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Abstract: Identifying the number of communities is a fundamental prob-
lem in community detection, which has received increasing attention re-
cently. However, rapid advances in technology have led to the emergence of
large-scale networks in various disciplines, thereby making existing methods
computationally infeasible. To address this challenge, we propose a novel
subsampling-based modified Bayesian information criterion (SM-BIC) for
identifying the number of communities in a network generated via the
stochastic block model and degree-corrected stochastic block model. We
first propose a node-pair subsampling method to extract an informative
subnetwork from the entire network, and then we derive a purely data-
driven criterion to identify the number of communities for the subnetwork.
In this way, the SM-BIC can identify the number of communities based
on the subsampled network instead of the entire dataset. This leads to im-
portant computational advantages over existing methods. We theoretically
investigate the computational complexity and identification consistency of
the SM-BIC. Furthermore, the advantages of the SM-BIC are demonstrated
by extensive numerical studies.
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1. Introduction

Network community detection is one of the most widely-studied topics in net-
work analysis [31, 58, 29]. Intuitively, for networks with assortative communities,
community detection aims to distribute the network nodes to several clusters,
so that nodes in the same cluster have denser connectivity [4]. Network commu-
nity structure is beneficial for understanding the characteristics of each cluster
[31, 9]. Specifically, in social network platforms (e.g., Facebook, Twitter, and
Sina Weibo), communities can be formed by users with similar interests or pref-
erences, which enables online platforms to recommend suitable products and
services to targeted groups [11, 6, 67].

In the past few decades, numerous assortative community detection meth-
ods have been proposed, including but not limited to modularity maximization
[57, 34], spectral clustering [59, 73, 65], belief propagation [37, 81], and pseudo-
likelihood methods [3, 77]. Theoretically, the stochastic block model (SBM),
has been widely assumed to analyze the consistency properties of network com-
munity methods [39, 69, 60]. It should be noted that most community detec-
tion methods require the number of communities K0 to be known in advance.
Then, the theoretical properties can be carefully established. However, K0 is
typically unknown in real-world networks. Therefore, how to choose K0 is im-
portant.
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A variety of methods have been proposed to determine the number of com-
munities K0, such as the eigenvalue-based methods [47, 12, 10], semi-definite
programming-based methods [52, 79], network cross-validation methods [18, 51],
and likelihood-based methods [22, 78, 41, 54]. Specifically, the eigenvalue-based
methods estimate the number of communities based on the eigenvalue prop-
erties of non-backtracking, Bethe Hessian, or normalized Laplacian matrices
[47, 12, 10, 21, 42]. Additionally, the semi-definite programming approach iden-
tifies K0 by solving a semi-definite optimization problem [52, 79]. Moreover, the
network cross-validation method extends the cross-validation method to network
data via a network sampling strategy [18, 51]. The likelihood-based approaches
aim to make full use of observed samples, which have been widely studied,
including Bayesian information criterion and likelihood ratio methods. Specifi-
cally, the Bayesian information criterion consists of a conditional log-likelihood
of entire observations and a penalty term that depends on the prior distribution
of the latent variable [22, 66, 41, 14]. The likelihood ratio approaches are based
on a stepwise goodness-of-fit estimator to determine the number of communities
in networks [78, 54, 44]. It is remarkable that to evaluate each candidate K via
the aforementioned criteria, such as the network cross-validation methods and
the likelihood-based approaches, we need to first estimate the parameters for the
SBM using the entire observed network. In this case, spectral clustering is con-
sidered a simple and easy-to-implement approach with well-founded theoretical
guarantees [65, 16, 86, 49].

However, recent advances in science and technology have brought about large-
scale network data, leading to unprecedented computational challenges for com-
munity detection. For example, as reported by Statista (www.statista.com), in
January 2022, the online social networks Facebook, Twitter, and Sina Weibo
had approximately 2,910 million, 436 million, and 573 million active users, re-
spectively. Researchers could also access the relationships of millions of network
nodes using open-source datasets, such as the Stanford Large Network Dataset1,
which has collected different networks with more than 10 million nodes each.
Consequently, directly applying traditional methods to estimate K0 for these
large-scale network data is impractical. For example, for a network with N
nodes, the time complexity of spectral clustering-based methods is no lower
than O(N3) for estimating K0 [80, 50, 20]. Even if the algorithm could be accel-
erated, the computational complexity is still in the order of O(N2) [36, 28, 55].
To deal with the computational challenge brought by large-scale networks, sub-
sampling is a valuable tool [62]. Its main advantage is that we can obtain a
computationally efficient and consistent estimator based on a small subsample
[76, 75, 74, 82]. Although subsampling pays the price of statistical convergence,
it makes the traditional methods feasible in large-scale data analysis.

In the literature, various sampling designs have been proposed to derive rep-
resentative samples of a given network, which include node sampling methods
[68, 8, 56, 40] and edge sampling methods [32, 33, 51]. The node sampling
methods select landmark nodes from the entire network, and the subnetwork

1http://snap.stanford.edu

http://www.statista.com
http://snap.stanford.edu
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is induced by these selected nodes. Uniform node sampling is considered to be
the simplest method and has been widely used [68, 8, 53, 56]. A few studies
investigate the statistical inference about key network characteristics through
node sampling [35, 84, 7]. Additionally, the node sampling method has been
investigated in network community detection [24, 15]. Another widely studied
node sampling method is snowball sampling [43, 61, 19]. Based on the snowball
sampling approach, [70] and [2] recently developed bootstrap methods to reduce
estimation bias for large networks.

The edge sampling methods randomly collect edge samples from the entire
network, which have also received considerable attention [27, 26, 51]. For exam-
ple, [27] and [32] employed edge sampling procedures to estimate the average
degree of a network, while [25] studied the network degree distribution using
the network bootstrap method. Recently, edge sampling approaches have been
investigated to approximate counting the number of subgraphs [33, 26, 5]. More-
over, [51] applied uniform edge sampling in random graph model selection. Note
that existing studies focus on subsampling many times to provide stable sta-
tistical inference for network models. However, we aim to conduct subsampling
only once to allow model selection for large-scale networks with limited compu-
tational resources.

This work proposes a novel subsampling-based modified Bayesian information
criterion (SM-BIC) for identifying the number of communities for large-scale
SBMs. Specifically, in the context of large-scale networks, we first develop a
node-pair subsampling method to extract a subnetwork from the entire network.
The node-pair subsampling method combines the idea of uniform node sampling
and edge sampling. More precisely, we first uniformly and randomly select a
subset of nodes from the entire network and then collect all edges related to these
nodes to construct a subnetwork. In this way, this subnetwork fully retains the
connection information between the selected nodes and the entire network. Note
that the node-pair subsampling method only requires subsampling once due to
computational efficiency. Then, based on the selected subnetwork, we derive a
purely data-driven criterion without tuning any parameters. Since the criterion
is based only on subsampled data, it makes the subsequent parameter estimation
applicable even for large-scale networks with affordable computational resources.
In particular, we use spectral clustering for the subsampled subnetwork to obtain
the community assignments. In this way, the computational complexity of the
SM-BIC can be as low as O(Nn), where n is the subsample size satisfying n <<
N . Furthermore, we extend the SM-BIC to the degree-corrected stochastic block
model (DCSBM) [45]. We theoretically investigate the computational advantage
of the SM-BIC. Most importantly, for both the SBM and DCSBM, we establish
the consistency of the SM-BIC by studying the penalized log-likelihood function
under misspecification cases (e.g., under-fitting and over-fitting).

1.1. Contributions of the paper

The advantages of the proposed SM-BIC method are listed as follows. First,
compared with the eigenvalue-based methods [47, 12, 10, 21, 42], the SM-BIC
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fully exploits the connectivity information in the selected subnetwork, while the
eigenvalue-based methods use the eigenvalue information of network matrices.
Second, compared with the method based on semi-definite programming [52,
79], the proposed SM-BIC method applies the spectral clustering algorithm to
identify community labels for network nodes, which is more computationally
efficient. Third, compared with the network cross-validation methods [18, 51],
the SM-BIC only requires subsampling once, while the network cross-validation
method uses a network resampling technique, which requires tuning the number
of folds.

Additionally, compared with the aforementioned BIC-based approaches [22,
66, 41, 14] and likelihood ratio methods [78, 54, 44], the SM-BIC can identify K0
using only a small subnetwork; further, it is a completely data-driven method
without any predefined tuning parameters. Consequently, the SM-BIC could be
feasibly applied to identify the number of communities for large-scale networks
with affordable computational resources. Specifically, its computational com-
plexity could be as low as O{N(logN)2}, as demonstrated in Propositions 1
and 2.

The remainder of this paper is organized as follows. In Section 2, we introduce
the subsampling-based modified Bayesian information criterion. In Section 3, we
discuss the theoretical properties of the SM-BIC and establish the consistency
of the estimator of the number of communities. In Section 4, we demonstrate
the effectiveness of our method through extensive numerical studies. Further
discussions are provided in Section 5. Proofs are presented in the Appendices
and the supplementary materials.

2. Subsampling-based modified Bayesian information criterion for
stochastic block model

In this section, we first introduce the stochastic block model and challenges of
existing model selection methods. Then, we develop the SM-BIC for large-scale
SBMs and extend the criterion to DCSBMs. Lastly, we discuss the parameter
estimation procedure for this method.

2.1. Preliminaries

Consider a large-scale undirected graph generated from an SBM with N nodes
and K0 communities. The observed random graph is often represented by a
symmetric adjacency matrix A ∈ R

N×N with zero diagonal entries. Specifically,
for any node pair (i, j), if there is a connection, then Aij = 1; otherwise, Aij = 0.
For each node i, denote its community label as g∗N,i ∈ [K0] = {1, . . . ,K0}. Let
Nk,g∗

N
=
∑

i I(g∗N,i = k) denote the size of the k-th cluster. Given a label
vector g∗N = (g∗N,1, . . . , g

∗
N,N )� ∈ [K0]N , the edge variables Aijs for i < j are

independent Bernoulli random variables with E(Aij) = B∗
g∗
N,ig

∗
N,j

, where B∗ =
(B∗

kl) ∈ (0, 1)K0×K0 is a symmetric matrix describing connectivity probability
within and between communities. Namely, each element B∗

kl ∈ (0, 1) represents
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the connectivity probability between k and l communities (1 ≤ k, l ≤ K0).
In this way, the connectivity probability between any node pair (i, j) depends
only on their community labels. For simplicity, let SBMK0(g∗N , B∗) represent a
stochastic block model with K0 blocks parameterized by g∗N and B∗.

Throughout this paper, we let g∗N and B∗ denote the true parameters of the
observed adjacency matrix A. Furthermore, K0 is considered to be a fixed con-
stant. Under any candidate K, denote gN ∈ [K]N as the community assignment
of the K-block model, and the corresponding connectivity matrix is represented
by a symmetric matrix B ∈ BK = (0, 1)K×K . Additionally, when we refer to
model selection, we mean the selection of K0 for SBMK0(g∗N , B∗).

For the likelihood-based methods, to determine the number of communities,
it is necessary to estimate the community assignment gN for each candidate K.
For super-large N , even if accelerated algorithms are adopted, the computational
cost is still high. For example, the randomized spectral clustering algorithm [83]
has computational cost in the order of O(N2). This motivates us to develop a
network subsampling-based model selection criterion that reduces the cost by
investigating small subsamples.

2.2. Subsampling-based modified Bayesian information criterion

In the context of large-scale networks, we first introduce the network subsam-
pling method. Note that, unlike independent data, network data are correlated
with each other by connections. To characterize the community membership of
network nodes, we use a node-pair subsampling method to collect a subnetwork
from the entire network. Specifically, we first uniformly sample n nodes from
[N ] without replacement; that is, the probability of each node being selected is
equal to n/N , where the subsample size n << N . We further denote the set
of selected nodes as S = {sj ∈ [N ] : node sj is selected}. Then, we sample
all node pairs related to these selected nodes. That is, if node i is selected and
there is a connection between i and sj , then node pair (i, sj) is also collected.
The subsampling method is illustrated in Figure 1. We refer to this method as
node-pair subsampling. For convenience, let j (j ∈ [n]) denote the index of the
selected node sj in the node set S. Define a N ×n matrix AS to represent these
selected connections, where the entries are AS

ij = Aisj , for i ∈ [N ], sj ∈ S. Then,
we focus on the observation AS rather than the entire network connections, to
identify the number of communities.

