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free, and their asymptotic properties are established. We show the advan-
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1. Introduction

Most methods used in the statistical analysis of distribution tails are provided by
extreme value theory and involve the estimation of parameters of one of the gen-
eral distribution tail models. Applications of this theory are very diverse, from
finance and insurance to environment and biology. The peaks-over-threshold
(POT) approach based on the Generalized Pareto distribution (GP) model is
typically used for estimating distribution tails, whereas the Gumbel block max-
ima method and the approach based on the extremal index are usually applied
for estimating the maxima of time series (see, e.g., [1] or [2]). However, whereas
financial and insurance data are usually heavy-tailed and are well approximated
by the GP model, the tails of environmental and biological data may be lighter.

The GP model and generalized extreme value (GEV) distributions have been
widely applied to fit extremes of environmental data, see, e.g., [3] or [4]. However,
[5] and [6] showed that fitting time series maxima using the Weibull model
outperforms the classical Gumbel block maxima method on rainfall and flood
data, respectively. Moreover, Weibull-type and log-Weibull-type tail models have
shown their efficiency in estimating extremes of spectrometric data [7], lifetimes
of cancer patients [8] and even financial time series [9]. Surprisingly, there is
almost no work on distinguishing between these tail models. The present article
is devoted to this problem.
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Let F (x) = 1 − F (x) denote the tail distribution function of a cdf F , and
let x∗

F := sup{y : F (y) < 1} denote its right endpoint. Following [10], we say
that F and G are strictly tail-equivalent, if x∗

F = x∗
G =: x∗ and F (x)/G(x) → 1

as x ↑ x∗ (write F ∼ G). We call the (right) distribution tail the equivalence
class T (F ) of tail distribution functions, i.e., for all G the property G ∼ F is
equivalent to G ∈ T (F ).

Let Xn = (X1, . . . , Xn) be i.i.d. random variables with cdf F and with x∗
F =

+∞. Below we propose a location- and scale-free model selection procedure for
distinguishing between two tail models A0 and A1 using Xn. Here A0 and A1 are
families of distribution tails that are “separable” by some cdf F0; in particular,
all tails in A0 are lighter (or heavier) than those in A1. We also propose a scale-
free procedure for distinguishing A0 from A1, that may be more powerful than
the first. Both procedures are extensions of those proposed in [11], which are
neither location- nor scale-free.

The article is organized as follows. In Section 2, we discuss Weibull-type and
log-Weibull-type models for distribution tails. In Section 3.1 we introduce the
notion of C-separability, and then scale-free and location- and scale-free model
selection procedures for distinguishing between C-separable classes of distribu-
tion tails are proposed in Sections 3.2 and 3.3, respectively, and their asymptotic
properties are established. These procedures can be used for distinguishing be-
tween regularly-varying, Weibull-type and log-Weibull-type tails, though their
applicability is not limited to this. The selection of the optimal threshold level
for distinguishing between distribution tail models is discussed in Section 3.4.
In Section 4, the performance of our methods is examined on simulated and real
data sets and compared with methods in the literature. All proofs are postponed
to Section 5.

2. Recent models for distribution tails

The classical approach to handling extremes presupposes that the distribution
function F of observations belongs to the maximum domain of attraction (MDA)
of some extreme value distribution, written F ∈ D(EVγ), i.e., for some sequences
an > 0 and bn,

Fn(anx + bn) → EVγ(x), n → ∞, (1)

where

EVγ(x) =
{

exp(−(1 + γx)−1/γ), 1 + γx > 0, if γ �= 0,
exp(− exp(−x)), x ∈ R, if γ = 0,

is the generalized extreme value distribution and γ is the extreme value index. If
F ∈ D(EVγ), then as u ↑ x∗

F , the distribution of excesses over a high threshold
u

Fu(x) = F (x + u) − F (u)
1 − F (u) , 0 ≤ x ≤ x∗

F − u,
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can be approximated by the Generalized Pareto distribution GPγ(x/σ(u)), where

GPγ(x) =
{

1 − (1 + γx)−1/γ , 1 + γx > 0, x > 0, if γ �= 0,
1 − exp(−x), x > 0, if γ = 0,

according to [12] and [13].
The efficiency of the GP model to fit distribution tails belonging to the Gum-

bel MDA (that is, if γ = 0) is sometimes unsatisfactory, so several models for
tails within the Gumbel MDA have been proposed in last two decades. First,
consider the model developed in [14] (see also the particular case of this model
proposed in [15]). Following the description of this model in [16], assume that
the distribution tail of random variable X (let X ≥ 1 a.s. for simplicity) is given
by

1 − F (x) = exp(−V ←(ln x)), x ≥ 1, (2)
where V ←(x) := inf{y : V (y) ≥ x} is the generalized inverse of V (x) =
ln uF (1/ exp(x)) with uF , the tail quantile function of F , that is uF (t) =
F

←(1/t). It is also supposed that there exists a positive function a, such that
for all t > 0 and some real ϑ,

lim
x→∞

V (tx) − V (x)
a(x) = tϑ − 1

ϑ
, (3)

where for ϑ = 0 the right-hand side should be understood as ln t. Hence, V is
supposed to be of extended regular variation with index ϑ, see p. 371 in [1]. If
ϑ > 0 then ϑ governs the tail behavior of the log-Weibull-type distribution, i.e.,
F is such that

lim
x→∞

ln(1 − F (etx))
ln(1 − F (ex)) = t1/ϑ, t > 0. (4)

Representatives of this class are the lognormal distribution and distributions
with cdf F (x) = 1 − exp(−(ln x)1/ϑ), for x > 1. If 0 < ϑ < 1, then F belongs
to the Gumbel MDA and if ϑ = 1, then F belongs to the Fréchet MDA, i.e.,
if γ > 0 (see Theorem 1 in [16]). The estimation of ϑ, extreme quantiles and
probabilities of rare events for this model are considered in [14], [16], [17], and
[18].

Another class of distributions from the Gumbel MDA is the class of Weibull-
type distributions [19], [20]. We say that F is of Weibull type if there exists
θ > 0 such that

lim
x→∞

ln(1 − F (tx))
ln(1 − F (x)) = t1/θ, t > 0. (5)

Then θ is called the Weibull tail index. Representatives of this class include
the normal, exponential, gamma and Weibull distributions. The model (2) does
not provide a good description for Weibull-type distributions, since in (3) the
parameter ϑ is equal to 0 for all distributions from this class as well as for
distributions with lighter tails. The problems of estimation of the Weibull tail
index and extreme quantiles for Weibull-type distributions are investigated by
[15], [19], [21], [22], and [23], among others.
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The literature on distinguishing between the Gumbel and Fréchet MDA is
quite extensive [24], [25], but there is an almost complete lack of work on distin-
guishing between distribution tails within the Gumbel MDA. Apart from [11],
we mention [20], where the goodness-of-fit test for Weibull-type behavior was
proposed, and two author’s papers [26], dealing with distinguishing between
Weibull-type distribution tails, and rather theoretical [27], where the close hy-
potheses about distribution tails within the Gumbel MDA are considered. Note
that two latter papers are based on quite different principle (the likelihood ratio
method) and much less general than this article. The tests proposed in these
four articles are not invariant with respect to scale and location changes, though
the test of [20] is scale-free. However, poor estimation or incorrect setting of the
location and scale parameters can lead to serious errors in conclusions (see, e.g.,
Figure 6), which motivates developing location- and scale-free alternatives.

3. Asymptotic results

Hereinafter we assume that all considered distributions are continuous and their
right endpoints are infinite. Our methods can be extended to finite right end-
points, but this is beyond the scope of our paper. The model selection procedures
introduced in Sections 3.2 and 3.3 are generalizations of those of [11], which are
neither location- nor scale-free.

Hereafter for model selection procedures considered below, we call the choice
of an alternative class for distributions from a null class the type I error. Also,
we call the probability of selecting an alternative class if a distribution belongs
to it the power of model selection procedure.

3.1. C-condition and C-separability. Examples

Denote the tail quantile function of F by uF (t), that is uF (t) = inf{x : F (x) =
1−1/t}. Let us introduce the conditions that we use to establish the asymptotic
properties of the model selection procedures proposed in this work.

Definition 3.1. Two cdfs H and G are said to satisfy the C-condition Cδ(H,G),
if for some δ ≥ 0 there exists t0 such that for all t > t0 and c > 1,

uH

(
c1+δt

)
uG(ct) ≤ uH(t)

uG(t) . (6)

If H and G satisfy the C0-condition C0(H,G), then starting from some t0,
the ratio uH(t)/uG(t) does not increase. Notice also that Cδ(H,G) is weaker
than Cδ′(H,G) for δ′ > δ ≥ 0.

It is easy to see that Cδ(H,G) is invariant with respect to changes of the
scale parameters of G and H. However, these conditions may be violated if
σ1uH(t)+a1 and σ2uH(t)+a2 are substituted for uH(t) and uG(t), respectively,
but this does not prevent us from proving the results below.

The condition Cδ(H,G) implies the following relation, which we use in prov-
ing the main results.
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Proposition 3.2. Assume that cdfs H and G satisfy Cδ(H,G) for some δ ≥ 0
and t0. Then for all t > t0 and c > 1,(

1 −H(cuH(t))
)1−ε

(1 −H(uH(t)))1−ε
≤ 1 −G(cuG(t))

1 −G(uG(t)) , (7)

with ε = 1 − (1 + δ)−1.

Now we introduce the notion of C-separability.

Definition 3.3. Let A0 and A1 be two classes of distribution tails such that
the tails belonging to A0 are lighter than those in A1. We call A0 and A1 C-
separable (from the right) if there exists a cdf F0 such that for all G ∈ A0 the
condition C0(G,F0) holds for some t0 = t0(G), and for all H ∈ A1 the condition
Cδ(F0, H) holds for some δ > 0 and t0 = t0(H).

If classes A0 and A1 are C-separable from the right by cdf F0, we call them
C(F0)-separable from the right.

If the distribution tails in A0 are heavier then those in A1, then we say that
these two classes are C(F0)-separable (from the left), if for some cdf F0 and all
G ∈ A0 the condition C0(F0, G) holds for some t0 = t0(G), and for all H ∈ A1
the condition Cδ(H,F0) holds for some δ > 0 and t0 = t0(H).

