,. Set h,, = 2°. Since s < 0, we must have
h,t = 27% which is an integer. O

7.1. Proof of Theorem 3.1

The response variables Y; in the regression model (2.3) are identically dis-
tributed, but they are not jointly independent as they all depend through the
kernel density estimator on the subsample (X})}_;.
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To deal with the dependence induced by the kernel density estimator, we par-
tition the hypercube [0, 1]¢ into h,, ¢ hypercubes with sidelength h,,. By construc-
tion ! is an integer and therefore no boundary issues arise. The centers of these
h.¢ hypercubes are given by the vectors h,(k; —1/2,ko —1/2,... kg—1/2)7 €
[0,1]¢ with ki, ks,...,kq € {1,...,h-'}. By numbering these points (the spe-
cific numbering of the points is irrelevant), we assign to each center an index in
J :={1,...,h;%}. The j-th bin B; is then the | - |-norm ball of radius h,/2
around the j-th center C'(B;) in this index set. To avoid that boundary points
are in two bins, we include a boundary point only if is not already included in a
bin with smaller index in the ordering induced by J. This construction gives a
partition of [0, 1]%. As each bin is a hypercube with sidelength h,,, the Lebesgue
measure is h¢ (in R?). The neighborhood of a bin B;, denoted by NB(B;), is
the union of all bins whose centers are at most | - |o-distance h,, away from the
center of Bj, in other words,

NB(B;) = U By (7.1)
:|C(B) = C(Be)| oo <han

In two dimensions this neighborhood is also known as the Moore neighborhood.
Up to boundary effects, NB(B;) is a | - |so-ball with radius $h,,,

{x €0,1] : |x — C(B))| < ghn} C NB(B))
- {x € 0,1 : |x—C(By)| < ghn}

We further subdivide the bins into equivalence classes. For all sufficiently large
n, h, < 1/3 and the hypercube [0,3h,]¢ contains exactly 3¢ bins. Denote by

(js)i’il the indices of these bins and define the index set J; C J by

Gimfre g CEI=CE

Suppose there exists j € J; N Jo for s # s'. Then, it follow that (C(B;,,) —
C(B;.))/(3hy,) € Z%. This is impossible since C(B;,) € (0,3h,)? for all s.
Therefore, the sets Js; must be mutually disjoint. On the other hand, for ev-
ery center C(By), there exists a center C(B;,) in (0,3h,,)¢ such that (C(B) —
C(B;.))/(3hy) € Z¢. Hence, J, Js = J.

Fixa j € J. Since the kernel K in the kernel density estimator has bandwidth
h., and support contained in [—1, 1], the point estimator fxpr(x) only depends
on the data points from the kernel data set (X})}_, that are in NB(B;).

More generally, for two different indices j,; €Jsy JF# 3 and points x; € Bj,
Xy € 5’3, the point estimators fKDE(xl) and fKDE(Xg) depend on {Xj : X, €
NB(B;),t = 1,...,n} and {X} : Xj € NB(B;),{ = 1,...,n}, respectively.
The latter two sets are dependent if n is fixed (knowing that a data point is
in one of the bins means that there can be at most n — 1 in any of the other
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bins). If we instead assume that the sample size of the data set (X})}_; is
not n but M with M ~ Poisson(n), then {X} : X}, € A,4 =1,...,M} and
{X}:X}, e B,t=1,..., M} are independent, whenever A and B are disjoint
sets. This will formally be shown in the proof of Lemma 7.2. Using Poisson
point process theory, we also show in the proof of Lemma 7.2 that fxpr(x1)
and fKDE(Xg) are independent.

Proving oracle inequalities for the risk R(f, fo) = Efo,x[(f(X) — fo(X))?]
in the standard i.i.d. setting typically first derives an oracle inequality for the
empirical risk R, (f, fo) as

n
RulF, o) =By | =30 (FOX0) — 1o(X0)’
i=1

~

Here empirical refers to the fact that the estimator f is evaluated at the data
points Xy, ..., X,. The derivation of an oracle inequality for the empirical risk
can be further subdivided into several steps. The bound below refers to the step
where our setting and the i.i.d. case differ the most. The proof (presented in
Section 10) relies heavily on the construction of the bins above combined with
Poissonization. Recall that ; = Y; — f(X;).

Lemma 7.2. Consider the framework of Theorem 3.1. For any fized f € F and
any n € N,§ > 0 satisfying log®(n) log(n V Nz(8)) < n,

ik gexﬂxz«) - 5x)|

< 2961462 | K |24 F33%

(VARG gy 10t
46 F227| K |9 E X) - f(X)?  Ra(f,
n

With this lemma in place, we can prove in Section 10 the following bound on
the empirical risk. This is similar to step (III) in the oracle inequality of Lemma
4 in [61].
Proposition 7.3. Consider the framework of Theorem 3.1. For any fived f € F
and any n € N,§ > 0 satisfying log?(n)log(n vV Nx(d)) < n,

Ro(F, fo) < 621638¢ || K| 24 F33%

log(n v Nx(3)) 5)

n

+ %O]EX [(f(X) — fo(X))?] + gAn(ﬁ fo)
+ 2d+63862HKHggF3377d log(n)w

124F227 K ||
1 LA Kl + 22020 F2d°P| K ||
n

1 1)
+ 419268 K24 537 1og? (n) og(n \/an( ))
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We now have all ingredients to finish the proof of Theorem 3.1.

Proof of Theorem 3.1. If log®(n) log(n VN~ (6)) > n, the statement follows with
C) = 4F? by observing that R(f, fo) < 4F2.
It remains to consider the case log®(n)log(n V Nx(6)) < n. The proof of

Lemma 4, Part (I) in [61] states that for any € € (0, 1],

(1—€)Ru(f, fo) — Z—: <1510g (N=(8)) + 75) — 260 F

< R(f. fo) < (1+e¢) (mf, fo)+ 1+ e)i—j(ulogwf(a)) + 70) + 265F>.

(7.2)

This lemma, derived for the standard nonparametric regression problem, relates

the risk to its empirical counterpart. The inequality and its proof only depend

on the X; and on the function class F, not on the noise or the response variables

Y;. Since in our regression model (2.3) the variables X; are i.i.d. (the dependence
is induced by the response variables Y; and ¢;), this inequality is still valid.

Substituting the bound on En(f, fo) from Proposition 7.3 in (7.2), choosing

e =1and f as a minimizer over F of Ex [(f(X) — fo(X))?], using the fact that

h, < 2(log(n)/n)'/¢, and replacing the explicit constants by Cy,Cs, Cs3 yields

the result. O

7.2. Proof of Theorem 3.4

The following lemma provides a bound on the covering entropy.