For model selection, we introduce the proposed modified Bayesian informa-
tion criterion based on AS . The criterion is derived from the maximization of
the log-posterior likelihood function of gN . We first provide the prior distribu-
tion of gN under SBMK . Based on the selected sample AS , we demonstrate
that the community partition of the entire network is determined by the com-
munity assignment of the selected nodes. Specifically, consider the community
assignment of the selected nodes to be gn (gn ∈ [K]n), and gn,j is the com-
munity label of the selected node sj . Then, for any unselected node i /∈ S, we
have different ways to obtain its community label based on the label of the se-
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Fig 1. An example of node-pair subsampling. The left panel shows the entire network, where
the colored nodes are considered to be selected by simple random sampling without replace-
ment, whereas their corresponding connections (shown in dark blue) are extracted from the
entire network. The right panel represents the subnetwork obtained by the node-pair subsam-
pling method.

lected nodes. For example, we could cluster this node to the community with the
most connections to it. Namely, the community label of the unselected node i
is given by ĝN,i = maxk

∑
1≤j≤n A

S
ijI(gn,j = k), where I(·) is an indicator func-

tion. We could alternatively obtain the label assignment for unselected nodes
by spectral clustering, which is illustrated in detail in the next subsection. In
this way, based on AS , the set of all possible community assignments for entire
network nodes is provided as C(AS ,K) =

⋃
gn∈[K]n

{
gN ∈ [K]N : ∀ i /∈ S, gN,i =

maxk

∑
1≤j≤n A

S
ijI(gn,j = k),∀ sj ∈ S, gN,sj = gn,j

}
. Therefore, the number of

possible community assignments is |C(AS ,K)| = Kn. Similar to [17], we assign
the prior probability to gN as

φ(gN ) = K−n, for gN ∈ C(AS ,K). (2.1)

Next, we analyze the posterior probability of gN .
We start with studying the probability of AS under SBMK . We denote the

set of node pairs corresponding to the independent edge variables in AS by
E = Ein ∪ Eout. Where Ein = {(i, sj) : i, sj ∈ S, sj > i} and Eout = {(i, sj) :
i ∈ [N ] − S, sj ∈ S} represent the set of node pairs within selected nodes
and that between selected and unselected nodes, respectively. Moreover, since
|Ein| = n(n − 1)/2 and |Eout| = (N − n)n, we have |E| = Nn − n(n + 1)/2.
Let okl,gN =

∑
(i,sj)∈E AS

ijI(gN,i = k, gN,sj = l) and nkl,gN =
∑

(i,sj)∈E I(gN,i =
k, gN,sj = l) denote the number of observed connections and the number of
maximum possible connections between (k, l) clusters, respectively. Additionally,
define a vector θ ∈ ΘK = (0, 1)K(K+1)/2 to represent the upper triangle elements
of B. Then, given (gN , θ), the log-likelihood function of AS is

log f(AS |gN , θ) =
∑

1≤k≤l≤K

{okl,gN log θkl + (nkl,gN − okl,gN ) log (1 − θkl)}.

Accordingly, the likelihood function of gN is given by, f(AS |gN ) =
∫
f(AS |gN , θ)

p(θ)dθ, where p(θ) is the prior distribution of θ.
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Then, we give an approximation of the log-likelihood function log f(AS |gN )
in the following lemma.

Lemma 1 (Log-likelihood function approximation). Suppose the adjacency ma-
trix A generated from SBMK and the subset of nodes S collected by simple ran-
dom sampling n nodes from the entire network without replacement. Then, based
on subsampled adjacency matrix AS , the log-likelihood function log f(AS |gN ) can
be approximated by,

log f(AS |gN ) = sup
θ∈ΘK

log f(AS |gN , θ) − K(K + 1)
4 logM + O(1), (2.2)

where M denotes the number of independent edge variables in AS , i.e., M =
|E| = Nn− n(n+ 1)/2, and the term O(1) is relevant to the asymptotic regime
related to N .

The proof of Lemma 1 can be found in Appendix B.1. As a result, under SBMK ,
according to (2.1) and (2.2), the log-posterior probability of gN is

log f(gN |AS) = log{f(AS |gN )φ(gN )} + c, (2.3)

where c = −
∫

log{f(AS |gN )φ(gN )}dgN is a constant.
We now establish the SM-BIC. According to Bayesian inference, the commu-

nity assignment that maximizes the posterior probability is estimated, that is
ĝN = maxgN∈C(AS ,K) log f(gN |AS). To this end, based on (2.2) and (2.3), the
SM-BIC is proposed as follows:

�(K) = max
gN∈C(AS ,K)

sup
B∈BK

log f(AS |gN , B) −
{
n logK + K(K + 1)

4 logM
}
.

(2.4)
The form of the criterion (2.4) seems to be similar to the corrected BIC criterion
proposed by [41]. However, there are two key differences from the corrected BIC,
which are also the key contributions of our criterion. First, the SM-BIC is a
purely data-driven method without any predefined tuning parameters, whereas
the corrected BIC requires choosing one parameter to control the model selection
results. This is because we assume a simple uniform prior for SBMK and the
latent label vector gN ; this prior setting follows the work of [17]. Second, based
on (2.4), we estimate the community assignment from AS , which has a lower
dimension than A for n << N . Hence, criterion (2.4) could save computational
costs. We demonstrate the important computational advantages of the SM-BIC
in Subsection 2.4.

2.3. Extension to degree-corrected stochastic block model

The DCSBM [45] is generalized from the SBM, which introduces node-specific
parameters to allow for degree heterogeneity within communities. Specifically,
given parameters gN , B, the probability of an edge between (i, j) is represented
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by P (Aij = 1) = ψiBgN,igN,j
ψj , where the parameter ψi characterizes the indi-

vidual activeness of node i. In this way, a DCSBM is parameterized by a triplet
(gN , B, ψ) where ψ = (ψ1, . . . , ψN )�. For consistency, we assume that the under-
lying model is DCSBMK0(g∗N , B∗, ψ∗). For identifiability of this model, the con-
straint

∑
i ψ

∗
i I(g∗N,i = k) = Nk,g∗

N
is imposed on each community 1 ≤ k ≤ K0.

Then, we extend the SM-BIC to the DCSBM.
We start with the log-likelihood function of the subsampled adjacency ma-

trix AS . Similar to [45] and [86], we replace Bernoulli likelihood with Poisson
likelihood and assume Aij ∼ Poisson(ψiBgN,igN,j

ψj) to simplify the derivation.
Furthermore, let nkl,gN (ψ) =

∑
(i,sj)∈E ψiψsj I(gN,i = k, gN,sj = l). In this way,

under DCSBMK(gN , B, ψ), the log-likelihood function of the subsampled adja-
cency matrix AS is given by

log f(AS |gN , B, ψ)

=
∑

(i,sj)∈E

AS
ij log (ψiψsj )+

∑
1≤k≤l≤K

{okl,gN logBkl − nkl,gN (ψ)Bkl}.

Then, we consider ψ in two cases. First, if ψ is known, according to (2.4), the
SM-BIC of the DCSBM is proposed as follows:

�(K) = max
gN∈C(AS ,K)

sup
B∈BK

log f(AS |gN , B, ψ) −
{
n logK + K(K + 1)

4 logM
}
.

(2.5)
Second, if ψ is unknown, we take a plug-in estimator ψ̂ into the (2.5) criterion to
replace ψ. In this case, an estimation of ψ is provided in the following subsection.

2.4. Parameter estimation based on subsampled adjacency matrix

Here, we first introduce how to apply the SM-BIC to determine the number of
communities for large-scale SBMs. Specifically, based on node-pair subsampling,
we evaluate each candidate K through the following three steps: label assign-
ment, parameter estimation, and SM-BIC calculation. Thereafter, we further
present the estimation method of the degree heterogeneity cases.

Label assignment We first perform the label assignment step on the N × n
subsampled adjacency matrix. For a candidate K and subsampled adjacency
matrix AS , the extended spectral clustering algorithm can be accomplished as
follows.

(1) Perform SVD on AS , and extract the largest K left eigenvectors, denoted
as V1, . . . , VK , and define a N ×K matrix V = (V1, . . . , VK) to represent
the embedding matrix.

(2) Apply K-means clustering to the rows of V to estimate node assignments
and denote the clustering results by ĝN .
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Parameter estimation Based on the estimated label vector ĝN , we construct
the plug-in estimator for the connectivity matrix B. Specifically, for all 1 ≤ k ≤
l ≤ K, the estimated (k, l)-th element of B̂ is

B̂kl =
okl,ĝN
nkl,ĝN

=
∑

(i,sj)∈E AS
ijI(ĝN,i = k, ĝN,sj = l)∑

(i,sj)∈E I(ĝN,i = k, ĝN,sj = l) , (2.6)

and taking B̂lk = B̂kl, we obtain the estimated connectivity matrix B̂.

SM-BIC calculation Based on (ĝN , B̂), we evaluate the estimated SBMK

(ĝN , B̂) by

�̂(K) = log f(AS |ĝN , B̂) −
{
n logK + K(K + 1)

4 logM
}
. (2.7)

Therefore, we choose K which maximizes the SM-BIC (2.7) as the number of
communities.

Algorithm 1 Model Selection Algorithm for SBM.
Input: adjacency matrix AS , a maximum candidate Kmax.

1. For each candidate 1 ≤ K ≤ Kmax,

1.1 (Label Assignment) compute the community assignment estimator ĝN us-
ing spectral clustering on AS ;

1.2 (Parameters Estimation) calculate the plug-in estimator B̂ defined in (2.6);

1.3 (SM-BIC Calculation) calculate the SM-BIC �̂(K), defined in (2.7).

2. Calculate K̂ = argmax1≤K≤Kmax �̂(K).

Output: the optimal choice of the number of communities, K̂.

In the framework of the DCSBM, we need to modify the parameters’ esti-
mation methods. First, under candidate DCSBMK , to obtain ĝN , we use the
spherical spectral clustering method proposed by [49]. Specifically, let vi be the
i-th row of V , i.e., V = (v1, . . . , vN )�. Furthermore, let Ṽ be the row-normalized
version of V , namely, the i-th row of Ṽ is vi/‖vi‖, where ‖ · ‖ denotes the Eu-
clidean norm of a vector. Then, we estimate the node assignments by the fol-
lowing steps: (1) form matrix Ṽ by normalizing each row of V to unit norm; and
(2) perform K-means clustering to the rows of Ṽ to obtain ĝN . Second, based on
the embedding matrix V , the plug-in estimator of ψi is provided as ψ̂i = ‖vi‖.
Third, for 1 ≤ k ≤ l ≤ K, the estimated (k, l)-th entry of B is given by,

B̂kl =
okl,ĝN

nkl,ĝN (ψ̂)
=
∑

(i,sj)∈E AS
ijI(ĝN,i = k, ĝN,sj = l)∑

(i,sj)∈E ψ̂iψ̂sj I(ĝN,i = k, ĝN,sj = l)
, (2.8)

and then take B̂lk = B̂kl. To this end, we obtain the SM-BIC for DCSBMK by
taking (ĝN , B̂, ψ̂) into (2.5).
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Algorithm 2 Model Selection Algorithm for DCSBM.
Input: adjacency matrix AS , a maximum candidate Kmax.

1. For each candidate 1 ≤ K ≤ Kmax,

1.1 (Label Assignment) compute the membership labels estimator ĝN by per-
forming spherical spectral clustering on AS ;

1.2 (Parameter Estimation) obtain ψ̂ and B̂ by the following steps,

(a) compute the Euclidean norm of each row of matrix V , and then ψ̂i =
‖vi‖ for all 1 ≤ i ≤ N ;

(b) calculate the plug-in estimator defined in (2.8);

1.3 (SM-BIC Calculation) calculate the SM-BIC �̂(K), defined in (2.5).

2. Calculate K̂ = argmax1≤K≤Kmax �̂(K).

Output: the optimal choice of the number of communities, K̂.

For convenience, we provide the model selection procedure for the SBM and
DCSBM in Algorithms 1 and 2, respectively. To illustrate the model selection
algorithm, we show the procedure of identifying K0 for SBM in Figure 2. More-
over, based on the works of [49, 23], we demonstrated the consistency of spectral
clustering for the sub-adjacency matrix AS in the supplementary materials. To
show the effectiveness of the SM-BIC, we discuss its computational complexity
in Proposition 1.

