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Abstract: We present a general method for obtaining posterior samples
from a model for which the likelihood function is intractable or otherwise
unavailable, but from which simulation is possible. While the inability to
evaluate the likelihood impedes the implementation of traditional sampling
algorithms, like the Metropolis–Hastings algorithm, our approach, based
on the Fourier integral theorem, allows for an exact simulation-based es-
timate of such likelihoods. Moreover, given its foundations in the Fourier
integral theorem, our approach comes with clear guidelines for setting the
two tuning parameters on which it relies. Through comparison with alter-
native methods, specifically synthetic likelihoods and ABC, including both
dimension-reduction and full-data approaches, across a variety of examples,
culminating in a highly nonlinear state space model based on the Ricker
map, we will demonstrate how the Fourier approach is able to provide sta-
tistically sensible, full-data likelihood estimation, requiring only that data
can be simulated from the model.
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1. Introduction

Arising in a variety of disciplines, including ecology, genetics, and finance, sta-
tistical models with intractable likelihood functions present a challenge for es-
timation. The approximate Bayesian computation (ABC) assumption is that
while the likelihood is unavailable to be enumerated, it is possible to sample
outcomes from the corresponding probability model for all sets of parameter
values. The original ABC approach was not actually approximate at all; if the
data are discrete and a parameter is chosen from the prior and then a new data
set of equivalent size to the observed data is sampled using this parameter, the
parameter can be taken as an output from the posterior if the sampled data
coincide with the observed data; see [24].

Current approaches to ABC are aimed at implementing a similar strategy
when observations are continuous. There are by now a wide variety of ideas,
also known as likelihood-free techniques, such as those surveyed by [17], as
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well as synthetic likelihood (SL) [30] and full-data distance-based approaches
[10].

ABC and SL, in practice, rely on information reduction. For ABC, the data
are typically reduced to a set of summary statistics, for which an associated
tolerance and distance must also be specified. Calibrating these tuning param-
eters can be difficult, with effects that can prove unpredictable. For SL, the
approximation of the likelihood is underpinned by a distributional assumption
of approximate normality on the vector of summary statistics. In addition to
this assumption of normality, as well as the need to determine a suitable set
of summary statistics, SL must also estimate the covariance matrix for a nor-
mal distribution. As models become more complicated, because of hierarchical
structure or time dependence, these challenges become more acute.

Full-data distance-based approaches seek to avoid the reduction of the data
to a set of summary statistics by comparing the (marginal) distributions of the
observed and simulated data according to some measure of distance, such as the
Wasserstein distance or Kullback-Leibler divergence. Although these approaches
use the full data, the application of a single distance function may nonetheless
result in information loss, as discussed in [10]. Accordingly, in the implementa-
tion of such approaches, it might be necessary to introduce summary statistics
or to combine multiple distance functions in a weighted average. Large or de-
pendent data sets tend to exacerbate these issues, and the procedures to address
them can be highly problem dependent, thus hampering the general feasibility
of these approaches.

When faced with an intractable likelihood, one might still attempt to estimate
the likelihood function. The concern then shifts to the level of approximation.
We treat the problem of the estimation of the likelihood as one of estimating a
density at a point or a series of multiple points. Such an approach has recently
been used for estimating a posterior density at a point; see [23].

The present paper extends [23], who applied a Fourier approach to estimating
marginal likelihoods, in a number of significant ways. In the marginal likelihood
setting, the point at which the density is estimated can be chosen to be any high-
density point in the support of the posterior. In the ABC setting, the points are
given, since they are the data, with the potential for low-density points, thus
requiring additional transformations and more specific theory as to the behavior
of the estimator for points in the tails of a distribution.

Also, in the marginal likelihood setting, the number of samples on which
the density estimation is to be based can typically be taken to be arbitrarily
large. In the ABC setting, the likelihood estimation is used repeatedly at each
iteration of an MCMC sampler, thus requiring a more thorough examination of
the behavior of the estimator for smaller sample sizes.

Thus, we have generally worked with smaller values of a Monte Carlo sample
size in the examples provided; however, as will be demonstrated in the compari-
son with ABC methods, increasing the size of this sample directly improves the
ability of the Fourier estimator to recover the true posterior, whereas because of
the approximations involved in practice with ABC, such as summary statistics,
it is unclear whether this increase in the value of N improves the estimation
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insofar as recovering the true posterior is concerned. It is also possible for the
Fourier approach to use summary statistics, although it would not additionally
need to assume a multivariate normal distribution for them, again, reducing the
amount of approximation.

Furthermore, the estimator itself has a different form from the one in [23], in
keeping with the conditions established in the exact-approximate likelihood lit-
erature [4, 3], thus requiring additional theoretical and practical considerations.
Here we also adopt the term “exact-approximate,” as in [4, 3], in the sense that
while the likelihood is approximated, in theory in can be done so arbitrarily
accurately.

Using an estimator based on the Fourier integral theorem, we provide an
exact simulation-based approach that extends to any model for which the likeli-
hood is intractable, or otherwise unavailable, but from which simulation of data
is possible. In contrast to the assortment of possible tuning parameters which
must be chosen by information-reduction approaches, the tuning parameters in
the proposed Fourier approach are simple, with well-defined behavior. By not
relying on conversions to summary statistics or applications of a statistical dis-
tance function, we moreover maintain a greater sense of the reliability of the
Fourier approach, as secured by the properties of the Fourier integral, in com-
parison with that of alternative methods, which involve potentially uncertain
approximations and substantial information loss.

1.1. Fourier integral theorem

To begin, we sketch the Fourier approach in the ABC setting, introducing the
concepts for which a more formal presentation will be given in Section 3.

To obtain an estimate of the likelihood, we can directly apply the Fourier
integral theorem so that the posterior distribution is given exactly as

π(θ|y) = π(θ)
(2π)n m(y)

∫ ∫
cos(s · (y − x))f(x | θ) ds dx,

where m(y) is the marginal likelihood for observed data y = (y1, . . . , yn) and
π(·) is the prior density. This result follows since the s integral can be done
precisely on (−R,R)n and the x integral is done using Monte Carlo. That is,
π(θ | y) can be estimated via Monte Carlo methods through an i.i.d. sample
from f(· | θ).

For some fixed value of R, which will be discussed later, let

fR(y|θ) =
∫ n∏

i=1

sin(R(yi − xi))
π(yi − xi)

f(x|θ) dx;

then, we define a “Fourier likelihood” function by

fR,N (y|θ) ∝ 1
2

[
fR(y|θ) + E

∣∣∣∣∣ 1
N

N∑
k=1

n∏
i=1

sin(R(yi − xik))
π(yi − xik)

∣∣∣∣∣
]
, (1)
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where the expectation is for the i.i.d. {xik} of size n × N from f(· | θ). The
corresponding posterior density is thus given by πR,N (θ|y) ∝ π(θ) fR,N (y | θ).

We take an unbiased Monte Carlo version of (1) as

f̂R,N (y | θ) = max
{

0, 1
N

N∑
k=1

n∏
i=1

sin(R(yi − xik))
π(yi − xik)

}
. (2)

It is straightforward to demonstrate the unbiasedness based on max(0, a) = (a+
|a|)/2. This estimator is thus compatible with the “noisy likelihood” or “pseudo-
marginal” approach [4], which guarantees the posterior based on (1) to be the
correct stationary density when using (2) to stand in for (1). In Section 2, we
provide background on this approach. Furthermore, as we reveal in Section 5.4,
a KDE approach with a Gaussian kernel is unable to compete with the Fourier
approach, especially as the dimension increases.

After Section 3 establishes properties of the estimator, Section 4 discusses
how to choose the values of R and N to ensure that the estimation is highly
accurate, because we can choose R and N such that the estimate is arbitrarily
close to the true likelihood function.

So far, we have assumed y is univariate, but the extension to higher dimen-
sions is straightforward; there, we would have the component for observation
yi = (yi1, . . . , yid) as

d∏
j=1

sin(R(yij − xikj))
π(yij − xikj)

, (3)

where d is the dimension of y. The important feature is that, based on the
Fourier integral theorem, the estimator automatically picks up the dependence
structure present in the samples, whereas a Gaussian kernel would typically
require an estimated covariance matrix.

In general, the bias of the estimator can be of order exp(−R2), and the
variance is of order Rd/N (see Lemma 1). Given that we are simulating data
from the model, we can take a reasonably large number of samples N so that a
choice of R in the range of 5 to 20 works well, although the particular choice of R
becomes less important as the size of N increases, especially after a normalizing
transformation of the data, such as that described in Section 4.

Finally, we emphasize that the bias of order exp(−R2) arises when the data
have a mixture of normal appearance, and often it is sufficient to transform
the data to have a normal appearance, assuming unimodal behavior, as will be
demonstrated in Section 5.

1.2. Alternative approaches

We begin by considering a form of diagram which follows that of Figure 2 in
[30]. First, in Figure 1, we show a diagram of the ABC likelihood approach, with
notation mostly following that of [3]. In practice, ABC begins with the data
being transformed to summary statistics, i.e., s : Y → R

q, for some positive
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integer q. Then, another function ψd,Kε must be specified, requiring the choice
of distance function d(·) and kernel Kε : R≥0 → [0, 1], such that ψ(y, y′) =
Kε(d(s(y), s(y′)), for y, y′ ∈ Y and ε the bandwidth of the kernel. Next, in
Figure 2, we show a diagram of the SL approach of [30]. Like ABC, SL depends
on a transformation to summary statistics, s; however, SL further assumes that
these statistics are multivariate normal; i.e., s ∼ N (μθ,Σθ), with the quantities
μθ and Σθ also generally needing to be estimated. Finally, in Figure 3, we show
the corresponding diagram of the Fourier approach.

All approaches start at the top, with the goal of evaluating the fit of the model
with parameter vector θ to the raw data vector y. (Here, for direct comparison
with SL, we adopt the notation used in [30], with the simulated data vectors y∗i
corresponding to the vectors xi referred to in Section 1.1.) From the model, N
data vectors y∗1 , . . . , y∗N are simulated, given the value of θ. The Fourier approach
then gives immediate access to the estimate of the log likelihood, using (2). In
contrast, ABC and SL at this step first transform the data to summary statistics.

SL uses the statistics to estimate the mean vector and covariance matrix of
s, according to the model with parameter vector θ, which are then supplied
as arguments of the log multivariate normal (MVN) probability density func-
tion to evaluate the log synthetic likelihood. ABC applies the ψ function to the
statistics based on the simulated and observed data to estimate the “ABC like-
lihood” function. The choice of summary statistics is crucial to SL and ABC,
with the optimal choice generally being problem dependent. The requirement
imposed by SL that these statistics be normal and the additional choices of ker-
nel and distance functions required by ABC complicate matters further. Thus,
we see that both ABC and SL involve a greater degree of approximation and
tuning than does the Fourier approach. Further papers on the ABC approach
include [22, 11, 25, 19], for example. These papers are principally concerned
with summary statistic ideas. In high-dimensional settings, ABC can be imple-
mented component-wise, as in a Gibbs framework, using conditional densities,
as [9] demonstrate, although the theoretical justification differs from that of
the standard Gibbs sampler. Such a strategy can also be done with the Fourier
approach.

To avoid the use of summary statistics, full-data ABC approaches, as dis-
cussed by [10], omit the transform in Figure 1 and compare data sets on the
basis of their distributions, using measures of distance such as the Wasserstein
distance [7], the energy distance [20], the maximum mean discrepancy [21], the
Cramer-von Mises distance [12], and the Kullback-Leibler divergence [15]. While
these approaches avoid the potentially “extensive loss of information” incurred
by the reduction of the data to summaries, the effectiveness of any choice of
distance depends on the “size, type, and variability of the data,” as [10] point
out. Furthermore, despite using the full data, distance-based approaches can
still result in information loss, especially with dependent data. To overcome
this unreliability, one might consider introducing summary statistics or com-
bining multiple distance functions in a weighted average, although clearly such
modifications undermine the premise of the full-data distance-based approaches
and can result in greater incertitude about the nature of the estimation.
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Fig 1. Diagram of ABC.
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Fig 2. Diagram of synthetic likelihood.
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Fig 3. Diagram of Fourier approach.
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The remainder of the paper is as follows. Section 2 provides background on
MCMC estimation using the Fourier approach. Section 3 presents theoretical
results. Section 4 covers implementation details and, in particular, focuses on
the setting of the parameters R and N . Section 5 contains a number of examples.
Section 6 features a brief conclusion. An Appendix includes mathematical results
from Section 3, as well as additional results for Sections 5.1 and 5.3.

2. Background on “noisy” MCMC algorithms

This section considers the implementation of an MCMC algorithm, specifically
a Metropolis sampler, when the likelihood is represented by a Monte Carlo
approximation, a “noisy” likelihood. As noted by [17], for models that lack a
likelihood function, for either mathematical or computational reasons, Bayesian
approaches must resort to “practical if cruder approximation methods,” such
as Laplace approximations [29] and variational Bayes solutions [14]. [17] then
tout ABC as offering an “almost automated resolution” to this class of models,
while acknowledging that “these methods suffer to some degree from calibration
difficulties that make them rather volatile in their implementation and thus
render them suspicious to the users of more traditional Monte Carlo methods.”
That is, despite the careful selection and calibration of a number of underlying
parameters, a process that in itself takes some guesswork, methods based on
summary statistics, like SL, can exhibit unpredictable behavior for which a
remedy is unclear. By not requiring a transformation to summary statistics
and by relying on tuning parameters that relate directly to the Fourier integral
theorem, the Fourier approach provides a clear advantage over such methods,
both conceptually and practically.

We begin by introducing the main problem faced by Bayesian methods in
attempting to implement MCMC algorithms, of which we take the Metropolis–
Hastings algorithm [13] as the primary representative, when the likelihood func-
tion cannot be evaluated. To apply the Metropolis–Hastings algorithm, we need
to evaluate the acceptance ratio, the general form of which, for parameters θ
and data y, is given by

α(θ, θ′) = π(θ′|y)h(θ|θ′)
π(θ|y)h(θ′|θ) ,

where π is the desired target distribution and h a proposal distribution. When
the form of the likelihood is either unknown or unavailable, we can turn to an
approximation of α.

Described in [5, 4], the “pseudo-marginal” approach derives an approximation
of α by estimating the target distribution, π, at each θ. With this approach, given
θ′ drawn from h(·|θ), followed by xi drawn i.i.d. from the likelihood function
f(·|θ′), i = 1, . . . , N , the approximate acceptance ratio α̂ takes the form

α̂(θ, θ′) = π̂(θ′|y)h(θ|θ′)
π̂(θ|y)h(θ′|θ) ,
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where π̂ represents the prior times an approximation of the likelihood.
[4] show that once this procedure defines an irreducible and aperiodic Markov

chain, it will produce samples distributed asymptotically according to π. More-
over, the same result applies to any (non-negative) unbiased estimator of π.

Two schemes for estimating the target distribution are discussed by [4]: Monte
Carlo within Metropolis (MCWM) and grouped independence MH (GIMH). At
each iteration, MCWM computes the estimate of the target distribution for both
the current θ and the proposed θ′. GIMH retains the estimate from the previous
iteration and computes only the estimate for the proposed parameter value. The
difference between these schemes is that GIMH produces samples distributed
asymptotically according to the desired target distribution, whereas MCWM
produces samples distributed asymptotically according to an approximation of
the target distribution.

Following the analysis of ABC-MCMC in [3], we consider, for the Fourier
case, the nonnegative and unbiased estimator given by (2). With the standard
“auxiliary variable trick” identified by [3], the Fourier approach, using this es-
timator, is then exact in the twofold sense that for an ergodic Markov chain
based on GIMH, samples can be produced so as to be arbitrarily close to the
approximated posterior distribution, with convergence to the true posterior as
R → ∞, assuming nonnegative estimates. In particular, approximating the like-
lihood function with the Monte Carlo estimator (2), we regard our stationary
density as proportional to the prior times the approximation to the likelihood,
i.e., (1). What gives the Fourier approach a significant advantage is that it can
pick up dependence structures without an estimated covariance matrix, allowing
for highly accurate estimates in higher dimensions.

While the Fourier approach can be implemented with either MCWM or
GIMH, MCWM can help the chain to avoid getting stuck for any extended
period, thereby allowing for greater efficiency than GIMH. Indeed, as [2] state,
“[D]espite its exactness, there is no particular reason for estimators from GIMH
to be more statistically efficient than those from MCWM.”

The implementation of any algorithm for estimating a likelihood using the
Fourier estimator can be further improved by adopting the sampling techniques
suggested by [3] to prevent the aforementioned “sticky behavior.” The concern
here shifts from bias to variance, where performance improvements are obtained
by reducing the variability of the posterior estimates in terms of, say, the convex
order, which [3] maintain as a natural quantity in this context, backed by both
intuition and theory.

One such strategy is to average the estimators for each proposed value of
θ in the MCMC, a procedure that can be done in parallel at little extra cost;
that is, the estimation of the likelihood is performed M times according to
the evaluation schemes in Section 1.2, after which the estimates are averaged.
For models for which sampling time can increase steeply as a function of N ,
this strategy can help to reduce the number of samples needed in each parallel
instantiation.

In the next section, we present theoretical results that will illuminate ways of
dealing with observed points of low density, such as points in the tails of a distri-
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bution, and with smaller simulated sample sizes. In contrast with the marginal
likelihood evaluation predominant in [23], in which one may specify any high-
density point, likelihood evaluation will likely involve such low-density points,
especially as the sample size increases. For computational efficiency, because the
evaluation must be performed at each iteration of the MCMC, the sample size of
simulated data on which the Fourier estimation is based also tends to be smaller
for these problems than for those in [23]. As previously mentioned, we will also
be working with an estimator whose form is different from the one in [23].

3. Theory

In this section, we begin with some theoretical results, expanding on the in-
troductory remarks in Section 1.1. As will be made apparent in the following
presentation, there comes a fundamental shift in the focus of the Fourier ap-
proach, from bias in the marginal likelihood setting to efficiency in the ABC
setting. Proving exceedingly helpful in establishing guidelines for setting the
values of R and N in (2), these results, based on the assumption of normal
data, also apply to mixtures of normals, and so cover quite an extensive class of
model; moreover, in Section 4.2, we introduce a procedure to effect the normal
transformation, based on the Yeo-Johnson transformation [31], a power trans-
formation that is shown in the examples in Section 5 to work well in practice.
Bear in mind, however, that to apply the Fourier approach, we do not require
that the data be normal.

Now, let us recall the results taken from [23].

Definition 1. For some fixed value of R, define the Fourier integral represen-
tation of f(y1, . . . , yn | θ) as

fR(y|θ) =
∫ n∏

i=1

sin(R(yi − xi))
π(yi − xi)

f(x|θ) dx. (4)

This becomes more precise as R → ∞.

Definition 2. As in [23], the Fourier estimator of (4), based on a Monte Carlo
sample (xk = (x1k, . . . , xnk)) from f(· | θ), with n = 1, is given by

f̃R,N (y) = 1
N

N∑
k=1

sin(R(y − xk))
π(y − xk)

. (5)

For this estimator (5), we observe the following asymptotic behavior.

Lemma 1 ([23]).

Bias
(
f̃R,N (y)

)
= O

(
exp
(
−σ2R2/2

))
and Var

(
f̃R,N (y)

)
= O(R/N).

While this behavior is naturally relevant for larger values of R, with appropri-
ately large values of N , further insight into the dependence of the estimator
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on these parameters is afforded by the following theoretical results, which give
precise formulations for understanding the behavior of the estimator for any
values of R and N ; that is, with these formulations, we can calculate the exact
values for the mean and variance of the estimator, assuming normal data.

These formulations are based on the following two equations: For X ∼
N (μ, σ2), let

I1 ≡ π

2N (y|μ, σ2)
[
erf
(
σR− i(y−μ)

σ√
2

)
+ erf

(
σR + i(y−μ)

σ√
2

)]
, (6)

and

I2 ≡ π

2N (y|μ, σ2)(A1 + A2 + A3) − C1, (7)

where

A1 ≡
exp(−2σ2[R− i

2σ2 (y − μ)]2) + exp(−2σ2[R + i
2σ2 (y − μ)]2)√

2πσ2
;

A2 ≡ [R + i

2σ2 (y − μ)]erf

⎛⎝R + i
2σ2 (y − μ)√

1
2σ2

⎞⎠ ;

A3 ≡ [R− i

2σ2 (y − μ)]erf

⎛⎝R− i
2σ2 (y − μ)√

1
2σ2

⎞⎠ ;

C1 ≡ 1
2σ2 + Re

(
i

√
π

2σ2
√

2σ2
(y − μ) exp

(
− 1

2σ2 (y − μ)2
)

erf
(
i

√
1

2σ2 (y − μ)
))

.

Accordingly, we now present the main theoretical results of the paper.

Theorem 1. The first and second moments of f̃R,N (y) are given by (6) and
(7), respectively.

Because this result is uniform for the normal distribution with mean μ and
variance σ2, it also holds for a mixture of normal distributions.

As with rules-of-thumb for setting bandwidth parameters in kernel density
estimation, such as that due to Silverman [28], based on normal approxima-
tions, we next derive a relationship between N and R which provides guidance
on setting the value of R given a value of N , guidance motivated by the compu-
tational concerns that encourage smaller values of N , to be set first with a view
to efficient computation, followed by the optimal choice of R to reduce the MSE.
In Sections 4.1–4.2, we use these theoretical results to examine the relationship
between R and N more fully and conduct numerical studies to substantiate the
proposed rule-of-thumb, in addition to demonstrating normalizing transforma-
tions as part of an automatic procedure for applying the Fourier approach.

Theorem 2. With the standard normal distribution, as N → ∞, we have that
MSE

(
f̃R,N (0)

)
is minimized when erf

(
R/

√
2
)

= 1.
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Corollary 1. The optimal selection of R is for R ≈ 5.923 ·
√

2.

The advantage of the Fourier approach is the relatively low values of R neces-
sary for obtaining an optimal result, with respect to the MSE. The low bias of
the estimator for even moderate values of R, such as R = 4, allows for the vari-
ance to be controlled even for the smaller values of N , such as N = 104, which
support the computational efficiency of the MCMC algorithm. Yet it should
be stressed that both R and N come with clear guidelines and that increasing
N , and thus the optimal choice of R, will directly improve the ability of the
Fourier approach to recover the true posterior density in the ABC setting, an
outcome that, as will be shown in Sections 5.2 and 5.4, relating to univariate and
multivariate mixture models, respectively, cannot be claimed for other methods.

From here, we observe the aforementioned shift in focus from the Fourier es-
timator of [23] to the estimator of the “Fourier likelihood” function, which can
attain more favorable MSE, a priority since with an MCMC sampler, an esti-
mate of the likelihood is needed at each iteration of the sampler. Indeed, while
the efficiency of the Fourier estimator is generally a convenience for marginal
likelihood estimation, it is nearly a necessity for intractable likelihood estimation
in a “noisy” MCMC framework, as introduced in Section 2.

Recall that this framework requires a non-negative, unbiased estimator of the
target posterior. To derive this posterior, we thus introduce a new likelihood
function, the “Fourier likelihood” function, along with an unbiased estimator of
this function.

Definition 3. The “Fourier likelihood” function is given by

fR,N (y|θ) ∝ 1
2

[
fR(y|θ) + E

∣∣∣∣∣ 1
N

N∑
k=1

n∏
i=1

sin(R(yi − xik))
π(yi − xik)

∣∣∣∣∣
]
, (8)

where the expectation is for the i.i.d. {xik} of size n×N from f(· | θ).
Corollary 2. The Monte Carlo estimator

f̂R,N (y | θ) = max
{

0, 1
N

N∑
k=1

n∏
i=1

sin(R(yi − xik))
π(yi − xik)

}
(9)

is an unbiased Monte Carlo version of (8).

Corollary 3. The corresponding posterior density is given by πR,N (θ|y) ∝ π(θ)
fR,N (y | θ).

Accordingly, in the “noisy” MCMC framework, as discussed in Section 2, we
can estimate this target posterior distribution using MCWM or GIMH.

The proofs of the results appear in the Appendix.
Let us now proceed to examine some implications of these results for in-

tractable likelihood estimation. According to Theorem 2, we can optimally
choose R ≈ 5.923 ·

√
2; this theorem serves as the basis for our setting the

range of R values between 5 and 15 for data that have a normal appearance.



ABC Fourier integral theorem 5167

Fig 4. Estimates of a standard normal density at the value 0.0 over 104 independent simu-
lations. The blue line is the true value.

Fig 5. Estimates of the MSE.

Nevertheless, we are not claiming that the data need to have this appearance
for the Fourier approach to be applicable, but only that for the automatic pro-
cedure that we have here adopted, this assumption helps to ensure the selection
of a reasonable range of R values.

Using Theorem 2, we further find that, with, say, N = 106, MSE
(
f̃R,N (0)

)
is minimized for R ≈ 3.6. In Figure 4, we plot the Fourier estimates of the
standard normal density at y = 0 over 104 independent simulations as a function
of R, evaluated at integer values from 1 to 10, and in Figure 5, we plot the
corresponding estimates of the MSE values. The minimum value occurs, on the
aforementioned integer grid, at R = 4.

As previously stated, in the ABC implementation, we are likely to encounter
low-density points and work with smaller sample sizes N . Yet, with the estima-
tor in (9), the resulting MSE, with respect to the true density, can be improved
over that of the estimator in (5). To illustrate, we take N = 103 and the observed
value to be y = 3.0. In Figure 6, we plot the Fourier estimates from the same
simulation as above but with the new specification of N and y. We observe that
the estimates due to (5) display a greater variability than do those due to (9)
as R increases, with a higher incidence of negative values for larger values of R.
The bias, however, remains controlled in both cases. Consequently, the estima-
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Fig 6. Estimates of a standard normal density at the value 3.0 over 104 independent simula-
tions. The blue line is the true value. Left: Estimates using (5). Right: Estimates using (9).

Fig 7. Estimates of the MSE. The black lines represents (5) and the red, (9).

tor in (9) would appear to be more viable with smaller values of R, say, R in the
range from 2 to 4, than the estimator in (5). To corroborate these observations,
in Figure 7, we plot the corresponding estimates of the MSE values. For the esti-
mator in (5), we find that the MSE is minimized at R = 3 and for the estimator
in (9), R = 4; moreover, the estimate of the MSE is lower in the case of (9).

To conclude, we note the following inequality, which, in establishing the con-
nection between the estimators (5) and (9), serves to encapsulate the preceding
relationships and guide the implementation of the Fourier approach. Given that
|x| = 2 max{0, x} − x, for n = 1, we see that∣∣∣E [f̂R,N (y|θ)

]
− fR(y|θ)

∣∣∣ = ∣∣∣∣12 [fR(y|θ) + E
∣∣f̃R,N

∣∣]− fR(y|θ)
∣∣∣∣

= 1
2
∣∣E ∣∣f̃R,N

∣∣− fR(y|θ)
∣∣

≤ 1
2

∣∣∣∣√Var
(
f̃R,N

)
+ fR(y|θ)2 − fR(y|θ)

∣∣∣∣
≤ 1

2

∣∣∣∣√Var
(
f̃R,N

)
+ fR(y|θ)2 − f(y|θ)

∣∣∣∣
+ 1

2 |f(y|θ) − fR(y|θ)| , (10)
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by Jensen’s inequality and the triangle inequality. Recognize that fR(y|θ) →
f(y|θ) as R → ∞, so that by keeping the variance of f̃R,N low, we can improve
the approximation to the true likelihood.

Recall from Section 2 that one strategy to reduce the variability of a “noisy”
MCMC implementation is to average the estimator over M independent instan-
tiations at each iteration of the sampler. In the Fourier case, we may thus choose
to average each such estimator f̃

(m)
R,N (as in (5)) such that

M−1
M∑

m=1
max

{
0, f̃ (m)

R,N

}
or max

{
0,M−1

M∑
m=1

f̃
(m)
R,N

}
.

In the implementation details in the following section, we provide techniques
to attain estimates that have a high probability of being positive, even for
low-density points and small replicated sample sizes. When coupled with such
techniques, the latter choice of estimator is preferable inasmuch as it reduces
the variance referred to in (10); therefore, it is this variation that we use in the
examples in Section 5.

4. Implementation

In this section, we further discuss the implications of the theoretical results.
First, in Section 4.1, we provide an analysis of the two tuning parameters, R
and N , underlying the Fourier approach. Then, in Section 4.2, we discuss the
transformation to normal-looking data, on which the guidance in Section 4.1 is
predicated. Finally, in Section 4.3, we give an assessment of conditional decom-
positions that facilitate the modeling of higher-dimensional data.

4.1. Choosing the values of R and N

In choosing the value of R in the Fourier likelihood estimator given by (9), we
can first apply a normalizing transformation to the relevant data, which can
help to standardize the choice of R values. We begin with a description of a pro-
cedure using a Yeo-Johnson transformation [31], a power transformation defined
on the whole real line, to evaluate the density of the standard normal distri-
bution at the point y = −3.008, corresponding to the minimum value obtained
from a random sample in R, as generated from the function rnorm(1e4) with
set.seed(1): To these data, we apply a Yeo-Johnson transformation based on the
data falling below the 0.05 empirical quantile; then, we center and scale, so that
the appropriate R values can be more readily identified. (See https://github.
com/FARotiroti/Fourier: this whole process can be done automatically, with
a certain quantile specified.) Note that the proposed transformation is to help
to standardize the choice of R value; it is not a necessary part of the Fourier
approach. As we will see with the Ricker model in Section 5.5, even for data
that are non-normal after transformation, the approach is still able to produce
accurate estimates.

https://github.com/FARotiroti/Fourier
https://github.com/FARotiroti/Fourier
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In general, because of the standardization effected by this procedure, we take
the median of the estimates over the range R = 5 to 15, accounting for the
behavior of the estimator shown in Figure 2 of [23], whereby it is revealed that
once the estimates have stabilized over a particular region of R values, the
particular value of R chosen within that region has little effect on the estimate.
Given the automatic procedure we are here advocating, using a normalizing
transformation, followed by centering and scaling operations, the range from
R = 5 to 15 generally encompasses a stable range, and the median adds further
robustness to the estimator, for either the estimates have stabilized sufficiently
or they are distributed in a sinsoludal pattern around the true value; in either
case, the median helps to capture the desired estimate.

While we could perform the estimation repeatedly and then average, as dis-
cussed at the end of Section 2, a single estimate is generally sufficient in an
MCMC implementation given that this value contributes very little to the over-
all likelihood of the 104 observed data points, yet for illustrative purposes, we
are here interested in obtaining a precise value.

The variance of the estimate at the value of −3.008 when R = 10 and N = 104

is 2.24e-06, with mean 0.004. Ideally, one would search for the relevant partition
such that after transformation each point could be treated as roughly normal,
although practically this strategy is not feasible, especially for the sampling
method used below. Moreover, while we might use the full data as a matter
of convenience, here we sample 104 data points only below the 0.05 quantile.
After transformation, the minimum value becomes −1.931. Assuming normality,
the density estimate of this value, with 104 data points, at R = 10, has mean
0.062, with variance 2.1e-05. Over 105 independent simulations, the mean of
the estimate using transformed data is 0.061, with variance 2.1e-05. Since the
Jacobian cannot cause a negative value, we conclude that the estimate is very
unlikely to be negative here. Thus, we have produced an estimate effectively
bounded away from 0.

The boxplot in Figure 8 shows a comparison between estimates based on
applying the Fourier approach with and without transformation, when R = 10
and N = 104, over 105 independent simulations. The black line is the true
density. With the original approach, only 0.13% of the estimates are negative,
so as expected for normal data, even for estimation in the tails, the direct
application of the Fourier estimator produces reliable estimates on average; still,
the transformed approach can be seen to yield estimates with lower variance,
which are never negative in this example.

Consider that for a given value of R, the true Fourier integral can be negative
for values in the tails. Observe the expected values of the estimator for different
values of R in Figure 9. Thus, the first task is to ensure that we have a sufficiently
large R value. Assuming a finite data set drawn i.i.d. from a standard normal,
we can use the results from Section 3 to ensure that such an R value is chosen
for each observed value in the data set.

Here, let us focus on a tail value like y = 3.5. Continuing to use the numerical
approximation to the erf function due to [1], we determine that the values of
the integral are −0.0003 for R = 1, 0.0002 for R = 2, and 0.0006 for R = 3. The
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Fig 8. Estimates of a standard normal density at the tail value of −3.008 over 105 independent
simulations, using the Fourier approach on the original data and on transformed data, both
with R = 10 and N = 104.

Fig 9. Fourier integrals. The black line represents the values for R = 1, red R = 2, and green
R = 3.
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values of R need not be integers, but we are using integers here for illustration.
Also note the previously mentioned sinusoidal pattern that emerges in the tails.

In practice, we will not know which R value is sufficiently large. So, in this
instance, suppose we take R = 5, since for normal-looking data, this value is
reasonable for estimating nearly any likely observation. For R = 5, we, however,
know that the expected value is 0.0009, which is the true value.

Having chosen our R value, we can then consider the variance of the estimator
to guide our choice of N value. For N = 1, the variance is 0.008, indicating that
the estimator is likely to produce negative values. So suppose that we stipulate
that the estimator remain positive within two standard deviations of its expected
value. For R = 5, we find that this criterion is met around N = 50000. If we
increased the stipulation to three standard deviations, N = 105 is an appropriate
value. Thus, supposing that y = 3.5 is the most extreme in the observed data set,
we could comfortably set R = 5 and N = 105 to achieve an unbiased estimator
of the true density value which is seldom negative.

To substantiate this analysis with numerical results, we estimated the density
at y = 3.5 over 106 replications, each with R = 5 and N = 105. Over these repli-
cations, the mean was 0.0009, with standard deviation 0.0003, as compared with
the expected mean of 0.0009, with standard deviation 0.0003. The estimator was
negative 0.063% of the time.

While the preceding examples concerns the estimation of the density in the
tail, the normalizing transformation can be applied to improve the estimation
of the density at any point, this automatic procedure requiring only the speci-
fication of a partition of the data. Taking the median of the resultant estimates
over the range of R values between 5 and 15 further delivers robust estimation.

4.2. Yeo-Johnson transformations

While normality of the data is not a requirement to apply the Fourier approach,
the theory developed in Section 3 helps to guide its implementation when the
data appear normal. As illustrated in the previous section, to effect an automatic
method, based on that theory, we propose the application of a Yeo-Johnson
transformation to the data, as described in [31]. Such a transformation is part
of a power transformation family aimed at achieving approximate normality and
reducing skewness. It is defined as ξ : R× R → R such that

ξ(λ, x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{(x + 1)λ − 1}/λ, (x ≥ 0, λ �= 0),
log(x + 1), (x ≥ 0, λ = 0),
−{(−x + 1)2−λ − 1}/(2 − λ), (x < 0, λ �= 2),
− log(−x + 1), (x < 0, λ = 2).

We have chosen to use this transformation because it is well defined on the entire
real line, giving it general applicability. The choice of λ follows the procedure
outlined in [31], which depends on maximum likelihood estimation under the
assumption that for some λ, the transformed observations can be modeled as
following a normal distribution.
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Fig 10. Estimates of a standard normal density at the tail value of -3.008 over 105 indepen-
dent simulations, using the Fourier approach on the original data and on transformed data,
both with R = 10 and N = 104.

Resuming the discussion in Section 4.1, we consider the values that underlie
Figure 8. We obtain λ = 4.480, obtained by considering only the data that fall
below the empirical 0.05 quantile of the data, drawn i.i.d. from a standard nor-
mal with size 103, namely, below −1.727, given data generated from set.seed(1)
in R. The estimates are standardized using the mean and standard deviation
of this subset, −0.380 and 0.006, respectively. Thus, with reference to the third
case of the function ξ disclosed above, the absolute value of the Jacobian is
given by |(−x + 1)1−λ| scaled by the aforementioned standard deviation. This
quantity must then be multiplied by the proportion of the data used.

In the examples in the paper, we do not use just this proportion of the data
but rather the entire data set for each estimate. If, say, we wanted to use 104

samples to perform the estimate, we would need to estimate 104/0.05 values.
In Figure 10, we add to Figure 8 an additional boxplot (labeled Transformed*)
which simply uses the full data size of 104, so that the size of the sampled
data is the same for Original and Transformed*. Although the estimates are
very similar between those two approaches, for Transformed*, the estimates are
negative 0.04% of the time, whereas for Original, the estimates are negative
0.13% of the time. Still, keep in mind that the data here are normal, and the
greatest gains will be realized when the data must be transformed, such as with
the Ricker data in Section 5.5, which are positively skewed count data.

4.3. Conditional decompositions

In Section 5, the Fourier estimator will be seen to perform well in higher di-
mensions, in comparison with alternative approaches, such as KDE, SL, and
full-data distance-based methods, like CvM. In fact, in Section 5.5, we will con-
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Fig 11. Comparison of marginal posterior densities of μ1 using the exact likelihood (black),
a Fourier likelihood without blocking (red), and a Fourier likelihood with two blocks (green).

sider the estimation of eight- and nine-dimensional density functions, rolling
over 100 time points. Still, if sampling of constituent conditional distributions
is available, the Fourier approach can be extended to problems of increasingly
higher dimension.

As an example, suppose that y ∼ N (μ,Σ), with μ = 0 and

Σ =

⎡⎢⎢⎣
0.97 0.47 −0.51 −0.04
0.47 1.89 −1.58 0.07
−0.51 −1.58 1.60 −0.01
−0.04 0.07 −0.01 0.48

⎤⎥⎥⎦ .
We draw a data set of 100 independent values from this distribution with

μ = 0. Then, assuming a flat prior on μ, we draw posterior samples in three
ways:

1. Using the true likelihood;
2. Using the full four-dimensional vector;
3. Using two two-dimensional vectors formed from the first and last pairs of

y = (y1, y2) with the distributions given by y1 and [y2|y1].

In Figs. 11–14, the marginal posterior densities appear consistent across all
approaches, with the approach with two blocks displaying a closer match with
that using the true likelihood than does the approach without blocking. Never-
theless, the performance on the full four-dimensional vector suggests that the
approach could thus be extended to, say, a 12-dimensional vector decomposed
into three blocks, each consisting of a four-dimensional vector.

There are, moreover, other approaches to sampling the conditional distribu-
tions, with the central idea consisting in the evaluation of a density at a point.
For instance, one could obtain samples from the posterior [θ|y1] and then esti-
mate the posterior density at the proposed draw in the MCMC algorithm using
the Fourier estimator. If it is then assumed that the conditional distribution
[y2|θ, y1] is known, this approach gives access to a highly useful means of ob-
taining samples from [θ|y1, y2]; if it is not assumed known, then the Fourier
estimator can again be used to estimate this conditional likelihood.
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Fig 12. Comparison of marginal posterior densities of μ2 using the exact likelihood (black),
a Fourier likelihood without blocking (red), and a Fourier likelihood with two blocks (green).

Fig 13. Comparison of marginal posterior densities of μ3 using the exact likelihood (black),
a Fourier likelihood without blocking (red), and a Fourier likelihood with two blocks (green).

Fig 14. Comparison of marginal posterior densities of μ4 using the exact likelihood (black),
a Fourier likelihood without blocking (red), and a Fourier likelihood with two blocks (green).

5. Examples

We begin with two examples, the first involving the g-and-k distribution and
the second an M/G/1 queuing model, both of which appear in [10]. We also
consider an example involving the Ricker model, as described in [30].
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For the examples that appear in [10], we will compare with only the best
performing models there identified. See that paper for more details about the
alternative approaches. Following both examples, we illustrate with mixture
models common in the ABC literature how the Fourier approach is better able
than the alternative approaches to represent the true likelihood. For the Ricker
model example, we compare with synthetic likelihood (SL).

As we will demonstrate, the Fourier approach performs well across the vari-
ous examples, using the full data without incurring information loss, while also
remaining computationally viable. We will see that as opposed to the alterna-
tive approaches, the Fourier approach is properly estimating the true likelihood
function, an outcome due to its solid statistical basis, which also aids in setting
the couple of tuning parameters on which it relies. The data and code for all
the examples is available at https://github.com/FARotiroti/Fourier.

Note that because of the differences in procedure between the Fourier ap-
proach and ABC methods, making an accurate comparison of the computation
time is a difficult task. The comparison of such between the Fourier approach
and both KDE and SL is more straightforward, however. In Section 5.3, for
the M/G/1 queuing model, an estimate of the log likelihood is obtained on the
average by the Fourier approach in 0.0072 seconds and by KDE in 0.0007 sec-
onds. In Section 5.5, for the Ricker model, an estimate of the log likelihood is
obtained on the average by the Fourier approach in 0.8775 seconds and by SL
in 0.3256 seconds. In both these examples, the number of replicated data sets
is N = 104.

It is thus evident that the methods considered are computationally viable
in these examples; however, we emphasize that what sets the Fourier approach
apart from these methods is its ability to estimate accurately the true posterior—
with the tuning parameters playing clear roles in supporting the estimation—
and to continue to perform well in higher dimensions.

5.1. g-and-k distribution

First, we consider the g-and-k distribution, which is defined in terms of its
quantile function, as given by

Q(z(p)|θ) = a + b

(
1 + c

1 − exp(−g z(p))
1 + exp(−g z(p))

)
×
(
1 + z(p)2

)k
z(p),

where p denotes the given quantile and z the quantile function of the standard
normal. The true parameter vector is set as

θ = (a = 3, b = 1, g = 2, k = 0.05),

with c = 0.8 fixed, and the prior is taken to be U(0, 10)4. The heavy-tailed nature
of the data makes it potentially challenging for certain full-data distance-based
ABC approaches, like that using the Wasserstein distance, as well as for standard

https://github.com/FARotiroti/Fourier
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Table 1

Simulation results, based on 50 data sets, for parameter a of the g-and-k distribution
example with simulated data of size n = 100.

Method mean median std 80% 90% 95%

Exact 3.018 3.008 0.119 0.88 0.92 0.96
Fourier 3.015 3.007 0.119 0.88 0.92 0.96
CvM 3.008 3.003 0.092 0.80 0.90 0.94

Table 2

Simulation results, based on 50 data sets, for parameter b of the g-and-k distribution
example with simulated data of size n = 100.

Method mean median std 80% 90% 95%

Exact 1.079 1.054 0.244 0.86 0.94 0.96
Fourier 1.077 1.055 0.241 0.86 0.96 0.98
CvM 1.048 1.034 0.195 0.76 0.92 0.96

Table 3

Simulation results, based on 50 data sets, for parameter g of the g-and-k distribution
example with simulated data of size n = 100.

Method mean median std 80% 90% 95%

Exact 2.252 2.143 0.600 0.88 0.98 0.98
Fourier 2.285 2.168 0.637 0.86 0.96 0.98
CvM 2.318 2.201 0.635 0.86 0.98 0.98

ABC. Because the likelihood can be computed numerically, we can compare the
estimates with exact Bayesian results.

We consider sample sizes of n = 100 and n = 1000. In each case, we repeat the
experiment over 50 simulated data sets, using the same data as [10]. According
to [10], the full-data distance-based ABC approach using the Cramer-von Mises
(CvM) distance performs very well across all the comparisons.

For the four parameters, respectively, Tables 1–4 contain results for n = 100,
and Tables 5–8, for n = 1000. Based on 50 simulated data sets, the results
include the mean of the posterior means, the mean of the posterior medians, the
mean of the posterior standard deviations, and the coverage rates for nominal
rates of 80%, 90% and 95%.

From these tables, it is clear that the Fourier approach provides estimates
closely matched to the exact results. For the Fourier approach, to set the pa-
rameters for the Yeo-Johnson transformation, we partition the data based on
empirical quartiles. Results for the estimated posterior correlations can be found
in the Appendix; there, in Tables 13 and 14, we find further evidence that the
Fourier approach is estimating the true posterior distribution.
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Table 4

Simulation results, based on 50 data sets, for parameter k of the g-and-k distribution
example with simulated data of size n = 100.

Method mean median std 80% 90% 95%

Exact 0.505 0.495 0.136 0.82 0.90 0.98
Fourier 0.500 0.489 0.136 0.84 0.92 0.98
CvM 0.530 0.517 0.174 0.86 0.96 0.96

Table 5

Simulation results, based on 50 data sets, for parameter a of the g-and-k distribution
example with simulated data of size n = 1000.

Method mean median std 80% 90% 95%

Exact 2.996 2.995 0.036 0.80 0.94 0.96
Fourier 2.997 2.996 0.038 0.82 0.96 0.96
CvM 2.995 2.994 0.038 0.84 0.94 0.96

Table 6

Simulation results, based on 50 data sets, for parameter b of the g-and-k distribution
example with simulated data of size n = 1000.

Method mean median std 80% 90% 95%

Exact 0.999 0.996 0.0715 0.84 0.94 0.98
Fourier 1.001 0.998 0.075 0.88 0.96 0.98
CvM 0.998 0.996 0.078 0.88 0.98 0.98

Table 7

Simulation results, based on 50 data sets, for parameter g of the g-and-k distribution
example with simulated data of size n = 1000.

Method mean median std 80% 90% 95%

Exact 2.001 1.998 0.102 0.82 0.86 0.90
Fourier 1.999 1.997 0.107 0.84 0.88 0.94
CvM 2.021 2.016 0.143 0.92 0.98 0.98

Table 8

Simulation results, based on 50 data sets, for parameter k of the g-and-k distribution
example with simulated data of size n = 1000.

Method mean median std 80% 90% 95%

Exact 0.501 0.500 0.0408 0.82 0.90 0.98
Fourier 0.499 0.498 0.043 0.86 0.90 0.98
CvM 0.508 0.506 0.063 0.96 1.00 1.00
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In the GitHub repository at https://github.com/FARotiroti/Fourier, to
demonstrate the Fourier approach’s performance on a hierarchical model, we
also provide an additional example, a multivariate g-and-k model, as depicted
in Figure 3 of [9]. As in the univariate g-and-k example, in the multivariate
extension, the Fourier approach provides estimates closely matched to the exact
results. Because in Section 5.5, we will apply the Fourier approach to a model
that involves both hierarchy and time-dependence, we will forgo further expan-
sion on the hierarchical g-and-k model here and direct those interested to the
aforementioned repository.

5.2. Univariate mixture

While the CvM performs reasonably well in the previous example, we show
that even for a simple toy example in the ABC literature, the method falters.
Introduced in [6], the standard toy example here considered involves a model
given by

θ ∼ U [−10, 10], f(x|θ) = 0.5N (x|θ, 1) + 0.5N
(
x|θ, 0.12) .

We suppose that the given data is the single point y = 0. We run a Gibbs
sampler using the Fourier likelihood in place of the true likelihood. The results
appear in Figure 15. At each iteration of the sampler, the size of the replicated
data sets is taken to be N = 104, for each of M = 10 parallel processes.

Fig 15. Histogram of samples obtained from Fourier approach. The black line represents the
target density, as computed on a grid.

https://github.com/FARotiroti/Fourier
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Fig 16. Comparison of posterior densities of θ using the exact likelihood (blue), a Fourier
likelihood (green), and CvM (red).

Immediately, we recognize that CvM cannot be preformed with a single data
point, since the distance evaluates identically with one observed data point.
Conceding this point, let us then suppose that we take an i.i.d. sample of size
n = 100 from the mixture. In Figure 16, we observe that while the Fourier
approach is able to replicate the exact posterior closely, CvM simply concen-
trates around the given value of θ = 0, revealing that it is not actually behaving
properly as an estimator of the likelihood and so fails to represent the true
posterior.

5.3. M/G/1 queue

Next, we consider the M/G/1 queuing model, a stochastic single-server queue
model with Poisson arrivals, service times given by U(θ1, θ2), and service time
between arrivals distributed as Exp(θ3). The observed data are of length n = 50,
consisting of the inter-departure times of 51 customers. The true parameters are
set as θ = (1, 5, 0.2), and the prior is given by

U
(
0,min

i
(yi)
)
× U

(
0, 10 + min

i
(yi)
)
× U (0, 0.5) ,

with i = 1, . . . , n. For comparison, we again have access to the true posterior,
here using the sampling scheme proposed by [26], which relies on data augmen-
tation.

We repeat the experiment over 50 simulated data sets, using the same data
as [10]. According to [10], the KDE (log) approach performs very well across all
the comparisons; that is, KDE applied to log-transformed data.

For the three parameters, respectively, Tables 9–11 contain the repeated sim-
ulation results based on the 50 simulated data sets. For the Fourier approach,
to set the parameters for the Yeo-Johnson transformation, we partition the
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Table 9

Simulation results, based on 50 data sets, for parameter θ1 of the M/G/1 queue example
with simulated data of size n = 50.

Method mean median std 80% 90% 95%

Exact 0.997 1.043 0.148 0.84 0.90 0.94
Fourier 0.978 1.022 0.154 0.82 0.88 0.94
Fourier (log) 0.983 1.029 0.152 0.84 0.88 0.94
KDE (log) 0.983 1.029 0.152 0.84 0.88 0.94

Table 10

Simulation results, based on 50 data sets, for parameter θ2 of the M/G/1 queue example
with simulated data of size n = 50.

Method mean median std 80% 90% 95%

Exact 4.962 4.913 0.369 0.82 0.92 0.94
Fourier 5.010 4.976 0.519 0.80 0.90 0.98
Fourier (log) 5.071 5.001 0.544 0.78 0.90 0.96
KDE (log) 4.997 4.974 0.534 0.82 0.90 1.00

Table 11

Simulation results, based on 50 data sets, for parameter θ3 of the M/G/1 queue example
with simulated data of size n = 50.

Method mean median std 80% 90% 95%

Exact 0.207 0.206 0.029 0.74 0.82 0.94
Fourier 0.198 0.198 0.022 0.74 0.82 0.90
Fourier (log) 0.202 0.201 0.025 0.74 0.82 0.86
KDE (log) 0.198 0.198 0.022 0.74 0.80 0.86

data based on empirical quartiles, as in Section 5.1. To compare more directly
with KDE, we separately applied the Fourier approach to log-transformed data,
with R then matched to the inverse bandwidth of KDE (log). We see that all
the methods produce estimates closely matched to the exact values on aver-
age. Results for estimated posterior correlations can be found in the Appendix
(Table 15).

In the next section, we will reveal the limitations of KDE, observing how the
estimation suffers as the dimension of the problem increases. In addition, note
the small observed data size of n = 50. As [10] observe, while this small size
leads to difficulties in determining the underlying parameter values overall, its
effect is most pronounced on the full-data ABC approaches; still, the Fourier
approach, which also uses the full data, continues to provide highly accurate
estimates.
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5.4. Multivariate mixture

Extending the example in Section 5.2, we consider the multivariate model given
by

θ ∼ U(−10, 10)3, f(x|θ) = 0.5N (x|θ,Σ) + 0.5N
(
x|θ, 0.12 Σ

)
,

with observed data y = 0. We take

Σ =

⎛⎝13.98 −1.64 0.44
−1.64 2.63 1.74
0.44 1.74 4.07

⎞⎠ .

This matrix is a submatrix based on the five-dimensional covariance matrix in
[23]. Note that this example is similar to the multivariate mixture considered in
in [8], only there the covariance matrix is diagonal.

Figures 17–19 show simulation results based on using the exact likelihood,
a Fourier likelihood, and KDE, with the latter two taking N = 104. First, we
must point out that the computation using KDE was prohibitive for the original
five-dimensional matrix, hence the reduction in dimension. Like CvM, KDE, in
failing to approximate the likelihood properly, especially in higher dimensions,
results in densities that deviate from the true posterior.

Thus, we recognize a salient benefit of the Fourier approach: There is no
need to specify a covariance matrix for the likelihood estimation, as would be
required in setting the bandwidth matrix for the multivariate normal kernel in
KDE. The Fourier integral incorporates this information, and we are required
only to set the R value for the given N , over which we also have control. Note
that in Example 5.3, KDE performs very well, but it is worth keeping in mind
its limitations. The full-data distance-based approaches also encounter problems
in higher dimensions; as stated by [10], “Currently, [full data approaches] are
predominantly suited to univariate data sets. We speculate that the application
of these distances to univariate problems is due to both computational and
statistical concerns.”

Fig 17. Comparison of marginal posterior densities of θ1 using the exact likelihood (blue), a
Fourier likelihood (green), and KDE (red).



ABC Fourier integral theorem 5183

Fig 18. Comparison of marginal posterior densities of θ2 using the exact likelihood (blue), a
Fourier likelihood (green), and KDE (red).

Fig 19. Comparison of marginal posterior densities of θ3 using the exact likelihood (blue), a
Fourier likelihood (green), and KDE (red).

The ability of the Fourier approach to handle multivariate data enables it to
deal with time-dependent data, as the next example illustrates.

5.5. Ricker model

Before assessing the Ricker model, we address the fact that the data in the
Ricker model are dependent. Owing to this dependence, many of the alterna-
tive approaches in the previous sections are outright impracticable or at least
unreliable.

5.5.1. Dependent data

As with i.i.d. data, with correlated data, we can use knowledge of the structure
of the data to our advantage. To illustrate, we consider data following an AR(1)
process, with AR(1) parameter θ. That is, the model takes the form

yt+1 = θyt + εt,
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Fig 20. Left: ACF of AR(1) data. Right: PACF of AR(1) data.

where εt ∼iid N (0, 1) and y0 ∼ N (0, 1/(1 − θ2)). From this model, we generate
a series of length n = 100 with θ = 0.2.

Acknowledging the dependence structure of the AR(1) process, as corrob-
orated by the autocorrelation function (ACF) and the partial autocorrelation
function (PACF) of the series, plotted in Figure 20, we can thus apply the
Fourier approach to the successive dependent pairs. The densities of the poste-
rior samples obtained from this scheme appear in Figure 21. At each iteration
of the MCMC, the size of the replicated data sets is taken to be N = 104, for
each of M = 10 parallel processes. The overlaid blue line represents the density
of posterior samples obtained using the true AR(1) likelihood.

For a linear AR(p) process, p ∈ {1, 2, . . . }, of the form

yt =
p∑

j=1
θj yt−j + εt,
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Fig 21. The green line represents the density of posterior samples obtained from the Fourier
approach, with N = 104 and M = 10. The blue line represents the density of samples obtained
using the true likelihood function.

where the (εt) are independent, one could also use the independent variables

zt = yt −
p∑

j=1
θj yt−j

when generating the pseudo-data. In the simplest case that yt = yt−1 + εt, the
zt = yt − yt−1, for t = 1, 2, . . ., are independent.

Our approach to this problem is to estimate the likelihood using
N∑
i=1

p∏
l=1

kR(yl − xil)
n∏

j=p+1

∑N
i=1
∏j

l=j−p kR(yl − xil)∑N
i=1
∏j−1

l=j−p kR(yl − xil)
, (11)

where the (xil) are simulated from the model for a particular parameter set and
kR is the Fourier kernel.
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5.5.2. Ricker data

The hidden Markov model (HMM) is a fundamental model in which a latent
state evolves according to Markovian dynamics, with corresponding noisy obser-
vations. Even an HMM with known dynamics can pose challenges for statistical
inference [18]. For a non-linear HMM, for example,

yt ∼ f(· | xt), xt = g(xt−1) + ηt,

to proceed with the Fourier approach, we would want to estimate the likelihood
function ∏

t

p(yt | y1:t−1).

This estimation can be complicated with the Fourier approach owing to the
large number of product terms which would need to appear in (3); however, if,
as is usually the case, each p(yt | y1:t−1) can be adequately approximated by a
p-order process, for some positive integer p, then we can use p(yt | y(t−p):(t−1)),
and the Fourier approach now becomes highly attractive; from a mathemati-
cal perspective, p(yt | y(t−p):(t−1)) would be intractable, and yet, the Fourier
approach estimates it with high accuracy.

Now that we have a better understanding of how to deal with dependent
data, we can begin our analysis of data based on the scaled Ricker map, which
has a hidden-Markov-model structure. Following [30], we consider the scaled
Ricker map as prototypical of an ecological model with complex dynamics: It
describes the dynamics of a population of size N at time t as follows:

Nt+1 = rNt exp(−Nt + et), [yt | Nt] = Pois(φNt),

where the et ∼iid N (0, σ2
e) denote process noise and r denotes the growth rate.

The observed series (yt) consists of Poisson random deviates with mean φNt

based on unobserved (Nt). Like [30], we are interested in making statistical
inferences about θ = (log r, σe, φ), but as [30] observes, any likelihood-based
inference about θ in this setting runs into issues of both analytical and numerical
intractability.

Even though the proposed Fourier approach is not ideally suited to working
directly with discrete data, this challenge can be easily overcome by simply
adding a small amount of Gaussian noise to each value. Figure 22 shows the
time series and histogram of the original Ricker data in the top and bottom
left panels, respectively, and the time series and histogram of these data after a
Yeo-Johnson transformation in the top and bottom right panels, respectively.

On the basis of Table 3.1 of [27], the ACF and PACF of the Ricker data,
plotted in Figure 23, suggest that an eighth-order (p = 8) autoregressive model
might provide a good fit to these data: the PACF cuts off distinctly after lag 8,
while the ACF tails off.

The first row of Figure 24 shows the densities of the posterior samples for
the three parameters of the Ricker model (namely, log r, σe, and φ) obtained
by applying the Fourier approach to the decomposed series, assuming an AR(8)
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Fig 22. Top-left: Time series of Ricker data. Top-right: Time series of transformed data.
Bottom-left: Histogram of Ricker data. Bottom-right: Histogram of transformed data.

Fig 23. Left: ACF of Ricker data. Right: PACF of Ricker data.
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Fig 24. Comparison of densities of posterior samples of the parameters of the Ricker model
(namely, log r, σe, and φ). The first row is based on posterior samples obtained from the
Fourier approach; the second row, from synthetic likelihood. The red lines indicate the mean
of the samples, and the blue lines, the parameter value used to generate the data.

structure and implementing (11). At each iteration of the MCMC, the size of
the replicated data sets is taken to be N = 104, for each of M = 10 parallel
processes. Since the dimension has increased, we take R in the range of 3 to 6 for
the respective nine- and eight-dimensional numerators and denominators, com-
posed of the Yeo-Johnson-transformed data. The motivation for these choices is
to balance the bias and variance as the dimension increases. As before, the choice
of R can be determined by following the procedure in [23], regardless of whether
a normalizing transformation is used. Unlike SL, that is, the Fourier approach
assumes a normalizing transformation for the purposes of setting the R value
automatically with a scaled and centered Yeo-Johnson transformation, but it
is equally valid to set the R value by observing the trace of the log-likelihood
estimates across R values, a process facilitated by the linked code repository.
From Figure 22, we note that although the transformation has helped to im-
prove the symmetry of the data, they are still quite clearly non-normal. For SL,
however, having normal summary statistics is a necessary part of the method,
given its dependence on the multivariate normal log likelihood, as depicted in
Figure 2.
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Table 12

Posterior summaries for data simulated from Ricker model of size n = 100.

Par True Fourier Synthetic likelihood
Mean Median SD Mean Median SD

log r 3.8 3.676 3.678 0.134 3.556 3.569 0.198
σe 0.3 0.319 0.331 0.088 0.370 0.366 0.113
φ 10 10.438 10.265 1.446 10.531 10.445 0.629

The second row of Figure 24 shows the result of applying SL. While both
approaches agree on the general posterior structure and identify similar posterior
mean values of the parameters, the associated mean and standard deviation of
the samples recorded in Table 12 establish that overall the Fourier approach
using the AR(8) decomposition identifies the true underlying parameter values
with high accuracy. To validate these results, we ran a particle MCMC [16],
which produced posterior means of 3.662, 0.317, and 10.298 for the respective
parameters, output consistent with that of the Fourier approach.

Furthermore, confronted with any change to the model, SL would need to
be carefully reassessed to determine the relevant statistics, whereas the Fourier
approach could be applied with minimal changes. For instance, the Nicholson’s
blowfly model considered in [30] uses 16 summary statistics. With a given set of
summary statistics, ABC can also potentially outperform SL when the statistics
fail to be sufficiently normal.

Thus, the problem for SL and related ABC methods is essentially that of
choosing summary statistics. Choosing summary statistics is difficult for mod-
els with complicated structures, like those with multiple levels of hierarchy, and
requiring normality gives rise to further challenges. [11] outline a semi-automatic
procedure for constructing appropriate summary statistics for ABC, using sim-
ulation to find estimates of the posterior means of the parameters, although
Matteo Fasiolo, Natalya Pya and Simon N. Wood point out in the discussion
of [11] that for the Ricker model, the chaotic nature of the dynamics might
require a more sensitive treatment. Also note that the Fourier approach can be
used with summary statistics and, in fact, can help to assess the distributional
assumptions on these statistics, especially in higher dimensions.

We conclude by emphasizing that the Fourier approach exploits the same
general scheme in all of the examples in this section, revealing its versatility
and ease of implementation. Although a Yeo-Johnson transformation can be
applied automatically, the Fourier approach can also accommodate whatever
such transformation might be desired, and while transforming the data to appear
more normal or at least symmetric can improve the estimation, Figure 22 reveals
that the approach is robust to data that, even after transformation, appear quite
clearly non-normal.

6. Conclusions

We have introduced a method for obtaining posterior samples from a model for
which the likelihood function is intractable, or otherwise unavailable, but from
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which simulation is possible. What distinguish this approach from alternatives,
such as approximate Bayesian computation [17] and synthetic likelihood [30], are
the ease of implementation, reliability of performance, and generality of appli-
cation. Setting the two tuning parameters on which the Fourier approach relies,
namely, R and N , is straightforward, particularly inasmuch as we have control
over the sample size N of the replicated data, and the bias of the estimator
can be of order exp(−R2) for data that have a mixture of normal appearance,
either as given or after transformation. With knowledge of the structure of the
data, be that knowledge given or inferred, the Fourier approach obtains highly
accurate results.

The Fourier approach further holds promise for Bayesian model choice.
[22] advise caution with the use of ABC in model choice in the presence of insuf-
ficient summary statistics, which result in unknown loss of information. Their
concern is for trustworthy approximations to the posterior probabilities of mod-
els, achievable only when all the data are involved in the approximation. As we
have shown, across a variety of examples, the Fourier approach, which uses the
full data, is able to approximate the posterior distribution accurately, suggesting
that the Fourier approach could serve as a reliable tool in model selection.

Appendix: Proofs

Proof of Theorem 1

Here we find the mean and variance of the Fourier estimator for normal observa-
tions. To this end, let R > 0, and let f(x) be a Gaussian, f(x) ∝ exp(−b(x−c)2),
with fixed real number c and fixed positive real number b. Then, in relation to
the proposed estimator, we define

I1(R) =
∫ ∞

−∞

sin(R(y − x))
y − x

exp(−b(x− c)2)dx,

for which the first derivative with respect to R is given by

I ′1(R) =
∫ ∞

−∞
cos(R(y − x)) exp(−b(x− c)2)dx

= exp(iR(y − c))
∫ ∞

−∞

exp(−iRu)
2 exp(−bu2)du

+ exp(−iR(y − c))
∫ ∞

−∞

exp(−iRu)
2 exp(−bu2)du.

Appealing to the Fourier transform, we see that∫ ∞

−∞
exp(−iRx) exp(−bx2)dx

= 2π
∫ ∞

−∞
exp(−iR2πu) exp(−b4π2u2)du

= 2πF(exp(−b4π2u2)) = 2π exp(−R2/4b)√
4πb

=
√
π exp(−R2/4b)√

b
.



ABC Fourier integral theorem 5191

This result is due to the Fourier transform of a Gaussian; i.e., the Fourier trans-
form of a Gaussian, exp(−cx2), is given by

√
π
c exp

(−π2R2

c

)
, and so, taking

c = 4bπ2 yields the desired result.
Thus, we find that

I ′1(R) =
[
exp(iR(y − c)) + exp(−iR(y − c))

2

] √
π exp(−R2/4b)√

b

=
√
π cos(R(y − c)) exp(−R2/4b)√

b
.

Now, we can find the indefinite integral, relying again on the exponential for-
mulation of the cosine function and recognizing the initial condition I1(0) = 0.
We conclude that

I1(R) = π

2 exp(−b(y − c)2)

·
[
erf
(
R− 2ib(y − c)

2
√
b

)
+ erf

(
R + 2ib(y − c)

2
√
b

)]
.

For X ∼ N (μ, σ2), we have that

I1(R) = π

2
√

2πσ2
exp
(
− 1

2σ2 (y − μ)2
)

·
[
erf
(
σR− i(y−μ)

σ√
2

)
+ erf

(
σR + i(y−μ)

σ√
2

)]
,

so that as R → ∞, we have that

lim
R→∞

I1(R) = π√
2πσ2

exp
(
− 1

2σ2 (y − μ)2
)
.

And so, the bias of the estimator at arbitrary y = y0 tends to 0 as R → ∞.
Next, let us examine the variance of the estimator in this case. To begin, we

define
I2(R) =

∫ ∞

−∞

sin2(R(y − x))
(y − x)2 exp(−b(x− c)2)dx,

for which the first derivative with respect to R is given by

I ′2(R) =
∫ ∞

−∞

sin(2R(y − x))
y − x

exp(−b(x− c)2)dx,

and the second derivative by

I ′′2 (R) =
∫ ∞

−∞
2 cos(2R(y − x)) exp(−b(x− c)2)dx

= 2exp(i2R(y − c))
2

∫ ∞

−∞
exp(−i2Ru) exp(−bu2)du

+ 2exp(−i2R(y − c))
2

∫ ∞

−∞
exp(−i2Ru) exp(−bu2)du.
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Again appealing to the Fourier transform, we find that

I ′′2 (R) = 2
[
exp(i2R(y − c)) + exp(−i2R(y − c))

2

]
·
√
π exp(−R2/b)√

b

= 2
√
π cos(2R(y − c)) exp(−R2/b)√

b
.

Taking the integral with respect to R, we find that

I ′2(R) = π

2 exp
(
− b(y − c)2

) [
erf
(
R− ib(y − c)√

b

)
+ erf

(
R + ib(y − c)√

b

)]
.

And then, integrating again with respect to R, we find that

I2(R) = π

2 exp(−b(y − c)2)

·
{√

b

π

[
exp
(
−[R + ib(y − c)]2

b

)
+ exp

(
−[R− ib(y − c)]2

b

)]}

+ π

2 exp(−b(y − c)2)
{

[R + ib(y − c)]erf
(
R + ib(y − c)√

b

)}
+ π

2 exp(−b(y − c)2)
{

[R− ib(y − c)]erf
(
R− ib(y − c)√

b

)}
+ C,

with

C = −
√
bπ − Re

(
iπb(y − c) exp(−b(y − c)2)erf(i

√
b(y − c))

)
.

When x = 0 and c = 0, we find that

I2(R) = π

[
R · erf

(
R√
b

)
+
√

b

π
exp
(
−R2

b

)]
−
√
bπ

= πR · erf
(

R√
b

)
+
√
bπ

[
exp
(
−R2

b

)
− 1
]
.

For X ∼ N (μ, σ2), we have that

I1(R,μ, 1/(2σ2)) = π

2
√

2πσ2
exp
(
− 1

2σ2 (y − μ)2
)

·
[
erf
(
σR− i(y−μ)

σ√
2

)
+ erf

(
σR + i(y−μ)

σ√
2

)]
,

(12)
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and

I2(R,μ, 1/(2σ2))

= π

2
√

2πσ2
exp
(
− 1

2σ2 (y − μ)2
)

·
{√

1
2πσ2

[
exp
(
−2σ2

[
R− i

2σ2 (y−μ)
]2)

+ exp
(
−2σ2

[
R+ i

2σ2 (y−μ)
]2)]}

+ π

2
√

2πσ2
exp
(
− 1

2σ2 (y − μ)2
)⎧⎨⎩

[
R + i

2σ2 (y − μ)
]
erf
(
R + i

2σ2 (y − μ)√
1

2σ2

)⎫⎬⎭
+ π

2
√

2πσ2
exp
(
− 1

2σ2 (y − μ)2
)⎧⎨⎩

[
R− i

2σ2 (y − μ)
]
erf
(
R− i

2σ2 (y − μ)√
1

2σ2

)⎫⎬⎭
− 1

2σ2 − Re
(
i

√
π

2σ2
√

2σ2
(y − μ) exp

(
− 1

2σ2 (y − μ)2
)

erf
(
i

√
1

2σ2 (y − μ)
))

.

(13)

Proof of Theorem 2

With N fixed, consider

inf
R>0

{MSE
(
f̃R,N (y)

)
} = inf

R>0
{Var(f̃R,N (y)) + [Bias(f̃R,N (y))]2}.

In particular, for the standard normal N (0, 1) at x = 0, we have that

I1(R)|x=0 = π√
2π

erf
(

R√
2

)
,

and

I2(R)|x=0 = R
√
π√
2

erf
(
R
√

2
)

+ 1
2
[
exp
(
−2R2)− 1

]
.

Thus, setting f(y) = N (0, 1) and y = 0, we find that

MSE
(
f̃R,N (0)

)
= 1

Nπ2

(
I2(R) − [I1(R)]2

)
+
[

1
π
I1(R) −N (0|0, 1)

]2
= 1

Nπ2

(
R
√
π√
2

erf
(
R
√

2
)

+1
2
[
exp
(
−2R2)−1

]
− π

2 erf2
(

R√
2

))
+
[

1√
2π

erf
(

R√
2

)
− 1√

2π

]2
. (14)
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To find the desired infimum, we differentiate the MSE with respect to R:

d

dR
MSE

(
f̃R,N (0)

)
= 1

Nπ2

(
R√
2π

erf
(
R
√

2
)

+ 1
2π
[
exp
(
−2R2)− 1

]
− 1

2π erf2
(

R√
2

))
+
[

1√
2π

erf
(

R√
2

)
− 1√

2π

]2
=

exp(−R2/2)
[
2(N − 1)erf(R/

√
2) + exp(R2/2)erf(R

√
2) − 2N

]
N
√

2π3/2
.

Proof of Corollary 1

As N → ∞, we have that infR>0 MSE
(
f̃R,N (0)

)
occurs where

2
[

1√
2π

erf
(

R√
2

)
− 1√

2π

] [
1√
2π

2√
π

exp
(
−R2

2

)]
≡ 0;

i.e., erf
(
R/

√
2
)

= 1, implying that, given the machine precision of R (the pro-
gramming language) and the numerical approximation to the erf function due to
[1], the approximation error is vanishingly small for R ≥ 5.923 ·

√
2. Accordingly,

we optimally set R ≈ 5.923 ·
√

2.

Proof of Corollary 2

Unbiasedness is due to max(0, a) = (a+ |a|)/2, in conjunction with Definition 4
and the i.i.d. {xik}.

Additional results

The results in Tables 13, 14 and 15 are for estimated posterior correlations for
the g-and-k distribution and M/G/1 queue examples.

Table 13

Average correlation, based on 50 data sets, between parameters of the g-and-k distribution
example with simulated data of size n = 100.

Method corr(a, b) corr(a, g) corr(a, k) corr(b, k) corr(b, g) corr(g, k)

Exact 0.691 −0.397 −0.532 0.136 −0.724 0.123
Fourier 0.687 −0.413 −0.528 0.112 −0.722 0.136
CvM 0.644 −0.454 −0.446 0.070 −0.631 0.327
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Table 14

Average correlation, based on 50 data sets, between parameters of the g-and-k distribution
example with simulated data of size n = 1000.

Method corr(a, b) corr(a, g) corr(a, k) corr(b, k) corr(b, g) corr(g, k)

Exact 0.748 −0.329 −0.610 0.166 −0.764 0.173
Fourier 0.751 −0.327 −0.611 0.165 −0.762 0.178
CvM 0.720 −0.392 −0.536 0.078 −0.669 0.413

Table 15

Average correlation, based on 50 data sets, between parameters of the M/G/1 queue
example with simulated data of size n = 50.

Method corr(θ1, θ2) corr(θ1, θ3) corr(θ2, θ3)

Exact −0.020 −0.004 0.013
Fourier −0.018 −0.068 −0.035
Fourier (log) −0.018 −0.061 −0.019
KDE (log) −0.021 −0.062 −0.046
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