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Abstract: We develop a doubly penalized constrained maximum likeli-
hood (dPCML) method for using summary information from external stud-
ies to improve estimation efficiency for an internal study that has individual-
level data, in the presence of study population heterogeneity and external
information uncertainty. The dPCML method can simultaneously select
and incorporate the external information that agrees with the internal study
while properly accounting for the uncertainty of the external information. It
allows partial information where only some but not all parameter estimates
from external models are reported and/or certain parameters are known to
be unequal between the internal and external studies. It can still effectively
account for the external information uncertainty with only external sample
sizes available instead of standard errors of parameter estimates. It covers
some existing data integration methods as special cases. A detailed theo-
retical investigation is carried out to establish asymptotic properties of the
dPCML estimator, including estimation consistency, external information
selection consistency, and asymptotic normality. We also provide an algo-
rithm for implementation and conduct comprehensive simulation studies.
As an application, we build an updated model to study the risk of having
high-grade prostate cancer by integrating information from two widely used
risk calculators.

Keywords and phrases: Constrained maximum likelihood, data integra-
tion, empirical likelihood, shrinkage, summary information, uncertainty.

Received April 2024.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5305
2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5307

2.1 Notation and setup . . . . . . . . . . . . . . . . . . . . . . . . . . 5307
2.2 The dPCML method for heterogeneous populations . . . . . . . . 5309

5304

https://imstat.org/journals-and-publications/electronic-journal-of-statistics/
https://doi.org/10.1214/24-EJS2327
mailto:yqzhai@umich.edu
mailto:hanpeisong@gmail.com


Integrating external summary information 5305

2.3 Asymptotic properties . . . . . . . . . . . . . . . . . . . . . . . . 5313
3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5316

3.1 Implementation based on saddle-point representation . . . . . . . 5316
3.2 Tuning parameter selection . . . . . . . . . . . . . . . . . . . . . 5317

4 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5318
4.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 5318
4.2 Simulation observations . . . . . . . . . . . . . . . . . . . . . . . 5320

5 Data application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5320
6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5325
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5326
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5326

1. Introduction

Data integration has become an increasingly attractive research area due to
the growing availability of data from multiple sources. Integrating data from
different sources can lead to a better decision process and/or more insightful
conclusions compared to using a single data source. Statistical methods that
leverage summary information are of particular interest because of their minimal
demand on data sharing, data storage and computational power, as well as
ethical considerations such as maintaining confidentiality and privacy of study
participants.

Summary information from external studies can be very useful to improve
parameter estimation efficiency for model fitting for an internal study of inter-
est, especially when the internal study population is the target for inference
and the internal sample size is not large. There has been a large literature on
integrating external summary information, and many existing methods make
the assumption that the external study populations for which the summary in-
formation is generated are the same as the internal study population of interest
(e.g., Imbens and Lancaster 1994; Qin 2000; Wu and Sitter 2001; Chen et al.
2002; Chaudhuri et al. 2008; Qin et al. 2015; Chatterjee et al. 2016; Huang et
al. 2016; Cheng et al. 2019; Gu et al. 2019; Huang and Qin 2020; Han et al.
2023) or the distribution of the outcome given the covariates does not differ
across studies (e.g., Han and Lawless 2019; Kundu et al. 2019; Zhang et al.
2020; Sheng et al. 2021). In practice, however, such an assumption oftentimes
does not hold, in which case these methods may yield substantial estimation
biases for internal model parameters.

In the presence of study population heterogeneity, some authors proposed to
shrink the internal study results towards the external information as a way to
integrate the summary information (e.g., Estes et al. 2018; Gu et al. 2021). Such
methods become less effective when the internal study is designed to target a
specific population and the goal of integrating external information is to improve
estimation efficiency of the internal analysis rather than shifting the analysis to
align with external studies. In such a case, only the external information that
agrees with the internal study population should be incorporated, as otherwise
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the external information can introduce estimation bias. Taylor et al. (2023)
and Choi et al. (2023) developed a method for generalized linear models with
binary outcomes to integrate the ratios of coefficients from external regression
models. The equality of ratio statistics across different studies is a relaxation of
the assumption of homogeneous study populations, but it is still restrictive and
subject to other assumptions, among which the coefficients need to be close to
zero.

To be able to improve estimation efficiency without introducing estimation
bias when integrating external summary information from possibly heteroge-
neous populations, Zhai and Han (2022) developed the penalized constrained
maximum likelihood (PCML) method that simultaneously selects and incorpo-
rates the useful external information and discards the rest (see also Chen et
al. 2021). The PCML method is based on the CML method (Chatterjee et al.
2016) for homogeneous study populations (see also Qin 2000; Han and Lawless
2019). The external information is formulated as moment constraints on the
internal study model. The constraints corresponding to studies that target the
same population as the internal study are valid and should be incorporated for
efficiency improvement, and the rest constraints are invalid and should be dis-
carded. A major assumption made by Zhai and Han (2022) is that the external
study sample sizes are much larger than the internal sample size so that the un-
certainty associated with the external summary information is negligible. Such
an assumption is commonly made in the existing literature, including most of
the aforementioned methods with exceptions such as Zhang et al. (2020). When
the external information uncertainty is not properly accounted for, integrating
external information may not improve the estimation efficiency for the internal
study, and may even introduce estimation bias.

In this article, we consider the setting where (i) an internal study collects
individual-level data to fit a parametric regression model for an outcome, (ii)
some external studies have fitted less detailed regression models for the same
outcome and the model fitting results are available as summary information,
such as the estimated coefficients and standard errors, (iii) these external studies
may target populations different from the internal study and their sample sizes
may not be very large. Our goal is to incorporate only the external information
that is useful to improve the efficiency of internal parameter estimation, even if
the external sample sizes are not much larger than the internal one. Compared to
Zhai and Han (2022), we properly take into account the uncertainty associated
with the external summary information. Although we also formulate the data
integration problem as a variable selection problem to deal with population
heterogeneity, we quantify the difference in model parameter estimates between
internal and external studies rather than the bias of moment constraints. This
allows us to directly account for the uncertainty associated with the estimated
coefficients from the external studies.

In addition, our proposed method allows incorporating partial summary in-
formation from external studies in cases where only some but not all estimates
from external models are reported and/or certain parameters are known to be
unequal between the internal and external studies. Furthermore, when stan-
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dard errors of the external study parameter estimates are not available but the
sample sizes are, our proposed method can still to a large degree account for
the external information uncertainty. Our method covers some existing ones as
special cases. In particular, it extends Zhang et al. (2020) by allowing differ-
ences between the internal and external study populations beyond only in the
covariate distributions, and extends Zhai and Han (2022) by allowing the exter-
nal studies to have limited sample sizes. Both extensions lead to a much wider
applicability. The estimation method developed in Hu et al. (2022) also deals
with both population heterogeneity and external information uncertainty, with
certain computational advantages. However, for their procedure-selected func-
tionals of the data distribution, their method requires both efficient estimators
and efficient influence functions based on the internal study data, which may be
difficult or impractical to construct. This is especially the case when the exter-
nal study model is complex and only a subset of its parameters are selected for
information integration where the relation between the selected subset and the
rest parameters is unspecified, settings that are allowed by our development.

2. Method

2.1. Notation and setup

Let (Yi,X
T
i ,Z

T
i )T , i = 1, . . . , n, denote the individual-level data from a ran-

dom sample collected by the internal study, where Y is the outcome of interest,
X is the vector of covariates that are routinely collected for different studies
on Y , and Z is the vector of covariates that are only collected by the internal
study. For example, X may include conventional covariates such as demograph-
ical variables and Z may include newly discovered biomarkers. We allow Z to
be the null set if the internal study only collects X. Our main interest is to
fit a parametric regression model f(Y |X,Z;β) for the distribution f(Y |X,Z),
where β is a q-dimensional vector of parameters with true value β0 such that
f(Y |X,Z;β0) = f(Y |X,Z). With only the internal study data available, β0
can be estimated by the maximum likelihood estimator (MLE) β̂MLE that max-
imizes the likelihood

∏n
i=1 f(Yi|Xi,Zi;β).