Proposition 1 (Computational complexity). Suppose that the subset of nodes
S is collected by simple random sampling n nodes from [N ] without replace-
ment. Then, for both the SBM and DCSBM, the computational complexity of
identifying K0 by SM-BIC is O(Nn).

The proof of Proposition 1 is provided in Appendix B.2. Note that for each candi-
date K, in the spectral clustering algorithm, we perform a truncated SVD to the
sub-adjacency matrix, where the truncated SVD only computes the largest K
eigenvalues and the corresponding eigenvectors with computational complexity
O(Nn) for a constant K [28, 55]. Proposition 1 shows the computational advan-
tage of the SM-BIC for large-scale networks. In the next section, we demonstrate
that the required subsample size n could be as small as c(logN)2, where c > 0
is a constant. In this case, the computational cost for identifying K0 based on
the SM-BIC could be O{N(logN)2}.

3. Theoretical properties

In this section, we discuss the theoretical properties of the SM-BIC. We first
introduce some necessary conditions and subsequently discuss the required sub-
sample size to ensure the effectiveness of the selected sample. Then, we demon-
strate the consistency of the SM-BIC under the SBM and DCSBM. Namely,
the criterion chooses the right K0 with probability tending to one as N goes to
infinity.
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Fig 2. An illustration of the steps to identify K0 for SBM based on SM-BIC.

3.1. Basic assumptions and required subsampling size

To discuss the theoretical properties of the SM-BIC, the following assumptions
are considered.

(A1) (Network density) Assume B∗ = ρN B̃∗, where B̃∗ ∈ (0, 1)K0×K0 is a
constant matrix and ρN → 0 at a rate of ρNN/ logN → ∞.

(A2) (Balance level) There exists a constant c > 0, such that min1≤k≤K0 Nk,g∗
N

≥ cN .
(A3) (Identification condition) Connectivity matrix B∗ ∈ (0, 1)K0×K0 has no

identical columns.

Assumption (A1) allows for sparse networks, where the network density is
ρN → 0 at the same rate as in the studies of [78], [41], and [51]. Assumption (A2)
requires the size of each community to be relatively balanced. This is a mild and
common condition. For example, if the community assignment g∗N is generated
from a multinomial distribution with parameters π = (π1, . . . , πK0) such that
min1≤k≤K0 πk ≥ c/K0, then Assumption (A2) is satisfied almost surely. This
restriction is also used in [48] and [18]. Assumption (A3) means that the under-
lying model has K0 blocks and cannot be further collapsed into a smaller model.
It is important to note that the theoretical analysis does not have assortative
constraints.

It is noteworthy that a small subsample leads to higher computational effi-
ciency. However, if the subsample size is too small, it is difficult to guarantee the
statistical validity of the proposed method. Therefore, we provide two necessary
conditions to establish the lower bound of the subsample size n. First, we require
that the subsampled nodes cover all blocks with high probability. Specifically,
under SBMK0 , we define a set MK0 = {S : ∀ k ∈ [K0], ∃ i ∈ S s.t., g∗N,i = k},
where g∗N,i is the ground truth label of node i. This implies that the elements in
MK0 completely cover K0 blocks. Second, we require that the average degree
of the subnetwork should increase with N . Specifically, let di =

∑
1≤j≤n A

S
ij

denote the degree of node i in the subnetwork based on AS , for i = 1, . . . , N .
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Furthermore, let d =
∑N

i=1 di/N denote the average degree of the subnetwork.
Then, we assume the expected average degree E(d) = Ω(logN). Based on these
two conditions, we provide the lower bound of subsample size n in the following
proposition.

Proposition 2 (Subsample size). Under Assumptions (A1)–(A3), suppose S
is collected by simple random sampling n nodes from the entire network without
replacement. If the subsample size is n = Ω(logN/ρN ), then we have S ∈ MK0

and E(d) = Ω(logN) with probability at least 1 − 1/N .

The proof is provided in Appendix B.3. Note that n = Ω(logN/ρN ) means
that there are positive constants c and N0 such that n ≥ c logN/ρN for all
N > N0 [46]. According to Proposition 2, the lower bound of subsample size
goes to infinity with a lower speed compared to N . In particular, consider ρN =
(logN)−1, then the subsample size n = Ω{(logN)2}.

Based on Proposition 2, we discuss the proportion of utilized edges in the pro-
posed SM-BIC method. Given that the subsampling size is n = Ω(logN/ρN ), the
number of utilized edges in the SM-BIC algorithm is on the order of N logN .
Additionally, the total number of connections available in the entire network
is on the order of N2ρN . Consequently, the proportion of utilized edges is
logN/(NρN ), which can be further expressed as (logN)2/N for ρN = (logN)−1.
In the realm of large-scale networks, SM-BIC effectively reduces computational
costs, albeit at the expense of losing some observed samples.

We then explore the theoretical properties of the proposed criteria. Before the
theoretical analysis, we introduce two key remarks. Remark 1 discusses the gap
between the proposed criteria and the estimated criteria. Meanwhile, Remark 2
demonstrates the challenges of considering the randomness introduced by the
sampling step in theoretical analysis.

Remark 1 (Likelihood Estimation in Algorithms). We propose Algorithms 1
and 2 to estimate the likelihood of SBM and DCSBM, respectively. The primary
divergence between the maximum likelihood and estimated likelihood arises from
label vector estimation. Notably, the consistency of spectral clustering for sub-
sampled networks has been established by [18, 24], and the details of the proof are
also provided in the supplementary material. In this way, we proceed to analyze
the consistency of SM-BIC based on the maximum likelihood.

Remark 2 (Randomness Introduced by the Sampling Step). The subsam-
pled adjacency matrix is obtained through random sampling from the entire
adjacency matrix. We gauge the additional randomness by comparing the log-
likelihood of the subsampled adjacency matrix to the regularized log-likelihood of
the entire adjacency matrix. It can be represented as maxgN∈C(AS ,K) supθ∈ΘK

log f(AS |gN , θ) − 2M
N(N−1) maxgN∈[K]N supθ∈ΘK

log f(A|gN , θ). To theoretically
control this divergence, stricter conditions for the network model are required.
However, as the sample size n increases, the expectation of this divergence ap-
proaches zero and shows lower variance. Therefore, in the following discussion,
we focus on the subsampled adjacency matrix AS with its sample size satisfying
the condition in Proposition 2.
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3.2. Consistency of SM-BIC

We first establish the consistency of the SM-BIC under SBMs. Given a subsam-
pled adjacency matrix AS , the underlying SM-BIC of SBMK0(g∗N , B∗) is

�∗(K0) = log f(AS |g∗N , B∗) −
{
n logK0 + K0(K0 + 1)

4 logM
}
.

Intuitively, fitting the observed network with a correct number of communities
yields the largest value of the SM-BIC. Then, for any candidate SBMK , we
compare its SM-BIC �(K) with the underlying SM-BIC �∗(K0) under three
different cases, namely, under-fitting (K < K0), correctly fitting (K = K0), and
over-fitting (K > K0). We analyze the divergence between �(K) and �∗(K0),
which is

�(K) − �∗(K0) =
{

max
gN∈C(AS ,K)

sup
B∈BK

log f(AS |gN , B) − log f(AS |g∗N , B∗)
}

−
{
n log (K/K0) + K(K + 1) −K0(K0 + 1)

4 logM
}

= LK,K0 −RK,K0 , (3.1)

where LK,K0 = maxgN∈C(AS ,K) supB∈BK
log f(AS |gN , B) − log f(AS |g∗N , B∗),

and RK,K0 = n log (K/K0)+{K(K+1)−K0(K0+1)}/4 logM . It is noteworthy
that LK,K0 is a log-likelihood ratio, which measures the goodness-of-fit of the
estimated model compared with the underlying model. Since RK,K0 is fixed for
a given K and n, we focus on analyzing LK,K0 in the three cases mentioned
above.

Case 1: Under-fitting. In this case, we prove the upper bound for the log-
likelihood ratio LK,K0 in the following theorem.

Theorem 1 (Upper bound of the log-likelihood ratio under under-fitting).
Suppose A is generated from SBMK0(g∗N , B∗). Furthermore, suppose Assump-
tions (A1)–(A3) hold and n satisfies the condition in Proposition 2. If K < K0,
then LK,K0 = −ΩP (ρNM).

The technical proof of Theorem 1 can be found in Appendix C.1. For K < K0,
it can be verified that RK,K0 = −Ω(n + logM). Combining the conclusion in
Theorem 1, we have �(K)−�∗(K0) = −ΩP (ρNM) by (3.1). Moreover, note that
the lower bound of the ratio LK,K0 is negatively related to ρN and M , and
goes to negative infinity as N → ∞. This indicates that under the proposed
conditions, the SM-BIC avoids the under-fitting case with high probability.

Case 2: Correctly fitting. We then analyze the log-likelihood ratio LK,K0

under a given correct number of communities, i.e., K = K0.

Theorem 2 (Convergence of the log-likelihood ratio under SBM). Make the
same assumptions as in Theorem 1. If K = K0, then we have LK0,K0 = OP (ρN ).
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The proof is provided in Appendix C.2. When K = K0, since RK0,K0 = 0,
together with the conclusion in Theorem 2, we have �(K)− �∗(K0) = LK0,K0 =
OP (ρN ). Moreover, in Case 2, Theorem 2 implies that the log-likelihood ratio
LK0,K0 converges faster in sparse networks.

Case 3: Over-fitting. Similar to the conclusion in Case 1, we present the upper
bound of the log-likelihood ratio LK,K0 in the following theorem.

Theorem 3 (Upper bound of log-likelihood ratio under over-fitting). Make
the same assumptions as in Theorem 1. For any candidate K > K0, we have
LK,K0 = OP (logN).

The proof of this theorem can be found in Appendix C.3. For K > K0, by the
definition of RK,K0 , we have RK,K0 = Ω(n + logM). Then, together with the
conclusion in Theorem 3, we have �(K)− �∗(K0) = −ΩP (n+ logM). Note that
the upper bound is negatively related to the subsample size n, which indicates
that the SM-BIC avoids over-fitting with increasing probability as n grows.
Therefore, Theorem 3 ensures that the subsample size n = Ω(logN/ρN ) is large
enough to prevent this misspecification.

To summarize, we establish the consistency of the SM-BIC under the SBM
in the following corollary.

Corollary 1 (Consistent results for SBM). Suppose A is generated from
SBMK0(g∗N , B∗) and Assumptions (A1) and (A2) hold. If the subsample size
n satisfies the condition in Proposition 2, then for K �= K0, we have P (�(K) >
�∗(K0)) → 0, with N → ∞.

Corollary 1 demonstrates that for the SBM, the correct number of communities
can be identified by the SM-BIC with high probability.

Now, we investigate the consistency of the SM-BIC under the DCSBM. We
assume that the degree heterogeneity parameter ψ is known, which is also con-
sidered in the theoretical studies of [48] and [30]. In this case, according to cri-
terion (2.5), we have LK,K0 = maxgN∈C(AS ,K) supB∈BK

log f(AS |gN , B, ψ∗) −
log f(AS |g∗N , B∗, ψ∗). Then, we first investigate the convergence of the log-
likelihood ratio under the correct specification.

Theorem 4 (Convergence of the log-likelihood ratio under DCSBM). Suppose
that A is generated from DCSBMK0(g∗N , B∗, ψ∗). Under Assumptions
(A1) and (A2), if n satisfies the condition in Proposition 2, for K = K0, we
have LK,K0 = OP (ρN ).

The proof of Theorem 4 is provided in Appendix C.4. According to Theorem 4,
under the DCSBM, the convergence of LK,K0 can also be guaranteed if K is
correctly specified.

Based on Theorem 4, together with similar arguments, one can show that
the conclusions of Theorem 1 and Theorem 3 hold under the DCSBM. Hence,
we draw the theoretical results for the DCSBM as follows.

Corollary 2 (Consistent results for DCSBM). Suppose A is generated from
DCSBMK0(g∗N , B∗, ψ∗) and Assumptions (A1)–(A3) hold. If n satisfies the con-
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dition in Proposition 2, for K �= K0, we have P (�(K) > �∗(K0)) → 0, with
N → ∞.