Lemma 7.4 (Lemma 5 combined with Remark 1 of [61]). For any § > 0
108 (Mk(1.pus.oe)(8)) < (5 + 1) log (224367 (L + 1)pip? 15)

The proof of Theorem 1 in [61] (see [62] for the precise statement) derives
the following bound for the approximation error for function approximation in
the function class G(q,d, t, a, Q") by sparsely connected deep ReLU networks.

Theorem 7.5. For every function g € G(q,d, t,a,Q’) and whenever

(1) 3201 st logy(4ti V dav) logy(n) < L S néby,

(i1) nén Smin,—1 1 p;,

(iii) s =< neoy, log(n),

(iv) F > max{Q', 1},
then there exists a neural network H € F(L,p,s, F) and a constant Cs only
depending on q,d,t,a, F' and the implicit constants in (i), (ii) and (iii), such
that

lg = H|% < Csou.

We now have all the necessary ingredients to prove Theorem 3.4
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Proof of Theorem 3.4. We apply the general oracle inequality in Theorem 3.1
with the choice § = n~! to the neural network class (L, p, s, F') with parameter
constraints as in the statement of the theorem. For the approximation error in
the oracle inequality, we use Theorem 7.5. For the covering entropy, the bound
from Lemma 7.4 gives log (RVNE(L p s.00)(2)) S (s+1)Llog(n) < nLé, log®(n).
Since L > log(n), we have (log(n)/n)?#/® < L(n=2f/d v n=1). As ¢, > n~ !,
Loy, log*(n) + (log(n)/n)?$/4 < Lmax (¢, log*(n), n=2#/4). Thus, Theorem 3.1
yields

2 1 d
R(F o) < 0 B8OV Mo wpecG)) 5. (1"%"))
68 (fas o) + 7 __inf B [(/(X) = fo(X))?]

< Cy4Lmax <¢n 10g4(n)a n7¥) + 6An(ﬁlv fO)a

for a sufficiently large constant Cy, only depending on ¢,d, «, t, F, 3, K and the
implicit constants in (ii), (iii), and (iv). This completes the proof. O

8. Proofs for Section 4

Lemma 8.1. Let m < m’ be positive integers and Q > 0. Then f : [-Q, Q)™ —
R with f(x) :=[]i", z; is in H),([—Q, Q)™ ,(Q + 1)™), for all v > m + 1.

Proof. To compute the Holder norm, it is sufficient to consider the function g :
[-Q,Q]™ — R with g(z1,...,2m) = [[/~, z;. Observe that |0°g(x)| = |g(x)| <
Q™, 0z;9(x) = HZZM;&]‘ x; and 0;,0,,9 = 0, for i = 1,...,m. This means that
for all & € ZZ, it holds that 0% = 0 if a; > 2 for some j € {1,...,m}.
Rephrased, 0%g # 0 if and only if a € {0,1}™. Furthermore for o € {0,1}™,
10%9(x)| = [[I;.0,—0 %l < Qm~lelo where | - |o denotes the counting norm.
There are (ijalo) ways to distribute m — |a|g zeros over a vector of length m.
Hence for v > m + 1, we get by the binomial theorem

fe" - m k __ m
L g||oo<l§(k)@ — Q1"

ool <y

If |a|y > m, then there exists at least one j such that «; > 2 implying that
0%g = 0 in this case. In the case that |a|; = m, then either there exists a j
such that o; > 2, so 0%g = 0, or « is the vector with only ones, in which case
0%g = 1. Hence, v > m + 1 yields

sup 0%9(x) —0%9(y)| _

alali=|v] x,yE[-Q,Q]™, x#y |X - y|Zoi ]

Together with the definition of the Hélder ball in (3.1), the statement follows.
O
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Proof of Lemma 4.1. The function go = (go,1,---,90,1r|) is given by go.r = ¢r
for all I € R. From ¢; € H) ([0,1]"7,Q) with r; < r and |I| < r, it fol-
lows that tg = 7 and ag = 7. The function g1(u1,...,ug|) = lell u; is
the product of |R| different factors in [—Q,Q]. Applying Lemma 8.1 yields
g1 € anl([—Q7Q]|R‘7(Q + IR for all ¢ > |R| 4+ 1. So t; = |R| and «; is
arbitrarily large. O

Proof of Lemma 4.2. Since f is a-Holder smooth, there exists a constant @) such
that f € H5(]0,1]4,Q). Thus for any k =0,1,...,|a],

ok k

160 = ([1560 ) 19, (s.1)
J i#]

Since [[;.; fi is a density on [0, 1]971, it is nonnegative and C := [Ligj 1 filloe >

0, with || - || the supremum norm on [0, 1]¢. Since f; only depends on z; and

f is a-Holder smooth, for any £k =0,1,..., |a],

0.0 o (M) Bl o) o]
c—C (z1,...,24)€[0,1]¢ 11;! ) J ( J) C J oo J 0o
(8.2)
Similarly, by the a-Holder smoothness of f and (8.1),
Lo L)
9.1 2210 - 255119)
c - cC sup a—|a
C 7 C xyeoadxzy |x — ¥|oo Lo (8.3)
(Le)) (La])
Ol 5@ -5 0)
N c 2,y€[0,1],a%y |z — y|o— Lo
From (8.2) and (8.3), it follows that f; € H{([0,1], (lo] +1)Q/C). O

Proof of Lemma 4.3. For the compositional sparse classes defined in (3.3), we
also interpret g;; as a function [a;, b;|" — [a;41,bi41] if ¢;; depends on t; vari-
ables.

The function go = (go,1,- - -, 9g0,24) is given by goi(x;) = fi(x:)/|| filleo for i =
1,...,dand go,i(zi—q) = Fi—a(®i_q) for i = d+1,...,2d. Each of these functions
is univariate, so tg = 1. Since F;_g4 is the c.d.f. of f;_g4, it holds that F;_4 €
H°T1([0,1],Q 4 1). Thus, g = 7o. The function g3 = (91,15---,91,a+1) is the
identity function g1,;(y;) = y; for i = 1,...,d and g1,44+1(v) = c(Vat1, .- -, V24),
sot; =d.Fori=1,...,d, the domain of gy ; is [0, 1], s0 g1 ; € H] ([0, 1], 2), for all
7 > 2. Moreover, by assumption, g1 4+1 € H)°([0,1]%, Q.). This means that the
Holder smoothness of g; ; can be chosen to be arbitrarily large and consequently
91,d+1 has the smallest Holder smoothness among the component functions of g;.
Thus, a; = 7. Set Q' := Q. V 1, then ga(u, y1, -, ya) = ([T0_y I filloo)u T, vi
is the product of d + 1 different factors in [—Q’,Q']¢*!. Applying Lemma 8.1
yields g € Hy,, ([-Q', Q1" QUQ" + 1)%+!) for all vy > d + 2. So, ty =d +1
and the smoothness index as can be taken to be arbitrarily large. O
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Proof of Lemma 4.4. The function go = (go.1,.--,90,24) is given by go;(z;) =
fl(xz)/Hszoo for ¢ = 1, e 7d and goﬂ(:ci_d) = Fi—d(xi—d) fori=d + 17 ey 2d.
Recall that f; € H]([0,1],Q), foralli =1,...,d. Since F;_g4 is the c.d.f. of f;_q4,
it holds that F;_g € H7T1([0,1],Q +1). So to = 1 and ag = 7.

