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Abstract: We investigate the high-dimensional linear regression problem
in the presence of noise that is correlated with Gaussian covariates. This
type of correlation, known as endogeneity in regression models, often results
from unobserved variables and other factors. It poses a significant chal-
lenge in causal inference and econometrics. In cases where covariates are
high-dimensional, it is common to assume sparsity in the true parameters
and to estimate them using regularization techniques, even with endogene-
ity. However, when sparsity is not applicable, controlling both endogene-
ity and high dimensionality simultaneously has not been well understood.
This study demonstrates that an estimator, even without regularization,
can achieve consistency, or benign overfitting, under certain assumptions
about the covariance matrix. Specifically, our results indicate that the er-
ror of this estimator converges to zero when the covariance matrices of the
correlated noise and the instrumental variables meet specific conditions re-
lated to their eigenvalues. We explore several extensions that relax these
conditions and conduct experiments to validate our theoretical findings. As
a technical contribution, we employ the convex Gaussian minimax theorem
(CGMT) in our dual problem and expand upon CGMT itself.
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1. Introduction

We consider a high-dimensional linear regression model with correlated noise
and the p-dimensional true parameter θ0:

Yi = 〈Xi, θ0〉 + ξi, E[Xiξi] �= 0, i = 1, ..., n,
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where n ∈ N is the number of observations, Xi denotes a p-dimensional centered
Gaussian vector representing the observed covariates, ξi is a centered Gaussian
noise variable, and Yi is a response variable. In this model, the noise variable
ξi is correlated with the covariate Xi. We assume that the dimension p is sig-
nificantly larger than the number of observations n (p � n) and also the true
parameter θ0 is non-sparse, meaning all p coordinates of θ0 are non-zero. In this
high-dimensional setting, we adopt an instrumental variable framework, that is,
assuming the existence of a variable Zi such that E[Ziξi] = 0, we investigate the
risk of a ridgeless estimator under certain conditions.

We often encounter real-world situations where covariates and noise variables
are correlated. For example, when the covariates in a regression model are par-
tially observed, the partially observed subset may be labeled as Xi and the rest
as components of ξi. In this case, Xi and ξi may be correlated. This scenario
often introduces bias in statistical methods that assume independence between
covariates Xi and noise variables ξi. This phenomenon is known as endogene-
ity, a term particularly common in econometrics. A well-established approach
to addressing endogeneity is the use of instrumental variables, as discussed in
the survey by (Stock et al., 2002). This method employs a variable Zi that is
uncorrelated with the noise variable ξi but is related to the covariates Xi. The
two critical conditions for instrumental variables Zi, known as exclusion restric-
tion and relevance restriction, are essential. This method has been extensively
explored in various studies (Söderström and Stoica, 2002; Newey and Powell,
2003; Baiocchi et al., 2014; Andrews et al., 2019).

Instrumental variable estimation has also been extensively investigated in
the high-dimensional context, particularly within the sparse setting. As data
become high-dimensional, the dimensionality of the covariates associated with
instrumental variables often exceeds the number of observations, n. To address
this, researchers have utilized sparsity, which assumes that most of the p coordi-
nates of the true parameters θ0 are zero. Consequently, they estimate a limited
number of nonzero parameters using lasso-type regularization and its variants.
Fan and Liao (2014) proposed a new generalized method of moments estimator
for estimation and model selection involving sparse parameters. Belloni et al.
(2014) and Gautier and Rose (2011) focus on scenarios where θ0 is (approx-
imately) sparse, employing a lasso-type regularization or the Dantzig selector
within the instrumental variable framework. Gold et al. (2020) explore a one-step
update approach and provide sufficient conditions for inference. Various stud-
ies (Belloni et al., 2010, 2012, 2017; Chernozhukov et al., 2015b, 2018; Belloni
et al., 2022; Gautier and Tsybakov, 2013) have estimated nuisance parameters
to manage their high dimensionality by introducing a new instrumental variable
orthogonal to these parameters.

In recent years, high-dimensional statistics featuring non-sparse parameters
have rapidly evolved. The development of methods for handling large-scale data,
such as those employed in modern machine learning, has led to the proliferation
of many non-sparse data sets and models. Among several existing methods, a
ridgeless estimator, which fits the observed data perfectly without any regu-
larization, has garnered considerable attention. For theoretical analysis, Belkin
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et al. (2019) and Hastie et al. (2022) investigate the performance of the ridge-
less estimator in high-dimensional linear regression models without sparsity,
employing random matrix theory. Bartlett et al. (2020) discuss how the ef-
fective ranks of a covariance matrix can demonstrate the convergence of the
ridgeless estimator in high-dimensional linear regression contexts. These studies
have demonstrated several advantages of the ridgeless estimator over regularized
estimators in high-dimensional settings (Dobriban and Wager, 2018; Tsigler and
Bartlett, 2023). The implications of these findings have been extended to vari-
ous applications (Bunea et al., 2022; Li et al., 2022; Frei et al., 2022; Nakakita
and Imaizumi, 2022). However, despite ongoing developments, these theories
remain limited and necessitate independence among noise variables, thus, they
are insufficiently flexible to analyze within an instrumental variable framework.

This study investigates a ridgeless estimator in non-sparse, high-dimensional
regression models with correlated noise. We assume that the data follow a cen-
tered Gaussian distribution and model the correlation between covariates and
noise variables using instrumental variables. We assess the estimation error of
the ridgeless estimator using a projected residual mean squared error (projected
RMSE). This analysis yields two main results: (i) The estimation error has an
upper bound that is independent of the dimension p of the covariates. This
bound can be expressed through the (normalized) correlation coefficients and
the effective rank of the covariance matrix of the instrumental variables. (ii)
We identify sufficient conditions on data distributions under which the derived
upper bound converges to zero. These conditions require that the covariance ma-
trices of both the instrumental variables and auxiliary variables for covariates
have appropriate effective ranks. Several specific covariance matrices meet these
conditions. We derive these results for cases where instrumental and auxiliary
variables that comprise the covariates are either orthogonal or not.

Our theoretical results suggest the following implications: (i) In the correlated
noise setting, the error of the ridgeless estimator does not depend on the dimen-
sion p, given the use of instrumental variables. This implies that non-sparse,
high-dimensional parameters can be estimated effectively under the instrumen-
tal variable framework; in other words, benign overfitting is possible. (ii) In this
context, the covariance of the instrumental variables plays a crucial role in deter-
mining the risk. Specifically, the covariance matrix of the instrumental variables
should possess a certain rank and exhibit decay to some degree to ensure that
the sum of eigenvalues does not diverge excessively. Thus, these results support
the established notion that instrumental variables should not be weak.

On the technical side, we have developed a proof technique for the evalua-
tion of risks using Gaussian comparison inequalities. The most closely related
study (Bartlett et al., 2020) on non-sparse high-dimensional regression relies on
matrix concentration inequalities and the leave-one-out method; however, these
approaches cannot handle the correlated noise in our setting. Therefore, we
have developed a proof using the convex Gaussian minimax theorem (CGMT)
(Thrampoulidis et al., 2015, 2018), which accommodates a broader range of
models. Rigorously, we rewrite the risk associated with the ridgeless estimator
as a minimax optimization problem in dual form and analyze it using CGMT.
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This approach was developed by Koehler et al. (2021), and we have applied it
to the instrumental variable case. Furthermore, we derive an extended CGMT
and develop a method to analyze risks in situations where the covariance matrix
is not orthogonal.

1.1. Notation

We denote ‖·‖p as ‖x‖p = (
∑

i |xi|p)1/p. For a square matrix A, we define ‖A‖op
as an operator norm of A. For a positive semidefinite matrix A, ‖x‖2

A := 〈x,Ax〉
denotes the Mahalanobis (semi-)norm. For a set S ⊂ R

p, we define its radius as
rad(S) := sups∈S ‖s‖2. Σ+ denotes the generalized inverse matrix of Σ. N(μ,Σ)
denotes a multivariate normal distribution with a mean μ ∈ R

d and a symmetric
positive definite matrix Σ ∈ R

d×d. If Σ is positive semi-definite with rank k < d,
N(0,Σ) denotes a distribution of AX ′ where A ∈ R

d×k, Σ = AA�, and X ′ ∼
N(0, I) is a k-dimensional normal variable. 1{·} denotes an indicator function.
For x, x′ ∈ R, x ∨ x′ := max{x, x′}. For a, b ∈ R, � and � mean a ≤ Cb and
Ca ≥ b for some absolute constant C, respectively. For real-valued sequences
{an}n∈N and {bn}n∈N, an = O(bn) means an/bn ≤ C for any sufficiently large n,
an = o(bn) means an/bn converges to zero as n → ∞, an = υ(bn) means an/bn
diverges to ∞ as n → ∞, and an = Θ(bn) means C1bn ≤ an ≤ C2bn holds for
any sufficiently large n, where C,C1, and C2 are some absolute constants. Let
p→ denote the convergence in probability.

1.2. Paper organization

Section 2 presents the problem setup and various definitions. Section 3 provides
an error analysis of the ridgeless estimator under the assumption that the covari-
ance matrices of the noise and instrumental variables are orthogonal. Section 4
provides an error analysis under a relaxation of orthogonality. Section 5 offers
additional error analysis with a generalized norm. Section 6 outlines the proof
and explains the technical contributions. Section 7 relates the experiments. Sec-
tion 8 presents the discussion and conclusion.

2. Preliminary

2.1. Setting

We consider a linear regression problem with dependent noise and instrumental
variables. Let n ∈ N be the number of data points, p, k ∈ N be dimensions of
variables, and Θ ⊂ R

p be the parameter space. Suppose that there exist n i.i.d.
variables (Xi, Zi, Yi) ∈ R

p × R
k × R of the centered variables for i = 1, · · · , n

from the following data generating process

Yi = 〈Xi, θ0〉 + ξi, and Xi = Π0Zi + ui, (1)
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where θ0 ∈ R
p is a true unknown parameter such that ‖θ0‖2 < ∞, ξi is a

Gaussian variable from N(0, σ2), Π0 ∈ R
p×k is an unknown matrix, and ui ∈ R

p

is a (potentially correlated) latent noise vector such that E[ui|Zi] = 0. Here, we
refer to Xi as a covariate and Zi as an instrumental variable. We assume that
E[Xi|Zi] always exists. We define covariance matrices Σx = E[XiX

�
i ], Σz =

E[ZiZ
�
i ], and Σu = E[uiu

�
i ]. Let (X,Y,Z, ξ) denote design matrices and vectors

X = (X1, ..., Xn)�,Y = (Y1, ..., Yn)�, ξ = (ξ1, ..., ξn)�, and Z = (Z1, ..., Zn)�.
Note that the covariance matrices Σz and Σu need not be positive definite, that
is, positive semi-definite is sufficient for our analysis.

We describe how these variables are related. We define ω ∈ R
p as the corre-

lation between the covariate Xi and the noise ξi:

ω := E[Xiξi] �= 0.

Further, we assume that the instrument Zi satisfies the following moment con-
dition:

E[ξi|Zi] = 0,

which implies the instrument Zi and its noise ξi are uncorrelated, that is,
E[Ziξi] = 0.

Remark 1 (Modeling with Π0). We employ the modeling (1), because of the
following two reasons. First, this model is often used in applied fields (e.g.,
econometrics and psychostatistics) Newey and Powell (2003); Chen and Pouzo
(2012), that study a specific interpretation of instrumental variables. Second,
the usage of the coefficient Π0 yields the property E[ui|Zi] = 0, which simplifies
theoretical analysis for an estimation error.

We make an assumption concerning the problem.

Assumption 1 (Gaussianity). Assume Xi and ξi are normally distributed, that
is,

Xi ∼ N(0,Σx), ξi ∼ N(0, σ2).

For Xi, Assumption 1 enables us to use the convex Gaussian minimax the-
orem (CGMT), which is a central tool to derive the upper bound for the risk.
A possible way to mitigate Gaussianity includes the application of universality
Montanari and Saeed (2022); Han and Shen (2023). As long as Xi is Gaussian,
Zi and ui do not have to be Gaussian.

Indeed, we can relax the Gaussianity of ξi. While we use the Gaussianity of ξi
to show the concentration of a norm of ξi (specifically, Lemma 40 in Appendix),
it is possible to extend the concentration to sub-Gaussian vectors. However, since
relaxing the Gaussianity is not our primary concern, we use ξi as a Gaussian
variable here for simplicity.
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2.2. Measure for estimation error

A goal of the setting is to estimate the true parameter θ0 in a high-dimensional
setting, that is, p, k � n, without the sparse setting. Specifically, for θ ∈ Θ, we
consider a residual mean squared error (RMSE) projected on a space of Z:

E
[
(E[〈θ,X〉 − 〈θ0, X〉|Z])2

]
, (2)

where the random element (X,Z) is an i.i.d. copy of (Xi, Zi) that follows (1).
In the literature of nonparametric instrumental variables, the projected RMSE
is often used to evaluate the convergence rate of the estimators (Ai and Chen,
2003; Chen and Pouzo, 2012; Dikkala et al., 2020). It is because we need to
deal with ill-posedness in nonparametric instrumental variable estimators. The
projected RMSE can sometimes relate to the original, unprojected RMSE. As
an extreme case, when X and Z are perfectly correlated, the projected and un-
projected RMSEs are identical. For more details, see Chen and Pouzo (2012).
In our setting, we use this useful evaluation criterion because we face difficulty
evaluating RMSE in non-sparse high-dimensional settings. However, by defini-
tion, the Projected RMSE has validity due to being proper to the setting of
instrumental variables. Furthermore, it always holds that the projected RMSE
is not larger than the RMSE. Hence, our results can be necessary conditions for
the convergence of the RMSE.

Note that the projected RMSE can be expressed as a weighted norm ‖θ−θ0‖2
Ξz

with a transformed covariance matrix Ξz := Π0E[ZZ�]Π�
0 :

(2) = (θ − θ0)�E
[
E[X|Z]E[X�|Z]

]
(θ − θ0)

= (θ − θ0)�Π0E
[
ZZ�]Π�

0 (θ − θ0)
= ‖θ − θ0‖2

Ξz
.

The second equation follows the property E[ui|Zi] = 0, which follows the mod-
eling (1).

Remark 2 (Norm weighted by Ξz). We discuss some characteristics of the
usage of the weighted norm by Ξz.

First, the use of norms weighted by covariance matrices is common in the
studies for the benign-overfitting. For example, in the linear regression with
independent noise case, Hastie et al. (2022) and Bartlett et al. (2020) study an
estimation error in terms of a norm weighted by Σx, which corresponds to a
predictive risk. In our setting, we use the norm weighted by Ξz as an analogy.

Second, the matrix Ξz has a reasonable design as a weight, since it is an
asymptotically full-rank matrix in our setting. Rigorously, we will introduce a
basic condition in Definition 2 and it shows that the effective rank of Ξz should
diverge to infinity as n increases. Hence, as long as it satisfies the condition, the
weighting matrix Ξz is asymptotically full rank and encompasses all eigenvalues.
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2.3. Ridgeless estimator

We consider an estimator with interpolation, that is, a prediction by an esti-
mator perfectly corresponds to the response in the observed set of data, which
always appears when p ≥ n holds. Rigorously, with an empirical squared risk

L̂(θ) = 1
n

n∑
i=1

(Yi − 〈Xi, θ〉)2, (3)

the estimator with interpolation is a parameter Θ ⊂ R
p that satisfies L̂(θ) =

0. As there may be an infinite number of interpolators, we define a ridgeless
estimator, also known as a minimal norm interpolator, as

θ̂ = argmin
θ∈Θ:L̂(θ)=0

‖θ‖2 = X�(XX�)+Y.

Note that we can calculate the minimum norm interpolator only from (X,Y).
Such estimators have been examined frequently in the context of the linear

regression problem. In particular, the motivation for examining the ridgeless
estimator (the minimum norm interpolator) is that the gradient descent algo-
rithm for learning parameters converges to a parameter with the smallest norm
among parameters that minimize the loss (see Lemma 1 in Hastie et al. (2022)).

3. Error analysis: orthogonal case

3.1. Orthogonality assumption

In this section, we consider a setting in which there is orthogonality between the
transformed covariance matrix of instrumental variables Ξz = Π0E[ZZ�]Π�

0
and the covariance matrix of the latent noise Σu = E[uu�]. This situation
simplifies our error analysis and is therefore an appropriate first step. This
assumption will be relaxed in the next section.

Specifically, we consider the following assumption.

Assumption 2 (Orthogonality Condition). Σu and Ξz are orthogonal, that is,
their sets of eigenvectors {ϕj}Ju

j=1, {ϕ′
j}Jz

j=1 ⊂ R
p are such that there exists the

decompositions Σu =
∑Ju

j=1 λ
u
jϕjϕ

�
j and Ξz =

∑Jz

j=1 λ
z
jϕ

′
j(ϕ′

j)� with Ju+Jz = p

and positive eigenvalues {λu
j }j and {λz

j}j satisfying ϕ�
j ϕ

′
� = 0 for every j and

	.

Intuitively, the p-dimensional eigenspaces of Σx are divided into Ju-
dimensional eigenspaces of Σu and Jz-dimensional eigenspaces of Ξz, which are
orthogonal. We note two points. In this setting, the ranks of Σu and Ξz are Ju
and Jz, respectively; hence they are not full-rank. Consequently, we obtain the
following equality:
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Lemma. Assume Assumption 2 holds. Then, the positive semidefinite matrices
Ξz and Σu whose eigenspaces are orthogonal satisfy the following covariance
splitting:

Σx = Ξz + Σu.

We will restate this result as Lemma 37 in the supplementary material and
offer its proof. This property is essential for our error analysis below, which uses
the speed of decay of the eigenvalues.

3.2. Result 1: upper bound on projected RMSE

Here, as the first primary result, we derive an upper bound for the projected
RMSE of the ridgeless estimator. As preparation, we introduce a notion of the
effective rank for the upper bound.

Definition 1 (Effective Rank). For a positive semidefine matrix Σ, two types
of the effective rank are defined as

r(Σ) = tr(Σ)
‖Σ‖op

and R(Σ) = tr(Σ)2

tr(Σ2) .

This notion is a more elaborate version of the notion of matrix ranks, which
uses the decay speed of the eigenvalues of a matrix to express the complexity
of the matrix. Specifically, r(Σ) denotes a trace of Σ normalized by its largest
eigenvalue, and R(Σ) denotes the intrinsic complexity of Σ considering the decay
rate of the eigenvalues of Σ. As these effective ranks fully utilize the information
of eigenvalues of Σ, they are useful in measuring the complexity of Σ and the
stable quantity compared with the usual rank, especially in the high-dimensional
setting. This has been used in dealing with concentration of random matrices
(Koltchinskii and Lounici, 2017) and has also been applied to the analysis of
over-parameterized linear regression with independent noise (Bartlett et al.,
2020; Koehler et al., 2021; Tsigler and Bartlett, 2023).

Using the notion of effective rank, we define an auxiliary coefficient as follows.
For δ ∈ (0, 1), we define

η(δ) :=
√

log(1/δ)
(

1√
r(Ξz)

+
√

rank(Σu)
n

+ n

R(Ξz)

)
.

This coefficient η(δ) becomes asymptotically negligible under appropriate con-
ditions, which will be presented in the latter half of this section.

We develop a generic bound for the projected RMSE ‖θ̂ − θ‖2
Ξz

. With the
result of Corollary 10 and Theorem 21, we obtain the following sufficient condi-
tions for benign overfitting. Recall that we define Σ+

u as the generalized inverse
matrix of Σu.
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Theorem 1 (Projected-RMSE Bound). Fix any δ ≤ 1/2. Under Assump-
tions 1-2 with covariance splitting Σx = Ξz+Σu, suppose that n and the effective
ranks are such that R(Ξz) � log(1/δ)2 and η(δ) ≤ 1. Define ψ(t) = t + t2 and
σ̃2 := σ2 − ‖ω‖2

Σ+
u
≥ 0. Then, with probability at least 1 − δ, it holds that

‖θ̂ − θ0‖2
Ξz

� (1 + η(δ))(1 ∨ σ̃)ψ
(

(‖Σ+
u ω‖2 + ‖θ0‖2)

√
tr(Ξz)

n

)
. (4)

This upper bound consists of the following two parts: (i) the coefficient part
(1+η(δ))(1∨σ̃) reflects the asymptotically negligible eigenvalues and noises, and
(ii) the principal part ψ((‖Σ+

u ω‖2 + ‖θ0‖2)
√

tr(Ξz)/n) describes a complexity
of the true parameter and the distribution of the data. With this upper bound,
an appropriate assumption on Σu and Ξz guarantees that the projected RMSE
converges to zero as n → ∞, which will be explained below. Note that σ̃2 ≥ 0
follows from Lemma 38.