4. Numerical studies

4.1. Simulation models and performance measurements

We start with the generation mechanism of the networks. For a given K0, we
assume that the underlying node labels are generated by g∗N,i ∼ Multinomial(π)
independently for all i = 1, . . . , N , where π = (1/K0, . . . , 1/K0). Second, we
define the connectivity matrix as B∗ = ρN (β1K01�

K0
+(1−β)IK0), where 1K0 ∈

R
K0 is filled with elements 1 and IK0 ∈ R

K0×K0 is an identity matrix, and the
out-in-ratio parameter β ∈ (0, 1) measures the connectivity divergence within
and between communities.

Then, we evaluate the performance of the SM-BIC through the following
three different examples under SBM framework.

Example 1 (Consistency of the approximated SM-BIC). Let the number of
communities K0 vary from 2 to 5. For each K0, let N increase from 500 to
5,000. Furthermore, set β = 0.15, ρN = N−1/2, n = ζ logN/ρN�, where x�
represents the smallest integer of no less than x. The parameter ζ is set to 1.0,
1.5, and 2.0, respectively. Additionally, we examine the difference between �(K0)
and �̂(K0), with sample size n increasing while keeping N = 5,000 fixed.

Example 2 (The effect of network density). Let the number of communities
K0 vary from 2 to 5 and the entire network size N increase from 1,000 to 5,000.
Additionally, take the out-in-ratio parameter as β = 0.15 and let the network
density ρN increase from 0.5N−1/2 to 1.5N−1/2. For each network setting, we
take the subsample size as n = 1.5N1/2 logN�.

Example 3 (The effect of arbitrary outlier nodes). According to the generalized
stochastic block model proposed by [13], we generate networks with a portion of
outlier nodes. Specifically, assume that there are N normal nodes and m outlier
nodes. The connections between N normal nodes obey the SBMK0(g∗N , B∗) with
β = 0.15 and ρN = N−1/2, while connections between outliers are generated
from a random graph model with a connectivity probability of 0.1. Moreover,
define X as a N × m matrix with independent Bernoulli entries, representing
the connections between normal nodes and outlier nodes. Let EX = v1�

m where
the components of v are N i.i.d. copies of u2/10 and u is a uniform random
variable on [0, 1]. Furthermore, let m increase from 20 to 100.

To further evaluate the performance of the SM-BIC method, we compare it
with four existing approaches, namely, the method based on the Bethe-Hessian
matrix with moment correction (BHMC) proposed by [47], the network cross-
validation (NCV) method proposed by [18], the network cross-validation method
by edge sampling (ECV) proposed by [51], and the corrected Bayesian informa-
tion criterion (CBIC) proposed by [41].
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Example 4 (Comparison under SBM). We generated the network from
SBMK0(g∗N , B∗) with β = 0.35 and ρN = 20 logN/N . Furthermore, let the net-
work size N increase from 3,000 to 10,000 and K0 vary from 2 to 5, accordingly.

Example 5 (Comparison under DCSBM). We follow the scenario proposed in
[86]. The parameters ψi are independently generated from a distribution with
expectation 1, specifically,

ψi =

⎧⎪⎨⎪⎩
ηi, with probability α;

1/3, with probability (1 − α)/2;
5/3, with probability (1 − α)/2,

where ηi is uniformly distributed on the interval [3/5, 7/5]. The variance of ψi

is equal to 4α/75+4(1−α)/9. Then, the variance is a decreasing function of α.
We vary α from 0.4 to 0.8. The other parameters are set to be the same in
Example 4.

Throughout this simulation study, we set the maximum candidate to Kmax =
10. The random experiments are repeated T = 100 times to ensure a reliable
evaluation. Additionally, for each repetition, we assume the selected number
of communities is K̂t, for t = 1, . . . , T . Then, to gauge the performance of
the SM-BIC, we consider two measurements. First, the probability of correct
identification is defined as

Prob =
T∑

t=1
I(K̂t = K0)/T, (4.1)

where a larger Prob corresponds to more accurate model selection. Second, the
average of the selected number of communities is defined by

Mean =
T∑

t=1
K̂t/T. (4.2)

All simulations are conducted in a Linux server with a 3.60 GHz Intel Core
i7-9700K CPU and 16 GB RAM.

4.2. Simulation results

All simulation results are shown in Tables 1–5 and Figure 4. We draw the
following conclusions from different examples.

Example 1. The simulation results are presented in Table 1 and Figure 3. We
make the following comments. First, as n grows from logN/ρN� to 2 logN/ρN�,
the probability of correct identification increases from 0.84 to 1.00 under the
setting K0 = 5 and N = 500. Second, as N increases from 500 to 5,000, the
probability of correct identification increases from 0.84 to 1.00 under the setting
K0 = 5 and n = logN/ρN�. Third, as the network size N increases from 500
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Fig 3. The difference between �̂(K0) and �(K0) decreases as ζ increases, with the sample size
n = �ζ logN/ρN � growing, while maintaining a fixed network size of N = 5,000 and a true
number of communities of K0 = 2.

Table 1

Simulation results for Example 1 with network density ρN = N−1/2 and subsample size
n = �ζ logN/ρN �. Measurements include “Prob” and “Mean” (defined in (4.1) and (4.2)).

Average CPU computational time (in seconds) is also provided.

N = 500 N = 2,000 N = 5,000
K0 ζ Prob Mean CPU Prob Mean CPU Prob Mean CPU

2
1.0 1.00 2.00 0.73 1.00 2.00 2.08 1.00 2.00 6.77
1.5 1.00 2.00 0.76 1.00 2.00 2.41 1.00 2.00 8.51
2.0 1.00 2.00 0.78 1.00 2.00 2.71 1.00 2.00 10.70

3
1.0 1.00 3.00 0.69 1.00 3.00 1.93 1.00 3.00 6.36
1.5 1.00 3.00 0.71 1.00 3.00 2.19 1.00 3.00 7.97
2.0 1.00 3.00 0.72 1.00 3.00 2.45 1.00 3.00 9.93

4
1.0 0.96 4.00 0.65 1.00 4.00 1.82 1.00 4.00 6.14
1.5 0.99 4.01 0.67 1.00 4.00 2.03 1.00 4.00 7.67
2.0 1.00 4.00 0.67 1.00 4.00 2.26 1.00 4.00 9.55

5
1.0 0.84 4.86 0.62 1.00 5.00 1.73 1.00 5.00 5.99
1.5 1.00 5.00 0.64 1.00 5.00 1.95 1.00 5.00 7.49
2.0 1.00 5.00 0.65 1.00 5.00 2.16 1.00 5.00 9.20

to 5,000, the average CPU computational time of each experiment does not ex-
ceed 10.70 seconds. Hence, the SM-BIC is an efficient and consistent method for
large-scale networks, and these results are consistent with our theoretical results
in Proposition 2 and Corollary 1. Moreover, Figure 3 illustrates the convergence
of the difference |�̂(K0) − �(K0)| as the sample size n increases.

Example 2. The simulation results are provided in Table 2. We obtain the
following findings. First, as network density ρN increases from 0.5N−1/2 to
1.5N−1/2, the probability of correct identification increases to 1 for all K0 =
2, . . . , 5. Second, even in the sparsest case ρN = 0.5N−1/2, as N grows from
1,000 to 5,000, the probability of correct identification increases from 0.75 to
1.00. Hence, for large-scale networks, the proposed method allows for a higher
level of sparsity.
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Table 2

Simulation results for Example 2, with network subsample size n = �1.5N1/2 logN�.
Measurements include “Prob” and “Mean” (defined in (4.1) and (4.2)). Average CPU

computational time (in seconds) is also reported.

N = 1,000 N = 3,000 N = 5,000
ρNN1/2 K0 Prob Mean CPU Prob Mean CPU Prob Mean CPU

0.5

2 1.00 2.00 1.24 1.00 2.00 3.74 1.00 2.00 8.41
3 1.00 3.00 1.16 1.00 3.00 3.56 1.00 3.00 8.02
4 0.99 3.99 1.13 1.00 4.00 3.41 1.00 4.00 7.99
5 0.75 4.75 1.11 1.00 5.00 3.28 1.00 5.00 7.73

1.0

2 1.00 2.00 1.26 1.00 2.00 3.88 1.00 2.00 8.63
3 1.00 3.00 1.15 1.00 3.00 3.53 1.00 3.00 8.04
4 1.00 4.00 1.08 1.00 4.00 3.31 1.00 4.00 7.71
5 1.00 5.00 1.03 1.00 5.00 3.19 1.00 5.00 7.59

1.5

2 1.00 2.00 1.21 1.00 2.00 3.92 1.00 2.00 8.85
3 1.00 3.00 1.08 1.00 3.00 3.48 1.00 3.00 7.96
4 1.00 4.00 1.00 1.00 4.00 3.25 1.00 4.00 7.56
5 1.00 5.00 0.95 1.00 5.00 3.07 1.00 5.00 7.33

Table 3

Simulation results for Example 3, with network density ρN = N−1/2 and subsample size
n = �1.5 logN/ρN �. Outlier nodes (m) range from 20 to 100 for each network with N
nodes. Measurements include “Prob” and “Mean” (defined in (4.1) and (4.2)). Average

CPU computational time (in seconds) is also reported.

N = 2,000 N = 3,000 N = 5,000
m K0 Prob Mean CPU Prob Mean CPU Prob Mean CPU

20

2 1.00 2.00 2.36 1.00 2.00 3.79 1.00 2.00 7.80
3 1.00 3.00 2.15 1.00 3.00 3.52 1.00 3.00 7.34
4 1.00 4.00 2.00 1.00 4.00 3.15 1.00 4.00 7.26
5 1.00 5.00 1.89 1.00 5.00 3.00 1.00 5.00 7.02

50

2 1.00 2.00 2.39 1.00 2.00 3.71 1.00 2.00 7.59
3 1.00 3.00 2.17 1.00 3.00 3.44 1.00 3.00 7.41
4 1.00 4.00 2.00 1.00 4.00 3.06 1.00 4.00 7.24
5 1.00 5.00 1.87 1.00 5.00 2.89 1.00 5.00 6.88

100

2 1.00 2.00 2.42 1.00 2.00 3.59 1.00 2.00 7.79
3 1.00 3.00 2.19 1.00 3.00 3.41 1.00 3.00 7.62
4 0.97 4.03 2.02 1.00 4.00 3.20 1.00 4.00 7.30
5 0.82 5.18 1.89 0.99 5.01 2.95 1.00 5.00 6.90

Example 3. This simulation results are provided in Table 3. We draw the
following conclusions. First, as the number of outliers decreases from 100 to 20,
the accuracy of recovering K0 increases from 0.82 to 1.00 under the setting N =
2,000 and K0 = 5. Second, as N varies from 2,000 to 5,000, the probability of
correct identification grows from 0.82 to 1.00 in the case of K0 = 5. Therefore, for
large-scale networks with arbitrary outliers, the SM-BIC method can accurately
identify the number of communities with high probability.

Example 4. The comparison results are shown in Table 4 and Figure 4. We
draw the following conclusions. First, SM-BIC is more accurate than the ECV
method in this study. Specifically, for the setting of N = 3,000, when K0 = 4 and
K0 = 5, the Prob of the ECV method is only 0.87 and 0.80, respectively, while
the Prob of the SM-BIC is 1.00 in these cases. Second, the average computational
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Table 4

Simulation results for Example 4, with network density ρN = 20 logN/N and subsample size
n = �1.5 logN/ρN �. Measurements include “Prob” and “Mean” (defined in (4.1) and (4.2)).

Average CPU computational time (in seconds) is also reported.