The function g1 = (91,1, -+, 91,d+(a—1)) satisfies g1 ;(u;) = u; (the identity
function) for i = 1,...,d. For f of the form (4.8) it holds that g1 ;(vg+1, wit1) =
c1,it+1-d(Udt1,Uit1) for i =d+1,...,d+ (d—1) and for f of the form (4.9) we
have that g1 ;(wi, wit1) = Ci—dit1—da(ts, uip1) for i =d+1,...,d+ (d —1). For
i =1,...,d, we can define g1 ; on [0,1]. Since ¢1; is in this case the identity,
treating the cases 0 < 8 < 1 and § > 1 separately, we find g1 ; € ’Hf([O, 1],3),
for all 3 > 0. By definition all bivariate copula densities are in Hj°([0, 1]%, Q).
This means that t; = 2 and a1 = ..

To realize the function

d

d
92U, ua, Y1, - Yd—1) = ( ||fi||oc> Huk
1 k=1

i=

11

d—1
j=1

we need to multiply 2d — 1 inputs. Now, go can be defined on [0,Q V 1]2¢—1.

Invoking Lemma 8.1 and H?Zl [ fillo < Q% it holds that go € HS, ,([0,Q V
12471 (Q +1)39=1) for all ¢ > 2d, so ty = 2d — 1 and a is arbitrarily large. [

8.1. Proof of Theorem 4.5

We work in the density estimation model as defined in Section 2 with mixture
density fo = 25:1 a;f;, where aq,...a, are non-negative mixture weights sum-

ming up to one, and densities f; € ng ([0,1]%,Q)NG(g;,d;, t;, j, Q), for all j =

* L qj . L X .
L...,7r,. Recall that of ; := a; ; [[,2; (o A1), and ¢}, := maxj—1,__ .+ ¢nj,
where
2af
_ i,
$n,j = max n it
1=0,...,q;

Lemma 8.2 (Approximation of mixtures). Whenever

(i) maxj_,..r iy gui it loga (4t V day j) logy(n) < L S neb,

(i) ngy, < min—1, . 1 pi,

(iii) s < ngy log(n),

(iv) F > max{Q,1},
then, for n large enough, there exists a network H € F(L,p, s, F) and a constant
C only depending on (g;,d;,t;,c;)_1, r, F' and the implicit constants in (i),
(i) and (iii) such that

2
< Coy,.

> aifi—H
j=1

Proof. For positive constants cr, ¢p, Csr, Cou, let L*, p
s* be such that

oo

*

= (p§,--+>PLv41), and
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(1) maxjoy» I g Tt logy (4t 5 V day ) logy(n) < L* < epndd,
(i") ngy, < cpmini=y, 1+ pj
(iii’") cseng} log(n) < s* < cgynel log(n).
For n large enough (depending on cr, ¢y, cse, (g5, 5, @)y, r), we have
(D) cngy, < (cse/(2r))ng], log(n),
(II) negy, > rep,
(1) |cnngn,;] >S9, % log, (4t; ; V 4a; ;) logy(n), forall j =1,...,7,
(IV) (cse/(4r))nepy, ;log(n) > 1, forall j=1,...,r.
For j =1,...,r define L; := min{L*, |cpnén ;] }, pi;j == [p;/r] (for 1 <i <
L;), and s; = [s"¢n ;/(2r¢r)]. Recall that ¢} = max;—i ., ¢, ;. Using the
definition of L; and (III) yields

> ;”g logy(4ti,; V daii ;) logy(n) < Lj < cpnen,;.
o 1.
=1 2y »

Using (ii’), (II), and the definitions of ¢} and p;, we get that

ndn,;j < ngp < 2¢pr i_rlninL_[pf/rJ = 2¢,T i_{ninvaiﬁj.
=Lyl =1y Ly

From (IV), v < 2v — 1 for all v > 1, the definition s; = |s*¢,, ;/(2r¢}) ], (iil’),
and |u] > u —1 for all u € R, it follows that

Z—S:ngbn’j log(n) < ;—S:n(bn’j log(n) —1 <s; < C;—:nQSnJ log(n).
This means that for j = 1,...,r, the class F(L;,pj,s;, F') and the function
fi € Cg([O, 114,Q) N G(gj,d;, t;,a;,Q) satisfy the conditions of Theorem 7.5.
Applying Theorem 7.5 gives us that for each j = 1...,r there exist a network
Hj € f(Lj,pj,Sj,F) such that Hfj — HJ”?)O < Cg’j(bn,j. Since Q. is in [07 1],
multiplying the last weight matrix of H; with a; yields a network a;H; in the
same network class as H; such that ||a;f; — a;H;||% < Cs jbn ;-

Whenever L; < L*, we can synchronize the depth by adding additional layers
with 1 x 1 weight matrices and weight parameters = 1, such that

ajJ(Hj):a(ajHj)Ef(L*7(pj, ].,...,]. ),Sj—f—(L*—Lj),F).
(L*—Lj) times

Since f; is a density, f; > 0 and ||a;o(H;) — filloo < |la;H; — fjlloo. We write
p; := (p;,1,...,1). Placing all these networks in parallel yields a network

T

HeF(L", S B (o (L L;)).F),
j=1

j=1



A supervised deep learning method for nonparametric density estimation 5635

such that
2 2

r

T
doaifi—H| < | llajf; — aiHjlls
=1 o=
2

‘s
2
< E VCsion; | < jgaxrcs,jfﬁn,j-
j=1

.....

