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Abstract: We tackle the extension to the vector-valued case of consis-
tency results for Stepwise Uncertainty Reduction sequential experimental
design strategies established in [3]. This leads us in the first place to clar-
ify, assuming a compact index set, how the connection between continu-
ous Gaussian processes and Gaussian measures on the Banach space of
continuous functions carries over to vector-valued settings. From there, a
number of concepts and properties from [3] can be readily extended. How-
ever, vector-valued settings do complicate things for some results, mainly
due to the lack of continuity for the pseudo-inverse mapping that affects
the conditional mean and covariance function given finitely many pointwise
observations. We apply obtained results to the Integrated Bernoulli Vari-
ance and the Expected Measure Variance uncertainty functionals employed
in [9] for the estimation for excursion sets of vector-valued functions.
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1. Introduction

Sequential design of experiments is an important statistical area dealing with
the step by step assignment of resources (typically, experiments, measurements,
simulations) towards reducing the uncertainty about some quantity of interest.
Bect et al. have in [3] reinforced the theoretical foundations for the analysis of
a large class of strategies that are built according to the stepwise uncertainty
reduction (SUR) paradigm. This has enabled them to establish some broader
consistency results for the considered strategies under the assumption that the
function of interest is a sample path of the Gaussian process model used to con-
struct the sequential design. [3] is based on the idea that each of the SUR sequen-
tial design strategies involves an uncertainty functional applied to a sequence
of conditional probability distributions such that for any sequential design the
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resulting sequence of random variables, that we will denote by (H,,),, .y, is a su-
permartingale with respect to the filtration generated by the observations. This
is called supermartingale property of the underlying uncertainty functional. In
[3], a number of methodological developments and application areas of sequential
design of experiments with scalar-valued Gaussian process models are recalled
(notably in the introduction), and it is shown that two strategies for probabil-
ity of excursion / excursion set estimation (based on the integrated Bernoulli
variance and on the expected measure variance, respectively) and two global
optimization strategies (based on the expected improvement and on the knowl-
edge gradient criteria, respectively) enjoy established SUR consistency results.
The present work is motivated by the investigation of theoretical guarantees of
consistency to related approaches in the framework of vector-valued Gaussian
process models, such as considered in [9]. In the latter reference, a bivariate
Gaussian process was used to jointly model salinity and temperature fields to
delineate the river plume in a considered domain at the interface between the
Fjord of Trondheim and the ocean. Another related setting of learning many
tasks simultaneously using kernel methods (multi-task learning) also arises in
[2] and [8] and has turned out to significantly outperform standard single-task
learning methods in some cases. The multi-output model for Gaussian processes
was also recently studied and encouraged in [25].

In what follows we do establish extensions of SUR consistency results to
vector-valued (multi-output) settings, with a focus on the situation where mul-
tiple quantities are all observed at the same time and may correlate with each
other. While such extensions may seem quite natural, so far only very few works
have used vector-valued Gaussian processes in theoretical settings, which has
motivated us to investigate this aspect and establish links to Gaussian mea-
sures on corresponding function spaces. The latter is all the more crucial since
the connection between Gaussian processes and Gaussian measures plays a cen-
tral role in the theoretical constructions used in [3] to prove consistency of
(scalar-valued) SUR sequential design strategies.

We assume throughout that the function of interest is an element in the space
of continuous functions from a compact metric space (X,0) to R¢ (for d € N),
denoted by C (X;R?), and a sample path of the multivariate Gaussian process
¢ that is used to construct the sequential design. This means £ = (&1, ...,&4)
is a R%valued Gaussian process (every &; is a R-valued Gaussian process) with
continuous sample paths defined on a compact metric space (X, ). Observations

Zn = g(Xn) +én

for n = 1 are to be made sequentially in order to estimate the quantity of
interest. Furthermore, we assume the sequence of observation errors (e,),,cn
to be independent of the Gaussian process ¢ and distributed as independent
centered Gaussian vectors.

We can then directly take over the definition of a SUR strategy from [3], which
starts with the choice of a “measure of residual uncertainty” for the quantity of
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interest after n observations
H, =H(P5),

which is a non-negative function of the conditional distribution P$ of ¢ given
Fn, where F,, is the o-algebra generated by X1, 71, ..., Xy, Z,. For n > 0, the
SUR sampling criterion .J,, associated with # is then a function from X to [0, o0)
and defined for x € X as the conditional expectation

In () = E[Hpi1|Fn, Xng1 = 2],

assuming that H,,; is integrable for any choice of z € X. The value of the
sampling criterion J, (x) quantifies the expected residual uncertainty at time
n + 1 if the next observation is to be made at x € X. The sequential design is
then constructed by minimizing the expected residual uncertainty over X

Xp+1 € argmin J, ().
zeX

Note that some of the statements from [3] carry over smoothly to the vector-
valued case, with proofs needing moderate adjustments and further arguments
to hold in the more general setting. However, other aspects of extending SUR
consistency results to vector-valued settings pose novel challenges. One of the
key observations in [3] is that the sampling criterion is continuous when the co-
variance of the underlying Gaussian process is bounded away from zero. Things
become more complicated in the vector-valued case as the pseudo-inverse map-
ping presents discontinuities between matrices of different ranks. This affects
in turn extending the existence result for SUR sequential design and deserves
some more thorough consideration (see Proposition 3.12, Lemma 4.5 and Propo-
sition 5.1).

Since only two of the example design strategies from [3] have a straightforward
extension to vector-valued settings, we focus on them and establish consistency
for the extensions of the algorithms of [3] dedicated to the excursion probability/
excursion set estimation. For f = (f1, ..., fa) € C (X;R?) define the set

I'(f):={ueX: f(u)eT},

where T < R? is some closed set. For the case of orthants T := [t;,0) x ... x
[tda 00)7

T(f)={ueX:fu)>T)={ueX: fi(u)>t,icil,..d}.

is called excursion set with excursion threshold 7' = (¢1, ..., td)T e R?. Given a
finite measure p on X, the first measure of residual uncertainty in the excursion
case is called the integrated Bernoulli variance (IBV) and defined by

HrIzBV = f Pn (]- _pn) d,ufv
X
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where p, (z) = P (£ (z) = T|F,) denotes the excursion probability with respect
to F,. Still with p a finite measure on X, the second measure of residual uncer-
tainty is the variance of the excursion volume (EMV), defined by

HMY = Var (1 (T () | ) -

Both measures of residual uncertainty also appear in [9]. On the first look these
criteria may seem to be the same as in [3], since HIBY and HEFMV are again
functions to R. In fact, the vector-valued aspect is hidden within the definition
of the excursion set/probability and yet complicates theoretical investigations
on the aforementioned residual uncertainties (see Section 5). Indeed, it is not
possible to reduce the expressions for the residual uncertainties to a form where
we can utilize the theory from [3] for real-valued Gaussian processes. Even in
the case a multivariate Gaussian process £ = (1, ...,&q) with pairwise indepen-
dent components &;, we would end up with residual uncertainties that require
further investigation beyond what is supported in the existing literature. An
easy way out would be to assume a multivariate Gaussian process with inde-
pendent components and to select the sequential design points by alternating
between different residual uncertainties Hr(f), each one corresponding to a dif-
ferent component &;. However, this is clearly different from the approach in [9],
that motivated our work, and not the multivariate extension of SUR sequential
design that we would advertise.

In the next section we will prepare the ground for our theoretical investiga-
tions on SUR strategies for the vector-valued case. The connection between
continuous R%-valued Gaussian processes and Gaussian random elements in
C (X; ]Rd) will be tackled with Theorem 2.5. This connection will later be cru-
cial for the proofs of the consistency results and the analysis of SUR sequential
design, since we will work with the distribution P¢ of the Gaussian process &
(or more precisely with its conditional distribution given finitely many observa-
tions), which will turn out to be a Gaussian measure on C (X; Rd). In Section
3 we will define the statistical model and design problem more precisely as in-
troduced in [3]. In Section 4 we will discuss uncertainty functionals and some
properties that are important for the existence of SUR sequential design and
state general sufficient conditions for the consistency of SUR sequential designs.
In Section 5 we will finally apply these consistency results to the two SUR se-
quential designs introduced above. The proofs are postponed to the Appendix.

2. Gaussian processes and Gaussian random elements

Let (Q, F, P) be the underlying probability space. In this section we will focus on
the connection between multivariate Gaussian processes and Gaussian random
elements in the space of continuous functions from a compact metric space (X, d)
to R?, that we denote by C (X; Rd) for some fixed d € N. The most important
statement of this section is Theorem 2.5, which shows that we can identify
each continuous multivariate Gaussian process as Gaussian random element in
C (X; Rd) with respect to its Borel o-algebra and vice versa. The theory of
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Gaussian random elements is based on [5] and [23]. See also Chapter 2.3 and
2.4 in [24] for similar results in a more general setting. For the proofs or more
details on C (X; Rd) and its dual space see Appendix A.1.

Definition 2.1. Let (B,|-|) be a (real) Banach space. A B-valued random
element X : 0 — B is called Gaussian if for any bounded linear functional
L € B* the random variable (X, L) is Gaussian. The distribution v of X is
called a Gaussian measure on (B, |-|).

Definition 2.2. Let (X,0) be a compact metric space and ¢ = (£(x)),.x a
stochastic process with state space (R?,B (R?)). ¢ is called a multivariate (d-
variate, vector-valued) Gaussian process if the finite-dimensional distributions
of ¢ are Gaussian, i.e. if

(c@) @)

is a Gaussian vector in R for every n > 1 and 1, ..., 2, € X.

