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1. Introduction

We consider n independent and identically distributed random variables X1, . . . ,
Xn with values in R. We suppose that their distribution is absolutely continuous
with respect to the Lebesgue measure and denote their density by f .

An important challenge in the density estimation problem is to determine as
accurately as possible the minimax risk. The latter can be defined as follows.
Let D(R) be the set of densities on R, F be a subset of D(R), and L be a loss
function. The minimax risk is

R(F ,L ) = inf̂
f

sup
f∈F

E

[
L (f, f̂)

]
,

where the infimum is taken over all estimators f̂ . Different choices are possible
for L . Among them are the qth powers of the L

q distances L = dqq, or the
square of the Hellinger distance L = h2. We recall that h is defined for all
f1, f2 ∈ D(R) by

h2(f1, f2) = 1
2

∫ (√
f1(x) −

√
f2(x)

)2
dx.

The role of the minimax risk is to give a baseline against which to compare when
proposing a statistical estimation procedure. We are more precisely interested
here in the optimal estimation rate, that is in the sequence (εn)n≥1 satisfying

0 < lim inf
n→+∞

ε−1
n R(F ,L ) ≤ lim sup

n→+∞
ε−1
n R(F ,L ) < +∞.

An optimal estimation procedure f̂ is therefore a procedure whose risk E[L (f, f̂)]
converges at the rate εn under the sole condition that f lies in F . This minimax
point of view thus makes it possible to discard certain procedures that are not
rate optimal, even in the a priori simple case where f is a smooth density on R.

To formalize things a little more, we state that f is smooth if f belongs to a
ball Bα

p,∞(R) of a Besov space. In a nutshell, the parameter R is an upper-bound
of the (quasi) Besov norm of the elements f of Bα

p,∞(R). This (quasi) norm
measures the variations of f by means of a (quasi) Lp norm and according to the
smoothness exponent α. The larger p is, the more uniformly the regularity of f
is measured. The latter is therefore likely to have much smaller local variations
if p is large than if p is small. Note also that R induces a constraint on the
(quasi) L

p norm of f and hence on its tails when p < 1 (the smaller p is, the
lighter they should be). There are several possible equivalent definitions of R,
and we choose one in Section 2. For the sake of rigour, we assume throughout
this introduction that R is large enough (Bα

p,∞(R) does not contain densities
with compact support in [0, 1] if R is too small when α > (1/p− 1)+).

The minimax rates have been studied by many authors when L = dqq. They
are now fully known, up to log factors, when the density is also compactly
supported, that is when it belongs to

F =
{
f ∈ Bα

p,∞(R), supp f ⊂ [0, 1]
}
.
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A summary of these rates can be found in [Sar21]. Let us just mention that the
case p ≥ q can be easily solved with linear estimators. This is no longer true
when p < q, see [DJKP96]. To be optimal, an estimator must, in some sense,
adapt to local variations of the density. When, moreover, α is allowed to be
smaller than 1/p, the statistical estimation procedure must be able to cope with
singularities to be optimal.

In recent years, a special endeavour has been made by statisticians to re-
move the assumption of compact support. For the L

q loss, results can be found
in [JLL04, RBRTM11, GL11, Lep13, GL14, LW19, Sar23]. Other statistical
frameworks have also been involved in this effort. We may cite the regression
model, the problem of estimating the conditional density, the hazard rate, the
intensity of a Poisson process, or the density in the convolution structure model.
For more details, we refer to [RBR10, LW19, BC21, CGC21, CL23].

The aim of the present manuscript is to deal with the Hellinger loss L = h2.
The latter naturally appears in the study of maximum likelihood estimators,
see [BM98, DW16, KS16] for some references. This is also true for the T - and
ρ-estimators, the founding references being [Bir06a] and [BBS17]. In the case
of the Hellinger loss, the assumption of regularity is traditionally put on

√
f ,

and we will also adopt this point of view here. Note that the minimax risk
has already been investigated in [Bir06a] when

√
f is compactly supported and

belongs to a Besov ball. The whole point of this paper is to understand how the
minimax risk evolves when f is no longer assumed to be compactly supported.

For the L
q losses, the estimation rates remain noticeably the same as in the

compact case (within possible log factors) when the tails of f are light enough,
say when f(x) ≤ |x|−b for some large b and all |x| ≥ 1. This point has been
revealed by [GL14]. Actually, there are not even logarithmic losses when q = 1,
see [Sar23]. The situation turns out to be completely different for the Hellinger
loss.

First, the minimax risk for the Hellinger loss does not tend to 0 if the only
assumption made on the density is

√
f ∈ Bα

p,∞(R) with p ≥ 2. A supplementary
condition on the tails of f is required to ensure the convergence of the minimax
risk. We propose here to use the one of [Sar23]. This phenomenon can be ex-
plained by the importance that the Hellinger distance gives to the estimation
errors in the tails of f . A similar result is true for the L

1 loss when f ∈ Bα
p,∞(R)

but not for the other L
q losses [GL14, Sar23]. We prove that the minimax risk

achieves the rate n−γ where γ ∈ (0, 2α/(2α+ 1)] depends on the tails of f . But
contrary to the L

q losses (including q = 1), we never have γ = 2α/(2α + 1) if
the tail dominance condition allows f(x) ≤ |x|−b, and this, whatever the value
of b > 1.

Second, the optimal rate of convergence is n1−p/2 when p < 2 and no
additional assumption is made. This result is valid for all α > 1/p − 1/2.
This rate contrasts with the classical rate n−2α/(2α+1) associated with com-
pactly supported densities. A faster rate can be obtained under the tail dom-
inance condition of [Sar23]. But, as above, it is not possible to recover the
rate n−2α/(2α+1) if the density is allowed to be slightly fat tailed. In the remain-
ing case α ≤ 1/p − 1/2, the minimax risk does not tend to 0 even when the
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density is compactly supported on [0, 1].
In the results mentioned above, the tails of f may not tend monotonically to 0.

In other words, the density can be alternately increasing and decreasing, and
this, an infinite number of times over an interval of infinite length. The fact that
the density can oscillate as many times as we like is exploited in the proof of our
lower bound. It is therefore natural to wonder whether banning this possibility
might not improve the results. This leads us to study the minimax risk under
the following three conditions: 1.)

√
f ∈ Bα

p,∞(R) with α > max{1, 1/p− 1/2}
and p > 0 2.) f is unimodal on R 3.) the tail dominance condition of [Sar23].

The idea of mixing two types of constraints in the density model – one of
regularity and one of unimodality – also appears in [EL00, VDVVDL03, HK05,
DL14, LM17, LM19] to cite a few papers. An overview of what is being done
in the literature may be found in [DL18]. Unfortunately, adding the constraint
“f is unimodal” to the assumption “f is smooth” generally has no impact on
the convergence rates. This phenomenon may be due to the losses functions
that are used or to the supplementary assumptions that are made. For instance,
no improvement is to be expected for h2 when f is compactly supported (see
Theorem 3.3).

The situation is quite different in the non-compact case. The optimal estima-
tion rates under the three above points depend on α, p and the tails of f . They
are always faster than the classical rate n−2/3 corresponding to the estimation
of a bounded unimodal density with compact support. They are also always
faster than the ones that can be obtained without the unimodality assumption,
i.e. under points 1.) and 3.) only. Mixing a shape and smoothness constraint
can therefore lead to better rates than would have been possible under these
constraints taken separately.

We present our results in Sections 2 and 3. The proofs are postponed to
Section 4. Throughout this paper, we suppose n ≥ 2. Moreover, c, c1, c2, . . . are
terms that may vary from line to line. To lighten the notations, we define for
all class F of functions,

R(F ) = R
(
F , h2) .

We denote for p > 0 and x = (xk)k∈Z the weak (quasi) �p norm of x by

‖x‖p,∞ = sup
t>0

t

(∑
k∈Z

1|xk|≥t

)1/p

.

When p = ∞, we set ‖x‖∞,∞ = ‖x‖∞.

2. Minimax rates under smoothness assumptions

We present in this section the classes of functions we use to model the smooth-
ness of f and the size of its tails. We then carry out the associated minimax
rates.
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2.1. Wavelet basis

A classical way to measure the regularity of a function is to decompose it in
a wavelet basis, and to put conditions on its wavelet coefficients. We deal here
with the special bi-orthogonal basis of [CDF92] where the father wavelet is
φ = 1[0,1], where the mother wavelet ψ is piecewise constant and where their
duals φ̄ and ψ̄ are compactly supported and Hölder continuous with exponent
τ ∈ N

�. The wavelet ψ is also orthogonal to polynomials of degree τ − 1.
In this basis, any square integrable function f can be written as

f =
∑
k∈Z

αJ0,k(f)φ̄J0,k +
∞∑

j=J0

∑
k∈Z

βj,k(f)ψ̄j,k, (2.1)

where J0 ∈ Z is an arbitrary number to be chosen, where

αJ0,k(f) =
∫

f(x)φJ0,k(x) dx,

βj,k(f) =
∫

f(x)ψj,k(x) dx,

and where for any x ∈ R, j, k ∈ Z,

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k),
φ̄j,k(x) = 2j/2φ̄(2jx− k), ψ̄j,k(x) = 2j/2ψ̄(2jx− k).

2.2. Besov classes

We consider p ∈ (0,+∞], α ∈ ((1/p− 1)+, τ) and introduce the standard Besov
space Bα

p,∞. By definition, it is composed of functions f of Lmax{p,1}(R) satis-
fying ‖f‖Bα

p,∞ < ∞ where

‖f‖Bα
p,∞ = ‖α0,·(f)‖p + sup

j≥0

{
2j(α+1/2−1/p)‖βj,·(f)‖p

}
,

see [DJ97]. The quantity ‖f‖Bα
p,∞ refers to the (quasi) Besov norm of f . The

Besov ball Bα
p,∞(R) is thus defined for R > 0 by

Bα
p,∞(R) =

{
f ∈ Bα

p,∞, ‖f‖Bα
p,∞ ≤ R

}
.

In the present paper, we pay particular attention to the strong and weak Besov
classes Bα

p,∞(R) and WBα
p,∞(R). They are defined as follows:

Bα
p,∞(R) =

{
f ∈ L

1(R), ∀j ≥ 0, ‖βj,·(f)‖p ≤ R2−j(α+1/2−1/p)
}
,

WBα
p,∞(R) =

{
f ∈ L

1(R), ∀j ≥ 0, ‖βj,·(f)‖p,∞ ≤ R2−j(α+1/2−1/p)
}
.

We can classify the above conditions on the wavelet coefficients by order of
importance: they are the weakest for the weak Besov classes, then the strong
Besov classes, and finally the Besov balls.
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2.3. Tail dominance condition

We describe here a supplementary assumption that is intended to control the
tails of the density.

We define for j, k ∈ Z,

Fj,k(f) =
∫ 2−j(k+1/2)

2−j(k−1/2)
f(x) dx. (2.2)

We set for M > 0, and θ ∈ (0, 1),

Tθ(M) =
{
f ∈ L

1(R), f ≥ 0, ∀j ≥ 0, ‖Fj,·(f)‖θθ ≤ M2j(1−θ)
}

WT θ(M) =
{
f ∈ L

1(R), f ≥ 0, ∀j ≥ 0, ‖Fj,·(f)‖θθ,∞ ≤ M2j(1−θ)
}
.

The case θ = 0 corresponds to compactly supported functions:

Tθ(M) = WT θ(M)
=
{
f ∈ L

1(R), f ≥ 0, ∀j ≥ 0, |{k ∈ Z, Fj,k(f) > 0}| ≤ M2j
}
.

In this formula, | · | denotes the size of the set between the two bars. A density
belonging to one of these classes is therefore a density whose tails are sufficiently
light. The smaller θ is, the lighter they are.

In line with [Sar23], we say that the “weak tail dominance condition” is
fulfilled if f ∈ WT θ(M). The “strong tail dominance condition” is met if f ∈
Tθ(M). This terminology “tail dominance condition” has been initially proposed
by Alexander Goldenshluger and Oleg Lepski in [GL14]. Their condition do not
exactly match with ours though (our conditions are always implied by theirs,
see [CL20] where the condition f ∈ Tθ(M) also appears).

We recall – see Proposition 1 of [Sar23] – that a compactly supported density
on [−L,L] satisfies our tail dominance condition with θ = 0 and M = 2L + 2.
This bound on M can be a bit pessimistic though. Think for example about the
density f defined for a > 0 and x ∈ R by

f(x) = 1
21[−a−1,−a](x) + 1

21[a,a+1](x).

It belongs to T0(6) whereas L = a + 1 may be taken arbitrarily large. In the
non-compact case, a density f satisfying f(x) ≤ Ab|x|−b for all |x| ≥ 1 and some
A > 0, b > 1, lies in WT θ(M) with θ = 1/b and M only depending on b, A. The
(strong) tail dominance condition is automatically fulfilled with θ = p when f
belongs to a Besov ball Bα

p,∞(R) with p < 1. A variant of this last claim, that
is useful when dealing with a smoothness assumption on

√
f , is the following.

Proposition 2.1. Let p ∈ (0, 2), R > 0, α ∈ (1/p − 1/2, τ) and f ∈ D(R).
Then, if

√
f belongs to Bα

p,∞(R), f belongs to Tp/2(c1Rp). Conversely, if
√
f ∈

Bα
p,∞(R) and f ∈ Tp/2(Rp), then

√
f ∈ Bα

p,∞(c2R). The terms c1, c2 only depend
on the wavelet basis and α, p.



4532 Mathieu Sart

2.4. Minimax risk

We now investigate the minimax risk under the preceding conditions. We con-
sider p ∈ (0,+∞], α ∈ ((1/p− 1/2)+, τ), θ ∈ [0, p/2]∩ [0, 1), R > 0, M ≥ 1. We
define when p �= 2,

S α
p,θ(R,M) =

{
f ∈ D(R),

√
f ∈ WBα

p,∞(R), f ∈ WT θ(M)
}
.

When p = 2, we rather set

S α
p,θ(R,M) =

{
f ∈ D(R),

√
f ∈ Bα

p,∞(R), f ∈ WT θ(M)
}
.

We recall that τ is defined in Section 2.1 and exclusively depends on the
wavelets. As there is a wavelet basis for each value of τ ∈ N

�, we can take it
arbitrarily large.