N = 3,000 N = 5,000 N = 10,000
K0 Method Prob Mean CPU Prob Mean CPU Prob Mean CPU

2

BHMC 1.00 2.00 21.40 1.00 2.00 105.51 1.00 2.00 463.31
NCV 1.00 2.00 52.88 1.00 2.00 190.88 1.00 2.00 533.37
ECV 1.00 2.00 220.76 1.00 2.00 685.66 1.00 2.00 2064.47
CBIC 1.00 2.00 12.92 0.97 2.07 36.42 1.00 2.00 70.51
SMBIC 1.00 2.00 1.66 1.00 2.00 3.25 1.00 2.00 12.43

3

BHMC 1.00 3.00 21.80 1.00 3.00 107.49 1.00 3.00 524.90
NCV 1.00 3.00 45.34 1.00 3.00 164.78 1.00 3.00 512.04
ECV 0.97 3.03 208.78 0.97 3.03 654.23 1.00 3.00 2112.26
CBIC 1.00 3.00 12.59 1.00 3.00 34.72 1.00 3.00 71.36
SMBIC 1.00 3.00 1.52 1.00 3.00 3.14 1.00 3.00 10.81

4

BHMC 1.00 4.00 21.79 1.00 4.00 107.42 1.00 4.00 525.26
NCV 1.00 4.00 40.65 0.97 4.07 149.09 1.00 4.00 461.67
ECV 0.87 4.30 203.66 0.93 4.10 621.99 1.00 4.00 2035.38
CBIC 1.00 4.00 12.27 1.00 4.00 34.10 1.00 4.00 74.47
SMBIC 1.00 4.00 1.43 1.00 4.00 2.98 1.00 4.00 10.05

5

BHMC 1.00 5.00 21.81 1.00 5.00 107.82 1.00 5.00 525.84
NCV 1.00 5.00 37.03 0.97 5.07 134.99 1.00 5.00 423.69
ECV 0.80 5.30 202.86 0.80 5.27 639.31 0.80 5.40 2033.33
CBIC 1.00 5.00 12.35 1.00 5.00 34.11 1.00 5.00 75.97
SMBIC 1.00 5.00 1.35 1.00 5.00 2.74 1.00 5.00 9.50

Fig 4. The computational time (in seconds) for model selection methods is examined under the
settings outlined in Example 4. The y-axis is presented in a logarithmic scale for clarity. We
report the average CPU time for two simulation scenarios: when the number of communities
is K0 = 2 (left panel) and when K0 = 5 (right panel).

time of the SM-BIC is much smaller than that of the BHMC, NCV, ECV, and
CBIC, especially when N is large. As shown in Figure 4, the average CPU
computational time of these methods is further compared across diverse network
sizes. We observe that the average CPU computational time of the SM-BIC is the
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Table 5

Simulation results for Example 5, with network density ρN = 20 logN/N and subsample size
n = �1.5 logN/ρN �. The heterogeneity parameter α varies from 0.4 to 0.8. Measurements
include “Prob” and “Mean” (defined in (4.1) and (4.2)). Average CPU computational time

(in seconds) is also reported.

α = 0.4 α = 0.6 α = 0.8
K0 Method Prob Mean CPU Prob Mean CPU Prob Mean CPU

2

BHMC 1.00 2.00 51.10 1.00 2.00 50.81 1.00 2.00 51.16
NCV 1.00 2.00 120.01 1.00 2.00 119.78 1.00 2.00 118.66
ECV 0.00 3.77 545.87 0.00 5.30 545.81 0.23 7.23 549.83
CBIC 1.00 2.00 38.46 1.00 2.00 38.58 0.93 2.13 38.57
SMBIC 1.00 2.00 16.63 1.00 2.00 16.51 1.00 2.00 16.39

3

BHMC 1.00 3.00 50.34 1.00 3.00 51.01 1.00 3.00 51.75
NCV 1.00 3.00 108.66 1.00 3.00 108.72 1.00 3.00 107.80
ECV 0.00 4.00 534.00 0.00 4.00 540.07 0.00 7.93 542.12
CBIC 1.00 3.00 37.37 1.00 3.00 37.02 1.00 3.00 36.88
SMBIC 1.00 3.00 16.44 1.00 3.00 16.41 1.00 3.00 16.29

4

BHMC 1.00 4.00 50.40 1.00 4.00 51.28 1.00 4.00 52.09
NCV 1.00 4.00 101.31 1.00 4.00 101.83 1.00 4.00 100.58
ECV 0.00 5.10 526.65 0.00 5.17 532.16 0.00 5.23 532.51
CBIC 1.00 4.00 36.11 1.00 4.00 36.27 1.00 4.00 36.23
SMBIC 1.00 4.00 16.27 1.00 4.00 16.29 1.00 4.00 16.12

5

BHMC 1.00 5.00 49.92 1.00 5.00 51.50 1.00 5.00 52.54
NCV 0.97 5.03 96.69 1.00 5.00 97.35 0.97 5.03 95.12
ECV 0.00 6.67 529.87 0.00 7.27 532.77 0.00 6.87 534.82
CBIC 1.00 5.00 36.11 1.00 5.00 36.46 1.00 5.00 36.10
SMBIC 1.00 5.00 16.13 1.00 5.00 16.09 1.00 5.00 16.00

smallest, while the ECV method is much more computationally expensive than
other algorithms. Because in each iteration, ECV performs matrix completion
and estimates community labels from a N ×N -dimensional low-rank matrix.

Example 5. The comparison results are reported in Table 5. We draw the
following conclusions. First, the SM-BIC method can correctly identify K0 with
α varying from 0.4 to 0.8, while the ECV method shows lower accuracy than
other approaches. Second, compared with the BHMC, NCV, ECV, and CBIC
methods, when α = 0.4 and K0 = 2, the average CPU computational time for
the BHMC, NCV, ECV, and CBIC methods is 51.10s, 120.01s, 545.87s, and
38.46s, respectively, while that of the SM-BIC method is only 16.63s. Thus,
in the DCSBM, the SM-BIC is more robust than the ECV method in terms of
degree heterogeneity and more computationally efficient than all these methods.

4.3. Real data analysis

Political blog dataset The political blog dataset was collected and analyzed
in [1]. The data set consists of over one thousand blogs discussing US poli-
tics, with edges representing web links. The nodes are labeled as being either
“conservative” or “liberal”, which can be treated as two well-defined communi-
ties. We only consider the largest connected component of this network, which
consists of 1,222 nodes with community sizes of 586 and 636, while the net-
work density is ρN = 2.24%. The degree-corrected stochastic block model is
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Table 6

Comparison results of different methods in the dataset of housing prices in Beijing. The
estimated number of communities K̂ and the CPU computational time of each method are

reported.
Model BH NCV ECV CBIC SMBIC

SBM K̂ 3.00 3.00 3.00 4.00 3.00
CPU 79.21 70.50 646.21 52.77 8.75

DCSBM K̂ 3.00 3.00 3.00 3.00 3.00
CPU 77.26 111.76 686.25 132.45 12.58

believed to fit better for this network than stochastic block model [45, 85].
Then, under the DCSBM framework, we take the subsample size of the SM-
BIC as n = 1.5 logN/ρN� = 475, and compare the SM-BIC method with other
algorithms. Specifically, we obtain the estimated number of communities as 2
by the NCV, CBIC, and SM-BIC, with computation times of 5.57s, 3.82s, and
1.60s, respectively. While the BHMC and ECV estimate K̂ = 7 and K̂ = 6,
respectively. We see that the NCV, CBIC, and SM-BIC methods all give cor-
rect estimates for the number of communities, and SM-BIC further outperforms
these two algorithms in terms of computational efficiency.

A House price dataset This dataset is publicly available on the platform
Kaggle (https://Kaggle.com), which contains housing transaction information
in Beijing from 2011 to 2017. Here, we collect 6,000 samples traded in 2016,
distributed in the “Feng Tai”, “Chang Ping”, and “Hai Dian” districts of Beijing.
The nodes are these collected samples and a network is obtained by randomly
connecting the node pairs in the same district with a probability of 0.1. That is, if
node i and j are in the same district, then we add an edge to node pair (i, j) with
probability 0.1. As a result, this network has three well-defined communities with
the sizes of communities 1,661, 2,365, and 1,974, respectively, while the network
density is ρN = 3.40%. We then apply the SM-BIC and the aforementioned
methods to identify the number of communities for this network under the SBM
and DCSBM frameworks, respectively. For the SM-BIC method, the subsample
size is set to be n = 2 logN/ρN� = 511. The results are provided in Table 6. As
shown in Table 6, we observe that the SM-BIC method can correctly identify
the number of communities under both the SBM and DCSBM frameworks.
Moreover, the SM-BIC takes only 8.75s for SBM, which is only 11.0% of BH,
12.4% of NCV, and 1.4% of ECV, respectively. For the DCSBM model, the
SM-BIC takes 12.58s, which is only 16.3% of BH, 11.3% of NCV, 1.8% of ECV,
and 9.5% of CBIC, respectively.

5. Concluding remarks

This work proposes a subsampling-based modified Bayesian information crite-
rion (SM-BIC) to identify the number of communities for large-scale SBMs.
We also extend this criterion to DCSBMs. Specifically, the technical conditions

https://Kaggle.com
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of subsampling size are derived, and the consistency properties of SM-BIC are
established. In the context of large-scale networks, the proposed SM-BIC has
more valuable computational advantages than existing model selection methods.
Specifically, the computational complexity of the SM-BIC for both the SBM and
DCSBM could be as low as O{N(logN)2}. Consequently, the SM-BIC method
could be performed even using a personal computer. Numerical studies further
demonstrate these computational improvements.

To conclude this work, we consider several interesting topics for future re-
search. First, in this study, we focus on reducing computational costs by network
subsampling only once; this idea can be extended to a resampling approach,
which is currently under investigation. Second, informative subsamples are im-
portant for extracting useful information from the entire network. Subsampling
strategies for independent big data have been extensively studied; see [63], [74],
and [82] for further discussions. Based on these studies, it would be interesting
to investigate subnetwork extraction methods with meaningful statistical inter-
pretations in large-scale networks. Third, in this work, following [54], we assume
that K0 is fixed. However, it is an interesting and challenging question to allow
for a diverging K0. We will work in this direction in future research.

The code is publicly available on GitHub (https://github.com/Stamath/
SMBIC).

Appendix A: Necessary notations and lemmas

In Appendix A, we introduce some necessary notations in Appendix A.1. Then,
we give three useful lemmas for the subsequent theoretical proof of the proposed
method in Appendix A.2.

A.1. Notations

Given a label vector gN , we define some necessary count statistics. Define a
K ×K count matrix as ngN = (nkl,gN )1≤k,l≤K and ogN = (okl,gN )1≤k,l≤K . Let
p = (N1,g∗

N
, . . . , NK,g∗

N
)�/N denote the underlying block proportions, where

Nk,g∗
N

=
∑N

i=1 I(g∗N,i = k) represents the number of nodes belonging to the k-th
cluster. For two sets of labels gN and g′N , define |gN−g′N | =

∑N
i=1 I(gN,i �= g′N,i)|.

In addition, define τ as a permutation on [K] and denote ‖ · ‖∞ as a maximum
norm of a matrix.

For simplicity, we quote the notations from [78] to characterize the log-
likelihood function. Let HgN be an K ×K0 confusion matrix whose (k, l)-entry
is Hkl,gN = 1/N

∑N
i=1 I{gN,i = k, g∗N,i = l}. Additionally, we define

F (Q, q) =
∑

1≤k≤l≤K

qklγ

(
Qkl

qkl

)
,

where γ(x) = x log x + (1 − x) log(1 − x) for x ∈ (0, 1). Then, for a
fixed label vector gN , the corresponding log-likelihood can be expressed as

https://github.com/Stamath/SMBIC
https://github.com/Stamath/SMBIC
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supB∈BK
log f(AS |gN , B) = MF (ogN /M, ngN /M). We further define its expec-

tation as

G(HgN , B∗) =
∑

1≤k≤l≤K

(HgN11�H�
gN )klγ

{ (HgNB∗H�
gN )kl

(HgN11�H�
gN )kl

}
.

A.2. Useful lemmas

Here, we provide some useful lemmas, that is, Lemmas 2–4, for the proof of the
consistency of the SM-BIC.

In statistics, Hoeffding inequality provides an upper bound for the sum of
bounded random variables, which was proved by [38].

Lemma 2 (Hoeffding inequality). Let xi, i = 1, . . . , N , be mutually independent
random variables such that ai ≤ xi ≤ bi almost surely. Consider the sum of these
random variables, YN =

∑N
i=1 xi. Then, for all s > 0,

P{YN − E(YN ) ≥ s} ≤ exp
{
− 2s2∑N

i=1(bi − ai)2
}
.

In the under-fitting case, without loss of generality, we start with K = K0−1,
and the following Lemma 3 shows that G(HgN , B∗) is maximized by combining
two existing communities in g∗N .

Lemma 3 (Expectation of the log-likelihood function of under-fitting). Given
the true label g∗N , suppose gN ∈ C(AS ,K0−1), and then maximizing the function
G(HgN , B∗) over HgN achieves its maximum in the label set

{gN ∈ C(AS ,K0−1) : there exists τ such that τ(gN ) = Ukl(g∗N ), 1 ≤ k, l ≤ K0},

where Uk,l(g∗N ) merges g∗N with labels k and l. Furthermore, suppose g′N gives
the unique maximum (up to a permutation τ), and for all HgN , there exists a
positive constant c1 > 0 such that HgN ≥ 0, H�

gN1 = p,

∂G{(1 − ε)Hg′
N

+ εHgN , B∗}
∂ε

∣∣∣∣∣
ε=0+

< −c1 < 0.

For subsampled adjacency matrix AS , consider ‖AS‖∞= max
1≤i≤N

∑
1≤j≤n |AS

ij |.
The following Lemma 4 provides a concentration inequality to bound the vari-
ation in the adjacency matrix AS , as proposed by [78].

Lemma 4 (Concentration inequality). Assume gN ∈ C(AS ,K) and define
WgN = ogN /M −HgNB∗H�

gN . For ε ≤ 3,

P

{
max

gN∈C(AS ,K)
‖WgN ‖∞ > ε

}
≤ 2KN+2 exp{−c1(B∗)ε2ρ−1

N M},
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where c1(B∗) is a constant depending on B∗ and M = Nn − n(n + 1)/2. Let
ωn = (ρNN logn/M)1/2, then maxgN∈C(AS ,K) ‖WgN ‖∞ > ωn → 0, with high
probability, for n,N → ∞. Furthermore, let g′N ∈ C(AS ,K) be a fixed set of
labels; then, for ε ≤ 3m

N ,

P
(

max
gN :|gN−g′

N |≤m
‖WgN −Wg′

N
‖∞ > ε

)
≤ 2
(
N

m

)
Km+2 exp

{
− c2(B∗)N

3ε2

ρNm

}
,

where m is an integer and c2(B∗) is a constant depending on B∗.

Appendix B: Demonstrations of SM-BIC

In Appendix B, we use the BIC approximation to prove Lemma 1, shown in
Appendix B.1. Furthermore, we provide the proofs of Propositions 1 and 2 in
Appendices B.2 and B.3, respectively.

B.1. Proof of Lemma 1

The proof of the log-likelihood function approximation can be accomplished by
the following two steps. First, we use Taylor approximation for the likelihood
function, i.e., f(AS |gN ). Then, we investigate its Hessian matrix.

Step 1. Assume that the likelihood function f(AS |gN , θ) attains its maxi-
mum at θ̂ so that ∂f(AS |gN , θ)/∂θ|θ=θ̂ = 0. By Taylor expansion, we have,

log f(AS |gN , θ) ≈ log f(AS |gN , θ̂) + 1
2(θ − θ̂)�D(θ − θ̂),

where D is a K(K+1)
2 × K(K+1)

2 matrix such that for 1 ≤ k′, l′ ≤ K(K+1)
2 ,

Dk′l′ = ∂2f(AS |gN , θ)
∂θk′∂θl′

∣∣∣∣
θ=θ̂

.

Since f(AS |gN , θ) attains its maximum at θ̂, the Hessian matrix D is negative
definite. Let D̃ = −D, and then we approximate f(AS |gN ),

f(AS |gN ) =
∫

exp{log f(AS |gN , θ)}p(θ)dθ,

≈ exp{log f(AS |gN , θ̂)} ×
∫

exp
{
−1

2(θ − θ̂)�D̃(θ − θ̂)
}
dθ.

(B.1)

Recognizing the integrand in equation (B.1) as proportional to a multivariate
normal density gives

f(AS |gN ) ≈ exp{log f(AS |gN , θ̂)} × (2π)
K(K+1)

4 |D̃|−1/2. (B.2)
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The use of equation (B.2) is called the Laplace method for integrals [64]. The
error in equation (B.2) is O(M−1) [71, 64], and so

log f(AS |gN ) = log f(AS |gN , θ̂) + log p(θ̂)

+ K(K + 1)
4 log 2π − 1/2 log |D̃| + O(M−1).

(B.3)

Step 2. To obtain the approximation of the likelihood function, we further
study the determinant of D̃. Recall that the number of independent observa-
tions in AS is M . Let {yr}Mr=1 denote these independent observations. Then,
log f(AS |gN , θ) =

∑M
r=1 log f(yr|gN , θ). Note that

D̃k′l′ = −∂2 log f(AS |gN , θ)
∂θk′θl′

∣∣∣∣∣
θ=θ̂

= −∂2 log{
∏M

r=1 f(yr|gN , θ)}
∂θk′∂θl′

∣∣∣∣∣
θ=θ̂

= −∂2{1/M
∑M

r=1 M log f(yr|gN , θ)}
∂θk′θl′

∣∣∣∣∣
θ=θ̂

.

As M grows large, we use the weak law of large numbers on random variables,
xr = M log f(yr|gN , θ), r = 1, . . . ,M . We obtain

1/M
M∑
r=1

M log f(yr|gN , θ) → E {M log f(yr|gN , θ)} ,

with high probability. Therefore, every element in the observed Fisher informa-
tion matrix is

D̃k′l′ =−∂2E{M log f(yr|gN , θ)}
∂θk′∂θl′

∣∣∣∣∣
θ=θ̂

=−M
∂2E{log f(yr|gN , θ)}

∂θk′∂θl′

∣∣∣∣∣
θ=θ̂

= MĨk′l′

where Ĩk′l′ is the (k′, l′)-entry of the Fisher matrix Ĩθ for a single observed yr
(1 ≤ r ≤ M). Thus,

|D̃| = (M)K(K+1)/2|Ĩθ|. (B.4)
To this end, according to (B.3) and (B.4), we obtain

log{f(AS |gN )} = log f(AS |gN , θ̂) + log p(θ̂) + K(K + 1)
4 log 2π

− K(K + 1)
4 logM − 1

2 log |Ĩθ| + O(M−1).
(B.5)

The first term on the right-hand side of (B.5) is of order O(M), the forth term
is of order O(logM), while the other four therms are of order O(1) or less. Thus
gives

log{f(AS |gN )} = log{f(AS |gN , θ̂)} − K(K + 1)
4 logM + O(1).

This accomplishes the proof.
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B.2. Proof of Proposition 1

To demonstrate the effectiveness of our SM-BIC, we first prove the statement
regarding the computational complexity of the SM-BIC in Proposition 1. Since
the DCSBM is a generalization of the SBM, we discuss the computational com-
plexity of the SM-BIC for DCSBM. According to the SM-BIC, there are two
main procedures for determining the number of communities, including node-
pair subsampling and the model selection algorithm. Therefore, we analyze the
computational complexity of each procedure in detail.

First, the node-pair subsampling procedure includes two steps, where the
time complexity of collecting the node set S is O(N) according to [72], and that
of forming an N × n subsampled adjacency matrix is no more than O(Nn). In
this way, the computational complexity of the network subsampling procedure
is O(Nn).

Second, perform the model selection algorithm to identify K0 for the DCSBM.
For each candidate K, the SM-BIC evaluates K by the following steps.

(1) Perform spectral clustering to the subsampled adjacency matrix AS using
a truncated SVD, which takes O(Nn) time complexity [28, 55].

(2) Compute the plug-in estimator of B, which requires O(Nn) computational
complexity.

(3) Obtain the plug-in estimator of ψ, which has a computational cost of
O(Nn).

(4) Calculate the SM-BIC of K with O(Nn).

After repeating steps (1)–(4) Kmax times, we obtain the optimal choice of the
number of communities.

Since Kmax is a constant, the time complexity of the SM-BIC is O(Nn).
Therefore, we have proved Proposition 1.

B.3. Proof of Proposition 2

In this section, we accomplish the proof of Proposition 2 by the following two
steps. Under the assumptions in Proposition 2, we first prove that the se-
lected node set S covers K0 blocks completely with high probability. Then,
we demonstrate that the expected average degree of the subnetwork could be
E(d) = Ω(logN) with high probability.

Step 1. We first represent the event S ∈ MK0 using some simple events.
Specifically, we describe the event e = {S : ∀ k ∈ [K0], ∃ i ∈ S, g∗N,i = k}
using several simple events to simply calculate its probability. Denote ek = {S :∑

i∈S I(g∗N,i = k) > 0}, for k = 1, . . . ,K0. Then, we have e =
⋂K0

k=1 ek.
Then, we focus on calculating the probability of event e. Let ec denote the

complement set of e. Then, following De Morgan’s laws, ec =
⋃K0

k=1 e
c
k. There-

fore, by the property of probability measure,

P (ec) ≤
K0∑
k=1

P (eck). (B.6)
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Considering random simple sampling without replacement, the probability of
choosing a node from the k-th block is Nk,g∗

N
/N in each sampling. Then, P (eck) =

(1 − Nk,g∗
N
/N)n, for k = 1, . . . ,K0. As a result, according to (B.6), P (ec) ≤∑K0

k=1 P (eck) ≤ K0(1−Nmin,g∗
N
/N)n. That is, P (e) > 1−K0(1−Nmin,g∗

N
/N)n,

where Nmin,g∗
N

= mink Nk,g∗
N

.
Consider the subsample size n such that ε ≥ K0(1−Nmin,g∗

N
/N)n, and then,

n ≥ log(K0/ε)/ log{(1 − Nmin/N)−1}. Under Assumption (A2), we can find
a constant c0 such that Nmin,g∗

N
/N > c0/K0. As a result, the subsample size

n ≥ log(K0/ε)/ log{K0/(K0 − c0)}. Taking ε = 1/N and K0 = O(1), we have
n = Ω(logN). Therefore, according to the assumptions in Proposition 2, we
have proved S ∈ MK0 with probability 1 − 1/N .

Step 2. Consider that the network density is ρN and under Assumptions
(A1)–(A3), we have E(d) = E

{∑N
i=1
∑n

j=1 A
S
ij/N

}
= Ω(nρN ). Furthermore,

since n = Ω(logN/ρN ), we have E(d) = Ω(logN). Hence, we proved Proposi-
tion 2.

Appendix C: Theoretical proof of SM-BIC

Here, we first establish the consistency of the SM-BIC under the SBM. Specif-
ically, we demonstrate the claim of Theorem 1 in Appendix C.1, and further
give the proof of Theorems 2 and 3 in Appendices C.2 and C.3, respectively.
Then, we discuss the theoretical property of the SM-BIC under the DCSBM,
i.e., Theorem 4, in Appendix C.4.

C.1. Proof of Theorem 1

Without loss of generality, we start with K = K0 − 1. To prove Theorem 1,
we focus on analyzing the log-likelihood ratio LK0−1,K0 , where LK0−1,K0 =
maxgN∈C(AS ,K0−1) supB∈BK0−1

log f(AS |gN , B)− log f(AS |g∗N , B∗). Specifically,
we accomplish the proof by following three steps. We first analyze the node
assignments obtained by K0 − 1 in detail, and then we discuss the likelihood
function of LK0−1,K0 . Finally, we establish the upper bound for LK0−1,K0 .