Remark 2.3. We sometimes write £ = (&1, ...,&4) for a multivariate Gaussian
process, where & (z) := m; (§(x)) = £(x), is the i-th component of £ (x) for
i€ {l,...,d} and = € X. By the definition of a multivariate Gaussian process this
means &; is a real-valued Gaussian process for all i € {1,...,d}.

Furthermore, recall that the finite-dimensional distributions of a multivariate
Gaussian process ¢ are determined by the mean function

m:X - Rz E[¢ (2)]
and covariance function
kX x X =R, (2,y) — E[ (§) - m(@)) () —m()' |-
It holds for the entries of the mean function

m(z); = E[& (2)]

for x € X and i € {1, ...,d} and for the entries of the matrix covariance function

k(x,y)i; = E[(&(x) —m(x):) (§5(y) —m(y);)]

for z,y e X'and ¢, j € {1, ..., d}. Hence the entries k(x,y);; of the matrix k(z,y)
correspond to the covariance between the outputs &;(z) and &;(y) and describe
the degree of correlation or similarity between them.

Consideration of sample path properties makes it possible to think of mul-
tivariate Gaussian processes as random elements (measurable maps) from the
underlying probability space €2 to a function space S (Rd)x. In the following
we will see that the induced random element will also be Gaussian if we consider
continuous sample paths. See also [15] for the case X < R and d = 1.
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It is a well known result that S := C (X;R?) is a separable Banach space if
we equip it with the supremum norm

Hf”oo := sup |f ('r)|max7
zeX

where [2] . 1= maxXeq . gy || is the maximum norm on R? (see Theorem
4.19 in [12]). Similar to the space of continuous R-valued functions it can be
shown that for the Borel o-algebra S on (S, |-||,) it holds

S=0{0;:2€X}),

where §, : S — R% 6, (f) = f(z) are the evaluation maps for z € X (see
Chapter 1.2 in [23]).

Lemma 2.4. Let £ be a multivariate Gaussian process with continuous sample
paths. Then the mean function m and covariance function k are continuous.

Theorem 2.5. A multivariate Gaussian process & with continuous sample paths
is a Gaussian random element in (S, ||, ) with respect to the Borel o-algebra
S and its distribution is a Gaussian measure on this space. Vice versa, we can
find for every Gaussian measure v on (S,S) a multivariate Gaussian process
with continuous sample paths that has distribution v. The distribution of £ is
uniquely determined by the mean function m and covariance function k, so we
use the notation & ~ GP4 (m, k).

3. Conditioning on finitely many observations

Now that we have the grounding, we can revisit the construction from [3] around
conditioning on finitely many observations. Many properties carry over, but
we still require some careful thoughts in places. Especially Propositions 3.11
and 3.12 need some additional arguments if the underlying Gaussian process
has values in R%. Proposition 3.12 comes as a surprise and will be the reason
that the sample criterion has a more complicated discontinuity structure in the
vector-valued case than in the scalar-valued case. All proofs have been moved
to Appendix A.2.
We will assume that

1. (X,0) is a compact metric space,

2. £ = (£(2)),ex is a d-variate Gaussian process on the probability space
(Q, F, P) with mean function m and covariance function k,

3. & has continuous sample paths,

and concentrate on the following model:

& can be observed at sequentially selected design points X1, X» ... with addi-
tive independent heteroscedastic Gaussian noise. This means pointwise obser-
vations Zy, for k = 1,2, ... are given by

Zy = & (Xk) + 7 (Xx) Ug,
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where (U)o denotes a sequence of independent and N (0, I)-distributed ran-

dom vectors, that are also independent of ¢, and 7 : X — R4*¢ denotes a known

continuous function. Then 7 : X — R4 T (z) := 7 (z) 7 (x)" is also continu-

ous and T (z) is symmetric and positive semi-definite for every x € X.
Furthermore, we define the filtration (F,) by

n=0

Fpni=0 ({Q(XZ)D

for n = 1 and set Fy to be the trivial o-algebra. F,, is the o-algebra generated
by the first n sequential design points and n according pointwise observations
X1,74, Xo, Zo,..., Xy, Zy, and we have F,, € F,,, for n < m. We finally define

Fop :=0<U}"n> c F.

n=1

Definition 3.1. A sequence (X,,), -, is called sequential design if X, is F,—1-
measurable for all n > 1.

Definition 3.2. For A € R"*™ the (Moore-Penrose) pseudo-inverse of A is
defined as the matrix AT € R™*" satisfying the properties

1. AATA = A and ATAAT = AT,
2. (AAT)T = AAT and (ATA)" = ATA.

Remark 3.3. 1. By the Theorem of Moore and Penrose the pseudo-inverse
always exists and is unique (see [14]).
2. If A is a square matrix with full rank, then A" = A~! (see [14]).

The mapping A — AT is measurable (see [18]).

4. In contrast to the usual matrix inversion mapping A — A~! for invertible
matrices, the pseudo-inverse mapping A — AT is in general not continuous.
However, continuity of this mapping is provided on sets with constant
matrix rank. This means A, — AT, if A, — A and there exists ng € N
such that rank (4,) = rank (A) for all n = ng (see [16, 20]).

Theorem 3.4. For any & ~ GP4(m,k), X, = (X1,...,X,) € X", Z,, =
(Z1,... Zy) € R as defined above, the conditional mean and covariance func-
tion of £ given Z, = z, and assuming a deterministic design X, = x, are
given by

@

Mo (25T, 20) = M (2) + K (2,2,) 2 (2,) T (vee (2,) — vee (m (x,)))

ko, (.Z‘, Y; wn) =k (LL‘, y) - K (.%', wn) by (wn) 'K (y7 wn) Ty
where we define ¥ (x) := k(x,x)+T (z) for x € X and use the matriz convention

m(xz,) = (mx) - m(z) )eRdX",

K (z, @) = ( k(z,21) - k(z,2,) )€ Réxnd,
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Y(xn) = K(xn) + T () € Rrdxnd,

k(xy,21)  k(z1,22) k(x1,2n)
K (x,) := k(@,’xl) ;
. k(xn—lvxn)
k(mnaxl) ce k(xn7I7L—1) k(xvmxn)
T(x1) 0 .- 0
T@y=| °
: 0
0 e 00 T ()

Remark 3.5. 1. For the case d = 1 the formula reduces to the form

My (2380, 2) = m (2) + K (2,2,) S (20) T (20 — m (20)) ",

K (l‘7y;$n) = k(aj?y) - K(win)z (wn) K (:%xn)-r

with ¥ (@) = (k (25, 25) + T(2i)0ij),<; j<, € R"". Hence the expres-
sions for m,, and k,, are consistent with the ones for R-valued Gaussian
processes as in [3].

Conditionally on F,, the next observation Z,,,; follows a multivariate
normal distribution: Z,, 1 1|F, ~ Ny (my, (Xny1), 30 (Xnt1)), where

Yo (x) i=ky (z,2) + T (x).

For the case n = 0 we have X (z) = X (z) = k (v,2) + T (2) € R¥>? as
expected for our model.

The conditional mean m, (or posterior mean in Bayesian statistics) is
also called Kriging predictor or rather co-Kriging in our case, since we
have the joint Kriging of multiple data inputs. For the univariate response
setting, there exists abundant literature to it (see [6, 17] and the references
therein). For the multivariate response see also [2, 25].

As shown in Section 2 we can think of the multivariate Gaussian process € as a
Gaussian random element in the separable Banach Space (S, ||-|,) equipped with
the Borel o-algebra S. Let furthermore M be the space of Gaussian measures
on S. We equip M with the o-algebra M generated by the evaluation maps

TA

v — v(A) for A e S. As shown in Theorem 2.5 we have the following

connections:

Any measure v € M corresponds to the distribution P¢ of some continuous
multivariate Gaussian Process £ with mean m and covariance function k. Hence
we can write

V:szgpd(mak)v

since the distribution is uniquely determined by m and k.
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On the other hand the probability distribution P¢ = GP4(m,k) of some
continuous multivariate Gaussian process is a Gaussian measure on S and hence
an element in M.

Definition 3.6. Given a Gaussian random element £ in S, we will denote by
P (&) the set of all Gaussian conditional distributions of £. That is the set of
Gaussian random measures v such that v = P (§ € -|F’) for some o-algebra
F'cF.

Remark 3.7. 1. Note that we use a bold letter v to denote a random ele-
ment in M (Gaussian random measure) and a normal letter v to denote a
point in the space M (Gaussian measure).

2. v = P(£€-|F') is not necessarily Gaussian for an arbitrary o-algebra
F' < F and hence not always a random element in M. However, the
next Proposition shows that it holds for the o-algebra F,, generated by a
sequential design with corresponding pointwise observations.

Proposition 3.8. Let n > 1. There exists a measurable mapping

X" x R x M — M,

(@1, s ®n) s (215 00ey 20) V) > Condy, 21 w2 (V)

such that Condx, z,,..X.,.Zn (Pg) is the conditional distribution of € given the
o-algebra F,, for any PS¢ € M and sequential design (Xn)p=q with pointwise

observations (Zy),, -

Remark 3.9. In a Bayesian context, P¢ can be seen as the prior distribution
and for n e N
Py := Condx, z,..x,,7, (P°)

as the posterior distribution after observing (Zx), <., at the sequentially se-
lected design points (X); <, By Proposition 3.8 we have that P§ is a F,-
measurable random element in M with P$ = P (¢ € -|.F,,) and hence PS € B (€)
for all n € N. If P¢ = GP,4 (m, k), then it holds PS = GP, (m, k), where the
Fn-measurable (and random) conditional mean function m, and conditional

covariance function k,, are given as in Theorem 3.4.