A network with width p and sparsity s can always be embedded in a larger
network of the same depth with width p > p (inequalities between vectors
should always be understood as componentwise inequalities) and network spar-
sity 5 > s. Thus it remains to show that >7_, p; < p* and Y7, (s; + (L* —
L;)) < s*. First consider the width. Using the definitions of p; ; and p;, we get
fori=1,...,L* that 22:1 Dij <rmaxj—1, . ,pi; < rmax{p}/r,1}. From (II)
and (ii’), we get that pf/r > 1. Hence, Z;Zl p; < p*. Now consider the sparsity.
By the definition of s; it holds that s; < s*/(2r). From (i’) and (I), we get that

L* <s*/(2r). Hence, 37 (s;+ (L* — Lj)) < 375 (55 + L*) < s*. O

Proof of Theorem 4.5. The derivative of a sum is the sum of the derivatives.
Furthermore (a1, ...,a,) are non-negative mixture weights that sum op to one.
Since f; € Cg([O, 1]4,Q) for j = 1,...,r, this means that also fy € Cg([O, 114, Q).
The statement of the theorem now follows from taking 6 = 1/n and the network
class F(L,p, s, F') as the function class in Theorem 3.1. For the approximation
error in the oracle inequality, we use Lemma 8.2 and for the covering entropy
the bound from Lemma 7.4. Arguing similarly as in the proof of Theorem 3.4,
this yields the result. O

9. Proofs for Section 5

Proof of Lemma 5.1. To represent f;(x;|z;) = z;ihj(z;) + (1 — x;)h;(1 — ;)
as a composition g; o go, choose go(zs,2;) = (24, hj(x;),h;(1 — z;)). Clearly
to = 1. Since [0,1] 3 z; — =; lies in H]([0,1],2), for all v > 0, we get that
ap = ;. The function ¢, is given by g1(zi,y1,y2) = iy1 + (1 — z;)y2, so
t1 = 3. The partial derivatives are 0,91 = y1 — Y2, Oy, g1 = Zs, Oy g1 = 1 — 23,
0:,0y,91 = 1 and 0;,0y,91 = —1. All other partial derivatives of g; vanish. Thus
g1 € H3([0,1] x [-Q,Q]?,4(Q + 1)), for all ¥ > 3, so  is arbitrarily large. [

Proof of Lemma 5.2. To represent f;(x;|x;) = hj(max{z; —z;/4,0}) as a com-
position g1 o go, choose go(x;,x;) = max{0,x; — z;/4}. The derivative of this
function is discontinuous along the line z; —x;/4 = 0. Observe that | max(0,a)—
max(0,a + b)| < ||, for all real numbers a,b. Hence

lgo(2, 2:) — go(w; + u, 2 +v)| < |u —v/4] < §
max(|ul, |v]) ~ max(|ul, jv]) T 4

Thus go € H4([0,1]2,9/4), so ap = 1. The function g; is given by g1 (y) = h;(y),
thus 1 = 1 and a; = ;. O
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10. Proofs for Section 7

Proof of Lemma 7.2. The random variable ¢; = fKDE(Xi) — fo(X;) is not cen-
tered. The first step adds and subtracts Ey [e;|X;] to get the centered random
variable €; — Ey [;/X;] instead. Together with the triangle inequality, this gives

Ef,

23 ek - f(xm] ’
=1

< [Ex [% S (e~ Bayledl X (FX) - fo<xi>>] |

n 10.1
+1Es, %Z(Ei — Ef, & X)) (fo(Xs) — f(Xi))] ‘ 1oy
+[Ep | 23 Ep X (FX) - f<xl->>] |

i=1

= (I) + (IT) + (II).

By the tower rule, we can in (/1) first condition the expectation on X;. Now
(IT) = 0 follows from

Ego | (ei = Egy [2:]X0]) (fo(X) = £(X0)) [Xi]

= (Ey, [&:lXi] — By, [6/X0]) (£o(X) = £(X3)) = 0.
For real numbers a;,b;, we have (|a;| — [b;|/2)? > 0 and therefore |a;b;| <
a? + b?/4 as well as Y, |a;b;| < >, a? + 13, b?. Bringing first the absolute
value inside the expectation and applying this inequality twice, once to the
sequences (2Ey, [e;|X;]/v/n)i and ((f(X;) — fo(X;))/v/n); and once to the se-
quences (2Ey, [e;|Xi]/v/n)i and ((fo(Xi) — f(X4))/v/n)i yields

Ey, [% > B[l Xi(F(Xi) - f(x»)]
i=1

Q)

E, lz 2Ky, %Xd (f(Xz‘)\;ﬁfo(Xz‘))]

n

S~ 2ERlElXi] (foX) f<Xi))]

VAT Vn

+ i]Efo l% Z (fo(Xi) = f(Xi))Q]
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where for (i) we added and subtracted the same term and (i7) follows from the
definition of R, (f, fo) and the fact that the X; are i.i.d., Proposition 10.1 gives
Ey,[(E, [e1]X1])?] < h2F2d*P||K|[3* and so

Ex[(fo(X) = f(X)*] . Ru(f. fo)

(I1T) < 8h2PF2d?°| K|)?¢ + T + = (10.2)

=)

It remains to bound

(1) =

Ef, [i Z(&: — By, e X)) (F(Xi) - fO(Xi))] |

in (10.1). Let us briefly outline the main ideas. A standard strategy to do this
is to use that f € F and bound

n
D (e = Ep il X)) (f (Xi) = fo(Xa))
i=1
The remaining step is then to get the supremum sup ;¢ out of the expectation.
This is the central problem in empirical process theory. Standard empirical
process techniques consider a covering of F. On each of the balls in the covering
the expectation does not change much, such that one can replace the supremum
by a maximum over the centers of the covering balls plus some remainder terms.
To control the expectation of the maximum over the centers of the balls from
the covering, one can now apply the union bound together with concentration
bounds. While we will follow these steps, there are various technical challenges
that occur because of the dependence in the data.
The covering number of F with supremum norm balls of radius § > 0 has
been called Nx(9). If Nz(§) < n, then one can add some balls with centers in
F to the covering, to obtain a (not necessarily optimal) covering with

N:TLVN]:((S)

balls. By assumption, the N centers fi,..., fy liein F. Choose k* € {1,...,N}
such that

Hf_fk* 00 :lg}lgnNHf_f@Hoo

In particular, £* is random. Define (IV') := |Ey, [% Yo (Ei—Ep &1 Xa]) (frer (X5)
—fo(X;))]|- This gives us that

Ery |2 (e — Byleil X (FX0) - fo(Xz‘))] ‘
< [Bpy |23 (e~ Ep alX(FOX0) — i (X)) ||+ (V)
i=1 (10.3)

(i) 20
< Ep, lg > e = EpleilXi]|| + (IV)

i=1

(i1)
< 45| K||4.2¢F + (IV)
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where for (i) we used the property of the § cover and the triangle inequality,
and for (#4) we used Proposition 10.2.

In the next step we split the term (V) into two parts, to separate the case
were the X; used for the regression are distributed ‘nicely’ (the event A below)
from the case, were we have an extreme concentration of data points X; (the
event A¢). The (bad) second case can be shown to have small probability. For
the derivation, we use the bins B; as defined in Section 7.