The upper bound for this projected RMSE can sometimes be compared to
that of the original unprojected RMSE. As mentioned in Section 2.3, when X
and Z are perfectly correlated as an extreme case, the projected and unpro-
jected RMSEs are identical, which means that Theorem 1 can bound the origi-
nal RMSE. However, in more general case including overparameterization, it is
not easy to provide an explicit relation between the projected and unprojected
RMSE. Some discussions are mentioned in Chen and Pouzo (2012).

Remark 3 (Comparison with the independent noise case). We compare Theo-
rem 1 with the endogeneity to the result without the endogeneity. Particularly,
Koehler et al. (2021) develop an upper bound of the mean squared error of the
ridgeless estimator as

‖θ̂ − θ0‖2
Σx

� (1 + η′(δ))(1 ∨ σ)ψ
(
‖θ0‖2

√
tr(Σ2)

n

)
, (5)

where Σ1 and Σ2 are some matrices such that Σx = Σ1 + Σ2, and η′(δ) =√
log(1/δ)(1/

√
r(Σ2) +

√
rank(Σ1)/n+ n/R(Σ2)). Note that Theorem 1 is not

a direct generalization of this result (5), since we do not split Σx itself. This re-
sult (5) suggests that our bound in Theorem 1 pays an additional cost to handle
covariate correlations, such as the replacement of σ with σ̃ and introducing a
correlation coefficient ‖Σ+

u ω‖2 in (4).

3.3. Result 2: benign condition for consistency

In this section, we further investigate the upper bound in Theorem 1 and derive
sufficient conditions for the upper bound to converge to zero. We also provide
several examples of distributions satisfying the condition.

We first provide a basic condition that is widely used for over-parameterized
models (e.g., Bartlett et al. (2020)).
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Definition 2 (Basic condition). This condition requires that the value of the
following three limits be zero:

lim
n→∞

rank(Σu)
n

= lim
n→∞

n

R(Ξz)
= lim

n→∞
‖θ0‖2

√
tr(Ξz)

n
= 0. (6)

Their details are as follows:

(i) (Small latent noise) The first term, rank(Σu)/n, describes the size of the
latent noise vector relative to n, and the condition requires that the latent
noise is small.

(ii) (Large effective dimension) The second term, n/R(Ξz), decreases as the
effective rank R(Ξz) is larger than n, which plays the role of an effective
dimension in the over-parameterized model.

(iii) (No aliasing) The third term, ‖θ0‖2
√

tr(Ξz)/n, represents the magnitude
of the error in a noiseless situation and intuitively plays a role similar to
bias.

These assumptions are commonly used in the over-parameterized linear regres-
sion problem without endogeneity (Bartlett et al., 2020; Koehler et al., 2021;
Tsigler and Bartlett, 2023). We will provide examples of covariance matrices
that satisfy these assumptions in Section 3.3.1.

We derive a result where the projected RMSE converges to zero. We achieve
this result by introducing new assumptions corresponding to the endogeneity in
addition to the basic assumptions in Definition 2.

Theorem 2 (Sufficient conditions). Under Assumptions 1 and 2 with Σx =
Ξz + Σu, let θ̂ be the ridgeless estimator. Suppose that the basic condition in
Definition 2 holds, and the following condition is also satisfied:

lim
n→∞

‖Σ+
u ω‖2

√
tr(Ξz)

n
= 0. (7)

Then, the following holds:

‖θ̂ − θ0‖2
Ξz

p→ 0, (n → ∞).

This result states that condition (7) is a key factor of the convergence of
the projected RMSE to zero in the setting with endogeneity because the basic
assumption in Definition 2 is also needed in ordinary regression without endo-
geneity. Intuitively, condition (7) means that the replacement of σ2 with σ̃2 in
Theorem 1 is asymptotically negligible. For condition (7), the structure of ω
plays an essential role because it is challenging to satisfy (7) with only the prop-
erty of Σ+

u . However, we have ‖(Σ+
u )1/2ω‖2 ≤ σ2 (Lemma 38), which implies a

slow increase of ‖Σ+
u ω‖2. Another implication is about the first term in (6): a

strong correlation between Xi and Zi is necessary for benign overfitting. This
is suggested by the fact that rank(Σu) ≥ p − min{rank(Σz), rank(Π0)} (see
Proposition 36).
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Remark 4 (Relation to weakness of instrumental variables). Here, we discuss
the relation of our results to the study of weak instrumental variables. It is known
that having instrumental variables with weak correlations reduces the efficiency
of estimation (Stock et al., 2002). In our theory, from the result in Theorem 2,
one can also claim that the weak instrumental variables reduce the validity of
the estimation in the over-parameterized setting. Specifically, the instrumental
variable Zi, with weak correlations, exerts a diminishing effect on the rank of
Π0, thereby exerting influence on the initial two conditions delineated in Def-
inition 2. Firstly, the effective rank R(Ξz) will be small in comparison to the
sample size, owing to the definition of Ξz and its effective rank. Furthermore, the
assertion made in Lemma 37 solidifies that under Assumption 2, the equation
rank(Σx) = rank(Σu) + rank(Ξz) holds, consequently resulting in a substantial
elevation of the rank of Σu, thereby contravening the primary condition out-
lined in Definition 2. Hence, our result in the over-parameterized setting implies
almost the same claim on the weak instrumental variables, while our approach
is different from the previous studies.

Remark 5 (Comparison to independent noise case). We compare our results to
the results for the independent noise case. Although our results do not constitute
a generalization of this case, there are similarities between these cases. One can
set Π0 = Ip, Zi = Xi and ui = 0 to establish a scenario where Xi and Zi are
perfectly correlated, which corresponds to the independent noise case. Then,
Koehler et al. (2021) developed the basic condition for this case:

lim
n→∞

rank(Σ1)
n

= lim
n→∞

n

R(Σ2)
= lim

n→∞
‖θ0‖2

√
tr(Σ2)

n
= 0, (8)

by dividing X into two parts and obtaining Σx = Ξz = Σ1 + Σ2 using the
orthogonality and the further extension of CGMT. This shows that our basic
condition (6) has a form similar to that of the independent noise case.

Remark 6 (Relation to many instrumental variables). The situation where
there are many instrumental variables makes it difficult to satisfy our conditions.
As the number of instrumental variables increases, it is anticipated that some
of them have weak correlations, which raises the problem of weak instrumental
variables. This point is also discussed in Remark 4.

Remark 7 (Necessary condition). We discuss a necessary condition for the
benign overfitting. When the noise ξi is independent of Xi, there is a necessary
condition (or rather a necessary and sufficient condition) for the benign over-
fitting that the eigenvalue decay of Σx has a specific rate, which is shown in
Theorem 6 in Bartlett et al. (2020). In contrast, when the noise is dependent
as in our setting, no necessary condition is clarified. This is because the corre-
lation coefficient ω increases the flexibility of the estimation error, and thus the
eigenvalues of Σx alone cannot describe the necessary condition.
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3.3.1. Examples

In this section, we provide examples that satisfy the condition in Theorem 2.
The example here uses a matrix derived by Bartlett et al. (2020) as a base matrix
Σ, then constructs a latent noise covariance matrix Σu and of the instrumental
variable Ξz based on the base matrix Σ. Throughout this section, we assume
that ‖θ0‖2 = o(

√
n).

Example 1. Consider the dimension p ∈ N ∪ {∞} and a base matrix Σ whose
i-th largest eigenvalue has the form

λi = Ci−1 log−β(i + 1), i = 1, ..., p,

with some constant C > 0 and β > 1, and also assume condition (7) holds.
We further define a truncated version of Σ with a truncation level k ≤ p as
Σ1:k = U�diag(λ1, ..., λk, 0, ..., 0)U , where U ∈ R

p×p is an orthogonal matrix
generated from a singular value decomposition Σ = U�diag(λ1, ..., λp)U . Using
the notion, we define our truncation level k∗n as

k∗n := min{k ≥ 0 : r(Σ − Σ1:k) > n}, (9)

which balances the complexities of the latent noise and the instrumental variable.
Then, we define the (transformed) covariance matrices of u and z as

Σu = Σ1:k∗
n
, Ξz = Σ − Σ1:k∗

n
. (10)

The example is adapted to our setting with endogeneity by considering the
example of a covariance matrix by Bartlett et al. (2020). Rigorously, we set the
covariance matrix by Bartlett et al. (2020) as the base matrix Σ and decompose
it under the appropriate cutoff level k∗n to the (transformed) covariance matri-
ces. Importantly, this example can freely choose the dimension p (even infinite
is possible). The following proposition shows that this example yields benign
overfitting.

Proposition 3. Consider Example 1. Assume ‖θ0‖2 = o(
√
n). If Σ and ω

satisfy

λi = Ci−1 log−β(i + 1), (Uω)i = Θ(i−1 log−β(i + 1)),

where β > 1 and C > 0, then Σu and Ξz defined in (10) and associated ω as
‖Σ+

u ω‖2 = o(
√
n) satisfy all the conditions in Definition 2 and Theorem 2.

Example 2. We consider the dimension p = pn, which increases faster than
n, that is, ∀c > 0,∃n̄ ∈ N,∀n ≥ n̄, p ≥ cn holds. Furthermore, consider a base
matrix Σ whose i-th largest eigenvalue has the form

λi = γi + εn, i = 1, ..., p,

where {γi}i and {εn}n are sequences such that

γi = Θ(exp(−i/τ)), ne−o(n) = εnp = o(n),
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with some τ > 0. We further assume condition (7) holds. Similar to Example 1,
we use the truncation level k∗n as (9) and define the (transformed) covariance
matrices of ui and Zi as

Σu = Σ1:k∗
n
, Ξz = Σ − Σ1:k∗

n
. (11)

In the example, we consider the case where p diverges faster than n. In this
case, the eigenvalues consist of two terms: an exponentially decaying term, and
a term that behaves like noise. The next proposition shows benign overfitting
in this setting.

Proposition 4. Consider Example 2. Set eigenvalues of Σ as follows:

λi = γi + εn,

where γi = Θ(exp(−i/τ)) and τ > 0. Assume ‖θ0‖2 = o(
√
n). If p and ω satisfy

p = υ(n), ne−o(n) = εnp = o(n), (Uω)i = Θ(exp(−i/τ)),

then Σu and Ξz defined in (11) and associated ω as ‖Σ+
u ω‖2 = o(

√
n) satisfy

all the conditions in Definition 2 and Theorem 2.

4. Error analysis: non-orthogonal case

In this section, we relax the orthogonality condition of Assumption 2 and study
the sufficient conditions for benign overfitting when the covariance matrices Σu

and Ξz are not orthogonal. The approach to derive the conditions is almost the
same as in Section 3; we first derive an upper bound for the projected RMSE,
then use it to reveal sufficient conditions. To simplify the presentation, we defer
the upper bounds to a later section and present only a theorem on the sufficient
conditions.

Theorem 5 (Sufficient conditions: Non-Orthogonal Case). Under Assump-
tion 1, let θ̂ be the ridgeless estimator. Further, assume σ̃2 := σ2 − ‖ω‖2

Σ+
u
> 0.

Suppose that the basic condition in Definition 2 holds, and the covariance split-
ting Σx = Ξz + Σu satisfies the following conditions:

lim
n→∞

‖Σ+
u ω‖2

σ̃

√
tr(Ξz)

n
= lim

n→∞
n

R(Ξz)
tr(ΣuΞz)
tr(Ξ2

z)
= lim

n→∞
ω�Σ+

u ΞzΣ+
u ω = 0.

(12)

Then, the following holds:

‖θ̂ − θ0‖2
Ξz

p→ 0, (n → ∞).

In this non-orthogonal case, the above three conditions (12) play a critical
role, in addition to Definition 2. We provide explanations of the terms in (12)
one by one below.
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(i) (Non-degenerated noise) The first condition on (‖Σ+
u ω‖2/σ̃)(

√
tr(Ξz)/n)

requires that the variance σ̃2 be non-degenerated and condition (7) hold.
Therefore, this condition is a sufficient condition for the condition (7).

(ii) (Effective rank with non-orthogonality) The second condition on the term
(n/R(Ξz))(tr(ΣuΞz)/tr(Ξ2

z)) takes into account the effect of non-
orthogonality on the effective rank R(Ξz), which already appears in the
basic condition in Definition 2. This means that non-orthogonality term
(tr(ΣuΞz)/tr(Ξ2

z)) has a role in reducing the effective rank R(Ξz).
(iii) (Mixed effect) The third condition on ω�Σ+

u ΞzΣ+
u ω includes both the

effects of the non-orthogonality and the correlation ω. This condition is
asymptotically satisfied as Σu and Ξz gradually approach orthogonality.

Of the conditions in (12), (i) and (iii) are necessary to handle the endogeneity.
In other words, (i) and (iii) are always satisfied when ω = 0 holds. However,
condition (ii) is required to achieve benign overfitting under non-orthogonality
even in the absence of endogeneity. To make it clear, we reveal a sufficient
condition for benign overfitting with non-orthogonality in the setting of ordinary
linear regression without endogeneity (ω = 0).

Theorem 6. (Sufficient conditions: Non-Orthogonal Case when Xi and ξi are
independent) Under Assumption 1, let θ̂ be the ridgeless estimator. Suppose that
ω = 0 holds. Suppose that the basic condition in Definition 2 holds, and there
exists a sequence of covariance Σx = Σ1 +Σ2 such that the following conditions
hold:

lim
n→∞

n

R(Σ2)

(
tr(Σ1Σ2)
tr(Σ2

2)

)
= 0. (13)

Then, L(θ̂) converges to σ2 in probability where L(θ) = E(y − 〈θ, x〉)2.
Theorem 6 states that condition (13) is a key factor in RMSE converging

to zero in the setting without orthogonality. When we set Σ1 = Σu and Σ2 =
Ξz, condition (10) is exactly equal to condition (ii) in the above discussion.
Intuitively, tr(ΣuΞz) is the degree of non-orthogonality between Σu and Ξz,
and Theorem 6 requires the degree to be small.

4.1. Example

We provide an example, similar to those provided in Section 3.3.1. That is,
we first specify the base matrix Σ, then construct (transformed) covariance
matrices based on it. Note that the definition of the dimension and the way of
decomposition are slightly different. Throughout this section, we also assume
that ‖θ0‖2 = o(

√
n).

Example 3 (Non-orthogonal version of Example 1). Consider the dimension
p = qn with some q > 1, and a base matrix Σ whose i-th largest eigenvalue has
the form

λi = Ci−1 log−β(i + 1), i = 1, ..., p,
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with some constant C > 0 and β > 0. We also assume that ‖Σ+
u ω‖2 = o(

√
n),

limn→∞(σ2 − ‖ω‖2
Σ+

u
) > 0, and consider the truncation level as (9). Then, we

define the (transformed) covariance matrices with α > 1:

Σu :=
(

1 − 1
nα

)
Σ1:k∗

n
, Ξz := Σ −

(
1 − 1

nα

)
Σ1:k∗

n
.

The base matrix Σ used in this example is identical to that in Example 1. In
contrast, the decomposition to construct the (transformed) covariance matrices
is different. The following result demonstrates the validity of this example.

Proposition 7. Consider Example 3. Suppose limn→∞(σ2 − ‖ω‖2
Σ+

u
) > 0 does

hold. Under the assumptions ‖θ0‖2 = o(
√
n) and (Uω)i = Θ(i−1 log−β(i + 1))

as in Proposition 3, Σu, Ξz, and ω defined above satisfy all the conditions in
Definition 2 and Theorem 5.

Note that Theorem 6 immediately holds from this proposition by setting
Σ1 = Σu and Σ2 = Ξz.

5. Extension to general norm

We extend the result of Theorem 2 to the case when θ is measured in terms of a
general norm. Let ‖ · ‖ be an arbitrary norm. To achieve our aim, we introduce
two definitions, the dual norm and effective ‖ · ‖-ranks.

Definition 3 (Dual Norm). The dual norm of norm ‖ · ‖ on R
d is ‖u‖∗ :=

max‖v‖=1〈v, u〉, and the set of all its sub-gradients with respect to u is ∂‖u‖∗ =
{v : ‖v‖ = 1, 〈v, u〉 = ‖u‖∗}.

Definition 4 (Effective ‖ · ‖-rank). The effective ‖ · ‖-ranks of a covariance
matrix Σ are listed as follows. Let H be normally distributed with mean zero
and variance Id, that is, H ∼ N(0, Id). Denote v∗ as arg minv∈∂‖Σ1/2H‖∗ ‖v‖Σ.
Then, we define

r‖·‖(Σ) :=
(

E‖Σ1/2H‖∗
sup‖u‖≤1 ‖u‖Σ

)2

and R‖·‖(Σ) :=
(
E‖Σ1/2H‖∗
E‖v∗‖Σ

)2

.

Effective ‖ · ‖-ranks is a generalization of the effective rank in Definition 2,
and the dual norm is necessary to define the general effective rank.

We provide basic conditions for general norm ‖ · ‖, which corresponds to
Definition 2 and advanced conditions Koehler et al. (2021) established.

Definition 5 (Basic condition with general norm). This condition requires that
the value of the three limits be zero with respect to a general norm ‖ · ‖:

lim
n→∞

rank(Σu)
n

= lim
n→∞

n

R‖·‖(Ξz)
= lim

n→∞
‖θ0‖E‖Ξ1/2

z H‖∗√
n

= 0. (14)
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Each condition in (14) corresponds to conditions in (6). The first condition
for small latent noise remains unchanged. For the large effective dimension con-
dition, we replace R(Ξz) with the general norm counterpart, R‖·‖(Ξz). For the
no aliasing condition, θ0 is measured in terms of any norm ‖ · ‖ and

√
tr(Ξz) is

replaced with E‖Ξ1/2
z H‖∗.

Definition 6 (Advanced condition). In addition to Definition 5, we require the
following two conditions:

lim
n→∞

1
r‖·‖(Ξz)

= lim
n→∞

P(‖Puv
∗‖2 > 1 + η) = 0, (15)

for any η > 0.

We provide details of the terms in (15) below.

(i) (Large effective dimension) The first term 1/r‖·‖(Ξz) decreases as the ef-
fective rank r‖·‖(Ξz) becomes large as with the second condition in (14).
In the Euclidean norm case, 1/r(Ξz) converges to zero as n/R(Ξz) goes
toward zero by definition.

(ii) (Contracting 	2 projection condition) This condition implies the projected
v∗ onto the space spanned by Σu is asymptotically smaller than or equal
to 1. This condition always holds in the Euclidean norm case because
‖Puv

∗‖2
2 ≤ ‖v∗‖2

2 = 1 holds.

For the projected RMSE to converge to zero, we introduce a new assumption
corresponding to condition (7) in Theorem 2 in addition to the conditions in
Definitions 5 and 6.

Theorem 8 (Sufficient conditions). Under Assumptions 1 and 2, let θ̂ be the
ridgeless estimator. Let ‖ · ‖ denote an arbitrary norm. Suppose that the basic
conditions in Definitions 5 and 6 hold, and the covariance splitting Σx = Ξz+Σu

satisfies the following conditions:

lim
n→∞

‖Σ+
u ω‖E‖Ξ

1/2
z H‖∗√

n
= 0.

Then, the following holds:

‖θ̂ − θ0‖2
Ξz

p→ 0, (n → ∞).

As in the condition in (14), Σ+
u ω is measured in terms of any norm ‖ · ‖ and√

tr(Ξz) is replaced with E‖Ξ1/2
z H‖∗. If we consider the general norm, compared

to the Euclidean norm case, it is possible we can relax some of the sufficient con-
ditions for benign overfitting, especially the condition in Theorem 2. However,
as we must incorporate additional advanced conditions outlined in Definition 6
in conjunction with the basic conditions presented in Definition 5, it remains
uncertain whether benign overfitting is more probable.
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6. Proof outline

6.1. Approach with CGMT

Our proof relies on two techniques: (i) describing the ridgeless estimator as a
solution to an optimization problem and bounding the projected RMSE, and (ii)
evaluating the solution by an extended version of the convex Gaussian minimax
theorem (CGMT). CGMT was introduced into high-dimensional statistics by
Thrampoulidis et al. (2015, 2018). Furthermore, Koehler et al. (2021) discussed
that CGMT can describe benign overfitting by Bartlett et al. (2020) in the
ordinary regression setting. In this section, we deal with the non-orthogonal
case results given in Section 4, which can be easily applied to the orthogonal
case in Section 3.