The theorem below gives a non-asymptotic upper-bound of the minimax risk
when f belongs to S α

p,θ(R,M).

Theorem 2.2. For all p ∈ (0,+∞], α ∈ ((1/p− 1/2)+, τ), θ ∈ [0, p/2] ∩ [0, 1),
R > 0, M ≥ 1,

R(S α
p,θ(R,M)) ≤ c1

[
εn + (logn)n−1] , (2.3)

where

εn = R2(1−θ)/(2α+1−2θ/p)M (1+2α−2/p)/(1+2α−2θ/p)n−2α(1−θ)/(2α+1−2θ/p)

+ Mn−(1−θ),

and where c1 is a positive number only depending on p, α, θ and the wavelet
basis.

This result can be compared with the following lower-bound:

Theorem 2.3. For all p ∈ (0,+∞], α ∈ ((1/p− 1/2)+, τ), θ ∈ [0, p/2] ∩ [0, 1),
there are R0,M0 such that for all R ≥ R0, M ≥ M0 and n large enough,

R(S ′α
p,θ(R,M)) ≥ c2 εn,

where εn is given in the preceding theorem, and where S ′α
p,θ(R,M) is a subset

of S α
p,θ(R,M). Moreover,

S ′α
p,θ(R,M) ⊂

{
f ∈ D(R),

√
f ∈ Bα

p,∞(R), f ∈ Tθ(M),

sup
x∈R

|x|fθ(x) ≤ M, ‖f‖∞ ≤ 1
}
.

When θ < p/2 or when θ = p/2 with M ≤ Rp, we also have

S ′α
p,θ(R,M) ⊂

{
f ∈ D(R),

√
f ∈ Bα

p,∞(R)
}
.

Above, c2,M0, R0 are positive numbers only depending on p, α, θ and the wavelet
basis.
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When θ = 0, we recover the usual estimation rate, and this, for all possible
values of α and p satisfying α ∈ ((1/p − 1/2)+, τ). The case α ≤ (1/p − 1/2)+
is treated below.

We observe that the optimal estimation rate is strongly affected by the pa-
rameter θ, i.e, the tails of f . The larger θ is, the slower the rate is. However, the
choice of the dominance condition (whether weak or strong) has no influence on
the rate. We can also assume, without changing the results, that the density is
fat tailed, i.e. its tails are smaller than the inverse of a power of |x|. As explained
in the introduction, this deterioration of rates when the density is slightly fat
tailed does not occur for the L

q losses (whatever q ≥ 1, and up to possible log
factors).

When p ≥ 2, the minimax rate can be made arbitrarily slow by letting θ tend
to 1. Actually, it is not possible to estimate the density under the sole assumption
that

√
f belongs to a Besov ball Bα

p,∞(R) with R large enough (see the proof of
Theorem 2.3). The situation appears to be quite different when p < 2. The tail
dominance condition is indeed always satisfied in this case with θ = p/2. More
precisely, we derive from the above: for all p ∈ (0, 2), α ∈ ((1/p − 1/2)+, τ),
R ≥ R0, and n large enough,

c2 R
pn−(1−p/2) ≤ R

({
f ∈ D(R),

√
f ∈ Bα

p,∞(R)
})

≤ c1 R
pn−(1−p/2).

The rate is much slower than the standard rate n−2α/(2α+1) we would have had
if the density was compactly supported though.

We will not insist on this point but the preceding rates can be reached by an
adaptive estimator (that is by an estimator whose construction does not involve
p, α, θ,R,M).

The proof of Theorem 2.2 is based on an oracle inequality (or model selection
inequality) for the Hellinger loss. A crude version of this one is as follows: for all
suitable collection (Vm)m∈M of finite dimensional linear spaces, not containing
too many spaces per dimension, we may build an estimator f̂1 satisfying

E

[
h2(f, f̂1)

]
≤ c inf

m∈M

{
d2
2
(√

f, Vm

)
+ dimVm

n

}
, (2.4)

where c is a constant and where d2 denotes the L
2 distance.

Such an inequality can be derived from the T -estimation theory of [Bir06a].
Interestingly, the latter also leads to results for the L

2 and L
1 losses. More

precisely, we may define estimators f̂2 and f̂3 such that

E

[
d2
2(f, f̂2)

]
≤ c inf

m∈M

{
d2
2
(
f, Vm

)
+ ‖f‖∞

dimVm

n

}
(2.5)

E

[
d1(f, f̂3)

]
≤ c inf

m∈M

{
d1
(
f, Vm

)
+
√

dimVm

n

}
, (2.6)

where c is another constant. We refer to [Bir06a] and [Bir14] for more details.
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We show in the proof of Theorem 2.2 that it is possible to choose the col-
lection (Vm)m∈M so that the infimum in (2.4) tends to 0 at the rate indicated
by (2.3). The conclusion to be drawn is that an oracle inequality of this form
is sufficiently precise to obtain the optimal rates of convergence under (weak)
smoothness assumptions in the non compact setting.

Observe now that (2.5) and (2.6) are very similar to (2.4). More precisely, the
only thing to do to go from h2 to d2

2 is to replace
√
f by f and add a sup norm

to the variance term. The bounds we get for one should therefore also work for
the other, up to minor modifications. In particular, the rates should correspond
when f is bounded and when we suppose “

∫
f1/2(x) dx ≤ M” for the Hellinger

loss to make the comparison fair as
∫
f(x) dx = 1 for the L

2 loss. This is not
true: the optimal estimation rate of a bounded function in Bα

p,∞(R) for the L
2

loss is the standard one n−2α/(2α+1) when p ∈ [1, 2] and α > 1/p− 1/2, even in
the non-compact case (at least up to log factors, see [RBRTM11]). This rate is
faster than the rate n−α/(2α+1−1/p) given by Theorem 2.2 when

√
f ∈ Bα

p,∞(R)
is bounded and in T1/2(M) (this last condition implies

∫
(f(x))1/2 dx ≤ M).

This paradox is in fact due to the variance term in (2.5) that may be too
large. A term of the order of “model dimension over n” is of the right order of
magnitude when we deal with h2. But not necessarily for d2

2.
Another way of looking at it, which is perhaps a little more revealing, is to

apply these inequalities to a single model. Introduce for all j ≥ 0,

Kj =
{
k ∈ Z, P (X ∈ supp ψj,k) ≥ 1/n

}
K−1 =

{
k ∈ Z, P (X ∈ supp φ0,k) ≥ 1/n

}
and define for J ≥ 0,

V =

⎧⎨⎩ ∑
k∈K−1

γ−1,kφ̄0,k +
J∑

j=0

∑
k∈Kj

γj,kψ̄j,k, ∀j ≥ −1, k ∈ Kj , γj,k ∈ R

⎫⎬⎭ .

In the unrealistic but very favourable situation where the sets Kj are known,
it is possible to build estimators that satisfy (2.4), (2.5), (2.6) with (Vm)m∈M
reduced to V .

The size of each set Kj can be bounded by c′nθ2j(1−θ) when f ∈ WT θ(M)
(as φ and ψ are compactly supported). In particular, the dimension of V is no
larger than

dimV ≤ c′′M2J(1−θ)nθ.

We show in Section 4.8:

d2
2
(√

f, V
)
≤ c′′′

[
R22−2Jα + εn

]
if
√

f ∈ Bα
2,∞(R) and f ∈ T1/2(M)

d2
2
(
f, V

)
≤ c′′′

[
R22−2Jα + ε′n

]
if f ∈ Bα

2,∞(R)
d1(f, V ) ≤ c′′′

[
R2−Jα + ε′′n

]
if f ∈ Bα

1,∞(R) ∩ T1/2(M).
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Above,

ε′n = R2/(2α+1)n−2α/(2α+1) + n−1

ε′′n = R1/(2α+1)M2α/(2α+1)n−α/(2α+1) + Mn−1/2.

We now choose 2J to optimize the right-hand sides of (2.4), (2.5) and (2.6). We
deduce the rate n−2α/(4α+1) for f̂1, n−2(1−θ)α/(1−θ+2α) for f̂2, and n−α/(4α+1)

for f̂3. The first is the right rate of convergence. Not the other two.
Yet, estimating such a function for the L1 or L2 loss is not a difficult problem.

By way of example, a suitable linear estimator f̃ in V or in

V ′ =

⎧⎨⎩∑
k∈Z

γ−1,kφ̄0,k +
J∑

j=0

∑
k∈Z

γj,kψ̄j,k, ∀j ≥ −1, k ∈ Kj , γj,k ∈ R

⎫⎬⎭ ,

suits (if J is correctly chosen): it satisfies for n large enough,

sup
f∈Bα

2,∞(R)
E
[
d2
2(f, f̃)

]
≤ Cn−2α/(2α+1)

sup
f∈Bα

1,∞(R)∩T1/2(M)
E
[
d1(f, f̃)

]
≤ Cn−α/(2α+1),

and converges therefore faster than the rates given by (2.5) and (2.6). The proof
of these inequalities is given in Section 4.8. More general results for the L

1 loss
are to be found in [Sar23].

In Theorems 2.2 and 2.3, we assumed α > 1/p − 1/2 when p < 2. This
condition is necessary to ensure the convergence of the minimax risk, even when
the density is compactly supported. We may indeed show:

Proposition 2.4. For all p ∈ (0, 2), R > 0, τ > 1/p− 1/2 and α = 1/p− 1/2,

R
({

f ∈ D(R),
√
f ∈ Bα

p,∞(R), supp f ⊂ [0, 1]
})

≥ 1/16.

It is interesting to note that the exponent in the optimal rate does not tend
to 0 when α → 1/p− 1/2. There is thus a kind of discontinuity at the boundary
α = 1/p − 1/2. A similar phenomenon occurs for the L

1 distance but not for
the other L

q distances, see [Sar21, Sar23].

3. Mixing shape and smoothness constraints

As explained in the previous section, the assumption “f is compactly supported”
cannot be weakened to include densities whose tails are bounded by |x|−1/θ with-
out this having a substantial impact on the results. Such a minimax approach
is always a little pessimistic though. The target function may well have prop-
erties other than regularity. Many densities, for example, have tails that tend
monotonically to 0. This leads us to wonder whether adding the constraint “f is
unimodal on R” might improve the results. If this is true when α > 1 and θ �= 0,
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this will indicate that the estimation errors can be better controlled when the
tails are not allowed to oscillate.

Throughout this section, we suppose that f is unimodal with unknown mode,
that is f ∈ U where

U = {f ∈ D(R), there exists m ∈ R such that f is non-decreasing
on (−∞,m] and non-increasing on [m,+∞)} .

It turns out that the weak tail dominance condition can be written more simply
when f is unimodal. Consider θ ∈ (0, 1), M ≥ 1 and

L
θ,∞(M) =

{
f ∈ D(R), ∀t > 0, |{x ∈ R, f(x) ≥ t}| < Mt−θ

}
.

When f is unimodal with mode at m ∈ R, f belongs to L
θ,∞(M) implies

f(x) ≤ M1/θ

|x−m|1/θ , (3.1)

for all x �= m. Conversely, if f satisfies (3.1), f lies in L
θ,∞(cM) for all c > 2.

This inequality is most informative when x moves significantly away from m
(f(m) may be infinite). It can therefore be seen as a condition on the tails of f .
In any way, it is equivalent to the weak tail dominance condition:

Proposition 3.1. Consider M ≥ 1, θ ∈ (0, 1) and suppose that f ∈ U . If f
belongs to L

θ,∞(M), then

|{k ∈ Z, Fj,k(f) ≥ t}| ≤ c1

[
1 + M2j(1−θ)t−θ

]
(3.2)

for all j ∈ Z and t > 0. In particular, f belongs to WT θ(2c1M). Conversely,
if f belongs to WT θ(M), then f lies in L

θ,∞(c2M). The terms c1 and c2 are
constants.

We now consider p ∈ (0,+∞], α ∈ (max(1/p−1/2, 1), τ), θ ∈ (0, p/2]∩ [0, 1),
R > 0 and M ≥ 1. We study here the minimax risk on

U S α
p,θ(R,M) = U ∩ S α

p,θ(R,M).

It involves the following parameters:

t = (2α + 1)(1 − θ)
1 + 2α + 2θ + 4αθ − 6θ/p

γ = 2tα/(2α + 1) + 2(1 − t)/3 (3.3)

β1 = 2(1 − θ)
1 + 2α + 2θ + 4αθ − 6θ/p

β2 = 1 + 2α− 2/p
1 + 2α + 2θ + 4αθ − 6θ/p .

We now state:
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Theorem 3.2. For all p ∈ (0,+∞], α ∈ (max(1/p − 1/2, 1), τ), θ ∈ (0, p/2] ∩
(0, 1), R > 0, M ≥ 1,

R(U S α
p,θ(R,M)) ≤ c

[
Rβ1Mβ2n−γ + υn

]
, (3.4)

where c only depends on p, α, θ and the wavelet basis. The term υn only depends
on p, α, θ,M,R, n, and tends to 0 faster than n−γ .

In this inequality, υn is smaller than Rβ1Mβ2n−γ when n ≥ n0 for some n0
only depending on p, α, θ,M,R. It does, however, appear in (3.4) as the result is
non-asymptotic. Its expression is not displayed here as it is a little cumbersome.
It can be found in the proof in the theorem, see (4.21) and (4.27).

In (3.3), t is between 0 and 1. The smaller θ is, the larger t is, and the closer
the rate is to the standard estimation rate n−2α/(2α+1) of a compactly supported
density. However, and this is a major improvement on the previous section, the
exponent γ gets closer to 2/3 when θ becomes very close to 1. Without the
additional shape constraint, the rate became arbitrarily slow.

We can check that

γ > max {2α(1 − θ)/(2α + 1 − 2θ/p), 2/3} .

We recall that the first term in the maximum refers to the exponent we have
when we estimate a fat tailed density f whose square root is α-smooth. The sec-
ond is the usual exponent corresponding to the estimation of a unimodal density.
Here, γ is larger than these two exponents. Thereby, associating a smoothness
assumption with a shape constraint may lead to faster rates of convergence than
those achievable under these assumptions taken separately.