Define the set A; as A; := {d 7| Iix,en,} < 273 Flog(n)} and the set A
as the intersection

A= () 4;. (10.4)
jeJ
The two-stage nonparametric density estimator chooses a bandwidth h, <

2(log(n)/n)/?. This is equivalent to 2¢log(n) > nh?. Together with the union
bound, it follows that

HDfo(AC) < Z Py, (Aj)

JjeT
= Z]Pfo (Zﬂ{xiezsj} > (TF + F)nhﬁ)
jeg i=1
(i44) n
< ZPf()(Z l{xiij} > 7Fnhgb+npj> (10-5)
JjeT i=1
= Z Py, (Z (H{Xiij} - pj) > 7Fnhi)
JjET i=1
n
< Z IPDfo( Z (Lix,eB,3 —p5)| > 7Fnhi>,
JjeJ i=1

where for (i43) we used that p; = fBj fo(x)dx < Fh is the probability that an
observation falls into bin Bj;.

We now apply the moment version of Bernstein’s inequality stated in Propo-
sition 10.4 (i). For any m =1, ...

Ej, [11ix.e8,31™] = Ep [1{x,e8,}] = p;-

Setting U = 1 and v = nFhe > np;, we get from Bernstein’s inequality in
Proposition 10.4 (i) that

Py, (

n

Z (ﬂ{XiEBj} _pj)

i=1

2 2,2 ,2d
>7Fnhfll) §2€Xp( ’ n7hy] )

 2n(Fhd 4+ TFhd)

49
=2 ——Fnht
exp ( 16 nhn>

< 2exp(—3nhd)

)
< 2n73,
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where for (v) we used that by construction of the two-stage nonparametric
density estimator, h¢ > log(n)/n. Combined with (10.5), we find

P (A% <2) n7? <2n7?,
JjET
where the last inequality holds because n > 3 > e implies |J| = h;¢ <
n/logn < n.
With

&= (ei — BpleilXa) (f(Xs) — fo(Xi)) 1

i=1
one can decompose (I'V) as follows

2 > (e = By leal Xa]) (fe (Xi) — fO(Xz'))l |

i=1

IEfo E

+

Ef, l% Z (g — Ego[eilX5]) (i (X5) = fo(Xi)) Lae

i=1

< ‘]Efo |:%&ﬁ:|
(10.6)

Moving the absolute value inside, using that fi« and fy are bounded by F' and
applying the Cauchy-Schwarz inequality yields

Efo

% D (e = By les X)) (fie (X)) — fo(Xi))ﬂAc]
i=1

4F &
D By, llei — EpleilXa]| Lac]

% Zj: \/Efo {lgi —Ey, [ei|xi}|2} P, (A°) (10.7)

() 4F/2(65F2224|| K |24)

IN

n

IN

n
< 46F22d||K||go.
- n

where for () we used Proposition 10.3 and that Py, (A°) < 2n~2, and for the
last inequality we used that 41/130 < 46.
It remains to bound the term [E,[2&;-]

. Let as before N =n VvV Nx(J), set

2 = 1og(N) VvVl fi = folln, (10.8)

and define zp« as zi for k = k*. The empirical norm of a function g is

1

ol = (% Z<g<xi>>2> .

i=1
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Using that £* is the index of the center of the ball of the d-cover closest to ]?, it
holds that

Zhe _ log(N)

Jn

~ log(N
Ve~ folln < IF = foln + 34 4/ 2N,

Together with the Cauchy-Schwarz inequality, we obtain

o [ose] < e [ A
< 2g, 110 f°||n+zf+ == gk*] (10.9)
7 5 '

N

zk*

For notational ease, define

Cip = Mh. (10.10)

’ nhd zy,

Since probabilities are always upper bounded by one, we have for any a > 0
and any square integrable random variable T, E[T?] = fOOO]P’ (T? > t) dt =
JSP(IT) > V) dt <a+ [°P(|T| > V1) dt. Therefore, for any a > 0,

]Efo[glz*/zli* Xla"an] < Efo[mI?X@%/z,% |X17...7Xn}

§a+/ ]P’fo(mgx|§k/zk|2\/£|X1,...,Xn)dt.
’ (10.11)

The ratio & /2, can be rewritten as the sum Y, hy(X}), where conditionally
on Xq,...,X,,

om0 - (55 o)

=1 r=1

is a deterministic function. Now let )~(1,)~(2, ... be ii.d. random variables dis-
tributed as X and independent of the data. Let M be a Poisson(n) random
variable independent of the data and of the X;. By the union bound and Pois-
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sonization (Lemma 3.2),

Pfo(ml?x|§k/zk| > VX, X)

< ngxpfo(mk/zk\ > V| Xy,..., X,)
> hi(X))
=1

M
<V 2€7TnNH1]?,X Py, (
) =1

= NmkaXPfO (

Z\/z’XI,---;Xn) (10.12)

(X¢)

zﬁ‘xl,...,xn).

With W (X;) := 334 [Tr_; K(F257250), we can write

n

M
Z (Xe) :Z —Ey, [W(X0)|Xi]) Cige- (10.13)

(=1 i=1

Next we rewrite the sum over i. For this we use the bins B; and the in-
dex sets of bins J, as defined in Section 7.1. Using that the bins are dis-
joint and that each bin is in exactly one of the 3¢ index classes J,, we have

S = Zidzl > e, 2ox,ep,- Here we use Y x g as shorthand notation for
Yoi<i<n s.6.X, €8, For non-negative random variables Uy, ..., Uy, {U1 + ... +
Uy, > it} C U {u; > Vt/m} and by the union bound P(U; + ...+ U, >
Vt) <m-max;_1 ., P(U; > +/t/m). Combined with (10.13),

M
IEDfo( th(ié) > \/E’Xh,Xn>
(=1
< 3% max
s=1,...,3¢
<3d Z Z —Ef, [W(X)[Xi])Ci g Z\/E‘Xl,...,Xn)
JE€ETs Xi€B;

Thus, (10.11), (10.12) and the previous display give for any a > 0,

Efo{’fk* Xl,...,xn}
k*
< a+/ N34/ 2enn max max
s=1,...,3
<3d Z Z — Ep, [W(X0)[Xi]) Cik Z\/l_f‘Xl,...,Xn) dt.

JETs Xi€EB;

(10.14)
We will now apply Bernstein’s inequality in the form of Proposition 10.4 (i)
to the random variables Z; := Z;}, := inij W(X,;)C; . For that we show
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first that, conditionally on X;,...,X,,, the random variables Z;,j € Js with
fixed s are jointly independent. To see this, recall that W (X;) := 2?21 Hle
K(E%nx”) The kernel K has support in [—1,1]. By the definition of the
neighborhood N B(B;) in (7.1), Z; only depends on the X,...,X, that fall into

NB(B;), that is, Z; = Yx,cp, Lo ey K(F255)Conl g, enps, - The
variables C; j defined in (10.10) depend on Xj,...,X,, but not on 5(1,5(2, e
Working conditionally on Xi,...,X, and interchanging the summations, we
can write Z; = 2?21 gj (Xf)]l{f(zeNB(Bj)}’ for suitable real-valued functions
g1, g2, - - - Since the kernel K has support in [—1, 1], it follows from the definition
of J, that if two different indices j and j are both in 7, then {x : g;(x) #
0} N{x:g;(x) #0} = 2.