Suppose that there are K independent external studies on the same outcome
Y that can potentially provide useful information to improve the efficiency of in-
ternal model parameter estimation. The kth external study, k ∈ {1, . . . ,K}, fits
a regression model of Y on X(k), where X(k) is either X or a coarsened version
of X, such as a subset and/or a categorization of X. In other words, the external
study has a less detailed covariate measurement. Suppose that the fitted model
can be formulated as the estimating equation E(k)[h(k)(Y,X(k);η(k))] = 0,
where η(k) is the vector of regression parameters, h(k)

(
Y,X(k);η(k)

)
is the es-

timating function determined by the external study regression model and has
the same dimension as η(k), and the expectation E(k)(·) is taken under the
kth external study data distribution f(k)(Y,X(k)). Let η̃E

(k) denote the esti-
mate of η(k) provided by the kth external study based on its own sample with
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sample size Nk, and ηE∗
(k) the probability limit of η̃E

(k) as Nk → ∞ such that
E(k)[h(k)(Y,X(k);ηE∗

(k))] = 0. One example for the external study regression
model is a parametric model f(k)(Y |X(k);η(k)) for f(k)(Y |X(k)), in which case
h(k)

(
Y,X(k);η(k)

)
is the corresponding score function and η̃E

(k) is the solution
to the score equation. Note that we allow f(k)(Y |X(k);η(k)) to be a misspecified
model. Another example is that the kth external study provides stratified mean
of Y with strata defined by the value of X(k), in which case h(k)

(
Y,X(k);η(k)

)
is a vector of functions (Y − ηX(k))I(X(k) ∈ X ), where X is any stratum based
on X(k) and ηX(k) is the mean of Y within this stratum under f(k)(Y |X(k)).

The external study model can of course be fitted using the internal study data.
Let η̃I

(k) denote the parameter estimate from fitting the kth external study model
to the internal study data such that

∑n
i=1 h(k)(Yi,X(k)i; η̃

I
(k)) = 0. Let ηI∗

(k)
denote the probability limit of η̃I

(k) as n → ∞ such that E[h(k)(Y,X(k);ηI∗
(k))] =

0, where E(·) is the expectation under the internal data distribution f(Y,X,Z).
The existence of ηI∗

(k) follows White (1982). Assuming (i) f(k)(Y |X(k)) is the
same as f(Y |X(k)) such that ηE∗

(k) = ηI∗
(k) and (ii) Nk is very large such that the

uncertainty associated with η̃E
(k) is negligible and thus ηE∗

(k) = η̃E
(k), Chatterjee

et al. (2016) proposed the CML estimator β̂CML for β0, defined through

max
β

max
p1,...,pn

log
[

n∏
i=1

f(Yi|Xi,Zi;β)pi

]

subject to pi ≥ 0,
n∑

i=1
pi = 1,

n∑
i=1

pig(k)(Xi,Zi;β, η̃E
(k)) = 0, k=1, . . . ,K

(1)
where the pi’s are a discrete distribution on the internal study covariate data
(Xi,Zi), i = 1, . . . , n, and

g(k)(X,Z;β,η(k)) =
∫

h(k)(Y,X(k);η(k))f(Y |X,Z;β)dY (2)

such that E

[
g(k)(X,Z;β0,η

I∗
(k))

]
= E[h(k)(Y,X(k);ηI∗

(k))] = 0. Under Assump-
tions (i) and (ii), β̂CML has a higher efficiency compared to β̂MLE because of
the incorporation of the external study information ηE∗

(k).
Assumption (i) is very restrictive. For many problems it is known that certain

components of ηE∗
(k) and ηI∗

(k) are not equal due to study population heterogene-
ity. For example, for an external case-control study that has a different disease
prevalence, the intercept component of ηE∗

(k) and ηI∗
(k) is not equal, while the com-

ponents corresponding to covariate effects can be the same. In the presence of
a substantial population heterogeneity, there may not be any equal components
between ηE∗

(k) and ηI∗
(k). Based on this consideration, without loss of generality, we

write η(k) = (αT
(k),θ

T
(k))T , where α(k) consists of the components known to have

unequal values between the internal and external studies (i.e., αE∗
(k) �= αI∗

(k)) and
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θ(k) consists of the rest components. Note that the distinction between α(k) and
θ(k) is based on prior knowledge. It is not necessary for the proposed method
to have a non-null α(k). We allow the possibility of a non-null α(k) for the gen-
erality of the method. When some components of θI∗

(k) are indeed equal to the
corresponding components of θE∗

(k), incorporating the value of those components
provided by the external study into internal model fitting can improve the effi-
ciency for internal model parameter estimation. Our goal is to develop methods
to select these components of θE∗

(k) and incorporate their information to improve
estimation efficiency.

Another consideration is that, in practice, an external study may report the
estimated value for only some instead of all components of η(k). For example, an
study may only report estimated effect size for the risk factors of main interest
even though there are additional covariates included as an effect adjustment.
In this case, we will include the components of η(k) whose estimated value is
not available from the external study as part of α(k) as well. In other words,
α(k) includes the components of η(k) for which either the value is known to
be unequal between the internal and external studies or the estimated value is
not reported by the external study. The kth external study provides θ̃E

(k) as an
estimate of θ(k). If θI∗

(k) and θE∗
(k) have certain equal components, then making use

of the external estimate θ̃E
(k) may help improve estimation efficiency for internal

model parameters. We will focus on the non-trivial case where θ(k) is not the
null set, as otherwise we will simply exclude the kth external study from further
consideration.

Assumption (ii) is also restrictive. The external study sample size Nk is not
necessarily much larger than n, in which case θ̃E

(k) �= θE∗
(k) and the uncertainty

associated with θ̃E
(k) needs to properly accounted for when integrating θ̃E

(k) into
internal model fitting. The uncertainty is typically quantified by the variance
N−1

k Σ̃E
(k) of θ̃E

(k), based on the asymptotic result
√
Nk(θ̃E

(k)−θE∗
(k))

d−→ N (0,ΣE
(k))

with ΣE
(k) being estimated by Σ̃E

(k). Our goal is to account for the uncertainty
in θ̃E

(k) by incorporating external information about N−1
k Σ̃E

(k) into the internal
model fitting as well.

2.2. The dPCML method for heterogeneous populations

When some components of θI∗
(k) and θE∗

(k) are indeed equal, making use of the
corresponding components of θ̃E

(k) provided by the external study to estimate β0
may help improve the estimation efficiency. To account for the fact that we do
not know which components of θI∗

(k) and θE∗
(k) are equal and which ones are not as

a result of study population heterogeneity, we introduce the nuisance parameters
γ∗

(k) such that γ∗
(k) = θI∗

(k)−θE∗
(k) represents the difference between θI∗

(k) and θE∗
(k).

The zero components of γ∗
(k) correspond to the part of the external information

from study k that should be incorporated to improve the internal analysis.
Since γ∗

(k) is unknown and needs to be estimated, it is desirable to estimate the
zero components of γ∗

(k) to be exactly zero to select the corresponding external
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information. To achieve this goal, we will impose an adaptive Lasso penalty
(Zou 2006) that can consistently shrink the estimate of the zero components of
γ∗

(k) to zero.
On the other hand, since the external study provides θ̃E

(k) instead of θE∗
(k) and

the sample size Nk used to derive θ̃E
(k) is not necessarily much larger than the

internal sample size n, the uncertainty associated with θ̃E
(k) needs to be properly

accounted for when θ̃E
(k) is incorporated into the internal estimation of β0. Since

θE∗
(k) = θI∗

(k)−γ∗
(k) is how θE∗

(k) and θI∗
(k) are connected, when the estimated variance

of θ̃E
(k), i.e. N−1

k Σ̃E
(k), is also available from the external study in addition to

θ̃E
(k), we can account for the uncertainty associated with θ̃E

(k) by shrinking the
estimate of θI∗

(k) − γ∗
(k) to the normal distribution N (θ̃E

(k), N
−1
k Σ̃E

(k)).
Based on the above considerations, we propose the doubly penalized con-

strained maximum likelihood (dPCML) estimator β̂ for β0 defined through

max
β,α,θ,γ

max
p1,...,pn

{
log

[
n∏

i=1
fi(β)pi

]

−
K∑

k=1

Nk

2 (θ(k) − γ(k) − θ̃E
(k))T Σ̃E−1

(k) (θ(k) − γ(k) − θ̃E
(k))

− nλn

K∑
k=1

dk∑
j=1

|γ(kj)|
|θ̃I(kj) − θ̃E(kj)|w

}
(3)

subject to pi ≥ 0,
n∑

i=1
pi = 1,

n∑
i=1

pigi(β,α,θ) = 0,

where fi(β) = f(Yi|Xi,Zi;β), α = (αT
(1), . . . ,α

T
(K))T , θ = (θT

(1), . . . ,θ
T
(K))T ,

γ = (γT
(1), . . . ,γ

T
(K))T , gi(β,α,θ) = g(Xi,Zi;β,α,θ) = [g(1)(Xi,Zi;β,α(1),

θ(1))T , . . . , g(K)(Xi,Zi;β,α(K),θ(K))T ]T with g(k)(Xi,Zi;β,α(k),θ(k)) = g(k)
(Xi,Zi;β,η(k)) given by (2), |γ(kj)||θ̃I(kj)−θ̃E(kj)|−w is the adaptive Lasso (aLasso)
penalty on γ(kj), the jth component of γ(k), j = 1, . . . , dk, λn > 0 is the tuning
parameter, and w > 0 is some user-specified positive number such as 1 or 2 (e.g.,
Zou 2006; Liao 2013). In the aLasso penalty, θ̃I(kj)− θ̃E(kj) serves as a preliminary
consistent estimator for γ(kj). When γ(kj) is a zero component, θ̃I(kj) − θ̃E(kj) will
be close to zero and thus |θ̃I(kj)− θ̃E(kj)|−w imposes a heavy penalty to shrink the
estimate of γ(kj) to zero in order to maximize (3).

Compared to the optimization in (1) that defines the CML estimator, the
optimization in (3) is over α, θ and γ in addition to β, with two penalties im-
posed. This optimization includes α because α consists of the values that are
either known to be unequal between the internal and external studies or are not
reported by the external studies. Note that α is not necessarily nuisance param-
eters and may be parameter of interest. Information integration for components
of θ is achieved by optimizing over θ and γ while shrinking θ(k) − γ(k) towards
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the information from external study k via the quadratic penalty and shrinking
components of γ to zero via the aLasso penalty.

With the aLasso penalty and a properly chosen degree of shrinkage via the
tuning parameter λn, all the zero components and only those components of
γ∗ are estimated exactly as zero, in which case the corresponding external in-
formation will be automatically incorporated into the estimation of β0 and the
resulting dPCML estimator is consistent and has improved efficiency compared
to the MLE. The aLasso penalty allows a simultaneous selection of useful ex-
ternal information and estimation of β0 incorporating that information. The
uncertainty associated with the external estimate θ̃E

(k) is accounted for via the
quadratic penalty on θ(k) − γ(k), adopting the idea in Zhang et al. (2020). This
quadratic penalty is the kernel of the log-likelihood of a normal distribution
for θ(k) − γ(k) with mean θ̃E

(k) and variance N−1
k Σ̃E

(k). When Nk is much larger
compared to n, uncertainty in θ̃E

(k) is small, and the Nk factor in the quadratic
penalty puts a heavy weight on the information from external study k to make
θ(k) − γ(k) close to the very precise θ̃E

(k) during the optimization. On the con-
trary, when Nk is much smaller compared to n, uncertainty in θ̃E

(k) is big, and
the Nk factor in the quadratic penalty puts a light weight on the information
from external study k to diminish its contribution to the estimation of β0.

The proposed optimization in (3) covers some methods in the existing lit-
erature as special cases. By dropping γ and the aLasso penalty, the method
essentially becomes the one proposed in Zhang et al. (2020) under the assump-
tion that all study populations are the same. By dropping the quadratic penalty
and replacing θ with θ̃E + γ, the method becomes similar to the one proposed
in Zhai and Han (2022) under the assumption that external information has no
uncertainty. The major difference is that Zhai and Han (2022) introduced the
nuisance parameters γ∗

(k) = E[g(k)(X,Z;β0,η
E∗
(k))] to represent the bias of the

moment constraints resulted from the population difference, whereas the γ∗
(k)

we introduced represents the difference in the population values θI∗
(k) and θE∗

(k).
In the context of integrating external aggregate information into survival data
analysis, Chen et al. (2021) also introduced nuisance parameters to represent
the bias of the moment constraints that incorporate the external information.
One major advantage of our approach, compared to Chen et al. (2021) and Zhai
and Han (2022), is the flexibility in dealing with the case where only the esti-
mate of a subset of components of ηE∗

(k) is available instead of the whole vector.
In this case, our approach can focus on the possible bias of the available sub-
set estimate. On the contrary, it may not be possible to assess the bias of the
moment constraints since it would require the availability of the estimate of the
whole vector ηE∗

(k). Another advantage of our approach is the straightforwardness
in accounting for the external information uncertainty, since this uncertainty is
directly for the parameter estimate.

In (3), to account for the uncertainty in θ̃E
(k), we assume that the variance

matrix N−1
k Σ̃E

(k) for θ̃E
(k) is available, which may not be the case for many exter-

nal studies. In practice, oftentimes only the standard errors for the components
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of θ̃E
(k), i.e. the square root of the diagonal elements of N−1

k Σ̃E
(k), are available

from the external studies. In this case we can replace N−1
k Σ̃E

(k) in (3) by the
diagonal matrix with diagonal elements the squares of standard errors. There
may also be situations where only the external study sample size Nk is available
instead of any standard errors or variance matrix. In this case we can replace
Σ̃E

(k) in (3) by the identity matrix. Our theoretical studies show that using these
compromised solutions to account for external information uncertainty does not
affect the estimation consistency of the dPCML estimator but only the efficiency
(see next section for more discussion). Our numerical studies show that these
compromised solutions still have clear efficiency improvement over the MLE by
integrating the external information. Such observations are not surprising, since
the amount of external information uncertainty to a large degree is determined
by the external sample size Nk. Thus even if only Nk is available a large degree
of uncertainty can be accounted for.

The aLasso penalty in (3) ensures that the integration of summary infor-
mation from external study k is carried out in a component-wise manner for
each component of θ̃E

(k). Such a choice of the penalty function is based on the
consideration that not all components of θI∗

(k) are necessarily different from the
corresponding components of θE∗

(k) even when the study populations are not the
same. If one prefers to treat the information from an external study as a whole, a
study-wise shrinkage can be easily achieved by replacing the aLasso penalty on
γ(kj) with the adaptive group Lasso (agLasso) penalty (Wang and Leng 2008)
on γ(k), i.e. nλn

∑K
k=1 ‖γ(k)‖‖θ̃I

(k) − θ̃E
(k)‖−w, where ‖ · ‖ is the Euclidean norm.

It is worth to point out that, the component-wise shrinkage allows us to make
the maximum use of external information since the study-wise shrinkage may
discard an external study completely if one component of θI∗

(k) and θE∗
(k) is differ-

ent. The component-wise shrinkage can be particularly helpful when no external
study information appears to be useful with a study-wise shrinkage. In this ar-
ticle, we will present the properties and the numerical implementation of the
dPCML estimator based on component-wise shrinkage.

Using the Lagrange multiplier method, it is easy to show that the constrained
optimization in (3) can be equivalently written as

min
β,α,θ,γ

{
−

n∑
i=1

log fi(β) +
K∑

k=1

Nk

2 (θ(k) − γ(k) − θ̃E
(k))T Σ̃E−1

(k) (θ(k) − γ(k) − θ̃E
(k))

+ nλn

K∑
k=1

dk∑
j=1

|γ(kj)|
|θ̃I(kj) − θ̃E(kj)|w

+ max
ρ

n∑
i=1

log
{
1 − ρT [gi(β,α,θ)]

}}
,

(4)
where ρ is the Lagrange multiplier. The expression in (4) is the so-called saddle-
point representation in the empirical likelihood literature (e.g., Owen 2001;
Newey and Smith 2004) and is used for both the derivation of the asymptotic
properties in Section 2.3 and the numerical implementation in Section 3.
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2.3. Asymptotic properties

This section provides some asymptotic properties of the proposed estimator and
corresponding assumptions. When establishing these properties, we consider the
setting where Nk/n → ck ∈ (0,∞) as n → ∞, k = 1, . . . ,K, which means that
Nk is of the same order as n and thus the uncertainty in the external summary
information can not be ignored for data integration. If ck = 0 then there is
no need to integrate the external information, and if ck = ∞ then there is no
uncertainty associated with the external information, both of which are cases
already considered in the existing literature.

Assumption 1. (i) B × A × C × T , the parameter space for (β,α,θ,γ), is
compact;

(ii) E [log f(Y |X,Z;β)] is uniquely maximized at β0 ∈ B;
(iii) (αI∗,θI∗) is the unique solution to E[g(X,Z;β0,α,θ)] = 0;
(iv) log f(Y |X,Z;β) is continuous at each β ∈ B with probability one;
(v) g(X,Z;β,α,θ) is continuous at each (β,α,θ) ∈ B×A×C with probability

one;
(vi) E

[
sup(β,α,θ)∈B×A×C ‖g(X,Z;β,α,θ)‖a

]
< ∞ for some a > 2;

(vii) E
[
g(X,Z;β0,α

I∗,θI∗)g(X,Z;β0,α
I∗,θI∗)T

]
is non-singular;

(viii) supβ∈B n−1/2 ∑n
i=1{log fi(β) − E[log f(Y |X,Z;β)]} = Op(1);

(ix) sup(β,α,θ)∈(B×A×C) n
−1/2 ∑n

i=1{g(Xi,Zi;β,α,θ)−E[g(X,Z;β,α,θ)]} =
Op(1);

(x) λn = Op(n−ξ) for some ξ with 1/a < ξ < 1/2.

Assumptions 1(i)–(vii) are standard ones commonly made in the literature on
maximum likelihood estimator and empirical likelihood estimator (e.g., Newey
and McFadden 1994; Qin and Lawless 1994; Newey and Smith 2004); (viii)
and (ix) are functional Central Limit Theorem, which is a standard result in
the empirical processes theory (Donsker’s Theorem, e.g., Andrews 1994; van der
Vaart and Wellner 1996; van der Vaart 2000; Kosorok 2008) and is a uniform
version of the standard Central Limit Theorem that holds under the typical
regularity conditions (e.g. Newey and McFadden 1994); (x) is an assumption on
the turning parameter λn and ensures that the aLasso penalty function is small
enough compared to the likelihood function and disappears as n → ∞ to avoid
introducing estimation bias.

Under Assumption 1, the consistency of (β̂, α̂, θ̂, γ̂) is given by Theorem 1.
The proof makes use of the saddle-point representation in (4). This proof, to-
gether with the proofs of all other theorems, is given in the Supplementary
Material.

Theorem 1 (Consistency). Under Assumption 1, the estimator (β̂, α̂, θ̂, γ̂)
converges to (β0,α

I∗,θI∗,γ∗) in probability as n → ∞.

To establish the
√
n-convergence of (β̂, α̂, θ̂, γ̂), we need some additional

assumptions.

Assumption 2. (i) (β0,α
I∗,θI∗,γ∗) is in the interior of B ×A× C × T ;
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(ii) g(X,Z;β,α,θ) is continuously differentiable in some neighborhood BN ×
AN×CN of (β0,α

I∗,θI∗) and E[sup(β,α,θ)∈BN×AN×CN ‖∂g(β,α,θ)/∂μ‖]
< ∞, where μT = (βT ,αT ,θT );

(iii) log f(Y |X,Z;β) is twice continuously differentiable in some neighborhood
BN of β0 and E[supβ∈BN ‖∂s(β)/∂β‖] < ∞, where s(β) = ∂
log f(Y |X,Z;β)/∂β;

(iv) E
[
∂2 log f(Y |X,Z;β0)/∂β∂βT

]
is non-singular;

(v) E
[
∂g

(
X,Z;β0,α

I∗,θI∗) /∂η] is non-singular, where ηT = (αT ,θT );
(vi) λn = op(n−1/2).

Assumption 2(i)-(v) are similar to those made in Newey and McFadden
(1994), Newey and Smith (2004) and Liao (2013). The

√
n-convergence requires

that the tuning parameter converges to zero fast enough so that the aLasso
penalty is asymptotically small compared to the likelihood, and (vi) specifies
the convergence rate.

Theorem 2 (
√
n-Consistency). Under Assumptions 1 and 2, we have (i) ‖β̂−

β0‖ = Op(n−1/2); (ii) ‖α̂ − αI∗‖ = Op(n−1/2), ‖θ̂ − θI∗‖ = Op(n−1/2), and
‖γ̂ − γ∗‖ = Op(n−1/2); and (iii) ρ̂ = arg maxρ

∑n
i=1 log[1 − ρTgi(β̂, α̂, θ̂)],

the Lagrange multiplier as in (4), exists with probability approaching one and
‖ρ̂‖ = Op(n−1/2).

Consistency and
√
n-consistency of (β̂, α̂, θ̂, γ̂) does not imply the consis-

tency of selection of external information that is compatible with the internal
study population. Let K=0 = {(k, j) : γ∗

(kj) = 0, k = 1, . . . ,K, j = 1, . . . , dk}
and K �=0 = {(k, j) : γ∗

(kj) �= 0, k = 1, . . . ,K, j = 1, . . . , dk} denote the index
sets for the zero and nonzero components of γ∗, corresponding to the coef-
ficients provided by external studies that are the same as the corresponding
coefficients of the internal study and those that are different, respectively. Let
K̂=0 = {(k, j) : γ̂(kj) = 0, k = 1, . . . ,K, j = 1, . . . , dk} and K̂ �=0 = {(k, j) :
γ̂(kj) �= 0, k = 1, . . . ,K, j = 1, . . . , dk} denote the index sets for the zero and
nonzero components of γ̂, corresponding to the external study coefficients that
are selected by the dPCML method for information integration and those that
are not selected, respectively. Then selection consistency means that K̂=0 is the
same as K=0 asymptotically.

To ensure the selection consistency, we impose the following condition on the
convergence rate of the tuning parameter λn, which ensures that λn does not
converge to zero too fast so that the aLasso penalty can shrink γ̂(kj) to exactly
zero for those γ∗

(kj) = 0.

Assumption 3. n1/2+w/2λn → ∞ as n → ∞.

We have the following result regarding the selection consistency of external
information.

Theorem 3. Under Assumptions 1, 2 and 3, we have limn→∞ P (K̂=0 = K=0) =
1.
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To derive the asymptotic distribution of the proposed estimator, rewrite γ∗

as γ∗T = (γ∗
�=0

T ,γ∗
=0

T ) without loss of generality, where γ∗
�=0 contains those

γ∗
(kj) that γ∗

(kj) �= 0 and γ∗
=0 contains those γ∗

(kj) that γ∗
(kj) = 0. Denote the

dimension of γ∗
�=0 as d �=0 and the dimension of γ∗

=0 as d=0. Correspondingly,
write θ as θT = (θT

�=0,θ
T
=0), γ as γT = (γT

�=0,γ
T
=0), and γ̂ as γ̂T = (γ̂T

�=0, γ̂
T
=0).

Let V E = diag(c1ΣE−1

(1) , . . . , cKΣE−1

(K) ), and then rearrange the rows/columns of
V E according to γ∗ = (γ∗

�=0
T ,γ∗

=0
T )T . Define νT = (βT ,αT ,θT ,γT

�=0), νT
0 =

(βT
0 ,α

I∗T ,θI∗T ,γ∗
�=0

T ), and ν̂T = (β̂T , α̂T , θ̂T , γ̂T
�=0). Because γ̂=0 = 0 with

probability approaching one based on Theorem 3, we just need to derive the
asymptotic distribution of ν̂. The result is given by the following theorem.

Theorem 4 (Asymptotic Normality). Under Assumptions 1, 2 and 3, we have
√
n(ν̂ − ν0)

d→ N (0,
{[

S0 0
0 0

]
+
[
0 0
0 ATV EA

]
+
[
GT

μΩ−1Gμ 0
0 0

]}−1

),

where S0 = E[s(β0)s(β0)T ], A =
[
Id�=0 0 −Id�=0

0 Id=0 0

]
, Gμ = E[∂g(X,Z;

β0,α
I∗,θI∗)/∂μ], μT = (βT ,αT ,θT ), and Ω = E[g(X,Z;β0,α

I∗,θI∗)g(X,Z;
β0,α

I∗,θI∗)T ].

Based on Theorem 4 we have the following corollary.

Corollary 1. Under Assumptions 1, 2 and 3, (i) β̂ is asymptotically more
efficient than β̂MLE, the MLE based on the internal study data alone; (ii) β̂ is
asymptotically as efficient as the estimator for β0 that knows which components
of θI∗ and θE∗ are equal, i.e., the estimator for β0 defined through

max
β,α,θ,γ�=0

max
p1,...,pn

{
log

[
n∏

i=1
fi(β)pi

]
−1

2

[
θ�=0−γ �=0−θ̃E

�=0
θ=0−θ̃E

=0

]T
Ṽ E
N

[
θ�=0−γ �=0−θ̃E

�=0
θ=0−θ̃E

=0

]}

subject to pi ≥ 0,
n∑

i=1
pi = 1,

n∑
i=1

pigi(β,α,θ) = 0,

where Ṽ E
N is diag(N1Σ̃E−1

(1) , . . . , NKΣ̃E−1

(K) ) with rows/columns rearranged accord-
ing to γ∗ = (γ∗

�=0
T ,γ∗

=0
T )T .

All the above results are established by using Σ̃E
(k), a consistent estimate of

ΣE
(k) provided by the external studies in addition to the estimate θ̃E

(k), to ac-
count for the uncertainty associated with θ̃E

(k). It turns out that Theorems 1, 2
and 3 still hold even if Σ̃E

(k) is not consistent for ΣE
(k). These three theorems

remain valid if Σ̃E
(k) is replaced by any positive definite matrix with dimen-

sion equal to that of θ(k). In particular, when only the standard errors for the
components of θ̃E

(k) are available, Σ̃E
(k) can be replaced by a diagonal matrix

based on the standard errors. When only the external study sample size Nk is
available instead of any standard errors, Σ̃E

(k) can be replaced with the identity
matrix. Consistency of estimation and information selection remains valid. The
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asymptotic distribution in Theorem 4 will, however, be different. It is hard to
establish a clear comparison as in Corollary 1 in this case, but our simulation
studies show that the proposed estimator still has efficiency improvement over
the MLE by integrating the external information.

3. Implementation

3.1. Implementation based on saddle-point representation

The numerical implementation of the proposed dPCML method is based on the
saddle-point representation (4) and consists of two loops, following the recom-
mendation from the empirical likelihood literature (e.g., Owen 2001; Kitamura
2007; Han and Lawless 2019). The inner loop computes the Lagrange multiplier
ρ(β,α,θ) at a given value of (β,α,θ), and the outer loop updates (β,α,θ,γ).

Specifically, the inner loop is maxρ

∑n
i=1 log

{
1 − ρT [gi(β,α,θ)]

}
as in (4).

When the given value (β,α,θ) is close to the true value (β0,α
I∗,θI∗), which

is indeed the case during the implementation if the initial value of (β,α,θ) is
taken to be the consistent estimator (β̂MLE , α̃

I , θ̃I), the inner loop is a concave
maximization with a unique maximizer (e.g., Han 2014). Thus the inner loop
can be easily implemented based on the Newton-Raphson algorithm, for which
the initial value can be simply set as ρ = 0 because of Theorem 2.

To present the outer loop, let ρ̂(β,α,θ) denote the computed Lagrange mul-
tiplier from the inner loop at a given (β,α,θ). The outer loop computes the
dPCML estimator (β̂, α̂, θ̂, γ̂) in the following steps.

Step 0. Take the initial value (β̂(0), α̂(0), θ̂(0), γ̂(0)) = (β̂MLE , α̃
I , θ̃I , θ̃I − θ̃E).

With (β̂(l), α̂(l), θ̂(l), γ̂(l)) available from the l-th iteration (l = 0, 1, 2, . . .),
in the (l + 1)-th iteration the outer loop obtains (β̂(l+1), α̂(l+1), θ̂(l+1), γ̂(l+1))
based on a block coordinate descent procedure.

Step 1. For k = 1, . . . ,K, j = 1, . . . , dk, set γ̂
(l+1)
(kj) equal to 0 if

∣∣∣∣∣Nk

n

[
Σ̃E−1

(k)

]
j.

[
θ̂

(l)
(k) − γ̂

(
l+ j

dk

)
(k) (0) − θ̃E

(k)

]∣∣∣∣∣ < λn

|θ̃I(kj) − θ̃E(kj)|w
(5)

and equal to the root of the equation

λn

|θ̃I(kj) − θ̃E(kj)|w
γ̂(kj)

|γ̂(kj)|
− Nk

n

[
Σ̃E−1

(k)

]
j.

[
θ̂

(l)
(k) − γ̂

(
l+ j

dk

)
(k) (γ(kj)) − θ̃E

(k)

]
= 0 (6)

as an equation for γ(kj) if (5) does not hold, where
[
Σ̃E−1

(k)

]
j.

denotes the jth row

of Σ̃E−1

(k) , and γ̂

(
l+ j

dk

)
(k) (γ(kj)) =

[
γ̂

(l+1)
(k,1) , . . . , γ̂

(l+1)
(k,j−1), γ(kj), γ̂

(l)
(k,j+1), . . . , γ̂

(l)
(k,dk)

]T
.
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Step 2. Set (α̂(l+1), θ̂(l+1)) equal to the root of the equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n
i=1

{∂gi(β̂(l),α,θ)/∂α}T ρ̂(β̂(l),α,θ)
1−

[
ρ̂(β̂(l),α,θ)

]T [
gi(β̂(l),α,θ)

] = 0

−N1Σ̃E−1

(1)

{
θ(1)−(θ̃E

(1)+γ̂
(l+1)
(1) )

}
+
∑n

i=1
{∂gi(β̂(l),α,θ)/∂θ(1)}T ρ̂(β̂(l),α,θ)

1−
[
ρ̂(β̂(l),α,θ)

]T [
gi(β̂(l),α,θ)

] = 0

...
−NKΣ̃E−1

(K)

{
θ(K)−(θ̃E

(K)+γ̂
(l+1)
(K) )

}
+
∑n

i=1
{∂gi(β̂(l),α,θ)/∂θ(K)}T ρ̂(β̂(l),α,θ)

1−
[
ρ̂(β̂(l),α,θ)

]T [
gi(β̂(l),α,θ)

] = 0

(7)
as an equation for (α,θ).

Step 3. Set β̂(l+1) equal to the root of the equation
n∑

i=1
si(β) +

n∑
i=1

{∂gi(β, α̂(l+1), θ̂(l+1))/∂β}T ρ̂(β, α̂(l+1), θ̂(l+1))
1 − [ρ̂(β, α̂(l+1), θ̂(l+1))]T [gi(β, α̂(l+1), θ̂(l+1))]

= 0. (8)

as an equation for β.

Step 4. Repeat Steps 1–3 until convergence such that ‖β̂(l+1)−β̂(l)‖, ‖α̂(l+1)−
α̂(l)‖, ‖θ̂(l+1)−θ̂(l)‖, and ‖γ̂(l+1)−γ̂(l)‖ are smaller than some pre-specified small
number and K̂(l+1)

=0 = K̂(l)
=0, where K̂(l)

=0 = {(k, j) : γ̂(l)
(kj) = 0, k = 1, . . . ,K, j =

1, . . . , dk}.
Equations (6), (7) and (8) are the first-order condition of the saddle-point

representation (4) with respect to γ(kj) when γ(kj) �= 0, (α,θ) and β, respec-
tively, treating ρ̂(β,α,θ) as an implicit function of (β,α,θ). These equations
can be solved based on the Newton-Raphson algorithm, for which the calcu-
lation of the Jacobian matrices of the left-hand sides of (7) and (8) needs to
again treat ρ̂(β,α,θ) as an implicit function of (β,α,θ). The expression of the
Jacobian matrix for (8) is the same as that in Han and Lawless (2019) and the
expression for (7) can be similarly derived. Details are omitted here due to their
lengthy expressions.

3.2. Tuning parameter selection

The rate of convergence of the tuning parameter λn is crucial when deriving the
asymptotic properties of the dPCML estimator, and Assumptions 2(vi) and 3
specify some sufficient conditions on the convergence rate that guarantee the√
n-convergence of the dPCML estimator and the information selection con-

sistency. For practical implementation, however, we need an effective way of
selecting a concrete value for the tuning parameter.

Note from (5) that γ∗
(kj) is estimated exactly as zero if∣∣∣∣Nk√

n

[
Σ̃E−1

(k)

]
j.

[
θ̂(k) − γ̂(k,−j) − θ̃E

(k)

]∣∣∣∣ <
√
nλn

|θ̃I(kj) − θ̃E(kj)|w
, (9)

where γ̂(k,−j) = (γ̂(k,1), . . . , γ̂(k,j−1), 0, γ̂(k,j+1), . . . , γ̂(k,dk))T .
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For any γ∗
(kj) �= 0, the left-hand side of (9) is asymptotically bounded away

from zero, in which case to avoid estimating γ∗
(kj) to be zero

√
nλn needs to

converge to zero as fast as possible, since |θ̃I(kj)− θ̃E(kj)|w converges to a non-zero
constant. With all γ∗

(kj) �= 0 estimated as non-zeros, for any γ∗
(kj) = 0, the left-

hand side of (9) is of order Op(1), and in addition |θ̃I(kj) − θ̃E(kj)| = Op(n−1/2).
Therefore, to estimate γ∗

(kj) = 0 exactly as zero n1/2+w/2λn needs to diverge to
infinity as fast as possible. These considerations agree with Assumptions 2(vi)
and 3. To balance these rate requirements on λn, we choose λn = Cn−1/2−w/4,
where C is a positive constant. We did an exploration of the idea in Liao (2013)
to select C and found that the numerical performance with selected C was simi-
lar to that with C = 1 when the covariance matrix for θ̃E

(k) or the standard errors
for the components of θ̃E

(k) are available as a quantification of the uncertainty,
but was worse when only the sample size Nk is available. Thus we recommend
to take C = 1 in implementation, which also avoids the complex procedure of
selecting C.

4. Simulation studies

4.1. Simulation setup

The internal study has covariates X1, X2, . . . , X5 and Z1, Z2, where (X1, X̃2, X5)
∼ N (0,Σ125) with unit variances, correlation coefficients ρ12 = ρ25 = 0.3 and
ρ15 = 0.2, X2 = I(X̃2 > 0), X3 ∼ Exponential(1), X4 ∼ Bernoulli(0.4),
and Z|X ∼ N ((X1 + X3, X1 − X3),ΣZ) with unit variances and correla-
tion coefficient 0.2. Given X and Z, Y is generated from a Bernoulli dis-
tribution with logit{P (Y = 1|X,Z)} = (1, X1, . . . , X5, Z1, Z2, X1Z1)β0 and
βT

0 = (1, 0.5,−1.5, 1,−1, 0.5,−0.5, 0.5, 1). The internal study model is the logis-
tic regression logit{P (Y = 1|X, Z)} = βc + βX1X1 + · · · + βX5X5 + βZ1Z1 +
βZ2Z2 + βX1Z1X1Z1 with βT = (βc, βX1 , . . . , βX5 , βZ1 , βZ2 , βX1Z1) having true
value β0.

We consider three external studies. For Study 1 the data are generated as
(X1, X̃2, X5) ∼ N ((−0.5,−0.5, 0),Σ125), X2 = I(X̃2 > 0), X3 ∼
Exponential(1.25), X4 and Z|X follow the same distributions as in the in-
ternal study, Y follows a Bernoulli distribution with logit{P (Y = 1|X,Z)} =
(1, X1, . . . , X5, Z1, Z2, X1Z1)β1∗ and βT

1∗ = (0.75, 1,−1, 0.75,−1, 0.8,−0.6, 0.75,
0.75). Study 1 measures only Y , X4 and X5 to fit the logistic regression model
logit{P (Y = 1|X4, X5)} = θ(1,1) + θ(1,2)X4 + θ(1,3)X5. Some numerical calcu-
lation based on a large sample size 106 for both the internal study and Study
1 shows that γ∗

(1) = (γ∗
(1,1), γ

∗
(1,2), γ

∗
(1,3))T = (0.622, 0.001,−0.212)T , with the

second component almost zero.
Study 2 has the same data distribution as the internal study and mea-

sures only Y , X1, X2 and X5 to fit the logistic regression model logit{P (Y =
1|X1, X2, X5)} = θ(2,1) + θ(2,2)X1 + θ(2,3)X2 + θ(2,4)X5. It is clear that γ∗

(2) =
(γ∗

(2,1), γ
∗
(2,2), γ

∗
(2,3), γ

∗
(2,4))T = (0, 0, 0, 0)T .
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For Study 3 the data are generated as (X1, X̃2, X5) ∼ N ((0, 0.5, 0.5),Σ125),
X2 = I(X̃2 > 0), X3 and X4 follow the same distributions as the internal study,
Y follows a Bernoulli distribution with logit{P (Y = 1|X)} = (1, X1, X2, . . . , X5)
(αI∗

(3,1)−0.5, αI∗
(3,2) +0.5, θI∗(3,1)−0.5, θI∗(3,2), θ

I∗
(3,3), θ

I∗
(3,4))T , where (αI∗T

(3) ,θI∗T

(3) )T =
(αI∗

(3,1), α
I∗
(3,2), θ

I∗
(3,1), θ

I∗
(3,2), θ

I∗
(3,3), θ

I∗
(3,4))T is derived by fitting the corresponding

logistic regression model to a data set with sample size 106 generated under the
internal data distribution. Study 3 measures Y and X1, X2, . . . , X5 to fit the
logistic regression model logit{P (Y = 1|X)} = α(3,1) + α(3,2)X1 + θ(3,1)X2 +
θ(3,2)X3 + θ(3,3)X4 + θ(3,4)X5. After model fitting, Study 3 provides information
about θ(3,1), θ(3,2), θ(3,3) and θ(3,4), but not α(3,1) and α(3,2). It is clear that
γ∗

(3) = (γ∗
(3,1), γ

∗
(3,2), γ

∗
(3,3), γ

∗
(3,4))T = (−0.5, 0, 0, 0)T .

For the three external studies, h(k)(Y,X(k);η(k)) = h(k)(Y,X(k);α(k),θ(k))
is the score function for the corresponding external logistic regression model,
where X(1) = (X4, X5), X(2) = (X1, X2, X5) and X(3) = (X1, X2, X3, X4, X5).
Here both α(1) and α(2) are the null set, while α(3) = (α(3,1), α(3,2))T , for which
Study 3 does not provide any information. The three external studies provide
the estimates θ̃E

(k). For the uncertainty associated with θ̃E
(k), we consider three

scenarios: (i) the variance matrices N−1
k Σ̃E

(k) for θ̃E
(k) are available from external

studies, (ii) only the standard errors for the components of θ̃E
(k) are available,

and (iii) only Nk are available.

We consider two sample sizes, n = 300 and 800, for the internal study. The
external study sample sizes are set as N1 = 3n, N2 = 2n and N3 = n for Stud-
ies 1, 2, and 3, respectively, in order to be consistent with our assumption that
Nk/n → ck > 0 as n → ∞ and the consideration that studies which collect
more covariates may have smaller sample sizes due to budget or technical con-
straints. We summarize the results based on 1000 replications. Each replication
regenerates both the internal and the external data. We take w = 2 in (3) for
the aLasso penalty.

To make comparisons, in addition to the MLE using internal study data alone,
we also include the CML estimator of Chatterjee et al (2016), the generalized
integration method (GIM) estimator of Zhang et al. (2020), the optimal covari-
ance weighted (OCW) estimator and the selective coefficient learner (SCL) of
Gu et al. (2021), and the component-wise PCML estimator of Zhai and Han
(2022). Since the CML, OCW, SCL and PCML estimators do not deal with
cases where only the information about some subset of external regression co-
efficients is available, Study 3 is discarded when computing these estimators.
The CML and PCML estimators do not account for the uncertainty of external
information. For the OCW and SCL estimators we make use of N−1

k Σ̃E
(k) to ac-

count for the uncertainty in θ̃E
(k). The GIM method makes use of Nk only since

it assumes population homogeneity and computes the covariance matrix. The
OCW and SCL estimators are computed by the R package “MetaIntegration”
(Gu et al. 2021) and the GIM estimator is computed by the R package “gim”
(Zhang and Yu 2020).
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4.2. Simulation observations

From Tables 1 and 2, it is seen that our proposed estimator (dPCML) has
substantial efficiency improvement without introducing bias, compared to the
MLE, by integrating external study information and properly accounting for the
associated uncertainty. When only the standard errors for the components of
θ̃E

(k) are available from external studies instead of the variance matrices N−1
k Σ̃E

(k)
as a quantification of the uncertainty, the performance stays almost the same.
When only Nk is available, the improvement over MLE becomes smaller but is
still substantial. The observation that the proposed estimator remains unbiased
even if the external uncertainty can only be quantified by the sample size is in
full agreement with the discussion at the end of Section 2.3.

As a comparison, the CML estimator has a substantial bias because of the
heterogeneity between Study 1 and the internal study data distributions. More-
over, compared to the MLE, the CML estimator may even have larger empirical
standard errors since it does not account for the uncertainty in the external
information. The OCW and SCL estimators are unbiased but the reduction in
empirical standard errors compared to the MLE is not as impressive as our
proposed estimator. The PCML estimator has no clear-cut improvement over
the MLE since its bias is not negligible when n = 300 and its empirical stan-
dard errors are not necessarily smaller, due to ignoring the external information
uncertainty. The GIM estimator is clearly biased although it has a substantial
reduction of empirical standard errors compared to the MLE, due to the study
population heterogeneity.

Following Zhai and Han (2022), we recommend the bootstrap method for
standard error calculation for the proposed method. As an assessment, in Ta-
bles 1 and 2 we include the mean of bootstrap standard errors for dPMCL-i
based on 200 bootstrap resamples for each replication. From a comparison to
the empirical standard errors, the bootstrap standard errors overall seem to
have a reasonable performance.

Table 3 presents the percentage of estimating γ∗
(kj) exactly as zero by our

proposed method. It is seen that, as n increases from 300 to 800, the percentage
of estimating the γ∗

(kj) = 0 as zero increases and the percentage of estimating
γ∗
(kj) �= 0 as zero decreases, in full agreement with the selection consistency of

external information. The selection rate stays overall the same when either only
the standard errors for the components of θ̃E

(k) are available from external studies
or the variance matrices N−1

k Σ̃E
(k) are available. When only the sample sizes Nk

are available, the selection rate becomes lower, in agreement with the previous
observation that in this case the efficiency improvement over MLE is smaller.

5. Data application

We apply the proposed dPCML method to study the association between the
risk of developing high-grade prostate cancer (Gleason score ≥ 7) and cer-
tain risk factors. The effects of some commonly considered risk factors, includ-
ing demographic and clinical variables such as age, race, the prostate specific
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Table 1

Simulation results summarized based on 1000 replications with internal sample size n = 300
and external sample sizes N1 = 3n, N2 = 2n, N3 = n.

βc βX1 βX2 βX3 βX4 βX5 βZ1 βZ2 βX1Z1

MLE
Bias 0.054 0.019 -0.064 0.038 -0.069 0.030 -0.027 0.013 0.063
ESE 0.351 0.304 0.358 0.335 0.342 0.178 0.180 0.171 0.182
RMSE 0.355 0.305 0.364 0.337 0.349 0.180 0.182 0.172 0.193

dPCML-i
Bias 0.035 0.026 -0.099 0.040 -0.045 0.077 -0.026 0.013 0.063
ESE 0.283 0.279 0.274 0.323 0.270 0.130 0.180 0.171 0.182
BSE 0.243 0.279 0.257 0.333 0.242 0.117 0.192 0.182 0.202
RMSE 0.286 0.281 0.292 0.326 0.274 0.151 0.182 0.172 0.193

dPCML-ii
Bias 0.020 0.026 -0.093 0.038 -0.042 0.081 -0.026 0.013 0.063
ESE 0.284 0.279 0.274 0.324 0.270 0.130 0.180 0.171 0.182
RMSE 0.285 0.280 0.290 0.326 0.273 0.153 0.182 0.172 0.193

dPCML-iii
Bias 0.055 0.039 -0.115 0.035 -0.069 0.065 -0.026 0.013 0.063
ESE 0.307 0.282 0.305 0.334 0.286 0.142 0.180 0.171 0.183
RMSE 0.312 0.285 0.326 0.336 0.294 0.156 0.182 0.172 0.193

CML
Bias 0.262 0.402 -0.161 0.036 -0.375 0.059 -0.027 0.015 -0.051
ESE 0.332 0.350 0.344 0.347 0.326 0.157 0.185 0.178 0.215
RMSE 0.423 0.533 0.380 0.348 0.497 0.168 0.187 0.179 0.221

OCW
Bias 0.050 0.018 -0.061 0.038 -0.069 0.029 -0.026 0.013 0.063
ESE 0.332 0.291 0.321 0.335 0.342 0.160 0.180 0.171 0.182
RMSE 0.336 0.291 0.327 0.337 0.348 0.162 0.182 0.172 0.193

SCL
Bias 0.038 0.018 -0.062 0.038 -0.067 0.034 -0.026 0.013 0.063
ESE 0.339 0.291 0.320 0.335 0.333 0.166 0.180 0.171 0.182
RMSE 0.342 0.291 0.326 0.337 0.340 0.169 0.182 0.172 0.193

GIM
Bias -0.131 0.143 -0.232 0.043 -0.067 0.101 -0.026 0.013 0.061
ESE 0.255 0.279 0.257 0.320 0.250 0.116 0.180 0.171 0.183
RMSE 0.287 0.314 0.347 0.323 0.259 0.154 0.182 0.172 0.193

PCML
Bias 0.173 0.022 -0.068 0.038 -0.432 0.081 -0.026 0.013 0.062
ESE 0.383 0.288 0.318 0.335 0.574 0.158 0.180 0.171 0.182
RMSE 0.421 0.289 0.325 0.337 0.718 0.178 0.182 0.172 0.193

1 ESE: empirical standard error. RMSE: root mean squared error. BSE: mean of bootstrap
standard error over 1000 replications based on 200 bootstrap resamples for each replication.

2 CML: constrained maximum likelihood (Chatterjee et al. 2016). OCW: optimal covariance
weighted (Gu et al. 2021). SCL: selective coefficient learner (Gu et al. 2021). GIM: gener-
alized integration method (Zhang et al. 2020). PCML: the PCML method (Zhai and Han
2022).

3 −i, −ii, −iii: using Σ̃(k), diag(Σ̃(k)) and Idk in (3).
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Table 2

Simulation results summarized based on 1000 replications with internal sample size n = 800
and external sample sizes N1 = 3n, N2 = 2n, N3 = n.

βc βX1 βX2 βX3 βX4 βX5 βZ1 βZ2 βX1Z1

MLE
Bias 0.003 0.000 -0.015 0.021 -0.012 0.004 -0.005 0.009 0.024
ESE 0.192 0.164 0.207 0.208 0.191 0.105 0.107 0.104 0.110
RMSE 0.193 0.164 0.208 0.209 0.192 0.105 0.107 0.105 0.113

dPCML-i
Bias 0.007 0.004 -0.044 0.020 -0.003 0.043 -0.005 0.009 0.024
ESE 0.149 0.152 0.165 0.201 0.141 0.079 0.107 0.104 0.110
BSE 0.132 0.154 0.139 0.185 0.129 0.063 0.107 0.103 0.110
RMSE 0.149 0.152 0.171 0.202 0.141 0.090 0.107 0.105 0.113

dPCML-ii
Bias -0.003 0.003 -0.034 0.019 -0.005 0.046 -0.005 0.009 0.024
ESE 0.151 0.153 0.167 0.201 0.141 0.079 0.107 0.104 0.110
RMSE 0.151 0.153 0.171 0.202 0.141 0.092 0.107 0.105 0.113

dPCML-iii
Bias 0.006 0.004 -0.037 0.016 -0.011 0.029 -0.005 0.009 0.024
ESE 0.168 0.156 0.183 0.205 0.156 0.083 0.107 0.104 0.110
RMSE 0.168 0.156 0.187 0.206 0.156 0.088 0.107 0.105 0.113

CML
Bias 0.226 0.367 -0.101 0.030 -0.362 0.047 -0.015 0.015 -0.072
ESE 0.207 0.219 0.216 0.216 0.183 0.095 0.108 0.110 0.138
RMSE 0.307 0.428 0.239 0.218 0.406 0.106 0.109 0.111 0.155

OCW
Bias 0.001 -0.001 -0.013 0.021 -0.012 0.005 -0.005 0.009 0.024
ESE 0.181 0.158 0.187 0.208 0.191 0.094 0.107 0.104 0.110
RMSE 0.181 0.158 0.188 0.209 0.192 0.094 0.107 0.105 0.113

SCL
Bias -0.004 -0.001 -0.013 0.021 -0.012 0.006 -0.005 0.009 0.024
ESE 0.186 0.158 0.187 0.208 0.189 0.098 0.107 0.104 0.110
RMSE 0.186 0.158 0.188 0.209 0.190 0.099 0.107 0.105 0.113

GIM
Bias -0.170 0.123 -0.181 0.023 -0.021 0.084 -0.004 0.009 0.022
ESE 0.145 0.156 0.155 0.199 0.139 0.071 0.107 0.104 0.110
RMSE 0.223 0.199 0.238 0.201 0.141 0.109 0.107 0.105 0.112

PCML
Bias 0.019 -0.006 -0.015 0.021 -0.077 0.028 -0.005 0.009 0.023
ESE 0.203 0.159 0.179 0.208 0.309 0.096 0.107 0.104 0.110
RMSE 0.204 0.159 0.180 0.209 0.318 0.100 0.107 0.105 0.113

1 ESE: empirical standard error. RMSE: root mean squared error. BSE: mean of bootstrap
standard error over 1000 replications based on 200 bootstrap resamples for each replication.

2 CML: constrained maximum likelihood (Chatterjee et al. 2016). OCW: optimal covariance
weighted (Gu et al. 2021). SCL: selective coefficient learner (Gu et al. 2021). GIM: gener-
alized integration method (Zhang et al. 2020). PCML: the PCML method (Zhai and Han
2022).

3 −i, −ii, −iii: using Σ̃(k), diag(Σ̃(k)) and Idk in (3).
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Table 3

The percentage (%) of estimating γ∗
(kj) as zero, summarized based on 1000 replications with

external sample sizes N1 = 3n, N2 = 2n, N3 = n.

γ∗
(kj) �= 0 γ∗

(kj) = 0

γ(1,1) γ(1,3) γ(3,1) γ(1,2) γ(2,1) γ(2,2) γ(2,3) γ(2,4) γ(3,2) γ(3,3) γ(3,4)

n = 300

dPCML-i 0.9 56.9 49.2 83.9 85.7 89.8 82.2 89.4 92.1 81.5 88.5
dPCML-ii 1.2 57.7 50.1 84.3 89.1 90.7 86.4 89.9 91.9 80.4 88.5
dPCML-iii 0.5 38.9 26.9 70.3 76.8 85.4 65.9 75.0 82.5 56.7 66.8

n = 800

dPCML-i 0.0 27.0 27.5 91.3 92.5 96.4 86.9 94.0 95.2 89.3 92.6
dPCML-ii 0.0 27.8 28.9 91.7 94.8 97.0 91.1 94.6 94.8 89.8 93.1
dPCML-iii 0.0 13.4 10.3 78.7 87.4 92.0 78.9 82.1 88.5 67.4 73.9

1 −i, −ii, −iii: using Σ̃(k), diag(Σ̃(k)) and Idk in (3).

antigen (PSA) level, the digital rectal examination (DRE) finding and prior
biopsy result, have been studied extensively in the literature. Among the stud-
ies, Thompson et al. (2006) built an online risk calculator for calculating the
risk of developing high-grade prostate cancer, using data collected in the 1990s
from 5519 men in the placebo group of the Prostate Cancer Prevention Trial
(PCPT) in the United States. This PCPT risk calculator is the first online
prostate cancer risk assessment tool and is among the most widely used ones.
The model behind this risk calculator, together with the parameter estimates
and 95% confidence intervals, is provided in Thompson et al. (2006) as follows:
logit(P (Y = 1)) = −6.25 + 1.29 log(X1) + 0.03X2 + 1.00X3 − 0.36X4 + 0.96X5,
where Y is the high-grade prostate cancer status, X1 is the PSA level (ng/ml),
X2 is age, X3 is a binary indicator of an abnormal DRE result, X4 is a binary
indicator of negative previous biopsies, and X5 is a binary indicator of being
African American.

Previous studies have also shown that the prostate volume is related to PSA
level (e.g., Bohnen et al. 2007), and should be taken into account when as-
sessing men for prostate cancer risk (e.g., Al-Azab et al. 2007). The European
Randomized Study of Screening for Prostate Cancer Risk Calculator 3 (ERSPC-
RC3) (Roobol et al. 2012) is one of the validated tools for prostate cancer risk
assessment that include transrectal ultrasound prostate volume (TRUS-PV)
as a predictor. Developed based on data from 3616 men, the ERSPC-RC3 is
modeled as logit(P (Y = 1)) = log(0.03) + log(3.24)log2(X1) + log(6.13)X3 +
log(0.22)log2(X6), where X6 is TRUS-PV reclassified in three categories (25,
40, and 60 cm3), and the lines over log2(X1) and log2(X6) imply that they are
centered. The 95% confidence intervals for all the coefficient estimates are also
reported in Roobol et al. (2012).

Recent research on the biological mechanisms related to the progression of
prostate cancer shows that two specific biomarkers, TMPRSS2:ERG (T2:ERG)
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and prostate cancer antigen 3 (PCA3), may lead to a better early detection of
the disease (e.g., Tomlins et al. 2016). Therefore, it is of great interest to study
the effects of both the aforementioned risk factors (X1, . . . , X6) and the new
biomarkers on the risk of prostate cancer after adjusting for each other. We
use part of the sample collected in Tomlins et al. (2016) as the internal data,
which consists of 1218 men presenting for diagnostic prostate biopsy at seven
community clinics throughout the United States. We fit the logistic regression
model logit(P (Y = 1)) = βc + β1 log2(X1) + β2X2 + β3X3 + β4X4 + β5X5 +
β6log2(X6) + β7 log2(Z1 + 1) + β8Z2, where Z1 is the PCA3 score, and Z2 is
a binary indicator dichotomized at the sample median of the T2:ERG score
(Cheng et al. 2019). The final sample size of the internal study is n = 1174 after
removing subjects with missing TRUS-PV.

When fitting the internal study model, we will incorporate the information
from the two aforementioned external risk calculators. Note that the sample sizes
for both external studies are not very large compared to the internal one, and
thus the uncertainty associated with the external parameter estimates should be
properly accounted for. Moreover, there are some apparent differences between
the internal study data distribution and the distribution reported in Thompson
et al. (2006) (see Zhai and Han 2022). The covariance matrices of the param-
eter estimates are not reported by the external studies, but we can obtain the
standard errors from the reported 95% confidence intervals. Note that, due to
the centering of log2(X1), the intercept of the ERSPC-RC3 model is different
from that of the internal study model, and thus we discard the information of
the intercept from the ERSPC-RC3 model.

The external study estimates are θ̃E
(1) = (−6.25, 1.29, 0.03, 1.00,−0.36, 0.96)T

for PCPT and θ̃E
(2) = (log(3.24), log(6.13), log(0.22))T for ERSPC-RC3, which

leads to γ̃(1) = θ̃I
(1) − θ̃E

(1) = (−0.11,−0.39, 0.02,−0.37,−0.62,−1.03)T and
γ̃(2) = θ̃I

(2) − θ̃E
(2) = (−0.40,−1.03, 0.24)T . The non-zero components of γ̃(1)

and γ̃(2) clearly indicate study population heterogeneity. On the other hand,
some components of γ̃ are small, implying that part of the external information
may be useful to improve the internal estimation. Indeed, in our analysis the
first, third and fourth components of γ(1) and the last component of γ(2) are
estimated exactly as zero.

Table 4 contains the analysis results. The dPCML estimates are close to the
MLE since the dPCML method does not introduce estimation bias by discard-
ing the external information that is incompatible with the internal data. The
efficiency improvement of dPCML over MLE is apparent from the substantially
reduced standard errors. Both the MLE and the proposed method show that,
while both negative previous biopsies and larger prostate volume are associ-
ated with significantly decreased risk of high-grade prostate cancer, higher PSA
level, older age, abnormal DRE results, and higher PCA3 and T2:REG scores
are all associated with significantly increased risk. The information integration
leads to substantially reduced standard errors for the estimates of the effects of
abnormal DRE and prostate volume.
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Table 4

Analysis results for the prostate cancer data with n = 1174.

MLE dPCML

Estimate Std. Err P-value Estimate Std. Err P-value
Intercept −8.124 0.739 < 0.001 −7.973 0.429 < 0.001
PSA 0.733 0.094 < 0.001 0.899 0.080 < 0.001
Age 0.045 0.011 < 0.001 0.035 0.007 < 0.001
DRE 0.617 0.198 0.002 0.877 0.121 < 0.001
Biopsy −0.793 0.240 0.001 −0.671 0.231 0.004
Race −0.297 0.375 0.429 −0.205 0.349 0.557
TRUS-PV −1.351 0.203 < 0.001 −1.491 0.108 < 0.001
PCA3 0.307 0.061 < 0.001 0.307 0.057 < 0.001
T2:ERG 0.630 0.180 < 0.001 0.632 0.192 0.001
1 Std. Err: standard error. The standard errors for the dPCML estimates are

calculated based on 200 bootstrap samples.

6. Discussion

We proposed a doubly penalized constrained maximum likelihood (dPCML)
method for using summary-level information from external studies while build-
ing a refined regression model based on individual-level data collected in an in-
ternal study. For existing methods, incorporating external information increases
efficiency of the parameter estimates for the internal model, without introducing
biases, under either one or both of the assumptions that (1) the internal and
external studies are conducted for the same population and (2) the external
datasets are very big such that the uncertainty associated with external infor-
mation is negligible. These two assumptions are both restrictive. The proposed
dPCML method is robust to departures from both these two assumptions. It
can simultaneously select and incorporate the external information that agrees
with the internal study while properly accounting for the uncertainty associated
with the external information.

The dPCML method is very flexible in several aspects. First, it allows incor-
porating partial summary information from external studies in cases where only
some but not all estimates from external models are reported and/or certain
parameters are known to be unequal between the internal and external stud-
ies. Second, it allows different covariate transformations for different external
models (e.g., in data application the PCPT calculator uses log(PSA) while the
ERSPC-RC3 uses log2(PSA)). Third, even with only the external sample sizes
available, the dPCML method can still to a large degree account for external
information uncertainty and improve efficiency over the MLE.

Some extensions of the proposed method are of possible interest as future
work. For example, when the new covariates collected by the internal study are
high-dimensional, variable selection may be needed for internal model fitting,
which can be achieved by adding an additional penalty. Another possible exten-
sion is to take into account the design of studies. In this paper we considered
a random sample for the internal study. However, in practice, biased sampling
is often used for data collection, such as case-control sampling, and it is of vi-
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tal importance to take these study designs into consideration. In addition, our
method requires that the external studies use less detailed covariates than the
internal study. But some external studies may use variables that are not col-
lected by the internal study, and it is worthwhile to explore methods that can
address such situations. Another question of interest is whether the proposed es-
timator achieves the efficiency bound associated with the model class restricted
by the assumptions considered in this paper. This investigation may be done by
following Zhang et al. (2020) and Hu et al. (2022) but is beyond the scope of
this current paper.
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