This phenomenon occurs even with a very mild smoothness assumption:
ours does not even guarantee the continuity of f when p ∈ (1/τ, 1) and α ∈
(max(1/p− 1/2, 1), 1/p]. Consider indeed two sequences (ak)k≥1 and (bk)k≥1 of
non-negative numbers. The first sequence (ak)k is assumed to be non-decreasing,
and the second (bk)k is non-increasing. We also suppose:

∞∑
k=1

ak(k(k + 1))−1 +
∞∑
k=1

bk = 1/2 (3.5)

∞∑
k=2

bθk ≤ M (3.6)

∞∑
k=1

a
p/2
k (k(k + 1))αp−1 +

∞∑
k=1

b
p/2
k ≤ Rp. (3.7)

We then define the function f for x ≥ 0 by

f(x) =
∞∑
k=1

ak1[1/(k+1),1/k)(x) +
∞∑
k=1

bk1[k−1,k)(x),

and extend it to an even function on R. We may check that f is unimodal.
Equality (3.5) ensures that f is a density, (3.6) gives an upper-bound on the L

θ
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(quasi) norm of f . In particular, f ∈ WT θ(c1M) for some c1, see Proposition 3.1.
Elementary maths based on (3.7) lead to

√
f ∈ Bα

p,∞(c2R) for some c2 > 0
only depending on the wavelet basis, p, α when p ∈ (1/τ, 1) and α ∈ (max(1/p−
1/2, 1), 1/p]. In conclusion, f ∈ U S α

p,θ(c1R, c2M). This function f can admit
an infinite number of discontinuities and not be bounded (and of course not be
compactly supported).

Although Theorem 3.2 only establishes a minimax risk bound, the proof gives
an estimator that achieves this rate adaptively, i.e., without a priori knowledge
of p, α, θ,R,M .

We still need to verify that (3.4) is sharp. This is the aim of the following
theorem.

Theorem 3.3. For all p ∈ (0,+∞], α ∈ (max(1/p− 1/2, 1), τ), θ ∈ (0, p/2) ∩
(0, 1), there are R0,M0 such that for all R ≥ R0, M ≥ M0 and n large enough,

R(U S ′α
p,θ(R,M)) ≥ cRβ1Mβ2n−γ ,

where U S ′α
p,θ(R,M) is a subset of U S α

p,θ(R,M) and where c is a positive term
only depending on α, p, θ and the wavelet basis. Moreover,

U S ′α
p,θ(R,M) ⊂

{
f ∈ U ,

√
f ∈ Bα

p,∞(R),
∫
R

fθ(x) dx ≤ M

}
.

All the above remains true when θ = p/2 under the additional condition M ≤
Rp. The lower bound is also true when θ = 0. In this case, the densities of
U S ′α

p,θ(R,M) are compactly supported in [−M,M ], t = 1, γ = 2α/(2α + 1),
β1 = 2/(1 + 2α), β2 = (1 + 2α− 2/p)/(1 + 2α).

4. Proofs

4.1. Proof of Proposition 2.1

We only show that if
√
f belongs to Bα

p,∞(R), then f ∈ Tp/2(c1Rp). The proof
of the converse is straightforward (just apply Cauchy-Schwarz inequality). To
simplify the notations, we omit the square root of f in the wavelets coefficients.

We define

Fk,j1,j2 =
∑
k1∈Z

k2∈Z

|βj1,k1 ||βj2,k2 |Ij,k,j1,k1,j2,k2 ,

where

Ij,k,j1,k1,j2,k2 =
∫ 2−j(k+1/2)

2−j(k−1/2)

∣∣ψ̄j1,k1 ψ̄j2,k2

∣∣ .
Since p < 2, ‖ · ‖1 ≤ ‖ · ‖p/2, and hence

(Fk(f))p/2 ≤ 2
∑

j1≥−1
j2≥j1

(Fk,j1,j2)
p/2

. (4.1)
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We consider a real number L̄ > 0 large enough to ensure that supp ψ̄j′,k′ ⊂
[2−j′+(−L̄ + k′), 2−j′+(L̄ + k′)], where j′+ = max{j, 0}, and set

Kj,j′,k′ =
[
−L̄ + 2j−j′+

(
k′ − L̄

)
, L̄ + 2j−j′+

(
k′ + L̄

)]
.

Note that Kj,j′,k contains at most

|Kj,j′,k′ | ≤ c1

[
1 + 2j−j′

]
(4.2)

integers. Moreover, Ij,k,j1,k1,j2,k2 = 0 if k1 �∈ Kj1,j2,k2 or if k2 �∈ Kj2,j1,k1 . If
L̄ is large enough, the integral is also zero if k �∈ Kj,j1,k1 or if k �∈ Kj,j2,k2 .
The same thing is true if k1 �∈ Kj1,j,k or k2 �∈ Kj2,j,k. In any case, we have
Ij,k,j1,k1,j2,k2 ≤ c2rj1,j2 where

rj1,j2 = 2min{j1/2+j2/2−j,−(j2−j1)/2}.

We deduce from Cauchy-Schwarz inequality,

Fk,j1,j2 ≤ c2rj1,j2

(∑
k1∈Z

β2
j1,k1

1k∈Kj,j1,k1

∑
k2∈Z

1k2∈Kj2,j1,k1∩Kj2,j,k

)1/2

×
(∑

k2∈Z

β2
j2,k2

1k∈Kj,j2,k2

∑
k1∈Z

1k1∈Kj1,j2,k2∩Kj1,j,k

)1/2

.

By using the inequality ‖ · ‖1 ≤ ‖ · ‖p/2 again,

(Fk,j1,j2)p/2

≤ c3r
p/2
j1,j2

⎛⎝∑
k1∈Z

βp
j1,k1

1k∈Kj,j1,k1

(∑
k2∈Z

1k2∈Kj2,j1,k1∩Kj2,j,k

)p/2
⎞⎠1/2

×

⎛⎝∑
k2∈Z

βp
j2,k2

1k∈Kj,j2,k2

(∑
k1∈Z

1k1∈Kj1,j2,k2∩Kj1,j,k

)p/2
⎞⎠1/2

.

A new application of Cauchy-Schwarz leads to∑
k∈Z

(Fk,j1,j2)p/2

≤c3r
p/2
j1,j2

⎛⎝∑
k∈Z

∑
k1∈Z

βp
j1,k1

1k∈Kj,j1,k1

(∑
k2∈Z

1k2∈Kj2,j1,k1∩Kj2,j,k

)p/2
⎞⎠1/2

×

⎛⎝∑
k∈Z

∑
k2∈Z

βp
j2,k2

1k∈Kj,j2,k2

(∑
k1∈Z

1k1∈Kj1,j2,k2∩Kj1,j,k

)p/2
⎞⎠1/2
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≤c3r
p/2
j1,j2

Rp2−(j1+j2)(p/2)(α+1/2−1/p)

(
sup

k,k1∈Z

|Kj,j1,k1 ||Kj2,j1,k1 ∩Kj2,j,k|p/2
)1/2

×
(

sup
k,k2∈Z

|Kj,j2,k2 ||Kj1,j2,k2 ∩Kj1,j,k|p/2
)1/2

.

We now use (4.2) to get if j2 ≥ j and j1 ≥ j∑
k∈Z

(Fk,j1,j2)p/2 ≤ c4R
p2−(p/2)(j1+j2)(α−1/p+1/2).

If j2 ≥ j and j1 < j,∑
k∈Z

(Fk,j1,j2)p/2 ≤ c4R
p2j(1−p/2)/22−(p/2)j2(α−1/p+1/2)2−α(p/2)j1 .

If j2 ≤ j, and j1 ≤ j,∑
k∈Z

(Fk,j1,j2)p/2 ≤ c4R
p2j(1−p/2)2−(p/2)j1α2−(p/2)j2α.

We conclude thanks to (4.1).

4.2. Proof of Theorem 2.2

Our proof relies on the result below that is due to [Bir06a] (see his Theorem 6
and Proposition 8).

Proposition 4.1. Let (Vm)m∈M be an at most countable collection of linear
spaces of L2(R) with finite dimension. Let (Δm)m∈M be a family of non-negative
weights such that ∑

m∈M
e−Δm ≤ 1.

Then, there is a density estimator f̂ such that

E

[
h2(f, f̂)

]
≤ c inf

m∈M

{
d2
2
(√

f, Vm

)
+ dimVm + Δm

n

}
.

In the above inequality, c is a universal constant.

Without loss of generality, we may assume in the sequel that we have another
independent sample X ′

1, . . . , X
′
n of X. We set for j ≥ 0 and k ∈ Z,

Ij,k = {x ∈ R, ψj,k(x) �= 0} .

When j = −1, we rather set

I−1,k = {x ∈ R, φ0,k(x) �= 0} .
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We then consider the (random) set

Z̃j = {k ∈ Z, ∃i ∈ {1, . . . , n}, X ′
i ∈ Ij,k} .

We now order the sample X ′
(1) < X ′

(2) < · · · < X ′
(n) and define the smallest

integer J̃ ≥ 0 satisfying

min
1≤i≤n−1

(
X ′

(i+1) −X ′
(i)

)
> 21−J̃Lψ.

In this inequality, Lψ ≥ 1 stands for a real number such that supp ψ ⊂ [−Lψ, Lψ].
Let K̃ be the collection of all sets of the form K = (Kj)j∈{−1,...,J̃} where Kj

denotes a finite subset of Z̃j . We define for all such K the linear space

VK =

⎧⎨⎩ ∑
k∈K−1

γ−1,kφ̄0,k +
J̃∑

j=0

∑
k∈Kj

γj,kψ̄j,k, ∀j ≥ −1, k ∈ Kj , γj,k ∈ R

⎫⎬⎭ .

The dimension of this linear space is not larger than

dimVK ≤
J̃∑

j=−1
|Kj |.

For all K ∈ K̃, we set

ΔK =
J̃∑

j=−1

{
|Kj | + |Kj | log

(
e|Z̃j |/|Kj |

)
− log

(
1 − e−1)} ,

where we use the convention 0×log(e|Z̃j |/0) = 0. It follows from Proposition 2.5
of [Mas07] that ∑

K∈K̃

e−ΔK ≤ 1.

We apply Proposition 4.1 conditionally to the independent sample X ′
1, . . . , X

′
n

and take the expectation of the result. By cleaning it a little, we get

E

[
h2(f, f̂)

]
≤ c1E

⎡⎣ inf
K∈K̃

⎧⎨⎩d2
2
(√

f, VK
)

+ 1
n

J̃∑
j=−1

|Kj | log+

(
|Z̃j |/|Kj |

)
+ J̃ + 1

n

⎫⎬⎭
⎤⎦ ,

where c1 is universal, where log+(x) = log(e+x), and where 0×log+(|Z̃j |/0) = 0.
To simplify the notations, we set in the sequel

β�
j,k =

{
βj,k

(√
f
)

if j ≥ 0
α0,k

(√
f
)

if j = −1.
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We deduce from the above inequality, and from (2.1) with J0 = 0,

E

[
h2(f, f̂)

]
≤ c2

⎧⎨⎩E

⎡⎣ J̃∑
j=−1

inf
Kj⊂Z̃j

⎧⎨⎩ ∑
k∈Z\Kj

(β�
j,k)2 +

|Kj | log+(|Z̃j |/|Kj |)
n

⎫⎬⎭
⎤⎦

+
E
[
J̃
]
+ 1

n
+ E

⎡⎣ ∞∑
j=J̃+1

∑
k∈Z

(β�
j,k)2

⎤⎦⎫⎬⎭
≤ c2 [A + R1 + R2 + T ] ,

where

A =
E
[
J̃
]
+ 1

n
,

R1 = E[|Z̃−1|]
n

,

R2 =
∞∑
j=0

E

⎡⎣ inf
Kj⊂Z̃j

⎧⎨⎩ ∑
k∈Z̃j\Kj

(β�
j,k)2 +

|Kj | log+(|Z̃j |/|Kj |)
n

⎫⎬⎭
⎤⎦ ,

T = E

⎡⎣ ∑
k 
∈Z̃−1

α2
0,k +

J̃∑
j=0

∑
k 
∈Z̃j

(β�
j,k)2 +

∞∑
j=J̃+1

∑
k∈Z

(β�
j,k)2

⎤⎦ .
This oracle inequality has the same flavour as that obtained by [Sar23] for
the L

1 loss (see his inequality (14)). We can hence use some of its results to
reduce the size of this proof. First, note that an upper-bound on R1 is given by
his Lemma 23: R1 ≤ c3Mn−(1−θ). For T , A and R2, we show:

Lemma 1. There exists c4 > 0 only depending on p, α and the wavelet basis
such that

T ≤ c4εn.

Lemma 2. There exist c5, c6 > 0 only depending on p, α and the wavelet basis
such that

A ≤ c5
logn + log(1 + R)

n

≤ c6

[
εn + logn

n

]
.

Lemma 3. There exists c7 > 0 only depending on p, α and the wavelet basis
such that

R2 ≤ c7εn.

It then remains to put all these bounds together to conclude.
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Proof of Lemma 1. Define the number ñj,k of i ∈ {1, . . . , n} such that X ′
i ∈ Ij,k.

We have ñj,k ≤ 1 if k �∈ Z̃j or if j ≥ J̃ + 1. Hence,

T ≤ 2
∞∑

j=−1

∑
k∈Z

(β�
j,k)2P [ñj,k ≤ 1] .

Set

fj,k =
∫

f(x)1Ij,k(x) dx (4.3)

Zj = {k ∈ Z, fj,k ≥ 1/n} .

We have,

T ≤ 2
∞∑

j=−1

∑
k∈Z

(β�
j,k)2

[
(1 − fj,k)n + nfj,k(1 − fj,k)n−1]

≤ 4T1 + 4T2,

where

T1 =
∞∑

j=−1

∑
k 
∈Zj

(β�
j,k)2

T2 = n

∞∑
j=−1

∑
k∈Zj

(β�
j,k)2fj,k(1 − fj,k)n−1.

Define bj,k such that (β�
j,k)2 = 2−j/2|bj,k|. For all j ≥ 0,

‖bj,·‖p/2 ≤ R22−j(2α+1/2−1/(p/2))

if
√
f ∈ Bα

p,∞(R). This inequality also holds true for the weak �p/2 (quasi)
norm if

√
f belongs to the weak Besov class. We conclude by using Lemma 21

of [Sar23] with his βj,k replaced by bj,k, p by p/2, α by 2α and R by R2.