Consider a random measure of the form N = Zk>1fk(5vk, with V. d-
dimensional random vectors, & {0, 1,...}-valued random variables, and &, the
point measure at u. Such a random measure is called a point process on R? if
for every bounded subset A C RY, we have P(N(A) < oo) = 1. A Poisson point
process N with intensity measure p is a point process such that for any Borel
set A C R, N(A) follows a Poisson distribution with intensity parameter j(A)
(with the convention N(A) = 0 a.s. if u(A) = co) and for pairwise disjoint Borel
sets Ay,..., A, CR? N(A),...,N(Ay) are (jointly) independent.

For N a Poisson point process and bounded measurable functions p1, ..., pm, :
R? — R with pairwise disjoint and bounded support {x € R? : p;(x) # 0},
i =1,...,m, the random variables f pidN, 7 =1,..., m are jointly independent.

To see this, one can use that bounded measurable functions can be uniformly

approximated by simple functions. Thus, for every i, there exists a sequence
(1) (1)

of simple functions (p;”’)ren such that p;"’ — p; uniformly as T — oo and

one can also choose the support of pl(.T) to be contained in the support of p;.
(T
Write pl(-T) = ZeL:H agg)]l 4(r for pairwise disjoint Borel sets AEZT) contained in
il
the support of p;. For any T, (Al(.zﬂ))i’g are pairwise disjoint sets, the random
variables (N(AEKT)))i,g are thus independent, and so are the integrals [ pl(-T) dN =
()

Zf;l aEZ)N(AEZT)), i =1,...,m. Since the support of pET) is contained in the
support of p;, pET) — p; uniformly, and N({x € R? : p;(x) # 0}) < oo almost
surely, we obtain [ pET) dN — [ p; dN almost surely as T — co. Thus [ p; dN,
1 =1,...,m are jointly independent, as claimed. B

It follows from Section 4.9 in [59], the fact that X, are ii.d., and M ~
Poisson(n), that N := Zé\il 0%, 1s a Poisson point process on [0, 1]¢. The func-
tions g;1.enp(B;)} are measurable and bounded with bounded disjoint supports
and thus, the random variables

M
Zj= /gjl{.eNB(Bj)} dN = Zgj(xg)ﬂ{figeNB(Bj)}v je T,
=1

are jointly independent.
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To apply Bernstein’s inequality, it remains to check that there exist U and v
such that 3., B [|Z;™[Xq, ..., X,] < ImlU™ 20, for m =2,3,...
We have conditionally on X; that

Efo{ > W(Xi)Ciykm‘Xl,...,Xn} (10.15)
X.eB
M d > m
_Efo[ > (ZHK(%))C,C ’Xlxn]

) xix]
1)

X€7'_Xir
K ) , )
(P e

4 -
Xé,r - Xi,r
H K( R, > ll{XZGNB(Bj)}> €

(#4d)

o> (ZHKHOO s )1 XX
X €B;

(w) M m m
]Efo[(z||K||gol{)~(e€NB(Bj)}) ( Z ICi,k|> ’Xl,...,xn]
(=1

Xiij

M m
Kdm( > |Czk> ]Efo[(zﬂ{ieewwm) }
=1

X €B;

Where (i) follows from the triangle inequality. For (i7) we used that X; € B; and

that K has support in [—1, 1], so if X is outside N B(B;) then HT 1 K(Xé Th_X’ Shro i)
= 0. For (i41) we use that ||K||so < oo and that all terms are non-negative. The
equality (iv) follows from observing that Ze LIK)4 1 (X,enB(s,)} does not

depend on i and can be taken out of the sum. Finally (v) follows by taking
all the constants out of the expectation, recalling that C;y is 0(Xy,...,X,)-

measurable and noting that Zﬁil ]l{)N((ENB(Bj)} is independent of X1,...,X,,.
Since X, are iid. and M ~ Poisson(n), we have ZZ\A1 Lix,enps)y ™

Poisson(np;), where p; denotes the probability that X € NB(B;). Expressing
the moments of the Poisson distribution as Bell polynomials [3] gives

fo Kiﬂ{i[em(sj)})m} = é(”ﬁj)t{T} < (np; V)™ é {TZ}

where {T} denote the Stirling numbers of the second kind. The m-th Bell
number equals the sum Y_;"  {""'}. Applying now the bound on Bell numbers



5644 T. Bos and J. Schmidt-Hieber

derived in Theorem 2.1 of [9] gives

m m
m m

> {0} = ()

— 1 og(m+1)
Due to m > 2, log(m + 1) > log(3) > 1 and the right hand side of the previous
display can be upper bounded by m™. Using Stirling’s formula ([60]) again,
we get that v/2rmm™e™™ < ml!. Since m > 2, we have v/2mm > e and thus
m™ < mle™=! Hence

M m
Ey, {(Z ]l{f([eNB(Bj)}> ] <mle™ Y(np; v 1)™ < mle™ Y (F3%nhd)™
=1

The last inequality follows from observing that p; < F 39hd (the upper bound on
fo times the Lebesgue measure of NB(B;)) and that 3anhd > 39Flog(n) > 1.
Combined with (10.15), this leads to

m

Z W(X;)Ci e

XiEBj

Efo[ Xl,...,Xn}

< mle™ (F3nhd) M||K||dm( 3 e, )
X, €B;

The previous inequality suggests to take the parameters v and U in Bernstein’s
inequality as upper bounds of .. ; (e KL )2(F3dnhd)2(zx B, |Cix])? and

max; e|| K || 37 Fnhd dox, eB, |C; x|, respectively. To find a convenient expres-
sion for v, observe that

Z<e||K||§o>2<Fsdnhz>2( 3 cm)

JE€ETs X;€B;
_ A K4 F)2n2hd (Fx(Xi) — foXa) | [\
= S K (2 [P
34| K14 F)2 2
= 3 RN (S ko - pxoia)
JETs k X;€eB;

By the Cauchy-Schwarz inequality,
2
( ) |fk<xi)—fo<xi)ﬂA) < (ﬂA 3 12)( T (fk<xi)—fo<xi>)2>
X;eB; X;€B; X;eB;

< 293 Flog(n) Z (fe(X;) — fO(Xi))27

X;€B;

where for the last inequality we used that the definition of the event A in (10.4)
implies ZXiEBg‘l < 293 Flog(n). By (10.8), 2. > /n|/fx — folln- Moreover,
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Z?:]_ = Zjejs inij and thus

2
> el st (3 16 )

J€Ts X €B;
CallyPS | x) - hixoy)
=2l el 2 U A0
3 K|4,)?
~ 2 oy sl ol

= 273(e3|| K]|5)* F* log(n).