We prepare some notations. We define a normalized correlation coefficient
ρ = (Σ1/2

u )+ω, which guarantees that ‖ρ‖2
2 ≤ σ2 (see Lemma 38). We also

define X = (X1, ..., Xn)� as an R
n×p-valued random matrix, which has the

form
X D= W1Ξ1/2

z + W2Σ1/2
u , (16)

where W1 and W2 are n×p random matrices whose i-th row identically follows
a joint distribution of ξi such that⎛⎝W1,i

W2,i
ξi

⎞⎠ ∼ N

⎛⎝⎛⎝0p×1
0p×1

0

⎞⎠ ,

⎛⎝Ip×p 0p×p 0p×1
0p×p Ip×p ρ
0�
p×1 ρ� σ2

⎞⎠⎞⎠ (17)

for i = 1, ..., n. Note that this form follows the Gaussianity from Assumption 1.

6.2. Step (i): bound projected RMSE by optimization form

First, we consider a uniform upper bound for the projected RMSE E[(E[〈θ,X〉−
〈θ0, X〉|Z])2] under the constraint that the estimator θ̂ is the ridgeless estima-
tor (i.e., L̂(θ̂) = 0). Then, we transform it to a maximization problem with a
constraint with some compact parameter space K ⊂ R

p:

max
θ∈K,L̂(θ)=0

E
[
(E[〈θ,X〉 − 〈θ0, X〉|Z])2

]
= max

θ∈K,Xθ=Y
‖θ − θ0‖2

Ξz

= max
θ∈K,X(θ−θ0)=ξ

‖θ − θ0‖2
Ξz
.

Using the surrogate Gaussians in (16), the upper bound above has the same
distribution as the following term:

Φ := max
(θ1,θ2)∈S,

W1θ1+W2θ2=ξ

‖θ1‖2
2, (18)

where we define S := {(θ1, θ2) : ∃θ ∈ K s.t. θ1 = Ξ1/2
z (θ−θ0) and θ2 = Σ1/2

u (θ−
θ0))}. The details of the derivation are described in the proof of Lemma 12 in
the appendix.
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Second, we approximate the distribution of the optimization problem (18)
using CGMT. CGMT approximates minimax optimization problems by a dis-
tribution of their simpler auxiliary problems. Here, we present our variant of
CGMT that can deal with correlation between variables, though we also use
classical CGMT depending on the situation.

Theorem 9 (Extended CGMT). Let W : n× d be a matrix with i.i.d. N(0, 1)
entries and suppose G ∼ N(0, In) and H ∼ N(0, Id) are independent of W
and each other. Let SW and SU be non-empty compact sets in R

d × R
d′ and

R
n × R

n′ , respectively, and let ψ : SW × SU �→ R be an arbitrary continuous
function. Define the Primary Optimization (PO) problem

Φ(W) := min
(ω,ω′)∈SW

max
(u,u′)∈SU

〈u,Wω〉 + ψ((ω, ω′), (u, u′)) (19)

and the Auxiliary Optimization (AO) problem

φ(G,H) := min
(ω,ω′)∈SW

max
(u,u′)∈SU

‖ω‖2〈G, u〉 + ‖u‖2〈H,ω〉 + ψ((ω, ω′), (u, u′)).

(20)
If we suppose that SW and Su are convex sets and ψ((ω, ω′), (u, u′)) is convex
in (ω, ω′) and concave in (u, u′), then P(Φ(W) > c) ≤ 2P(φ(G,H) ≥ c) for any
c ∈ R.

This theorem is an extension of the original CGMT to split the variables to be
optimized so that it can handle our regression model (1) with the endogeneity.
Rigorously, this theorem allows correlation between the covariates and the error
terms.

Using the extended CGMT in Theorem 9, we approximate the distribution
of the problem (18) by

φ := max
(θ1,θ2)∈S:‖ξ−W2θ2−G‖θ1‖2‖2≤〈θ1,H〉

‖θ1‖2
2,

where G ∼ N(0, In) and H ∼ N(0, Id) are Gaussian vectors independent of
W1,W2, ξ, and each other. A distribution of this term is tractable because of
the relatively simple form. Namely, we obtain the following result. In the case
of a Euclidean norm ball, we set K := {θ ∈ R

p|‖θ‖2 ≤ B}. By combining the
upper bound of K, we can derive a simpler upper bound for the Euclidean norm.

Corollary 10. There exists an absolute constant C1 ≤ 64 such that the fol-
lowing is true. Assume Assumptions 1 and 2 hold. Pick Σx = Ξz + Σu and fix
δ ≤ 1/4. Define σ̃2 := σ2 − ‖ω‖2

Σ+
u

≥ 0 and g(t1, t2) = t21 − t22. If B ≥ ‖θ0‖2

and n is large enough that γ(δ) ≤ 1, the following holds with probability at least
1 − δ:

max
‖θ‖2≤B,Y=Xθ

‖θ − θ0‖2
Ξz

� (1 + γ(δ))g
(
B

√
tr(Ξz)

n
, σ̃

)
,
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where we define

γ(δ) :=
√

log(1/δ)
(

1√
r(Ξz)

+
√

rank(Σu)
n

)
.

In this corollary, the radius B of K plays an important role. That is, the
bound in Corollary 10 is valid only when the norm ‖θ‖2 is no more than B.
Here, our remaining task is to show that such a B exists. In the next step, we
will examine the norm ‖θ̂‖2 to show the existence of such B.

6.3. Step (ii): bound norm of estimator

As the next step, we specify an upper bound on the norm of the solution, which
is equivalent to deriving an upper bound of B that appears in the constraint in
Corollary 10. To show the consistency of ridgeless estimators, we need to specify
the value of B so that K includes some parameters.

In the following theorem, we obtain the Euclidean norm bound for the ridge-
less estimator. To achieve this result, we again use CGMT from Theorem 9.

Theorem 11 (Euclidean norm bound; special case of Theorem 31). Fix any
δ ≤ 1/4. Suppose Σx = Ξz+Σu and σ̃2 := σ2−‖ω‖2

Σ+
u
> 0. If n and the effective

ranks are such that ε(δ) ≤ 1 and R(Ξz) � log(1/δ)2, then with probability at
least 1 − δ, it holds that

‖θ̂‖2 � (1 + ε(δ))1/2
(
‖θ0‖2 + ‖Σ+

u ω‖2 + (2η1 + σ̃ + η2)
√

n

tr(Ξz)

)
,

where η1, η2, ε ∈ R are sequences depending on n and δ satisfying

η1 �
√

n

R(Ξz)
‖Ξ1/2

z Σ+
u ω‖2,

η2 �

√√√√(
1 +

√
2 log(8/δ)
r(Ξz)

)√
(E‖Ξ1/2

z H‖2)2
n

‖Σ+
u ω‖2

2 + ‖Ξ1/2
z Σ+

u ω‖2
2,

ε:=
√

log(1/δ)
(√

rank(Σu)
n

+
(

1+tr(ΣuΞz)
tr(Ξ2

z)

)(
n

R(Ξz)

)
+‖Σ+

u ω‖2

σ̃

√
tr(Ξz)

n

)
.

The rigorous definitions of η1, η2, and ε will be provided in the appendix.
To derive this upper bound, we again use the common uniform upper bound
argument. Combining this result with Corollary 10, we derive our primary result
on the upper bound of ‖θ − θ0‖2

Ξz
.

7. Experiment

We conduct experiments to justify our theoretical results. Specifically, we test
whether our derived sufficient conditions in Theorems 2 and 5 lead to benign
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overfitting. This section contains two experiments: (i) measuring the projected
RMSE of the ridgeless estimator, and (ii) comparing the ridgeless estimator to
existing high-dimensional operating variable methods.

7.1. Projected RMSE of ridgeless estimator

7.1.1. Setups

We generate n ∈ {200, 300, ..., 1000} independent samples (X1, Y1, Z1), ...,
(Xn, Yn, Zn) from the regression model (1), and the covariate Xi, noise vari-
able ξi, and latent noise ui follow the distribution(

Xi

ξi

)
∼ N

((
0p×1

0

)
,

(
Σx Σ1/2

u ρ

(Σ1/2
u ρ)� σ2

))
, ui ∼ N(0p×1,Σu). (21)

The covariance/coefficient matrices Σx,Σu,Π0, and Σz are determined sepa-
rately for the following four setups. Through experiments, truncation level k∗n
is determined in the same way as (9).

Setup (i) Example 1 (Orthogonal Case): This setting follows Example 1
with the orthogonal case in Section 3. We set the parameter dimen-
sion as p = 5n, and set a base matrix Σ ∈ R

p×p such that its i-th
largest eigenvalue λi is 300i−1(log(i + 1) exp /2)−2 for i = 1, ..., p.
We set the true parameter θ0 ∈ R

p whose i-th element is 20/
√
i and

set ω as (Σ1/2
u )+ω := Uρ, where ρ ∈ R

p has its i-th element 2/i
and U ∈ R

p×p is an orthogonalized version of P ∈ R
p×p such that

Pj,j′ = 1{|j − j′| �= p− 2} for j, j′ = 1, ..., p. Then, we define Σx,Σu,
and Ξz as Σx := Σu + Ξz,Σu := Σ1:k∗

n
, and Ξz := (Σ − Σ1:k∗

n
) as

in Example 1. This setting satisfies the sufficient conditions in The-
orem 2, and also Ξz and Σu are orthogonal.

Setup (ii) Example 2 (Orthogonal Case): This setting follows Example 2
with the orthogonal case in Section 3. We set the dimension p = n3/2

and a base matrix Σ as its i-th eigenvalue λi being λi = γi+εn, where
γi = 10 exp(−(i/2)) and εn = exp (−√

n) /
√
n. We also set the true

parameter θ0 ∈ R
p whose i-th element is 20/

√
i, and the correlation

coefficient ω is defined to satisfy (Σ1/2
u )+ω := Uρ where ρ ∈ R

p has
3 exp(−i/4) as its i-th element. This setting satisfies the sufficient
conditions in Theorem 2, and Ξz and Σu are orthogonal.

Setup (iii) Example 1 (Non-orthogonal Case): We consider an extension of
Example 1 to the non-orthogonal case in Section 4. This is identical
to that treated in Example 3. Specifically, p,Σ, and ω are determined
as in Setup (i) above. However, Σu and Ξz are the same as

Σu :=
(

1 − 1
n1.01

)
Σ1:k∗

n
, and
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Ξz := (Σ − Σ1:k∗
n
) + 1

n1.01 Σ1:k∗
n
, (22)

and Σx := Σu + Ξz. In this setting, Ξz and Σu are non-orthogonal.
Setup (iv) Example 2 (Non-orthogonal Case): We consider an extension of

Example 2 to the non-orthogonal case in Section 4. In this setting,
p,Σ, and ω are determined as in Setup (ii) above, and Σu,Ξz, and
Σx are set as (22). Here, Ξz and Σu are non-orthogonal.

Setup (v) Example 1 (Sparse and Orthogonal Case): We consider Setup
(i) under the sparse setting. The parameters are identical to Setup
(i) except the setting of θ0. When i is not more than 100 and there
exists a natural number k such that i + 4 = 5k, set the i-th element
of θ0 as 20/

√
i. Otherwise, the elements of θ0 are equal to zero.

Setup (vi) Example 1 (Sparse and Non-Orthogonal Case): We study
Setup (iii) in the sparse setting. All the settings are identical to
Setup (iii) except the setting of θ0. We impose the sparsity on θ0 as
in Setup (v).

In addition, beyond our theoretical framework, we also examine the situa-
tion when the variable data are non-Gaussian. Specifically, we study the sit-
uation where the vector of instrumental variable Zi follows the multivariate
t-distribution with 5 degrees of freedom, and the mean and variance are com-
mon.

7.1.2. Results

Figure 1 summarizes the results of each of the setups. The values are means of 50
repetitions. The red line shows the projected RMSE of the ridgeless estimator.
The blue lines show the case with the t-distribution.

These results carry several implications: (a) Despite the increase in dimension
p being related to n, that is, p = 5n or p = n3/2, the projected RMSEs converge
to zero. This implies that benign overfitting occurs with this high-dimensional
case even with the endogeneity. (b) The convergence occurs even when Zi is
not generated by the Gaussian distribution, which implies that our theoretical
results would be applicable to the non-Gaussian case.

7.2. Comparison with related method

7.2.1. Setups

We compare the ridgeless estimator to a regularized estimator for high-
dimensions, such as the lasso-type method. Specifically, we consider methods
for estimating sparse parameters under high-dimensional covariates and instru-
mental variables, such as those developed by Belloni et al. (2012); Chernozhukov
et al. (2015a) and many others.

We present our setting. Similar to Section 7.1, we generate n ∈ {100, 200, ...,
1000} observations (X1, Y1, Z1), ..., (Xn, Yn, Zn) from the regression model (1)
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Fig 1. Projected RMSE of the ridgeless estimator against the sample size n. The red line
shows the Gaussian case, and the blue line shows the non-Gaussian case. The dimension p
of the parameters is set as p = 5n (Example 1) or p = n3/2 (Example 2).

and the data generating process (21). Here, k denotes a dimension of endogenous
variables and we set k = n/10.

Setup (vii) Non-Sparse Case: We consider the case where the true parameter
θ0 is not sparse. We set p = 5n and set the true parameter θ0 ∈ R

p,
which has 20/

√
i as its i-th element. Further, we set the base matrix

Σ ∈ R
p×p that has λi = 300i−1(log(i+1) exp /2)−2 as its i-th largest

eigenvalue. The correlation coefficient ω ∈ R
p with its i-th element
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is (2/i)1{i ∈ [1, k]}. With these settings, we define Σx,Σu, and Ξz

as in (22). The matrices Σu and Ξz with the correlation term ω
satisfy the sufficient conditions in Theorem 5.

Setup (viii) Partially Sparse Case: We consider the case where the true pa-
rameter θ0 is less sparse. We set p = 5n and define θ0 ∈ R

p whose
i-th element is (20/

√
i)1{i ≤ 0.8n}. We define Σx,Σu, Ξz, and ω

in the same way as the non-sparse case (Setup (v)).
Setup (ix) Non-Sparse Case (Rotated): We set p = 5n and define Σx,Σu,

Ξz, θ0, and ω in the same way as the non-sparse case (Setup (v)).
Further, we set the (k/5+1)-th to k-th variables and the (k∗n+1)-th
to (k∗n + k/5)-th variables as endogenous.

For the method to be compared, we utilize the estimator by Chernozhukov
et al. (2015a) named LassoIV. First, we divide the sample in half, then we
use one-half of the sample to estimate the parameters of endogenous variables
and use the other to estimate the other parameters. We use the R package hdm
(Chernozhukov et al., 2016) for implementation. For the estimation of exogenous
variables, we subtract the endogenous part from the outcome and define the new
outcome Ỹi, that is,

Ỹi := Yi − β̂�Wi,

where Wi is a k × 1 endogenous variable and β̂ is an estimator by LassoIV. To
obtain an estimator for the parameters of exogenous variables, we regress Ỹi on
exogenous variables.

7.2.2. Results

Figure 2 summarizes the results of each experiment. We report means of 30
repetitions. When the sample size is small, the projected RMSE by the Lasso
method is notably larger than that by the ridgeless estimator. As the sample size
grows, though the errors get smaller, the error by the ridgeless estimator is still
relatively small. Specifically, in setup (ix), we change the location of endogenous
variables. Nevertheless, we can see that the ridgeless estimator provides the
smaller projected RMSE.

7.3. Real data analysis

We implement real data analysis in this subsection to exemplify our theoretical
result. We used the Current Population Survey (CPS), a monthly survey of
U.S. households conducted by the Bureau of the Census of the Bureau of Labor
Statistics. Our data consists of the March 2009 survey, including the Asian male
individuals who were employed full-time (defined as those who had worked at
least 36 hours per week for at least 48 weeks the past year), and excluded those
in the military. The sample size is 1,435.
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Fig 2. Projected RMSEs of the ridgeless estimator and LassoIV. Each value is a mean of 30
repetitions.

In this analysis, we set the natural log of hourly wage as the outcome variable
Yi. From the dataset, we use the year of education, the square of the year of
education, age, the square of age, and the product of education and age as the
covariates. Furthermore, to study a high-dimensional setting, we generate the
20,000-dimensional normal variables X∗

i with the diagonal variance matrix Σ
whose 	-th diagonal 300	−1(log(	 + 1) exp /2)−2 for 	 = 1, ..., 20, 000. For each
i ∈ {1, · · · , 1435}, we have

Yi=β1educationi+β2education
2
i+β3agei+β4age

2
i+β5educationiagei+γ�X∗

i +ξi.
(23)

As the error term ξi included the unobserved ability of an individual that will
affect both the natural log of hourly wage and the year of education, the year
of education will correlate with the error term ξi, that is, the year of education
is endogenous.

Under the setting (23), we calculate the sample RMSE. We estimate the in-
terpolator and evaluate the sample RMSE. The sample RMSE is 0.6165. As the
estimated RMSE obtained from the LASSO estimator with 5-fold cross valida-
tion is 0.4463, this result implies the sample RMSE obtained by the interpolator
will approximate RMSE even with the presence of the correlation between the
covariates and the noise ξi.

8. Discussion and conclusion

We studied the estimation error in the over-parameterized linear regression
problem when the covariates are endogenous. In particular, we examined the
situation where data are Gaussian and the covariates have a linear model on
an instrumental variable. In this setting, we derived sufficient conditions under
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which the risk of the ridgeless estimator converges to zero. In other words, we
show the ridgeless estimator achieves benign overfitting even in the presence
of endogeneity in this setting. To show this result, we developed an extended
version of CGMT.

An important future challenge for the study of over-parameterization with
endogeneity is the development of methods to infer whether our sufficient condi-
tions hold from data. This challenge may be addressed, for example, by estimat-
ing a decay rate of eigenvalues of covariance matrices, as in the Hill estimator
(Hill, 1975). The development of such practical methods is an important future
task.

One limitation of this study depends on the Gaussianity of data. As this
is an essential condition for using CGMT, it is not easy to relax. However,
there has been some research to extending risks with Gaussian data to those of
non-Gaussian data, known as universality (Han and Shen, 2023; Montanari and
Saeed, 2022), so it may be a way to analyze non-Gaussian data.

Appendix A: Organization of Appendix

This appendix provides the full proofs of the results in the main body. The first
half of the appendix follows the proof outline described in Section 6: (i) a proof
of CGMT (Section B), (ii) a proof of an upper bound for the projected RMSE
(Section C), and (iii) a proof of an upper bound for the ridgeless estimator
(Section D). In Section E, we provide proofs for the primary statement for
benign overfitting. In Section F, we independently present the proof for the non-
orthogonal case in Section 4. Finally, supportive results are listed in Section G.

Appendix B: Proof of CGMT

We present a proof of Theorem 9 for CGMT. The proof of the standard CGMT
is given in Thrampoulidis et al. (2015). We extend the standard proof to ac-
commodate partitions of a parameter space. Remember that W : n × d is a
matrix with i.i.d. N(0, 1) entries and suppose G ∼ N(0, In) and H ∼ N(0, Id)
are independent Gaussian vectors.

Proof of Theorem 9. The sets Sω and Su are non-empty, compact, and convex
by assumption. As the function 〈u,Wω〉+ψ((ω, ω′), (u, u′)) is continuous, finite,
and convex-concave on Sω×Su, it holds from the minimax result in Rockafellar
(1997) (Corollary 37.3.2) that

Φ(W) = max
(u,u′)∈SU

min
(ω,ω′)∈SW

〈u,Wω〉 + ψ((ω, ω′), (u, u′)),

where we define Φ(W) as min(ω,ω′)∈SW
max(u,u′)∈SU

〈u,Wω〉+ψ((ω, ω′), (u, u′)).
Consequently, the min-max problem in (19) is replaced with a max-min problem.
This form implies

−Φ(W) = min
(u,u′)∈SU

max
(ω,ω′)∈SW

−〈u,Wω〉 − ψ((ω, ω′), (u, u′)).
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By using the symmetry of W, we obtain that for any c ∈ R,

P(−Φ(W) ≤ c) = P

(
min

(u,u′)∈SU

max
(ω,ω′)∈SW

{〈u,Wω〉 − ψ((ω, ω′), (u, u′))} ≤ c

)
.