C-separability is satisfied for a wide range of classes of distribution tails, as
is now discussed.

Example 3.4. Let A0 and A1 be the classes of Weibull-type and log-Weibull-
type distribution tails, respectively (see Section 2), and suppose that all such
functions with tails in A0 and A1 are eventually differentiable. To distinguish
between these two classes we recommend selecting the cdf

F0(x) = (1 − exp{− exp{b(lnx)1/2}})I(x > 1) (8)

for some constant b > 0. The proof of C(F0)-separability of these classes from the
right under some technical conditions is given in Section 5. The proof of their
C(F0)-separability from the left is similar. Finite-sample properties of proce-
dures for distinguishing A0 from A1 are compared in Section 4.3.

Example 3.5. Let A0 be the class of log-Weibull-type distribution tails with
ϑ < 1, and let A1 be the class of regularly-varying distribution tails. Recall
that the Fréchet MDA consists of only the distributions with regularly-varying
tails, that is F ∈ D(EVγ), γ > 0, for such distribution functions. Assume again
that all distribution functions with tails in the classes A0 and A1 are eventually
differentiable. To distinguish between these two classes we recommend selecting
the cdf

F0(x) = 1 − exp(− exp(b
√

ln ln x) ln x), x > e, (9)

for some constant b > 0. Indeed, the tails of log-Weibull-type distributions with
ϑ < 1 are lighter than that of F0, and the condition C0(G,F0) for G ∈ A0 follows
from (4) and the properties of regularly-varying functions. On the other hand,
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the condition Cδ(F0, H) for H ∈ D(EVγ), γ > 0, and δ > 0 follows from (9) and
the definition of regular variation. We do not provide the detailed proofs of these
facts, because they are technical and in many respects similar to the proofs of
corresponding facts in Example 1. C(F0)-separability from the right holds in
this case as well. Numerical comparisons of performance of procedures and tests
for distinguishing between these two classes are provided in Section 4.4.

Example 3.6. Let the class A0 be such that uG(t) =
∫ t

1 f(x)/x dx for all
G ∈ A0, where f is positive and f(x) → ∞ as x → ∞. It is clear that G
is heavy-tailed. Next, let A1 be the class of the tails of absolutely continuous
Weibull-type distributions with θ < 1. Then the classes A0 and A1 are C(F0)-
separable from the left by F0, the cdf of the standard exponential distribution.
We omit the proof of this fact, since it is similar to the proof of Example 1.

Example 3.7. Consider a one-parameter family of distributions F ∈ {Gθ, θ ∈
Θ} such that for all θ1, θ2 ∈ Θ, θ1 < θ2, the cdfs Gθ1 and Gθ2 satisfy the
condition Cδ(Gθ1 , Gθ2) for δ > 0. Then it is easy to see that the classes A0 =
{Gθ, θ < θ0} and A1 = {Gθ, θ > θ0} are C(Gθ0)-separable from both the right
and the left.

3.2. Scale-free model selection

Assume that classes A0 and A1 are C(F0)-separable from the right by some
cdf F0. In this section, we discuss the following procedure for distinguishing A0
from A1:

select
{
A0, if R̃k,n ≤ 1 + u1−α√

k
,

A1, otherwise,
(10)

where u1−α denotes the (1 − α)-quantile of the standard normal distribution,

R̃k,n = ln k

n
− 1

k

n∑
i=n−k+1

ln
(
1 − F0(u0(n/k)X(i)/X(n−k))

)
, (11)

and u0(t) = uF0(t). Here α is the asymptotic upper bound on the probabili-
ties of selecting A1 for distribution tails in A0 obtained when applying (10) to
distinguish between classes A0 and A1; it can be considered as analogous to a
significance level.

The statistic R̃k,n is obtained by replacing the order statistics {X(i)}ni=n−k

with their scale-free counterparts {u0(n/k)X(i)/X(n−k)}ni=n−k from the statistic

Rk,n = ln(1 − F0(X(n−k))) −
1
k

n∑
i=n−k+1

ln(1 − F0(X(i))) (12)

introduced in [11] and inspired by the Hill estimator [29] of the positive extreme
value index γ. The statistic Rk,n has fruitful distributional properties allowing
to propose a procedure similar to (10). Specifically, if F = F0, the distribution
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of Rk,n is known, whereas if the right tail of F is heavier or lighter than that of
F0 then Rk,n tends in probability to +∞ or −∞, respectively, as k = k(n) →
∞, k/n → 0, n → ∞. However, the result of applying this procedure to finite
samples might depend strongly on changes in the scale parameters of F and F0,
which is a significant drawback of the method and motivates introducing the
scale-free statistics R̃k,n.

Unlike Rk,n, the distribution of R̃k,n does not depend on the scale parameters
of F0 and F , so the procedure (10) is scale-free. However, R̃k,n preserves distri-
butional properties similar to those of Rk,n, see Theorem 3.9 and Theorem 3.10
below. If for some cdf F0 classes A0 and A1 are C(F0)-separable from the left,
then we use the following procedure to distinguish A0 from A1:

select
{
A0, if R̃k,n ≥ 1 + uα√

k
,

A1, otherwise,

where α and uα have the same meaning as above.
Now let us discuss the asymptotic properties of the procedure (10). To formu-

late them, we need the following condition, which is classical for extreme value
theory, see, e.g., formula (1.1.30) in [1].

Condition 3.8. We say that a cdf F satisfies the von Mises condition if for
some γ ∈ R

lim
x↑x∗

F

(1 − F (x))F ′′(x)
(F ′(x))2 = −γ − 1. (13)

It is known (see, e.g., Theorem 1.1.8 ibid.) that the von Mises condition is
sufficient for F to belong to D(EVγ). Hereinafter we call a natural sequence
k = k(n) satisfying

k → ∞, k/n → 0 as n → ∞, (14)

an intermediate sequence, which is also classical for statistics of extremes.
The first result gives the behavior of the statistic R̃k,n if the cdf F of a sample

X1, . . . , Xn coincides with F0.

Theorem 3.9. Let X1, . . . , Xn be i.i.d. random variables with a cdf F0 satisfying
Condition 3.8. If a sequence k = k(n) is intermediate, then

√
k(R̃k,n − 1) d→ N(0, 1), n → ∞.

Two further results together with Theorem 3.9 imply that the upper bound
over the type I error probabilities of the procedure (10) for distribution tails from
A0 is at most α asymptotically, and the power of (10) tends to 1 as n → ∞.

Theorem 3.10. Let X1, . . . , Xn be i.i.d. random variables with a cdf F1. As-
sume that F0 satisfies Condition 3.8 and a sequence k = k(n) is intermediate.
If the condition Cδ(F0, F1) holds for some δ > 0, then

√
k(R̃k,n − 1) P−→ +∞, n → ∞,
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and if Cδ(F1, F0) holds for some δ > 0, then
√
k(R̃k,n − 1) P−→ −∞, n → ∞.

Corollary 3.11. Under the assumptions of Theorem 3.10, let X0
1 , . . . , X

0
n be

i.i.d. random variables with the cdf F0. Denote the values of the statistic (11)
built by samples (X0

1 , . . . , X
0
n) and (X1, . . . , Xn) by R̃0

k,n and R̃1
k,n, respectively.

If C0(F0, F1) holds, then for all x > 0 eventually

P (R̃0
k,n > x) ≤ P (R̃1

k,n > x),

and if C0(F1, F0) holds, then for all x > 0 eventually

P (R̃0
k,n > x) ≥ P (R̃1

k,n > x).

Remark 3.12. Although the procedure (10) possesses the asymptotic proper-
ties mentioned above for all F0 satisfying Condition 3.8 and such that classes
A0 and A1 are C(F0)-separable, the choice of F0 matters for finite n. However,
the problem of optimal selection of F0 is beyond the scope of this paper. This
remark is related also to the procedure proposed in the next section. However,
some practical recommendations can be given; see Section 4.1.

Remark 3.13. It follows from the results of this section that if classes A0 and
A1 are C(F0)-separable and F0 does not belong to A0, then the type I error
probabilities of (10) when applying it to distinguish A0 from A1 are asymp-
totically lower than α. Thus, if A0 has a natural “left bound” F̃ , i.e., for all
G ∈ A0 the condition C0(G, F̃ ) holds, but Cδ(G, F̃ ) does not necessary hold for
any δ > 0, and then we recommend selecting F0 = F̃ to maximize the power of
the procedure.

3.3. Location- and scale-free model selection

The procedure proposed in the previous section and the tests mentioned at
the end of Section 2 are not invariant with respect to the location parameter,
which can restrict their application in some situations; see, e.g., Fig. 6. In this
section, we propose a procedure for distinguishing between separable classes
of distribution tails that is invariant with respect to both scale and location
parameters. Let us consider the statistic

R̂k,n = ln k

n
− (15)

1
k

n∑
i=n−k+1

ln
[
1−F0

(
u0(n/k)+

X(i)−X(n−k)

X(n−k)−X(n−2k)

(
u0(n/k)−u0(n/(2k))

))]
,

which can be obtained from Rk,n (12) by replacing the order statistics {X(i)}ni=n−k

with their location- and scale-free counterparts

u0(n/k) +
X(i) −X(n−k)

X(n−k) −X(n−2k)

(
u0(n/k) − u0(n/(2k))

)
, i = n− k, . . . , n.
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The asymptotic properties of R̂k,n are stated below.

Theorem 3.14. Under the conditions of Theorem 3.9,
√
k(R̂k,n − 1) d→ N

(
0, 1 + γ2

2(γ + 1)2(2γ − 1)2
)
, n → ∞,

where the ratio on the right-hand side should be understood as 1/(2(ln 2)2) for
γ = 0.

Theorem 3.15. Assume the conditions of Theorem 3.10. If the condition Cδ(F0,
F1) holds for some δ > 0 then

√
k(R̂k,n − 1) P−→ +∞, n → ∞,

and if Cδ(F1, F0) holds for some δ > 0 then
√
k(R̂k,n − 1) P−→ −∞, n → ∞.

Corollary 3.16. Assume the conditions of Theorem 3.10. Let X0
1 , . . . , X

0
n be

i.i.d. random variables with the cdf F0. Denote the values of statistic (15) built
by samples (X0

1 , . . . , X
0
n) and (X1, . . . , Xn) by R̂0

k,n and R̂1
k,n, respectively. If

C0(F0, F1) holds then for all x > 0 eventually

P (R̂0
k,n > x) ≤ P (R̂1

k,n > x),

and if C0(F1, F0) holds then for all x > 0 eventually

P (R̂0
k,n > x) ≥ P (R̂1

k,n > x).

Denote for convenience

σ2(γ) = 1 + γ2

2(γ + 1)2(2γ − 1)2 , γ > 0,

and set σ2(0) = 1+1/(2(ln 2)2) as its limit as γ → 0. As in the previous section,
consider two classes A0 and A1 of distribution tails such that tails in A0 are
lighter than those in A1, and assume that these classes are C(F0)-separable
from the right, where F0 ∈ D(EVγ). Let us propose the following procedure to
distinguish A0 from A1:

select
{
A0, if R̂k,n ≤ 1 + σ(γ)u1−α√

k
,

A1, otherwise.
(16)

This procedure is clearly location- and scale-free by the definition of R̂k,n. More-
over, Theorem 3.14, Theorem 3.15, and Corollary 3.16 imply that the upper
bound over the type I error probabilities of procedure (16) is at most α asymp-
totically, and its power tends to 1 as n → ∞. The procedure for distinguishing
A0 from A1 in case of their C(F0)-separability from the left can be proposed
similarly to the previous section.
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Remark 3.17. Assume that A0 and A1 are C(F0)-separable from the right.
Formally speaking, the procedures (10) and (16) distinguish not the classes A0
and A1, but the wider classes Â0 and Â1, where Â0 consists of all (continuous)
cdfs G satisfying condition C0(G,F0), and Â1 consists of all (continuous) cdfs
H satisfying C(F0, H).

Remark 3.18. Distributions belonging to A0 or A1 (apart from the cdf F0
in case F0 ∈ A0) do not have to satisfy the assumptions of the extreme value
theorem (1).

3.4. The choice of k

An important problem for practitioners is the optimal choice of k. It should
not be too small, since the more observations we use, the more accurate our
conclusions are, but it should not be too large because, roughly speaking, the
tail may “end” earlier and our conclusions about tail behavior in this case may
turn out to be incorrect.

There are many papers devoted to the optimal selection of k in more general
context. For instance, we refer to [30] for a review of such methods for tail index
estimation, see also Section 5.4 in [31], and to [32] for those for extremal index
estimation. These methods are most often based on either empirical principles,
like choosing the optimal value of estimator from some interval of stability of
its values, or on optimization of some metrics (e.g., MSE), often using the boot-
strap.

However, the methods of choosing k proposed in the framework of statistics
of extremes are unsuitable when distinguishing between distribution tail mod-
els. Indeed, statistics of such procedures and tests quite often have a steady
increasing or decreasing trend as k increases, so the stability interval method
cannot be used, and almost never tends to a certain finite value, implying that
the method of optimizing some metric in the form used for parameter estimation
cannot be applied either. To the best of our knowledge, so far in papers devoted
to testing hypotheses about distribution tails this question has been omitted.
Moreover, the most comprehensive review to date of methods for testing hy-
potheses about distribution tails [24] suggests that the optimal selection of k is
an open problem.

Nevertheless, judging by our observations, some regularities can be distin-
guished. As a rule, a test for a hypothesis about the distribution tail (or a
model selection procedure in our case) can be represented as follows

if S(k) > u, then reject H0 (select A1),

where the statistic S(k) is built from the k largest order statistics of a sample,
and u is a constant independent of k. For instance, all the procedures considered
in this article can be represented in such a way. Moreover, it is often possible to
ensure that the limit distribution of S(k) does not depend on k under the null
hypothesis (or for some “boundary” distributions, like in this article, see Theo-
rems 3.9 and 3.14), where k is an intermediate sequence, i.e., it satisfies (14). Let
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us consider such a case. Then three types of S(k) behavior are most common as
k increases, and the type of this behavior does not change on different samples
from the same distribution. Below we provide recommendations for testing the
null hypothesis (or selecting the distribution tail model) for these three types
of behavior:

1. S(k) has a well expressed increasing trend, and its values exceed u almost
immediately. In this case, H0 should be rejected (the class A1 should be
selected);

2. S(k) has a well expressed decreasing trend, and its values become smaller
than u almost immediately. In this case, H0 should not be rejected (the
class A0 should be selected);

3. the values of S(k) oscillate around u for some interval of small values of
k. As a rule, there is no stability of the S(k) values in this case. If there is
no stable interval of these values below or above level u, then no decision
is possible.

Of course, these recommendations are empirical, and the problem of selection
of k while testing hypotheses about distribution tails deserves a separate study.
Possible solutions to this problem may be the use of multiple hypothesis testing
or sequential analysis.

4. Simulation study

In this section, we examine the efficiency of the procedures introduced by the
article in comparison with some tests proposed in the literature. Before this, we
provide some practical recommendations on selecting the parameters of F0 for
better performance of the procedures. We also apply our methods to data from
the Daily Global Historical Climatology Network (GHCNd) [33].

The role of the parameter α below is the following: it denotes the significance
level for all tests considered in this section and corresponds to the asymptotic
upper bound over the empirical type I error probabilities of the model selection
procedures (10) and (16). We set its value equal to 0.05. The number of replicates
used to calculate empirical characteristics below is always equal to 2000.

4.1. Practical recommendations on selecting F0

When discussing the selection of F0 in Remarks 3.12 and 3.13, we noted that
we do not provide a procedure for the optimal choice of F0 (and, consequently,
its parameters). Nevertheless, some practical recommendations can be given.

First note that the statistic used in the location- and scale-free procedure
does not depend on the scale and location parameters of F0, and the statistic
used in the scale-free procedure does not depend on the scale parameter of F0,
so these parameters need not be chosen.

Next, assume that classes A0 and A1 are C(F0)-separable from the right. If
A0 has a natural “left bound” (see Remark 3.13 for definition and, e.g., Exam-
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ples 3.6, 3.7), then F0 should be chosen equal to this bound. In this case the
scale and location parameters need not be chosen as well.

If A0 has no natural “left bound”, like in Examples 3.4 and 3.5, it is enough
to vary only one parameter to derive a good quality procedure. We suggest
choosing some “basic” distribution in A0 quite close to A1 in terms of tail
heaviness (for example, in Section 4.3 we choose the Weibull distribution with
cdf F (x) = 1−exp(−xa), x > 0, and a = 0.5) and selecting the shape parameter
of F0 in such a way that the average empirical type I error probability would
be close to α. For this, the preliminary simulation study should be carried out,
see Section 4.2.

Finally, we note that using the location- and scale-free procedure is preferable
when distinguishing between distributions from the Gumbel MDA, in which the
location parameter can strongly affect the tail behavior for small samples (see
Fig. 6). Moreover, given fixed classes A0 and A1, for different sample sizes the
same separating cdf F0 can be used.

4.2. Impact of F0 choice on procedure performance

In this section, we discuss the impact of the choice of separating cdf F0 on the
performance of the procedures proposed by this article.

First, let us give the details of the preliminary simulation procedure men-
tioned in Section 4.1 whose purpose is to select the optimal value of the shape
parameter given a fixed choice of F0 family. We focus on the performance of
the procedure (16) for distinguishing Weibull-type from log-Weibull-type tails,
which is discussed in detail in Section 4.3. We select F0 given by (8) and show
how the analogs of the type I error probabilities and the power of this proce-
dure change depending on the choice of the parameter b. Two distributions are
selected:

• the Weibull distribution W(0.5, 1) with cdf

F (x) = 1 − exp(−x0.5), x > 0, (17)

whose tail is of Weibull type;
• the standard lognormal distribution LN (0, 1) with density

p(x) = 1√
2πx

exp
(
− (ln x)2/2

)
,

whose tail is of log-Weibull type.

Recall that it is the distribution (17) that we propose as “basic” for distinguish-
ing between Weibull-type and log-Weibull-type tails according to the recom-
mendations given in Section 4.1.

For each distribution, we generated 5000 samples of size n = 2500 and com-
puted the rejection rates of the procedure (16) for k from 5 up to 500 in steps
of 5. In Figure 1 we plot the empirical I type error probabilities (left panel) and
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Fig 1. Empirical type I error probabilities (left) and empirical power (right) of the procedure
(16) for distinguishing Weibull-type from log-Weibull type tails with F0 given by (8) and 5
different values of its shape parameter b, the level α = 0.05 is indicated by a yellow solid line,
n = 2500.

empirical power (right panel) of this procedure for b = 2.5, 3, 3.5, 4, and 4.5, the
shape parameter of F0 given by (8).

According to Figure 1 and the recommendations given in Section 4.1, the
best choice for the parameter b would be 3.5 because the average empirical type
I error probability of the procedure (16) on the “basic” distribution W(0.5, 1) is
closer to 0.05 than those for other values of b. Of course, the choice of b strongly
affects the power of the procedure, see the right panel of Figure 1: the smaller
b the smaller the empirical power.

It is also worth to analyse how much the performance of the procedure
changes if we vary the form of the separating cdf F0. Let us consider distin-
guishing regularly-varying from Weibull-type distribution tails, in this case it is
reasonable to select F0 of log-Weibull type. Indeed, every log-Weibull-type dis-
tribution is separating for these two classes. So, we select four log-Weibull-type
distributions as candidates for F0:

• the log-Weibull distribution LW(λ, 1) with cdf

F (x) = 1 − exp(−(ln x)λ), x > 1, λ > 0,

and λ = 1.5, 2 and 3;
• the standard lognormal distribution LN (0, 1);

and analyse the performance of the procedure (16) on two distributions, where
the first is regularly-varying and the second is of Weibull type:

• the generalized Pareto distribution GP(0.25, 1) with cdf

F (x) = 1 − (1 + 0.25x)−4, x > 0;

• the standard exponential distribution Exp(1).
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Fig 2. Empirical type I error probabilities (left) and empirical power (right) of the procedure
(16) for distinguishing regularly-varying from Weibull-type tails with four F0 listed above, the
level α = 0.05 is indicated by a yellow solid line, n = 2500.

The GP(0.25, 1) distribution can be considered as “basic” in this example. For
each distribution, we generate 5000 samples of size n = 2500, compute the
rejection rates of the procedure (16) with four candidate F0 listed above, and
plot these rates in Figure 2.

Despite LW(1.5, 1) is the closest among considered distributions to the class
of distributions with regularly-varying tails in terms of tail heaviness, it is not
suitable to be a separating cdf for distinguishing between regularly-varying and
Weibull-type tails because of high type I error probability. On the other hand,
selecting LW(3, 1) as F0 for this problem has no sense due to poor perfor-
mance of the procedure on the Exp(1) distribution. Due to the recommenda-
tions given in Section 4.1, it is reasonable to select the LN (0, 1) distribution
as F0 for this problem (or consider for this purpose the LN (0, b) distribution
with the shape parameter b selected by the procedure described above in this
section). It is worth noting the rather different performance of the procedures
with F0 = LN (0, 1) and F0 = LW(2, 1) despite the similar behavior of their
tails. This effect can be explained by the different shapes of these distributions
which influences the different finite sample behavior of the procedure.

4.3. Distinguishing Weibull-type from log-Weibull-type distribution
tails

As mentioned in Section 2, to the best of our knowledge, only one existing
publication concerns distinguishing Weibull-type from log-Weibull-type tails,
namely [20]. They introduced the Jackson- and Lewis-type goodness-of-fit tests
for Weibull-type tail behavior.

We compare the procedures (10) and (16) adapted for distinguishing between
the classes W and LW, i.e., the classes of Weibull-type and log-Weibull-type
distribution tails, respectively, with the Jackson- and Lewis-type tests from [20].
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According to Remark 3.17 we can consider the distributions with tails heavier
than those of LW, in particular, regularly-varying distributions, to be included
in LW. As a separating cdf for procedures (10) and (16), we select F0 given
by (8) with b equal to 1.8 and 3.5, respectively, according to the procedure
described in Section 4.2. We examine the performance of the procedures and
tests listed above on the following set of distributions, which mostly coincides
with those used by [20]. First, we list Weibull-type distributions:

• The Weibull distribution W(a, λ)

F (x) = 1 − exp(−λxa), x > 0, a, λ > 0,

with (a, λ) = (0.5, 1).
• The standard normal distribution N (0, 1).
• The gamma distribution Γ(a, λ) with density

p(x) = λaxa−1

Γ(a) e−λx, x > 0, α, λ > 0,

with (a, λ) = (0.25, 1), (4, 1).
• The modified standard exponential distribution ME(1), defined as the

distribution of the random variable Y = X lnX, where X ∼ Exp(1).
• The extended Weibull model EW(a, β)

F (x) = 1 − r(x)e−xa

, x > 0,

where a > 0 and r(x) is regularly varying at infinity with index β ∈ R.
We set r(x) = (x + 1)−1 and a = 2.

Now we list the log-Weibull-type distributions and distributions with heavier
tails which we use in this section:

• The lognormal distribution LN (μ, σ) with density

p(x) = 1√
2πσ2x

exp
(
− (ln x− μ)2

2σ2

)
, x > 0, μ ∈ R, σ2 > 0,

with μ = 0 and σ2 = 1.
• The log-Weibull distribution LW(λ, c) with cdf

F (x) = 1 − exp(−(ln(x/c))λ), x > c, λ, c > 0,

and (λ, c) = (1.5, 1).
• The generalized Pareto distribution GP(γ, σ) with cdf

F (x) = 1 − (1 + γx/σ)−1/γ , x > 0, γ, σ > 0,

with the cases (γ, σ) = (0.25, 1), (0.5, 1), (1, 1), denoted by P1, P2 and P3,
respectively.

• The t-distribution T (n) with n = 3 degrees of freedom.
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Fig 3. Empirical type I error probabilities of the procedures (10) (blue dashed line), (16) (cyan
solid line), Jackson-type (green dotted line) and Lewis-type (red dash-dotted line) tests for
various distributions, the level α = 0.05 is indicated by a yellow solid line, n = 2500.

For each distribution, we generated samples of size n = 2500 and computed the
rejection rates of all procedures and tests for k from 5 up to 500 in steps of 5.

In Figure 3 for the six distributions from W we plot the empirical type I
error probabilities of the scale-free procedure (10), location- and scale-free pro-
cedure (16), Jackson- and Lewis-type tests, proposed by [20]. Since W is the
null class, we expect to see empirical type I error probabilities below level α
for distributions from W; but only procedure (16) has these probabilities below
0.05 (for W(0.5, 1), reasonably close to 0.05) for all k ≤ 500 and all distribu-
tions from W. However, the Jackson- and Lewis-type tests provide reasonable
empirical type I error probabilities as long as k is not too high, for instance, if
k ≤ 200. We focus on this interval of k values.

In Figure 4 for six distributions from LW we plot empirical power of the
procedures and tests mentioned above. Procedure (16) is more powerful than
the Jackson- and Lewis-type tests and procedure (10) is more powerful than the
Jackson-type test on distributions from the class LW when k ≤ 200.

Analyzing Figs. 3–4, one may conclude that procedure (16) is always prefer-
able to procedure (10). The reason to use (10) instead of (16), in particular,
can be a small sample; see Fig. 5. It can also be reasonable to use (10) for dis-
tinguishing between quite heavy (in particular, regularly-varying) distribution
tails. Fig. 5 shows empirical power of all tests and procedures considered in this
section for distributions LN (0, 1), GP(0.25, 1) and T (3) and n = 1000. The
empirical power of (10) is substantially larger than the empirical power of other
tests/procedures for moderate k.
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Fig 4. Empirical power of the procedures (10) (blue dashed line), (16) (cyan solid line),
Jackson-type (green dotted line) and Lewis-type (red dash-dotted line) tests for distributions
from W, the level α = 0.05 is indicated by a yellow solid line, n = 2500.

Fig 5. Empirical power of the procedures (10) (blue dashed line), (16) (cyan solid line), the
Jackson-type (green dotted line) and Lewis-type (red dash-dotted line) tests for distributions
from LW, the level α = 0.05 is indicated by a yellow solid line, n = 1000.

However, the Jackson- and Lewis-type tests and the procedure (10) are quite
sensitive to the location parameter. In Fig. 6, we provide the empirical type I
error probabilities of all the tests and procedures considered in this section for
the exponential density p(x) = exp(−(x−a))I(x > a) and values a = −1.5, 0, 1.5
of the location parameter, with n = 2500. For a = 0, the empirical type I error
probabilities of all the tests and procedures are below α for all k ≤ 500 (k ≤ 400
for the test (10)) whereas for a = −1.5 the empirical type I error probabilities
of all the tests/procedures except (16) increase substantially. Moreover, for a =
1.5 these probabilities for Lewis-type test are higher 0.05. Since even small
changes of the location parameter can cause large changes in the properties of
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Fig 6. Empirical power of the procedures (10) (blue dashed line), (16) (cyan solid line), the
Jackson-type (green dotted line) and Lewis-type (red dash-dotted line) tests for exponential
distributions with various values of the location parameter, the level α = 0.05 is indicated by
a yellow solid line, n = 2500.

the Jackson- and Lewis-type tests as well as in (10), they should be applied
with great caution in practice when information about the location parameter
is lacking. Moreover, these tests cannot be applied to samples containing only
negative observations, an additional difficulty when using them. Summarizing
the above, we can conclude that the use of the procedure (16) as compared to
the other three procedures considered above is more beneficial for distinguishing
between the classes W and LW.

Remark 4.1. The procedure (16) seems to be quite conservative in the major-
ity of situations (however, the same can be said about the Jackson-type test),
the empirical type I error probabilities being very far from the nominal level
0.05. This phenomenon can be explained by the analogy with the uniformly
most powerful test for testing H0 : θ ≤ θ0 versus H1 : θ > θ0 if a parametric
family of distributions P = {Pθ, θ ∈ Θ ⊂ R} possesses the monotone likelihood
ratio property. This test is in fact conservative for every distribution from the
null hypothesis except Pθ0 which acts as a “boundary” for the null hypothesis,
or as a “separating distribution” (compare with F0 in our setting) for classes
P0 = {Pθ, θ < θ0} and P1 = {Pθ, θ > θ0}. The C0- and C-conditions are some-
what analogs of the monotone likelihood ratio property for the procedures (10)
and (16), which are eventually conservative according to Corollary 3.11 and
Corollary 3.16, respectively.

4.4. Distinguishing log-Weibull-type from regularly-varying
distribution tails

The range of tests that can be used for the problem of this section is quite
wide. Here we consider the procedures (10) and (16) adapted for distinguishing
between the classes LW and RV, where RV is the class of distributions with
regularly-varying tails, which coincides with the Fréchet MDA D(EVγ) for γ > 0.
We compare their efficiency with that of some methods for testing the hypothesis
H̃0 : F ∈ D(EV0), i.e., the hypothesis of belonging to the Gumbel MDA, against
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the alternative H1 : F ∈ D(EVγ), γ > 0; see [25] for an overview of such
methods. Namely, we use

1. the test of [34], see also [35], based on the Shapiro–Wilk type statistic

Wn(k) =
k
( 1
k

∑k−1
i=0 X(n−i) −X(n−k+1)

)2
(k − 1)

∑k−1
j=0

( 1
k

∑k−1
i=0 X(n−i) −X(n−j)

)2 ;

2. the test proposed in [35] and based on the Greenwood-type statistic Gn(k),
a modification of the previous test;

3. the ratio test proposed in [36] and based on the statistic

Rn(k) =
X(n) −X(n−k)

1
k

∑k−1
i=0 X(n−i) −X(n−k)

;

4. and the likelihood ratio test, see, e.g., [36].

Numerical comparisons of these tests can be found in [35] and [36], see also [25].
As a separating cdf for (10) and (16) we select F0 given by (9) with b equal to

0.6 and 1.1, respectively. We compare the efficiency of the tests and procedures
listed above on the following distributions (many of which were introduced in
the previous section) belonging to the Gumbel MDA:

• the standard exponential distribution Exp(1);
• the Weibull distribution W(0.5, 1);
• the gamma distribution Γ(0.25, 1);
• the modified standard exponential distribution ME(1);
• the standard lognormal distribution LN (0, 1);
• the log-Weibull distribution LW(λ, c) with (λ, c) = (1.5, 1), (3, 1);

and on others belonging to the Fréchet MDA:

• the generalized Pareto distribution GP(α, σ) with (γ, σ) = (1/3, 1),
(0.5, 1), (1, 1); respectively.

• the standard Cauchy distribution C(1);
• the t-distribution with 3 degrees of freedom T (3);
• the Burr distribution Burr(c, d) with cdf

F (x) = 1 − 1
(1 + x−c)d , x > 0,

with (c, d) = (2, 2), (3, 2).

For each distribution we generated samples of size n = 2500 and computed
the empirical rejection rates of all tests and procedures for k from 5 up to 500.
The empirical properties of the Hasofer–Wang, Greenwood-type and likelihood
ratio tests are quite similar, so we do not show the results for the last two.

In Figs. 7–8 we plot the empirical type I error probabilities for seven dis-
tributions from the Gumbel MDA and empirical power for seven distributions
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Fig 7. Empirical type I error probabilities of the procedures (10) (blue dashed line), (16) (cyan
solid line), the Hasofer–Wang (green dotted line) and ratio (red dash-dotted line) for various
distributions, the level α = 0.05 is indicated by a yellow solid line, n = 2500.

from the Fréchet MDA of the scale-free procedure (10), location- and scale-free
procedure (16), Hasofer–Wang and ratio tests.

For all the distributions from the Gumbel MDA, except for Exp(1) and
LW(3, 1), the empirical type I error probabilities of the Hasofer–Wang and
ratio tests are greater than α for almost all k values. On the other hand, the
empirical type I error probabilities of procedure (16) exceed α only for LN (0, 1)
and LW(1.5, 1). However, even for these two distributions, these probabilities
are much less than those of the Hasofer–Wang and ratio tests. Procedure (10)
is conservative for all k < 100 on all the distributions considered from the
class LW. But one should not forget that this procedure is the only one in our
comparison that is not location-free. On the other hand, all the tests and proce-
dures considered show quite good efficiency on the distributions from the class
RV, except poor performance of (10) and (16) on the distributions T (3) and
Burr(3, 2).

Summarizing the results of this section, we can conclude that the proce-
dure (16) outperforms other tests/procedures analyzed in this section in terms
of its empirical properties on the distributions from class LW but might have
less power on those of RV, like on GP(1/3, 1), T (3), and Burr(3, 2). However,
the high type I error probabilities of Hasofer–Wang and ratio tests do not allow
us to consider them adequate for testing the hypothesis H0 : F ∈ LW and even
H̃0 : F ∈ D(EV0). This means that tests/procedures for distinguishing between
D(EV0) and D(EVγ), γ > 0, based on tail heaviness, might be more efficient
than tests based on the properties of the GEV and GP models.



5350 I. Rodionov

Fig 8. Empirical power of the procedures (10) (blue dashed line), (16) (cyan solid line), the
Hasofer–Wang (green dotted line) and ratio (red dash-dotted line) tests for various distribu-
tions, the significance level α = 0.05 is indicated by a yellow solid line, n = 2500.

4.5. Real data example

In this section, the Jackson- and Lewis-type tests from [20] and the proce-
dure (16) for distinguishing W from LW (see Section 4.3) are compared on
daily precipitation data collected in Green Bay, US and Jena, Germany; the to-
tal number of observations in both datasets is 3630. The data was taken from the
Daily Global Historical Climatology Network (GHCNd), an integrated database
of daily climate summaries from land surface stations across the globe, [33]. The
two datasets cover the period 1901–2021, but for stationarity reasons, only days
in April were considered, leading to 1331 and 1693 non-zero observations in
Green Bay and Jena, respectively. According to [4] (see paragraph [38] there)
which analyzes the GHCNd data as we do, there is no evidence of monotonic
trend in the data. Moreover, to check for possible clustering of extremes, we
estimate the extremal index of these data using the intervals estimator [37]. To
apply it, we consider a set of thresholds equal to the empirical quantiles of levels
from 0.9 to 0.99. For both datasets and all selected thresholds, the values of the
intervals estimator lie above the 0.9 level, which confirms that the extremes of
both datasets can be considered as asymptotically independent and the applica-
tion of the Jackson- and Lewis-type tests as well as the procedure (16) to these
data is correct.

We focus on the 150 largest observations of these samples. The p-values of
the Jackson- and Lewis-type tests and analogs of p-values of the procedure (16)
(calculated as p = 1 − Φ

(√
k(R̂k,n − 1)/σ(0)

)
, where Φ is the standard normal

cdf) are shown in Figure 9 for k = 10, . . . , 150. Their quite unstable behavior
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Fig 9. P-values of the procedure (16) (cyan solid line), the Jackson-type (green dotted line)
and Lewis-type (red dash-dotted line) tests for daily precipitation data in Green Bay, US (left
panel) and Jena, Germany (right panel); the level α = 0.05 is indicated by a yellow solid line,
k = 10, . . . , 150.

is because there are many identical observations (the total number of unique
non-zero observations is 127 in Green Bay and 172 in Jena; this is explained by
the fact that the amount of precipitation in the GHCNd database is given with
an accuracy of up to one millimeter).

The left panel of Figure 9 suggests that the class W should be selected as
an appropriate tail model for data collected in Green Bay, though traditionally
extremes of precipitation data are modelled by extreme value distributions with
positive shape parameter, see [3]. Indeed, p-values of the Jackson- and Lewis-
type tests and its analogs of the procedure (16) are higher than the level α = 0.05
for all k values shown.

This conclusion is confirmed by the quantile-quantile plots in Figure 10. The
left panel is a Hill plot, or Pareto quantile plot ([2], p.102), showing the fit of the
largest sample observations by the Pareto distribution (and as a consequence
by any regularly-varying distribution), and containing points{(

ln
(n + 1

j

)
, ln(X(n−j+1))

)
; j = 1, . . . , 150

}
.

The right panel is a Weibull plot [38], since it is exactly a quantile-quantile
plot for high quantiles of the Weibull distribution W(a, λ), see Section 4.3 for
definition. It is defined by points{(

ln
(

ln
(n + 1

j

))
, ln(X(n−j+1))

)
; j = 1, . . . , 150

}
and is inspired by approximation (6) in [39]. The central panel is a log-Weibull
plot also introduced in [38], a quantile-quantile plot for high quantiles of the
log-Weibull distribution LW(λ, c), containing points{(

ln
(

ln
(n + 1

j

))
, ln

(
ln(X(n−j+1)))

)
; j = 1, . . . , 150

}
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Fig 10. Hill (left), log-Weibull (center) and Weibull (right) plots of the largest k = 150 daily
precipitation observations in Green Bay, US, in April during 1901–2021, n = 1331, the red
solid lines correspond to the best linear fits to these data.

Fig 11. Hill (left), log-Weibull (center) and Weibull (right) plots of the largest k = 150 daily
precipitation observations in Jena, Germany, in April during 1901–2021, n = 1693, the red
solid lines correspond to the best linear fits to these data.

The quite good fit shown by the Weibull plot can be interpreted as an empirical
validation of the Weibull-type behavior of the tail, whereas the Hill and log-
Weibull plots are clearly concave.

The right panel of Figure 9 is not so univocal as its left one. The Jackson- and
Lewis-type tests suggest that the class W should be selected as a tail model for
data collected in Jena. However, analogs of p-values of the procedure (16) occur
both below and above the level α = 0.05; moreover, there is a stable interval of
R̂k,n values below α for k from 60 to 150, which suggests that the class LW (or,
maybe, a model with heavier tails) should be selected as a tail model for this
data according to Section 3.4.

The quantile-quantile plots in Figure 11 also do not allow us to draw a clear
conclusion about which of the three models is the best. Whereas the Hill plot
looks a bit concave, the log-Weibull and Weibull plots show a good fit, that is
both the log-Weibull and Weibull tail models look to be well suited to describe
the precipitation data collected in Jena.

5. Proofs

5.1. Proof of Proposition 3.2

The continuity of G and infinity of its right endpoint imply that for all c > 1
there exists some c̃ > 1, c̃ = c̃(t), such that c = uG(c̃t)/uG(t). From Cδ(H,G) it
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follows that
uH(t) ≥ uG(t)

uH

(
c̃1+δt

)
uG(c̃t) .

Using this relation, we derive

(
1 −H(cuH(t))

)1−ε

1 −G(cuG(t)) =

(
1 −H

(
uG(c̃t)
uG(t) uH(t)

))1−ε

1 −G(uG(c̃t))

≤

(
1 −H

(
uG(c̃t)
uG(t)

uH(c̃1+δt)
uG(c̃t) uG(t)

))1−ε

1 −G(uG(c̃t))

=
(
1 −H(uH(c̃1+δt))

)1−ε

1 −G(uG(c̃t)) = (c̃1+δt)−(1−ε)

(c̃t)−1 = tε

= (1 −H(uH(t)))1−ε

1 −G(uG(t)) ,

whence the proposition follows.

5.2. Proof of Example 3.4

First let us show that for all H ∈ A1 the condition Cδ(F0, H) holds for some
δ > 0. We have uF0(t) = exp

(
(ln ln t/b)2

)
. By its definition (4), the function

ln(1 − H(et)) is regularly varying at infinity with index 1/ϑ, ϑ > 0, thus 1 −
H(t) = exp

(
−(ln t)1/ϑ�(ln t)

)
, t > 1, for some slowly varying at infinity function

�(t). Therefore, by properties of slowly varying functions (see, e.g., [40]), there
is a slowly varying function �
(t) such that uH(t) = exp

(
(ln t)ϑ�
(ln t)

)
.

So, to check the condition Cδ(F0, H), we show that for some δ > 0 there is a
t0 such that for all t > t0 the ratio

uF0(c1+δt)/uH(ct) = exp
(
(ln ln(c1+δt)/b)2 − (ln(ct))ϑ�
(ln(ct))

)
= exp(f(c, t))

does not increase with respect to c > 1. For this purpose it is enough to show
that the derivative with respect to c of the function in the exponent on the
right-hand side of the latter relation is negative for all t > t0 and c > 1. Below
we assume that the derivative of �
 is eventually monotone. If the slowly varying
function �(t) is differentiable and its derivative is eventually monotone, then

lim
t→∞

t�′(t)/�(t) = 0, (18)

see, e.g., Theorem 1.7.2, [40]. Thus, for large t0 we have

∂f(c, t)
∂c

= 1
c

2(1 + δ)
b2

ln ln(c1+δt)
ln(c1+δt) − 1

c
ϑ(ln(ct))ϑ−1�
(ln(ct))(1 + o(1))

< t

(
1
ct

2(1 + δ)
b2

ln ln(ct)
ln(ct) − 1

ct
ϑ(ln(ct))ϑ−1�
(ln(ct))(1 + o(1))

)
= t f̃ ′(ct), (19)
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with
f̃(x) = (1 + δ)((ln ln x)/b)2 − (ln x)ϑ�
(ln x).

It is easy to see that there exists x0 such that for all x > x0 the derivative of
f̃(x) is negative. Selecting t0 = x0, we finally derive by (19) that ∂f(c, t)/∂c < 0
for all t > t0 and c > 1.

Checking the condition C0(G,F0) for G ∈ A0, where A0 is the class of tails
of Weibull-type distributions, is much easier. Indeed, using properties of slowly
varying functions and the definition of Weibull-type distributions (see formula
(4)), we obtain uG(t) = (ln t)θ�
(ln t) for θ > 0 and some slowly varying �
(t).
Then we need to show that the function

uG(t)/uF0(t) = exp
(
θ ln ln t + ln �
(ln t) − ((ln ln t)/b)2

)
does not increase eventually. Assuming again that the derivative of �
 is eventu-
ally monotone, we can show this by proving that the derivative of the function in
the exponent on the right-hand side of the latter relation is eventually negative.
This follows immediately by using (18).

5.3. Proof of Theorem 3.9

We have √
k(R̃k,n − 1) =

√
k(R̃k,n −Rk,n) +

√
k(Rk,n − 1),

where Rk,n is defined by (12).
First, let us consider the asymptotic behavior of Rk,n. We have, − ln(1 −

F0(X(n−i)))
d= E(n−i), i = 0, . . . , n− 1, where E(1) ≤ · · · ≤ E(n) denote the or-

der statistics of independent standard exponential random variables E1, . . . , En.
Then, by the Rényi representation [41]

Rk,n
d= 1
k

k∑
i=1

(
E(n−k+i) −E(n−k)

) d= 1
k

k∑
i=1

E∗
(i) = 1

k

k∑
i=1

E∗
i , (20)

where {E∗
(i)}ki=1 are the order statistics of independent standard exponential

random variables {E∗
i }ki=1. Thus by the central limit theorem,

√
k(Rk,n − 1) d−→ N(0, 1), (21)

see also the proof of Theorem 1 in [11].
So to complete the proof, it is enough to show that

√
k(R̃k,n −Rk,n) P−→ 0.

To prove this, we use the Chebyshev inequality for
√
k(R̃k,n − Rk,n) given

X(n−k) = q and the law of total probability. For this purpose, we evaluate the
asymptotic behaviour of E(R̃k,n−Rk,n | X(n−k)) and Var(R̃k,n−Rk,n | X(n−k)).
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Explicit form of E(R̃k,n −Rk,n | X(n−k) = q).

We have

R̃k,n −Rk,n =
(

ln k

n
− ln(1 − F0(X(n−k)))

)
− 1

k

n∑
i=n−k+1

ln
1 − F0(u0(n/k)X(i)/X(n−k))

1 − F0(X(i))
.

Consider the conditional distribution of R̃k,n − Rk,n given X(n−k) = q. By
Lemma 3.4.1 in [1], the joint conditional distribution of the set of order statis-
tics {X(i)}ni=n−k+1 given X(n−k) = q coincides with the (unconditional) joint
distribution of the set of order statistics {X∗

(i)}ki=1 of i.i.d. random variables
{X∗

i }ki=1 with common cdf

Fq(x) = P (X ≤ x | X > q) = F0(x) − F0(q)
1 − F0(q)

, x > q.

Thus, given X(n−k) = q,

R̃k,n−Rk,n
d=
(

ln k

n
− ln(1 − F0(q))

)
− 1

k

k∑
i=1

ln 1 − F0(u0(n/k)X∗
i /q)

1 − F0(X∗
i ) . (22)

Hereafter we write u0 instead of u0(n/k) for convenience. For Y ∗ := ln(1 −
F0(u0X

∗
1/q))− ln(1− F0(X∗

1 )), after direct, but tedious calculations, we derive

EY ∗ = ln 1 − F0(u0)
1 − F0(q)

− (f(q) − 1), (23)

where
f(q) = f(q;n, k) =

∫ ∞

q

u0

q

1 − F0(x)
1 − F0(q)

p0(u0x/q)
1 − F0(u0x/q)

dx, (24)

and p0(t) denotes the pdf of F0. This and (22) imply that

E(R̃k,n −Rk,n | X(n−k) = q) = f(q) − f(u0) = f(q) − 1.

Asymptotics of
√
kE(R̃k,n −Rk,n | X(n−k)).

Next, we show that
√
kE(R̃k,n −Rk,n | X(n−k)) =

√
k(f(X(n−k)) − f(u0))

P−→ 0. (25)

As long as F0(u0(x)) = 1−1/x, we have p0(u0(x))u′
0(x) = x−2 and (xu′

0(x))−1 =
xp0(u0(x)). Lemma 2.2.1 in [1] implies that

n√
k
p0(u0)(X(n−k) − u0)

d→ N(0, 1). (26)
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Applying the delta method to (26), we obtain

n√
k
p0(u0)

f(X(n−k)) − f(u0)
f ′(u0)

d−→ N(0, 1). (27)

This is not the classical delta method, since u0 is not a constant and so (27)
should be established. By the mean value theorem, we have f(X(n−k))−f(u0) =
f ′(c)(X(n−k)−u0) a.s., where c is some (random) value between X(n−k) and u0.
Thus it is enough to show that f ′(c)/f ′(u0)

P−→ 1. The proof uses the explicit
form of f ′ provided below and is based on the multiple application of Condi-
tion 3.8 and (26); it is very technical and is not of special interest. Thus here
and in similar situations below we omit such technical details.

Next, calculating directly f ′(q) and substituting q = u0, we derive

f ′(u0) = n

k

(
p0(u0) −

∫ ∞

u0

x

u0

p2
0(x)

1 − F0(x)dx
)
.

For absolutely continuous distributions with infinite right endpoint belonging
to D(EVγ),

1 − F0(u)
up0(u) → γ, u → ∞, (28)

see, e.g., Theorem 1.1.11 in [1], for γ > 0 and p. 18 ibid. for γ = 0. Using the
latter, L’Hôpital’s rule and Condition 3.8, we get

lim
u→∞

up0(u)∫∞
u

x p2
0(x)

1−F0(x)dx
= − lim

u→∞
up′0(u) + p0(u)

up2
0(u)/(1 − F0(u))

= − lim
u→∞

p′0(u)(1 − F0(u))
(p0(u))2 − lim

u→∞
1 − F0(u)
up0(u) (29)

= 1,

whence
k

np0(u0)
f ′(u0)

P−→ 0.

Combining the latter and (27), we derive (25).

Asymptotics of Var(R̃k,n −Rk,n | X(n−k)).

First, we have,

Var(R̃k,n −Rk,n | X(n−k) = q) = 1
k

Var
(

ln k

n
− ln(1 − F0(q)) − Y ∗

)
= 1

k
Var(Y ∗).

Integrating by parts, we derive for the second moment of Y ∗

E(Y ∗)2 =
∫ ∞

q

(
ln 1 − F0(u0x/q)

1 − F0(x)

)2

d

(
F0(x) − F0(q)

1 − F0(q)

)
=

(
ln 1 − F0(q)

1 − F0(u0)

)2
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+2
∫ ∞

q

ln 1 − F0(u0x/q)
1 − F0(x)

(
p0(x)

1 − F0(x) − u0

q

p0(u0x/q)
1 − F0(u0x/q)

)
1 − F0(x)
1 − F0(q)

dx

=:
(

ln 1 − F0(q)
1 − F0(u0)

)2

+ 2h(q).

From the latter and (23),

E(Y ∗)2 − (EY ∗)2 = 2h(q) − 2(f(q) − 1) ln 1 − F0(q)
1 − F0(u0)

− (f(q) − 1)2 =: V (q).

Fix δ: 0 < δ < 1/2. Let us show that

k2δV (X(n−k))
P−→ 0. (30)

Note that V (X(n−k)) = kVar(R̃k,n − Rk,n | X(n−k)). Let E1, . . . , En be i.i.d.
standard exponential variables and E(1) ≤ · · · ≤ E(n) be their order statistics.
By continuity of F0, we get − ln(1 − F0(X(n−k)))

d= E(n−k), thus

−
√
k ln

(1 − F0(X(n−k))
1 − F0(u0)

)
d=
√
k
(
E(n−k) − ln(n/k)

) d−→ N(0, 1),

by Lemma 2.2.1 in [1]. From the latter, (25) and the relation f(u0) = 1, it
follows that

k2δ
(

2(f(X(n−k)) − 1) ln
1 − F0(X(n−k))

1 − F0(u0)
+ (f(X(n−k)) − 1)2

)
P−→ 0.

To prove (30) it remains to show that k2δh(X(n−k))
P−→ 0. For this purpose we

apply the delta method again. In this situation we cannot use the version of the
delta method which we applied above since h′(u0) = 0, so we aim at finding the
second derivative of h(q) and substituting q = u0. After tedious calculations we
obtain

h′′(u0) = 1
u2

0(1 − F0(u0))

∫ ∞

u0

x2p3
0(x)

(1 − F0(x))2 dx.

Note also that h(u0) = 0. From (26) and the relation 1 − F0(u0) = k/n we
obtain

n2

k

p2
0(u0)(h(X(n−k)) − h(u0))

2h′′(u0)
=

np2
0(u0)h(X(n−k))∫∞

u0
2x2

u2
0

p3
0(x)

(1−F0(x))2 dx

d−→ ξ2, (31)

where ξ ∼ N(0, 1) and the asymptotics of the integral in the denominator follows
from the L’Hôpital rule, Condition 3.8 and (28),

lim
u→∞

u2p2
0(u)/(1 − F0(u))∫∞

u
2x2 p3

0(x)
(1−F0(x))2 dx

= 1
2 .
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Substituting the latter into (31) and using the Slutsky theorem, we derive

kh(X(n−k))
d−→ ξ2.

Therefore, for δ ∈ (0, 1/2) it holds k2δh(X(n−k))
P−→ 0, that proves (30).

Application of the Chebyshev inequality.

To complete the proof, we must show that

Tk,n := |
√
k(R̃k,n −Rk,n) −

√
k(f(X(n−k)) − f(u0)) | P−→ 0, (32)

that, together with (25), implies the theorem. By the Chebyshev inequality, for
every ε > 0 we get

P
(
Tk,n > ε | X(n−k) = q

)
≤

kVar(R̃k,n −Rk,n | X(n−k) = q)
ε2 = V (q)

ε2 .

By the latter and the law of total probability, we finally derive

P (Tk,n > ε) = P
(
Tk,n > ε, kδ

√
V (X(n−k)) ≤ ε

)
+ P

(
Tk,n > ε, kδ

√
V (X(n−k)) > ε

)
≤ P

(
Tk,n > kδ

√
V (X(n−k))

)
+ P

(
kδ
√

V (X(n−k)) > ε
)

=
∫
R

P
(
Tk,n > kδ

√
V (X(n−k)) | X(n−k) = q

)
pX(n−k)(q)dq

+ P
(
kδ
√
V (X(n−k)) > ε

)
≤

∫
R

k−2δpX(n−k)(q)dq + P
(
kδ
√

V (X(n−k)) > ε
)

= k−2δ + P
(
kδ
√

V (X(n−k)) > ε
)
,

where pX(n−k)(q) is the pdf of X(n−k). The result follows from (30).

5.4. Proof of Theorem 3.10

To prove Theorem 3.10, we need the following result.

Lemma 5.1. Let X0
1 , . . . , X

0
n be i.i.d. random variables with common cdf F0.

Then under the conditions of Theorem 3.10

1 − F0(cX0
(n−k))

1 − F0(X0
(n−k))

− 1 − F0(cu0)
1 − F0(u0)

= OP (1/
√
k) (33)

uniformly in c > 1.
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Proof. Applying the delta method for the function f(x) = (1 − F0(cx))/(1 −
F0(x)) to the relation (26), we derive

n√
k
p0(u0)

f(X0
(n−k)) − f(u0)
f ′(u0)

d−→ N(0, 1).

Thus to prove (33) it is enough to show that
√
k

n

f ′(u0)
p0(u0)

= O(1/
√
k) (34)

uniformly in c > 1. As long as

f ′(u0) =
(

1 − F0(cx)
1 − F0(x)

)′

x=u0

= p0(u0)(1 − F0(cu0)) − cp0(cu0)(1 − F0(u0))
(1 − F0(u0))2

,

then using 1 − F0(u0) = k/n we can simplify the relation (34) to

1 − F0(cu0)
1 − F0(u0)

− c
p0(cu0)
p0(u0)

= O(1) (35)

uniformly in c > 1. Clear, F 0(cu0)/F 0(u0) ≤ 1 for all c > 1. If F0 ∈ D(Gγ)
with γ > 0, boundness from above of the ratio cp0(cu0)/p0(u0) follows from
Potter’s inequality, see, e.g., Proposition B.1.9 in [1]. If γ = 0, then the required
fact follows from formula (1.1.33) ibid., that holds under Condition 3.8, relation
p0(u0(t))u′

0(t) = t−2 and Potter’s inequality again. Hence (35) and (33) hold.

Let us show that under the condition Cδ(F0, F1), δ > 0,

√
k(R̃k,n − 1) �

√
k

(
1
k

k∑
i=1

Ei − 1
)

for some i.i.d. random variables {Ei}i≥1 with mean more than 1, and the result
follows from the central limit theorem. Here X � Y means that X is stochas-
tically larger than Y . The proof remains almost the same if Cδ(F1, F0) holds
with δ > 0 instead of Cδ(F0, F1).

Let X1, . . . , Xn be i.i.d. random variables with cdf F1. Consider the asymp-
totic behavior of the statistic R̃k,n as n → ∞. Denote Yi = ln(k/n) − ln(1 −
F0(u0X

∗
i /q)), i = 1, . . . , k, where {X∗

i }ki=1 are i.i.d. random variables defined in
the same way as in Theorem 2 with common cdf

F 1
q (x) = F1(x) − F1(q)

1 − F1(q)
, q < x.

By Lemma 3.4.1 in [1], the joint distribution of the order statistics {Y(i)}ki=1 of
{Yj}ki=1 coincides with the conditional joint distribution of the set of random
variables {Zj}kj=1 given X(n−k) = q, with

Zj = ln(k/n) − ln(1 − F0(u0X(n−j+1)/X(n−k))), j = 1, ..., k.
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Clearly, R̃k,n = 1
k

∑k
j=1 Zj . Thus, the conditional distribution of R̃k,n given

X(n−k) = q coincides with the distribution of 1
k

∑k
i=1 Yi. Therefore,

P (Y1 ≤ x) = P (ln(1 − F0(u0X
∗
1/q)) ≥ ln(k/n) − x)

= P
(
X∗

1 ≤ qu−1
0 F←

0 (1 − ke−x/n)
)

(36)

=
F1

(
qu−1

0 F←
0 (1 − ke−x/n)

)
− F1(q)

1 − F1(q)
.

By assumption, the cdfs F1 and F0 satisfy either the condition Cδ(F0, F1)
or Cδ(F1, F0) with δ > 0 by assumptions. Assume that Cδ(F0, F1) holds with
some δ > 0 and t0, if Cδ(F1, F0) is satisfied the proof is similar. If x∗ = +∞,
then X(n−k) → +∞ almost surely, so we can deal only with the case n/k > t0.
Denote the quantile function of F1 by u1(t) and write u1 instead of u1(n/k). By
Proposition 1,

1 − F1(cu1)
1 − F1(u1)

≥ (1 − F0(cu0))1−ε

(1 − F0(u0))1−ε
, c > 1, (37)

for some ε > 0.
Denote r = u←

1 (q). Note also that if X(n−k) = u1(ξ) for some random ξ, then
u0(ξ)

d= X0
(n−k) with {X0

i }ni=1 introduced in Lemma 5.1. Let us rewrite (36),
using (37) with c = u−1

0 F←
0 (1− ke−x/n) and (33). Uniformly in x > 0, we have

P (Y1 ≤ x) = 1 −
1 − F1

(
u1(r)u−1

0 F←
0 (1 − ke−x/n)

)
1 − F1(u1(r))

≤ 1 −
(
1 − F0(u0(r)u−1

0 F←
0 (1 − ke−x/n))

)1−ε(
1 − F0(u0(r))

)1−ε

= 1 −
(

1 − F0(F←
0 (1 − ke−x/n))

1 − F0(u0)
+ O(1/

√
k)
)1−ε

= 1 −
(
e−x + O(1/

√
k)
)1−ε

= 1 − e−(1−ε)x + O(1/
√
k).

Since O(1/
√
k) vanishes, for k large enough there exists a cdf G(x) such that

G(x) ≥ min(1 − e−(1−ε)x + O(1/
√
k), 1)

with mean (1−ε1)−1, ε1 ∈ (0, ε), and variance σ2 > 0. Hence, Y1 is stochastically
larger than a random variable E with cdf G. Next, let E1, . . . , Ek be i.i.d. random
variables with common cdf G, then

√
k

(
1
k

k∑
i=1

Yi − 1
)

�
√
k

(
1
k

k∑
i=1

Ei − 1
)
. (38)

Provided (38) holds for all q > x0,

√
k(R̃k,n − 1) �

√
k

(
1
k

k∑
i=1

Ei − 1
)
. (39)



Selection between distribution tail models 5361

By the central limit theorem,

√
k

(
1
k

k∑
i=1

Ei −
1

1 − ε1

)
d−→ N(0, σ2),

so
√
k

(
1
k

k∑
i=1

Ei − 1
)

P−→ +∞,

which with (39) completes the proof of Theorem 3.10.

5.5. Proof of Corollary 3.11

Let us assume that C0(F0, F1) holds; the proof under C0(F1, F0) is similar.
Condition C0(F0, F1) implies that

u0(ct)
u0(t)

≤ u1(ct)
u1(t)

(40)

for all c ≥ 1 and t ≥ t0. As mentioned in the proof of Theorem 3.10, under
the assumptions of Corollary 3.11, X0

1
d= u0(u←

1 (X1)) =: V1. Hence substituting
t = u←

1 (X(n−k)) and c = u←
1 (X(i))/u←

1 (X(n−k)) in (40), we get for all i ∈
{n− k + 1, . . . , n} and n large enough

V(i)

V(n−k)
=

u0(u←
1 (X(i)))

u0(u←
1 (X(n−k)))

≤
u1(u←

1 (X(i)))
u1(u←

1 (X(n−k)))
=

X(i)

X(n−k)
, (41)

where V(1) ≤ · · · ≤ V(n) are the order statistics of i.i.d. random variables {Vi}ni=1,
Vi = u0(u←

1 (Xi)) for i ∈ {1, . . . , n}. Since (V(1), . . . , V(n))
d=

(X0
(1), . . . , X

0
(n)), it follows from (41) that

R̃0
k,n

d= ln k

n
− 1

k

n∑
i=n−k+1

ln(1 − F0(u0V(i)/V(n−k)))

≤ ln k

n
− 1

k

n∑
i=n−k+1

ln(1 − F0(u0X(i)/X(n−k))) = R̃k,n.

The result follows.

5.6. Proof of Theorem 3.14

To prove Theorem 3.14, we need the following result.
Lemma 5.2. Let E1, . . . , En be i.i.d. standard exponential with E(1) ≤ · · · ≤
E(n), their order statistics. Then

n√
k

((
E(k)
E(2k)

)
+
(

ln(1 − k/n)
ln(1 − 2k/n)

))
d−→ N

((
0
0

)
,

(
1 1
1 2

))
, (42)

if k → ∞, k/n → 0 as n → ∞.
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Proof. The result of the lemma is almost the direct consequence of the following
two-dimensional extension of Smirnov’s lemma [42], see also Lemma 2.2.3 in [1].
Let U(1) ≤ · · · ≤ U(n) be order statistics from a standard uniform sample. Then,
if k → ∞, k/n → 0 as n → ∞,( U(n−k)−bn,k

an,k
U(n−2k)−bn,2k

an,2k

)
d−→ N

((
0
0

)
,

(
1 1/

√
2

1/
√

2 1

))
, (43)

where for t ∈ N, t < n, bn,t = (n− t)/(n−1) and an,t =
√

bn,t(1 − bn,t)/(n− 1).
The proof of (43) is just a repetition of that of Lemma 2.2.3 in [1]. Firstly, the
pdf of the random vector (U(n−k), U(n−2k)) is

n!
((k − 1)!)2(n− 2k)! (1 − x)k−1(x− y)k−1yn−2k,

thus the pdf of the vector
(
(U(n−k) − bn,k)/an,k, (U(n−2k) − bn,2k)/an,2k

)
is

n!
((k − 1)!)2(n− 2k)! an,k an,2k(1 − bn,k)k−1(bn,k − bn,2k)k−1(bn,2k)n−2k

×
(
1 − an,kx

1 − bn,k

)k−1(
1 + an,kx− an,2ky

bn,k − bn,2k

)k−1(
1 + an,2kx

bn,2k

)n−2k
.

By the Stirling formula one can conclude that the expression on the first line of
the latter formula tends to (

√
2π)−1, whereas the expression on the second line

tends to
exp(−x2 +

√
2xy − y2).

Thus, (43) follows from the fact that pointwise convergence of the sequence of
pdfs implies weak convergence of the probability distributions (Scheffe’s theo-
rem).

Next, noticing that an,k ∼ an,2k/
√

2 ∼
√
k/n and using the properties of

multivariate normal distribution, we have

n√
k

((
U(n−k)
U(n−2k)

)
−
( n−k

n−1
n−2k
n−1

))
d−→ N

((0
0

)
,
(11
12

))
. (44)

Notice that (E(k), E(2k))
d= (− ln(U(n−k)),− ln(U(n−2k))) and denote f(x) =

− ln x. We derive by the mean value theorem

n√
k

((
E(k)
E(2k)

)
+
(

ln
(
n−k
n−1

)
ln

(
n−2k
n−1

))) d= n√
k

(
f(U(n−k)) − f

(
n−k
n−1

)
f(U(n−2k)) − f

(
n−2k
n−1

))
= n√

k

(
f ′(c1)

(
U(n−k) − n−k

n−1
)

f ′(c2)
(
U(n−2k) − n−2k

n−1
))

where ci, i = 1, 2, are some (random) values between U(n−ik) and (n−ik)/(n−1),
i = 1, 2, respectively. But for i = 1, 2 f ′(ci) = −1/ci, U(n−ik) → 1 in probability
and (n− ik)/(n−1) → 1, thus f ′(ci) → −1 in probability. This and the Slutsky
theorem imply (42).
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The schemes of the proofs of Theorems 3.9 and 3.14 coincide. However, the
proof of the latter is more difficult technically since the statistic R̂k,n depends
on X(n−k) and X(n−2k) together. Moreover, if γ > 0 then

√
k(R̂k,n − Rk,n) no

longer tends to 0 in probability.

Explicit form of E(R̂k,n −Rk,n | X(n−k) = q,X(n−2k) = q̂).

Let us write
√
k(R̂k,n −Rk,n) in explicit form

√
k(R̂k,n −Rk,n) =

√
k

(
ln k

n
− ln(1 − F0(X(n−k)))

)
− 1√

k

n∑
i=n−k+1

[
ln
(

1−F0

(
u0+

X(i)−X(n−k)

X(n−k)−X(n−2k)
(u0−û0)

))

− ln(1−F0(X(i)))
]
,

where û0 = u0(n/(2k)), and consider its conditional distribution given X(n−k) =
q and X(n−2k) = q̂. Using argument similar to that from the proof of Theo-
rem 3.9 and inheriting the notation from there, we get
√
k(R̂k,n −Rk,n) | X(n−k) = q,X(n−2k) = q̂

d=
√
k

(
ln k

n
− ln(1 − F0(q))

)
(45)

− 1√
k

k∑
i=1

[
ln
(

1−F0

(
u0+

X∗
i −q

q−q̂
(u0−û0)

))

− ln(1−F0(X∗
i ))

]
.

Hereinafter we write F (x) instead of 1 − F (x). Write

Y ∗ = lnF 0

(
u0 + X∗

1 − q

q − q̂
(u0 − û0)

)
− lnF 0(X∗

1 )

and find its mean. After integrating by parts, we obtain

EY ∗ = ln F 0(u0)
F 0(q)

−
∞∫
q

F 0(x)
F 0(q)

(
u0 − û0

q − q̂

p0
(
u0 + (u0 − û0)(x− q)/(q − q̂)

)
F 0

(
u0 + (u0 − û0)(x− q)/(q − q̂)

) − p0(x)
F 0(x)

)
dx

=: ln F 0(u0)
F 0(q)

+ 1 − f(q, q̂).
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from which and (45) we get

E(R̂k,n −Rk,n | X(n−k) = q,X(n−2k) = q̂) = f(q, q̂) − 1.

Evaluating the asymptotics of
√
kE(R̃k,n −Rk,n | X(n−k), X(n−2k)).

Now find the asymptotics of
√
k(f(X(n−k), X(n−2k)) − 1) =

√
kE(R̃k,n −Rk,n | X(n−k), X(n−2k)).

In contrast to the proof of Theorem 3.9, we need the multivariate delta method.
First of all, observe that

(X(n−k), X(n−2k))
d=
(
u0

( 1
1 − exp(−E(k))

)
, u0

( 1
1 − exp(−E(2k))

))
,

where the order statistics E(k) and E(2k) were introduced in Lemma 5.2. Ap-
plying the multivariate delta method for the function

g(x, y) = f

(
u0

( 1
1 − e−x

)
, u0

( 1
1 − e−y

))
to the relation (42), we get

√
k
(
f(X(n−k), X(n−2k)) − f(u0, û0)

)
k
n

√
D

d−→ N(0, 1), (46)

where
D = ∇g

(
1 1
1 2

)
(∇g)T

and ∇g is the gradient of g(x, y) at the point (− ln(1 − k/n),− ln(1 − 2k/n)).
The correctness of applying the multivariate delta method here is established
using the same argumentation as of (27) (in fact, (46) can be derived from the
two-dimensional version of (26)), is very technical and thus omitted.

Observe that f(u0, û0) = 1. Thus the asymptotics of
√
kE(R̃k,n − Rk,n |

X(n−k), X(n−2k)) strongly depend on those of k
n

√
D. One can show that

k

n

√
D → 1√

2(2γ − 1)
γ

γ + 1 , (47)

where for γ = 0 the right-hand side should be understood as (
√

2 ln 2)−1. The
proof of (47) is technical and includes multiple use of the properties of regularly-
varying functions and L’Hôpital’s rule; it is given in the Supplementary material
[28].

Summarizing the above, we proved that under the assumptions of the theo-
rem,

√
k
(
f(X(n−k), X(n−2k)) − 1

) d→ N
(
0, 1 + γ2

2(γ + 1)2(2γ − 1)2
)
, (48)
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where for γ = 0 the ratio on the right-hand side should be understood as
1/(2(ln 2)2).

Final steps

The proof of the relation
√
k
(
R̂k,n −Rk,n

)
−
√
k
(
f(X(n−k), X(n−2k)) − 1

) P−→ 0 (49)

does not contain new ideas as compared to the proof of the similar relation (32)
and the previous steps of the current proof, so we omit it. Finally, we have

√
k(R̂k,n − 1) =

√
k
(
Rk,n − 1)

+
√
k
[(
R̂k,n −Rk,n

)
−

(
f(X(n−k), X(n−2k)) − 1

)]
+
√
k
(
f(X(n−k), X(n−2k)) − 1

)
.

Observe that the properties of iid exponential random variables imply that the
third summand on the right-hand side of the latter relation is independent of
the first. Indeed, recall that by (20)

Rk,n
d= 1
k

k−1∑
i=0

(E(n−i) −E(n−k))

and − ln(1 − F0(X(i)))
d= E(i), i = 1, . . . , n, with {Ei}ni=1 i.i.d. standard ex-

ponential. Next, it follows from the Rényi representation [41] that E(n−k) and
E(n−2k) are independent of {E(n−i) − E(n−k)}k−1

i=0 . Hence, ln(1 − F0(X(n−k)))
and ln(1 − F0(X(n−2k))) are independent of Rk,n, and the required statement
follows from the fact that

(X(n−k), X(n−2k)) =
(
�(− ln(1 − F0(X(n−k)))), �(− ln(1 − F0(X(n−2k))))

)
a.s. with �(x) = u0

(
(1 − e−x)−1). This argument together with (21), (48)

and (49) completes the proof of Theorem 3.14.

5.7. Proof of Theorem 3.15

The scheme of the proof of Theorem 3.15 is the same as for Theorem 3.10, so
it is omitted. Note only, that for the proof of the relation similar to (34), one
needs to use the multivariate delta method and Lemma 5.2. Next, instead of
the relation (37) used to find the upper bound for P (Y1 ≤ x), one should use
the relation

F 1(u1(t) + x(u1(t) − u1(t/2)))
F 1(u1(t))

≥
(
F 0(u0(t) + x(u0(t) − u0(t/2)))

)1−ε

(F 0(u0(t)))1−ε
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for all x > 0. The latter follows from the condition Cδ(F0, F1). Indeed,

F 1(u1(t) + x(u1(t) − u1(t/2)))
F 1(u1(t))

=
F 1

(
u1(t)(1 + x− xu1(t/2)/u1(t))

)
F 1(u1(t))

≥
F 1

(
u1(t)(1 + x− xu0(t/2)/u0(t))

)
F 1(u1(t))

≥
(
F 0(u0(t) + x(u0(t) − u0(t/2)))

)1−ε

(F 0(u0(t)))1−ε
,

where the first and second relations follow from C0(F0, F1) and Proposition 1,
respectively.

5.8. Proof of Corollary 3.16

The proof of Corollary 3.16 is like that of Corollary 3.11 except that instead of
the relation (41) one should use the inequality

V(i) − V(n−k)

V(n−k) − V(n−2k)
≤

X(i) −X(n−k)

X(n−k) −X(n−2k)
,

that immediately follows from C0(F0, F1) and (41).
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