Hence we can take v = 2973(e34|| K||4 )2 F? log(n) in Bernstein’s inequality.

To obtain a convenient expression for the U in Bernstein’s inequality, we now

bound ZXiEB,- |C; k|- Using that by (10.8), zx > 1/log(XN), that fi and fy are
bounded by F, and that on the event A, ZX,-ij 1 <293 Flog(n) gives

_ | fe(Xs) — fo(X5)]
Gkl = > Whior ]lAS \/log— > 14

X;€B; X;€B; X;eB;
29+4 2 1og(n)

= nhd\/log(N)
Hence it holds that

27| K||5 37 F° log(n)

el K| %3 Fnhi Z ICik| < log(V)

X;€eB;

The support of the kernel is contained in [—1,1]. This means that 1 < 2|/ K|«
and consequently, e3?||K ||, > 2. Thus, setting U = v/y/log(N) with v =
24+3(e3%|| K ||4, )2 F3 log(n), as above, we obtain

ZEfo|: Y W(X)Cix

|
‘xl,...,xn} <M um-2,

- 2

JETs X;€eB;
for allm = 2,3, . ... Consequently we can apply Bernstein’s inequality with those
choices for U and v, conditioned on Xq,...,X,.

Applying Bernstein’s inequality on the sum over the variables Z;, with v and
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the bound U as defined above, we get that

(3d D0 D0 (W) — By [W(X)|Xi]) i >\/E‘X1,...,Xn>
JETs Xi€B;
:Pf0< Z (Z; —Efo[zj|xl,...7xn])‘ > 3_d\/E’X1,...,Xn>

JE€Ts

t3_2d
<2 -
=T\ 2w Ui

372d
20 (1+ 31/t 10g(N) )

If ¢ > 32?1og(N), the previous expression can be further bounded by

< 2exp (W) . (10.16)

= 2exp

Observe that this gives us an upper bound that is the same for all collections
of bins J; and all cover centers k. Choosing a = 64v%32?1log(N) in (10.14) gives

Ej, [5’“* X,,. .. Xn}
Z2,
(i) V1 )34
< 64v?3% 1og(N) + 2N3%/2emn exp [ —vt¥X—"""— og dt
64v2324 log(N)
(i4) (2 log(N) +1)

= 64023%?1og(N) + 4N3%/ 2ern(160232%) =~ exp( 21og(N))

og(N)
@0

< 6402321 log(N) + 128002337

(iv)

< (277°10(e]| K [|5) 2 F? log(n))*37 log(N),

where for (i) we used (10.16) combined with the observation that if
t > 640v232?1og(N) then t > 32¢log(N), since v > 1. For (ii) we used that
Jir e Viedu =2 [7 se=¢ds = 2(bce+1)eb¢/c2. For (iii) we used that log(N)
1so0 (2log(N)+1)/log(N) <4 and N = nVNE(§) > n, v2er <5, log(N) >

For (iv) we substituted v = 2¢73(e3%|| K||4)2F3 log(n) and used that /1344 =
4/84 and /84 < 10.

Together with (10.9), this yields

e[t
\/ ffo+6+\/1°g(N / gk*
Zk"
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Ro(F, fo) + 0 + 4/ el
<y m \/7\/(2%51062}(@‘.}}73 log(n))? 374 log(N)

1 Tdlog(N
(m R B e

Inserting this bound in (10.6) together with (10.7) gives a bound for (IV). To-
gether with (10.3) and (10.2) and combining the terms with ¢, using that by
assumption log?(n)log(N) = log®(n) log(nV N=(6)) < n, finishes the proof. [

Proof of Proposition 7.3. Expanding the square yields

~

(F(Xi) — fo(Xa)" = (J(Xi) = Yi +Yi — fo(X)”

o~

= (F(Xy) = Y22 + 2(f(Xs) = Vo) (Vi — fo(X) + (Y; — fo(Xa))%

We use this identity to rewrite the definition R, (f, fo) = Es [+ Z?Zl(fA(Xl) -
fo(X;))?]. Applying moreover that for any fixed f € F, we have by definition
of A, (f, fo) that

B3 D00~ FORE| < 20 [ 3200 = 1K) + 8 7o)
i=1 i=1
yields
=By, | D2 (X0 =0 + 2(F(X0) ¥ (¥ — fo(X0) + (¥ — fo(X0) )]
L =1
< By | =3 (07000 = Yo + 2(7(X0) = Y% = fo(X0)) + (¥ = folX0)) )]
= Epy [ (1K) = P + 27 (Xe) = V(¥ — fo(X0)) + (¥ — fo(X) )]
+Ep, | = (Y~ foX)(F(X) — £(X) | + An(F fo)
=Ef, %Z(f(xz)_fo(xz>)2 +Ey, %Z(Yz_fo(xz))(f(xz)_f(Xz))]
i=1 i=1
n(.]?va)
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where for the last equality we used that the X; are independent and have the
same distribution as X.

Combined with Lemma 7.2, this yields

f%n(f, fo) <Ex [(f(X) — fO(X))Q]

b R (F, fo)20 01462 || KC|22F? 1og(n)\/3” log(n v N7 (9))

n
log(n VvV Nz(8))
n
46 F224|| K4,
n

+204614¢2|| K| 24 F33% log(n)

+ 52761462 K| 2 F33% +

+ 8128 2428 K||24 + EX[(fO(X)Ll— S | Baldifo) | (7 .

Rewriting this and upper bounding constants, yields
~ A 5
R, (f, fo) < EEX [(f(X) = fo(X))?]