Then, by a variant of the Gaussian minimax theorem (Theorem 10 of Koehler
et al. (2021)), we have

P(−Φ(W) < c)

≤ 2P
(

min
(u,u′)∈SU

max
(ω,ω′)∈SW

{‖u‖〈H,ω〉 + ‖ω‖〈G, u〉 − ψ((ω, ω′), (u, u′))} ≤ c

)
= 2P

(
min

(u,u′)∈SU

max
(ω,ω′)∈SW

{−‖u‖〈H,ω〉 − ‖ω‖〈G, u〉 − ψ((ω, ω′), (u, u′))} ≤ c

)
,

where the last equation follows because of the symmetry of H and G. Note that
we have

min
(u,u′)∈SU

max
(ω,ω′)∈SW

{−‖u‖〈H,ω〉 − ‖ω‖〈G, u〉 − ψ((ω, ω′), (u, u′))}

= − max
(u,u′)∈SU

min
(ω,ω′)∈SW

{‖u‖〈H,ω〉 + ‖ω‖〈G, u〉 + ψ((ω, ω′), (u, u′))}.

By the minimax inequality (Rockafellar (1997), Lemma 36.1), we obtain that
for all G,H,

max
(u,u′)∈SU

min
(ω,ω′)∈SW

{‖ω‖〈G, u〉 + ‖u‖〈H,ω〉 + ψ((ω, ω′), (u, u′))}

≤ min
(ω,ω′)∈SW

max
(u,u′)∈SU

{‖ω‖〈G, u〉 + ‖u‖〈H,ω〉 + ψ((ω, ω′), (u, u′))} := φ(G,H).

Therefore, we have for any c ∈ R,

P(Φ(W) > −c) = P(−Φ(W) < c) ≤ 2P(−φ(G,H) ≤ c) = 2P(φ(G,H) ≥ −c).

Appendix C: Upper bound for projected residual mean squared
error

In this section, we provide the upper bound for the projected RMSE. Specifically,
we prove Corollary 10 in the main body, and then give Corollary 16, which
generalized a norm. The objective of this section is to show a general upper
bound (Theorem 15). To this end, we analyze the projected RMSE by CGMT
using Lemmas 12 and 13. We then analyze the projected RMSE in Lemma 14
to show Theorem 15, leading to Corollaries 10 and 16.

In the following lemma, we rewrite the projected RMSE (2) in the form of
an optimization problem to use CGMT. In the statement, we use the empirical
squared risk L̂(θ) in (3) and the representation of the data matrix X in (16)
and (17). As the ridgeless estimator θ̂ satisfies L̂(θ̂) = 0, we are interested in a
parameter θ which satisfies L̂(θ) = 0.
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Lemma 12. Let K denote a compact set in R
p. Assume Assumptions 1 and 2

hold. Define the primary optimization problem (PO) as

Φ := max
(θ1,θ2)∈S,

W1θ1+W2θ2=ξ

‖θ1‖2
2, (18)

where we define S := {(θ1, θ2) : ∃θ ∈ K s.t. θ1 = Ξ1/2
z (θ − θ0) and θ2 =

Σ1/2
u (θ − θ0))}. Then, the following maximized projected RMSE in (2) is equal

in distribution to the PO:

max
θ∈K,L̂(θ)=0

E
[
(E[〈θ,X〉 − 〈θ0, X〉|Z])2

]
D= Φ.

Proof of Lemma 12. Note that L̂(θ) = 0 is equivalent to Y = Xθ. By the
definitions of Ξz and Σu, we have

X D= W1Ξ1/2
z + W2Σ1/2

u .

Hence, we obtain

max
θ∈K,L̂(θ)=0

E
[
(E[〈θ,X〉 − 〈θ0, X〉|Z])2

]
= max

θ∈K,L̂(θ)=0
(θ − θ0)�Π0E[ZZ�]Π�

0 (θ − θ0)

= max
θ∈K,Xθ=Y

‖θ − θ0‖2
Ξz

= max
θ∈K,X(θ−θ0)=ξ

‖θ − θ0‖2
Ξz

D= max
θ∈K−θ0

(W1Ξ1/2
z +W2Σ1/2

u )θ=ξ

‖θ‖2
Ξz
.

By the definition of S, we have

max
θ∈K−θ0

(W1Ξ1/2
z +W2Σ1/2

u )θ=ξ

‖θ‖2
Ξz

= max
(θ1,θ2)∈S

W1Ξ1/2
z θ1+W2Σ1/2

u θ2=ξ

‖θ1‖2
2.

Then, the stated result holds.

Lemma 13. Let G ∼ N(0, In), H ∼ N(0, Id) be Gaussian vectors independent
of W1,W2, ξ, and each other. Define the auxiliary optimization problem (AO)
as

φ := max
(θ1,θ2)∈S

‖ξ−W2θ2−G‖θ1‖2‖2≤〈θ1,H〉

‖θ1‖2
2. (24)

Then, it holds that

P(Φ > t|W2, ξ) ≤ 2P(φ ≥ t|W2, ξ).

Furthermore, by taking expectations, we obtain

P(Φ > t) ≤ 2P(φ ≥ t).
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Proof of Lemma 13. This lemma is quite similar to Lemma 4 in Koehler et al.
(2021). The only difference between the two is the objective function of the
constrained maximization problems. However, because the objective function
(24) does not affect the proof of Lemma 4 in Koehler et al. (2021), the result of
Lemma 13 also holds.

We then offer a bound on the projected RMSE. The following lemma is an
extension of Lemma 5 in Koehler et al. (2021) to the case where the covariates
correlate with errors.

As preparation, we define the Gaussian width, which is used in Lemma 14.

Definition 7 (Gaussian width (Vershynin, 2018)). The Gaussian width of a
set S ⊂ R

p is
W (S) := E

H∼N(0,Id)

[
sup
s∈S

|〈s,H〉|
]
.

Lemma 14. Let β = 12
√

log(32/δ)
n + 3

√
rank(Σu)

n . If n is sufficiently large such
that β ≤ 1, for every δ ∈ (0, 1), the following holds with probability at least 1−δ:

φ≤1 + β

n

{
W (Ξ1/2

z K) + rad(Ξ1/2
z K)

√
2 log(16/δ) + ‖θ0‖Ξz

√
2 log(16/δ)

}2
− σ̃2,

(25)

where we define

σ̃2 := σ2 − ‖ω‖2
Σ+

u
= min

θ2∈Σ1/2
u Rp

(
σ2 − ‖ρ‖2 + ‖θ2 − ρ‖2

2
)
.

Proof of Lemma 14. Fix δ ∈ (0, 1) in this proof. To simplify notations, we define
coefficients:

α1 := 2
√

log(32/δ)
n

and α2 :=
√

rank(Σu) + 1
n

+ 2
√

log(16/δ)
n

.

To prepare for the derivation of the upper bound, we consider a list of the
following inequalities, each of which holds with probability at least 1 − δ/8.

(i) By (90) in Lemma 39, uniformly over all θ2 ∈ Σ1/2
u (K − θ0), it holds that

|〈ξ − W2θ2, G〉| ≤ ‖ξ − W2θ2‖2‖G‖2α2. (26)

V , s, and δ in Lemma 39 correspond to G, ξ − W2θ2, and δ/8 in (26),
respectively.

(ii) By Lemma 40, it holds that

−α1 ≤ 1√
n
‖G‖2 − 1 ≤ α1. (27)

Moreover, as we obtain the following from (16) that(
W2,i
ξi

)
∼ N

((
0p×1

0

)
,

(
Ip×p ρ
ρT σ2

))
,
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we have ξi −WT
2,iθ2 ∼ N(0, σ2 − 2ρT θ2 + ‖θ2‖2). As {ξi −WT

2,iθ2}ni=1 are
i.i.d., we have

ξ − W2θ2
D=
√
σ2 − 2ρT θ2 + ‖θ2‖2G.

Further, by Lemma 40, we have

−α1

√
σ2 − 2ρT θ2 + ‖θ2‖2 ≤ 1√

n
‖ξ − W2θ2‖2 −

√
σ2 − 2ρT θ2 + ‖θ2‖2

≤ α1

√
σ2 − 2ρT θ2 + ‖θ2‖2. (28)

(iii) By the standard Gaussian tail bound P(|Z| ≥ t) ≤ 2e−t2/2, it holds that

|〈Ξ1/2
z θ0, H〉| D= |Z ′| ≤ ‖θ0‖Ξz

√
2 log(16/δ), (29)

where Z ′ ∼ N(0, ‖θ0‖2
Ξz

).
(iv) By Theorem 43, it holds that

max
θ1∈Ξ1/2

z K
|〈θ1, H〉| ≤ W (Ξ1/2

z K) + rad(Ξ1/2
z K)

√
2 log(16/δ) (30)

because max
θ1∈Ξ1/2

z K |〈θ1, H〉| is a rad(Ξ1/2
z K)-Lipschitz function of H, and

W (Ξ1/2
z K) = E[sup

θ1∈Ξ1/2
z K |〈θ1, H〉|].

We further prepare several inequalities. By squaring the last constraint in the
definition of the auxiliary optimization problem φ, we see that

〈θ1, H〉2 ≥ ‖ξ − W2θ2 − ‖θ1‖2G‖2

= ‖ξ − W2θ2‖2
2 + ‖θ1‖2

2‖G‖2
2 − 2〈ξ − W2θ2, ‖θ1‖2G〉.

From (26) and the AM-GM inequality (a2/2 + b2/2 ≥ ab), we have

〈θ1, H〉2 ≥ (1 − α2)[‖ξ − W2θ2‖2
2 + ‖θ1‖2

2‖G‖2
2].

From the rearrangement of the above inequality, we have

‖θ1‖2
2 ≤ (1 − α2)−1〈θ1, H〉2 − ‖ξ − W2θ2‖2

2
‖G‖2

2

≤ (1 − α2)−1〈θ1, H〉2 − ‖ξ − W2θ2‖2
2

n(1 − α1)2

≤ (1 − α2)−1〈θ1, H〉2 − n(1 − α1)2(‖θ2‖2 − 2ρT θ2 + σ2)
n(1 − α1)2

, (31)

where the second inequality holds from (27) and the third inequality holds from
(28).
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Now, we are ready to construct the upper bound on φ from the restriction of
the optimization problem (24). Plugging (31) into (24), we obtain

φ ≤ max
θ1∈Ξ1/2

z (K−θ0)

(1 − α2)−1〈θ1, H〉2
n(1 − α1)2

+ max
θ2∈Σ1/2

u (K−θ0)
−(‖θ2‖2 − 2ρT θ2 + σ2)

≤ 1
n(1 − α2)(1 − α1)2

(
max

θ1∈Ξ1/2
z K

|〈θ1, H〉| + |〈Ξ1/2
z θ0, H〉|

)2

− min
θ2∈Σ1/2

u (K−θ0)

(
σ2 − ‖ρ‖2 + ‖θ2 − ρ‖2

2
)

≤ 1
n(1 − α2)(1 − α1)2

(
max

θ1∈Ξ1/2
z K

|〈θ1, H〉| + |〈Ξ1/2
z θ0, H〉|

)2

− min
θ2∈Σ1/2

u Rp

(
σ2 − ‖ρ‖2 + ‖θ2 − ρ‖2

2
)

≤ 1
n(1 − α2)(1 − α)2

×
(
W (Ξ1/2

z K) + rad(Ξ1/2
z K)

√
2 log(16/δ) + ‖θ0‖2

Ξz

√
2 log(16/δ)

)2
− σ̃2,

where the fourth inequality holds from (29) and (30).
We simplify the effect of α1 and α2 on the upper bound for φ. As (1−α1)2 ≥

1 − 2α1, we have

1
(1 − α2)(1 − α1)2

≤ 1
(1 − α2)(1 − 2α1)

.

If α1 < 1/2 and α2 < 1,

(1 − 2α1)(1 − α2) = 1 − α2 − 2α1 + 2α1α2

≥ 1 − α2 − 2α1.

Assume α2 + 2α1 < 1/2. By using the inequality (1 − x)−1 ≤ 1 + 2x for x ∈
[0, 1/2], we can show that

1
(1 − α2)(1 − α1)2

≤ 1
(1 − α2)(1 − 2α1)

≤ 1 + 2α2 + 4α1.

Therefore, if we choose β to satisfy the following inequality:

2α2 + 4α1 ≤ 3
√

rank(Σu)
n

+ 12
√

log(32/δ)
n

:= β,

the stated result holds.

Finally, we obtain the generalization bound from Lemma 14.

Theorem 15 (General Bound). There exists an absolute constant C1 ≤ 24
such that the following is true. Assume Assumptions 1 and 2 hold. Let K denote
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an arbitrary compact set, and take Σx = Ξz + Σu. Fixing δ ≤ 1/4, let β =
C1

(√
rank(Σu)/n +

√
log(1/δ)/n

)
. If n is large enough that β ≤ 1, then the

following holds with probability at least 1 − δ:

max
θ∈K,Y =Xθ

‖θ − θ0‖2
Ξz

≤ 1 + β

n

[
W (Ξ1/2

z K) +
(
rad(Ξ1/2

z K) + ‖θ0‖Ξz

)√
2 log 32

δ

]2

− σ̃2.

Proof of Theorem 15. For any t > 0, it holds from Lemmas 12 and 13 that

P

(
max

θ∈K,Y =Xθ
‖θ − θ0‖2

Ξz
> t

)
≤ 2P(φ ≥ t).

Lemma 14 implies that the above term is upper bounded by δ if we choose t using
the result (25) with δ replaced by δ/2. Then, we obtain the stated result.

By using the definition of the radius of sets and the Gaussian width, we can
reduce the generalization bound in Theorem 15 to a simpler bound:

Corollary 16. There exists an absolute constant C1 ≤ 32 such that the follow-
ing is true. Assume Assumptions 1 and 2 hold. Pick Σx = Ξz +Σu, fix δ ≤ 1/4,
and let γ = C1(

√
log(1/δ)/r‖·‖(Ξz)+

√
log(1/δ)/n+

√
rank(Σu)/n). If B ≥ ‖θ0‖

and n is large enough that γ ≤ 1, the following holds with probability at least
1 − δ:

max
‖θ‖≤B,Y=Xθ

‖θ − θ0‖2
Ξz

≤ (1 + γ)

(
BE‖Σ1/2

2 H‖∗
)2

n
− σ̃2.

Proof of Corollary 16. Let K define {θ : ‖θ‖ ≤ B} in Theorem 15. By the
definition of the Gaussian width and the radius of a set, we have

W (Ξ1/2
z K) = E sup

‖θ‖≤B

|〈Ξ1/2
z θ,H〉| = E sup

‖θ‖≤B

|〈θ,Ξ1/2
z H〉| = BE‖Ξ1/2

z H‖∗,

rad(Ξ1/2
z K) = sup

‖θ‖≤B

‖Ξ1/2
z θ‖2 = B sup

‖θ‖≤1
‖θ‖Ξz .

Hence, we obtain

r‖·‖(Ξz) =
(

W (Ξ1/2
z K)

rad(Ξ1/2
z K)

)2

.

As we have ‖θ0‖Ξz =
√

(θ�0 Ξzθ0/‖θ0‖2) · ‖θ0‖2, it holds that ‖θ0‖Ξz ≤ ‖θ0‖
sup‖θ‖≤1 ‖θ‖Ξz . By definition, it is clear that ‖θ0‖Ξz ≤ rad(Ξ1/2

z K). Hence,

W (Ξ1/2
z K) +

(
rad(Ξ1/2

z K) + ‖θ0‖Ξz

)√
2 log 32

δ
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≤ W (Ξ1/2
z K) + 2

√
2 log 32

δ
rad(Ξ1/2

z K)

= W (Ξ1/2
z K) + 2

√
2 log(32/δ)
r‖·‖(Ξz)

W (Ξ1/2
z K)

=
(

1 + 2

√
2 log(32/δ)
r‖·‖(Ξz)

)
BE‖Ξ1/2

z H‖∗

holds where the last equality holds by the definition of r‖·‖(Ξz). Provided that
γ ≤ 1 and δ ≤ 1/4, we obtain

(1 + β)
(

1 + 2

√
2 log(32/δ)
r‖·‖(Ξz)

)2

≤
(

1 + β + 4

√
2 log(32/δ)
r‖·‖(Ξz)

)(
1 + 2

√
2 log(32/δ)
r‖·‖(Ξz)

)
≤ 1 + γ,

where the inequalities follow from using (1 + x)(1 + y) ≤ 1 + x + 2y for x ≤ 1.
Plugging into Theorem 15 completes the proof.

When we consider the Euclidean space, we can reduce the main generalization
bound to a simpler bound.

Corollary 10 There exists an absolute constant C1 ≤ 32 such that the following
is true. Assume Assumptions 1 and 2 hold. Pick Σx = Ξz +Σu, fix δ ≤ 1/4, and
let γ = C1

(√
log(1/δ)/r(Ξz) +

√
log(1/δ)/n +

√
rank(Σu)/n

)
. If B ≥ ‖θ0‖2

and n is large enough that γ ≤ 1, the following holds with probability at least
1 − δ:

max
‖θ‖2≤B,Y=Xθ

‖θ − θ0‖2
Ξz

≤ (1 + γ)B
2tr(Ξz)
n

− σ̃2.

Proof of Corollary 10. By trivial calculation, we have

W (Ξ1/2
z K) ≤ Btr(Ξz)1/2 and rad(Ξ1/2

z K) = B‖Ξz‖1/2
op .

By the definition of rad(Ξ1/2
z K), we have ‖θ0‖Ξz ≤ rad(Ξ1/2

z K) = B‖Ξz‖1/2
op .

Hence,

W (Ξ1/2
z K) +

(
rad(Ξ1/2

z K) + ‖θ0‖Ξz

)√
2 log 32

δ

≤ W (Ξ1/2
z K) + 2

√
2 log 32

δ
rad(Ξ1/2

z K)
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≤ Btr(Ξz)1/2 + 2
√

2 log 32
δ
B‖Ξz‖1/2

op

=
(

1 + 2

√
2 log(32/δ)

r(Ξz)

)
Btr(Ξz)1/2

holds. The last equality holds by the definition of the effective rank r(Ξz) in
Definition 1. Under our assumptions that γ ≤ 1 and δ ≤ 1/4, we can show that

(1 + β)
(

1 + 2

√
2 log(32/δ)

r(Ξz)

)2

≤
(

1 + β + 4

√
2 log(32/δ)

r(Ξz)

)(
1 + 2

√
2 log(32/δ)

r(Ξz)

)
≤ 1 + γ,

where the inequality follows from using (1 + x)(1 + y) ≤ 1 + x + 2y for x ≤ 1
and y ≥ 0. Plugging into Theorem 15 completes the proof.

Appendix D: Bounds for the ridgeless estimator

In this section, we provide an upper bound of a norm of the ridgeless estimator
with the existence of a correlation between the covariates and the error terms.
In Lemmas 17 and 18, we rewrite the norm of the estimator to apply CGMT.
Lemma 19 bounds an element in the rewritten form of the norm. Then, The-
orem 20 develops the desired bound on the norm, and Theorem 21 offers its
Euclidean norm case.

First, we formulate the constrained minimization problem with Gaussian co-
variates.

Lemma 17. Assume Assumptions 1 and 2 hold. Let ‖ · ‖ denote an arbitrary
norm. Define the primary optimization problem (PO) as

Φ := min
W1θ1+W2θ2=ξ

‖Σ−1/2
x (θ1 + θ2)‖,

where θ1 = Ξ1/2
z θ and θ2 = Σ1/2

u θ for θ ∈ R
p. Then, for any t, it holds that

P

(
min

Xθ=Y
‖θ‖ > t

)
≤ P (‖θ0‖ + Φ > t) .

Proof of Lemma 17. We have X D= W1Ξ1/2
z + W2Σ1/2

u by equality in distribu-
tion. It follows from the triangle inequality and change of variables that

min
Xθ=Y

‖θ‖ = min
Xθ=ξ

‖θ + θ0‖ ≤ ‖θ0‖ + min
(W1Ξ1/2

z +W2Σ1/2
u )θ=ξ

‖θ‖.
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As Σ1/2
x θ = Ξ1/2

z θ + Σ1/2
u θ, we have θ = Σ−1/2

x (θ1 + θ2) where θ1 = Ξ1/2
z θ and

θ2 = Σ1/2
u θ. Then, the following inequality holds:

min
Xθ=Y

‖θ‖ ≤ ‖θ0‖ + min
W1θ1+W2θ2=ξ

‖Σ−1/2
x (θ1 + θ2)‖.

As in Lemma 13, we use the result of Theorem 9 to derive the auxiliary
optimization problem.

Lemma 18. In the same setting as Lemma 17, let G ∼ N(0, In) and H ∼
N(0, Id) be Gaussian vectors independent of ξ,W1,W2, and each other. Define
the auxiliary optimization problem (AO) as

φ := min
‖ξ−W2θ2−‖θ1‖2G‖2≤〈H,θ1〉

‖Σ−1/2
x (θ1 + θ2)‖. (32)

Then, it holds that

P(Φ > t|ξ,W2) ≤ 2P(φ ≥ t|ξ,W2),

and taking the expectations we have

P(Φ > t) ≤ 2P(φ ≥ t).

Proof of Lemma 18. We reformulate Φ to apply the extended CGMT (Theo-
rem 9). By using Lagrangian multipliers, it holds that

Φ = min
θ1,θ2

max
λ

‖Σ−1/2
x (θ1 + θ2)‖ + 〈λ,W1θ1 + W2θ2 − ξ〉

= min
θ1,θ2

max
λ

〈λ,W1θ1〉 + ‖Σ−1/2
x (θ1 + θ2)‖ − 〈λ, ξ − W2θ2〉.

As W1 is independent of W2 and ξ, the distribution of W1 is unchanged even
though we condition on W2 and ξ. For any r, t > 0, we define

Φr(t) := min
‖Σ−1/2

x (θ1+θ2)‖≤2t
max

‖λ‖2≤r
〈λ,W1θ1〉 + ‖Σ−1/2

x (θ1 + θ2)‖ − 〈λ, ξ −W2θ2〉.

The corresponding AO is defined as follows:

φr(t)
:= min

‖Σ−1/2
x (θ1+θ2)‖≤2t

max
‖λ‖2≤r

‖θ1‖2〈G,λ〉 + ‖λ‖2〈H, θ1〉

+ ‖Σ−1/2
x (θ1 + θ2)‖ − 〈λ, ξ − W2θ2〉

= min
‖Σ−1/2

x (θ1+θ2)‖≤2t
max

‖λ‖2≤r
‖λ‖2〈H, θ1〉 − 〈λ, ξ − W2θ2 −G‖θ1‖2〉

+ ‖Σ−1/2
x (θ1 + θ2)‖

= min
‖Σ−1/2

x (θ1+θ2)‖≤2t
max

0≤λ≤r
λ(〈H, θ1〉 + ‖ξ − W2θ2 −G‖θ1‖2‖2)
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+ ‖Σ−1/2
x (θ1 + θ2)‖.

As two optimization problems Φr(t) and φr(t) are defined on compact sets, we
can apply Theorem 9 to those two optimization problems. As an intermediate
problem between Φ and Φr(t), we introduce

Φ(t):= min
‖Σ−1/2

x (θ1+θ2)‖≤2t
max

λ
〈λ,W1θ1〉+‖Σ−1/2

x (θ1+θ2)‖ − 〈λ, ξ − W2θ2〉

= min
W1θ1+W2θ2=ξ

‖Σ−1/2
x (θ1+θ2)‖≤2t

‖Σ−1/2
x (θ1 + θ2)‖

and also define the corresponding AO as

φ(t)
:= min

‖Σ−1/2
x (θ1+θ2)‖≤2t

max
λ≥0

λ(〈H, θ1〉 + ‖ξ − W2θ2 −G‖θ1‖2‖2)

+ ‖Σ−1/2
x (θ1 + θ2)‖

= min
‖ξ−W2θ2−G‖θ1‖2‖2≤〈H,θ1〉

‖Σ−1/2
x (θ1+θ2)‖≤2t

‖Σ−1/2
x (θ1 + θ2)‖2.

By definition, clearly, Φ ≤ Φ(t). Therefore, if Φ > t, Φ(t) > t holds. If t ≥ Φ,
then there exists (θ∗1 , θ∗2) such that ‖Σ−1/2

x (θ∗1 +θ∗2)‖ ≤ t and W1θ
∗
1 +W2θ

∗
2 = ξ.

As ‖Σ−1/2
x (θ∗1 + θ∗2)‖ ≤ 2t, we obtain

Φ(t) ≤ ‖Σ−1/2
x (θ∗1 + θ∗2)‖ ≤ t.

Therefore, it holds that
Φ > t ⇔ Φ(t) > t.

Likewise, φ(t) > t is equivalent to φ > t.
To establish the result P(Φ > t) ≤ 2Pr(φ > t), we need to clarify the rela-

tionship between Φ and Φr(t), φ and φr(t), respectively, that is,

Pr(Φ > t|ξ,W2) ≤ lim
r→∞

P(Φr(t) > t|ξ,W2),

and
lim
r→∞

P(φr(t) > t|ξ,W2) ≤ P(φ > t|ξ,W2).

As φr(t) ≤ φ(t) for any r, P(φr(t) > t|ξ,W2) ≤ P(φ(t) > t|ξ,W2) holds. Then,
all we need to show is the following:

Φr(t) → Φ(t) as r → ∞.

We consider the following two cases: (i) Φ(t) = ∞ and (ii) Φ(t) < ∞.
Case (i): Φ(t) = ∞, that is, the minimization problem defining Φ(t) is

infeasible. In this case, for all ‖Σ−1/2
x (θ1 + θ2)‖ ≤ 2t, we have

‖W1θ1 + W2θ2 − ξ‖2 > 0.
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By closedness, there exists η = η(W1,W2, ξ) such that

‖W1θ1 + W2θ2 − ξ‖2 ≥ η.

By definition, η is independent of r. Then, it holds that

Φr(t) = min
‖Σ−1/2

x (θ1+θ2)‖2≤2t
max

‖λ‖2≤r
〈λ,W1θ1 +W2θ2− ξ〉+‖Σ−1/2

x (θ1 +θ2)‖ ≥ rη.

Therefore, Φr(t) → ∞ as r → ∞.
Case (ii): Φ(t) < ∞, that is, the minimization problem defining Φ(t) is

feasible. By compactness, Φr(t) has solutions for the minimax problem. Let
(θ1(r), θ2(r)) be one of solutions for Φr(t). If we take a sequence {(θ1(r),
θ2(r))}∞r=1, there exists a convergent subsequence {(θ1(rn), θ2(rn))}∞n=1 by se-
quential compactness. Let {(θ1(∞), θ2(∞))} be a convergent point of this sub-
sequence. For the sake of contradiction, assume that W1θ1(∞)+W2θ2(∞) �= ξ.
By continuity, there exists η and ε such that, if ‖(θ1, θ2)−(θ1(∞), θ2(∞))‖2 ≤ ε,

‖W1θ1 + W2θ2 − ξ‖2 ≥ η.

This implies that for a sufficiently large n, it holds that

‖W1θ1(rn) + W2θ2(rn) − ξ‖2 ≥ η.

As in the previous section, we have

Φrn(t) = max
‖λ‖2≤rn

〈λ,W1θ1(rn)+W2θ2(rn)−ξ〉+‖Σ−1/2
x (θ1(rn)+θ2(rn))‖ ≥ rnη.

Hence, limn→∞ Φrn(t) = ∞. However, this is a contradiction because, for any
r, Φr(t) ≤ Φ(t) < ∞. Therefore, W1θ1(∞)+W2θ2(∞) = ξ. If we set λ = 0, we
have

Φrn(t) ≥ ‖Σ−1/2
x (θ1(rn) + θ2(rn))‖.

By continuity, we show that

lim inf
n→∞

Φrn(t) ≥ lim
n→∞

‖Σ−1/2
x (θ1(rn) + θ2(rn))‖

= ‖Σ−1/2
x (θ1(∞) + θ2(∞))‖ ≥ Φ(t).

As, for any r, Φr(t) ≤ Φ(t), we have

lim sup
n→∞

Φrn(t) ≤ Φ(t) ≤ lim inf
n→∞

Φrn(t),

that is, limn→∞ Φrn(t) = Φ(t). As Φr(t) is an increasing function in terms of r,
we have limr→∞ Φr(t) = Φ(t).

Through the application of Theorem 9 and two inequalities, P(Φ > t|ξ,W2) ≤
limr→∞ P(Φr(t) > t|ξ,W2) and limr→∞ P(φr(t) > t|ξ,W2) ≤ P(φ > t|ξ,W2),
we prove the result P(Φ > t) ≤ 2Pr(φ > t). By the last part of Theorem 9, we
have

P(Φr(t) > t|ξ,W2) ≤ 2P(φr(t) > t|ξ,W2).
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As Φr(t) monotonically increases to Φ(t) almost surely, it follows from the con-
tinuity of the probability measure that

P(Φ > t|ξ,W2) = P(Φ(t) > t|ξ,W2)
≤ P(∪r ∩r′≥r Φr′(t) > t|ξ,W2)
= P( lim

r→∞
Φr(t) > t|ξ,W2)

= lim
r→∞

P(Φr(t) > t|ξ,W2).

As φr(t) ≤ φ(t) holds for any r, P(φr(t) > t|ξ,W2) ≤ P(φ(t) > t|ξ,W2).
Therefore, we have

P(Φ > t|ξ,W2) ≤ 2 lim
r→∞

P(φr(t) > t|ξ,W2) ≤ 2P(φ(t) > t|ξ,W2).

Then, we obtain the general upper bound for the auxiliary optimization prob-
lem (AO).

Lemma 19. Denote Pz and Pu as the orthogonal projection matrix onto the
space spanned by Ξz and Σu, respectively. Let v∗ = arg min

v∈∂‖Ξ1/2
z H‖ ‖v‖Ξz .

Assume that there exists ε1, ε2 ≥ 0 such that with probability at least 1 − δ/2,

‖v∗‖Ξz ≤ (1 + ε1)E‖v∗‖Ξz , (33)

and
‖Pzv

∗‖2 ≤ 1 + ε2. (34)
Define ε as

ε := 16
√

rank(Σu)
n

+ 28
√

log(32/δ)
n

+ 8

√
log(8/δ)
r‖·‖(Ξz)

+ 2(1 + ε1)2
n

R‖·‖(Ξz)
+ 2ε2.

If n and the effective ranks are sufficiently large such that ε ≤ 1, then with
probability at least 1 − δ, it holds that

φ2 ≤ ‖Σ+
u ω‖2 + (1 + ε)σ̃2 n

(E‖Σ1/2
2 H‖∗)2

, (35)

where we denote r‖·‖(Σ) and R‖·‖(Σ) as follows:

r‖·‖(Σ) =
(

E‖Σ1/2H‖∗
sup‖u‖≤1 ‖u‖Σ

)2

and R‖·‖(Σ) =
(
E‖Σ1/2H‖∗
E‖v∗‖Σ

)2

.

Proof of Lemma 19. Fix δ ∈ (0, 1) in this proof. To simplify notations, we define
coefficients:

α1 := 2
√

log(32/δ)
n

and α2 :=
√

rank(Σu) + 1
n

+ 2
√

log(16/δ)
n

.

To prepare for the derivation of the upper bound as in the proof of Lemma 14,
we consider the following three inequalities:
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(i) By Lemma 39, uniformly over all θ2 ∈ Σ1/2
u (Rp − θ0), it holds that

|〈ξ − W2θ2, G〉| ≤ ‖ξ − W2θ2‖2‖G‖2α2. (26)

(ii) By Lemma 40, it holds that

−α1 ≤ 1√
n
‖G‖2 − 1 ≤ α1 (27)

and

−α1

√
σ2 − 2ρT θ2 + θT2 θ2 ≤ 1√

n
‖ξ − W2θ2‖2 −

√
σ2 − 2ρT θ2 + θT2 θ2

≤ α1

√
σ2 − 2ρT θ2 + θT2 θ2. (28)

(iii) By Theorem 43, it holds that

‖Ξ1/2
z H‖∗ ≥ E‖Ξ1/2

z H‖∗ − sup
‖u‖≤1

‖u‖Ξz

√
2 log(8/δ)

=
(

1 −
√

2 log(8/δ)
r‖·‖(Ξz)

)
E‖Ξ1/2

z H‖∗, (36)

because ‖Ξ1/2
z H‖∗ is a sup‖u‖≤1 ‖u‖Ξz -Lipschitz continuous function of H.

We construct the upper bound from the restriction of the optimization prob-
lem (32). From the restriction of the auxiliary problem, we have

‖ξ − W2θ2 − ‖θ1‖2G‖2
2 = ‖ξ − W2θ2‖2

2 − 2‖θ1‖2〈ξ − W2θ2, G〉 + ‖θ1‖2
2‖G‖2

2

≤ (1 + α2)
(
‖ξ − W2θ2‖2

2 + ‖θ1‖2
2‖G‖2

2
)
,

where the last inequality follows from (26) and the AM-GM inequality. Com-
bining the results of (27) and (64) yields

‖ξ − W2θ2 − ‖θ1‖2G‖2
2 ≤ (1 + α2)(1 + α1)2n

(
σ2 − 2ρT θ2 + θT2 θ2 + θT1 θ1

)
.

(37)

To consider an upper bound of the ridgeless estimator, we need to choose a
suitable θ which satisfies the restriction of the auxiliary problem. We consider
the following form of θ:

θ = Pu(Σ+
u ω) + sPzv

∗.

As Σ1/2
u θ = Σ1/2

u Σ+
u ω = (Σ1/2

u )+ω and Ξ1/2
z θ = sΞ1/2

z v∗, from (37) and the
restriction of the auxiliary problem, it suffices to choose s such that

(1 + α2)(1 + α1)2n
(
σ2 − 2ρTΣ1/2

u Σ+
u ω + ωTΣ+

u ΣuΣ+
u ω + s2‖Ξ1/2

z v∗‖2
2

)
= (1 + α2)(1 + α1)2n(σ̃2 + s2‖Ξ1/2

z v∗‖2
2)

≤ (〈H, sΞ1/2
z v∗〉)2
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= s2‖Ξ1/2
z H‖2

∗.

Solving for s, we can choose

s2 = σ̃2

(
‖Ξ1/2

z H‖2
∗

(1 + α2)(1 + α1)2n
− ‖v∗‖2

Ξz

)−1

,

under the assumption that(
‖Ξ1/2

z H‖2
∗

(1 + α2)(1 + α1)2n
− ‖v∗‖2

Ξz

)
> 0. (38)

We need to guarantee (38) holds. By (33) and (36), we have

‖Ξ1/2
z H‖2

∗
(1 + α2)(1 + α1)2n

− ‖v∗‖2
Ξz

≥ (E‖Ξ1/2
z H‖∗)2

(1 + α2)(1 + α1)2n

(
1 −

√
2 log(8/δ)
r‖·‖(Ξz)

)2

− (1 + ε1)2(E‖v∗‖Ξz )2

≥ (E‖Ξ1/2
z H‖∗)2
n

(
1

(1 + α2)(1 + α1)2

(
1−2

√
2 log(8/δ)
r‖·‖(Ξz)

)
−(1+ε1)2

n

R‖·‖(Σ2)

)
,

where the last inequality follows from the definition of R‖·‖(·).
As in the proof of Lemma 14, we linearize the terms including α1 and α2 to

simplify the upper bound. Provided that α1 < 1, we have

(1 + α2)(1 + α1)2 = 1 + 2α1 + α2
1 + α2 + 2α2α1 + α2α

2
1

≤ 1 + 3α1 + 4α2.

As (1 − x)−1 ≥ 1 + x for any x, it holds that

1
(1 + α2)(1 + α1)2

≥ (1 + 3α1 + 4α2)−1

≥ (1 − (3α1 + 4α2)).

Hence, we have

1
(1 + α2)(1 + α1)2

(
1 − 2

√
2 log(8/δ)
r‖·‖(Ξz)

)
− (1 + ε1)2

n

R‖·‖(Σ2)

≥(1 − (3α1 + 4α2))
(

1 − 2

√
2 log(8/δ)
r‖·‖(Ξz)

)
− (1 + ε1)2

n

R‖·‖(Σ2)

≥1 − (3α1 + 4α2) − 2

√
2 log(8/δ)
r‖·‖(Ξz)

− (1 + ε1)2
n

R‖·‖(Σ2)
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≥1 − ε′,

where

ε′ = 8
√

rank(Σu)
n

+ 14
√

log(32/δ)
n

+ 4

√
log(8/δ)
r‖·‖(Ξz)

+ (1 + ε1)2
n

R‖·‖(Ξz)
.

Finally, we derive the upper bound of the ridgeless estimator. If ε′ ≤ 1/2,
because (1 − x)−1 ≤ 1 + 2x for x ∈ [0, 1/2], it holds that

s2 ≤ σ̃2 n

(E‖Ξ1/2
z H‖∗)2

1
1 − ε′

≤ σ̃2 n

(E‖Ξ1/2
z H‖∗)2

(1 + 2ε′).

Then, it holds from (34) that

φ2 ≤ ‖Σ+
u ω‖2 + s2‖Pzv

∗‖2 ≤ ‖Σ+
u ω‖2 + s2(1 + ε2).

Therefore, we have

φ2 ≤ ‖Σ+
u ω‖2 + (1 + ε)σ̃2 n

(E‖Ξ1/2
z H‖∗)2

,

with ε = 2ε′ + 2ε2.

We can now derive the general norm bound in the case where the covariates
correlate with errors.

Theorem 20 (General norm bound). There exists an absolute constant C2 ≤ 56
such that the following is true. Under Assumptions 1 and 2 with covariance split
Σx = Ξz + Σu, let ‖ · ‖ be an arbitrary norm, and fix δ ≤ 1/4. Denote the
	2 orthogonal projection matrix onto the space spanned by Ξz, Σu as Pz, Pu,
respectively. Let H be normally distributed with mean zero and variance Id, that
is, H ∼ N(0, Id). Denote v∗ as arg min

v∈∂‖Ξ1/2
z H‖∗

‖v‖Ξz . Suppose that there
exist ε1, ε2 ≥ 0 such that with probability at least 1 − δ/4

‖v∗‖Ξz ≤ (1 + ε1)E‖v∗‖Ξz

and
‖Pv∗‖2 ≤ 1 + ε2.

Let ε denote C2

(√
rank(Σu)

n +
√

log(1/δ)
r‖·‖(Ξz) +

√
log(1/δ)

n + (1 + ε1)2 n
R‖·‖(Ξz) + ε2

)
.

Then, if n and the effective ranks are large enough that ε ≤ 1, with probability
at least 1 − δ, it holds that

‖θ̂‖ ≤ ‖θ0‖ + ‖Σ+
u ω‖ + (1 + ε)1/2σ̃

√
n

(E‖Ξ1/2
z H‖∗)

.
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Proof of Theorem 20. For any t > 0, it holds from Lemmas 17 and 18 that

P(‖θ̂‖ > t) ≤ P(Φ > t− ‖θ0‖) ≤ 2P(φ ≥ t− ‖θ0‖).

Lemma 19 implies that the above term is upper bounded by δ if we choose
t − ‖θ0‖ using the result (35) with δ replaced by δ/2. We obtain the stated
result by moving ‖θ0‖ to the other side.

When we consider the Euclidean space, we can reduce the upper bound of
the ridgeless estimator to a simpler bound.

Theorem 21 (Euclidean norm bound; special case of Theorem 20). Fix any
δ ≤ 1/4. Under Assumptions 1 and 2 with covariance splitting Σx = Ξz + Σu,
there exists some ε �

√
rank(Σu)

n +
√

log(1/δ)
r(Ξz) +

√
log(1/δ)

n + n log(1/δ)
R(Ξz) such that

the following is true. If n and the effective ranks are such that ε ≤ 1 and
R(Ξz) � log(1/δ)2, then with probability at least 1 − δ, it holds that

‖θ̂‖2 ≤ ‖θ0‖2 + ‖Σ+
u ω‖2 + (1 + ε)1/2σ̃

√
n

tr(Ξz)
, (39)

where σ̃2 := σ2 − ωTΣ+
u ω.

Proof of Theorem 21. Throughout this proof, we simplify the upper bound, es-
pecially n/R‖·‖2(Ξz) and 1/r‖·‖2(Ξz), in Theorem 20. By the definition of the
dual norm and ∂‖Ξ1/2

x H‖∗ with Euclidean norm, v∗ is equal to Ξ1/2
z H/‖Ξ1/2

z H‖2.
Hence, ‖v∗‖Ξz is ‖ΞzH‖2/‖Ξ1/2

z H‖2. From the result of (94), for some constant
c > 0, we can choose ε1 such that

(1 + ε1)E‖v∗‖Ξz = c

√
log(16/δ) tr(Ξ2

z)
tr(Ξz)

.

If we assume effective rank is sufficiently large, (91) provides that
(
E‖Ξ1/2

z H‖2

)2

� tr(Ξz). Therefore, we have

(1+ε1)2
n

R‖·‖2(Ξz)
= n

(1 + ε1)2(E‖v∗‖Ξz )2(
E‖Ξ1/2

z H‖2

)2 � n log(16/δ) tr(Ξ2
z)

tr(Ξz)2
= n log(16/δ)

R(Ξz)
.

Moreover, because Pz is an l2 projection matrix, let ε2 be zero. Then, it holds
from (92) of Lemma 41 that

ε �
√

rank(Σu)
n

+
√

log(1/δ)
n

+

√
log(1/δ)
r(Ξz)

+ n log(1/δ)
R(Ξz)

.

By using the inequality (1−x)−1 ≤ 1+2x for x ∈ [0, 1/2] and (91) of Lemma 41,
we finally obtain

(1 + ε)1/2σ̃
√
n

E‖Ξ1/2
z H‖2

≤ (1 + ε)1/2
(

1 − 1
r(Ξz)

)−1/2

σ̃

√
n

tr(Ξz)
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≤ (1 + ε)1/2
(

1 + 2
r(Ξz)

)1/2

σ̃

√
n

tr(Ξz)

≤
(

1 + 2ε + 2
r(Ξz)

)1/2
σ̃

√
n

tr(Ξz)
,

with ε replaced by

ε′ = 2ε + 2
r(Ξz)

�
√

rank(Σu)
n

+
√

log(1/δ)
n

+

√
log(1/δ)
r(Ξz)

+ n log(1/δ)
R(Ξz)

.

Appendix E: Benign overfitting

In this section, we state the primary result on the conditions of benign overfitting
by combining the results from the two previous sections. First, we derive the
result with an arbitrary norm.

Theorem 22 (Benign Overfitting). Fix any δ ≤ 1/2. Under Assumptions 1
and 2 with covariance splitting Σx = Ξz + Σu, let γ and ε be as defined in
Corollary 16 and Theorem 20. Suppose that n and the effective ranks are such
that R(Ξz) � log(1/δ)2 and γ, ε ≤ 1. Then, with probability at least 1 − δ, it
holds that

‖θ̂ − θ0‖2
Ξz

≤ (1 + γ)(1 + ε)
(
σ̃ + (‖Σ+

u ω‖ + ‖θ0‖)
E‖Ξ1/2

z H‖∗√
n

)2

− σ̃2.

Proof of Theorem 22. From the result of Theorem 20, if we adopt

B = ‖θ0‖ + ‖Σ+
u ω‖ + (1 + ε)1/2σ̃

√
n

(E‖Ξ1/2
z H‖∗)

,

then {θ : ‖θ‖ ≤ B} ∩ {θ : Xθ = Y} is not empty with high probability.
Clearly, B > ‖θ0‖. This intersection necessarily includes the ridgeless estimator
θ̂. Therefore, it holds from Corollary 16 that

‖θ̂ − θ0‖2
Ξz

≤ max
‖θ‖≤B,Y=Xθ

‖θ − θ0‖2
Ξz

≤(1 + γ)B
2(E‖Ξ1/2

z H‖∗)2
n

− σ̃2

=(1 + γ)
(

(‖θ0‖ + ‖Σ+
u ω‖)

E‖Ξ1/2
z H‖∗√
n

+ (1 + ε)1/2σ̃
)2

− σ̃2

≤(1 + γ)(1 + ε)
(
σ̃ + (‖θ0‖ + ‖Σ+

u ω‖)
E‖Ξ1/2

z H‖∗√
n

)2

− σ̃2.

Then, we obtain the statement.
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Theorem 8 (Sufficient conditions) Under Assumptions 1 and 2, let θ̂ be the
ridgeless estimator. Let ‖ · ‖ denote an arbitrary norm. Suppose that as n goes
to ∞, the covariance splitting Σx = Ξz + Σu satisfies the following conditions:

(i) (Small large-variance dimension.)

lim
n→∞

rank(Σu)
n

= 0.

(ii) (Large effective dimension.)

lim
n→∞

1
r‖·‖(Ξz)

= 0 and lim
n→∞

n

R‖·‖(Ξz)
= 0.

(iii) (No aliasing condition.)

lim
n→∞

‖θ0‖E‖Ξ1/2
z H‖∗√
n

= 0.

(iv) (Contracting 	2 projection condition.) For any η > 0,

lim
n→∞

P(‖Puv
∗‖2 > 1 + η) = 0.

(v) (Condition for the minimal interpolation of instrumental variable)

lim
n→∞

‖Σ+
u ω‖E‖Ξ

1/2
z H‖∗√

n
= 0.

Then, ‖θ̂ − θ0‖2
Ξz

converges to 0 in probability.

Proof of Theorem 8. We take advantage of the upper bound on the projected
RMSE derived in Theorem 22. To begin with, we reorganize the upper bound
in Theorem 22 to elucidate the terms that should be sufficiently small for the
projected RMSE to converge. Fix any η > 0. By trivial calculation, we have

(1 + γ)(1 + ε)
(
σ̃ + (‖θ0‖ + ‖Σ+

u ω‖)
E‖Ξ1/2

z H‖∗√
n

)2

− σ̃2

= (1 + γ)(1 + ε)
((

(‖θ0‖ + ‖Σ+
u ω‖)

E‖Ξ1/2
z H‖∗√
n

)2

+ 2σ̃(‖θ0‖ + ‖Σ+
u ω‖)

E‖Ξ1/2
z H‖∗√
n

)
+ (γ + ε + γε)σ̃2

≤ (1 + γ)(1 + ε)
((

(‖θ0‖ + ‖Σ+
u ω‖)

E‖Ξ1/2
z H‖∗√
n

)2



4162 Tsuda and Imaizumi

+ 2σ(‖θ0‖ + ‖Σ+
u ω‖)

E‖Ξ1/2
z H‖∗√
n

)
+ (γ + ε + γε)σ2

≤ η. (40)

The second to last inequality follows σ̃2 = σ2−‖ω‖2
Σ+

u
≤ σ2, and the last inequal-

ity holds by selecting sufficiently small γ, ε, and (‖θ0‖+‖Σ+
u ω‖)(E‖Ξ

1/2
z H‖∗/

√
n).

Fix any δ > 0. Conditions (i) and (ii) in Theorem 8 make γ sufficiently
small for large enough n. (‖θ0‖ + ‖Σ+

u ω‖)(E‖Ξ
1/2
z H‖∗/

√
n) goes to zero from

conditions (iii) and (v). From condition (iv) of Theorem 8, ε2 in ε can also be
arbitrarily small.

Finally, we need to specify the conditions when ε can be sufficiently small.
By the definition of R‖·‖(Ξz), we have√

n

R‖·‖(Ξz)
= E

[
‖v∗‖Ξz

E‖Ξ1/2
z H‖∗/

√
n

]
.

It holds from the Markov inequality that for any η′ > 0,

P

(
‖v∗‖Ξz

E‖Ξ1/2
z H‖∗/

√
n
>
√

η′

)
≤ 1√

η′
E

[
‖v∗‖Ξz

E‖Ξ1/2
z H‖∗/

√
n

]

= 1√
η′

√
n

R‖·‖(Ξz)
. (41)

As n/R‖·‖(Ξz) converges to zero in its limit, the left-hand side of (41) can be
arbitrarily small. Hence, we can pick up ε1 such that

(1 + ε1)E‖v∗‖Ξz =
√

η′
E‖Ξ1/2

z H‖∗√
n

,

which implies that

(1 + ε1)2
n

R‖·‖(Ξz)
= n(

E‖Ξ1/2
z H‖∗

)2 ((1 + ε1)E‖v∗‖Ξz )2 = η′.

We have shown that γ, ε, and (‖θ0‖ + ‖Σ+
u ω‖)(E‖Ξ

1/2
z H‖∗/

√
n) are so small

that (40) holds for sufficiently large n. Therefore, we obtain

P(‖θ̂ − θ0‖2
Ξz

> η) ≤ δ

for any fixed η. As η and δ are arbitrary, we have for any η,

lim
n→∞

P(‖θ̂ − θ0‖2
Ξz

> η) = 0.

Then, we obtain the statement.
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Second, we establish sufficient conditions of benign overfitting with the Eu-
clidean norm.

Theorem 1 (Benign Overfitting) Fix any δ ≤ 1/2. Under Assumptions 1
and 2 with covariance splitting Σx = Ξz + Σu, let γ and ε be as defined in
Corollary 10 and Theorem 21. Suppose that n and the effective ranks are such
that R(Ξz) � log(1/δ)2 and γ, ε ≤ 1. Then, with probability at least 1 − δ,

‖θ̂ − θ0‖2
Ξz

≤ (1 + γ)(1 + ε)
(
σ̃ + (‖Σ+

u ω‖2 + ‖θ0‖2)
√

tr(Ξz)
n

)2

− σ̃2.

Proof of Theorem 1. From the result of Theorem 21, if we adopt

B = ‖θ0‖2 + ‖Σ+
u ω‖2 + (1 + ε)1/2σ̃

√
n

tr(Ξz)
,

then {θ : ‖θ‖2 ≤ B} ∩ {θ : Xθ = Y} is not empty with high probability.
Clearly, B > ‖θ0‖2. This intersection necessarily includes the ridgeless estimator
θ̂. Therefore, it holds from Corollary 10 that

‖θ̂ − θ0‖2
Ξz

≤ max
‖θ‖2≤B,Y=Xθ

‖θ − θ0‖2
Ξz

≤(1 + γ)B
2tr(Ξz)
n

− σ̃2

=(1 + γ)
(

(‖θ0‖2 + ‖Σ+
u ω‖2)

√
tr(Ξz)

n
+ (1 + ε)1/2σ̃

)2

− σ̃2

≤(1 + γ)(1 + ε)
(
σ̃ + (‖θ0‖2 + ‖Σ+

u ω‖2)
√

tr(Ξz)
n

)2

− σ̃2.

Theorem 2 (Sufficient conditions) Under Assumptions 1 and 2, let θ̂ be the
ridgeless estimator. Suppose that as n goes to ∞, the covariance splitting Σx =
Ξz + Σu satisfies the following conditions:

(i) (Small large-variance dimension.)

lim
n→∞

rank(Σu)
n

= 0.

(ii) (Large effective dimension.)

lim
n→∞

n

R(Ξz)
= 0.

(iii) (No aliasing condition.)

lim
n→∞

‖θ0‖2

√
tr(Ξz)

n
= 0.
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(iv) (Condition for the minimal interpolation of instrumental variable)

lim
n→∞

‖Σ+
u ω‖2

√
tr(Ξz)

n
= 0.

Then, ‖θ̂ − θ0‖2
Ξz

converges to 0 in probability.

Proof of Theorem 2. As in the proof of Theorem 8, we rearrange the upper
bound derived in Theorem 1 to clarify which terms should be sufficiently small
for the projected RMSE to converge. By trivial calculation, we have

(1 + γ)(1 + ε)
(
σ̃ + (‖θ0‖2 + ‖Σ+

u ω‖2)
√

tr(Ξz)
n

)2

− σ̃2

=(1+γ)(1+ε)

⎛⎝((‖θ0‖2+‖Σ+
u ω‖2)

√
tr(Ξz)

n

)2

+ 2σ̃(‖θ0‖2+‖Σ+
u ω‖2)

√
tr(Ξz)

n

)
+ (γ + ε + γε)σ̃2

≤(1+γ)(1 + ε)

⎛⎝((‖θ0‖2+‖Σ+
u ω‖2)

√
tr(Ξz)

n

)2

+ 2σ(‖θ0‖2+‖Σ+
u ω‖2)

√
tr(Ξz)

n

)
+ (γ + ε + γε)σ2. (42)

The inequality follows σ̃2 ≤ σ2 as in the proof of Theorem 8.
Fix any η > 0 and δ > 0. From Lemma 5 of Bartlett et al. (2020), it holds that

R(Ξz) ≤ r(Ξz)2. If R(Ξz) = υ(n) holds as the second condition in Theorem 2,
we have r(Ξz) = υ(

√
n) = υ(1), which implies the convergence of 1/r(Ξz) to

zero. Hence, conditions (i) and (ii) in Theorem 1 make γ and ε sufficiently small
for large enough n. (‖θ0‖2 + ‖Σ+

u ω‖2)
√

tr(Ξz)/n goes to zero from conditions
(iii) and (iv). Hence, for sufficiently large n, we obtain that (42) is no more than
η. Therefore, we obtain

P(‖θ̂ − θ0‖2
Ξz

> η) ≤ δ,

for any fixed η. As η and δ are arbitrary, we have for any η,

lim
n→∞

P(‖θ̂ − θ0‖2
Ξz

> η) = 0.

Appendix F: Non-orthogonal case

We present the proof of the non-orthogonal case independently in this section
because the case requires additional complicated analysis and is not a simple
extension of the orthogonal case.

We present the results in Section 4 for the case where Ξz and Σu are non-
orthogonal. In this section, we use Σ1 ∈ R

p×p and Σ2 ∈ R
p×p as notations for
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(potentially non-orthogonal) matrices as the statements in this section can be
regarded as generic results for general matrices. In the setting for regression
with endogeneity, these notations correspond to Ξz and Σu, respectively.

First, we introduce auxiliary lemmas for this section.

Lemma 23 (Corollary 2 in Koehler et al. (2021)). There exists an absolute
constant C1 ≤ 66 such that the following is true. Under Assumption 1 with
covariance Σx = Σ1 + Σ2, fix δ ≤ 1/4 and let γ = C1(

√
log(1/δ)/r(Σ2) +√

log(1/δ)/n +
√

rank(Σ1)/n). If B ≥ ‖θ0‖2 and n is large enough that γ ≤ 1,
the following holds with probability at least 1 − δ:

sup
‖θ‖2≤B,L̂(θ)=0

L(θ) ≤ (1 + γ)B
2tr(Σ2)
n

, (43)

where L̂(θ) = ‖Y − Xθ‖2/n and L(θ) := E[(Y1 −X�
1 θ)]2.

Lemma 24 (Corollary 4 in Koehler et al. (2021)). Suppose X1, · · · , Xn ∼
N(0,Σ) are independent with Σ : p × p a positive semidefinite matrix, t > 0,
and n ≥ 4(d + t2). Let Σ̂ =

∑
i XiX

�
i /n be the empirical covariance matrix.

Then, with probability at least 1 − δ,

(1 − ε)Σ � Σ̂ � (1 + ε)Σ,

with ε = 3
√
d/n + 3

√
2 log(2/δ)/n.

Lemma 25. Take any covariance matrix Σ1,Σ2. If Σ1/2
1 Σ1/2

2 �= 0, it holds that
with probability at least 1 − δ,

1 − ‖Σ1/2
1 Σ1/2

2 H‖2
2

tr(Σ1Σ2)
� log(4/δ)√

R(Σ1Σ2)
. (44)

Moreover, it holds that with probability at least 1 − δ,

‖Σ1/2
1 Σ1/2

2 H‖2
2 � log(4/δ)tr(Σ1Σ2). (45)

Therefore, if R(Σ2) � log(4/δ)2 holds, we have(
‖Σ1/2

1 Σ1/2
2 H‖2

‖Σ1/2
2 H‖2

)2

� log(4/δ) tr(Σ1Σ2)
tr(Σ2)

. (46)

Proof of Lemma 25. As Σ1/2
2 Σ1Σ1/2

2 is a real symmetric matrix, there exists an
orthogonal matrix Q such that QΣ1/2

2 Σ1Σ1/2
2 Q� is a diagonal matrix. Further,

QH has the normal standard distribution by the definition of H. Therefore,
without loss of generality, Σ1/2

2 Σ1Σ1/2
2 can be considered as a diagonal matrix

that consists of eigenvalues of Σ1/2
2 Σ1Σ1/2

2 , λ1, · · · , λp. By the sub-exponential
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Bernstein inequality (Vershynin (2018), Theorem 2.8.2), we have with probabil-
ity at least 1 − δ/2∣∣∣∣∣‖Σ1/2

1 Σ1/2
2 H‖2

2
tr(Σ1Σ2)

− 1

∣∣∣∣∣ =

∣∣∣∣∣
p∑

i=1

λi∑
k λk

(H2
i − 1)

∣∣∣∣∣
�
√

log(4/δ)
R(Σ1Σ2)

∨ log(4/δ)
r(Σ1Σ2)

≤ log(4/δ)√
R(Σ1Σ2)

,

where the last inequality follows from the fact R(Σ1Σ2) ≤ (r(Σ1Σ2))2. By defi-
nition, clearly R(Σ1Σ2) ≥ 1. Therefore, we have

‖Σ1/2
1 Σ1/2

2 H‖2
2 � log(4/δ)tr(Σ1Σ2).

Provided R(Σ2) is sufficiently large, we obtain ‖Σ1/2
2 H‖2

2 ≥ 1
2 tr(Σ2). Therefore,

it holds that (
‖Σ1/2

1 Σ1/2
2 H‖2

‖Σ1/2
2 H‖2

)2

� log(4/δ) tr(Σ1Σ2)
tr(Σ2)

.

F.1. When Xi and ξi are independent

Lemma 26. Denote P as the projection matrix onto the space spanned by Σ2.
Let v∗ denote arg min

v∈∂‖Σ1/2
2 H‖∗

‖v‖Σ2 . Assume that there exist ε1, ε2 and ε3 ≥
0 such that with probability at least 1 − δ/4,

‖v∗‖Σ2 ≤ (1 + ε1)E‖v∗‖Σ2 , (47)
‖Pv∗‖ ≤ 1 + ε2, (48)

and
‖Σ1/2

1 Pv∗‖2 ≤ (1 + ε3)E‖Σ1/2
1 Pv∗‖2. (49)

Define ε as

ε :=84
√

rank(Σ1)
n

+ 156
√

log(32/δ)
n

+ 8

√
log(8/δ)
r‖·‖(Σ2)

+ 2(1 + ε1)2
n

R‖·‖(Σ2)

+ 2(1 + ε3)2
n

(E‖Σ1/2
2 H‖∗)2

(E‖Σ1/2
1 Pv∗‖2)2,

where r‖·‖(Σ) and R‖·‖(Σ) are the effective ranks with general norms as provided
in Definition 4. If n and the effective ranks are sufficiently large such that ε ≤ 1,
then with probability at least 1 − δ, it holds that

φ2 ≤ (1 + ε)σ2 n

(E‖Σ1/2
2 H‖∗)2

(50)
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Proof of Lemma 26. Denote α1, α2, and α3 as follows:

α1 := 2
√

log(32/δ)
n

,

α2 := 3
√

rank(Σ1)
n

+ 3
√

2 log(16/δ)
n

,

α3 :=
√

rank(Σ1) + 1
n

+ 2
√

log(16/δ)
n

.

To prepare for the derivation of the upper bound, we consider a list of the
following inequalities, and each of these holds with probability at least 1− δ/8.

(i) By (90) in Lemma 39, uniformly over all θ2 ∈ Σ1/2
1 (Rp), it holds that

|〈ξ − W2θ2, G〉| ≤ ‖ξ − W2θ2‖2‖G‖2α3 (51)

and
|〈ξ,W2θ2〉| ≤ ‖ξ‖2‖W2θ2‖2α3. (52)

For (51), V and s in Lemma 39 correspond to G and ξ−W2θ2, respectively.
For (52), V and s in Lemma 39 correspond to ξ and W2θ2, respectively.
δ is replaced by δ/8.

(ii) By Lemma 24, uniformly over all θ2 ∈ Σ1/2
1 (Rp), it holds that

(1 − α2)‖θ2‖2
2 ≤ ‖W2θ2‖2

2
n

≤ (1 + α2)‖θ2‖2
2. (53)

Σ and d in Lemma 24 correspond to Σ1 and rank(Σ1) in (53), respectively.
(iii) By Lemma 40, it holds that

−α1 ≤ 1√
n
‖G‖2 − 1 ≤ α1 (54)

and
−α1σ ≤ 1√

n
‖ξ‖2 − σ ≤ α1σ. (55)

(iv) By Theorem 43, it holds that

‖Σ1/2
2 H‖∗ ≥ E‖Σ1/2

2 H‖∗ − sup
‖u‖≤1

‖u‖Σ2

√
2 log(8/δ)

=
(

1 −
√

2 log(8/δ)
r‖·‖(Σ2)

)
E‖Σ1/2

2 H‖∗ (56)

because ‖Σ1/2
2 H‖∗ is a sup‖u‖≤1 ‖u‖Σ2-Lipschitz continuous function of

H.
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We construct the upper bound from the restriction of the optimization prob-
lem (32). It holds from (51), (52), and the AM-GM inequality that

‖ξ − W2θ2 − ‖θ1‖2G‖2
2 ≤ (1 + α3)(‖ξ − W2θ2‖2

2 + ‖θ1‖2
2‖G‖2

2)
≤ (1 + α3)((1 + α3)(‖ξ‖2 + ‖W2θ2‖2

2) + ‖θ1‖2
2‖G‖2

2).

From the results of (53) (54), and (55), we obtain ‖W2θ2‖2
2 ≤ n(1 + α2)‖θ2‖2

2,
‖ξ‖2

2 ≤ (1 + α1)2nσ2, and ‖G‖2 ≤ (1 + α1)2n. Therefore, we have

‖ξ−W2θ2−‖θ1‖2G‖2
2 ≤ n(1+α1)2(1+α2)(1+α3)2(σ2 +‖θ2‖2

2 +‖θ1‖2
2). (57)

To consider an upper bound of the ridgeless estimator, we need to choose
a suitable θ which satisfies the restriction of the auxiliary problem. We define
θ := s(Pv∗). Then, we have θ1 = sΣ1/2

2 v∗ and θ2 = sΣ1/2
1 Pv∗. If we consider

the value of s that satisfies the inequality:

n(1+α1)2(1+α2)(1+α3)2(σ2 + ‖sΣ1/2
1 Pv∗‖2

2 + ‖sΣ1/2
2 v∗‖2

2) ≤ s2〈H,Σ1/2
2 v∗〉2,

it holds from (57) that

‖ξ − W2θ2 − ‖θ1‖2G‖2
2 ≤ (〈H, θ1〉)2.

As 〈H, θ1〉 ≥ 0 by the definition of θ1, θ = s(Pv∗) satisfies the restriction of the
auxiliary problem in Lemma 18. Solving for s, we can select

s2 = σ2

(
〈H,Σ1/2

2 v∗〉2
n(1 + α1)2(1 + α2)(1 + α3)2

− ‖Σ1/2
1 Pv∗‖2

2 − ‖Σ1/2
2 v∗‖2

2︸ ︷︷ ︸
=:Υ

)−1

,

under the condition that Υ is positive. We derive a lower bound of Υ as in the
proof of Lemma 19:

Υ = ‖Σ1/2
2 H‖2

∗
(1 + α1)2(1 + α2)(1 + α3)2n

− ‖v∗‖2
Σ2

− ‖Σ1/2
1 Pv∗‖2

2

≥ (E‖Σ1/2
2 H‖∗)2
n

(
1

(1 + α1)2(1 + α2)(1 + α3)2

(
1 − 2

√
2 log(8/δ)
r‖·‖(Σ2)

)

−(1 + ε1)2
n

R‖·‖(Σ2)
− n

(E‖Σ1/2
2 H‖∗)2

‖Σ1/2
1 Pv∗‖2

2

)

≥ (E‖Σ1/2
2 H‖∗)2
n

(
1

(1 + α1)2(1 + α2)(1 + α3)2

(
1 − 2

√
2 log(8/δ)
r‖·‖(Σ2)

)

−(1 + ε1)2
n

R‖·‖(Σ2)
− (1 + ε3)2

n

(E‖Σ1/2
2 H‖∗)2

(E‖Σ1/2
1 Pv∗‖2)2

)
.
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The equality holds by the definition of R‖·‖(Σ2), the first inequality holds
from (47) and (56), and the second inequality follows ‖Σ1/2

1 Pv∗‖2 ≤ (1 +
ε3)E‖Σ1/2

1 Pv∗‖2 by Assumption (49).
We linearize the terms including α1, α2, and α3 to simplify the upper bound.

If α1 < 1, α2 < 1, and α3 < 1, it holds that

(1 + α1)2(1 + α2)(1 + α3)2 = (1 + 2α1 + α2
1)(1 + α2)(1 + 2α3 + α2

3)
≤ (1 + 3α1)(1 + α2)(1 + 3α3)
= (1 + 3α1 + α2 + 3α1α2)(1 + 3α3)
≤ (1 + 3α1 + 4α2)(1 + 3α3)
≤ (1 + 12α1 + 4α2 + 15α3).

As (1 + x)−1 ≥ (1 − x) holds for any x, we have(
1

(1 + α1)2(1 + α2)(1 + α3)2

(
1 − 2

√
2 log(8/δ)
r‖·‖(Σ2)

)

−(1 + ε1)2
n

R‖·‖(Σ2)
− (1 + ε3)2

n

(E‖Σ1/2
2 H‖∗)2

(E‖Σ1/2
1 Pv∗‖2)2

)

≥ 1 − (12α1 + 4α2 + 15α3) − 2

√
2 log(8/δ)
r‖·‖(Σ2)

− (1 + ε1)2
n

R‖·‖(Σ2)
− (1 + ε3)2

n

(E‖Σ1/2
2 H‖∗)2

(E‖Σ1/2
1 Pv∗‖2)2

≥ 1 − ε′

where

ε′ = 42
√

rank(Σ1)
n

+ 78
√

log(32/δ)
n

+ 4

√
log(8/δ)
r‖·‖(Σ2)

+ (1 + ε1)2
n

R‖·‖(Σ2)
+ (1 + ε3)2

n

(E‖Σ1/2
2 H‖∗)2

(E‖Σ1/2
1 Pv∗‖2)2

If ε′ ≤ 1/2, because (1 − x)−1 ≤ 1 + 2x for x ∈ [0, 1/2], it holds that

s2 = σ2Υ−1 ≤ (1 − ε′)−1σ2 n

(E‖Σ1/2
2 H‖∗)2

≤ (1 + 2ε′)σ2 n

(E‖Σ1/2
2 H‖∗)2

.

Therefore, we have

φ2 ≤ s2‖Pv∗‖2 ≤ (1 + ε2)(1 + 2ε′)σ2 n

(E‖Σ1/2
2 H‖∗)2

≤ (1 + ε)σ2 n

(E‖Σ1/2
2 H‖∗)2

with ε = 2ε′ + 2ε2.
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Theorem 27 (General norm bound). There exists an absolute constant C2 ≤
312 such that the following is true. Under Assumption 1 with covariance split
Σx = Σ1 + Σ2, let ‖ · ‖ be an arbitrary norm, and fix δ ≤ 1/4. Denote the
	2 orthogonal projection matrix onto the space spanned by Σ2 as P . Let H be
normally distributed with mean zero and variance Id, that is, H ∼ N(0, Id).
Denote v∗ as arg min

v∈∂‖Σ1/2
2 H‖∗

‖v‖Σ2 . Assume that there exists ε1, ε2 and ε3 ≥
0 such that with probability at least 1 − δ/8,

‖v∗‖Σ2 ≤ (1 + ε1)E‖v∗‖Σ2 ,

‖Pv∗‖ ≤ 1 + ε2,

and
‖Σ1/2

1 Pv∗‖2 ≤ (1 + ε3)E‖Σ1/2
1 Pv∗‖2.

Define ε as

ε := C2

(√
rank(Σ1)

n
+

√
log(1/δ)
r‖·‖(Σ2)

+
√

log(1/δ)
n

+ (1 + ε1)2
n

R‖·‖(Σ2)

+(1 + ε3)2
n

(E‖Σ1/2
2 H‖∗)2

(E‖Σ1/2
1 Pv∗‖2)2 + ε2

)
.

If n and the effective ranks are sufficiently large such that ε ≤ 1, then with
probability at least 1 − δ, it holds that

‖θ̂‖ ≤ ‖θ0‖ + (1 + ε)1/2σ
√
n

E‖Σ1/2
2 H‖∗

.

Proof of Theorem 27. For any t > 0, it holds from Lemmas 17 and 18 that

P(‖θ̂‖ > t) ≤ P(Φ > t− ‖θ0‖) ≤ 2P(φ ≥ t− ‖θ0‖).

Lemma 26 implies that the above term is upper bounded by δ if we choose
t − ‖θ0‖ using the result (50) with δ replaced by δ/2. We obtain the stated
result by moving ‖θ0‖ to the other side.

When we consider the Euclidean space, we can reduce the upper bound of
the ridgeless estimator to a simpler bound.

Theorem 28 (Euclidean norm bound; special case of Theorem 27). Fix any
δ ≤ 1/4. Under Assumption 1 with covariance Σx = Σ1 + Σ2, there exists some
ε �

√
rank(Σ1)/n +

√
log(1/δ)/r(Σ2) +

√
log(1/δ)/n + n log(1/δ)/R(Σ2)(1 +

tr(Σ1Σ2)/
tr(Σ2

2)) such that the following is true. If n and the effective ranks are suffi-
ciently large such that ε ≤ 1 and R(Σ2) � log(1/δ)2, then with probability at
least 1 − δ, it holds that

‖θ̂‖2 ≤ ‖θ0‖2 + (1 + ε)1/2σ
√

n

tr(Σ2)
. (58)
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Proof of Theorem 28. Throughout this proof, we simplify the upper bound, es-
pecially n/R‖·‖2(Ξz), 1/r‖·‖2(Ξz), and (nE‖Σ1/2

1 Pv∗‖2
2)/(E‖Σ

1/2
2 H‖∗)2, in The-

orem 27. By the definition of the dual norm and ∂‖Ξ1/2
x H‖∗ with Euclidean

norm, v∗ is equal to Σ1/2
2 H/‖Σ1/2

2 H‖2. Hence, ‖v∗‖Ξz is ‖Σ2H‖2/‖Σ1/2
2 H‖2.

From the result of (94), for some constant c1 > 0, we can choose ε1 such that

(1 + ε1)E‖v∗‖Σ2 = c1

√
log(64/δ) tr(Σ2

2)
tr(Σ2)

.

If we assume effective rank is sufficiently large, (91) provides that
(
E‖Σ1/2

2 H‖2

)2

� tr(Σ2). Therefore, we have

(1 + ε1)2
n

R‖·‖2(Σ2)
= n

(1 + ε1)2(E‖v∗‖Σ2)2(
E‖Σ1/2

2 H‖2

)2

� n log(64/δ) tr(Σ2
2)

tr(Σ2)2

= n log(64/δ)
R(Σ2)

.

It also holds from (46) that for some constant c2 > 0, there exists ε3 such that

(1 + ε3)E‖Σ1/2
1 Pv∗‖2 = c2

√
log(64/δ) tr(Σ1Σ2)

tr(Σ2)
.

By (91), for sufficiently large effective rank, it holds that (E‖Σ1/2
2 H‖2)2 �

tr(Σ2). Therefore, we have

(1 + ε3)2
n

(E‖Σ1/2
2 H‖2)2

(E‖Σ1/2
1 Pv∗‖2)2 � n log(64/δ) tr(Σ1Σ2)

tr(Σ2)2

= n log(64/δ)
R(Σ2)

tr(Σ1Σ2)
tr(Σ2

2)
.

Finally, we obtain the upper bound of ε. As P is an l2 projection matrix, let
ε2 be zero. Then, it holds from (92) of Lemma 41 that

ε �
√

rank(Σ1)
n

+
√

log(1/δ)
n

+

√
log(1/δ)
r(Σ2)

+ n log(1/δ)
R(Σ2)

(
1 + tr(Σ1Σ2)

tr(Σ2
2)

)
.

By using the inequality (1−x)−1 ≤ 1+2x for x ∈ [0, 1/2] and (91) of Lemma 41,
we finally obtain

(1 + ε)1/2σ
√
n

E‖Σ1/2
2 H‖2

≤ (1 + ε)1/2
(

1 − 1
r(Σ2)

)−1/2

σ

√
n

tr(Σ2)
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≤ (1 + ε)1/2
(

1 + 2
r(Σ2)

)1/2

σ

√
n

tr(Σ2)

≤
(

1 + 2ε + 2
r(Σ2)

)1/2

σ

√
n

tr(Σ2)
,

with ε replaced by

ε′ := 2ε + 2
r(Σ2)

�
√

rank(Σ1)
n

+
√

log(1/δ)
n

+

√
log(1/δ)
r(Σ2)

+ n log(1/δ)
R(Σ2)

(
1 + tr(Σ1Σ2)

tr(Σ2
2)

)
.

Theorem 29 (Benign Overfitting (Non-orthogonal)). Fix any δ ≤ 1/2. Under
Assumption 1 with covariance Σx = Σ1 + Σ2, let γ and ε be as defined in
Lemma 23 and Theorem 28, respectively. Suppose also that n and the effective
ranks are such that R(Σ2) � log(1/δ)2 and γ, ε ≤ 1, then, with probability at
least 1 − δ, it holds that

L(θ̂) ≤ (1 + γ)(1 + ε)
(
σ + ‖θ0‖2

√
tr(Σ2)

n

)2

,

where we denote L(θ) as E(y − 〈θ, x〉)2.
Proof of Theorem 29. From the result of Theorem 28, if we adopt

B = ‖θ0‖2 + (1 + ε)1/2σ
√

n

tr(Σ2)
,

then {θ : ‖θ‖2 ≤ B} ∩ {θ : Xθ = Y} is not empty with high probability. This
intersection necessarily contains the ridgeless estimator θ̂. Clearly, B > ‖θ0‖2.
Therefore, it holds from Lemma 23 that

L(θ̂) ≤ sup
‖θ‖2≤B,L̂(θ)=0

L(θ)

≤ (1 + γ)
(
‖θ0‖2 + (1 + ε)1/2σ

√
n

tr(Σ2)

)2 tr(Σ2)
n

≤ (1 + γ)(1 + ε)
(
σ + ‖θ0‖2

√
tr(Σ2)

n

)2

,

where we denote L̂(θ) as ‖Y − Xθ‖2
2/n.

Theorem 6 (Sufficient conditions: Non-Orthogonal Case when Xi and ξi are
independent) Under Assumption 1, let θ̂ be the ridgeless estimator. Suppose
also that as n goes to ∞, there exists a sequence of covariance Σx = Σ1 + Σ2
such that the following conditions hold:
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(i) (Small large-variance dimension.)

lim
n→∞

rank(Σ1)
n

= 0.

(ii) (Large effective dimension.)

lim
n→∞

n

R(Σ2)
= 0.

(iii) (No aliasing condition.)

lim
n→∞

‖θ0‖2

√
tr(Σ2)

n
= 0.

(iv) (The cost of non-orthogonality)

lim
n→∞

n

R(Σ2)

(
tr(Σ1Σ2)
tr(Σ2

2)

)
= 0.

Then, L(θ̂) converges to σ2 in probability.

Proof of Theorem 6. Fix any η > 0 and δ > 0. From Lemma 5 of Bartlett et al.
(2020), it holds that R(Σ2) ≤ r(Σ2)2. If R(Σ2) = υ(n) holds as the second
condition in Theorem 6, we have r(Σ2) = υ(

√
n) = υ(1), which implies the

convergence of 1/r(Ξz) to zero. Hence, conditions (i) and (ii) in Theorem 6
make γ sufficiently small for large enough n. Clearly, ‖θ0‖2

√
tr(Σ2)/n goes to

zero from condition (iii). By the definition of ε, conditions (i) (ii), and (iv) in
Theorem 6 imply that ε can be arbitrarily small. Therefore, for sufficiently large
n, we obtain

(1 + γ)(1 + ε)
(
σ + ‖θ0‖2

√
tr(Σ2)

n

)2

− σ2 ≤ η. (59)

We have shown that γ, ε, and ‖θ0‖2
√

tr(Σ2)/n are so small that equation
(59) holds for sufficiently large n. Therefore, we obtain

P(|L(θ̂) − σ2| > η) ≤ δ

for any fixed η. As η and δ are arbitrary, we have for any η,

lim
n→∞

P(|L(θ̂) − σ2| > η) = 0.
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F.2. When Xi and ξi are dependent

Throughout this subsection, we assume σ̃2 = σ2 − ‖ω‖2
Σ+

u
> 0 holds.

Lemma 30. Denote Pz, Pu as the projection matrix onto the space spanned by
Ξz and Σu, respectively. Let v∗ = arg min

v∈∂‖Ξ1/2
z H‖ ‖v‖Ξz . Assume that there

exists ε1, ε2, and ε3 ≥ 0 such that with probability at least 1 − δ/4,

‖v∗‖Ξz ≤ (1 + ε1)E‖v∗‖Ξz , (60)
‖Pzv

∗‖ ≤ 1 + ε2, (61)

and
‖Σ1/2

u Pzv
∗‖2 ≤ (1 + ε3)E‖Σ1/2

u Pzv
∗‖2. (62)

Denote ε as

ε :=12
√

rank(Σu)
n

+ 24
√

log(32/δ)
n

+ 8

√
log(8/δ)
r‖·‖(Ξz)

+ 2(1 + ε1)2
n

R‖·‖(Ξz)

+ 64‖Σ
+
u ω‖2

σ̃

E‖Ξ1/2
z H‖2√
n

(
1 +

√
2 log(8/δ)
r‖·‖2(Ξz)

)
+ 2(1 + ε3)2

n

(E‖Ξ1/2
z H‖∗)2

(E‖Σ1/2
u Pzv

∗‖2)2 + 2ε2,

where we denote r‖·‖(Σ) and R‖·‖(Σ) as follows:

r‖·‖(Σ) =
(

E‖Σ1/2H‖∗
sup‖u‖≤1 ‖u‖Σ

)2

and R‖·‖(Σ) =
(
E‖Σ1/2H‖∗
E‖v∗‖Σ

)2

.

If n and the effective ranks are sufficiently large such that ε ≤ 1, then with
probability at least 1 − δ, the AO defined in (32) is upper bounded as

φ2 ≤

⎛⎝‖Σ+
u ω‖2 + (1 + ε)(2η1 + σ̃ + η2)

√
n

(E‖Ξ1/2
z H‖∗)2

⎞⎠2

, (63)

where we denote η1 and η2 as follows:

η1 :=
√

(1 + ε1)2
n

R‖·‖(Ξz)
‖Ξ1/2

z Σ+
u ω‖2,

η2 :=

√√√√ (E‖Ξ1/2
z H‖2)2
n

(
1 +

√
2 log(8/δ)
r‖·‖2(Ξz)

)2

‖Σ+
u ω‖2

2 + ‖Ξ1/2
z Σ+

u ω‖2
2.

Proof of Lemma 30. This proof has four steps (i) preparation, (ii) introducing
a coefficient s, (iii) deriving a bound on the coefficient s, and (iv) developing a
bound on φ2 in (32).
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Step (i): Preparation. Denote α1 and α2 as follows:

α1 := 2
√

log(32/δ)
n

,

α2 :=
√

rank(Σu) + 1
n

+ 2
√

log(16/δ)
n

.

To prepare for the derivation of the upper bound as in the proof of Lemma 14,
we consider the following three inequalities:

(i) By Lemma 39, uniformly over all θ2 ∈ Σ1/2
u (Rp), it holds that

|〈ξ − W2θ2, G〉| ≤ ‖ξ − W2θ2‖2‖G‖2α2. (26)

(ii) By Lemma 40, it holds that

−α1 ≤ 1√
n
‖G‖2 − 1 ≤ α1 (27)

and

−α1

√
σ2 − 2ρT θ2 + θT2 θ2 ≤ 1√

n
‖ξ − W2θ2‖2 −

√
σ2 − 2ρT θ2 + θT2 θ2

≤ α1

√
σ2 − 2ρT θ2 + θT2 θ2. (64)

(iii) By Theorem 43, it holds that

‖Ξ1/2
z H‖∗ ≥ E‖Ξ1/2

z H‖∗ − sup
‖u‖≤1

‖u‖Ξz

√
2 log(8/δ)

=
(

1 −
√

2 log(8/δ)
r‖·‖(Ξz)

)
E‖Ξ1/2

z H‖∗ (36)

because ‖Ξ1/2
z H‖∗ is a sup‖u‖≤1 ‖u‖Ξz -Lipschitz continuous function of H.

By Theorem 43, it also holds that

‖Ξ1/2
z H‖∗ ≤ E‖Ξ1/2

z H‖∗ + sup
‖u‖≤1

‖u‖Ξz

√
2 log(8/δ)

=
(

1 +

√
2 log(8/δ)
r‖·‖(Ξz)

)
E‖Ξ1/2

z H‖∗. (65)

Step (ii): Introducing the coefficient s. To derive an upper bound of the ridge-
less estimator, we need to choose a suitable θ which satisfies the restriction of
the auxiliary problem φ in Lemma 18. We consider the following form of θ:

θ := PuΣ+
u ω + sPzv

∗. (66)

Here, the coefficient s describes a volume of θ along with the space spanned
by Ξz. By the setting, we have θ1 = Ξ1/2

z Σ+
u ω + sΞ1/2

z v∗ and θ2 = Σ1/2
u Σ+

u ω +
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sΣ1/2
u Pzv

∗. Hence, we need to choose s that attains the restriction of the auxil-
iary problem φ, that is,

‖ξ − W2θ2 − ‖θ1‖2G‖2 ≤ 〈H, θ1〉. (32)

By the definition of θ1, we have the following result:

(‖ξ − W2θ2 − ‖θ1‖2G‖2 − 〈H,Ξ1/2
z Σ+

u ω〉)2 ≤ s2‖Ξ1/2
z H‖2

∗ (67)
⇒‖ξ − W2θ2 − ‖θ1‖2G‖2 ≤ 〈H, θ1〉.

Therefore, it is sufficient to consider s satisfying the inequality (67).
For the derivation of the inequality (67), we need to consider the upper bound

of (‖ξ−W2θ2−‖θ1‖2G‖2−〈H,Ξ1/2
z Σ+

u ω〉)2. It holds from (26) and the AM-GM
inequality that

‖ξ − W2θ2 − ‖θ1‖2G‖2
2 = ‖ξ − W2θ2‖2

2 − 2‖θ1‖2〈ξ − W2θ2, G〉 + ‖θ1‖2
2‖G‖2

2

≥ ‖ξ−W2θ2‖2
2 − 2α2‖θ1‖2‖ξ−W2θ2‖2‖G‖2+‖θ1‖2

2‖G‖2
2

≥ (1 − α2)
(
‖ξ − W2θ2‖2

2 + ‖θ1‖2
2‖G‖2

2
)
.

Combining the results of (27) and (64) yields

(1 − α2)
(
‖ξ − W2θ2‖2

2 + ‖θ1‖2
2‖G‖2

2
)

≥ (1 − α2)(1 − α1)2n
(
σ2 − 2ρT θ2 + θT2 θ2 + θT1 θ1

)
.

Then, we have(
σ2 − 2ρT θ2 + θT2 θ2 + θT1 θ1

)
=
(
σ2 − 2ρTΣ1/2

u θ + θ�Σuθ + θTΞzθ
)

≥
(
σ2 − 2ρTΣ1/2

u θ + θ�Σuθ
)

= σ2 − ρ�ρ + ‖Σ1/2
u θ − ρ‖2

2

≥ σ2 − ρ�ρ + min
θ∈Rp

‖Σ1/2
u θ − ρ‖2

2

= σ̃2 > 0.

Therefore, we have

0 <
1

‖ξ − W2θ2 − ‖θ1‖2G‖2
≤ 1√

(1 − α2)(1 − α1)2nσ̃2
.

By trivial calculation, we obtain

(‖ξ − W2θ2 − ‖θ1‖2G‖2 − 〈H,Ξ1/2
z Σ+

u ω〉)2

≤ ‖ξ − W2θ2 − ‖θ1‖2G‖2
2 + 2‖ξ − W2θ2 − ‖θ1‖2G‖2|〈H,Ξ1/2

z Σ+
u ω〉|

+ (〈H,Ξ1/2
z Σ+

u ω〉)2

= ‖ξ − W2θ2 − ‖θ1‖2G‖2
2

(
1 + 2 |〈H,Ξ1/2

z Σ+
u ω〉|

‖ξ − W2θ2 − ‖θ1‖2G‖2

)
+ (〈H,Ξ1/2

z Σ+
u ω〉)2
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≤ ‖ξ − W2θ2 − ‖θ1‖2G‖2
2

(
1 + 2 |〈H,Ξ1/2

z Σ+
u ω〉|√

(1 − α2)(1 − α1)2nσ̃2

)
+ (〈H,Ξ1/2

z Σ+
u ω〉)2

= ‖ξ − W2θ2 − ‖θ1‖2G‖2
2(1 + γ) + (〈H,Ξ1/2

z Σ+
u ω〉)2.

Combining the results of (27) and (64) yields

‖ξ − W2θ2 − ‖θ1‖2G‖2
2 ≤ (1 + α2)(1 + α1)2n

(
σ2 − 2ρT θ2 + θT2 θ2 + θT1 θ1

)
.

Then, it holds that

(‖ξ − W2θ2 − ‖θ1‖2G‖2 − 〈H,Ξ1/2
z Σ+

u ω〉)2

≤(1 + α2)(1 + α1)2(1 + γ)n
(
σ2 − 2ρT θ2 + θT2 θ2 + θT1 θ1

)
+ (〈H,Ξ1/2

z Σ+
u ω〉)2

Therefore, we should choose s that satisfies the subsequent equality:

s2‖Ξ1/2
z H‖2

∗ (68)
= (1 + α2)(1 + α1)2(1 + γ)n

(
σ2 − 2ρT θ2 + θT2 θ2 + θT1 θ1

)
+ (〈H,Ξ1/2

z Σ+
u ω〉)2.

We clarify s that satisfies (68). By trivial calculation, we obtain the following
results:

s2‖Ξ1/2
z H‖2

∗

= (1 + α2)(1 + α1)2(1 + γ)n
(
σ2 − 2ρT θ2 + θT2 θ2 + θT1 θ1

)
+ (〈H,Ξ1/2

z Σ+
u ω〉)2

⇔β1

(
s + β2

β1

)2

− β2
2

β1
− (σ̃2 − β3) = 0,

where we define

β1 :=
(

‖Ξ1/2
z H‖2

∗
(1 + α2)(1 + α1)2(1 + γ)n − ‖v∗‖2

Ξz
− (v∗)�PzΣuPzv

∗

)
,

β2 :=
(
ρ�Σ1/2

u Pzv
∗ − ω�Σ+

u ΣuPzv
∗ − v∗ΞzΣ+

u ω
)
,

β3 := − (〈H,Ξ1/2
z Σ+

u ω)〉)2
(1 + α2)(1 + α1)2(1 + γ)n − (ω�Σ+

u ΞzΣ+
u ω),

γ := 2 |〈H,Ξ1/2
z Σ+

u ω〉|√
(1 − α2)(1 − α1)2nσ̃2

.

Therefore, we choose s such that

s =
(
−β2

β1
+

√
β2

2
β2

1
+ σ̃2 − β3

β1

)
,

under the assumption that

β1 > 0 and σ̃2 − β3 ≥ 0. (69)



4178 Tsuda and Imaizumi

We need to guarantee (69) holds. First, we prove σ̃2 − β3 ≥ 0. By definition,
we have σ̃2 > 0 and −β3 ≥ 0. Second, we show β1 > 0. By (60), (62), and (36),
we have

β1 ≥ (E‖Ξ1/2
z H‖∗)2

(1 + α2)(1 + α1)2(1 + γ)n

(
1 −

√
2 log(8/δ)
r‖·‖(Ξz)

)2

− (1 + ε1)2(E‖v∗‖Ξz )2 − (1 + ε3)2(E‖Σ1/2
u Pzv

∗‖2)2

≥ (E‖Ξ1/2
z H‖∗)2
n

(
1

(1 + α2)(1 + α1)2(1 + γ)

(
1 − 2

√
2 log(8/δ)
r‖·‖(Ξz)

)

−(1 + ε1)2
n

R‖·‖(Σ2)
− (1 + ε3)2

n

(E‖Ξ1/2
z H‖∗)2

(E‖Σ1/2
u Pzv

∗‖2)2
)
.

We linearize the terms including α1, α2, and γ to simplify the upper bound.
Provided that α1, α2 < 1/2, we have

(1 + α2)(1 + α1)2(1 + γ) = (1 + 2α1 + α2
1 + α2 + 2α2α1 + α2α

2
1)(1 + γ)

≤ (1 + 3α1 + 3α2)(1 + γ)
≤ 1 + 3α1 + 3α2 + 4γ.

As (1 − x)−1 ≥ 1 + x for any x, it holds that

1
(1 + α2)(1 + α1)2(1 + γ) ≥ (1 + 3α1 + 3α2 + 4γ)−1

≥ (1 − (3α1 + 3α2 + 4γ)).

Moreover, by the Cauchy-Schwarz inequality, we have

γ ≤ 2‖Ξ1/2
z H‖2‖‖Σ+

u ω‖2√
(1 − α2)(1 − α1)2nσ̃2

.

As (1 − x)−1 ≤ 1 + 2x for x ∈ [0, 1/2], it holds that

1√
(1 − α2)(1 − α1)2

≤ 1
(1 − α2)(1 − α1)

≤ 4.

By (65), we have

‖Ξ1/2
z H‖2√

n
≤ E‖Ξ1/2

z H‖2√
n

(
1 +

√
2 log(8/δ)
r‖·‖2(Ξz)

)
.

Therefore, it holds that

γ ≤ 8‖Σ+
u ω‖2

σ̃

E‖Ξ1/2
z H‖2√
n

(
1 +

√
2 log(8/δ)
r‖·‖2(Ξz)

)
.
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Hence, we have

1
(1 + α2)(1 + α1)2(1 + γ)

(
1 − 2

√
2 log(8/δ)
r‖·‖(Ξz)

)
− (1 + ε1)2

n

R‖·‖(Σ2)
− (1 + ε3)2

n

(E‖Ξ1/2
z H‖∗)2

(E‖Σ1/2
u Pzv

∗‖2)2

≥ (1 − (3α1 + 3α2 + 4γ))
(

1 − 2

√
2 log(8/δ)
r‖·‖(Ξz)

)
− (1 + ε1)2

n

R‖·‖(Σ2)

− (1 + ε3)2
n

(E‖Ξ1/2
z H‖∗)2

(E‖Σ1/2
u Pzv

∗‖2)2

≥ 1 − (3α1 + 3α2 + 4γ) − 2

√
2 log(8/δ)
r‖·‖(Ξz)

− (1 + ε1)2
n

R‖·‖(Σ2)

− (1 + ε3)2
n

(E‖Ξ1/2
z H‖∗)2

(E‖Σ1/2
u Pzv

∗‖2)2

≥ 1 − ε′

where we define

ε′ =6
√

rank(Σu)
n

+ 12
√

log(32/δ)
n

+ 32‖Σ
+
u ω‖2

σ̃

E‖Ξ1/2
z H‖2√
n

(
1 +

√
2 log(8/δ)
r‖·‖2(Ξz)

)

+4

√
log(8/δ)
r‖·‖(Ξz)

+(1+ε1)2
n

R‖·‖(Ξz)
+(1+ε3)2

n

(E‖Ξ1/2
z H‖∗)2

(E‖Σ1/2
u Pzv

∗‖2)2.

As ε′ is assumed to be less than 1/2 and (E‖Ξ1/2
z H‖∗)2/n is positive, we have

0 < (1 − ε′) (E‖Ξ1/2
z H‖∗)2
n

≤ β1. (70)

Step (iii): Bound on the coefficient s. As s is too complicated, we need to
obtain a simplified upper bound of s. By trivial calculation, we have

s ≤ 2|β2|
β1

+

√
σ̃2

β1
+

√
|β3|
β1

.

Then, we consider an upper bound of 1/β1. It holds from (70) that

1
β1

≤ (1 − ε′)−1 n

(E‖Ξ1/2
z H‖∗)2

≤ (1 + 2ε′) n

(E‖Ξ1/2
z H‖∗)2

, (71)

where the last inequality holds because (1 − x)−1 ≤ 1 + 2x for x ∈ [0, 1/2].
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Next, we show an upper bound of |β2|. As ω := Σ1/2
u ρ and ω�Σ+

u Σu =
ω�(Σ1/2

u )+Σ1/2
u , we have

β2 =
(
ρ�Σ1/2

u Pzv
∗ − ω�Σ+

u ΣuPzv
∗ − v∗ΞzΣ+

u ω
)

=
(
ω�(Σ1/2

u )+Σ1/2
u Pzv

∗ − ω�Σ+
u ΣuPzv

∗ − v∗ΞzΣ+
u ω

)
= − v∗ΞzΣ+

u ω.

By the Cauchy-Schwarz inequality, it holds that |β2| ≤ ‖v∗‖Ξz‖Ξ
1/2
z Σ+

u ω‖2.
From assumption (60) and the definition of R‖·‖(Ξz), we obtain

|β2| ≤ (1 + ε1)

√
(E‖Ξ1/2

z H‖∗)2
n

√
n

R‖·‖(Ξz)
‖Ξ1/2

z Σ+
u ω‖2. (72)

Combining the result (72) with (71), we have

2|β2|
β1

≤ 2(1 + 2ε′)(1 + ε1)
√

n

(E‖Ξ1/2
z H‖∗)2

√
n

R‖·‖(Ξz)
‖Ξ1/2

z Σ+
u ω‖2. (73)

Finally, we derive an upper bound of β3 and s. By using the triangular in-
equality on β3, we have

|β3| ≤
(〈H,Ξ1/2

z Σ+
u ω〉)2

(1 + α2)(1 + α1)2n
+ ‖Ξ1/2

z Σ+
u ω‖2

2. (74)

By the Cauchy-Schwarz inequality, it holds that

(〈H,Ξ1/2
z Σ+

u ω〉)2
(1 + α2)(1 + α1)2n

≤ ‖Ξ1/2
z H‖2

2
(1 + α2)(1 + α1)2n

‖Σ+
u ω‖2

2. (75)

By (65), we have

‖Ξ1/2
z H‖2

2
(1 + α2)(1 + α1)2n

≤ (E‖Ξ1/2
z H‖2)2

n

1
(1 + α2)(1 + α1)2

(
1 +

√
2 log(8/δ)
r‖·‖2(Ξz)

)2

.

(76)
Hence, it holds from (71), (74), (75), and (76) that√

|β3|
β1

≤
√

(1 + 2ε′)
√

n

(E‖Ξ1/2
z H‖∗)2

×

√√√√ (E‖Ξ1/2
z H‖2)2
n

(
1 +

√
2 log(8/δ)
r‖·‖2(Ξz)

)2

‖Σ+
u ω‖2

2 + ‖Ξ1/2
z Σ+

u ω‖2
2. (77)
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From (73) and (77), we obtain

s ≤
√

n

(E‖Ξ1/2
z H‖∗)2

A (78)

where A is defined and bounded as follows:

A := 2(1 + 2ε′)(1 + ε1)
√

n

R‖·‖(Ξz)
‖Ξ1/2

z Σ+
u ω‖2 +

√
(1 + 2ε′)σ̃2

+
√

(1 + 2ε′)

√√√√ (E‖Ξ1/2
z H‖2)2
n

(
1 +

√
2 log(8/δ)
r‖·‖2(Ξz)

)2

‖Σ+
u ω‖2

2 + ‖Ξ1/2
z Σ+

u ω‖2
2

≤ 2(1 + 2ε′)η1 +
√

(1 + 2ε′)σ̃ + (1 + 2ε′)η2, (79)

where

η1 :=
√

(1 + ε1)2
n

R‖·‖(Ξz)
‖Ξ1/2

z Σ+
u ω‖2,

and

η2 :=

√√√√ (E‖Ξ1/2
z H‖2)2
n

(
1 +

√
2 log(8/δ)
r‖·‖2(Ξz)

)2

‖Σ+
u ω‖2

2 + ‖Ξ1/2
z Σ+

u ω‖2
2.

Step (iv): Bound φ2. We simplify the upper bound (78) and derive the upper
bound of φ2. By trivial calculation, we utilize the definition of θ as (66) and
obtain

φ2 ≤ ‖θ‖2

≤ ‖PuΣ+
u ω + sPzv

∗‖2

≤ (‖PuΣ+
u ω‖ + s‖Pzv

∗‖)2

≤ (‖Σ+
u ω‖ + s(1 + ε2))2

≤

⎛⎝‖Σ+
u ω‖ +

√
n

(E‖Ξ1/2
z H‖∗)2

A(1 + ε2)

⎞⎠2

.

The second to last inequality follows the assumption in (61), and the last inequal-
ity follows the upper bound on s as (78). We apply (79) and set ε := 2(ε′ + ε2),
and then it holds that

φ2 ≤

⎛⎝‖Σ+
u ω‖ + (1 + ε)(2η1 + σ̃ + η2)

√
n

(E‖Ξ1/2
z H‖∗)2

⎞⎠2

.
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Theorem 31 (General norm bound). There exists an absolute constant C2 ≤
160 such that the following is true. Under Assumption 1 with Σx = Ξz +Σu, let
‖ · ‖ be an arbitrary norm, and fix δ ≤ 1/4. Denote the 	2 orthogonal projection
matrix onto the space spanned by Ξz and Σu as Pz and Pu, respectively. Let H
be normally distributed with mean zero and variance Id, that is, H ∼ N(0, Id).
Denote v∗ as arg min

v∈∂‖Ξ1/2
z H‖∗

‖v‖Ξz . Suppose that there exist ε1 and ε2 ≥ 0
such that with probability at least 1 − δ/8,

‖v∗‖Ξz ≤ (1 + ε1)E‖v∗‖Ξz ,

‖Pzv
∗‖ ≤ 1 + ε2,

and
‖Σ1/2

u Pzv
∗‖2 ≤ (1 + ε3)E‖Σ1/2

u Pzv
∗‖2.

Denote ε as follows:

ε :=C2

(√
rank(Σu)

n
+

√
log(1/δ)
r‖·‖2(Ξz)

+
√

log(1/δ)
n

+ (1 + ε1)2
n

R‖·‖2(Ξz)

+ ‖Σ+
u ω‖2

σ̃

E‖Ξ1/2
z H‖2√
n

(
1 +

√
log(1/δ)
r‖·‖2(Ξz)

)

+(1 + ε3)2
n

(E‖Ξ1/2
z H‖∗)2

(E‖Σ1/2
u Pzv

∗‖2)2 + ε2

)
.

If n and the effective ranks are large enough that ε ≤ 1, with probability at least
1 − δ, it holds that

‖θ̂‖ ≤ ‖θ0‖ + ‖Σ+
u ω‖ + (1 + ε)(2η1 + σ̃ + η2)

√
n

(E‖Ξ1/2
z H‖∗)2

.

Proof of Theorem 31. For any t > 0, it holds from Lemmas 17 and 18 that

P(‖θ̂‖ > t) ≤ P(Φ > t− ‖θ0‖) ≤ 2P(φ ≥ t− ‖θ0‖).

Lemma 30 implies that the above term is upper bounded by δ if we choose
t − ‖θ0‖ using the result (63) with δ replaced by δ/2. We obtain the stated
result by moving ‖θ0‖ to the other side.

Theorem 11 (Euclidean norm bound; special case of Theorem 31) Fix any
δ ≤ 1/4. Under the model assumptions with covariance Σx = Ξz + Σu, there
exists some ε �

√
rank(Σu)/n +

√
log(1/δ)/n + (1 + (‖Σ+

u ω‖2/σ̃)
√

tr(Ξz)/n)√
log(1/δ)/r(Ξz) + (n log(1/δ))/(R(Ξz))(1 + tr(ΣuΞz)/tr(Ξ2

z)) + (‖Σ+
u ω‖2/σ̃)√

tr(Ξz)/n such that the following is true. If n and the effective ranks are such
that ε ≤ 1 and R(Ξz) � log(1/δ)2, then with probability at least 1 − δ, it holds
that

‖θ̂‖2 ≤ ‖θ0‖2 + ‖Σ+
u ω‖2 + (1 + ε)1/2(2η1 + σ̃ + η2)

√
n

tr(Ξz)
.



Benign overfitting of linear regression with correlated noise 4183

Proof of Theorem 11. Throughout this proof, we simplify the upper bound, es-
pecially n/R‖·‖2(Ξz), 1/r‖·‖2(Ξz) and (nE‖Σ1/2

u Pzv
∗‖2

2)/(E‖Ξ
1/2
z H‖∗)2, in The-

orem 31. By the definition of the dual norm and ∂‖Ξ1/2
x H‖∗ with Euclidean

norm, v∗ is equal to Ξ1/2
z H/‖Ξ1/2

z H‖2. Hence, ‖v∗‖Ξz is ‖ΞzH‖2/‖Ξ1/2
z H‖2.

From the result of (94), for some constant c > 0, we can choose ε1 such that

(1 + ε1)E‖v∗‖Ξz = c

√
log(64/δ) tr(Ξ2

z)
tr(Ξz)

.

If we assume effective rank is sufficiently large, (91) provides that
(
E‖Ξ1/2

z H‖2

)2

� tr(Ξz). Therefore, we have

(1+ε1)2
n

R‖·‖2(Ξz)
= n

(1 + ε1)2(E‖v∗‖Ξz )2(
E‖Ξ1/2

z H‖2

)2 � n log(16/δ) tr(Ξ2
z)

tr(Ξz)2
= n log(16/δ)

R(Ξz)
.

Moreover, it holds from (46) that for some constant c2 > 0, there exists ε3 such
that

(1 + ε3)E‖Σ1/2
u Pv∗‖2 = c2

√
log(64/δ) tr(ΣuