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Abstract: There are two classical very different extensions of the well-
known Gaussian fractional Brownian motion to non-Gaussian frameworks
of heavy-tailed stable distributions: the harmonizable fractional stable mo-
tion (HFSM) and the linear fractional stable motion (LFSM). As far as we
know, while several articles in the literature, some of which appeared a long
time ago, have proposed statistical estimators for parameters of LFSM, no
estimator has yet been proposed in the framework of HFSM. Among other
things, what makes statistical estimation of parameters of HFSM to be a
difficult problem is that, in contrast to LFSM, HFSM is not ergodic. The
main goal of our work is to propose a new strategy for dealing with this
problem and constructing strongly consistent and asymptotically normal
statistical estimators for both parameters of HFSM. The keystone of our
new strategy consists in the construction of new transforms of HFSM which
allow to obtain, at any dyadic level and also at any two consecutive dyadic
levels, sequences of independent stable random variables. This new strat-
egy might allow to make statistical inference for more general non-ergodic
harmonizable stable processes and fields than HFSM. Moreover, it could
turn out to be useful in study of other issues related to them.
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1. Introduction and statement of the main results

A real-valued harmonizable fractional stable motion1 (HFSM), denoted by
{X(t)}t∈R, is a paradigmatic example of a continuous symmetric stable self-
similar stochastic process with stationary increments. It was introduced, about
35 years ago, by Cambanis and Maejima in [10]. Basically, it depends on two
parameters: the Hurst parameter H belonging to the open interval (0, 1), and
the stability parameter α belonging to the interval (0, 2]. Among other things,
the parameter H governs roughness of sample paths of {X(t)}t∈R and its self-

1Notice that the HFSM is sometimes called harmonizable fractional stable process.
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similarity property:{
a−HX(at)

}
t∈R

d= {X(t)}t∈R, for any fixed a ∈ (0,+∞),

where d= means that the equality holds in the sense of the finite-dimensional
distributions. While the parameter α determines, for each t �= 0 (notice that
X(0) a.s.= 0), heaviness of the tail of the distribution of the random variable X(t),
whose characteristic function ΦX(t) satisfies ΦX(t)(λ) = exp

(
− σ(X(t))α|λ|α

)
,

for all λ ∈ R, where σ(X(t)) > 0 is the scale parameter of X(t). Indeed, except in
the very particular Gaussian case α = 2 in which the probability P

(
|X(t)| ≥ z

)
vanishes exponentially fast when z → +∞, for any other value of α, one knows
from Relation (1.2.10) in the well-known book [21], that one has, for some finite
constants 0 < c′(t) < c′′(t),

c′(t)z−α ≤ P
(
|X(t)| ≥ z

)
≤ c′′(t)z−α, for all z ∈ [1,+∞),

which in particular implies that E
(
|X(t)|γ) < +∞ only when γ ∈ (−1, α).

The HFSM {X(t)}t∈R is defined, for all t ∈ R, through the stable stochastic
integral in the frequency domain:

X(t) := Re
(∫

R

eitξ − 1
|ξ|H+1/α dM̃α(ξ)

)
, (1.1)

where M̃α is a complex-valued rotationally invariant α-stable random measure
with Lebesgue control measure. A detailed presentation of such a random mea-
sure and the corresponding stable stochastic integral and related topics can for
instance be found in Chapter 6 of the book [21]. The following remark, which
provides two very important properties of this stochastic integral, will play a
fundamental role in our work.

Remark 1.1. (i) The stable stochastic integral
∫
R

(
·
)
dM̃α is a linear map

on the Lebesgue space Lα(R) such that, for any deterministic function
g ∈ Lα(R), the real part Re

{ ∫
R
g(ξ) dM̃α(ξ)

}
is a real-valued Symmetric

α-Stable (SαS) random variable with a scale parameter satisfying

σ
(
Re
{∫

R

g(ξ) dM̃α(ξ)
})α

=
∫
R

∣∣g(ξ)∣∣α dξ. (1.2)

The equality (1.2) is reminiscent of the classical isometry property of
stochastic Wiener integrals; it implies that Re

{ ∫
R
gn(ξ) dM̃α(ξ)

}
con-

verges to Re
{ ∫

R
g(ξ) dM̃α(ξ)

}
in probability, when a sequence (gn)n con-

verges to g in Lα(R).
(ii) Let m ∈ N be arbitrary and let f1, . . . , fm be arbitrary functions of

Lα(R) whose supports are disjoint up to Lebesgue negligible sets, then the
SαS random variables Re

{ ∫
R
f1(ξ) dM̃α(ξ)

}
, . . . ,Re

{ ∫
R
fm(ξ) dM̃α(ξ)

}
are independent.
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In the very particular Gaussian case where the stability parameter α = 2,
the HFSM represented by (1.1) reduces to the very classical Gaussian fractional
Brownian motion (FBM) with Hurst parameter H, denoted by {BH(t)}t∈R. One
refers to the two books [21, 13] for detailed presentations of FBM and many
other related topics. It is well-known that, up to a deterministic multiplicative
constant, the Gaussian process {BH(t)}t∈R can also be represented as a moving
average stochastic Wiener integral in the time domain, whose integrand is no
longer the complex-valued function ξ �→ eitξ−1

|ξ|H+1/2 but the real-valued function

s �→
(
(t− s)H−1/2

+ − (−s)H−1/2
+

)
. One recalls, in passing, the usual convention

that, for all (x, β) ∈ R
2, one has (x)β+ := xβ if x > 0 and (x)β+ := 0 else.

When the stability parameter α �= 2, the HFSM in (1.1) can no longer be
represented as a moving average stable stochastic integral in the time domain.
Actually, it is very different from the real-valued linear fractional stable motion
(LFSM) {L(t)}t∈R defined, for each t ∈ R, by

L(t) :=
∫
R

(
(t− s)H−1/α

+ − (−s)H−1/α
+

)
dMα(s), (1.3)

where Mα is a real-valued α-stable random measure. The large differences be-
tween the two processes {X(t)}t∈R and {L(t)}t∈R can be explained by several
reasons. Two important ones of them are: (i) in contrast to the process {L(t)}t∈R

the process {X(t)}t∈R is not ergodic (the latter fact results from Theorem 4 in
[9]), (ii) behavior of sample paths of {L(t)}t∈R and {X(t)}t∈R is far from being
the same. Indeed, sample paths of {L(t)}t∈R are multifractal functions (see [6]),
which become discontinuous when H ≤ 1/α and even unbounded on any inter-
val when H < 1/α (see for example [21, 13]). While those of {X(t)}t∈R are, on
each compact interval, Hölder continuous of any order strictly less than H, for
every value of H ∈ (0, 1) (see [14, 15, 21, 13]); namely, for each fixed δ > 0 and
T > 0, one has almost surely

sup
−T≤t′<t′′≤T

{∣∣X(t′) −X(t′′)
∣∣

|t′ − t′′|H−δ

}
< +∞ . (1.4)

Moreover, sample paths of {X(t)}t∈R are monofractal functions; the latter fact
results from their Hölderianity property combined with Corollary 4.4 in [5].
Also, for later purposes, one mentions that as regards their behavior at infinity,
one can derive from Corollary 4.2 in [1], that, for all fixed δ > 0, one has, almost
surely,

sup
|t|≥1

{∣∣X(t)
∣∣

|t|H+δ

}
< +∞ . (1.5)

Let us now present the main motivations behind our present work and its
main contributions. Statistical estimators for the parameters H and α of the
LFSM {L(t)}t∈R and related moving average stable processes have been pro-
posed in several articles in the literature (see for instance [24, 20, 3, 2, 11, 18,
17, 16]), some of which appeared a long time ago. However, as far as we know,
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in the framework of the HFSM {X(t)}t∈R and related harmonizable stable pro-
cesses and fields no statistical estimator for any one of these two parameters
has yet been proposed in the literature. Also, according to what is mentioned in
Remark 1.2 (D) of the very recent article [7], their statistical estimation in such
a framework is far from being an obvious problem due to the fact that HFSM
and related harmonizable stable processes and fields are not ergodic. The main
idea behind our strategy for dealing with the latter problem is to construct new
transforms of HFSM which allow to obtain, at any dyadic level j ∈ N, a se-
quence {Yj,k}k∈N of independent real-valued SαS random variables whose scale
parameters σ(Yj,k), k ∈ N, are closely connected to the unknown parameters
H and α of HFSM through simple formulas which are rather easy to handle.
Also, we emphasize that the two sequences of random variables {Yj,2p−1}p∈N

and {Yj+1,2p−1}p∈N are independent. Roughly speaking, these new transforms
Yj,k, (j, k) ∈ N

2, of HFSM are at the same time inspired by discrete wavelet
transforms Wj,k, (j, k) ∈ N

2, of HFSM and significantly different from them.
Indeed, while Wj,k is defined (see e.g. [12, 19]), sometimes up to normalizing
factor, as the pathwise Lebesgue integral

Wj,k :=
∫
R

ψj,k(t)X(t) dt,

where
ψj,k(t) := ψ(2jt− k), for all t ∈ R, (1.6)

with ψ being a “nice” real-valued function; we define Yj,k as the pathwise
Lebesgue integral

Yj,k := 2
2π

∫
R

Re
(
ψ̂j,k(t)

)
X(t) dt, (1.7)

where ψ̂j,k is the Fourier transform of ψj,k.

Remark 1.2. Throughout our work, we use the very common convention that,
for any function f ∈ L1(R), the Fourier transform f̂ , also denoted by F(f), is
defined as

F(f)(t) = f̂(t) :=
∫
R

e−itξf(ξ) dξ, for all t ∈ R. (1.8)

While, the inverse Fourier transform of f , denoted by F−1(f), is defined as

F−1(f)(ξ) := 1
2π

∫
R

eiξtf(t) dt, for all ξ ∈ R. (1.9)

It is well-known (see e.g. Chapter 1 of the book [23]) that the two maps F and
F−1 can be extended to L2(R), and satisfy

F−1(F(g)
)

= F
(
F−1(g)

)
= g, for every g ∈ L2(R). (1.10)

We always assume that the function ψ in (1.6) and (1.7) satisfies the two
general assumptions (A1) and (A2) that we are now going to give.
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(A1) ψ is an even (i.e. ψ(−ξ) = ψ(ξ) for all ξ ∈ R), real-valued, continuous
function on R, with a compact non-empty support, denoted by I, such
that

I := suppψ :=
{
ξ ∈ R, ψ(ξ) �= 0

}
⊆
[
− 4−1, 4−1] . (1.11)

Observe that this assumption (A1) implies that ψ̂ (the Fourier transform of ψ)
is a real-valued, even, continuous function on R. Thus, it follows from (1.6),
(1.7) and elementary properties of Fourier transform that

Yj,k = 21−j

2π

∫
R

cos(2−jk t)ψ̂(2−jt)X(t) dt , for all (j, k) ∈ N
2. (1.12)

In view of (1.5) and continuity on R of sample paths of the HFSM {X(t)}t∈R, in
order to guarantee the existence and finiteness of the Lebesgue pathwise integral
in (1.12), we impose the following assumption (A2) to the Fourier transform of
ψ:

(A2) There exists a constant c such that∣∣ψ̂(t)
∣∣ ≤ c

(
1 + |t|

)−2
, for every t ∈ R. (1.13)

Remark 1.3. Observe that there are many functions satisfying the two general
assumptions (A1) and (A2), as for instance the piecewise linear triangle function:

ψ(ξ) :=
(
1l[−1,1] ∗ 1l[−1,1])(8ξ) =

(
2 − |8ξ|

)
1l[−4−1,4−1](ξ), for all ξ ∈ R,

where “∗” denotes the usual convolution product. Also, observe that there is no
need to impose to ψ to have any vanishing moment, while such a condition on
moment(s) of ψ plays a crucial role in the case of the discrete wavelet transform
Wj,k.

Before stating the first main theorem of our work, one needs to make the
following remark.

Remark 1.4. For all α ∈ (0, 2], one denotes by W(α) an arbitrary real-valued
SαS random variable with scale parameter equals to 1; thus, its characteristic
function ΦW(α) satisfies, for all λ ∈ R, ΦW(α)(λ) = exp(−|λ|α) (see e.g. [21]).
Notice that in the very special Gaussian case α = 2, the random variable W(2)
has a centered Gaussian distribution with standard deviation equals to 21/2

(and not 1). One knows from Theorem 3 in [22] and from the classical equality
E
(
|W(2)|ρ

)
= 2ρ Γ

(
(1 + ρ)/2

)
/Γ(1/2) that, for every α ∈ (0, 2],

M(ρ, α−1) := E
(
|W(α)|ρ

)
=

2ρ Γ
(
(1 + ρ)/2

)
Γ
(
1 − ρα−1)

Γ(1/2)Γ
(
1 − ρ/2

) , for all ρ ∈ (−1, α),

(1.14)
where α−1 = 1/α and Γ is the usual “Gamma” function. Moreover, denoting by
log2 the binary logarithm (that is log2(x) := log(x)/ log(2), for all x ∈ (0,+∞),
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where log is the Napierian logarithm) and by ∂ρ the partial derivative operator
with respect to the variable ρ, one has, for all α ∈ (0, 2], that(

log(2)
)
E

(
log2|W(α)|

)
= (∂ρM)(0, α−1) (1.15)

and
(
log(2)

)2
E

((
log2|W(α)|

)2) = (∂2
ρM)(0, α−1);

since
ρ �→ |G′

W(α)
(ρ)| = |W(α)|ρ

∣∣ log |W(α)|
∣∣

and
ρ �→ |G′′

W(α)
(ρ)| = |W(α)|ρ

(
log |W(α)|

)2
,

the absolute values of the derivative functions of orders 1 and 2 of the function
ρ �→ GW(α)(ρ) := |W(α)|ρ, are, on a deterministic neighborhood of 0, bounded
by an integrable random variable not depending on ρ; more precisely, let ρ0 ∈
(0, 4−1α) be arbitrary and fixed, and let Bρ0 be the positive integrable random
variable defined, almost surely, as

Bρ0 :=
(
|W(α)|−ρ0 + |W(α)|ρ0

)(∣∣ log |W(α)|
∣∣+ ( log |W(α)|

)2)
,

using the inequality |x|ρ ≤ |x|−ρ0 + |x|ρ0 , for all x ∈ R \ {0} and ρ ∈ [−ρ0, ρ0],
one has almost surely,

sup
ρ∈[−ρ0,ρ0]

{
|G′

W(α)
(ρ)| + |G′′

W(α)
(ρ)|
}
≤ Bρ0 .

One can derive from (1.15), (1.14) and standard calculations, that α−1 �→
Var
(
log2|W(α)|

)
is an explicit continuous polynomial positive function of de-

gree 2 in the variable α−1 ∈ [2−1,+∞), whose coefficients can be expressed in
terms of the “Gamma” function. The positive continuous function G is defined
as

G(α−1) :=
(
2 Var

(
log2|W(α)|

))−1/2
, for all α−1 ∈ [2−1,+∞). (1.16)

Theorem 1.5. For every n ∈ N, one sets

α̂−1
n,log2

:= 1
n

(
n∑

p=1

(
log2|Y1,2p−1| − log2|Y2,4p−1|

))
, (1.17)

where Y1,2p−1 and Y2,4p−1 are defined through (1.12). Then, the following two
results hold.

(i) α̂−1
n,log2

is a strongly consistent (almost surely convergent) estimator of the
inverse α−1 of the stability parameter α of HFSM.
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(ii) For all n ∈ N, the random variable D2,n,log2 is defined as

D2,n,log2 := G
(

max{α̂−1
n,log2

, 2−1})n1/2(α̂−1
n,log2

− α−1), (1.18)

where the positive continuous function G is as in (1.16). When n goes to
+∞, the random variable D2,n,log2 converges in distribution to a random
variable having a N (0, 1) Gaussian distribution.

In order to state the second and the third main theorems of our work, one
needs the following definition.

Definition 1.6. For every (j,m) ∈ N
2, the statistics V m

j,log2
and V m

j,γ , γ being a
fixed positive real number, are defined as

V m
j,log2

:=
m∑

p=1
log2 |Yj,2p−1

∣∣ (1.19)

and

V m
j,γ :=

m∑
p=1

∣∣Yj,2p−1
∣∣γ , (1.20)

where Yj,2p−1 is defined through (1.12).

Theorem 1.7. For every n ∈ N, one sets

Ĥn,log2 := 1
n

(
V n

2,log2
− V n

1,log2

)
, (1.21)

where V n
1,log2

and V n
2,log2

are defined through (1.19). Then, the following two
results hold.

(i) Ĥn,log2 is a strongly consistent (almost surely convergent) estimator of the
Hurst parameter H of HFSM.

(ii) For all n ∈ N, the random variable D1,n,log2 is defined as

D1,n,log2 := G
(

max{α̂−1
n,log2

, 2−1})n1/2(Ĥn,log2 −H
)
, (1.22)

where G and α̂−1
n,log2

are as in (1.16) and (1.17). When n goes to +∞, the
random variable D1,n,log2 converges in distribution to a random variable
having a N (0, 1) Gaussian distribution.

Theorem 1.8. One assumes that α ∈ [α, 2], where the lower bound α ∈ (0, 2] is
known. Also, one assumes that γ ∈ (0, 4−1α) is arbitrary and fixed. Let (mj)j∈N

be an arbitrary non-decreasing sequence (that is mj ≤ mj+1, for all j ∈ N) of
integers larger than 2 which satisfy the condition

mj ≥ j , for all j ∈ N. (1.23)

For all j ∈ N, one sets

Ĥj,γ := γ−1 log2

(
V

mj

2,γ

V
mj

1,γ

)
(1.24)
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and

α̂−1
j,γ := γ−1

(
1 − log2

(
V

mj+1
2,γ

V
mj

1,γ

))
, (1.25)

where V
mj

1,γ , V mj

2,γ and V
mj+1
2,γ are defined through (1.20). Then, the following two

results hold.

(i) Ĥj,γ is a strongly consistent (almost surely convergent) estimator of the
Hurst parameter H of HFSM.

(ii) Under the condition

lim
j→+∞

log2

(
mj+1

mj

)
= 1, (1.26)

α̂−1
j,γ is a strongly consistent (almost surely convergent) estimator of the

inverse α−1 of the stability parameter α of HFSM.

Before stating the fourth and the last main theorem of our work, one needs
to make the following remark.

Remark 1.9. Let α ∈ (0, 2] be as in Theorem 1.8 and let γ be arbitrary and
such that

0 < γ <
α

2α + 2 , (1.27)

which implies that

2γ(H + 1/α) < 1, for all (H,α) ∈ [0, 1] × [α, 2]. (1.28)

For every (H,α−1) ∈ [0, 1] × [2−1, α−1], one sets

Fγ(H,α−1) :=
E
(
|W(α)|γ

)(
1 − 2γ(H + α−1)

)1/2(
Var
(
|W(α)|γ

))1/2(1 − γ(H + α−1)
) , (1.29)

where W(α) denotes an arbitrary real-valued SαS random variable with scale pa-
rameter equals to 1. One can derive from (1.29), (1.28) and (1.14) that the pos-
itive function Fγ can be expressed in an explicit way in terms of the “Gamma”
function, which allows to show that Fγ is continuous on the compact rectangle
[0, 1] × [2−1, α−1].

The following theorem provides Central Limit Theorems for the two estima-
tors introduced in Theorem 1.8.

Theorem 1.10. Let (m1,j)j∈N and (m2,j)j∈N be two arbitrary non-decreasing
sequences of integers larger than 2 which satisfy the condition (1.23). Also, one
assumes that (m2,j)j∈N satisfies the following strengthened version of the con-
dition (1.26):

lim
j→+∞

(m2,j)1/2
∣∣∣∣log2

(
m2,j+1

m2,j

)
− 1
∣∣∣∣ = 0 . (1.30)
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Let α be as in Theorem 1.8 and let γ ∈ (0, 4−1α) be arbitrary and such that
(1.27) holds. For each j ∈ N, one denotes by Ĥ1,j,γ the strongly consistent
estimator of the Hurst parameter H of HFSM defined through (1.24) with mj =
m1,j, and one denotes by α̂−1

2,j,γ the strongly consistent estimator of the inverse
α−1 of the stability parameter α of HFSM defined through (1.25) with mj = m2,j
and mj+1 = m2,j+1. For all j ∈ N, the two random variables D1,j,γ and D2,j,γ
are defined as

D1,j,γ := 2−1/2( log(2)
)
γFγ

(
τ1(Ĥ1,j,γ), τ2(α̂−1

2,j,γ)
)
(m1,j)1/2

(
Ĥ1,j,γ−H

)
(1.31)

and

D2,j,γ := (2/3)1/2
(
log(2)

)
γFγ

(
τ1(Ĥ1,j,γ), τ2(α̂−1

2,j,γ)
)
(m2,j)1/2

(
α̂−1

2,j,γ − α−1
)
,

(1.32)
where Fγ is the positive continuous function on [0, 1]× [2−1, α−1] defined in Re-
mark 1.9, and τ1 and τ2 are the two continuous “truncation” functions defined,
for all x ∈ R, as

τ1(x) := max
{

0,min
{
x, 1
}}

and τ2(x) := max
{

2−1,min
{
x, α−1}} .

(1.33)
When j goes to +∞, the two random variables D1,j,γ and D2,j,γ converge in
distribution to a random variable having a N (0, 1) Gaussian distribution.

Remark 1.11. (i) We believe that the new strategy introduced in our present
work would open the door to statistical estimation of parameters of har-
monizable stable processes and fields extending the HFSM, as for instance
the harmonizable fractional stable field studied in e.g. [5], or the harmo-
nizable fractional stable sheet studied in e.g. [4].

(ii) In our present work, the four estimators α̂−1
n,log2

, Ĥn,log2 , Ĥj,γ and α̂−1
j,γ ,

are obtained from the observation of a sample path of the HFSM X in
continuous time, we believe that it would be possible to extend our estima-
tion procedures and the associated Central Limit Theorems to frameworks
where only a discretized sample path of X is observed.

We intend to study these two issues (i) and (ii) in future works.

The remaining of our present work is organized in the following way. In
Section 2, basically we show that the real-valued SαS random variables Yj,k,
(j, k) ∈ N

2, defined in (1.12), can be represented in terms of the stable stochastic
integral

∫
R

(
·
)
dM̃α (see Lemma 2.1); two important consequences, for any fixed

j ∈ N, of this representation are: the independence property of the random
variables Yj,k, k ∈ N, and the independence property of the two sequences of
random variables {Yj,2p−1}p∈N and {Yj+1,2p−1}p∈N. Section 3 is devoted to the
proofs of Theorems 1.5 and 1.7, Section 4 to that of Theorem 1.8, and Section 5
to that of Theorem 1.10.
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2. The keystone

The main goal of the present section is to prove the following very crucial lemma
and to derive important consequences of it.

Lemma 2.1. For all (j, k) ∈ N
2, Yj,k (defined in (1.12)) is a real-valued SαS

random variable which can almost surely be expressed as

Yj,k = Re
(∫

R

ψ̃j,k(ξ)
|ξ|H+1/α dM̃α(ξ)

)
, (2.1)

where
ψ̃j,k(ξ) := ψ(2jξ + k) + ψ(2jξ − k), for every ξ ∈ R. (2.2)

Remark 2.2. One knows from (2.2) and the assumption (A1) on ψ (see Sec-
tion 1) that, for all (j, k) ∈ N

2, ψ̃j,k is a real-valued even continuous function
on R with compact support, denoted by Ij,k, such that (see (1.11))

Ij,k := supp ψ̃j,k (2.3)

⊆
[
− 2−j−2 − k2−j , 2−j−2 − k2−j

]
∪
[
− 2−j−2 + k2−j , 2−j−2 + k2−j

]
.

Then, in view of the fact that k ≥ 1, it turns out that the function ξ �→
|ξ|−H−1/α ψ̃j,k(ξ) belongs to the Lebesgue space Lα(R), which guarantees that
the SαS stochastic integral in (2.1) is well-defined.

The proof of Lemma 2.1 will be given by the end of the section. For the
time being, we focus on the following very fundamental lemma which provides
3 important consequences of Lemma 2.1.

Lemma 2.3. For each fixed j ∈ N, the following three results hold:

(i)
{
Yj,k

}
k∈N

is a sequence of independent random variables.
(ii) The two sequences of random variables

{
Yj,2p−1

}
p∈N

and
{
Yj+1,2p−1

}
p∈N

are independent. One points out that the latter fact implies, for all
(m′,m′′) ∈ N

2, that the two random variables V m′

j,log2
and V m′′

j+1,log2
(see

(1.19)) are independent, and also that the two random variables V m′

j,γ and
V m′′

j+1,γ (see (1.20)) are independent; actually the sums in (1.19) and (1.20)
have been restricted to odd integers for having this independence property
with respect to j.

(iii) The two sequences of random variables {Yj,k

}
k∈N

and
{
2(j−1)HY1,k

}
k∈N

have the same distribution.One points out that the latter fact entails, for
every m ∈ N, that the two random variables V m

j,log2
and V m

1,log2
+m(j−1)H

have the same distribution, and also that the two random variables V m
j,γ

and 2(j−1)γHV m
1,γ have the same distribution.

Proof. Part (i) of the lemma follows from (2.3), which clearly implies that the
compact supports of the functions ψ̃j,k, k ∈ N, are disjoint. Indeed, in view
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of (2.1) and of Remark 1.1 (ii), the latter fact entails that the SαS random
variables Yj,k, k ∈ N, are independent.

For proving Part (ii) of the lemma, one has to show that for each two finite
non-empty sets P0 ⊂ N and P1 ⊂ N and for any two finite collections of real
numbers (λ0,p)p∈P0 and (λ1,p)p∈P1 , the two real-valued SαS random variables∑

p∈P0

λ0,pYj,2p−1 = Re
(∫

R

|ξ|−H−1/α
( ∑

p∈P0

λ0,pψ̃j,2p−1(ξ)
)
dM̃α(ξ)

)
(2.4)

and∑
p∈P1

λ1,pYj+1,2p−1 = Re
(∫

R

|ξ|−H−1/α
( ∑

p∈P1

λ1,pψ̃j+1,2p−1(ξ)
)
dM̃α(ξ)

)
(2.5)

are independent. Thus, in view of Remark 1.1 (ii), it is enough to prove that the
compact supports of the functions

∑
p∈P0

λ0,pψ̃j,2p−1 and
∑

p∈P1
λ1,pψ̃j+1,2p−1

are disjoint. One knows from Remark 2.2 that

supp
∑
p∈P0

λ0,pψ̃j,2p−1 ⊆
⋃

p∈P0

Ij,2p−1

and supp
∑
p∈P1

λ1,pψ̃j+1,2p−1 ⊆
⋃

p∈P1

Ij+1,2p−1 .

Then, for proving that these two supports are disjoint, it is sufficient to show
that

Ij,2p0−1 ∩ Ij+1,2p1−1 = ∅ , for all (p0, p1) ∈ P0 × P1. (2.6)

One knows from (2.3) that

Ij,2p0−1 ∩ Ij+1,2p1−1 (2.7)

=
{
x ∈ R,

∣∣|x| − (2p0 − 1)2−j
∣∣ ≤ 2−j−2

and
∣∣|x| − (2p1 − 1)2−j−1∣∣ ≤ 2−j−3

}
.

Suppose ad absurdum that, for some (p0, p1) ∈ P0 × P1, there exists some x ∈
Ij,2p0−1 ∩ Ij+1,2p1−1. Then one can derive from (2.7) and the triangle inequality
that ∣∣(2p0 − 1)2−j − (2p1 − 1)2−j−1∣∣

≤
∣∣(2p0 − 1)2−j − |x|

∣∣+ ∣∣|x| − (2p1 − 1)2−j−1∣∣ ≤ 3 · 2−j−3 ,

which implies that ∣∣2(2p0 − 1) − (2p1 − 1)
∣∣ ≤ 3/4 < 1 .

This cannot happen since 2(2p0 − 1) is an even integer while 2p1 − 1 is an odd
integer.
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For proving Part (iii) of the lemma, one has to show that for each finite
non-empty set P ⊂ N and for any finite collection of real numbers (λk)k∈P , the
two real-valued SαS random variables

∑
k∈P λkYj,k and 2(j−1)H∑

k∈P λkY1,k
have the same distribution, which, in view of Remark 3.1 in Section 3, amounts
to prove that their scale parameters are equal. One can derive from (2.1), (2.2)
and Remark 1.1 (i) that these scale parameters satisfy

σ
(∑

k∈P
λkYj,k

)α
=
∫
R

|ξ|−αH−1
∣∣∣∑
k∈P

λk

(
ψ(2jξ + k) + ψ(2jξ − k)

)∣∣∣α dξ

and

σ
(
2(j−1)H

∑
k∈P

λkY1,k

)α
= 2(j−1)αH

∫
R

|η|−αH−1
∣∣∣∑
k∈P

λk

(
ψ(2η + k) + ψ(2η − k)

)∣∣∣α dη.

Thus, it results from the change of variable η = 2j−1ξ that

σ
(∑

k∈P
λkYj,k

)
= σ
(
2(j−1)H

∑
k∈P

λkYj,k

)
.

From now on, our aim is to prove Lemma 2.1, to this end we need the following
definition and some preliminary results.

Definition 2.4. For all (j, k) ∈ N
2, let ψ̃j,k be the same function as in (2.2)

and let ̂̃ψj,k be its Fourier transform. For every n ∈ N, the random variable Y n
j,k

is defined as the finite sum:

Y n
j,k

:= 1
2π

∑
|m|≤4n

X(dn,m)
∫ dn,m+1

dn,m

̂̃
ψj,k(t) dt (2.8)

= Re

⎛⎝∫
R

|ξ|−H−1/α

⎛⎝ 1
2π

∑
|m|≤4n

∫ dn,m+1

dn,m

(
eidn,mξ − 1

) ̂̃
ψj,k(t) dt

⎞⎠ dM̃α(ξ)

⎞⎠ ,

where, for each (n,m) ∈ N× Z, the dyadic number dn,m := 2−n m.

Remark 2.5. Notice that the last equality in (2.8) results from (1.1) which
allows to express Y n

j,k as

Y n
j,k =

∑
|m|≤4n

( 1
2π

∫ dn,m+1

dn,m

̂̃
ψj,k(t) dt

)
Re
(∫

R

eidn,mξ − 1
|ξ|H+1/α dM̃α(ξ)

)

= Re

⎛⎝ ∑
|m|≤4n

( 1
2π

∫ dn,m+1

dn,m

̂̃
ψj,k(t) dt

)∫
R

eidn,mξ − 1
|ξ|H+1/α dM̃α(ξ)

⎞⎠ , (2.9)
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where the last equality results from the fact that the deterministic Lebesgue
integrals

∫ dn,m+1
dn,m

̂̃
ψj,k(t) dt are real numbers. Then, using the fact that the sum∑

|m|≤4n · · · in (2.9) consists in only a finite number of terms, and the linearity
property of the stable stochastic integral

∫
R

(
·
)
dM̃α and of the deterministic

Lebesgue integrals
∫ dn,m+1
dn,m

(
·
)
dt, one obtains the last equality in (2.8).

Remark 2.6. Let (j, k) ∈ N
2 be arbitrary and fixed. One can derive from (2.2)

and standard calculations that the Fourier transform of ψ̃j,k is given by

̂̃
ψj,k(t) = 21−j cos(2−jkt)ψ̂(2−jt) for all t ∈ R. (2.10)

Thus, (1.12) reduces to

Yj,k = 1
2π

∫
R

̂̃
ψj,k(t)X(t) dt . (2.11)

Moreover, it follows from (2.10) and (1.13), that, for some finite deterministic
constant c(j) > 0, only depending on j, one has∣∣ ̂̃ψj,k(t)

∣∣ ≤ c(j)
(
1 + |t|

)−2
, for every t ∈ R, (2.12)

which implies that ̂̃ψj,k belongs to L1(R) ∩ L2(R).

Lemma 2.7. Let (j, k) ∈ N
2 be arbitrary and fixed. The continuous function

ψ̃j,k can be expressed as

ψ̃j,k(ξ) = 1
2π

∫
R

(
eiξt − 1

) ̂̃
ψj,k(t) dt, for all ξ ∈ R. (2.13)

Proof. First, observe that the fact that ψ̃j,k is a continuous function on R results
from (2.2) and the assumption (A1) in Section 1. Then, since ̂̃ψj,k belongs to
L1(R) ∩L2(R), one knows from Remark 1.2, and more particularly from (1.10)
in it (see also Corollary 1.21 in Chapter 1 of the book [23]), that the function
ψ̃j,k can be expressed as

ψ̃j,k(ξ) = 1
2π

∫
R

eiξt
̂̃
ψj,k(t) dt, for all ξ ∈ R. (2.14)

Thus combining (2.14) with (2.3) and the fact that the integer k ≥ 1, one obtains
that

1
2π

∫
R

̂̃
ψj,k(t) dt = ψ̃j,k(0) = 0. (2.15)

Then (2.14) and (2.15) imply that (2.13) holds.
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Lemma 2.8. Let (j, k) ∈ N
2 be arbitrary and fixed, one denotes by Y̌j,k the

right-hand side of (2.1), namely Y̌j,k is the SαS random variable defined as

Y̌j,k := Re
(∫

R

ψ̃j,k(ξ)
|ξ|H+1/α dM̃α(ξ)

)
. (2.16)

Moreover, using the same notation as in (2.8), for each n ∈ N, the SαS random
variable Rn

j,k is defined as

Rn
j,k := Y n

j,k − Y̌j,k. (2.17)

Then, for any arbitrary fixed real number τ satisfying

0 < τ < min{H, 1 −H}, (2.18)

there is a finite constant c > 0, which does not depend on n and k, such that
the scale parameter σ(Rn

j,k) satisfies

σ(Rn
j,k) ≤ c 2−nτ . (2.19)

Remark 2.9. Let ΦRn
j,k

be the characteristic function of the SαS random vari-
able Rn

j,k defined in (2.17). Using (2.19) and the equality

ΦRn
j,k

(λ) = exp
(
− σ(Rn

j,k)α|λ|α
)
, for all λ ∈ R,

one obtains, for every λ ∈ R, that lim
n→+∞

ΦRn
j,k

(λ) = 1. Therefore, when n goes
to +∞, the random variable Rn

j,k converges in distribution to 0, which also
means that it converges in probability to 0. Thus, it results from (2.17) that
Y n
j,k converges in probability to Y̌j,k when n goes to +∞.

Proof of Lemma 2.8. Let (j, k) ∈ N
2 an n ∈ N be arbitrary and fixed. Putting

together (2.17), the second equality in (2.8) and (2.16), it follows that the SαS
random variable Rn

j,k can be expressed as

Rn
j,k = Re

(∫
R

|ξ|−H−1/α
(

1
2π

∑
|m|≤4n

∫ dn,m+1

dn,m

(
eidn,mξ − 1

) ̂̃
ψj,k(t) dt

−ψ̃j,k(ξ)
)
dM̃α(ξ)

)
.

Therefore, (2.13) implies that

Rn
j,k

= Re
(∫

R

|ξ|−H−1/α
(

1
2π

∑
|m|≤4n

∫ dn,m+1

dn,m

(
eidn,mξ − 1

) ̂̃
ψj,k(t) dt
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− 1
2π

∫
R

(
eiξt − 1

) ̂̃
ψj,k(t) dt

)
dM̃α(ξ)

)

= 1
2πRe

(∫
R

|ξ|−H−1/α
( ∑

|m|≤4n

∫ dn,m+1

dn,m

(
eidn,mξ − eitξ

) ̂̃
ψj,k(t) dt

−
∫
{t/∈[−2n,2n+2−n)}

(
eitξ − 1

) ̂̃
ψj,k(t) dt

)
dM̃α(ξ)

)
.

Thus, one can derive from Remark 1.1 (i) that

σ(Rn
j,k)α (2.20)

= 1
(2π)α

∫
R

|ξ|−αH−1
∣∣∣∣ ∑
|m|≤4n

∫ dn,m+1

dn,m

(
eidn,mξ − eitξ

) ̂̃
ψj,k(t) dt

−
∫
{t/∈[−2n,2n+2−n)}

(
eitξ − 1

) ̂̃
ψj,k(t) dt

∣∣∣∣α dξ.

Then, combining (2.20) with the triangle inequality and the inequality |a+b|α ≤
2α
(
|a|α + |b|α

)
, for all complex numbers a and b, one gets that

σ(Rn
j,k)α ≤ 2α

(
Un

j,k + Vn
j,k

)
, (2.21)

where

Un
j,k :=

∫
R

|ξ|−αH−1
( ∑

|m|≤4n

∫ dn,m+1

dn,m

∣∣ei(dn,m−t)ξ − 1
∣∣∣∣ ̂̃ψj,k(t)

∣∣ dt)α

dξ (2.22)

and
Vn
j,k :=

∫
R

|ξ|−αH−1
(∫

{|t|≥2n}

∣∣eitξ − 1
∣∣∣∣ ̂̃ψj,k(t)

∣∣ dt)α

dξ. (2.23)

Let B0 := [−1, 1] and B1 := R \B0. For deriving appropriate upper bounds for
the integrals Un

j,k and Vn
j,k, we need to split them as

Un
j,k = U

n,0
j,k + U

n,1
j,k and Vn

j,k = V
n,0
j,k + V

n,1
j,k , (2.24)

where, for l ∈ {0, 1},

U
n,l
j,k :=

∫
Bl

|ξ|−αH−1
( ∑

|m|≤4n

∫ dn,m+1

dn,m

∣∣ei(dn,m−t)ξ − 1
∣∣∣∣ ̂̃ψj,k(t)

∣∣ dt)α

dξ (2.25)

and

V
n,l
j,k :=

∫
Bl

|ξ|−αH−1
(∫

{|t|≥2n}

∣∣eitξ − 1
∣∣∣∣ ̂̃ψj,k(t)

∣∣ dt)α

dξ. (2.26)
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Let us now bound U
n,0
j,k and V

n,1
j,k . To this end, we will make use of the classical

inequality ∣∣eiθ − 1
∣∣ ≤ min

{
|θ|, 2

}
, for all θ ∈ R. (2.27)

Combining (2.25), with l = 0, and (2.27), one gets that

U
n,0
j,k ≤

∫
B0

|ξ|α(1−H)−1
( ∑

|m|≤4n

∫ dn,m+1

dn,m

∣∣t− dn,m
∣∣∣∣ ̂̃ψj,k(t)

∣∣ dt)α

dξ

=
(∫

B0

|ξ|α(1−H)−1 dξ

)( ∑
|m|≤4n

∫ dn,m+1

dn,m

∣∣t− dn,m
∣∣∣∣ ̂̃ψj,k(t)

∣∣ dt)α

.

Then, the inequality

|t− dn,m| ≤ 2−n, for all (n,m) ∈ N× Z and t ∈ [dn,m, dn,m+1], (2.28)

and the inequality (2.12) imply that

U
n,0
j,k ≤

(∫
B0

|ξ|α(1−H)−1 dξ

)(∫
R

∣∣ ̂̃ψj,k(t)
∣∣ dt)α

2−nα ≤ c1 2−nα, (2.29)

where c1 is a finite positive constant which does not depend on n and k. On
another hand, combining (2.26), with l = 1, and (2.27), one obtains that

V
n,1
j,k ≤ 2α

∫
B1

|ξ|−αH−1
(∫

{|t|≥2n}

∣∣ ̂̃ψj,k(t)
∣∣ dt)α

dξ

= 2α
(∫

B1

|ξ|−αH−1 dξ

)(∫
{|t|≥2n}

∣∣ ̂̃ψj,k(t)
∣∣ dt)α

.

Then, the inequality (2.12) and standard calculations entail that

V
n,1
j,k ≤ c2 2−nα, (2.30)

where c2 is a finite positive constant which does not depend on n and k.
In all the sequel, the fixed positive real number τ ∈ (0, 1) is as in (2.18). Let

us now bound U
n,1
j,k . Using (2.27) and (2.28), one has, for all ξ ∈ B1 and for

every (n,m) ∈ N× Z,∫ dn,m+1

dn,m

∣∣ei(dn,m−t)ξ − 1
∣∣∣∣ ̂̃ψj,k(t)

∣∣ dt
=
∫ dn,m+1

dn,m

∣∣ei(dn,m−t)ξ − 1
∣∣1−τ ∣∣ei(dn,m−t)ξ − 1

∣∣τ ∣∣ ̂̃ψj,k(t)
∣∣ dt

≤ 21−τ |ξ|τ
∫ dn,m+1

dn,m

|t− dn,m|τ
∣∣ ̂̃ψj,k(t)

∣∣ dt
≤
(

21−τ |ξ|τ
∫ dn,m+1

dn,m

∣∣ ̂̃ψj,k(t)
∣∣ dt)2−nτ .
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Then, one can derive from (2.25), with l = 1, that

U
n,1
j,k ≤

(
2α(1−τ)

∫
B1

|ξ|−α(H−τ)−1 dξ

)(∫
R

∣∣ ̂̃ψj,k(t)
∣∣ dt)α

2−nατ ≤ c3 2−nατ ,

(2.31)
where c3 is a finite positive constant which does not depend on n and k, the
latter fact follows from (2.12) and the inequality τ < H (see (2.18)).

Let us now bound V
n,0
j,k . Using (2.27) and (2.12), one has, for all ξ ∈ B0 and

for every n ∈ N,∫
{|t|≥2n}

∣∣eitξ − 1
∣∣∣∣ ̂̃ψj,k(t)

∣∣ dt =
∫
{|t|≥2n}

∣∣eitξ − 1
∣∣τ |eitξ − 1

∣∣1−τ ∣∣ ̂̃ψj,k(t)
∣∣ dt

≤ 2τ |ξ|1−τ

∫
{|t|≥2n}

|t|1−τ
∣∣ ̂̃ψj,k(t)

∣∣ dt ≤ c4 2τ |ξ|1−τ

∫
{|t|≥2n}

(
1 + |t|

)−1−τ
dt

≤ c5 |ξ|1−τ 2−nτ ,

where c4 and c5 are two positive finite constants not depending on n, k and ξ.
Then, one can derive from (2.26), with l = 0, that

V
n,0
j,k ≤ c6 2−nατ , (2.32)

where c6 is the positive finite constant, not depending on n and k, defined as
c6 := cα5

∫
B0

|ξ|α(1−τ−H)−1 dξ. Notice that the finiteness of c6 results from the
inequality 1 − τ > H which is a consequence of (2.18).

Finally, putting together (2.21), (2.24), (2.29), (2.30), (2.31) and (2.32), it
follows that (2.19) is satisfied.

We are now ready to prove Lemma 2.1.

Proof of Lemma 2.1. In view of Lemma 2.8 and Remark 2.9, it turns out that
for proving Lemma 2.1, it is enough to show that, when n goes to +∞, the SαS
random variable Y n

j,k (see (2.8)) converges almost surely to the random variable
Yj,k (see (2.11)).

One recalls that, for each (n,m) ∈ N×Z, the dyadic number dn,m := 2−n m.
Let N be an arbitrary fixed positive integer. One sets

Y N
j,k := 1

2π

∫ N

−N

̂̃
ψj,k(t)X(t) dt (2.33)

and, for every integer n ≥ N ,

Y N,n
j,k := 1

2π

N2n−1∑
m=−N2n

X(dn,m)
∫ dn,m+1

dn,m

̂̃
ψj,k(t) dt. (2.34)

Notice that, it easily results from (2.33) that

Y N
j,k = 1

2π

N2n−1∑
m=−N2n

∫ dn,m+1

dn,m

X(t) ̂̃ψj,k(t) dt .
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Then, using (2.34), (1.4) with T = N , and the inclusion [dn,m, dn,m+1] ⊂
[−N,N ] when −N2n ≤ m ≤ N2n − 1, one gets, on an event of probability
1 depending only on N and denoted by Ω∗

N , that

∣∣Y N
j,k − Y N,n

j,k

∣∣ ≤ N2n−1∑
m=−N2n

∫ dn,m+1

dn,m

∣∣X(t) −X(dn,m)
∣∣∣∣ ̂̃ψj,k(t)

∣∣ dt
≤ C∗

N,δ

N2n−1∑
m=−N2n

∫ dn,m+1

dn,m

|t− dn,m|H−δ
∣∣ ̂̃ψj,k(t)

∣∣ dt
≤
(
C∗

N,δ

∫
R

∣∣ ̂̃ψj,k(t)
∣∣ dt)2−n(H−δ), (2.35)

where δ is an arbitrarily small fixed positive real number, and C∗
N,δ is a positive

finite random variable, only depending on N and δ. Also, notice that (2.12)
entails that the integral

∫
R

∣∣ ̂̃ψj,k(t)
∣∣ dt in (2.35) is finite. Next, let Ω∗ be the

event of probability 1 defined as the countable intersection Ω∗ :=
⋂

N∈N
Ω∗

N .
One can derive from (2.35) that

lim
n→+∞

∣∣Y N
j,k(ω) − Y N,n

j,k (ω)
∣∣ = 0, for all N ∈ N and ω ∈ Ω∗. (2.36)

On another hand, it follows from (1.5) that there are Ω∗∗ an event of probability
1 and C∗∗

δ a positive finite random variable only depending on δ, such that∣∣X(t, ω)
∣∣ ≤ C∗∗

δ (ω)|t|H+δ, for all t /∈ (−1, 1) and ω ∈ Ω∗∗. (2.37)

Combining the first equality in (2.8) and (2.34) one obtains, for every ω ∈ Ω∗∗

and positive integers N and n ≥ N ,∣∣Y n
j,k(ω) − Y N,n

j,k (ω)
∣∣

≤
+∞∑

m=N2n

∣∣X(dn,m, ω)
∣∣ ∫ dn,m+1

dn,m

∣∣ ̂̃ψj,k(t)
∣∣ dt

+
−N2n−1∑
m=−∞

∣∣X(dn,m, ω)
∣∣ ∫ dn,m+1

dn,m

∣∣ ̂̃ψj,k(t)
∣∣ dt.

Therefore, (2.37) and (2.12) entail, for all ω ∈ Ω∗∗ and positive integers N and
n ≥ N , that∣∣Y n

j,k(ω) − Y N,n
j,k (ω)

∣∣
≤ C∗∗

δ (ω)
( +∞∑

m=N2n

∣∣dn,m∣∣H+δ
∫ dn,m+1

dn,m

∣∣ ̂̃ψj,k(t)
∣∣ dt

+
−N2n−1∑
m=−∞

∣∣dn,m∣∣H+δ
∫ dn,m+1

dn,m

∣∣ ̂̃ψj,k(t)
∣∣ dt)
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≤ C∗∗
δ (ω)

( +∞∑
m=N2n

∫ dn,m+1

dn,m

|t|H+δ
∣∣ ̂̃ψj,k(t)

∣∣ dt
+

−N2n−1∑
m=−∞

∫ dn,m+1

dn,m

(
1 + |t|

)H+δ ∣∣ ̂̃ψj,k(t)
∣∣ dt)

≤ 2c(j)C∗∗
δ (ω)

∫ +∞

N

(
1 + t

)H+δ−2
dt

≤ 2(1 −H − δ)−1 c(j)C∗∗
δ (ω)N−(1−H−δ), (2.38)

where c(j) is the same finite constant as in (2.12). On another hand, putting
together (2.11), (2.33), (2.37) and (2.12), it follows that, for all ω ∈ Ω∗∗ and
positive integers N , one has

∣∣Yj,k(ω) − Y N
j,k(ω)

∣∣ ≤ ∫
{|t|≥N}

∣∣ ̂̃ψj,k(t)
∣∣∣∣X(t, ω)

∣∣ dt
≤ 2c(j)C∗∗

δ (ω)
∫ +∞

N

(
1 + t

)H+δ−2
dt

≤ 2(1 −H − δ)−1 c(j)C∗∗
δ (ω)N−(1−H−δ). (2.39)

Finally, observe that, for all positive integers N and n ≥ N , and for each
ω ∈ Ω∗ ∩Ω∗∗ (the event Ω∗ ∩Ω∗∗ is clearly of probability 1), using the triangle
inequality, (2.38) and (2.39), one gets that∣∣Yj,k(ω) − Y n

j,k(ω)
∣∣

≤
∣∣Yj,k(ω) − Y N

j,k(ω)
∣∣+ ∣∣Y N

j,k(ω) − Y N,n
j,k (ω)

∣∣+ ∣∣Y N,n
j,k (ω) − Y n

j,k(ω)
∣∣

≤ 4(1 −H − δ)−1 c(j)C∗∗
δ (ω)N−(1−H−δ) +

∣∣Y N
j,k(ω) − Y N,n

j,k (ω)
∣∣.

Thus, one can derive from (2.36) that, for all positive integers N and for each
ω ∈ Ω∗ ∩ Ω∗∗,

lim sup
n→+∞

∣∣Yj,k(ω) − Y n
j,k(ω)

∣∣ ≤ 4(1 −H − δ)−1 c(j)C∗∗
δ (ω)N−(1−H−δ). (2.40)

Finally, when N goes to +∞, (2.40) implies that

lim sup
n→+∞

∣∣Yj,k(ω) − Y n
j,k(ω)

∣∣ = 0, for all ω ∈ Ω∗ ∩ Ω∗∗,

which shows that Y n
j,k converges almost surely to Yj,k, when n tends to +∞.

3. Proofs of Theorems 1.5 and 1.7

For proving Theorems 1.5 and 1.7, one needs the following three preliminary
results.
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Remark 3.1. For any arbitrary α ∈ (0, 2], let W be an arbitrary real-valued
SαS random variable with scale parameter equals to 1. Then, for each real-
valued SαS random variable Z with scale parameter σ(Z), one has Z d= σ(Z)W
(equality in distribution). This equality is a straightforward consequence of the
fact that ΦZ and ΦW , the characteristic functions of Z and W , satisfy (see e.g.
[21]), for all λ ∈ R, ΦZ(λ) = exp

(
− σ(Z)α|λ|α

)
and ΦW (λ) = exp

(
− |λ|α

)
.

Lemma 3.2. For all (j, k) ∈ N
2, the scale parameter of the real-valued SαS

random variable Yj,k (see (1.12) and (2.1)) satisfies

σ(Yj,k) = 2jH+1/α

(∫ 4−1

−4−1

∣∣ψ(η)
∣∣α

(η + k)αH+1 dη

)1/α

, (3.1)

which clearly implies (see (1.11)) that

‖ψ‖Lα(R)2jH+1/α(k + 4−1)−(H+1/α) (3.2)

≤ σ(Yj,k) ≤ ‖ψ‖Lα(R)2jH+1/α(k − 4−1)−(H+1/α)
,

where ∥∥ψ∥∥
Lα(R) :=

(∫
R

∣∣ψ(η)
∣∣α dη

)1/α

=
(∫ 4−1

−4−1

∣∣ψ(η)
∣∣α dη

)1/α

.

Proof. One knows from (2.1), (2.2), Remark 1.1 (i) and (1.11) that, for all
(j, k) ∈ N

2, one has

σ(Yj,k)α =
∫ 2−j(−k+4−1)

2−j(−k−4−1)

∣∣ψ(2jξ + k)
∣∣α

|ξ|αH+1 dξ +
∫ 2−j(k+4−1)

2−j(k−4−1)

∣∣ψ(2jξ − k)
∣∣α

|ξ|αH+1 dξ.

Then, using the fact that ψ is an even function (see the assumption (A1) in
Section 1) and the change of variable η = 2jξ − k i.e. ξ = 2−j(η + k), one gets
that

σ(Yj,k)α = 2
∫ 2−j(k+4−1)

2−j(k−4−1)

∣∣ψ(2jξ − k)
∣∣α

(ξ)αH+1 dξ = 2jαH+1
∫ 4−1

−4−1

∣∣ψ(η)
∣∣α

(η + k)αH+1 dη.

Lemma 3.3. For any fixed positive real number γ, there exists a finite constant
c = c(γ), such that, for all p ∈ N, one has∣∣∣∣∣∣

(∫ 4−1

−4−1

∣∣ψ(η)
∣∣α(

1 + (2p)−1(η − 1)
)αH+1 dη

)γ/α

− ‖ψ‖γLα(R)

∣∣∣∣∣∣ ≤ c p−1. (3.3)

Proof. For each p ∈ N, one sets

rp :=
∫ 4−1

−4−1

∣∣ψ(η)
∣∣α(

1 + (2p)−1(η − 1)
)αH+1 dη −

∫ 4−1

−4−1

∣∣ψ(η)
∣∣α dη . (3.4)
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Using the fact that there exists a positive finite constant c1 such that one has∣∣(1 + x)−αH−1 − 1
∣∣ ≤ c1|x| , for every x ∈ [−5/8, 5/8],

one gets, for all p ∈ N and η ∈ [−1/4, 1/4], that∣∣∣(1 + (2p)−1(η − 1)
)−αH−1 − 1

∣∣∣ ≤ c1(2p)−1|η − 1| ≤ c1p
−1,

and consequently (see (3.4)) that

|rp| ≤ c2 p
−1 , for all p ∈ N, (3.5)

where the finite constant c2 := c1
∫ 4−1

−4−1

∣∣ψ(η)
∣∣α dη = c1‖ψ‖αLα(R). Next, one

notices that, since ‖ψ‖Lα(R) > 0, there are two positive finite constants y0 and
c3 such that∣∣∣(‖ψ‖αLα(R) + y

)γ/α − ‖ψ‖γLα(R)

∣∣∣ ≤ c3|y| , for every y ∈ [−y0, y0]. (3.6)

Moreover, one knows from (3.5) that there exists p0 ∈ N such that, for all p ≥ p0,
one has |rp| ≤ y0. Thus, one can derive from (3.4), (3.6) with y = rp, and (3.5)
that, for all p ≥ p0,∣∣∣∣∣

( ∫ 4−1

−4−1

∣∣ψ(η)
∣∣α(

1 + (2p)−1(η − 1)
)αH+1 dη

)γ/α

− ‖ψ‖γLα(R)

∣∣∣∣∣
=
∣∣∣(‖ψ‖αLα(R) + rp

)γ/α − ‖ψ‖γLα(R)

∣∣∣
≤ c3|rp| ≤ c3c2 p

−1,

which shows that

sup
p∈N

{
p×
∣∣∣∣∣
( ∫ 4−1

−4−1

∣∣ψ(η)
∣∣α(

1 + (2p)−1(η − 1)
)αH+1 dη

)γ/α

− ‖ψ‖γLα(R)

∣∣∣∣∣
}

< +∞,

which means that (3.3) is satisfied.

Proof of Theorem 1.5. One knows from Lemma 3.2 that the scale parameters
of the SαS random variables Yj,k are strictly positive. For each p ∈ N, the two
SαS random variables with scale parameters equal to 1, W1,2p−1 and W2,4p−1,
are defined (see Remark 3.1) as

W1,2p−1 = Y1,2p−1

σ(Y1,2p−1)
and W2,4p−1 = Y2,4p−1

σ(Y2,4p−1)
= Y2,4p−1

2Hσ(Y1,4p−1)
. (3.7)

Observe that the equality σ(Y2,4p−1) = 2Hσ(Y1,4p−1) results from (3.1). Next,
it follows from (1.17) and (3.7) that, for all n ∈ N, one has

α̂−1
n,log2

− α−1
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= 1
n

n∑
p=1

(
log2|Y1,2p−1| − log2|Y2,4p−1| − log2

(
21/α)) (3.8)

= 1
n

n∑
p=1

(
log2|W1,2p−1| − log2|W2,4p−1| + log2

(
σ(Y1,2p−1)

2H+1/α σ(Y1,4p−1)

))
.

Observe that one knows from the very fundamental Lemma 2.3 and (3.7) that(
log2|W1,2p−1| − log2|W2,4p−1|

)
p∈N

is a sequence of independent, identically distributed, centered and square inte-
grable random variables. Thus, one can derive from the very classical strong law
of large numbers that

1
n

n∑
p=1

(
log2|W1,2p−1| − log2|W2,4p−1|

)
a.s.−−−−−→

n→+∞
0. (3.9)

Moreover, one can derive from the very classical Central Limit Theorem that(
1

2Var
(
log2|W(α)|

)
n

)1/2 n∑
p=1

(
log2|W1,2p−1| − log2|W2,4p−1|

)
d−−−−−→

n→+∞
N (0, 1),

(3.10)
where W(α) is as in Remark 1.4, and where d−−−−−→

n→+∞
N (0, 1) denotes the conver-

gence in distribution to a random variable having a N (0, 1) Gaussian distribu-
tion. Thus, in view of (3.8), (3.9) and (3.10), it turns out that for proving the
theorem it is enough to show that

lim
n→+∞

1
n1/2

n∑
p=1

∣∣∣∣log2

(
σ(Y1,2p−1)

2H+1/α σ(Y1,4p−1)

)∣∣∣∣ = 0. (3.11)

Indeed, it easily follows from (3.8), (3.9) and (3.11) that

α̂−1
n,log2

− α−1 a.s.−−−−−→
n→+∞

0, (3.12)

which shows that Part (i) of the theorem is satisfied. Moreover, (3.8), (3.10)
and (3.11) clearly entail that(

n

2Var
(
log2|W(α)|

))1/2 (
α̂−1
n,log2

− α−1) d−−−−−→
n→+∞

N (0, 1). (3.13)

Therefore, combining (3.13) with the fact that

G
(

max{α̂−1
n,log2

, 2−1})(2Var
(
log2|W(α)|

))1/2 a.s.−−−−−→
n→+∞

1, (3.14)
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one gets Part (ii) of the theorem. Notice that (3.14) results from (3.12) and
Remark 1.4.

From now on, one focuses on the proof of (3.11). Observe that (3.1) implies,
for all p ∈ N, that

σ(Y1,2p−1)
2H+1/α σ(Y1,4p−1)

− 1

= 2−(H+1/α)

(∫ 4−1

−4−1

∣∣ψ(η)
∣∣α(

4p + η − 1
)αH+1 dη

)−1/α

×

⎛⎝(∫ 4−1

−4−1

∣∣ψ(η)
∣∣α(

2p + η − 1
)αH+1 dη

)1/α

−2H+1/α

(∫ 4−1

−4−1

∣∣ψ(η)
∣∣α(

4p + η − 1
)αH+1 dη

)1/α
⎞⎠

= (2p)H+1/α

(∫ 4−1

−4−1

∣∣ψ(η)
∣∣α(

1 + (4p)−1(η − 1)
)αH+1 dη

)−1/α

×

⎛⎝(2p)−(H+1/α)

(∫ 4−1

−4−1

∣∣ψ(η)
∣∣α(

1 + (2p)−1(η − 1)
)αH+1 dη

)1/α

−(2p)−(H+1/α)

(∫ 4−1

−4−1

∣∣ψ(η)
∣∣α(

1 + (4p)−1(η − 1)
)αH+1 dη

)1/α
⎞⎠

=
(∫ 4−1

−4−1

∣∣ψ(η)
∣∣α(

1 + (4p)−1(η − 1)
)αH+1 dη

)−1/α

×

⎛⎝(∫ 4−1

−4−1

∣∣ψ(η)
∣∣α(

1 + (2p)−1(η − 1)
)αH+1 dη

)1/α

(3.15)

−
(∫ 4−1

−4−1

∣∣ψ(η)
∣∣α(

1 + (4p)−1(η − 1)
)αH+1 dη

)1/α
⎞⎠ .

On another hand, for all p ∈ N, one has∫ 4−1

−4−1

∣∣ψ(η)
∣∣α(

1 + (4p)−1(η − 1)
)αH+1 dη ≥

∫ 4−1

−4−1

∣∣ψ(η)
∣∣α(

1 + 4−1|η − 1|
)αH+1 dη

≥
(

16
21

)αH+1

‖ψ‖αLα(R).

Thus, one can derives from (3.15) and the triangle inequality that there exists
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a positive finite constant c1 such that, for all p ∈ N,∣∣∣∣ σ(Y1,2p−1)
2H+1/α σ(Y1,4p−1)

− 1
∣∣∣∣ (3.16)

≤ c1

∣∣∣∣∣∣
(∫ 4−1

−4−1

∣∣ψ(η)
∣∣α(

1 + (2p)−1(η − 1)
)αH+1 dη

)1/α

− ‖ψ‖Lα(R)

∣∣∣∣∣∣
+c1

∣∣∣∣∣∣
(∫ 4−1

−4−1

∣∣ψ(η)
∣∣α(

1 + (4p)−1(η − 1)
)αH+1 dη

)1/α

− ‖ψ‖Lα(R)

∣∣∣∣∣∣ .
Then, combining (3.16) and (3.3) (with γ = 1), one gets, for some positive finite
constant c2 that∣∣∣∣ σ(Y1,2p−1)

2H+1/α σ(Y1,4p−1)
− 1
∣∣∣∣ ≤ c2 p

−1, for all p ∈ N,

which in turn implies that there exists a positive finite constant c3 such that∣∣∣∣log2

(
σ(Y1,2p−1)

2H+1/α σ(Y1,4p−1)

)∣∣∣∣ ≤ c3 p
−1, for every p ∈ N.

Therefore, one obtains, for all n ∈ N, that
n∑

p=1

∣∣∣∣log2

(
σ(Y1,2p−1)

2H+1/α σ(Y1,4p−1)

)∣∣∣∣ ≤ c3

n∑
p=1

p−1 (3.17)

≤ c3

(
1 +
∫ n

1
x−1 dx

)
≤ c3

(
1 + log(n)

)
.

Then, one can derive from (3.17) that (3.11) holds.

Proof of Theorem 1.7. One knows from Lemma 3.2 that the scale parameters
of the SαS random variables Yj,k are strictly positive. For each p ∈ N, the two
SαS random variables with scale parameters equal to 1, W1,2p−1 and W2,2p−1
are defined (see Remark 3.1) as

W1,2p−1 = Y1,2p−1

σ(Y1,2p−1)
and W2,2p−1 = Y2,2p−1

σ(Y2,2p−1)
= Y2,2p−1

2Hσ(Y1,2p−1)
. (3.18)

Observe that the equality σ(Y2,2p−1) = 2Hσ(Y1,2p−1) follows from (3.1). Next,
using (1.21), (1.19) and (3.18) one has, for all n ∈ N, that

Ĥn,log2 −H

= 1
n

n∑
p=1

(
log2|Y2,2p−1| − log2|Y1,2p−1| − log2

(
2H
))

= 1
n

n∑
p=1

(
log2|W2,2p−1| − log2|W1,2p−1| + log2

(
σ(Y2,2p−1)

)
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−log2
(
2Hσ(Y1,2p−1)

))
= 1

n

n∑
p=1

(
log2|W2,2p−1| − log2|W1,2p−1|

)
. (3.19)

Next, observe that one knows from the very fundamental Lemma 2.3 and (3.18)
that (

log2|W2,2p−1| − log2|W1,2p−1|
)
p∈N

is a sequence of independent, identically distributed, centered and square in-
tegrable random variables. Thus using (3.19), the very classical Strong Law of
Large Numbers, and the very classical Central Limit Theorem, one obtains Part
(i) of the theorem, and that(

n

2Var
(
log2|W(α)|

))1/2 (
Ĥn,log2 −H

) d−−−−−→
n→+∞

N (0, 1), (3.20)

where W(α) is as in Remark 1.4. Finally combining (3.20) with (3.14), one gets
Part (ii) of the theorem.

4. Proof of Theorem 1.8

The two main ingredients of the proof of Theorem 1.8 are the following two
lemmas.

Lemma 4.1. Under the sole condition (1.23) on the sequence (mj)j∈N, one
has, for all fixed γ ∈ (0, 4−1α),

lim
j→+∞

V
mj

1,γ

E(V mj

1,γ )
= lim

j→+∞

V
mj

2,γ

E(V mj

2,γ )
= 1, (4.1)

where the convergences hold almost surely.

Lemma 4.2. Let α ∈ (0, 2] be as in Theorem 1.8 and let γ be arbitrary and
such that

0 < γ <
α

α + 1 , (4.2)

which clearly implies that

γ(H + 1/α) < 1, for all (H,α) ∈ [0, 1] × [α, 2]. (4.3)

When the stability parameter α of the HFSM belongs to [α, 2], there exists a
finite constant c such that, for all (j,m, n) ∈ N

3, one has∣∣Δm,n
j (γ,H, α)

∣∣ ≤ c
(
mγ(H+1/α)−1 + nγ(H+1/α)−1

)
, (4.4)

where

Δm,n
j (γ,H, α) := log2

(
E
(
V n
j+1,γ

)
E
(
V m
j,γ

) )−γH−
(
1−γ(H +1/α)

)
log2

( n

m

)
. (4.5)
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For proving Lemmas 4.1 and 4.2 one needs two preliminary results. The fol-
lowing remark is a straightforward consequence of Remark 3.1 and of Lemma 3.2.

Remark 4.3. Let γ ∈ (0, α) be arbitrary. For all (j, p) ∈ N
2, one has

E
(
|Yj,2p−1|γ

)
= E
(
|W(α)|γ

)
2γ(jH+1/α)

(∫ 4−1

−4−1

∣∣ψ(η)
∣∣α

(η + 2p− 1)αH+1 dη

)γ/α

(4.6)

= E
(
|W(α)|γ

)
2(j−1)γHp−γ(H+1/α)

(∫ 4−1

−4−1

∣∣ψ(η)
∣∣α(

1 + (2p)−1(η − 1)
)αH+1 dη

)γ/α

,

where W(α) denotes an arbitrary real-valued SαS random variable with scale
parameter equals to 1.

Lemma 4.4. Let γ be such that (4.2) holds. When the stability parameter α of
the HFSM belongs to [α, 2], there exists a finite constant c such that one has,
for all (j,m) ∈ N

2,∣∣∣∣2−(j−1)γHmγ(H+1/α)−1
E(V m

j,γ) −A(γ,H, α)
∣∣∣∣ ≤ cmγ(H+1/α)−1, (4.7)

where the finite positive constant

A(γ,H, α) := E
(
|W(α)|γ

)(
1 − γ(H + 1/α)

)−1‖ψ‖γLα(R). (4.8)

As usual, W(α) denotes an arbitrary real-valued SαS random variable with scale
parameter equals to 1.

Proof. It follows from (1.20), (4.6) and the triangle inequality that, for all
(j,m) ∈ N

2, one has

2−(j−1)γHmγ(H+1/α)−1
∣∣∣∣E(V m

j,γ) − E
(
|W(α)|γ

)
‖ψ‖γLα(R)2

(j−1)γH
m∑

p=1
p−γ(H+1/α)

∣∣∣∣
≤ E
(
|W(α)|γ

)
mγ(H+1/α)−1 (4.9)

×
m∑

p=1
p−γ(H+1/α)

∣∣∣∣∣
( ∫ 4−1

−4−1

∣∣ψ(η)
∣∣α(

1 + (2p)−1(η − 1)
)αH+1 dη

)γ/α

− ‖ψ‖γLα(R)

∣∣∣∣∣ .
Moreover, (3.3) entails, for every m ∈ N, that

m∑
p=1

p−γ(H+1/α)

∣∣∣∣∣
( ∫ 4−1

−4−1

∣∣ψ(η)
∣∣α(

1 + (2p)−1(η − 1)
)αH+1 dη

)γ/α

− ‖ψ‖γLα(R)

∣∣∣∣∣
≤ c0

m∑
p=1

p−γ(H+1/α)−1 < c0

+∞∑
p=1

p−γ(H+1/α)−1 < +∞ , (4.10)
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where c0 denotes the finite constant c in (3.3). Then, one can derive from (4.9)
and (4.10) that there is a finite constant c1 such that, for all (j,m) ∈ N

2,

2−(j−1)γHmγ(H+1/α)−1
∣∣∣∣E(V m

j,γ) − E
(
|W(α)|γ

)
‖ψ‖γLα(R)2

(j−1)γH
m∑

p=1
p−γ(H+1/α)

∣∣∣∣
≤ c1 m

γ(H+1/α)−1 . (4.11)

Next, observe that, for every m ∈ N, one has that∣∣∣∣mγ(H+1/α)−1
m∑

p=1
p−γ(H+1/α) −

∫ (m+1)/m

1/m
x−γ(H+1/α) dx

∣∣∣∣
≤

m∑
p=1

∫ (p+1)/m

p/m

∣∣∣(p/m)−γ(H+1/α) − x−γ(H+1/α)
∣∣∣ dx .

Moreover, the mean value theorem allows to show, for all p ∈ {1, . . . ,m} and
x ∈

[
p/m, (p + 1)/m

]
, that∣∣∣(p/m)−γ(H+1/α) − x−γ(H+1/α)

∣∣∣ ≤ m−1(p/m)−γ(H+1/α)−1
.

Then, using the previous two inequalities, one gets, for every m ∈ N, that∣∣∣∣mγ(H+1/α)−1
m∑

p=1
p−γ(H+1/α) −

∫ (m+1)/m

1/m
x−γ(H+1/α) dx

∣∣∣∣
≤ m−2

m∑
p=1

(
p/m

)−γ(H+1/α)−1 ≤ c2 m
γ(H+1/α)−1 , (4.12)

where the finite constant c2 :=
+∞∑
p=1

p−γ(H+1/α)−1. Also, notice that, in view of

(4.3), one has, for all m ∈ N, that∣∣∣ ∫ (m+1)/m

1/m
x−γ(H+1/α) dx− (1 − γ(H + 1/α)

)−1
∣∣∣

=
(
1 − γ(H + 1/α)

)−1
∣∣∣(1 + m−1)1−γ(H+1/α) − 1 −mγ(H+1/α)−1

∣∣∣
≤ 2
(
1 − γ(H + 1/α)

)−1
mγ(H+1/α)−1 . (4.13)

Next, observe that, one can derive from the triangle inequality that, for all
(j,m) ∈ N

2,∣∣∣∣2−(j−1)γHmγ(H+1/α)−1
E(V m

j,γ) − E
(
|W(α)|γ

)(
1 − γ(H + 1/α)

)−1‖ψ‖γLα(R)

∣∣∣∣
≤ 2−(j−1)γHmγ(H+1/α)−1

∣∣∣∣E(V m
j,γ)
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− E
(
|W(α)|γ

)
‖ψ‖γLα(R)2

(j−1)γH
m∑

p=1
p−γ(H+1/α)

∣∣∣∣
+ E
(
|W(α)|γ

)
‖ψ‖γLα(R)

∣∣∣∣mγ(H+1/α)−1
m∑

p=1
p−γ(H+1/α)

−
∫ (m+1)/m

1/m
x−γ(H+1/α) dx

∣∣∣∣
+ E
(
|W(α)|γ

)
‖ψ‖γLα(R)

∣∣∣∣ ∫ (m+1)/m

1/m
x−γ(H+1/α) dx− (1 − γ(H + 1/α)

)−1
∣∣∣∣ .

(4.14)

Finally, putting together (4.11), (4.12), (4.13) and (4.14), one gets (4.7).

Proof of Lemma 4.2. Observe that, one knows from Part (iii) of Lemma 2.3
that, for all (j,m, n) ∈ N

3, one has

log2

(
E
(
V n
j+1,γ

)
E
(
V m
j,γ

) ) = log2

(
2jγHE

(
V n

1,γ
)

2(j−1)γHE
(
V m

1,γ
)) = log2

(
E
(
V n

1,γ
)

E
(
V m

1,γ
))+ γH.

Thus, letting A−1(γ,H, α) be the inverse of the positive constant A(γ,H, α)
(see (4.8)), and using (4.5) and standard calculations, one obtains, for every
(j,m, n) ∈ N

3, that

Δm,n
j (γ,H, α) = log2

(
A−1(γ,H, α)nγ(H+1/α)−1

E
(
V n

1,γ
)

A−1(γ,H, α)mγ(H+1/α)−1 E
(
V m

1,γ
)) ,

which implies that∣∣Δm,n
j (γ,H, α)

∣∣ ≤ ∣∣∣log2

(
A−1(γ,H, α)nγ(H+1/α)−1

E
(
V n

1,γ
))∣∣∣ (4.15)

+
∣∣∣log2

(
A−1(γ,H, α)mγ(H+1/α)−1

E
(
V m

1,γ
))∣∣∣ .

Next observe that one knows from (4.7) and (4.3) that

lim
m→+∞

∣∣∣A−1(γ,H, α)mγ(H+1/α)−1
E
(
V m

1,γ
)
− 1
∣∣∣ = 0. (4.16)

Moreover, it can easily be seen that one has, for some finite constant c1,∣∣log2(1 + x)
∣∣ ≤ c1|x|, for every x ∈ [−2−1,+∞). (4.17)

Thus, one can derive from (4.16), (4.17) and (4.7) that there exists m0 ∈ N and
a finite constant c2 > 0, such that for all m ≥ m0,∣∣∣log2

(
A−1(γ,H, α)mγ(H+1/α)−1

E
(
V m

1,γ
))∣∣∣
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≤ c1

∣∣∣A−1(γ,H, α)mγ(H+1/α)−1
E
(
V m

1,γ
)
− 1
∣∣∣

≤ c2m
γ(H+1/α)−1,

which entails that

sup
m∈N

m1−γ(H+1/α)
∣∣∣log2

(
A−1(γ,H, α)mγ(H+1/α)−1

E
(
V m

1,γ
))∣∣∣ < +∞. (4.18)

Finally, it follows from (4.15) and (4.18) that (4.4) is satisfied.

Proof of Lemma 4.1. One will only show that

lim
j→+∞

V
mj

1,γ

E(V mj

1,γ )
= 1 (almost surely), (4.19)

since the proof of the fact that

lim
j→+∞

V
mj

2,γ

E(V mj

2,γ )
= 1 (almost surely),

can be done in the same way. First notice that using Markov inequality, for each
j ∈ N, one has

P

(∣∣∣ V
mj

1,γ

E(V mj

1,γ )
− 1
∣∣∣ ≥ m−ρ

j

)
= P

(∣∣∣V mj

1,γ − E(V mj

1,γ )
∣∣∣ ≥ m−ρ

j E(V mj

1,γ )
)

≤ m4ρ
j ×

E

(∣∣V mj

1,γ − E(V mj

1,γ )
∣∣4)(

E(V mj

1,γ )
)4 , (4.20)

where ρ is a fixed positive constant small enough, which will be chosen more
precisely later.

Let us now provide an appropriate upper bound for the expectation

E

(∣∣V mj

1,γ − E(V mj

1,γ )
∣∣4),

which is finite because of the assumption γ ∈ (0, 4−1α). One can derive from
(1.20) and the fact that, for any fixed j ∈ N, the centered random variables
|Yj,2p−1|γ − E(|Yj,2p−1|γ), p ∈ N, are independent (see Part (i) of the very
fundamental Lemma 2.3) that

E

(∣∣V mj

1,γ − E(V mj

1,γ )
∣∣4) =

mj∑
p1,..., p4=1

E

( 4∏
l=1

(
|Y1,2pl−1|γ − E(|Y1,2pl−1|γ)

))

≤
(

mj∑
p=1

E

(∣∣|Y1,2p−1|γ − E(|Y1,2p−1|γ)
∣∣4)) (4.21)

+3
(

mj∑
p=1

E

(∣∣|Y1,2p−1|γ − E(|Y1,2p−1|γ)
∣∣2))2

.
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Moreover, one knows from Remark 3.1 that, for each (j, p) ∈ N
2 and for all

q ∈ {1, 2}, one has

E

(∣∣|Yj,2p−1|γ − E(|Yj,2p−1|γ)
∣∣2q) = cq σ(Yj,2p−1)2qγ , (4.22)

where the positive finite constant cq := E

(∣∣|W |γ−E(|W |γ)
∣∣2q) does not depend

on (j, p). Then, it follows from (4.21), (4.22) and the second inequality in (3.2)
that

E

(∣∣V mj

1,γ − E(V mj

1,γ )
∣∣4)

≤ c2

(
mj∑
p=1

σ(Y1,2p−1)4γ
)

+ 3c21

(
mj∑
p=1

σ(Y1,2p−1)2γ
)2

≤ c3

(
mj∑
p=1

σ(Y1,2p−1)2γ
)2

≤ c4

(
mj∑
p=1

(
2p− 5/4

)−2γ(H+1/α)
)2

≤ c4

(
(4/3)2γ(H+1/α) +

∫ mj

1

(
2x− 5/4

)−2γ(H+1/α)
dx

)2

≤ c5

(
1 + 1l{1}

(
2γ(H + 1/α)

)
log
(
mj

)
+ m

1−2γ(H+1/α)
j

)2

, (4.23)

where c3, c4 and c5 are three positive finite constants not depending on j. On
another hand, observe that, in view of the fact that γ ∈ (0, 4−1α) ⊆ (0, 4−1α),
one knows from (4.7) and (1.23) that

lim
j→+∞

m
4γ(H+1/α)−4
j

(
E(V mj

1,γ )
)4 = A4(γ,H, α) > 0,

which implies that there exists a positive finite constant c6 such that, for all
j ≥ 1, (

E(V mj

1,γ )
)−4 ≤ c6 m

4γ(H+1/α)−4
j . (4.24)

Next, combining (4.23) with (4.24), one gets, for some finite constant c7 and for
all j ∈ N, that

m4ρ
j ×

E

(∣∣V mj

1,γ − E(V mj

1,γ )
∣∣4)(

E(V mj

1,γ )
)4

≤ c7 m
−4(1−ρ−γ(H+1/α))
j

(
1 + 1l{1}

(
2γ(H + 1/α)

)
log
(
mj

)
+ m

1−2γ(H+1/α)
j

)2

≤ c7

(
m

−2(1−ρ−γ(H+1/α))
j
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+ 1l{1}
(
2γ(H + 1/α)

)
m

−2(1−ρ−γ(H+1/α))
j log

(
mj

)
+ m

−(1−2ρ)
j

)2

≤ 3c7

(
m

−4(1−ρ−γ(H+1/α))
j (4.25)

+ 1l{1}
(
2γ(H + 1/α)

)
m

−4(1−ρ−γ(H+1/α))
j log2 (mj

)
+ m

−2(1−2ρ)
j

)
.

Next, notice that, since 4
(
1 − γ(H + 1/α)

)
> 4
(
1 − 4−1α(H + 1/α)

)
> 1, the

positive constant ρ can be chosen small enough so that one has

4
(
1 − ρ− γ(H + 1/α)

)
> 1 and 2(1 − 2ρ) > 1 . (4.26)

Then, it follows from (4.25), (4.26), (1.23) and (4.20) that

+∞∑
j=1

P

(∣∣∣ V
mj

1,γ

E(V mj

1,γ )
− 1
∣∣∣ ≥ m−ρ

j

)
< +∞.

Therefore, (4.19) results from Borel-Cantelli Lemma.

We are now in position to complete the proof of Theorem 1.8.

End of the proof of Theorem 1.8. In view of the two equalities

V
mj

2,γ

V
mj

1,γ
=

V
mj

2,γ

E(V mj

2,γ )
·
E(V mj

2,γ )
E(V mj

1,γ )
·
E(V mj

1,γ )
V

mj

1,γ

and
V

mj+1
2,γ

V
mj

1,γ
=

V
mj+1
2,γ

E(V mj+1
2,γ )

·
E(V mj+1

2,γ )
E(V mj

1,γ )
·
E(V mj

1,γ )
V

mj

1,γ
,

it results from (1.24), (1.25), (4.5) and standard calculations that, for all j ∈ N,
one has

γĤj,γ − γH = log2

(
V

mj

2,γ

E(V mj

2,γ )

)
− log2

(
V

mj

1,γ

E(V mj

1,γ )

)
+ Δmj ,mj

1 (γ,H, α) (4.27)

and

γ α̂−1
j,γ − γα−1

= log2

(
V

mj

1,γ

E(V mj

1,γ )

)
− log2

(
V

mj+1
2,γ

E(V mj+1
2,γ )

)
(4.28)

−Δmj ,mj+1
1 (γ,H, α) +

(
1 − γ(H + 1/α)

)(
1 − log2

(
mj+1

mj

))
.
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Moreover, Lemma 4.2, the inequality γ(H + 1/α) − 1 < −1/4 and (1.23) entail
that

lim
j→+∞

Δmj ,mj

1 (γ,H, α) = 0 (4.29)

and
lim

j→+∞
Δmj ,mj+1

1 (γ,H, α) = 0 . (4.30)

Then, one can derive from (4.27), Lemma 4.1 and (4.29) that

Ĥj,γ −H
a.s.−−−−→

j→+∞
0.

Moreover, it follows from (4.28), Lemma 4.1, (4.30) and (1.26) that

α̂−1
j,γ − α−1 a.s.−−−−→

j→+∞
0.

5. Proof of Theorem 1.10

For proving Theorem 1.10 one needs several preliminary results.

Proposition 5.1. Let γ be arbitrary and such that (1.27) holds. For every
(j,m) ∈ N

2, let V m
j,γ be as in Definition 1.6. The random variable Rm

j,γ is defined
as

Rm
j,γ :=

V m
j,γ − E(V m

j,γ)(
Var(V m

j,γ)
) 1

2
=
(

E(V m
j,γ)(

Var(V m
j,γ)
) 1

2

)(
V m
j,γ

E(V m
j,γ) − 1

)
. (5.1)

Let (mj)j∈N be an arbitrary non-decreasing sequence of integers larger than 2
which satisfies the condition (1.23). When j goes to +∞, the random variables
R

mj

1,γ and R
mj

2,γ converge in distribution to a random variable having a N (0, 1)
Gaussian distribution.

Proof. First notice that it follows from Lemma 2.3 (iii) and (5.1) that, for every
j ∈ N, Rmj

1,γ
d= R

mj

2,γ . Thus, we give the proof only in the case of Rmj

1,γ . In view
of (5.1), (1.20) and of the fact that the random variables

∣∣Y1,2p−1
∣∣γ , p ∈ N,

are independent, one knows from the Lyapunov Central Limit Theorem (see for
instance Theorem 7.3 on page 44 in [8]) that it is enough to show that, for some
fixed δ > 0 small enough so that γ(2 + δ) < α, one has

lim
j→+∞

(
Var(V mj

1,γ )
)− 2+δ

2

mj∑
p=1

E

(∣∣∣∣∣Y1,2p−1
∣∣γ − E

(∣∣Y1,2p−1
∣∣γ)∣∣∣2+δ

)
= 0 . (5.2)

The independence property of the random variables
∣∣Y1,2p−1

∣∣γ , p ∈ {1, . . . ,mj},
implies that

Var(V mj

1,γ ) =
mj∑
p=1

Var
(∣∣Y1,2p−1

∣∣γ). (5.3)
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Then, one can derive from (5.3) and Remark 3.1 that

Var(V mj

1,γ ) = Var
(∣∣W ∣∣γ) mj∑

p=1
σ(Y1,2p−1)2γ . (5.4)

Also, Remark 3.1 entails that
mj∑
p=1

E

(∣∣∣∣∣Y1,2p−1
∣∣γ − E

(∣∣Y1,2p−1
∣∣γ)∣∣∣2+δ

)

= E

(∣∣∣∣∣W ∣∣γ − E
(∣∣W ∣∣γ)∣∣∣2+δ

) mj∑
p=1

σ(Y1,2p−1)γ(2+δ). (5.5)

Next notice that it follows from (5.4), the first inequality in (3.2), (1.28) and
standard calculations, that one has for some constant c1 > 0 and, for every
j ∈ N, (

Var(V mj

1,γ )
)− 2+δ

2 ≤ c1m
(2+δ)

2 (2γ(H+1/α)−1)
j . (5.6)

Also notice that it results from (5.5), the second inequality in (3.2) and standard
calculations, that one has for some constant c2 > 0 and, for every j ∈ N,
mj∑
p=1

E

(∣∣∣∣∣Y1,2p−1
∣∣γ − E

(∣∣Y1,2p−1
∣∣γ)∣∣∣2+δ

)
≤ c2

(
log(mj) + m

(1−γ(H+1/α)(2+δ))
j

)
.

(5.7)
Finally, combining (5.6) and (5.7) one obtains, for some constant c3 > 0 and for
all j ∈ N, that

(
Var(V mj

1,γ )
)− 2+δ

2

mj∑
p=1

E

(∣∣∣∣∣Y1,2p−1
∣∣γ − E

(∣∣Y1,2p−1
∣∣γ)∣∣∣2+δ

)
≤ c3

(
m

(2+δ)
2 (2γ(H+1/α)−1)

j log(mj) + m
− δ

2
j

)
.

Thus, one can derive from (1.28) and (1.23) that (5.2) is satisfied.

The following remark is a straightforward consequence of Remark 3.1 and of
Lemma 3.2.

Remark 5.2. Let γ ∈ (0, 2−1α) be arbitrary and let W(α) be an arbitrary real-
valued SαS random variable with scale parameter equals to 1. For all (j, p) ∈ N

2,
one has

Var
(
|Yj,2p−1|γ

)
= Var

(
|W(α)|γ

)
22γ(jH+1/α)

(∫ 4−1

−4−1

∣∣ψ(η)
∣∣α

(η + 2p− 1)αH+1 dη

)2γ/α

(5.8)

= Var
(
|W(α)|γ

)
2(j−1)2γHp−2γ(H+1/α)

×
(∫ 4−1

−4−1

∣∣ψ(η)
∣∣α(

1 + (2p)−1(η − 1)
)αH+1 dη

)2γ/α

.
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Lemma 5.3. Let γ be arbitrary and such that (1.27) holds, and let W(α) be
an arbitrary real-valued SαS random variable with scale parameter equals to 1.
There is a finite constant c such that, for all (j,m) ∈ N

2, one has∣∣∣∣2−(j−1)2γHm2γ(H+1/α)−1 Var(V m
j,γ)

−Var
(
|W(α)|γ

)(
1 − 2γ(H + 1/α)

)−1‖ψ‖2γ
Lα(R)

∣∣∣∣
≤ cm2γ(H+1/α)−1 . (5.9)

Proof. For proving (5.9), one uses the equality

Var(V m
j,γ) =

m∑
p=1

Var
(∣∣Yj,2p−1

∣∣γ),
the second equality in (5.8) and arguments similar to those which allowed to
obtain (4.7).

Proposition 5.4. Let γ be arbitrary and such that (1.27) holds. For all (j,m) ∈
N

2, the random variable R̃m
j,γ is defined as

R̃m
j,γ := Fγ(H,α−1)m1/2

(
V m
j,γ

E(V m
j,γ) − 1

)
, (5.10)

where H ∈ (0, 1) and α ∈ [α, 2] are the unknown Hurst parameter and stability
parameter of the HFSM {X(t)}t∈R, and Fγ is the positive continuous function
introduced in Remark 1.9. Let (mj)j∈N be an arbitrary non-decreasing sequence
of integers larger than 2 which satisfies the condition (1.23). When j goes to
+∞, the random variables R̃

mj

1,γ and R̃
mj

2,γ converge in distribution to a random
variable having a N (0, 1) Gaussian distribution.

Proof. First notice that it follows from Lemma 2.3 (iii) and (5.10) that, for
every j ∈ N, R̃mj

1,γ
d= R̃

mj

2,γ . Thus, we give the proof only in the case of R̃mj

1,γ . In
view of Proposition 5.1, it is enough to show that

lim
j→+∞

E

(∣∣Rmj

1,γ − R̃
mj

1,γ
∣∣2) = 0 . (5.11)

It follows from (5.1), (5.10) and (1.29) that, for all j ∈ N,

R
mj

1,γ − R̃
mj

1,γ = νj m
1/2
j

(
V

mj

1,γ

E(V mj

j,γ )
− 1
)

and consequently that

E

(∣∣Rmj

1,γ − R̃
mj

1,γ
∣∣2) = ν2

j ×
mjVar(V mj

1,γ )(
E(V mj

1,γ )
)2 , (5.12)
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where

νj :=
(

E(V mj

1,γ )(
mjVar(V mj

1,γ )
) 1

2
−

E
(
|W(α)|γ

)(
1 − 2γ(H + 1/α)

)1/2(
Var
(
|W(α)|γ

))1/2(1 − γ(H + 1/α)
)
)
. (5.13)

Observe that Lemma 4.4, (1.28) and (1.23) imply that

lim
j→+∞

m
γ(H+1/α)−1
j E(V mj

1,γ ) =
E
(
|W(α)|γ

)
‖ψ‖γLα(R)(

1 − γ(H + 1/α)
) .

Also, observe that Lemma 5.3, (1.28) and (1.23) entail that

lim
j→+∞

(
m

2γ(H+1/α)−1
j Var(V mj

1,γ )
) 1

2 =
(
Var
(
|W(α)|γ

))1/2‖ψ‖γLα(R)(
1 − 2γ(H + 1/α)

)1/2 .

Thus, using the equality

E(V mj

1,γ )(
mjVar(V mj

1,γ )
) 1

2
=

m
γ(H+1/α)−1
j E(V mj

1,γ )(
m

2γ(H+1/α)−1
j Var(V mj

1,γ )
) 1

2
, for all j ∈ N,

and (5.13) one obtains that
lim

j→+∞
νj = 0 (5.14)

and consequently that

lim
j→+∞

mjVar(V mj

1,γ )(
E(V mj

1,γ )
)2 =

Var
(
|W(α)|γ

)(
1 − γ(H + 1/α)

)2(
E
(
|W(α)|γ

))2(1 − 2γ(H + 1/α)
) . (5.15)

Finally, putting together (5.12), (5.14) and (5.15), one gets (5.11).

Corollary 5.5. Let γ ∈ (0, 4−1α) be arbitrary and such that (1.27) holds. For
all (j,m) ∈ N

2, the random variable Λm
j,γ is defined as

Λm
j,γ := log(2)Fγ(H,α−1)m1/2 log2

(
V m
j,γ

E(V m
j,γ)

)
, (5.16)

where H ∈ (0, 1) and α ∈ [α, 2] are the unknown Hurst parameter and stability
parameter of the HFSM {X(t)}t∈R, and Fγ is the positive continuous function
introduced in Remark 1.9. Let (mj)j∈N be an arbitrary non-decreasing sequence
of integers larger than 2 which satisfies the condition (1.23). When j goes to
+∞, the random variables Λmj

1,γ and Λmj

2,γ converge in distribution to a random
variable having a N (0, 1) Gaussian distribution.

Proof. First notice that it follows from Lemma 2.3 (iii) and (5.16) that, for
every j ∈ N, Λmj

1,γ
d= Λmj

2,γ . Thus, we give the proof only in the case of Λmj

1,γ . In
view of Proposition 5.4, it is enough to show that

Λmj

1,γ − R̃
mj

1,γ
P−−−−→

j→+∞
0 , (5.17)
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where P−−−−→
j→+∞

denotes the convergence in probability. Let ε be an arbitrary fixed
positive real number. One clearly has, for all j ∈ N, that

P

(∣∣Λmj

1,γ − R̃
mj

1,γ
∣∣ ≥ ε

)
≤ P

({∣∣Λmj

1,γ − R̃
mj

1,γ
∣∣ ≥ ε

}
∩
{ V

mj

1,γ

E(V mj

1,γ )
≥ 2−1

})
+ P

(
V

mj

1,γ

E(V mj

1,γ )
< 2−1

)
.

Moreover, one knows from Lemma 4.1 that

lim
j→+∞

P

(
V

mj

1,γ

E(V mj

1,γ )
< 2−1

)
= 0 .

Thus, for proving (5.17) it is enough to show that

lim
j→+∞

P

({∣∣Λmj

1,γ − R̃
mj

1,γ
∣∣ ≥ ε

}
∩
{ V

mj

1,γ

E(V mj

1,γ )
≥ 2−1

})
= 0 . (5.18)

It can easily be shown that one has, for some deterministic constant c1 > 0,
that ∣∣ log(2)log2(1 + x) − x

∣∣ ≤ c1x
2 , for all x ∈ [−2−1,+∞). (5.19)

Then, in view of (5.10) and (5.16), setting c2 := c1Fγ(H,α−1) > 0, one can
derive from (5.19) with x = V

mj
1,γ

E(V
mj
1,γ )

− 1 that

P

({∣∣Λmj

1,γ − R̃
mj

1,γ
∣∣ ≥ ε

}
∩
{ V

mj

1,γ

E(V mj

1,γ )
≥ 2−1

})
≤ P

({
c2(mj)1/2

( V
mj

1,γ

E(V mj

1,γ )
− 1
)2

≥ ε
}
∩
{ V

mj

1,γ

E(V mj

1,γ )
≥ 2−1

})
≤ P

(
(mj)1/2

( V
mj

1,γ

E(V mj

1,γ )
− 1
)2

≥ c−1
2 ε

)
≤ c2 ε

−1 (mj)1/2
Var(V mj

1,γ )(
E(V mj

1,γ )
)2 , (5.20)

where the last inequality follows from Markov inequality. Finally, combining
(5.20) and (5.15), one obtains (5.18).

We are now in position to complete the proof of Theorem 1.10.

End of the proof of Theorem 1.10. One can derive from Theorem 1.8 and from
the continuity property of the functions Fγ , τ1 and τ2 (see Remark 1.9 and
(1.33)) that

lim
j→+∞

Fγ

(
τ1(Ĥ1,j,γ), τ2(α̂−1

2,j,γ)
)(
Fγ(H,α−1)

)−1 = 1 , (almost surely).
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Thus, for proving the theorem it is enough to show that

2−1/2( log(2)
)
γFγ

(
H,α−1)(m1,j)1/2

(
Ĥ1,j,γ −H

)
d−−−−→

j→+∞
N (0, 1) (5.21)

and

(2/3)1/2
(
log(2)

)
γFγ

(
H,α−1)(m2,j)1/2

(
α̂−1

2,j,γ − α−1
)

d−−−−→
j→+∞

N (0, 1), (5.22)

where (m1,j)j∈N, (m2,j)j∈N, Ĥ1,j,γ and α̂−1
2,j,γ are as in the statement of Theo-

rem 1.10. One knows from (4.27) and (5.16) that, for all j ∈ N,

2−1/2( log(2)
)
γFγ

(
H,α−1)(m1,j)1/2

(
Ĥ1,j,γ −H

)
(5.23)

= 2−1/2
(
Λm1,j

2,γ − Λm1,j
1,γ +

(
log(2)

)
γFγ

(
H,α−1)(m1,j)1/2Δ

m1,j ,m1,j
1 (γ,H, α)

)
.

Moreover, it follows from (4.4), (1.28) and (1.23) that the deterministic quantity

2−1/2( log(2)
)
γFγ

(
H,α−1)(m1,j)1/2Δ

m1,j ,m1,j
1 (γ,H, α) −−−−→

j→+∞
0. (5.24)

On another hand, Corollary 5.5 and the fact that, for all j ∈ N, the two random
variables Λm1,j

1,γ and Λm1,j
2,γ are independent (see (5.16) and the fundamental

Lemma 2.3 (ii)) imply that

2−1/2 (Λm1,j
2,γ − Λm1,j

1,γ
) d−−−−→

j→+∞
N (0, 1). (5.25)

Thus, combining (5.24) and (5.25), one obtains (5.21).
Let us now prove that (5.22) holds. It follows from (4.28) and (5.16) that, for

all j ∈ N,

(2/3)1/2
(
log(2)

)
γFγ

(
H,α−1)(m2,j)1/2

(
α̂−1

2,j,γ − α−1
)

= (2/3)1/2
(

Λm2,j
1,γ −

(
m2,j

m2,j+1

)1/2

Λm2,j+1
2,γ (5.26)

−
(
log(2)

)
γFγ

(
H,α−1)(m2,j)1/2Δ

m2,j ,m2,j+1
1 (γ,H, α)

+
(
log(2)

)
γFγ

(
H,α−1)(1 − γ(H + 1/α)

)
(m2,j)1/2

(
1 − log2

(
m2,j+1

m2,j

)))
.

Moreover, (4.4), (1.28), (1.23) and the inequality m2,j ≤ m2,j+1 imply that the
deterministic quantity(

log(2)
)
γFγ

(
H,α−1)(m2,j)1/2Δ

m2,j ,m2,j+1
1 (γ,H, α) −−−−→

j→+∞
0, (5.27)

and (1.30) entails that the deterministic quantity(
log(2)

)
γFγ

(
H,α−1)(1 − γ(H + 1/α)

)
(5.28)



4496 A. Ayache

× (m2,j)1/2
(

1 − log2

(
m2,j+1

m2,j

)))
−−−−→
j→+∞

0.

On another hand, it results from Corollary 5.5, (1.30) and from the fact that,
for all j ∈ N, the two random variables Λm2,j

1,γ and Λm2,j+1
2,γ are independent (see

(5.16) and the fundamental Lemma 2.3 (ii)), that

(2/3)1/2
(

Λm2,j
1,γ −

(
m2,j

m2,j+1

)1/2

Λm2,j+1
2,γ

)
d−−−−→

j→+∞
N (0, 1). (5.29)

Finally, putting together (5.26), (5.27), (5.28) and (5.29), one gets (5.22).
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