Proof of Lemma 2. Let ξ > 0, q > 1 and suppose that the L
q norm of f is

finite: ‖f‖q < ∞. Lemma 17 of [Sar23] ensures that J̃ ≤ c1 [1 + log(1 + ξ)],
with probability 1 − n2‖f‖q/ξ. In this inequality, c1 is a term only depending
on q and ψ. We deduce,

E[J̃ ] ≤ c2

[
1 +
∫ ∞

0
P

(
J̃ ≥ c1 [1 + log(1 + ξ)]

)
(1 + ξ)−1 dξ

]
≤ c3

[
1 + c1n

2‖f‖q
∫ ∞

max{n2‖f‖q,1}
ξ−1(1 + ξ)−1dξ

+c1

∫ max{n2‖f‖q,1}

0
(1 + ξ)−1dξ

]
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≤ c4
[
1 + log(1 + n2‖f‖q)

]
.

It then remains to bound ‖f‖q for some q > 1.
We consider q ∈ (max{1, p/2}, p(α + 1/2)) if p is finite and q > 1 if p is

infinite. When
∑∞

j=−1 2(j/2)(1−1/q)‖β�
j,·‖2q is finite,

√
f ∈ L

2q(R), and

‖f‖1/2
q =

∥∥∥√f
∥∥∥

2q

≤ c5

∞∑
j=−1

2(j/2)(1−1/q)‖β�
j,·‖2q. (4.4)

Note that |β�
j,k| ≤ c6

√
fj,k ≤ c6 as f is a density and hence

‖β�
j,·‖2q

2q ≤ c7
∑
k∈Z

fj,k ≤ c8.

We moreover have when p is finite and j ≥ 0,∥∥β�
j,·
∥∥2q

2q ≤ c9
∥∥β�

j,·
∥∥p
p,∞ ≤ c9R

p2−jp(α+1/2−1/p).

When p = ∞ and j ≥ 0, we rather have,

∥∥β�
j,·
∥∥2q

2q ≤ c10

(∑
k∈Z

fj,k

)∥∥β�
j,·
∥∥2(q−1)
∞

≤ c11R
2(q−1)2−j(q−1)(2α+1).

In both cases,
∞∑
j=0

2(j/2)(1−1/q) ∥∥β�
j,·
∥∥

2q < c12R
r, (4.5)

where r = p/(2q) if p is finite, and r = 1−1/q if p = ∞. We conclude by (4.4).

Proof of Lemma 3 when p ≥ 2. By choosing Kj = ∅ or Kj = Z̃j ,

R2 ≤
∞∑
j=0

min

⎧⎨⎩E

⎡⎣∑
k∈Z̃j

(β�
j,k)2

⎤⎦ , E[|Z̃j |]
n

⎫⎬⎭ .

It follows from Lemma 23 of [Sar23] that

E

[
|Z̃j |
]
≤ c1Mnθ2j(1−θ). (4.6)

By using a suitable version of Hölder’s inequality – see [CVNRF15] – we get∑
k∈Z̃j

(β�
j,k)2 ≤ c2‖β�

j,·‖2
p,∞|Z̃j |1−2/p.
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When p �= 2, we deduce from
√
f ∈ WBα

p,∞(R),∑
k∈Z̃j

(β�
j,k)2 ≤ c2R

22−2j(α+1/2−1/p)|Z̃j |1−2/p.

This last inequality is also true when p = 2 and
√
f ∈ Bα

p,∞(R). We deduce
from (4.6) and Jensen’s inequality,

R2 ≤ c3

∞∑
j=0

min
{
Mn−(1−θ)2j(1−θ), R2M1−2/pnθ(1−2/p)2−j(2α+θ(1−2/p))

}
.

It remains to compute the right-hand side of this inequality to prove the result.

Proof of Lemma 3 when p < 2. We set for j ≥ 0,

K̃j =
{
k ∈ Z̃j , (β�

j,k)2 ≥ 1/n
}

and observe as
√
f ∈ WBα

p,∞(R),

|K̃j | ≤ np/2Rp2−jp(α+1/2−1/p).

By using a classical inequality in weak spaces, see (35) of [Sar23],∑
k∈Z̃j\K̃j

(β�
j,k)2 ≤ c1n

−(1−p/2)Rp2−jp(α+1/2−1/p).

Therefore,

R2 ≤ c2

∞∑
j=0

min

⎧⎨⎩E[|Z̃j |]
n

,E

⎡⎣ ∑
k∈Z̃j\K̃j

(β�
j,k)2 +

|K̃j | log+(|Z̃j |/|K̃j |)
n

⎤⎦⎫⎬⎭ .

By doing as in the preceding proof for the first term, and by using Jensen’s
inequality,

R2 ≤ c3

∞∑
j=0

min
{
Mn−(1−θ)2j(1−θ), n−(1−p/2)Rp2−jp(α+1/2−1/p)×

log+

(
MR−pnθ−p/22jp(α+1/2−θ/p)

)}
.

Elementary computations allows to bound the right-hand side of this inequality
from above (see Lemma 30 of [Sar23]).
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4.3. Proof of Theorem 2.3

Since the theorem is stated for R and M large enough, we may without loss
of generality prove the theorem with R replaced by c1R and M by c2M where
c1, c2 only depend on α, p, θ and the wavelet basis.

Let � ≥ 1 be the smallest integer such that (−2�, 2�) contains the supports
of φ̄ and ψ̄. We consider two integers j ≥ −1, j0 ≥ 0 such that 2j0+j−� ≥ 12.
We define k ≥ 1 as the smallest integer satisfying 1+2k ≥ 2j0+j−�−1, and k̄ ≥ 1
as the largest integer satisfying 4k̄ + 2k + 1 ≤ 2j0+j−�. We endow D = {0, 1}k̄
with the Hamming distance Δ defined for all δ, δ′ ∈ D by

Δ(δ, δ′) =
k̄∑

k=1
|δk − δ′k|.

We consider b > 0 and set for δ ∈ D,

hδ = b

⎡⎣ k̄∑
k=1

δkψ̄j,2�+1(k+k) +
k̄∑

k=1

(1 − δk)ψ̄j,2�+1(k+k+k̄)

⎤⎦ .
Let g0 ∈ Bα

p,∞(Rg0) be a compactly supported density on [0, 2] satisfying
infx∈[1/2,1] g0(x) ≥ 1/4 and ‖g0‖∞ ≤ 1. We then consider

κ = 4 max {21/2‖φ̄‖∞, ‖ψ̄‖∞}

and set for x ∈ R,
g(x) = κb2j/2g0(2−j0x).

Let ζ be a density, compactly supported on (−3, 0), bounded by 1/2, and such
that

√
ζ ∈ Bα

p,∞(R/max{21/p, 2}). Such a density does exist (recall that R is
large enough in the proof). We put

q =
∫

(g(x) + hδ(x))2 dx,

and define for x ∈ R,

fδ(x) = (1 − q)ζ(x) + (g(x) + hδ(x))2 .

We now state:

Lemma 4. There are a1, a2, a3, a4 such that if

b22j0+j ≤ a1

b2j/22j0(1/p−α) ≤ a2R

b2j0/p2j(α+1/2)1j≥0 ≤ a3R

b2θ2jθ2j0 ≤ a4M



Optimal estimation under Hellinger loss 4547

then, fδ is a density belonging to Tθ(M) such that
√
fδ ∈ Bα

p,∞(R). If b2j/22j0/p ≤
a2R,

√
fδ ∈ Bα

p,∞(R). Moreover ‖fδ‖∞ ≤ 1/2 + a5b
22j. For all x ∈ R,

|x|fθ
δ (x) ≤ a6M,

and for all δ, δ′ ∈ D,
h2(fδ, fδ′) = a7b

2Δ(δ, δ′).
The terms a1, a2, a3, a4, a5, a6, a7 above are positive and only depend on g0, p, θ
and the wavelet basis.

The proof of this lemma is given after the present proof. We define

S ′α
p,θ(R,M) = {fδ, δ ∈ D} .

It follows from Assouad’s lemma – see [Bir06b] – that if b2 = 1/(2a6n),

R(S ′α
p,θ(R,M)) ≥ c0n

−12j0+j ,

where c0 only depends on the wavelet basis, g0, p, θ. It then remains to choose j
and j0.

We first suppose either θ < p/2 or θ = p/2 and R ≥ M1/p. We then define
j ≥ 0 as the largest integer such that

2j(1+2α−2θ/p) ≤ R2M−2/pn1−2θ/p.

We then consider c1 small enough and the largest integer j0 ≥ 0 such that

2j0 ≤ c1Mnθ2−jθ.

We may check that the conditions of the lemma are satisfied.
We now suppose θ = p/2 and R < M1/p. We set j = −1, consider c2 small

enough and define j0 ≥ 0 as the largest integer such that 2j0 ≤ c2Mnθ. All the
conditions of the lemma are met, hence the result.

Remark. We can see from this proof why the minimax risk does not tend
to 0 when the tail dominance condition is not fulfilled and p ≥ 2. Formally,
this means choosing θ = 1 and M = 1. The proof of Lemma 4 with j = −1
ensures that fδ is a density such that

√
fδ ∈ Bα

p,∞(R) if b22j0+j ≤ a1 and
b2j/22j0/p ≤ a2R. We then choose b2 as above and 2j0 ≤ c2n for some c2.

Proof of Lemma 4. First, observe that

q ≤ 2
[∫

g2(x) dx +
∫

h2
δ(x) dx

]
is not larger than 1 if we choose a1 appropriately. This entails that fδ is a
density.

We have supp hδ ⊂ [2�−j(2k + 1), 2�−j(4k̄ + 2k + 1)] ⊂ [2j0−1, 2j0 ], supp g ⊂
[0, 2j0+1] and g(x) ≥ ‖hδ‖∞ for all x ∈ [2j0−1, 2j0 ]. We deduce g + hδ ≥ 0 and√

fδ(x) =
√

(1 − q)ζ(x) + g(x) + hδ(x).
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We also have

hδ ∈ Bα
p,∞

(
bk̄1/p2j(α+1/2−1/p)1j≥0

)
∩Bα

p,∞

(
bk̄1/p2j(α+1/2−1/p)

)
,

g ∈ Bα
p,∞

(
c1b2j/22j0(1/p−α)

)
∩Bα

p,∞

(
c1b2j/22j0/p

)
,

where c1 only depends on g0 and the wavelet basis. Therefore, we may consider
a2 and a3 so that

√
fδ ∈ Bα

p,∞(R). If the supplementary conditions are fulfilled,√
fδ ∈ Bα

p,∞(R).
Note that ζ belongs to Tθ(M/2) if M is large enough, which is assumed

throughout the proof of Theorem 2.3. Besides,

h2
δ ∈ Tθ(‖hδ‖2θ

∞(2j0+1 + 1)),

see Lemma 2.1 of [CL20]. A similar result holds true for g2 and hence fδ ∈ Tθ(M)
if a4 is small enough.

As to the Hellinger distance, we have

h2(fδ, fδ′) = 1
2

∫
(hδ(x) − hδ′(x))2 dx,

and we conclude using that the supports of ψ̄j,2�+1k are disjoint.
Finally, for all x ≥ 0,

fδ(x) ≤ 2
(
‖g‖2

∞ + ‖hδ‖2
∞
)

≤ c2b
22j ,

where c2 only depends on g0 and the wavelet basis. Since fδ is compactly sup-
ported on [−3, 2j0+1], we get for all x ≥ 0,

|x|fθ
δ (x) ≤ 2j0+1 [c2b22j]θ

≤ 2a4c
θ
2M.

Moreover, as |fδ(x)| ≤ 1/2 when x ∈ [−3, 0], and M is at least 1, this inequality
is actually true for all x ∈ R, up to a multiplicative factor.

4.4. Sketch of the proof of Proposition 2.4

Let ϕδ be the map defined in the proof of Proposition 4 of [Sar23] with his α
replaced by 2α and his p replaced by p/2. In other words,

ϕδ(x) = 1
D

j1∑
j=j0

2j
∑
k∈Kj

δj,k1Ij,k(x),

where the Ij,k ⊂ [0, 1/2) are disjoint intervals of size 2−j , where δj,k ∈ {0, 1},
where |Kj | = np/2+1, where j0 is the smallest integer such that 2j0 ≥ 4(np/2+1),
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where j1 ≥ j0 is to be specified, and where D = (j1 − j0 + 1)(np/2 + 1). We
define for x ∈ R,

fδ(x) = ϕδ(x) + ϕ1−δ(x− 1/2).
Note that fδ is a compactly supported density on [0, 1] such that

√
fδ(x) =√

ϕδ(x) +
√

ϕ1−δ(x− 1/2) and

√
ϕδ(x) = 1√

D

j1∑
j=j0

2j/2
∑
k∈Kj

δj,k1Ij,k(x).

The lemma below is proved as Lemma 36 of [Sar23] (just replace the �1–�p
inequality by Hölder’s inequality in the first line of his proof when p ∈ (1, 2)).

Lemma 5. For all ε > 0, j1 large enough, and δ = (δj,k)j,k,
√
ϕδ belongs

to Bα
p,∞(ε).

We deduce that
√
fδ lies in Bα

p,∞(R) if j1 is large enough. Now, for all δ, δ′
of the form δ = (δj,k)j,k, δ′ = (δ′j,k)j,k,

h2(fδ, fδ′) = 1
D

j1∑
j=j0

∑
k∈Kj

|δj,k − δ′j,k|.

We conclude by using Assouad’s Lemma (see [Bir06b], Lemma 2) and by tak-
ing j1 large enough.

4.5. Proof of Proposition 3.1

We consider m ∈ R such that f is non-increasing on [m,+∞) and non-decreasing
on (−∞,m].

We first assume that f ∈ L
θ,∞(M). Then, for all j, k ∈ Z such that k ≥

1/2 + 2jm,
Fj,k(f) ≤ 2−jf(2−j(k − 1/2)).