D (T d
+ Rn(f7f0)2d+61962||K||3gF3 log(n)\/37 log(n\/j\f;(é))

log(n vV Nx(9))

+204619¢2|| K||24F33% log(n)
+ 529161962 || K| 24 F33%

62F22%|| K|,
+ L L S ot

4 ~
+ 11h2P F2q%° || K |24 + 38alf fo).
n

For real numbers a, ¢, p, satisfying |a| < 2y/ac + p, we have |a| < 2y/ac+ p <
1lal+2¢*+p and thus |a| < 2p+4c?. Applying this inequality with a = R,,(f, fo),

¢ = 29%619¢? || K || 24 3 log(n)\/37d log(nn\/ Nr(9)) )
and
p =s2o196% e 2o 4 221K
12401967 K |24 F33 Y log(n) 28 Y AF () VnN 7))
SR EP KR+ S An(F, fo) + SEx [(F0) ~ fo(X))?
yields the result. U

Proposition 10.1. [Ey, [, X;]| < h2d°||K||¢F.
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Proof. By the construction of the ¢; in (2.2) and (2.3), ¢; = fKDE(Xi) -

fo(X;). Using moreover the definition of the multivariate kernel density esti-
mator in (2.1) and writing |v|® for |v1|®t - ... - |vg|*?, we obtain

Ey, |\id Z K< l,rh ’ ) — fo(X5) X1‘|
Ny {=1r=1 n
1 d Uy — Xi’»,‘
W P
d
/ (H K (W)) fo(Xix +vihn, ..., Xi g+ vahn) dv — fo(X;)
Re \

/]Rd (HK (w)) (fo(Xm + V1 hny ooy Xid + vahy) — fo(Xi)) dv

B, [ Xi]| =

ailali<[B]—1,a#0

b 2 P om )Xt harow)) v

clali=[8]

d
Rd (H K (’UT)>

. ( S B (0 )X+ () - (aafO)(Xi)D w

'|a|1*LBJ
el /

; ( S %(aafoxxi () = 0 ) (X)) dv

a:la1=|8]

(vi7) d

g hU”/ 115 () ( > \vl | (v)v] F) dv
[—1,1]4 | .24 a:|la1=|8] .

(viiz)

< hF /

[71»1]d

(i2)
< hy|IK|{d°F.

1
Z adv

a:lali=|5]

Here we used for (¢) that the X/ are i.i.d. and independent of X,;. For (ii) we
substituted the transformed variables v, = (u, — X;,)/hy, and used that fo
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vanishes outside [0, 1]%, since fo has support in [0,1]¢ and is continuous on R¢.
For (ii1) we used that a kernel integrates to 1 and that fy(X;) is a constant
with respect to the integration variables. Step (iv) applies |3]-order Taylor
expansion, that is, for a suitable 7(v) € (0, 1),

fo(Xi + hyv) = fo(X;) + > (hr;‘;)a (0% fo)(X)

a:la)1<|[B]—1,a#0

+ Z (h,;v")o‘ (0% fo)(Xi + hpT(V)V),
cla1=[8] '

see Theorem 2.2.5 in [35]. For (v) we used that K is a kernel of order |3] and

therefore [v™K(v)dv = 0 for all m = 1,...,|B]. For (vi) we used that ni
appears in every term of the sum. Jensen’s inequality and triangle inequality are
moreover applied to move the absolute value inside the integral and the sum.
For (vii) we used that fy is in the S-Holder ball with radius F' and that K has
support contained in [—1,1]. For (viii) we used that |7(v)| < 1. To see (ix),
observe that for the multinomial distribution with number of trials |3] and d
event probabilities (1/d,...,1/d), we have

I LA Y

alali=|8] alali=|8]

a4

o
alali=15]

Proposition 10.2. Ey,[le; — Ey, [6;|X]]] < FI|K||429FL.
Proof. By definition, ¢; = Y; — fo(X;). Together with conditioning on X;, tri-
angle inequality and Jensen’s inequality this yields
Epyllei = Epolea Xall) = Epo [[Yi = E g, [V X]]]
< 2IE:fo [EfoHYzHXJ]

n d /
1 X&r B X’L»T
=1 " r=1 n
(10.17)
Using that || follee < F and the kernel K is supported on [—1,1], we get by
substitution
d / d
Xe *Xir U — X
E K= > ‘Xi < F KX d
oL (o) ] = LI () o

d
:Fh;i/ IT |5 @)|dv
R r=1
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< FI|K|4,2%h¢.

Proposition 10.3. Ej, {|sz —Ey, [Ei\Xi]ﬂ < 65F22%|| K ||%d.

Proof. By definition, ¢; = Y; — fo(X;). For a non—negative random-variable T,
it holds that E[T?] = fo P(T? > t)dt = fo (T > \/t) dt. Therefore

Eg, [le: — Bl Xi)l?] = By, [|¥: - Eg il Xl ]
=Ep, {Efo “Yz —Ey, [YilX)[? ’ XZH
=Ey [/000 Pfo(’Yi —Ep[YiIXi]| > \/E’Xz) dt}
The probability can also be written as

JRE AR SIENAE ST
0

oo n d XIT_XZ"T
:/O Pf‘J(E(IIK(AT)

=1 r=1

Uy — X p
/[o,1]d fo(u HK< W > du) Xi) dt.

This is a sum of i.i.d. random variables minus their expectation (conditionally
on X;). Using that || fo|lcc < F and the kernel K is supported on [—1, 1], we get

using substitution a
< [T ()
Rd

HK2< )‘X
= Fhd /R ]Z[KZ(UT)dV

< P K||352hs,.

>n

n

Applying the bounded variable version of Bernstein’s inequality in Proposi-
tion 10.4 (ii) with v = nF||K||292¢hd and b = 3||K||%, (that is, /3 = ||K||%),

we get that
n d Xé - Xi,r
(M1 ()
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oo 2,2y
</ 1A 2exp < 1 ) dt
~Jo 2(n||K||22F29Rg + || K || 4 nhiVE)

/Ool/\2e < nhyt > dt
_ (o
0 P\ (K 2iF2 1 KLV

(%) o nhad\/t
< F222 K||%4 + 2/ exp (— e ) dt
* F2224| |24 4| K[|<,
2d ( F2UK||% nhd P2t K| nhd
(+5) 64[| KI5 ( arns L) P (— Ry

= P22 K3 +

n2h2d
(k%)

< F22 K ||% 4 64| K||24(F2 + 1)
(****)

< 65F72% K|,

where we used for (x) that 2(||K|2¢F2¢ + | K||9 vt) < 4||K||% v/t whenever
t > F2224||K||24. For (xx) we used that [ e~V du =2 [, se~*%ds = 2(ba +
e b /a? with a = nhd/(4]|K||%) and b = F2?|| K||% . For (* % *), we used that
nhd > log(n) > 1 and that 0 < exp(—x) < 1 for > 0. For (% * #*), we used
that F2¢ + 1 < 2F2¢ < F22¢ < F222¢_ The result follows from observing that
E[c] = ¢, for any real number c. O

Proposition 10.4. Given independent random variables Z, ..., Z,.

(i) (moment version) If for some constants U and v the moment bounds
S E[jZm] < %m!Um’Qv hold for allm = 2,3,..., then

A
(ii) (bounded version) If for some constants b and v, the bounds |Z;| < b and
S E[|Zi]?] < v hold for alli=1,...,n, then,

A
These formulations of Bernstein’s inequality are based on Corollary 2.11 and
Equation (2.10) in [13].

Z(Zi —E[Z)])

i=1

2
>t S e 2v+2Ut

n t2
Z(Zi — ]E[ZZ])‘ > t> < Qe ToFIE
i=1
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