Definition 3.10. Let (v, = GPa (M, kn)),>, be a sequence of Gaussian mea-
sures in M. We will say that (v,), -, converges to vy, € M if

My — My in C (X;Rd) ,
kn = ko in C (X x X;RPY)
with respect to the corresponding supremum norms ||, on the function spaces.
Notation: v,, — Vg.

Proposition 3.11. Let Fy be the o-algebra generated by | J,,~, Frn- For any
Gaussian random element £ in S, defined on any probability space (Q, F,P),
and for any sequential design (Xy,), ., the conditional distribution of  given
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Foo admits a version Pg% which is an F-measurable random element in M, and
it holds

pPS 2%, pS.
n—0o0

Proposition 3.12. Let v = GP4(my, k) € M, X, () := k, (z,2) + T (z) €
R4 and assume (z;,2;) — (v,2) asi— o0 in X x R with x;,z in the set

Cr :={xeX:rank(XZ, (z)) = k}
and z;,z € R? for i e N and some k € {1, ...,d}. Then we have

Condy, », (v) —— Cond, . (v).
1—00

Remark 3.13. The above Proposition illustrates an important difficulty that
arises when one turns from a scalar-valued Gaussian process GP (m, k) to a
multivariate Gaussian process GP4 (m, k). For a Gaussian process GP (m, k) and
just one observation (x1,21) = (z,2) € X x R, the convergence mentioned above
only depends on the inverse of a scalar, whereas for a multivariate Gaussian
processes GP4 (m, k) and the observation (x1,z1) = (z,2) € X x R? we already
have to deal with matrix inversion. This yields some difficulties for the limit as
Tr; —> X.

4. SUR sequential design and its existence in the multivariate
setting

We will start by recalling some definitions from [3] that can instantly be ex-
tended to our multivariate setting, since they only depend on the space M of
Gaussian measures on S. However, the existence of SUR sequential design in
the multivariate case comes with some pitfalls caused by Proposition 3.12 in the
previous section. We will nevertheless prove that under some special assump-
tions the SUR sequential design indeed exists. All proofs have been moved to
Appendix A.3.

Definition 4.1. An uncertainty functional on M is a measurable function
H:M — [0,00)

with minyem H (v) = 0. The residual uncertainty after n observations, for a
Gaussian random element £ in S and a sequential design (Xy), -, is defined as
the F,,-measurable random variable

H, =M (P5)
for n = 0.

Definition 4.2. Let H be an uncertainty functional on M.
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1. H has the supermartingale property if for any Gaussian random element &
in S, defined on any probability space (2, F, P), and any sequential design
(Xn),>, the sequence of residual uncertainties (H,),-, is a (Fn)
supermartingale.

2. H is P-uniformly integrable if for any Gaussian random element £ in S,
defined on any probability space (€, F, P), the family (H (V)), ey ) s
uniformly integrable.

3. H is PB-continuous if for any Gaussian random element £ in S, defined on
any probability space (2, F, P), and any sequence of random measures
(Vn)p=1 © P (§) such that v, % Vo € P (€) it holds

n=0"

H(vy) —>H Vo).

n—0o0

For the definition of stepwise uncertainty reduction (SUR) sequential design
strategies we need to define some important functionals on M. For any = € X
observe the mapping 7, : M — [0, c0] defined by

T (V) = J];Qd LH (Conda:,f(l')-‘rT(x)u (V)) v (df) ¢d (’U,) du
_ JR H(Cond, oy () dau)du,

where ¥, (:17)% e R¥*? is the unique symmetric and positive semi-definite square
root matrix of ¥, (z) = k, (z,2) + T (z), ¢4 is the density of Ny (0,I;) and
V= gpd (mua ku)

Proposition 4.3. The mapping
J: X xM—[0,00], (z,v) —» Tz (V)

is B (X) ® M-measurable.

Definition 4.4. Let £ be a Gaussian random element in S, (X,,),~, be a se-
quential design and F,, the o-algebra generated by X1, Z1, ..., Xy, Z,,. The SUR
sampling criterion J,, associated to an uncertainty functional H on M is defined
as the function J,, : X — [0, 0], where

I (x) 1= T, (P§) = E, [H (Cond, 70y (PS))] :=E[H (Cond, z(x) (PS)) |Fn]

with Z(z) = £ (z) + 7 (x) U and U ~ Ny (0,1;) independent of &, Uy, ..., U, as
defined in the introduction of Section 3.

1. (Xn)n>1 is called a SUR sequential design associated to the uncertainty
functional H, if
Xp+1 € argmin J, (z)
zeX

for all n = ng with ng € N.
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2. Let (en),,en be a sequence of non-negative real numbers with &, — 0 as
n — . (Xy),s, is called an e-quasi SUR sequential design associated to
the uncertainty functional #, if it holds

In (Xps1) < inf J, (z) + €,
zeX

for all n = ng with ng € N.

Lemma 4.5. Let H be a measurable uncertainty functional on M that is B-
continuous, P-uniformly integrable and has the supermartingale property.

1. For any sequential design (X,,) the sample paths of

n>1
Jn X = [0,00), Jy (z) = E, [H (Cond, 40 (PS))]
are continuous on the random sets
Chi = {zeX:rank(X, (z)) =k} =X

forneNand k=0,...,d.

2. Assume that the covariance function k of the underlying Gaussian process
¢ is positive definite and T (x) = 7(x) 7 (z)| is positive definite for all
x € X. Then there exists a SUR sequential design (X,),>, associated with
H.

3. There exists an e-quasi SUR sequential design (Xy,), -, associated with H.

Definition 4.6. Let H be an uncertainty functional on M that has the super-
martingale property.

1. The expected gain functional at z € X is defined by
Ge M —[0,00), G, (v) :=H(v)— T (v).
2. The maximal expected gain functional is defined by

G:M—[0,0), G (V) :=supG, (v).

zeX

5. Consistency of multivariate excursion set estimation under SUR
sequential design

In the previous section we have recalled some desirable properties of a SUR
sequential design strategy that guarantee existence and continuity of the sample
criterion on a partition of the domain X. The following Proposition is the key
to proving consistency of SUR sequential design in the case of multivariate
excursion set estimation. The Proposition (see proof in Appendix A.4) follows
from two Theorems in [3] that are also stated for completeness in Appendix A.4.
The proofs of the Theorems have been adjusted to the multivariate setting.
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Proposition 5.1. Let H be an uncertainty functional on M, (Xy,), >, be an e-
quast SUR sequential design for H and G the associated maximal expected gain
functional. Assume that

1. H is P-continuous, P-uniformly integrable and has the supermartingale
property,
22 {veM:H(y)=0}={reM:G(v)=0}.
Then it holds
H, =H (P}) 2> 0.

n—o0

5.1. Integrated Bernoulli variance (IBV)

In this subsection we are turning to the integrated Bernoulli variance, that is for
example used for uncertainty reduction in [9] in the case of river plume mapping
as already mentioned in the Introduction. The proofs are inspired by [3] and
can be found in Appendix A.4.

Let £ be a Gaussian random element in S. The residual uncertainty of the
integrated Bernoulli variance (IBV) is defined as the random variable

HIBV .— Jx pr (1) (1 = pr (w)) p(du) = JX Var (1) (v) |[Fn) o (du),
where F,, is the o-algebra generated by n observations and

More generally, we can define the corresponding uncertainty functional #!BV
by the mapping

HIBY .M — [0,0),

v | pu(u) (1 —py(u)p(du),
X

where p, (u) := §;1r(s (u) v (df). Note that H/BY is clearly an uncertainty
functional on M. Furthermore, let GIBY be the associated maximal expected
gain functional.
We want to use Proposition 5.1 to show
HTI]BV _ HIBV (PTEL) a.s. 0

n—oo

for any e-quasi SUR sequential design (X,),,, for HIBV . In the following we
will check the assumptions of the Proposition.

Lemma 5.2. H!BV is P-uniformly integrable and has the supermartingale
property.
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Recall that for every sequence (v,,),>,; < B (§) such that v,, — vy € P ()
almost surely, it holds

rHIBV (Vn) _@s- HIBV (Voo)

n—o0

and that v,, € P (§) with £ ~ GP4 (m, k) if there exist o-algebras G,, ¢ F such
that v, = P (£ €|G,) and v, (w) is a Gaussian measure on (C (X,R%),|-[|.,)-
In this case we can write v,, = GP4(my,, ky,) for some random mean function
m,, and random covariance function k,,. We have

if
uniformly on X and

uniformly on X x X, where
Ve =GPy (mOOakOO) = P(E € |goo)

for some G, < F. Furthermore, we can write
P 0,) = [ 9(P (€0 > T16,)) ()

for the bounded continuous function g : [0,1] — [O, %] ,z — x(1—2x), so the
claim follows by the Dominated Convergence Theorem if we can show

P(&(u) = T|Gn) = P (&1 (v) = t1, ..., &a (u) = ta|Gn) %’ P (u) = T(Gw) -

We have for almost all w €  and all u € X by definition of the multivariate
Gaussian process that £ (u) ~ Ny (m (u), k (u,u)) and

v (u,w) := L (€ (1) [Gn) (W) = Na (ma (u) (), kn (v, u) (w))
for all n € N U {00} with
M () () ——> i () (@),
kn (u,u) (W) —— koo (u, 1) (w)
n—0o0

by the almost sure uniform convergence of m,, and k,. This already implies
Un (U, w) <> vy (u,w) as n — oo for almost all w € Q and all u € X, so by the
Portmanteau Theorem

Vp (u,w) (T) =P (& (u)
——P (& (u)

n—o0

tla "-75(1 (u)
tl,...,fd (’U,)

=
=
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=Veo (u,w) (T)
if
Ve (u,w) (0T) = P (Fi € {1,...,d} : & (u) = t;|Gy) (w) = 0.
This is clearly the case if for all j € {1,...,d} it holds ky (u,u)(w);; > 0 or
Moo (u) (w); # tj, but turns out to be more difficult in other cases. For the prove
that HIBV is P-continuous, we need to construct a suitable finite decomposition

of X to check the convergence in each case.

Lemma 5.3. Define the functions Fy : X x P({1,...,d}) — [0,00) and F» :
X x P({1,...,d}) x Q — [0,00) by

Fy(u,J) = Z k(u,u)ij
jeJ

and
2
2
Fy(u, J,w) = Y (meo (w) @), = £5) " + koo () (@)}
jedJ

For Ji,Js € {1,...,d} and w € Q fized, let By, j,(w) < X be the set of all ue X
such that

1. Fl(u, Jl) =0

2. .FQ(’LL7 JQ,(U) =0

3. For every J; o Jy and J, > Jy it holds Fy(u, J;) > 0 and F»(u, Jj, w) > 0.

Then X can be written as the disjoint union

U Buwnw

J1,J2S{1,...,d}
and it holds:

1. If Jo & Ji, then By, j, is almost surely a p- null set.
2. If Jo < Jq, then

P (€ (u) > T1G,) 2 P (€ (u) > T|G0)
for allue By, j,.

%IBV

Lemma 5.4. is P-continuous.

Proof. Using the decomposition for X from the above Lemma 5.3 and recalling
that the finite union of P-null sets is again a P-null set, we get by the first
property in Lemma 5.3

p(X) = (4),

where the random subset A is defined by
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Hence we can conclude with g : [0,1] — [0,1], 2 — z (1 — z) that
Lg (P (€ (u) = T|G,)) i (du)
- Lg@ (€ (u) > T|Gn)) p (du)

_as. Ag(P (€ (u) = T|Gs)) p (du)

e ng (€ (u) > T|Go0) p (d)

by the second property in Lemma 5.3 and dominated convergence. 4

Lemma 5.5.
{reM:H™PV (v) =0} ={reM:G"%" (v) = 0}.

Note that {reM: H (v) = 0} c {reM:G(v) =0} always holds as shown
in [3]. In the proof of the above Lemma (see Appendix) we will only focus on
the reverse inclusion.

Theorem 5.6. If (X,,),-, is an e-quasi SUR sequential design for HIBY | then
it holds
HIBV a.s. 0.

n—oo
Furthermore, it holds almost surely and in L' that,

L (Lequysr — o ()” o (du) —— 0.

n—o0

5.2. FExcursion Measure Variance (EMYV)

Let £ be a Gaussian random element in S. Another popular measure of the
residual uncertainty with respect to the excursion set that is used in [3], is the
variance of the excursion volume or excursion measure variance (EMV) defined
by

HEMY = B [(a(§) = E[a (€)1 7)) 1Fa] = Var (a (€)1 7).

where F,, is the o-algebra generated by n observations and « (§) := p (T (£)).
More generally, we can in this case define the corresponding uncertainty func-
tional H¥MV by the mapping

HEMV M — )
w—»j —a,, v (df),

where &, := §;a(f)v(df). Note that HEMY is clearly an uncertainty func-
tional on M. Furthermore, let GEMV be the associated maximal expected gain
functional.
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We want again to use Proposition 5.1 to show

n—0o0

for any e-quasi SUR sequential design (X,),-, for HEMV  The ideas for the
proofs are again based on results shown in [3] and can be found in Appendix A .4.

Lemma 5.7. HEMV s SB-uniformly integrable and has the supermartingale
property.

Using Fubini’s Theorem one can see that for the $B-continuity of HFMV it is
necessary to deal with the covariance of 1p(¢) (u1) and 1p() (u2) at two points
Uu1,uU2 € X.

Lemma 5.8. For Ji < Ji < {1,....,d} with i =1,2 it holds
Cov (Lpe) (u1), Iree) (u2)|Gn) —’na_foo Cov (1) (u1) , Ip(e) (uz2) [Geo)

for alluy € By j1 and uz € B2 j2
Lemma 5.9. HEMV s PB-continuous.

Proof. Using Fubini’s Theorem we have

HEMY (1) =B (@ (€) = E[a (€) 19.]) G, ]

=E l(L Lr(e) (u) p (dU)> 2 Ign] -E UX Lp(g) (w) p (du) gn] 2

- JX JXE [11“(5) (u1) 1 (u2) \gn] 1 (duy) p (dus)
_ L]E [1r(e) (u1) |Gn] p (dur) LE [1ree) (u2) |Gn] 1 (dus)
= Lg Lg Cov (11“(5) (u1), 1re (uz) |gn) o (duy) g (dug) .

We can now use the same decomposition X = |J; ;e g Bss as in
Lemma 5.3 and already know that B, j, is almost surely a p- null set if Jy & Jj.
Hence the claim follows by Lemma 5.8 and the Dominated Convergence Theo-
rem as

| coving () r (uz) 190) (@) (dur) o (du)
BJ%,J% (w) BJll,J% (w)

—_—

o f Cov (11*(5) (U1) 5 11‘(5) (U2> |goo) (w) 12 (dU1) 12 (dUQ)
Bleng(w) BJ111J% (w)

for almost all w € Q. O
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To apply Proposition 5.1 it remains to show that HEMV and GFMV vanish
on the same subset of M. It can be deduced by the same steps as in part
(f) in the proof of Theorem 4.3 in [3] that « (§) — E[a (€)] is orthogonal to
L?(Q,0(Z (x)),P) for all z € X, where Z (z) = & (2) + 7 (2) U, U ~ Ng (0, 1)
independent of &, since even for a multivariate Gaussian process £ we have that
a(£) is only a random variable. The bottleneck is to conclude that « (§)—E[a (§)]
is also orthogonal to L? (Q, 0 (£ (z)), P), which can be handled by the following
Lemma.

Lemma 5.10. Let V = (Vq,...,Vy) and W = (Wy, ..., Wy) be independent Gaus-
sian random vectors in (R%, B (R?)) and U be a random variable in (R, B (R)),
all defined on the probability space (2, F, P). Assume that W is independent of
(U, V) and that U is orthogonal to L? (Q,0 (V + W), P), that means for every
o (V + W)-measurable and square-integrable random variable X : Q — R we
have E[UX] = 0. Then U is also orthogonal to L? (Q,0 (V), P).

Lemma 5.11.
{VEM:HEMV(V):0}:{VEM:QEMV(V):O}'

Combining Lemmas 5.7, 5.9 and 5.11 we get by means of Proposition 5.1
and the same martingale convergence arguments for (E [ (£) | F,]),,cy as in the
proof of Proposition 4.5 in [3] the following Theorem.

Theorem 5.12. If (Xn)n21 is an e-quasi SUR sequential design for HFMV

then it holds
HEMV a.s. 0
n n—ow

Furthermore, we have almost surely and in L' that,

Ela (&) [Fn] —— a(&).

n—0o0

6. Conclusion

We have successfully extended the consistency results for the SUR sequential
design strategies based on the integrated Bernoulli variance functional (IBV)
and the variance of the excursion volume functional (EMV), that address the
estimation of the excursion set problem, as introduced and proven for the uni-
variate setting in [3], to the multivariate setting based on multivariate Gaussian
processes & = (&1, ..., &) with sample paths in the function space C (X; ]Rd).

The authors of [3] have furthermore proven consistency for the knowledge
gradient functional and the expected improvement functional. However, multi-
objective optimization with multivariate Gaussian processes is beyond the scope
of this paper and not considered. Nevertheless, our results, i.e. from Section 2,
can be of interest for further research in this area.

The multivariate setting for excursion set estimation also arises in [9] and
our work provides a (slightly relaxed) theoretical foundation for the techniques
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that are used in the paper for river plume mapping. Note that the excursion
sets that we are addressing have the special form

') ={ueX:{(u) =T},

due to the orthants T := [t;,00) x ... X [t4, 00) that we are considering. It remains
to be checked if the general case of arbitrary closed sets T < R? also holds.

Further studies should also include the convergence rate of the SUR sequen-
tial design to provide a full theoretical support for their effectiveness. An im-
portant question in this context is also whether the correlation (similarity) of
the Gaussian processes (&1, ...,&4) has an enhancing effect on the convergence
rate.

Appendix A: Proofs and auxiliary results
A.1. Proofs of Section 2

Proof. (Lemma 2.4)
Let £ = (&1, ...,&4) be a multivariate Gaussian process with continuous sample
paths. Then we have for € X and any sequence (), in X with z,, — 2

(with respect to the metric ® on X) that 25:1 (& (z0) — & (2))* 22 0. Hence
& (zn,) is a Gaussian random variable for every i € {1,...,d} and n € N with
& (2n) 225 & (x), so Lemma 1 in [10] implies Z?zl E [(& (xn) — & (m))2] — 0.
This already implies continuity of the mean function m since

M&

[52 @) — & (g;))Q] 0.

Im (2) = m ()3 <

For continuity of the covariance function let also y € X and (y,)
sequence in X with y, — y. Since

k(zn,yn) =E [g(xn>§(yn)—r] - m(xn)m(yn)—r,

it only remains to show convergence of the first term on the right hand side.
This can be checked component-wise using Cauchy-Schwarz and

E [(&(xn) - &(@)2] -0

for all i e {1,...,d}. O

be any

neN

Recall that the (continuous) dual space of a real normed vector space (X, |-])
is defined by

X*:={L:X — R: L is linecar and continuous}
and that the operator norm H~||Op on the dual space X* is given by

IL],, :=inf{c=>0:|Lz| < c|z| for all z € X}.
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Two well known results are that L is bounded if and only if it is continuous and
that ||L],, = sup|,<; |Lz|. Furthermore, we have the following basic result for
the dual space of (finite) product spaces:

Let (X1, [-Ix,) ;- (Xa, HHXd) be real Banach spaces with dual spaces X7, ...,
X¥. Define the space

X1 % oo x Xgi={(x1,...,2q) 1 x; € X, € {1,...,d}}
with norm | (z1, ..., xa)| = maxeqn,. 4y |7l x, and
X xoox Xy :={(L1,....,Lq) : Ly e X}, ie{l,..,d}}
with norm |(Ly, ..., Lg)|, = Z?=1 ILil,p x,- Then the following statements hold.

L (X1 x ... x Xq,|-]) and (X} x ... x X¥,||,) are Banach spaces.
2. J: X x o x XF— (X x .. x X4)* defined by

d
J(Lh "'7Ld) (1’1, ...,Z‘d) = Z Lil’i
i=1

is an isometric isomorphism.

Let (X,9) be a compact metric space. The product space C (X) x ... x C (X)
and C (X; Rd) with the supremum norm

1 £l = sup |f (#) | max
zeX

are isomorphic and have the same topological structure. They even form an
isometric isomorphism if we consider the product space with the norm

H(f17"'afd)

o = max [ filo

Proposition A.1. Let (X;9) be a compact metric space. The dual space of
C (X;RY) is isometrically isomorphic to M (X) x ... x M(X), where M (X) is
the space of finite signed measures on X equipped with the Borel o-algebra. This
means for every L € C (X; Rd)* there exist finite signed measures p; for i €
{1,...,d} such that for all f = (f1,..., fa) € C (X;R?) it holds

d
L) = 3 | fiw) i (aa).

Proof. Since X is a compact metric space, every measure in 9 (X) is also a
Radon measure. The statement that the dual space of C (X) is the space I (X) of
finite signed measures is well-known as Riesz—Markov Representation Theorem,
see Chapter 14 in [1]. Since C (X) x ... x C (X) and C (X;R?) are isometrically
isomorphic, this shows that (C (X) x ... x C (X))* is isometrically isomorphic to
M (X) x ... x M(X). O



Consistency of some SUR sequential design strategies 5111

Proof. (Theorem 2.5)

We first show that ¢ is a stochastic process with continuous sample paths if
and only if it is a random element in (C (X;R?), || ,) with respect to its
Borel o-algebra. Assume that & is a stochastic process with continuous sam-

ple paths. ¢ is measurable with respect to the o-algebra C (X; ]Rd) N B (Rd)x
by Lemma 4.1 in [11]. Since B (R"l)X is generated by the projection (or evalua-

tion) maps 7, : (]R"l)X — R? for € X, we have that ¢ is also measurable with
respect to the Borel g-algebra on C (X; ]Rd). This makes £ a random element
n (C(X;R%),|-|,)- The other direction is clear since the evaluation maps are
linear and continuous.

Assume that £ is a multivariate Gaussian processes. By the above part £ is a
random element in C (X; R?) and it is Gaussian if (¢, L) is a Gaussian variable for
all LeC (X; Rd)*. By Proposition A.1 there exist finite signed Borel measures
w; on (X,9) such that

d
D=3 J & (@) i (da)

Let D be a countable dense subset of X. Since Borel measures and Baire mea-
sures are equivalent on compact metric spaces (see Chapter 7 and 8 in [4]) and
every finite measure p; is also a Radon measure since it is regular, there exists a

sequence of linear combinations of Dirac measures 5z(i) with xl(j) € D such that
k

1
(1) w
E a0, @ —— Wi,
hel k n—0o0

where al(j) € R, by Example 8.1.6 in [4] (see also Example 8.16 in [19] or Chapter
15 in [1]) for every i € {1,...,d}. By the definition of multivariate Gaussian

processes we know that
n

IDILACY

k=1

HM&

is a Gaussian variable for every n € N and

d n n
i=1k=1 1= 1
oo ZJ &i (z) pi (dz) .

Since the almost sure limit of a sequence of Gaussian random variables is again
Gaussian, we conclude that (£, L) is Gaussian.

Assume now that £ is a Gaussian random element. We know that £ induces
a Gaussian vector

(Ll (5) PRER) L (f))
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for L; € U;, where U; are subsets of the dual space of C (X;R?) for i € {1,...,d}.
Taking the evaluation maps &, : C (X;R?) — R, f — f(z) and the projection
maps m; : R? - R,z — x; we have that m; 00, : C (X; Rd) — R is linear
and continuous for every i € {1,...,d}, z € X. Hence we can define a R%valued
process by (71 00z (§) , ..., Ta © 0z (§)) ,ex» Whose finite-dimensional distributions
are Gaussian.

The finite-dimensional distributions of £ are uniquely determined by m and k
and hence by Proposition 4.2 in [11] the last claim follows, since the o-algebras
coincide as already mentioned in the first part of the proof. OJ

Remark A.2. ¢ is a continuous multivariate Gaussian process with zero mean
function and covariance function k : X x X — R%*? if and only if £ is a centered
Gaussian random element in the separable Banach space B with covariance
operator K¢ : B¥ — B. The covariance operator can be derived from the co-
variance function k by

d
L— KL= yEXH(ZJk(x,y)kluk(de ,
k=1X

where py, are the finite signed measures from Proposition A.1. Given the covari-
ance operator K¢ : B¥ — B we can derive the covariance function by

(z,y) — (<K55§’5§;>)Z,1:1 ?

where 6% := 13 0 6, and 5; i=mod, forxz,yeXand k,l € {1,...,d}.

A.2. Proofs of Section 3

Lemma A.3. Let C (X; ]Rd) and C (X x X; ]RdXd) be endowed with their Borel
o-algebra. Define the mappings

Me :M—»C(X;Rd),u'—»ml,
ke :M—C (X x ;R v Ky,
U = (M, k)

and let © < C (X; Rd) x C (X X X;RdXd) be the range of U with trace o-algebra
Yo. Then ¥ : M — © is M/Xg-measurable and its inverse $=1 : © — M is
Yo/ M-measurable.

Proof. The mappings m, and k, are M/S-measurable and M/B (C (X; R**?))-
measurable, respectively. The statement for m, follows by Proposition A.1 as in
Lemma A.1 and A.2 in [3]. The statement for k, follows by the same arguments
if we consider the isometric isomorphism

A= (aij)1<z‘,j<d — (a1, ..., @14, 21, ..., Qdd) 5



Consistency of some SUR sequential design strategies 5113

between R4*? and R?". That ¥ is M /Se-measurable follows now easily by the
measurability of m, and k,. U1 is ¥g/M-measurable if and only if (m, k) —
GPq(m, k) (A) is measurable for all AeB (C (X;R%)). The latter holds for all
cylinder sets of the form A = (;_, {f eC (X;Rd) s f(xg) € I‘k} with z, € X
and I'y € B (]Rd) for k = 1,...,n and hence for all AeB (C (X; ]Rd)) by Dynkin’s
m-A Theorem. O

Lemma A.4. For alln > 1, the mapping

Fp X" x R" x © — 0,

(Xns Zn, (M, k) = (M (5X0,20) 5 kn (5X0))

is (B(X") @ B (R¥*") ® Lo ) /Se-measurable, where x, = (1, ..., z,) € X" and
Z, = (21, ..., 2n) € R,

Proof. €&—my, (;Xn, 2,,) is again a multivariate Gaussian process with continuous
sample paths and has the covariance function k,, (-;x,,) for any deterministic de-
sign X, = (21, ..., zn) € X" which implies indeed (my, (;Xn,2Zn), kn (;%,)) € O.
The claim for the measurability of the function %,, follows from the continuity of
the mappings (m,z) — m(z), (k,x) — k(z,-), (k,z,y) — k (z,y) and the mea-
surability of the mapping X — XT in combination with the explicit expressions
for my, (+;xp,2zn) and ky, (+;%,) from Theorem 3.4. O

Proof. (Proposition 3.8)
Any v € M is the distribution of a multivariate Gaussian process £ and uniquely

determined by its mean m and covariance k, so we can write v = P& =
GPg(m, k) and define x,, : X" x R4 x M — M by

Rn (X'ruzna V) = gPd (mn (';x'ruzn) ) kn (';Xn>) = Pﬁ

with x, = (21,...,7,) € X" and z,, = (21,..., 2,) € R*™. The measurability of
Ky, follows by the previous two Lemmas and the equality

En (Xn, Zn, V) = gl (Fn (Xny 2n, U (v))) .

We need to show that PS is a conditional distribution of ¢ given the o-algebra F,,
generated by the sequential design (X,,),,~, and pointwise observations (Z,), - -
By the defining property of the conditional expectation this holds if we can prove

E[UP ()] = E[Ulger]

for any U =[]} ¢; (Z;) with measurable ¢; : R* - R and I € B (C (X;R?))
of the form I" = ﬂ;.;l {¢(z;) eI} with #; e X and I'; € B(R?) for j = 1,..., J,
since it extends to any JF,-measurable U (recall that X,, is JF,,_i-measurable
and by iteration it can be written as a measurable function of Z,,_1, ..., Z1) and
any set in S by Dynkin’s m-A Theorem, since C (X) x ... x C(X) and S with
the supremum norm |f||, = sup,ex [|f (#)|,,.x are isomorphic and have the
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same topological structure. Indeed, the above statement follows by applying the
equality

Rn+m (Xn-‘rma Zn+m, V) = Km (Xn+1:n+m7 Zp+1:n+myFn (Xn7 Zp, V))
recursively to P,f = Kp, (xn, Zn, Pf). O

Proof. (Proposition 3.11)

By Proposition 3.8 we have that the conditional distribution of £ given F,
is of the form PS = GP,(my,k,) and that ¢ is a Bochner-integrable random
element with values in S. We can define a Lévy-martingale by (E [£|F,]),,cy With
respect to the filtration (F,), .y, which is again a random element with values
in S for every n € N, and by the Convergence Theorem for Lévy-martingales
(see Theorem 6.1.12 in [21]) we have

E[¢F,] —— E[¢]7.]

in S with respect to the supremum norm, P-almost surely and in L! (Q, F, P).
The limit mqy = E[€]|Fy] is again a random element with values in S and
Fo-measurable by definition. We clearly have m,, = E[{|F,] since both are
elements in S with m,, (z) = E[§ (z) |F,] = 0z (E[€|F,]) for all z € X, where
5, denotes the (linear and continuous) evaluation function 6, : S — R? with
0z (f) := f (z). We conclude

uniformly on X.
Assume now for simplicity that & is a centered Gaussian random element

so the covariance function reduces to k¢ (x,y) = E [f (:v)f(y)T] We can de-

fine a random element £2 in the separable Banach space C (X X X RdXd) with
supremum norm

by €2 (z,y) ==& (2) € (y)T for z,y € X. Note that it holds

sup tr((&(w)f(y)T)T(f(w)ayf))é

|Nw=m% —y
X

zeX \&J€ {1, ..., d}

sup
z,yeX

E@ew|

F z,yeX

= sup (£(2) € (@)

z,yeX

= sup [£(z)]5 [€ W),

x,y€

@gmm@%

Using the equivalence of norms on finite-dimensional vector spaces and Fer-
nique’s Theorem, this yields E [HfQHOO] < o0 and hence €2 is Bochner-integrable.
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By the same reasoning as above we have E [£2|F, | —E [£2|F] =: kS, in
C (X x X; RdXd) with respect to the supremum norm, P-almost surely and in
L' (Q, F, P). Hence k& = E [¢%|F,], since both are elements in C (X x X;R4*?)
with kS (2,9) = B[€ (0) € (4)| |7, | = 8,y (E[€21,]) for all (z,) € X x X and
hence
b

uniformly on X x X. The general case (non-centered) follows in combination
with the first part since

kn (2,y) =E [(5 () —m(z)) (€ (y) —m ()" |fn]
= kS (2,y) — mn (2) my (y)

Hence we conclude

kn —»‘l_f koo
uniformly on X x X.

Let now ) denote any conditional distribution of £ given Fy. The Fy-
measurable random measure @Q is then almost surely Gaussian (follows as in
the proof of Proposition 2.9 in [3] using the characteristic function for random
vectors) and thus taking

¢ N Q (w,") Jw € Qo
Fop () = {gm (0,0) ,we 2\

we have constructed a Fo-measurable random element in M such that

e

O

Proof. (Proposition 3.12)

Let v = GPy4(m,,k,) € M and let (z;, 2;) — (z,2) in XxR?. For any i € Nu{oo}
we have Condy, », (v) = GPq(my (54, 2), k1 (-, ;2;)) where my and ky are
given as in Theorem 3.4. It follows easily by uniform continuity of m, (see
Lemma 2.4) that my (;;24,2;) — mq (+;2,2) uniformly on X and by uniform
continuity of k, (Lemma 2.4, X x X compact) together with the continuity of
M +— M for matrices with the same rank that k; (-, -;2;) — ki (-, -; ) uniformly
on X x X. O

A.3. Proofs of Section 4

Proof. (Lemma 4.5)
1.) Without loss of generality assume Hy = 0, since it only adds a constant
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term. Furthermore J, (#) = J, (P§) and hence it is equivalent to prove that
the result holds for all P¢ € M at n = 0.
Assume now that n = 0, z € X such that

S (2) = o (2) = k(z,2) + T () e R

has rank k for some k € {0,...,d} and let (x;),.y be a sequence in Cpj, with

x; RimiN (Co.k is separable as subset of a separable metric space for all k €
{0, ...,d}). Recall that it holds

Jo (@) = 7. (P) = E[# (Cond, 1(s) (P9))].

so if we take v; := Cond,, 7(s,) (PS) for i € N and vy, := Cond,, z(,) (PS) we
have v; € P (¢) and by Proposition 3.12 v; —>> v.. It follows
1—00

H (i) == H(ve)

1—00
by B— continuity of H and by the above equality finally
Tz (PE) 2 Tz (Ps)

since (H (v;));oy is uniformly integrable.

2.) Let n € N. Assume that we have a deterministic design such that X; = z;
and Z; = Z; (x;) for all ¢ < n. We will first prove that k, (z,z) is positive
definite for all n € N and z € X\ {z1, ..., x,}. As already mentioned in the proof

=
of Theorem 3.4 we know that (f (z)", ZZ) , where Z,, := (Z7, ..., ZJ)T, is a
Gaussian vector by definition of multivariate Gaussian processes with covariance

matrix

( Var (£ (z))  Cov (¢ (2),Zn) ) =< k (x,z) K(x,mn)>
Cov(Z,,£(x)) Var (Z,,) K(zn,z) X(x,) ’

using the same notation as in Theorem 3.4. The covariance matrix above is
positive definite whenever x € X\ {x1, ..., z,}, since for every vg, vy, ..., v, € R,
at least one non-zero, it holds

n n
Z v k (4, 25) v + ZU:T(%’)% >0
i,j=0 i=1

by positive definiteness of k, where we define xg := x. As shown in Theorem 3.4
the covariance of £ (x) given Z,, is

kn (z,2) = k (2,2) — K(2,2,)2(x,) 'K (z,2,) 7,

which is exactly the Schur complement of the covariance matrix stated above. By
[26] the Schur complement of a positive definite matrix is again positive definite
and hence we conclude that k,, (x, z) is positive definite for all z € X\ {z1, ..., x, }.
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For = € {x1,...,x,} we obtain again a Gaussian vector (§(x;),Z,) with
covariance matrix

< Var (¢ (x;)) Cov (& (z;), Zn) )
Cov (Zn, & (xi)) Var (Z,)

_ k‘(xz,xz) K(J?Z‘,SC”) + 0 0
K(xp, ;) K (xp) 0 T(xn) J°
The first matrix is positive semi-definite as covariance matrix of a Gaussian

vector (one entry is double) and the second matrix contains the positive definite
matrix T (x,). Since k (x;, ;) is also positive definite, we conclude

T Var((@)  Cov(¢(ni), Zn)
(v1, v2) <COV(Zm§($i)) Var (Z,,) >(”1’U2)>0

for all (vy,v2) € R? x R™ (v1,v9) # 0 and hence the positive definiteness of
the covariance matrix of (¢ (z;), Z,). This means also the Schur complement
kn (x4, ;) is positive definite. We finally conclude that k,, (z,x) is positive defi-
nite for all x € X.

If k,, (x, z) is positive definite, then ¥, (z) has full rank since rank (%, (z)) >
max {rank (k,, (z,z)),rank (T (z))} = d and hence the sample paths of J,, are
continuous on X by 1.).

Since J, has continuous sample paths and X is compact, we know that
Ap (w) :={zeX: J, () (w) = infrex Jn (z) (w)} is a non-empty closed set for
every w € (). Hence the mapping w — A, (w) is a F,,-measurable random closed
set that admits a F,-measurable selection X, 1, i.e. a X-valued random element
such that X, 1 (w) € 4, (w) for all w € Q (see Theorem 2.13 in [13]).

3.) Define for w €  and 0 < k < d the sets

Cs, (w) = {z e X:rank (%, (z)) (w) < k},

)

M, (w) = {xeX:Jn(x)( ) < 11}rel§f§J (y )(w)—l—en}.
For each 0 < k < d the set ka (w) is compact as closed subsets of the compact
metric space X by continuity of the mapping & — (3, (z)) (w) and closedness
of the set {M € R¥? : rank(M) < k}. Since J, (-) (w) is by definition constant
if ¥, () (w) = 0 and hence M, (w) = X, we assume that w € € is such that
Y, () (w) # 0. Without loss of generality, we assume infyex J,, (v) (w) < H, (w)
and consider the following two cases:
Assume Cy (w) N My, (w) # . Then it holds for x4 € C5y (w) N My (w)
that 3, (z4) (w) = 0 and hence J, (z4) (w) = H, (w), which yields

inf J,, (y) (w )<Jn(z)(w)<?i}€1§f§<]n(y)(w)+en

yeX

for all z € X and hence M, (w
Assume C5 o (w) N M, (w)
suchthatCi (W)NM, (w) =

) =
= . Then there must exist an 1nteger 1< ks d
G lorall0 <k < ky andek*( w)nM,, (w) #
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Indeed, if (z;);y = X is a sequence such that J, (z;) (w) — infyex Jn (y) (w)
for 7 — o0, then we have for some j large enough that

JIn (l‘J) (w) < ;Ielsfg I (y) (W) + €n

and J, (z;) (w) < H, (w), which implies tr (X, (z;)) (w) > 0 and hence z; €

C=, (w) N M, (w) for some 1 < k < d. Hence the sets C'5, (w) n M, (w) are not

enfpty for some k large enough. Taking the smallest intyeger ks = 1 such that

Cr ik, (W) 0 M, (w) # & gives the desired result.
Choosing ki this way means

Cgk* (W) " My, (w) € Cp iy

n?

and since J,, is continuous on C,, 1, by 1.), we conclude that ka* (w) "My, (w)

is closed and hence compact. This means the mapping w — C'S e (W) N My ()

is an JF,-measurable random closed set and we can chose an F,-measurable

selection X fﬁ*l) that takes values in this random closed set (see Theorem 2.13 in

[13]). The desired e-quasi SUR sequential design (Xy),, can hence be defined

by
x M, =X
Xn+1 :{

X ,(L]i*l) ,else

for some arbitrary x € X. O

Proof. (Proposition 4.3)
Using the notation from the proof of Proposition 3.8, we see that

Tz (V) = fRd H (m (a:, my (z) + 2, (x)% u, 1/)) ¢a (u) du.

Using Lemma A.4 in the Appendix and the measurability of k1 (see proof of
Proposition 3.8), we see that the integrand is a B (X) ® B (R?) ® M measurable
function of (z,u,v). The claim follows by Fubini’s Theorem. O

A.4. Proofs of Section 5

Theorem A.5. Let ‘H be an uncertainty functional on M that has the su-
permartingale property, G the associated maximal expected gain functional and
(Xn),=1 be an e-quasi SUR sequential design for H.

1. Then it holds
G (PS) = 0,

n—o0

2. If moreover

(a) Hy = H(PS) = (P5),

—00

(b) G (PS) =26 (P5),
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(¢) Zyy :={veM:H(v)=0}={veM:G(v) =0} = Zg,
then we have

H, =*%50.
n—0o0

Proof. See Theorem 3.12 in [3]. The proof works the same way for multivariate
Gaussian processes. O

Theorem A.6. Let H be an uncertainty functional on Ml and G the associated
mazximal expected gain functional. Assume that we can decompose H = Ho+H1,
where

1. Ho (v) = §s Lodv for some Lo € (e £' (S,S,v) and
2. Hq is B-continuous, P-uniformly integrable and has the supermartingale
property.

Then, for any e-quasi SUR sequential design associated with H, it holds
G (PS) 0.
Proof. Using Theorem A.5 and Proposition 3.11, it is straightforward to obtain
G (P%) =M (P) = Bo [H (P5)] =0

for each x € X by following the same steps as in the proof of Theorem 3.16 in
[3]. To conclude, we need to show that

g (Pgo) = sup G, (POEO) 0.

zeX

Define with Yo (2) = ko (z,2) + T (x) the random sets
Ch,oo := {z € X :rank (X4, (2)) = k}

and
C,fm = {zx e X:rank (X4 () < k}

for k = 0,...,d. For k € {0, ...,d} the sets C;_, are closed subsets of X (2o (w)

k,00
is continuous for all w € Q and {M € R¥*? : rank (M) < k} is closed) and hence

compact and separable with C,foo c C’,irl’oo, ke {0,..,d—1}, and X = C’joo.

By the previous Lemma we know that the sample paths of J,, are continuous on

each set C}, and hence x — G, (Pé) has continuous sample paths on Cj, .
Let {z;},.y be a countable dense subset of Cfao. In the previous part we

have seen that G, (Pfo) = 0 for all ¢ € N, almost surely. Using the continuity
of z— G, (Pé) on C} « and the fact that G, (Pfo) = 0 on Cy,, we conclude

sup G, (PS) =0

zeCT 4,
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almost surely. Assume now that we have shown G, (Pfo) =0 on CS_ almost

k,00

surely. Let {z;},.y be a countable dense subset of C,irl,oo. Then G, <P§o> =0
for all 4 € N almost surely and using the continuity of = — G, <P§o> on Clr41,0

and G, (Pfo) = (0 on le,oo we conclude

sup G, (P5) =0

<
Te€Cl1 o

almost surely. This leads in the end for k = d to

G (PS) = supG. (P§) = 0
zeX

almost surely, since X = C’foo. O

Proof. (Proposition 5.1)
Take Ho = 0 and H; = H. Then we have for any e-quasi SUR sequential design

associated with H that G (Pfo) “2 0 by Theorem A.6. By the first part of
Theorem A.5 it holds G (P,EL) —22%, 0 and hence G (PEL) 2%, g (Pfo) By
n—o0 )

n—0oo

P-continuity we also have H (Pg ) Y (Pé) and hence all conditions for
n—0o0

the second part of Theorem A.5 are satisfied. We conclude H,, —=* 0. U
n—0o0

A.4.1. Proofs of Section 5.1 (IBV)

Proof. (Lemma 5.2)
HIBV is B-uniformly integrable, since the uncertainty functional is upper-
bounded. Indeed, we have for every Gaussian random element £ in S and u € X

1
Var (11“(5) (u)) < T
since 1p(g) (u) € [0,1]. Hence we have for any measure v € M taking § ~ v that

X
1157 () :J Var (1p(g) () s (du) < #
X
since p is a finite measure over X. Furthermore, H!BV is an F,-measurable
random variable and integrable by definition of the conditional expectation.
Furthermore, we have for p, (u) = E [1p() (u) |F,] by the tower property and
Jensen’s inequality

B 1F] = | (Bl (01Fu] = E oo (07 Pt ]) e

| (paes (0 = s (%) )

N
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_ IBV
- Hn—l .

Proof. (Lemma 5.3)
That X can be written as the disjoint union

U Buwnw

J1,J2E{1,...,d}

follows already by assumption 3. of the Lemma.

Let € be a random element in S with £ ~ GP4(m, k) and let v,, € P (§) for
all n € Nu {oo} such that v, — vy almost surely. By definition of 3 (£) there
exist o-algebras G,, such that v,, = P (£ € -|G,,) for all n € N U {o0}. For the first
property note that for v € X and j € {1, ...,d} we have

E _1koo(u7u)jj:0 (f (u); — Moo (u)j)2]

—E h@@mbme[(ﬁ@”j"“*“%)ﬂng

=E |1, (uw,u);;=0 ke (u, u)jj]

by the tower property and since kq (u, u) is Gyp-measurable. This means

2 a.s.
Lo (w) 1, =0 (5 (u); = moo (U)J) =0,

since it is a non-negative random variable, and hence for almost all w € Q we
have that >)._; ko (u,u) (w)ij = 0 implies

€ (u) (w)j = Mo (u) (w)j

for all j € Jy. Note that (u,w) — me (u) (W) and (u,w) — ks (u,u) (w) are
jointly measurable by continuity of the sample paths u — mq, (u) (w) and u —
ko (u,u) (w) for all w € Q. By Fubini-Tonelli we conclude

E[u(Bs,,5)]

jEJ2

=fX 1y o) k(uw?, =0 [T e, =0

jels

E llzjeJ2 koo(“:“)?j:() 1_[ 1mw(u)j=tj'

JjE€J2

H max (11%0 (u,u),;;>0s 1mm (u)j;étj) 2 (du)

jeds
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<L§ 1216]1 o(u,u)3;=0 H 1k(u7u)jj>0

jeJs

J€J2
<J Iy o), kluw)?,=0 H Li(uu),,>0 | E lH 1§(u)j=tj] p (du)
X ' jeJg jeda
=0,

where the last equality follows by the assumption that there exists j* € {1, ..., d}
with j* € Jy and j* € Jf. Indeed, we have for the multivariate Gaussian process

€ that & (u);« ~ N (m (W) e » ki (u, u)j*j*) which implies £ (u) Y tjx since

k (u,u)j*j* > 0 and hence

E[IIlamfm]=f)<(w{f“”jz%}>

JjeJ2 je Jo

< min P (5 (u); = tj)

JjE€J2
<P@@%*:gg
= 0.
Since u (By,,J,) is almost surely non-negative, the first property follows.
We will now turn to the second property. For j € {1,...,d} we have that

k (u,u);; = 0 implies ky (u,u);; “Z 0 forallneN U {ow}. Indeed, for a random
variable X and o-algebra F

EkX—EMDﬂ:O
implies X 2" E[X] and hence also E[X|F] "2 X. We conclude
2 a.s.
E[(X —E[X|F])*|F| = 0.
Hence for almost all w € © and all n € N U {00} we have for u € By, 5, (w) that

Qj ,j € Jl\JQ
tj 7j € JQ

for some a; € R, a; # t;. We will use the notation

€)= (€ w);)

jets
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and
tJf = (tj)jejf

for the sub-vectors containing only the elements with index in Jy. Then com-
bining the previous result with the Portmanteau Theorem yields for almost all
weQforallue By, j, (w)

P (€ (w) = TIGa) (w) =P (€ () 5 > ts5lGn) @) [T Lo, =,

jEJ1\J2
—P (§ (u) e = L‘Jf|goo) (w) H Linu), >t
jGJl\JQ

=P (& (u) 2 TGo) (W) ,

since € (u) ;. is again a Gaussian vector with almost surely convergent condi-
Ji

tional mean and covariance. Indeed, for all elements in j € J¢ (which also means
j ¢ J2 by assumption) we have ko (u,u) (w);; > 0 or mo (u) (w); # t; which
implies for the boundary of T e = X jere [t;00), that

P (&) 5 € 0Tug1G0) (@) = P (3 € J5 1 € (), = 451620 ) (@)

=P U {6 (u)] = tj} G | (w)

JjedJt

and hence we can apply the Portmanteau Theorem, which concludes the second
property. U
Proof. (Lemma 5.5)

It remains to show {v e M : H/BY (v) = 0} 2 {r e M : G'BY (v) = 0}. Let v =
GPa(m,k) € {v e M:G"BV (v) =0} and £ ~ v, then it holds by the law of
total variance (see Theorem 8.2 in [11])

0 = sup giBV (v)

zeX
— sup PV ()~ TI7 (1)
zeX
= ilelg Lg Var (1r() (u)) p (du) — E [L Var (1p) (u) |Z (z)) p (du)]

= sup JX Var (Lrg) (u)) — E[Var (I (u) |Z (2))] 1 (du)

zeX

= ilelg Lg Var (E [1r¢) (v) |Z (2)]) p (du) .



5124 P. Stange and D. Ginsbourger

This means for all z € X, with Z(z) = £ (x)+7 (z) U, U ~ Ny (0, I;) independent
of &, that we have
Var (E [1r¢) (v) |Z (z)]) = Var (P (£ (v) = T|Z (z)))
= Var (Mg (m1 (u), k1 (u,u)) (T))
—0
for p-almost all u € X. Note that Ny (m; (u), k1 (u,u)) is a random measure
with
Na (ma (), k1 (u,u)) (W) = Na (ma (u) (), k1 (u, ),

where m; (u) and kq (u) are given by
my (u) = m(u) + k(u, 2)2 (2) T (Z (z) — m(z)),
ki (u,u) = k (u,u) — k(u, 2)2 () Tk(u,2) .

Since k; (u,u) does not depend on w € Q and Var (N (mq (u), k1 (u,u)) (T)) =
0, we conclude that ms (u) has to be P-almost surely constant and hence

Var (my (u)) = Var (k(u, 2)S (z) Y(Z(x)—m (2)))
= k(u,2)% (z) "Var (Z (2)) (k(u,z)E (2) 1)
= k(u, )% (2) T8 (2) 2 (z) Tk(u, 2) "
= k(u, )2 (x) Tk(u, )"
=0e R,

T

Since ¥ (z) is symmetric positive semi-definite, we know that ¥ (x)T is sym-
metric positive semi-definite and hence k(u, )Y () Tk(u, )T = 0 if and only if
k(u,z)¥ (z) 1 = 0. Indeed, if A e R4 Be S and ABAT =0, then

ABAT = AQQTAT = AQ (AQ)" =0
for Q € R¥*? with B = QQ" and hence HAQH% = tr ((AQ)T AQ) = 0 implying
AQ = 0 and finally AQQT = AB = 0 (the other direction is trivial). Using the

properties ¥ (z) X (z) 'S (z) = ¥ (2) and (X (2) TS (av))T = Y (2) TS (z) of the
pseudo-inverse X (x) T, this implies for every z € X

E(u,z)% (z) = 0 € R4
for p-almost all v € X. This also yields k(u,u)X (u) = 0 and hence
tr (k (u,u) S (u)) = tr (k (u,u)Q) e (k (uyu) T () = 0

for p-almost all v € X.
We have

tr (k (u, u)2) = tr (k (u,u)" k (u, u)) = |k (mu)Hi7 >0
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and
tr (k (u,u) T (u)) =0,

since T (u) and k (u,u) are both symmetric and positive semi-definite. Indeed,
we can write for A, B € S that

d
tr (AB) = tr (AQQ") = tr (QTAQ) = 2 JAg; =

for Q@ € R4 with B = QQT by the Spectral Theorem (see Theorem 1.3.1 in
22]).

We conclude |k (u,u) HF = 0 and hence k (u,u) = 0 for p-almost all u € X
which yields P (£ (u) = T') = 1,,(,)>7 and finally

HIBY (v) = XVar (1re) (w) p (du)

| (u)
| Pew=na-rew=nu@
0.

O

Proof. (Theorem 5.6)
The first statement follows by combining the three Lemmas in Section 5.1 with
Proposition 5.1. For the second part note that, as seen in the proof of Lemma 5.3,

we have ke (u,u) (w) = 0 € R¥ for y-almost all u € X, since HIBV (Pgo (w)) =
0 for almost all w € 2. Furthermore, we have for the random set

that

for almost all w €  and

Pn () (W) = P (§(u) 2 T|Fn) (W) —— P(§(u) 2 T F) (@) = poo (u) (w)

n—0o0

for all u € A (w) by Lemma 5.3. Combining both statements we conclude

Pn (u) (W) —— Lequyw)=T

n—0o0

for P-almost all w € Q and p-almost all v € X, since koo (u,u) = 0 yields
Poo (1) = E[1r(e) (u) | Foo] 2 1pe) (u). The claim follows by using the Domi-
nated Convergence Theorem. O
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A.4.2. Proofs of Section 5.2 (EMV)

Proof. (Lemma 5.7)
HEMV is PB-uniformly integrable since we have for any measure v € M with
¢ ~ v that

[HEMY ()] < Efa (€] < 0(X) < o0,

since a (§) = (' (€)) and I" (¢) < X almost surely.

HEMV is F,-measurable and integrable by definition of the conditional ex-
pectation. Furthermore, it holds by Jensen’s inequality and the tower property
that

E[Var (a (&) |Fpn) |[Fno1] = E
E

<E[a(©) |Fur| - Ela ) 1Fa)
= Var (« (&) [Fn-1) -
m

Proof. (Lemma 5.8)
Let £ be a random element in S with £ ~ GP4 (m, k) and let v,, € P (§) for all
n € Nu{ow} such that v,, — v almost surely. By definition of 9 (&) there exist
o-algebras G,, such that v,, = P (£ € -|G,,) for all n € N U {o0}.

Note first that for almost all w € 2 and all n € N U {00} we have for u; €
By ji(w), j € Jiand i€ {1,2}

g(ul) (w)j =My (Ui) (w)j =m (Uz)] = {a; J € J{\Jé

tj ,]EJ&

for some a’ € R with a # t;.
Combining this with the Portmanteau Theorem leads to

E[1re (wi)[Gn] (W) =P (& (wi) = T|Gn) (w)
=P (€ e = tpelGn) @) TT T, =,

JeJi\J3
—P (5 (w) (g3 = t(Jli)c|gOO) (w) n Lingu) >t
JeJiNJI;

=P (£ (u3) = T|Gw) (w)
=E [1r¢) (i) [0 ] (w)

for almost all w € Q for all u; € By; ji (w) and 7 € {1,2}, as we have already
seen in the second claim in the proof of Lemma 5.4. We conclude

E [1ree) (u1) [Gn] (@) E[1ree) (u2) [Gn] (w)
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——E [ (1) [Geo ] (W) E [ (u2) |Goo | (W)

n—0o0
Similarly, we have again by the Portmanteau Theorem
E [1r() (u1) 1ree) (u2) [Ga] (w)
=P (§(u1) = T,§ (uz) = T|Gn) (w)
= (5 (u1) gaye = tanyes € (u2)g2)e = 75(J§)C|Qn) @ T Yo,

JEJINTS
i=1,2
n—0o0 P 5 (Ul)(J%)C = t(Jll)c,g(UQ)(,]%)c = t(J12)0|goo) (OJ) n 1m(“i)j2tj

jeJi\J5
i=1,2

=P (& (1) > T, (up) > T|Gs0) (w)
=K []-F(S) (Ul) ].]j(&) (UQ) |g00] (CU) )

is a Gaussian vector and

since (E (u1)—r 75(712)—r

)
g <._ {et iy € Ty} 'g”) )

2
<) P (5 (i) () € aT(J{)“|g00) (w)

i=1,2

=0.

Combining both statements yields for almost all w €  and all u; € By ji (w),
1= 1,2, that

Cov (1) (u1) , Ipge) (u2) [Gn) (w) — > Cov (1ree) (u1), e (u2) [Goo) (W)

O

Proof. (Lemma 5.10)
Assume without loss of generality that all random elements U,V and W are
centered. By Fernique’s Theorem

Elexp (c¢|VI)] = JRd exp (c[la]) PV (dx) < o0

for some ¢ > 0 and hence by Theorem 3.2.18 in [7] the space of polynomials
1% is dense in the space L? (Rd, B (Rd) ,dPV). The polynomials in II¢ are here

given by
p(x) = Z Cax”,
acA
where A is some (finite) subset of Ng and the product z® = z{'..z{? is

called monomial in the variables z1, ..., x4 for a € Ng and ¢, € R. The integer
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|a| = a1 + ... + g is called total degree of the monomial 2%. This means every
fe L? (Rd,B (Rd) 7dPV) can be approximated by a sequence of polynomials

(fz: — ZaeAn caxo‘)neN in Hd, ie.
2
_ @ 14 -
fRd (f (x) a; Cal > PY (dx) — 0.

By the factorization Lemma every element in Z € L? (Q,0 (V), P) can be writ-
ten as f (V) for some measurable function f : R? — R with

E [f (V)Q] — | f(@)?PY (dz) < .
]Rd

Hence the above statement yields the existence of a polynomial sequence such
that

2 2
E <Z > cava> -E (f(V) > cava) ——0.
aeA, €Ay

Assume now that U is not orthogonal to L? (2,0 (V), P). Then there exists
an element Z € L? (2,0 (V), P) such that E[UZ] # 0 and since

272
<E[U?]*E <Z— 3 caVO‘>

aEA,

E[UZ] -E lU eV

a€A,

e 0
by Cauchy-Schwarz there must exist N € N such that for all n > N we have
E[U Y 4ea, €aV] # 0 and by the linearity of the expectation there must hence
be a multi-index a with total degree |a| = ko for some ky € Ny such that
E[UV<] # 0.
This means the set

Iy, = {ae Ng CE[UVY] #0,|a| = k‘o}

is non-empty. By reducing kg by one in each step, we can calculate the sets I
for every 0 < k < kg and define by k, the smallest k such that Ij is non-empty.
Then we have for every multi-index A € I,

d
E[UV =E|[U] [V | #0
i=1

and
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if k; < \; for all i € {1,...,n} with at least one strict inequality. Indeed, if this
would not be the case we would have a contradiction with the minimality of k.
Using the independence, we conclude

d
E|UTTV +w); ]
=1

(50

AL, ha d \
cmlo TS (v

ki, kg=01i=1
Aty d d
© ST e e[ 1]
i=1 i=1

k‘ kdO’Il

E [Uﬂvﬁi
i=1

#0

and hence U can not be orthogonal to L? (2,0 (V + W), P). O
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