If k ≥ 1/2 + 2jm is such that f(2−j(k− 1/2)) ≥ t2j , then 2−j(k− 1/2) belongs
to an interval of length at most M2−jθt−θ. There are therefore at most c[1 +
M2j(1−θ)t−θ] integers k ≥ 1/2 + 2jm such that Fj,k(f) ≥ t. We can follow a
similar line of reasoning to deal with k not larger than −1/2 + 2jm. This leads
to (3.2).

We now suppose that f ∈ WT θ(M). We consider t > 0 and x > m such that
f(x) ≥ t. Let j ≥ 0 large enough to ensure that 21−j < Mt−θ and x ≥ m+2−j .
Suppose that there exists k ≥ 3/2 + 2jm such that x ≥ 2−j(k − 1/2). We then
have

f(x) ≤ f(2−j(k − 1/2)) ≤ 2jFj,k−1(f).
Therefore, any k ∈ [3/2 + 2jm, 1/2 + 2jx] is such that Fj,k−1(f) ≥ 2−jt. We
deduce from f ∈ WT θ(M), that∣∣[3/2 + 2jm, 1/2 + 2jx]

∣∣ ≤ Mt−θ2j ,
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and hence 2j(x−m)−2 ≤ Mt−θ2j . Therefore, x belongs to an interval of length
at most 21−j + Mt−θ < 2Mt−θ. We do the same reasoning when x < m to
complete the proof.

4.6. Proof of Theorem 3.2

As in the proof of Theorem 2.2, we suppose that we have another independent
sample X ′

1, . . . , X
′
n of X. We consider an integer Lwav ≥ 1 such that supp ψ ⊂

[−Lwav, Lwav] and the interval

Ij,k =
[
2−j(k − Lwav), 2−j(k + Lwav)

]
. (4.7)

It contains the supports of φj,k and ψj,k. We consider some ρ > 0 whose value
is to be specified later on, set un = n(2ρ logn)−1, and introduce the smallest
integer r̄n ≥ 0 such that 2−r̄n ≤ u−1

n . Note that the integer rn is well defined
when un ≥ 1, that is when n is large enough, and more precisely when n/ logn ≥
2ρ. As the Hellinger distance between two densities is no larger than 1, we may
throughout this proof assume that n fulfils this property (otherwise, the risk
bound still holds up to an increase of the risk of 2ρ(logn)/n). We define for all
j ∈ Z and r ≥ 0,

Z̃j,r =
{
k ∈ Z, 2−r <

1
n

n∑
i=1

1X′
i∈Ij,k ≤ 2−r+1

}

Z̃j,r,− =
{
k ∈ Z,

1
n

n∑
i=1

1X′
i∈Ij,k > 2−r

}
.

Let J0 ≤ 0 and J1 ≥ 0. Let, for each j ∈ {J0, . . . , J1}, a subset Kj of Z̃j,r̄n,−.
We put K = (Kj)J0≤j≤J1 and group together all the possible sets K into a
collection K̃J0,J1 . We also set

K̃ =
⋃

J0≤0
J1≥0

K̃J0,J1 .

Consider K ∈ K̃ and J0, J1 such that K ∈ K̃J0,J1 . We associate this set with
the linear space

VK =

⎧⎨⎩ ∑
k∈Z̃J0 ,r̄n,−

γJ0−1,kφ̄J0,k +
J1∑

j=J0

∑
k∈Kj

γj,kψ̄j,k, ∀j, k, γj,k ∈ R

⎫⎬⎭ .

Its dimension is not larger than

dimVK ≤ |Z̃J0,r̄n,−| +
J1∑

j=J0

|Kj |.
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The set Kj also writes

Kj =
(
Kj ∩ Z̃j,rj ,−

)⋃ r̄n⋃
r=rj+1

(
Kj ∩ Z̃j,r

)
,

and this, for any choice of rj ∈ {0, . . . , r̄n} (the set to the right of the union sign
is empty if rj = r̄n). We put

ΔK =
J1∑

j=J0

inf
rj≤r̄n

⎡⎣ r̄n∑
r=rj+1

{
|Kj ∩ Z̃j,r| + |Kj ∩ Z̃j,r| log

(
e|Z̃j,r|/|Kj ∩ Z̃j,r|

)
− log

(
1 − e−1)}

+
{
|Kj ∩ Z̃j,rj ,−|+|Kj ∩ Z̃j,rj ,−| log

(
e|Z̃j,rj ,−|/|Kj ∩ Z̃j,rj ,−|

)
− log

(
1 − e−1)}]

+ |J0| + J1 + (|J0| + J1 + 2) log(1 + r̄n) + log(2(1 − 1/e)−1).

Above, we use the convention 0 × log(e| · |/0) = 0 when necessary. Elementary,
albeit cumbersome, computations using Proposition 2.5 of [Mas07] yield∑

K∈K̃

e−ΔK ≤ 1.

We consider an event A of probability 1− 1/n not depending on X1, . . . , Xn

but rather on X ′
1, . . . , X

′
n and to be specified later on. We apply Proposition 4.1

conditionally to X ′
1, . . . , X

′
n when A occurs to define an estimator f̂ . When A

does not happen, f̂ is any density estimator (as A is not known by the statisti-
cian, we should take the same, but the whole point is that we do not need any
of its properties). We take the expectation of the result and simplify it a bit.
This leads to: for all J0 ≤ 0 and J1 ≥ 0:

E

[
h2(f, f̂)1A

]
≤ cE

⎡⎣⎧⎨⎩
J1∑

j=J0

Uj + T + A

+ |Z̃J0,r̄n,−| + (|J0| + J1 + 1) log(1 + r̄n)
n

}
1A

]
, (4.8)

where

Uj = inf
0≤rj≤r̄n

⎧⎨⎩Uj,rj ,− +
r̄n∑

r=rj+1
Uj,r

⎫⎬⎭
Uj,rj ,− = inf

Kj⊂Z̃j,rj ,−

∑
k∈Z̃j,rj ,−\Kj

β2
j,k + |Kj |

n
log+

(
|Z̃j,rj ,−|/|Kj |

)



4552 Mathieu Sart

Uj,r = inf
Kj⊂Z̃j,r

∑
k∈Z̃j,r\Kj

β2
j,k + |Kj |

n
log+

(
|Z̃j,r|/|Kj |

)

T =
J1∑

j=J0

∑
k∈Z\Z̃j,r̄n,−

β2
j,k +

∑
k∈Z\Z̃J0,r̄n,−

α2
J0,k

A =
∞∑

j=J1+1

∑
k∈Z

β2
j,k,

where αJ0,k = αJ0,k

(√
f
)
, βj,k = βj,k

(√
f
)
, and where log+(x) = log(e + x).

Since f̂ is always a density, h2(f, f̂) ≤ 1. The triangle inequality then ensures,

E

[
h2(f, f̂)

]
≤ E

[
h2(f, f̂)1A

]
+ P (Ac)

≤ E

[
h2(f, f̂)1A

]
+ 1/n. (4.9)

Within one residual term, inequality (4.8) hence gives an upper-bound on the
Hellinger risk E[h2(f, f̂)] of f̂ . We now need the two following lemmas, to be
proven after the present proof.

Lemma 6. There exist ρ > 0 and an event A meeting the above conditions on
which the three inequalities below hold true. First,

T ≤ c

[
(J1 − J0 + 1)logn

n
+ M2J0(1−θ)

(
logn
n

)1−θ
]
,

Second,
A ≤ cRq12−J1(1−1/q2).

The terms q1 > 0, q2 > 1 only depend on α, p and the wavelet basis. Third, the
cardinality of Z̃j,r,− can be bounded from above for all j ∈ Z and r ∈ {0, . . . , r̄n}
by

|Z̃j,r,−| ≤ c
[
1 + M2rθ2j(1−θ)

]
. (4.10)

Above, c only depends on α, p, θ and the wavelet basis.

Lemma 7. The following results hold true on the event A and are written for
the value of ρ given by Lemma 6. For all j ∈ Z and r ≤ r̄n,

Uj,r ≤ c
2−r/2
√
n

log+

(
2r/2 1 + M2rθ2j(1−θ)

√
n

)
(4.11)

Uj,r ≤ c
1 + M2rθ+j(1−θ)

n
. (4.12)

We also have when p ≥ 2 and j ≥ 0,

Uj,r ≤ cR2M1−2/p2−j(2α−2θ/p+θ)2rθ(1−2/p). (4.13)
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When p < 2 and j ≥ 0,

Uj,r,− ≤ cRp2−jp(α+1/2−1/p)n−(1−p/2)

× log+

(
MR−p2rθn−p/22jp(α+1/2−θ/p)

)
. (4.14)

In these inequalities, c only depends on α, p, θ and the wavelet basis.

We are now in position to prove Theorem 3.2. We define J1 as the smallest
integer such that Rq12−J1(1−1/q2) ≤ 1/n where q1, q2 appear in Lemma 6. We
define J0 as the largest negative integer such that

M2J0(1−θ) ≤
(

logn
n

)θ

.

We deduce from (4.8), (4.9) some c1, c2 such that

E

[
h2(f, f̂)

]
≤ c1E

⎡⎣ J1∑
j=J0

Uj1A

⎤⎦
+ c2

logn + log(1 + R) + logM
n

log(1 + r̄n).

The factor c1 only depends on the wavelet basis, whereas c2 only depends on
α, p, θ and the wavelet basis. It then remains to bound

U =
J1∑

j=J0

Uj

on A from above. We treat cases p ≥ 2 and p < 2 separately.

Proof of Theorem 3.2 when p ≥ 2. Note that

Uj ≤
r̄n∑
r=1

Uj,r.

For all j ≥ 0 and r ≤ r̄n, Lemma 7 implies:

Uj,r ≤ c1 min
{

2−r/2
√
n

log+

(
M2r(θ+1/2)2j(1−θ)

√
n

)
,

R2M1−2/p2−j(2α−2θ/p+θ)2rθ(1−2/p),
M2rθ2j(1−θ)

n

}
.

We first compute

U (1) =
∞∑
j=0

r̄n∑
r=j

Uj,r
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≤ c2

r̄n∑
r=0

∞∑
j=0

min
{

2−r/2−j/2
√
n

log+

(
M

2r(θ+1/2)23j/2
√
n

)
,

R2M1−2/p2−2jα2rθ(1−2/p),
M2rθ2j

n

}
. (4.15)

Let us denote by U
(1)
r the sum in j. We may bound it from above by proceeding

as follows. First, let us assume that

nM−22−r(2θ+1) ≤ 1.

Lemma 30 of [Sar23] entails:

U (1)
r ≤ c3

2−r/2
√
n

log+

(
M

2r(θ+1/2)
√
n

)
. (4.16)

In the contrary case, we may consider the largest integer jr ≥ 0 such that

23jr ≤ nM−22−r(2θ+1).

We then have,

U (1)
r ≤

jr∑
j=0

M2rθ2j

n
+

∞∑
j=jr+1

2−r/2−j/2
√
n

log+

(
M

2r(θ+1/2)23j/2
√
n

)
≤ c4M

1/3n−2/32−r(1−θ)/3. (4.17)

To get the last inequality, Lemma 30 of [Sar23] is used once again. By group-
ing (4.16) and (4.17), we thus have for all r ≥ 0,

U (1)
r ≤ c5

{
M1/3n−2/32−r(1−θ)/3

+2−r/2n−1/2 log+

(
M2r(θ+1/2)n−1/2

)
1nM−2≤2r(2θ+1)

}
. (4.18)

This bound is obtained by using only the minimum between terms 1 and 3
in (4.15). We can also make a similar reasoning with terms 2 and 3 only. This
leads to

U (1)
r ≤ c6

[
R2/(1+2α)M (1+2α−2/p)/(1+2α)n−2α/(2α+1)2rθ(1−2/((1+2α)p))

+R2M1−2/p2rθ(1−2/p)1nR2M−2/p≤22rθ/p

]
. (4.19)

If
M1/3−(1+2α−2/p)/(1+2α)R−2/(1+2α)n2α/(2α+1)−2/3 ≤ 1,

we sum (4.18) for all r. Thereby,

U (1) ≤ c7

[
M1/3n−2/3 + M1/(2θ+1)n−(θ+1)/(2θ+1)

]
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≤ c7

[
M (1+2α−2/p)/(1+2α)R2/(1+2α)n−2α/(2α+1)

+M1/(2θ+1)n−(θ+1)/(2θ+1)
]
.

Otherwise, we define r0 ≥ 0 as the largest integer such that

2r0(1+2α+2θ+4αθ−6θ/p)/(3(2α+1))

≤ M1/3−(1+2α−2/p)/(1+2α)R−2/(1+2α)n2α/(2α+1)−2/3. (4.20)

We sum (4.18) when r ≥ r0 + 1 and (4.19) when r ≤ r0 to get

U (1) ≤ c8

[
Rβ1Mβ2n−γ + M1/(2θ+1)n−(θ+1)/(2θ+1)

+R2M1−2/p2r0θ(1−2/p)(1 + r01p=2)1nR2M−2/p≤22r0θ/p

]
.

Observe that
nR2M−2/p ≤ 22r0θ/p

is possible only if

M−2(2α+1)/pR2(2θ+1)(2α+1)n(2α+1)(1−2θ/p+2θ) ≤ 1,

that is if n is small enough. We now study

U (2) =
∞∑
j=0

∑
r<j

Uj,r

≤ c9

∞∑
j=0

min
{
R2M1−2/p2−2jα,M

2j

n

}
≤ c10

[
R2/(1+2α)M (1+2α−2/p)/(1+2α)n−2α/(2α+1) + Mn−1

]
.

We finally deal with

U (3)=
0∑

j=J0

r̄n∑
r=0

Uj,r

≤c11

|J0|∑
j=0

r̄n∑
r=0

min
{

2−r/2
√
n

log
(

2r/2 1 + M2rθ2−j(1−θ)
√
n

)
,
1 + M2rθ2−j(1−θ)

n

}

≤c12
|J0|2
n

+ c12

|J0|∑
j=0

r̄n∑
r=0

U
(3)
j,r

where

U
(3)
j,r = min

{
2−r/2
√
n

log+

(
M2r(θ+1/2)2−j(1−θ)

√
n

)
,
M2rθ2−j(1−θ)

n

}
.
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Note that
|J0| ≤ c13 log(M(n/ log n)θ).

When 22j(1−θ) ≤ M2/n (and j ≥ 0), which is possible only if n ≤ M2, we do:

∑
22j(1−θ)≤M2/n

r̄n∑
r=0

U
(3)
j,r

≤
∑

22j(1−θ)≤M2/n

∞∑
r=0

2−r/2
√
n

log+

(
M2r(θ+1/2)2−j(1−θ)

√
n

)

≤ c14
∑

22j(1−θ)≤M2/n

1√
n

log+

(
M2−j(1−θ)

√
n

)

≤ c15
log2

+(M2/n)√
n

.

When 22j(1−θ) ≥ M2/n (and j ≥ 0), we may consider the largest integer rj ≥ 0
such that

2rj(2θ+1) ≤ nM−222j(1−θ).

We then have,

∑
22j(1−θ)≤M2/n

r̄n∑
r=0

U
(3)
j,r

≤ c16

|J0|∑
j=0

⎧⎨⎩∑
r≥rj

2−r/2
√
n

log+

(
M2r(θ+1/2)2−j(1−θ)

√
n

)
+
∑
r<rj

M2rθ2−j(1−θ)

n

⎫⎬⎭
≤ c17

|J0|∑
j=0

M1/(2θ+1)n−(θ+1)/(2θ+1)2−j(1−θ)/(2θ+1)

≤ c18M
1/(2θ+1)n−(θ+1)/(2θ+1).

In conclusion,

U (3) ≤ c19

[
M1/(2θ+1)n−(θ+1)/(2θ+1) + log2(M(n/ log n)θ)n−1

+ log2
+(M2/n)n−1/21n≤M2

]
.

It then remains to sum up the different results to get a bound on U and
hence (3.4) where

υn = R2/(1+2α)M (1+2α−2/p)/(1+2α)n−2α/(2α+1) + M1/(2θ+1)n−(θ+1)/(2θ+1)

+ log2(M(n/ log n)θ)n−1 + (logn)(log(1 + logn))n−1

+ (logM) log(1 + logn)n−1 + log(1 + R) log(1 + logn)n−1 + Mn−1
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+ R2M1−2/p2r0θ(1−2/p)

× (1 + r01p=2)1M−2(1+2α)/pR2(2θ+1)(2α+1)n(2α+1)(1−2θ/p+2θ)≤1

+ log2
+(M2/n)n−1/21n≤M2 (4.21)

and where r0 is given by (4.20).

Proof of Theorem 3.2 when p < 2. We apply Lemma 7: Uj satisfies for all j ∈
{0, . . . , J1}, and rj ∈ {0, . . . , r̄n},

Uj ≤ c1

{
Rp2−jp(α+1/2−1/p)n−(1−p/2) log+

(
MR−p2rjθn−p/22jp(α+1/2−θ/p))

+
r̄n∑

r=rj+1
2−r/2n−1/2 log+

(
M2r(θ+1/2)2j(1−θ)n−1/2)}.

Note that this inequality also holds true for rj > r̄n. If we choose rj = r̄n, we
get (using 2r̄n ≤ c2n),

Uj ≤ c3R
p2−jp(α+1/2−1/p)n−(1−p/2) log+

(
MR−pnθ−p/22jp(α+1/2−θ/p)). (4.22)

We may refine this result when n1−pR−2p22jp(α+1/2−1/p) ≥ 1. In this case, we
may define the largest number rj ≥ 0 satisfying

2rj ≤ n1−pR−2p22jp(α+1/2−1/p).

We then derive from Lemma 30 of [Sar23],

Uj ≤ c4

{
Rp2−jp(α+1/2−1/p)n−(1−p/2) log+

(
MR−p2rjθn−p/22jp(α+1/2−θ/p))

+ 2−rj/2n−1/2 log+
(
M2rj(θ+1/2)2j(1−θ)n−1/2)}

≤ c5R
p2−jp(α+1/2−1/p)n−(1−p/2)

× log+
(
MR−p(1+2θ)nθ−p/2−pθ2j(p/2−3θ+αp+pθ+2αpθ)). (4.23)

We now have when j ≥ 0,

Uj ≤ Uj,+ + Uj,−, (4.24)

with

Uj,+ =
∞∑
r=j

Uj,r and Uj,− =
j−1∑
r=0

Uj,r.

We deduce from Lemma 7,

Uj,+ ≤ c6
∑
r≥0

min
{

2−r/2−j/2
√
n

log+

(
M

2r(θ+1/2)23j/2
√
n

)
,M

2j2rθ

n

}
.
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Elementary computations lead to

Uj,+ ≤
{
c72−j/2n−1/2 log+(M23j/2n−1/2) if 23j ≥ nM−2

c7M
1/(2θ+1)2j(1−θ)/(2θ+1)n−(θ+1)/(2θ+1) otherwise.

We also deduce from (4.12), Uj,− ≤ c8M2jn−1. Therefore, (4.24) gives

Uj ≤
{
c9M2jn−1 if 23j ≥ nM−2

c9M
1/(2θ+1)2j(1−θ)/(2θ+1)n−(θ+1)/(2θ+1) otherwise.

Suppose that R2M−2/pn ≥ 1 and consider the smallest integer j0 ≥ 0 such
that

2j0(2α+1) ≥ R2M−2/pn.

Then, ∑
23j≥nM−2

Uj

≤ c10

⎧⎨⎩
j0∑
j=0

M2jn−1 +
∞∑

j=j0+1
Rp2−jp(α+1/2−1/p)n−(1−p/2)

× log+
(
MR−pnθ−p/22jp(α+1/2−θ/p))}

≤ c11M
(1+2α−2/p)/(2α+1)R2/(2α+1)n−2α/(2α+1) log+

(
nαM1/pR−1).

When R2M−2/pn < 1, we only use (4.22):∑
23j≥nM−2

Uj ≤ c12R
pn−(1−p/2) log+

(
MR−pnθ−p/2).

We now deal with smaller values of j. We first suppose

Rpn−(1−p/2) ≥ M1/(2θ+1)n−(θ+1)/(2θ+1), (4.25)

and

n2α−2θ/p−1+2θR−4(1−θ)M−2(1+2α−2/p) ≥ 1. (4.26)

The first inequality allows us to consider the smallest integer j1 ≥ 0 such that

2j1[(1−θ)/(2θ+1)+p(α+1/2−1/p)] ≥ RpM−1/(2θ+1)n(θ+1)/(2θ+1)−1+p/2.

The second ensures
n1−pR−2p22jp(α+1/2−1/p) ≥ 1

for all j ≥ j1. We may hence use (4.23):

∑
j≥0

23j<nM−2

Uj ≤ c13

⎧⎨⎩
j1∑
j=0

M1/(2θ+1)2j(1−θ)/(2θ+1)n−(θ+1)/(2θ+1)
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+
∞∑

j=j1+1
Rp2−jp(α+1/2−1/p)n−(1−p/2)

× log+
(
MR−p(1+2θ)nθ−p/2−pθ2j(p/2−3θ+αp+pθ+2αpθ))}

≤ c14R
β1Mβ2n−γ .

When either (4.25) or (4.26) is not true, we merely apply (4.22):∑
j≥0

23j<nM−2

Uj ≤ c15R
pn−(1−p/2) log+

(
MR−pnθ−p/2).

The above provides an upper-bound on
∞∑
j=0

Uj .

We still have to work with negative values of j. For this, we use (4.11) and (4.12):
0∑

j=J0

Uj

≤ c16

|J0|∑
j=0

rn∑
r=0

min
{

2−r/2
√
n

log+

(
2r/2 1 + M2rθ2−j(1−θ)

√
n

)
,
1 + M2rθ2−j(1−θ)

n

}
.

We have already found an upper-bound of this term when p ≥ 2. The calcu-
lations are the same here. We now put all these results together to get (3.4)
with

υn = R2/(1+2α)M (1+2α−2/p)/(1+2α)n−2α/(2α+1) log+
(
nαM1/pR−1)

+ M1/(2θ+1)n−(θ+1)/(2θ+1) + log2(M(n/ log n)θ)n−1

+ Rpn−(1−p/2) log+
(
MR−pnθ−p/2) [1M−2/pR2n<1

+1Rpn−(1−p/2)<M1/(2θ+1)n−(θ+1)/(2θ+1)

+1n2α−2θ/p−1+2θR−4(1−θ)M−2(1+2α−2/p)<1]
+ log2

+(M2/n)n−1/21n≤M2 + log(1 + R) log(1 + logn)n−1

+ (logM) log(1 + logn)n−1 + (logn) log(1 + logn)n−1. (4.27)

4.6.1. Proofs of Lemmas 6 and 7: preliminary results

Lemma 8. There is an event A of probability 1 − 1/n on which: for all r > 0
such that 2r ≤ n, and for all interval I ⊂ R such that 2−r < P (X ∈ I) ≤ 2−r+1,∣∣∣∣∣ 1n

n∑
i=1

{1I(X ′
i) − E[1I(X ′

i)]}
∣∣∣∣∣ ≤ c

[√
2−r logn

n
+ logn

n

]
,
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where c is numerical value. In particular, there is some ρ > 0 such that any
interval I satisfying n−1∑n

i=1 1I(X ′
i) ≥ ρ(logn)/n is such that:

1
2P (X ∈ I) ≤ 1

n

n∑
i=1

1I(X ′
i) ≤ 2P (X ∈ I).

Sketch of the proof of Lemma 8. A short way to prove the lemma is to remark
that the collection of functions of the form 1I where I is an interval is VC
subgraph with finite dimension. We then apply Proposition 6 of [Sar23].

Lemma 9. Let m ∈ R such that f is non-increasing on [m,+∞) and non-
decreasing on (−∞,m]. Then, for all j ∈ Z, k0 ≥ Lwav + 1 + m2j,∑

k≥k0

|βj,k| ≤ cf
1/2
j,k0−1, (4.28)

where

fj,k =
∫
Ij,k

f(x) dx =
∫ 2−j(k+Lwav)

2−j(k−Lwav)
f(x) dx,

and where we recall that Ij,k is given by (4.7). Moreover, for all j ∈ Z, k0 ≤
−Lwav − 1 + m2j, ∑

k≤k0

|βj,k| ≤ cf
1/2
j,k0+1. (4.29)

Above, c only depends on the wavelet basis.

Proof of Lemma 9. We only show (4.28), the proof of (4.29) is similar. Since∫
ψj,k(x) dx = 0 for all j, k ∈ Z, we deduce for all k ≥ Lwav + 1 + m2j ,

|βj,k| =
∣∣∣∣∫ (√f(x) −

√
f(2−j(k + Lwav))

)
ψj,k(x) dx

∣∣∣∣
≤ 2j/2‖ψ‖∞

∫ 2−j(k+Lwav)

2−j(k−Lwav)

(√
f(x) −

√
f(2−j(k + Lwav))

)
dx

≤ 21−j/2Lwav‖ψ‖∞
(√

f(2−j(k − Lwav)) −
√
f(2−j(k + Lwav))

)
.

Therefore, ∑
k≥k0

|βj,k| ≤ c12−j/2
√

f(2−j(k0 − Lwav))

≤ c22j/2
∫ 2−j(k0−Lwav)

2−j(k0−Lwav−1)

√
f(x) dx

≤ c3

√∫ 2−j(k0−Lwav)

2−j(k0−Lwav−1)
f(x) dx

≤ c3f
1/2
j,k0−1.
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Lemma 10. We consider m ∈ R such that f is non-increasing on [m,+∞) and
non-decreasing on (−∞,m]. We set for all r ≤ r̄n,

Z̃j,r,+,right =
{
k ∈ Z ∩

[
Lwav + m2j ,+∞

)
,

1
n

n∑
i=1

1X′
i∈Ij,k ≤ 2−r+1

}

Z̃j,r,+,left =
{
k ∈ Z ∩

(
−∞,−Lwav + m2j

]
,

1
n

n∑
i=1

1X′
i∈Ij,k ≤ 2−r+1

}

and

k̃j,r,right = min Z̃j,r,+,right + 1,

k̃j,r,left = max Z̃j,r,+,left − 1.

Let ρ > 0 and A be given by Lemma 8. On this event, the above sets are non-
empty. Moreover, fj,k ≤ c2−r for all j ∈ Z, r ≤ r̄n, k ≥ k̃j,r,right − 1 or
k ≤ k̃j,r,left + 1. Moreover,∑

k≥k̃j,r,right

|βj,k| ≤ c2−r/2 and
∑

k≥k̃j,r,right

β2
j,k ≤ c2−r (4.30)

∑
k≤k̃j,r,left

|βj,k| ≤ c2−r/2 and
∑

k≤k̃j,r,left

β2
j,k ≤ c2−r. (4.31)

We also have when f ∈ WT θ(M),∣∣Z̃j,r,−
∣∣ ≤ c

[
1 + M2rθ2j(1−θ)

]
. (4.32)

In these results, c only depends on θ and the wavelet basis.

Proof of Lemma 10. We deduce from Lemma 8 that

|Z̃j,r,−| ≤
∣∣{k ∈ Z, fj,k > 2−r−1}∣∣

holds true on A. Since

fj,k ≤
Lwav∑

k′=−Lwav

Fj,k+k′(f),

we may use Proposition 3.1 to get (4.32). Since Z̃j,r,− is finite, Z̃j,r,+,left and
Z̃j,r,+,right are non-empty.

We now prove (4.30). The proof of (4.31) is similar. Lemma 8 ensures that

fj,min Z̃j,r,+,right
≤ c1

[
1
n

n∑
i=1

1X′
i∈Ij,min Z̃j,r,+,right

+ logn
n

]
≤ c22−r.
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Moreover, as f is non-increasing on (m,+∞), we have for all k ≥ k̃j,r,right − 1,
fj,k ≤ c22−r. Lemma 9 yields∑

k≥k̃j,r,right

|βj,k| ≤ c3f
1/2
j,k̃j,r,right−1

≤ c42−r/2.

For the right part of (4.30), we merely use Cauchy-Schwarz inequality:∑
k≥k̃j,r,right

β2
j,k ≤

∑
k≥k̃j,r,right

(fj,k)1/2|βj,k|

≤ c52−r/2
∑

k≥k̃j,r,right

|βj,k|.

4.6.2. Proof of Lemma 6

We deduce from Lemma 10,∑
k∈Z\Z̃j,r̄n,−
k≥Lwav+m2j

β2
j,k ≤

∑
k≥k̃j,r̄n,right−1

β2
j,k ≤ β2

j,k̃j,r̄n,right−1 + c1
logn
n

.

Likewise, ∑
k∈Z\Z̃j,r̄n,−

k≤−Lwav+m2j

β2
j,k ≤ β2

j,k̃j,r̄n,left+1 + c2
logn
n

.

Cauchy-Schwarz inequality and Lemma 8 lead to β2
j,k ≤ fj,k ≤ c3(logn)/n

when k �∈ Z̃j,r̄n,−. By putting it all together,∑
k∈Z\Z̃j,r̄n,−

β2
j,k ≤ c4

logn
n

. (4.33)

We also have α2
J0,k

≤ fJ0,k ≤ c5(logn)/n when k �∈ Z̃J0,r̄n,−. Hence,∑
k∈Z\Z̃J0,r̄n,−

α2
J0,k ≤

∑
2r≥c6n/(logn)

2−r
∣∣{k ∈ Z, fJ0,k ≥ 2−r

}∣∣ .
By doing as at the beginning of the proof of Lemma 10,∣∣{k ∈ Z, fJ0,k ≥ 2−r

}∣∣ ≤ c7
[
1 + M2rθ2J0(1−θ)].

We deduce, ∑
k∈Z\Z̃J0,r̄n,−

α2
J0,k ≤ c8

[
logn
n

+ M

(
logn
n

)1−θ

2J0(1−θ)

]
.
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The upper-bound on T follows from this inequality and (4.33).
It then remains to bound A from above. The proof of Lemma 2 ensures that

there are some q1 > 0, q2 > 1, such that ‖f‖q2 ≤ c9R
q1 for some c9 only

depending on the wavelet basis, α, p. Hence,

fj,k ≤ c10R
q12−j(1−1/q2).

Let

Zj,r =
{
k ∈ Z, 2−r < fj,k ≤ 2−r+1} ,

Zj,r,+ =
{
k ∈ Z, fj,k ≤ 2−r+1} ,

Zj,r,+,right =
{
k ∈ Z ∩

[
Lwav + m2j ,+∞

)
, fj,k ≤ 2−r+1} ,

Zj,r,+,left =
{
k ∈ Z ∩

(
−∞,−Lwav + m2j

]
, fj,k ≤ 2−r+1} ,

and

k̄j,r,right = minZj,r,+,right + 1
k̄j,r,left = maxZj,r,+,left − 1.

We have,

A ≤
∞∑

j=J1+1

∑
2r≥c11R−q12j(1−1/q2)

∑
k∈Zj,r

β2
j,k

≤
∞∑

j=J1+1

∑
2r≥c11R−q12j(1−1/q2)

∑
k∈[−Lwav+m2j ,Lwav+m2j ]∩Zj,r

fj,k

+
∞∑

j=J1+1

∑
2r≥c11R−q12j(1−1/q2)

⎡⎢⎢⎢⎣fj,k̄j,r,right−1 + fj,k̄j,r,left+1+
∑

k≥k̄j,r,right
or k≤k̄j,r,left

β2
j,k

⎤⎥⎥⎥⎦
≤ c12

∞∑
j=J1+1

∑
2r≥c11R−q12j(1−1/q2)

2−r

≤ c13R
q12−J1(1−1/q2).

4.6.3. Proof of Lemma 7

The proof of (4.12) simply ensues from (4.32). As to (4.13), we do the same
reasoning as in the proof of Lemma 3. In short, for all p ≥ 2,∑

k∈Z̃j,r

β2
j,k ≤ c2R

22−2j(α+1/2−1/p)|Z̃j,r|1−2/p.
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We then use (4.32). The same goes for (4.14): we set

Kj,r =
{
k ∈ Z̃j,r,−, |βj,k| ≥ 1/

√
n
}
.

As
√
f is smooth, we have:

|Kj,r| ≤ c3n
p/2Rp2−jp(α+1/2−1/p).

A suitable inequality in weak spaces – see (35) of [Sar23] – leads to∑
k∈Z̃j,r,−\Kj,r

β2
j,k ≤ c4n

−(1−p/2)Rp2−jp(α+1/2−1/p).

We deduce,

Uj,r,− ≤ c5n
p/2−1Rp2−jp(α+1/2−1/p) log+

(
|Z̃j,r,−|n−p/2R−p2jp(α+1/2−1/p)

)
≤ c6n

p/2−1Rp2−jp(α+1/2−1/p) log+

(
MR−p2rθn−p/22jp(α+1/2−θ/p)

)
,

thanks to (4.32).
We now show (4.11). We introduce the integers k̃j,r,right and k̃j,r,left appearing

in Lemma 10. We then set

K
(1)
j,r =

{
k ∈ Z̃j,r, k < k̃j,r,right or |βj,k| ≥ 1/

√
n
}

K
(2)
j,r =

{
k ∈ Z̃j,r, k > k̃j,r,left or |βj,k| ≥ 1/

√
n
}

and
Kj,r = K

(1)
j,r ∩K

(2)
j,r .

Now,

∑
k∈Z̃j,r\Kj,r

β2
j,k ≤ 1√

n

⎡⎣ ∑
k≥k̃j,r,right

|βj,k| +
∑

k≤k̃j,r,left

|βj,k|

⎤⎦
≤ c7√

n
2−r/2.

Moreover,

|Kj,r| ≤
∣∣∣{k ∈ Z̃j,r, k ∈ [k̃j,r,left, k̃j,r,right]

}∣∣∣
+
√
n

⎡⎣ ∑
k≥k̃j,r,right

|βj,k| +
∑

k≤k̃j,r,left

|βj,k|

⎤⎦ .
The elements in the first set are either equal to k̃j,r,left, k̃j,r,right, k̃j,r,left+1, k̃j,r,right
− 1 or in [−Lwav + m2j , Lwav + m2j ]. Hence, using Lemma 10,

|Kj,r| ≤ c8

[
1 +

√
n2−r/2

]
≤ c9

√
n2−r/2.

We then deduce (4.11) from (4.32).
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4.7. Proof of Theorem 3.3

Since the theorem is stated for R and M large enough, we may without loss
of generality replace R by c1R and M by c2M , where c1, c2 only depend on
α, p, θ and the wavelet basis. In other words, we only need to build a subset
U S ′α

p,θ(R,M) of U S α
p,θ(c1R, c2M). The densities f in this set may satisfy√

f ∈ Bα
p,∞(c1R) and

∫
fθ(x) dx ≤ c2M .

Throughout the proof, we consider r ≥ 1 and denote the elements of {0, 1}r+1

by (δk)0≤k≤r. We define the Hamming distance Δ for δ, δ′ ∈ {0, 1}r+1 by

Δ(δ, δ′) =
r∑

k=0

|δk − δ′k|.

We denote the Kullback Leibler divergence between two densities f and g by

K(f, g) =
∫

f(x) log (f(x)/g(x)) dx,

whenever it exists. We use it here for densities f and g that vanish only simul-
taneously (in which case the convention 0 × log(0/0) = 0 is applied).

It is convenient to draw on the Varshamov-Gilbert bound to prove the lower
bound. The lemma below is ready to use. It follows from Theorem 2.5 and
Lemma 2.9 of [Tsy08] (see also Section E in the third preprint version of [Sar23]
for the constants).

Lemma 11. Consider r̄ ≥ 14 and suppose r = 2r̄. Then, there is a subset D
of {0, 1}r+1 such that

r∑
k=0

δk = r̄

for all δ ∈ D . Moreover,
Δ(δ, δ′) ≥ r̄/4,

for all pair (δ, δ′) ∈ D composed of distinct elements.
We now assume that there exists a family of densities F = {fδ, δ ∈ D}

indexed by this set and satisfying

h2(fδ, fδ′) ≥ ηΔ(δ, δ′)

K(fδ, fδ′) ≤
5r

1000n (4.34)

for some η > 0 and all δ �= δ′ ∈ D .
Then, there exists a numerical value c > 0 such that

R(F ) ≥ cηr.

We need to construct a suitable family F of densities satisfying the conditions
of the previous lemma. The two results below are tailored to solve this problem.
They are proven after the current proof.
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Lemma 12. We consider q ≥ 2 and two non-negative maps ς0, ς1 on [0,+∞).
We suppose that these functions are non-increasing, compactly supported on [0, 1]
and with continuous derivatives up to order q. Moreover, ςδ(0) = 1, ςδ(1) = 0,
and ς

(s)
δ (0) = ς

(s)
δ (1) = 0 for all δ ∈ {0, 1} and s ∈ {1, . . . , q − 1}, where ς

(s)
δ

denotes the sth derivative of ςδ. We consider a positive integer r, three positive
numbers σ, b0, �0, x0 ∈ (0, r�0], ε = σ/r, and set for all k ≥ 0,

bk = b0(1 + ε)−k

�k = �0(1 + ε)2k

xk+1 = xk + �k.

We then define for all x ≥ 0 and δ = (δk)0≤k≤r ∈ {0, 1}r+1,

gδ(x) = b01[0,x0)

+ 1
1 + ε

r∑
k=0

bk [1 + εςδk((x− xk)/�k)]1[xk,xk+1)(x)

+ br+1 ς0 ((x− xr+1)/(r�0))1[xr+1,+∞)(x). (4.35)

We extend gδ to an even function on R.
This function gδ has the following properties: it is unimodal and such that

gδ(xk) = bk for all k ∈ {0, . . . , r}, δ ∈ {0, 1}r+1. Moreover, gδ lies in Bα
p,∞(cR)

for all p ∈ (0,+∞], α ∈ (max{1, 1/p− 1}, q) and R > 0 satisfying

b0r
1/p−1 ≤ R�

α−1/p
0 (4.36)

b0�
1/p
0 r1/p ≤ R. (4.37)

Above, c only depends on the wavelet basis, ς0, ς1, p, q, α and σ.

Lemma 13. Consider some q ≥ 2. There exist two functions ς0, ς1 fulfilling
the assumptions of Lemma 12. They satisfy∫ 1

0
ς0(x) dx =

∫ 1

0
ς1(x) dx (4.38)

and do not coincide almost everywhere on [0, 1].

Let r̄ be the largest integer such that

r̄ ≤ Rβ1Mβ2n1−γ .

We consider the smallest integer q larger than α, and the set D given in the
first part of Lemma 11. Let then ς0, ς1 be the maps given by Lemma 13. We
consider a > 0 and set

ε = 1/r̄

�
2(α−1/p+1/2)
0 = aR−2n−1r2/p
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b20 = ar2(n�0)−1.

Note that (4.36) holds true. Moreover, b0�1/p0 ε−1/p tends to 0 when n goes to
infinity when θ < p/2. Hence (4.37) is true. When θ = p/2,

b0�
1/p
0 ε−1/p ≤ 2(2αp−3+p+2/p)/(p+2αp−2)aα/(1+2α−2/p)M1/p.

We thus also have (4.37) when M ≤ Rp and a small enough.
We consider x0 = r�0, δ ∈ D , and the map gδ defined by (4.35). Let then I

be the value of the integral in (4.38), and

I0,2 =
∫ 1

0
ς20 (x) dx

I1,2 =
∫ 1

0
ς21 (x) dx.

Elementary maths lead to:∫
(gδ(x))2 dx = 2ar3

n
+ 8a(1 + 2εI) (2 + ε)

n(1 + ε)2ε3 + 8a (r̄I1,2 + (r̄ + 1)I0,2)
n(1 + ε)2

+ ar3

n(1 + ε)2(r+1) I0,2.

This integral does not depend on δ and tends to 0 when n goes to infinity.
Besides, ∫

(gδ(x))2θ dx ≤ c1b
2θ
0 �0r,

for all n large enough and some c1 > 0 only depending on ς0, ς1 and θ. In
particular, ∫

(gδ(x))2θ dx ≤ c1a
(1−2θ/p+2αθ)/(1+2α−2/p)M

≤ c1M,

when a ≤ 1. We also have supp gδ ⊂ [−c1M, c1M ] when θ = 0.
We now apply Lemma 12 with suitable values of parameters to get a unimodal

non-negative function ζ ∈ Bα
p,∞(c2R), compactly supported on [−1, 1], and such

that
∫

(ζ(x))2 dx > 1,
∫

(ζ(x))2θ dx ≤ M (up to an increase of R,M). We then
consider s ∈ (0, 1) and set

fδ = (gδ + sζ)2.

As x0 > 1 for n or M large enough,∫
fδ(x) dx =

∫
(gδ(x))2 dx + 2sb0

∫
ζ(x) dx + s2

∫
(ζ(x))2 dx.
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Note that b0 tends to 0 as n goes to infinity. We may hence find s ∈ (0, 1), not
depending on δ, such that this integral is 1.

By putting all these results together, by using Lemma 12 and Proposition 3.1,
we get that fδ is a density lying in U S α

p,θ(c3R, c4M) and such that
√
fδ ∈

Bα
p,∞(c3R). Its support is included in [−c1M, c1M ] when θ = 0.
Since gδ is unimodal, we have gδ(x) ∈ [br+1, b0] for all x ∈ [−xr+1, xr+1].

When x �∈ [−xr+1, xr+1], gδ(x) = gδ′(x) for all δ, δ′. An elementary inequality
yields b0 ≤ e3br+1. We then deduce from Lemma 2.7 of [Tsy08], that for all
δ �= δ′ ∈ D ,

K(fδ, fδ′) ≤ b−2
r+1

∫
(fδ(x) − fδ′(x))2 dx

≤ b−2
r+1

∫
(gδ(x) − gδ′(x))2 (gδ(x) + gδ′(x) + 2sζ(x))2 dx

≤ b−2
r+1

∫
(gδ(x) − gδ′(x))2 (gδ(x) + gδ′(x))2 dx

≤ 4e6
∫

(gδ(x) − gδ′(x))2 dx

≤ 8e6

(1 + ε)2 ε
2

r∑
k=0

b2k�k|δk − δk′ |
∫

(ς0(x) − ς1(x))2 dx

≤ c5b
2
0�0ε

2r

≤ c6ar/n,

where c5, c6 only depend on ς0, ς1. We now choose a small enough to ensure
that (4.34) holds true.

Moreover,

h2(fδ, fδ′) = ε2

(1 + ε)2
r∑

k=0
b2k�k|δk − δk′ |

∫ 1

0
(ς0(x) − ς1(x))2 dx

≥ c7b
2
0�0ε

2Δ(δ, δ′),
≥ c8(a/n)Δ(δ, δ′),

for some c7, c8 > 0.
We may hence apply Lemma 11 with η of the order of n−1. This leads to

R(F ) ≥ c9r/n,

where F = {fδ, δ ∈ D}. We conclude using the definition of r.

Proof of Lemma 12. The only delicate point is gδ ∈ Bα
p,∞(cR) for some c. We

prove this result when p < ∞. The proof when p = ∞ is obtained by making
slight modifications. We suppose without loss of generality that q ≥ 2 is the
smallest integer larger than α.
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The qth order difference operator evaluated in gδ is defined for h > 0 and
x ∈ R by

Δq
hgδ(x) =

q∑
j=0

(
q

j

)
(−1)q−jgδ(x + jh).

Section 7 in Chapter 2 of [DL93] gives

Δq
hgδ(x) = hq−1

∫ (
Δ1

hgδ
)(q−1) (x + th)M(t) dt,

where M is a compactly supported density function on [0, q − 1] and bounded
by 1. Therefore,

Δq
hgδ(x) = hq−1

∫ [
g
(q−1)
δ (x + (t + 1)h) − g

(q−1)
δ (x + th)

]
M(t) dt. (4.39)

We consider k ∈ {0, . . . , r} and the map ςk,δk defined for x ≥ 0 by

ςk,δk(x) = [1 + εςδk((x− xk)/�k)]1[xk,xk+1)(x).

When k = r + 1, we set

ςr+1(x) = ς0 ((x− xr+1)/(r�0))1[xr+1,∞)(x).

When x < 0, we put ςk,δk(x) = ςk,δk(|x|) and ςr+1(x) = ςr+1(|x|). These maps
are q−1 times differentiable at all points except at −xr+1,−xk+1,−xk, xk, xk+1,
xr+1. We nevertheless set

ς
(q−1)
k,δk

(−xk+1) = ς
(q−1)
k,δk

(−xk)

= ς
(q−1)
k,δk

(xk)

= ς
(q−1)
k,δk

(xk+1)
= 0

and ς
(q−1)
r+1 (xr+1) = ς

(q−1)
r+1 (−xr+1) = 0 so that

g
(q−1)
δ (x) = 1

1 + ε

r∑
k=0

bkς
(q−1)
k,δk

(x) + br+1ς
(q−1)
r+1 (x) (4.40)

holds true on R.
Define now

ᾱ = α− (q − 1) ∈ [0, 1).

Since ς
(q−1)
δk

is compactly supported with a continuous derivative on R,∣∣∣ς(q−1)
δk

(b) − ς
(q−1)
δk

(a)
∣∣∣ ≤ c1|b− a|ᾱ
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for all a, b ∈ R, δk ∈ {0, 1}, and some c1 only depending on ς0, ς1, α, q. Therefore,
for all a, b ≥ 0, ∣∣∣ς(q−1)

k,δk
(b) − ς

(q−1)
k,δk

(a)
∣∣∣ ≤ c1ε�

−α
k |b− a|ᾱ. (4.41)

The same result holds true when a, b ≤ 0. Suppose now that a, b have opposite
signs, say a ≥ 0 and b ≤ 0. Then, ς(q−1)

k,δk
(b) = 0 if |b| ≤ xk. Otherwise, we use

ς
(q−1)
k,δk

(xk) = 0 to get∣∣∣ς(q−1)
k,δk

(b)
∣∣∣ = ∣∣∣ς(q−1)

k,δk
(|b|) − ς

(q−1)
k,δk

(xk)
∣∣∣

≤ c1ε�
−α
k (|b| − xk)ᾱ

≤ c1ε�
−α
k (|b| + a)ᾱ

≤ c1ε�
−α
k |b− a|ᾱ .

A similar reasoning applies to |ς(q−1)
k,δk

(a)|. To sum up, (4.41) holds true for all
a, b ∈ R (to within a multiplication of c1 by 2). Likewise,∣∣∣ς(q−1)

r+1 (b) − ς
(q−1)
r+1 (a)

∣∣∣ ≤ c2(r�0)−α|b− a|ᾱ

≤ c3ε�
−α
0 |b− a|ᾱ

as α > 1.
Consider now x ∈ R, h > 0 and t ∈ [0, q− 1]. There can only be one non-zero

term in the sum of (4.40). Therefore,∣∣∣g(q−1)
δ (x + (t + 1)h) − g

(q−1)
δ (x + th)

∣∣∣ ≤ c4b0ε�
−α
0 hᾱ.

We deduce from (4.39) that |Δq
hgδ(x)| satisfies

|Δq
hgδ(x)| ≤ c5b0ε�

−α
0 hα.

Moreover, Δq
hgδ(·) is compactly supported on [−xr+1 − r�0 − qh, xr+1 + r�0].

Observe that

xr+1 ≤ x0 +
r∑

j=0
�j

≤ r�0 + �0

r∑
j=0

(1 + ε)2j

≤ c6r�0.

We hence get when h ≤ r�0,∫ ∞

−∞
|Δq

hgδ(x)|p dx ≤ c7r�0
(
b0ε�

−α
0 hα

)p
≤ c8R

phαp,
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where the last inequality relies on (4.36). When h ≥ r�0, we bound the L
p

(quasi) norm of |Δq
hgδ(·)| as follows:∫ ∞

−∞
|Δq

hgδ(x)|p dx ≤ c9

∫ ∞

−∞
|gδ(x)|p dx

≤ c10

[
bp0x0 +

r∑
k=0

bpk�k + bpr+1�0r

]

≤ c10

[
bp0r�0 + bp0�0

r∑
k=0

(1 + ε)(2−p)k + bp0�0r

]
≤ c11b

p
0r�0.

We apply (4.36): ∫ ∞

−∞
|Δq

hgδ(x)|p dx ≤ c12R
prp�αp0 .

Since α > 1, rp ≤ rαp and the right-hand side of the last inequality is not larger
than c12R

phαp.
We may also use (4.37) in place of (4.36) to get ‖gδ‖p ≤ c13R. The conclusion

gδ ∈ Bα
p,∞(c14R) then stems from another (equivalent) definition of Besov balls.

See Section 10 in Chapter 2 of [DL93] for more details.

Proof of Lemma 13. We introduce for all p1, p2 ≥ 1 and x ∈ [0,+∞),

fp1,p2(x) = (1 − xp1)p21[0,1](x).

This map is non-increasing on [0, 1], p − 1 times differentiable where p =
min{p1, p2}, and such that fp1,p2(0) = 1, fp1,p2(1) = 0, f (s)

p1,p2(0) = f
(s)
p1,p2(1) = 0

for all s ∈ {1, . . . , p−1}. It fulfils the assumptions of Lemma 12 when p ≥ q+2.
We define the first function ς0 by ς0 = fq+3,q+3.

We then consider t ∈ [0, 1] and set
ς1 = tfq+3,q+2 + (1 − t)fq+2,q+3.

Since fq+2,q+3 ≤ fq+3,q+3 ≤ fq+3,q+2, the integral of ς1 evolves continuously
from

∫
fq+2,q+3 to

∫
fq+3,q+2 as t varies from 0 to 1. There is therefore some

t ∈ [0, 1] such that (4.38) holds true.
We conclude by noticing that ς1 satisfies the assumptions of Lemma 12 and

cannot coincide almost everywhere with ς0 because they are polynomials of
different degrees on [0, 1].

4.8. Proof of the claims of Section 2.4

We introduce the linear estimators

f̃ =
∑

k∈K−1

α̂0,kφ̄0,k +
J∑

j=0

∑
k∈Kj

β̂j,kψ̄j,k,

f̃ ′ =
∑
k∈Z

α̂0,kφ̄0,k +
J∑

j=0

∑
k∈Z

β̂j,kψ̄j,k
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where

α̂0,k = 1
n

n∑
i=1

φ0,k(Xi) and β̂j,k = 1
n

n∑
i=1

ψj,k(Xi).

We define f̄(x) and f̄ ′(x) for x ∈ R by f̄(x) = E[f̃(x)], f̄ ′(x) = E[f̃ ′(x)]. All
the statements concerning the results for the L

1 loss can be deduced from the
lemma below:

Lemma 14. If f ∈ Bα
1,∞(R) ∩ T1/2(M) with α ∈ (0, τ), R > 0, M ≥ 1,

max
{
d1(f, f̄), d1(f, f̄ ′)

}
≤ c1

[
R2−Jα

+R1/(2α+1)M2α/(2α+1)n−α/(2α+1)

+ Mn−1/2
]

(4.42)

max
{
E
[
d1(f̃ , f̄)

]
,E
[
d1(f̃ ′, f̄ ′)

]}
≤ c2M2J/2n−1/2, (4.43)

where c1, c2 only depend on α and the wavelets.

Proof of Lemma 14. We have,

max
{
d1(f, f̄), d1(f, f̄ ′)

}
≤ c1

[ ∑
k 
∈K−1

|α0,k(f)| +
J∑

j=0
2−j/2

∑
k 
∈Kj

|βj,k(f)|

+
∞∑

j=J+1
2−j/2

∑
k∈Z

|βj,k(f)|
]
.

The condition f ∈ Bα
1,∞(R) ensures

∞∑
j=J+1

2−j/2
∑
k∈Z

|βj,k(f)| ≤ c2R2−Jα.

Now, 2−j/2|βj,k(f)| ≤ c3fj,k where fj,k is defined by (4.3). Set

Zj,r =
{
k ∈ Z, 2−r < fj,k ≤ 2−r+1} ,

and observe that |Zj,r| ≤ c4M2r/22j/2. We deduce,

2−j/2
∑
k 
∈Kj

|βj,k(f)| ≤ c5
∑
2r≥n

M2−r/22j/2 ≤ c6M2j/2n−1/2.

A similar reasoning applies for the father wavelet coefficients. Now,

J∑
j=0

2−j/2
∑
k 
∈Kj

|βj,k(f)| ≤ c7

J∑
j=0

min
{
R2−jα,M2j/2n−1/2

}
≤ c8R

1/(2α+1)M2α/(2α+1)n−α/(2α+1).
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This shows (4.42). As to (4.43), we merely note

max
{
E
[
d1(f̃ , f̄)

]
,E
[
d1(f̃ ′, f̄ ′)

]}
≤ c9

⎡⎣∑
k∈Z

f
1/2
−1,k +

J∑
j=0

∑
k∈Z

f
1/2
j,k

⎤⎦n−1/2

≤ c10M

⎡⎣1 +
J∑

j=0
2j/2

⎤⎦n−1/2

≤ c11M2J/2n−1/2.

The result concerning the bias term d2
2(
√
f, V ) comes from the following

lemma:

Lemma 15. If
√
f ∈ Bα

2,∞(R) and f ∈ T1/2(M), for α ∈ (0, τ), R > 0, M ≥ 1,

d2
2

(√
f, V

)
≤ c
[
R22−2Jα + εn

]
,

where c only depends on α and the wavelets.

Proof of Lemma 15. We have,

d2
2

(√
f, V

)
≤ c1

⎡⎣ ∑
k 
∈K−1

(
α0,k(

√
f)
)2 +

J∑
j=0

∑
k 
∈Kj

(
βj,k(

√
f)
)2

+
∞∑

j=J+1

∑
k∈Z

(
βj,k(

√
f)
)2⎤⎦ .

The smoothness condition ensures∑
k∈Z

(
βj,k(

√
f)
)2 ≤ R22−2jα.

Besides, we have
(
βj,k(

√
f)
)2 ≤ c2fj,k where fj,k is defined in (4.3). By doing

as in the previous proof,∑
k 
∈K−1

(
α0,k(

√
f)
)2 ≤ c3Mn−1/2 and

∑
k 
∈Kj

(
βj,k(

√
f)
)2 ≤ c4Mn−1/22j/2.

Therefore,

J∑
j=0

∑
k 
∈Kj

(
βj,k(

√
f)
)2 ≤ c5

J∑
j=0

min
{
Mn−1/22j/2, R22−2jα

}
,

hence the result.
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As to the L
2 loss, the statements ensue from the following inequalities.

Lemma 16. If f ∈ Bα
2,∞(R) with α ∈ (0, τ), R > 0,

max
{
d2
2(f, f̄), d2

2(f, f̄ ′)
}
≤ c1

[
R22−2Jα + R2/(2α+1)n−2α/(2α+1)

+n−1] (4.44)
max

{
E
[
d2
2(f̃ , f̄)

]
,E
[
d2
2(f̃ ′, f̄ ′)

]}
≤ c22J/n, (4.45)

where c1, c2 only depend on α and the wavelet basis.

Proof of Lemma 16. We have,

max
{
d2
2(f, f̄), d2

2(f, f̄ ′)
}
≤ c1

⎡⎣ ∑
k 
∈K−1

(α0,k(f))2 +
J∑

j=0

∑
k 
∈Kj

(βj,k(f))2

+
∞∑

j=J+1

∑
k∈Z

(βj,k(f))2
⎤⎦ .

The last term can be bounded using f ∈ Bα
2,∞(R). For the second last, we note

(βj,k(f))2 ≤ c22jf2
j,k and do as in the proof of Lemma 14 by noticing that

|Zj,r| ≤ c32r as f is a density:∑
k 
∈Kj

(βj,k(f))2 ≤ c4
∑
2r≥n

2−r2j ≤ c52jn−1.

The reasoning is similar for the first term. Now,

J∑
j=0

∑
k 
∈Kj

(βj,k(f))2 ≤ c6

J∑
j=0

min
{
2jn−1, R22−2jα}

≤ c7R
2/(2α+1)n−2α/(2α+1).

We put everything together to get (4.44). We now show (4.45):

max
{
E
[
d2
2(f̃ , f̄)

]
,E
[
d2
2(f̃ ′, f̄ ′)

]}
≤ c8

⎡⎣∑
k∈Z

f−1,k +
J∑

j=0
2j
∑
k∈Z

fj,k

⎤⎦n−1

≤ c92Jn−1.
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