Step 1. We discuss the community assignments based on SBMK . In the
under-fitting case, K = K0 − 1, we define a merge mechanism. First, we give
the merged label vector set. Define eK0−1 = {gN ∈ C(AS ,K0 − 1) : gN =
Uk,l(g∗N ), 1 ≤ k �= l ≤ K0}. Therefore, the assignments in eK0−1 merge two
blocks in g∗N into a block. By Lemma 3, without loss of generality, assume
that the maximum of G(HgN , B∗) is achieved at g′N = UK0−1,K0(g∗N ). Then,
we establish the corresponding merged connectivity matrix B′ ∈ BK0−1. Define
Uk,l(g∗N , B∗) to represent merging blocks k and l in B∗ by taking weighted
averages with p. Specifically, if B′ = UK0−1,K0(g∗N , B∗), then

B′
u(k)u(l) =

⎧⎪⎨⎪⎩
B∗

kl, 1 ≤ k ≤ l ≤ K0 − 2;
nkK0−1,g∗

N
B∗

kK0−1 + nkK0,g∗
N
B∗

kK0

nkK0−1,g∗
N

+ nkK0,g∗
N

,
(1 ≤ k ≤ K0 − 2,
K0 − 1 ≤ l ≤ K0);
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where B′
u(k)u(l) = B′

u(l)u(k) for 1 ≤ k ≤ l ≤ K0 − 2. Let ŌK0−1K0−1,g∗ =
nK0−1K0−1,g∗

N
B∗

K0−1K0−1, ŌK0−1K0,g∗
N

= nK0−1K0,g∗
N
B∗

K0−1K0
, ŌK0K0−1,g∗

N
=

nK0K0−1,g∗
N
B∗

K0K0−1, and ŌK0K0,g∗
N

. Then, for K0 − 1 ≤ k, l ≤ K0,

B′
u(k)u(l) =

ŌK0−1K0−1,g∗
N

+ ŌK0−1K0,g∗
N

+ ŌK0K0−1,g∗
N

+ ŌK0K0,g∗
N

nK0−1K0−1,g∗
N

+ nK0−1K0,g∗
N

+ nK0K0−1,g∗
N

+ nK0K0,g∗
N

,

where 1 ≤ u(k) ≤ K0 − 1 and 1 ≤ u(l) ≤ K0 − 1 are the new block labels of
communities k and l, respectively.

Step 2. We now study the log-likelihood ratio LK0−1,K0 . We demonstrate
the following critical equation in the first step:

max
gN∈C(AS ,K0−1)

sup
B∈BK0−1

log f(AS |gN , B) = sup
B∈BK0−1

log f(AS |g′N , B). (C.1)

The proof of (C.1) can be accomplished in two steps. We first prove this by
considering gN far away from g∗N and close to g′N (up to permutation τ). Specif-
ically, define J−

δn
= {gN ∈ C(AS ,K0 − 1) : G(HgN , B∗) − G(Hg′

N
, B∗) < −δn},

where δn → 0 slowly. Then, we apply some useful lemmas provided earlier to
prove this in another case.

Step 2.1. For gN ∈ J−
δn

, we prove the equality (C.1). By Lemma 4, there
exists a constant c1 such that

∣∣∣F(ogN
M

,
ngN

M

)
−G(HgN , B∗)

∣∣∣∣∣
≤ c1

∑
1≤k≤l≤K0−1

∣∣∣okl,gN
M

− {HgNB∗H�
gN }kl

∣∣∣ = OP (ωn),

where the inequality holds because γ(·) is Lipschitz on any interval bounded
away from 0 and 1, and recall that ωn = (ρNN logn/M)1/2. Then, for any
gN ∈ J−

δn
, we have

sup
B∈BK0−1

log f(AS |gN , B)

= sup
B∈BK0−1

log f(AS |g′N , B) + M
{
F (ogN /M, ngN /M) −G(HgN , B∗)

}
+ M

{
G(HgN , B∗) −G(Hg′

N
, B∗)

}
+ M

{
G(Hg′

N
, B∗) − F{og′

N
/M, ng′

N
/M}

}
= sup

B∈BK0−1

log f(AS |g′N , B) + OP (Mωn −Mδn + Mωn)

(C.2)

Hence, we obtain

max
gN∈J−

δn

sup
B∈BK0−1

log f(AS |gN , B)
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≤ log
{ ∑

gN∈J−
δn

sup
B∈BK0−1

f(AS |gN , B)
}

= log
[ ∑
gN∈J−

δn

sup
B∈BK0−1

exp{log f(AS |gN , B)}
]

≤ log
[

sup
B∈BK0−1

f(AS |g′N , B)(K0 − 1)n exp{OP (2Mωn −Mδn)}
]

(C.3)

≤ log sup
B∈BK0−1

f(AS |g′N , B), (C.4)

where (C.3) is derived from (C.2), and if δn → 0 slowly enough such that
δn/ωn → ∞, we have (C.4).

Step 2.2. For gN /∈ J−
δn

, |G(HgN , B∗) − G(Hg′
N
, B∗)| → 0. Let ḡN :=

minτ |τ(gN )− g′N |. Since the maximum is unique up to τ , ‖HḡN −Hg′
N
‖∞ → 0.

By Lemma 4,

P

(
max

gN∈τ(g′
N )

‖WḡN −Wg′
N
‖∞ > ε|ḡN − g′N |/N

)

≤
N∑

m=1
P

(
max

gN :gN=ḡN ,|ḡN−g′
N |=m

‖WḡN −Wg′
N
‖∞ >

εm

N

)

≤
N∑

m=1

{
2(K0 − 1)K0−1Nm(K0 − 1)m+2 exp (−c1ρ

−1
N Nm)

}
→ 0.

It follows for |ḡN − g′N | = m, gN /∈ J−
δn

,∥∥∥oḡN
M

−
og′

N

M

∥∥∥
∞

= oP (1) |ḡN − g′N |
N

+
∥∥∥HḡNB∗H�

ḡN −Hg′
N
B∗H�

g′
N

∥∥∥
∞

≥ m

N
(c1 + oP (ρN )).

Observe that ‖
og′N
M − Hg′

N
B∗H�

g′
N
‖∞ = oP (ρN ). By Lemma 4, ‖ng′

N
/M −

Hg′
N
11�H�

g′
N
‖∞ = oP (ρN ). Note that F (·, ·) has a continuous derivative in the

neighborhood for (og′
N
/M, ng′

N
/M). By Lemma 3,

∂F{(1 − ε)og′
N
/M + εQ, (1 − ε)ng′

N
/M + εq}

∂ε

∣∣∣∣∣
ε=0+

< −c1ρN < 0,

for (Q, q) in the neighborhood of (og′
N
/M, ng′

N
/M). Hence, F (oḡN /M, nḡN /M)−

F
(
og′

N
/M, ng′

N
/M
)
≤ −c1ρNm/N . Furthermore, we obtain

sup
B∈BK0−1

log f(AS |ḡN , B) − sup
B∈BK0−1

log f(AS |g′N , B)

= M
{
F
(oḡN
M

,
nḡN

M

)
− F

(og′
N

M
,
ng′

N

M

)}
≤ −c1

mρNM

N
.

(C.5)
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Then, we conclude as follows:
max

gN /∈J−
δn

,gN /∈τ(g′
N )

sup
B∈BK0−1

log f(AS |gN , B)

≤ log

⎧⎪⎨⎪⎩
∑

gN /∈J−
δn

,gN /∈τ(g′
N )

sup
B∈BK0−1

log f(AS |gN , B)

⎫⎪⎬⎪⎭
≤ log

{ ∑
gN∈τ(g′

N )

sup
B∈BK0−1

f(AS |gN , B)
N∑

m=1

(K0 − 1)mNm

exp(c1mρNM/N)

}
(C.6)

≤ log
[

sup
B∈BK0−1

f(AS |g′N , B)
∑

gN∈τ(g′
N )

{
N∑

m=1

(K0 − 1)mNm

exp(c1mρNM/N)

}]

= sup
B∈BK0−1

log f(AS |g′N , B) + log
{

(K0 − 1)K0−1
N∑

m=1

(K0 − 1)mNm

exp(c1mρNM/N)

}
(C.7)

≤ sup
B∈BK0−1

log f(AS |g′N , B) + log
{
(K0 − 1)K0N2 exp(−c1ρNM/N)

}
= sup

B∈BK0−1

log f(AS |g′N , B) + K0 log(K0 − 1) + 2 logN − c1ρNM/N

< sup
B∈BK0−1

log f(AS |g′N , B), (C.8)

where (C.6) is obtained by (C.5), and the equality (C.7) holds because the
number of all community assignments in τ(g′N ) is (K0−1)K0−1. Additionally, the
equality (C.8) results from M/N = Ω(n) = Ω(logN/ρN ). Therefore, by (C.4)
and (C.8), we have accomplished the proof of (C.1).

Step 3. We then use the conclusion in (C.1) to give the lower bound of
LK0−1,K0 . We start by analyzing the bias of the maximum likelihood estimator
of the connectivity matrix elements. Consider that supB∈BK0−1

f(AS |g′N , B) is
uniquely maximized at

B̂kl=
okl,g′

N

nkl,g′
N

=
okl,g∗

N

nkl,g∗
N

= B∗
kl + OP (ρNM−1/2), for 1 ≤ k ≤ l ≤ K0 − 2, (C.9)

B̂′
kK0−1=

okK0−1,g∗
N

+ okK0,g∗
N

nkK0−1,g∗
N

+ nkK0,g∗
N

=B′
kK0−1 + OP (ρNM−1/2), for 1≤k≤K0 − 2,

(C.10)

B̂′
K0−1K0−1=

∑K0
k=K0−1

∑K0
l=K0−1 okl,g∗

N∑K0
k=K0−1

∑K0
l=K0−1 nkl,g∗

N

= B′
K0−1K0−1 + OP (ρNM−1/2),

(C.11)

where the equalities (C.9), (C.10), and (C.11) are derived by Hoeffding’s in-
equality [38] presented in Lemma 2. Hence, we have

LK0−1K0 = sup
B∈BK0−1

log f(AS |g′N , B) − log f(AS |g∗N , B∗)
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=
∑

1≤k≤l≤K0−2

{
okl,g∗

N
log
(
B̂kl

B∗
kl

)
+ (nkl,g∗

N
− okl,g∗

N
) log

(
1 − B̂kl

1 −B∗
kl

)}

+
∑
k,l∈I

{
okl,g∗

N
log
(
B̂′

u(k)u(l)

B∗
kl

)
+ (nkl,g∗

N
− okl,g∗

N
) log

(
1 − B̂′

u(k)u(l)

1 −B∗
kl

)}

where I is the set of indices affected by the merge, I = {(k, l) ∈ [K0]2,K0−1 ≤
l ≤ K0, k ≤ l}. For convenience, let

X1 =
∑

1≤k≤l≤K0−2

{
okl,g∗

N
log
(
B̂kl

B∗
kl

)
+ (nkl,g∗

N
− okl,g∗

N
) log

(
1 − B̂kl

1 −B∗
kl

)}
,

(C.12)

X2 =
∑
k,l∈I

{
okl,g∗

N
log
(
B̂′

u(k)u(l)

B∗
kl

)
+ (nkl,g∗

N
− okl,g∗

N
) log

(
1 − B̂′

u(k)u(l)

1 −B∗
kl

)}
,

(C.13)

where X1 represents the bias within un-merged communities (i.e., 1 ≤ k, l ≤
K0−2) and X2 measure the bias within the merged communities (i.e., (k, l) ∈ I).
That is LK0−1K0 = X1 + X2. Next, we discuss X1 and X2, accordingly.

First, by Taylor’s expansion, we obtain

X1 =
∑

1≤k≤l≤K0−2

{
okl,g∗

N
log
(
B̂kl

B∗
kl

)
+ (nkl,g∗

N
− okl,g∗

N
) log

(
1 − B̂kl

1 −B∗
kl

)}

=
∑

1≤k≤l≤K0−2

[
nkl,g∗

N
(B∗

kl + Δkl)
{Δkl

B∗
kl

− Δ2
kl

2(B∗
kl)2
}

+ nkl,g∗
N

(1 −B∗
kl − Δkl)

{
−Δkl

1 −B∗
kl

− Δ2
kl

2(1 −B∗
kl)2

}
+ O(nkl,g∗

N
Δ3

kl)
]

(C.14)

=
∑

1≤k≤l≤K0−2

[
nkl,g∗

N

(
Δkl + Δ2

kl

2B∗
kl

)

+ nkl,g∗
N

{
−Δkl + Δ2

kl

2(1 −B∗
kl)

}
+ O(nkl,g∗

N
Δ3

kl)
]

= 1
2

∑
1≤k≤l≤K0−2

nkl,g∗
N

(B̂kl −B∗
kl)2

B∗
kl(1 −B∗

kl)
+ OP (ρ3

NM−1/2), (C.15)

where Δkl = B̂kl−B∗
kl in equality (C.14), and (C.15) results from (C.9). Hence,

the upper bound of (C.12) is OP (ρN ). Then, we focus on (C.13). By Taylor



4756 J. Deng et al.

expansion, we have

X2 =
∑
k,l∈I

[
okl,g∗

N
log
{ B̂′

u(k)u(l)

B∗
kl

}
+ (nkl,g∗

N
− okl,g∗

N
) log

{1 − B̂′
u(k)u(l)

1 −B∗
kl

}]

=
∑
k,l∈I

nkl,g∗
N

[
B′

u(k)u(l) log
{B′

u(k)u(l)(1 −B∗
kl)

(1 −B′
u(k)u(l))B∗

kl

}

+ log
{1 −B′

u(k)u(l)

1 −B∗
kl

}
+ O(Δ′

u(k)u(l))
]

(C.16)

= −ΩP (ρNM),

where Δ′
u(k)u(l) = B̂′

u(k)u(l) −B′
u(k)u(l). Hence, we have LK0−1,K0 = X1 + X2 =

−ΩP (ρNM). Therefore, we have accomplished the proof of Theorem 1.

C.2. Proof of Theorem 2

Based on the proof of Theorem 1, we prove the convergence of the penalized
log-likelihood function �(K0) via the following two steps.

Step 1. For K = K0, according to (C.1), we have

max
gN∈C(AS ,K0)

sup
B∈BK0

log f(AS |gN , B) = sup
B∈BK0

log f(AS |g∗N , B). (C.17)

Hence, LK0,K0 = supB∈BK0
log f(AS |g∗N , B) − log f(AS |g∗N , B∗).

Step 2. Consider that supB∈BK0
f(AS |g∗N , B) is uniquely maximized at

B̂kl =
okl,g∗

N

nkl,g∗
N

= B∗
kl + OP (ρNM−1/2), for 1 ≤ k ≤ l ≤ K0. (C.18)

Then, similar to (C.14), by Taylor expansion, we have,

sup
B∈BK0

log f(AS |g∗N , B) − log f(AS |g∗N , B∗)

=
∑

1≤k≤l≤K0

{
okl,g∗

N
log
{
B̂kl(1 −B∗

kl)
B∗

kl(1 − B̂kl)

}
+nkl,g∗

N
log
(

1 − B̂kl

1 −B∗
kl

)
+O(nkl,g∗

N
Δ3

kl)
}

=1
2

∑
1≤k≤l≤K0

nkl,g∗
N

(B̂kl −B∗
kl)2

B∗
kl(1 −B∗

kl)
+OP (ρ3

NM−1/2). (C.19)

The last equality results from (C.18), that is Δkl = OP (ρNM−1/2). Hence,
LK0,K0 = OP (ρN ), and this accomplishes the proof of Theorem 2.
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C.3. Proof of Theorem 3

Based on the proof of Theorem 2, we define a log-likelihood ratio as

L̃K,K0 = max
gN∈C(AS ,K)

sup
B∈BK

log f(AS |gN , B) − sup
B∈BK0

log f(AS |g∗N , B).

To provide the upper bound of LK,K0 , we start by discussing L̃K,K0 . Specifically,
we establish the upper bound of LK,K0 by the following three steps. First,
we introduce a set of community assignments that is formed by splitting the
underlying node assignments into K blocks. Second, we study the corresponding
likelihood functions of L̃K,K0 . Third, based on the conclusion of L̃K,K0 , we use
the preceding lemmas to accomplish this proof.

Step 1. We first define the community assignment set by splitting the un-
derlying g∗N into K blocks. Intuitively, embedding a K0-block model in a larger
model can be achieved by appropriately splitting the labels g∗N . Specifically, we
define a subset

eK = {gN ∈ C(AS ,K) : each row of HgN has at most one nonzero entry}.

Then, any gN ∈ eK satisfies the following: every block in gN is a subset of
an existing block in g∗N . Accordingly, we define a surjective function as h :
[K] → [K0] describing the assignments in HgN . In other words, for any k ∈ [K],
h(k) ∈ [K0], and ∀ a ∈ [K0], h−1(a) ∈ [K].

Step 2. We then discuss the log-likelihood ratio LK,K0 . Note that,
in this case, G(HgN , B∗) is maximized at any g′N ∈ eK with value∑

1≤k≤l≤K0
pkplγ(B∗

kl). Denote the optimal G∗ =
∑

1≤k≤l≤K0
pkplγ(B∗

kl). Let
J+
δn

= {gN ∈ C(AS ,K) : G(HgN , B∗) − G∗ < −δn}, for δn → 0 slowly enough.
Then, to analyze the log-likelihood ratio L̃K,K0 , we consider the likelihood
supB∈BK

log f(AS |gN , B) under two cases, namely, the community assignment
gN ∈ J+

δn
and gN /∈ J +

δn
.

Step 2.1 We analyze supB∈BK
log f(AS |gN , B) by considering gN ∈ J+

δn
. By

Lemma 4, we have∣∣∣F(ogN
M

,
ngN

M

)
−G(HgN , B∗)

∣∣∣≤c1
∑

1≤k≤l≤K

∣∣∣okl,gN
M

− (HgNB∗H�
gN )kl

∣∣∣=OP (ωn).

Therefore, for any g′N ∈ eK , we obtain

max
gN∈J+

δn

sup
B∈BK

log f(AS |gN , B)

≤ log
{ ∑

gN∈J+
δn

sup
B∈BK

f(AS |gN , B)
}

= log
[ ∑
gN∈J+

δn

sup
B∈BK

exp
{

log f(AS |gN , B)
}]
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≤ log
[

sup
B∈BK

f(A|g′N , B)(K − 1)n exp {OP (2Mωn −Mδn)}
]

≤ log
{

sup
B∈BK

f(A|g′N , B)
}

= sup
B∈BK

∑
1≤a≤b≤K0

∑
(k,l)∈h−1(a)×h−1(b)

{okl,g′
N

log
(

Bkl

1 −Bkl

)
+nkl,g′

N
log (1−Bkl)}.

(C.20)

Choosing δn → 0 slowly enough such that δn/ωn → ∞.
We further analyze equality (C.20). Let

lab =
∑

(k,l)∈h−1(a)×h−1(b)

{
okl,g′

N
logBkl + (nkl,g′

N
− okl,g′

N
) log (1 −Bkl)

}
+ λ′

( ∑
(k,l)∈h−1(a)×h−1(b)

nkl,g′
N
− nab,g∗

N

)
.

Then, ∂lab/∂nkl,g′
N

= log (1 −Bkl) + λ′ = 0. This implies that for (k, l) ∈
h−1(a) × h−1(b), Bkl’s are all equal. Let Bkl = Bab. Hence,∑

(k,l)∈h−1(a)×h−1(b)

{okl,g′
N

logBkl + (nkl,g′
N
− okl,g′

N
) log (1 −Bkl)}

= oab,g∗
N

logBab + (nab,g∗
N
− oab,g∗

N
) log (1 −Bab),

where

oab,g∗
N

=
∑

(k,l)∈h−1(a)×h−1(b)

okl,g′
N

and nab,g∗
N

=
∑

(k,l)∈h−1(a)×h−1(b)

nkl,g′
N
.

Therefore, based on (C.20), we have

max
gN∈J+

δn

sup
B∈BK

log f(AS |gN , B)

≤ sup
B∈BK

∑
1≤a≤b≤K0

∑
(k,l)∈h−1(a)×h−1(b)

{
okl,g′

N
log
(

Bkl

1 −Bkl

)
+nkl,g′

N
log (1−Bkl)

}
= sup

B∈BK0

∑
1≤a≤b≤K0

{oab,g∗
N

logBab+(nab,g∗
N
−oab,g∗

N
) log (1 −Bab)}

= sup
B∈BK0

log f(AS |g∗N , B).

(C.21)

Step 2.2 We investigate the likelihood function supB∈BK
log f(AS |gN , B) for

gN /∈ J +
δn

. Treating HgN as a vector, {HgN : gN ∈ eK} is a subset of the union
of some of the K−K0 faces of polyhedron PHgN

. For every gN /∈ eK , gN /∈ J +
δn

,
let g⊥ be such that Hg⊥ := minHg′N

:g′
N∈eK ‖HgN − Hg′

N
‖2. Then, HgN − Hg⊥
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is perpendicular to the corresponding K − K0 face. This orthogonal implies
that the directional derivative of G(·, B∗) along the direction of HgN −Hg⊥ is
bounded away from 0. That is,

∂G{(1 − ε)Hg⊥ + εHgN , B∗}
∂ε

∣∣∣
ε=0+

< −c1ρN ,

for some universal positive constant c1. Then, similar to the proof of The-
orem 1, we obtain supB∈BK

log f(AS |gN , B) − supB∈BK
log f(AS |g⊥, B) ≤

−c1mρNM/N , for |gN − g⊥| = m. Hence, we have

max
gN /∈J+

δn
,gN /∈eK

sup
B∈BK

log f(AS |gN , B)

≤ max
gN∈eK

sup
B∈BK

log
{
f(AS |gN , B) ×

N∑
m=1

(K − 1)mNm exp (−c1mρNM/N)
}

That is,

max
gN /∈J+

δn
,gN /∈eK

sup
B∈BK

log f(AS |gN , B)

≤ max
gN∈eK

sup
B∈BK

log f(AS |gN , B) + 2 logN + logK − c1ρNM

N

Let μN = 2 + logK/ logN − c1ρNM/(N logN) and further by (C.20), we have

max
gN /∈J+

δn
,gN /∈eK

sup
B∈BK

log f(AS |gN , B) ≤ μN logN + sup
B∈BK0

log f(AS |g∗N , B)

(C.22)
where the inequality (C.22) is obtained by (C.21). To this end, according
to (C.21) and (C.22), we have L̃K,K0 ≤ μN logN .

Step 3. Based on the assertion, L̃K,K0 ≤ μN logN , we now bound the di-
vergence of LK,K0 . According to (C.19) in the proof of Theorem 2, we have

LK,K0 = max
gN∈C(AS ,K)

sup
B∈BK

log f(AS |gN , B) − log f(AS |g∗N , B∗)

≤ μN logN + sup
B∈BK0

log f(AS |g∗N , B) − log f(AS |g∗N , B∗)

≤ μN logN + 1
2

∑
1≤k≤l≤K0

nkl,g∗
N

(B̂kl −B∗
kl)2

B∗
kl(1 −B∗

kl)
+ OP (ρ3

NM−1/2)

= μN logN + OP (ρN ),

(C.23)

where the last inequality is according to (C.19). Hence, LK,K0 = OP (μN logN)
where μN = OP (1) for n,N → ∞. Therefore, we have accomplished the proof
of Theorem 3.
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C.4. Proof of Theorem 4

Now, we prove the convergence of the log-likelihood ratio for the DCSBM by
the following two steps.

Step 1. For K = K0, according to (C.17), we obtain

LK0,K0 = max
gN∈C(AS ,K0)

sup
B∈BK0

log f(AS |gN , B, ψ∗) − log f(AS |g∗N , B∗, ψ∗)

= sup
B∈BK0

log f(AS |g∗N , B, ψ∗) − log f(AS |g∗N , B∗, ψ∗).

(C.24)

Consider that supB∈BK0
f(AS |g∗N , B, ψ∗) is uniquely maximized at B̂kl =

okl,g∗
N
/nkl,g∗

N
(ψ∗), for 1 ≤ k ≤ l ≤ K0. By Lemma 2, for any s > 0, we have

P (|B̂kl −B∗
kl| > s) = P (|ρN (ρ−1

N B̂kl) − ρN B̃∗
kl| > s)

≤ P (|ρ−1
N B̂kl − B̃∗

kl| > ρ−1
N s)

≤ exp{−2ρ−2
N s2nkl,g∗

N
(ψ∗)}.

Hence, Δkl = B̂kl −B∗
kl = OP {ρNn

−1/2
kl,g∗

N
(ψ∗)}, for 1 ≤ k ≤ l ≤ K0.

Step 2. Similar to (C.19), by Taylor expansion, we have

sup
B∈BK0

log f(AS |g∗N , B, ψ∗) − log f(AS |g∗N , B∗, ψ∗)

= 1
2

∑
1≤k≤l≤K0

[nkl,g∗
N

(ψ∗)Δ2
kl

B∗
kl

+ O{nkl,g∗
N

(ψ∗)Δ3
kl}
]
.

(C.25)

Since Δkl = OP {ρNn
−1/2
kl,g∗

N
(ψ∗)}, by (C.24) and (C.25), we obtain LK0,K0 =

OP (ρN ). Therefore, we have accomplished this proof.
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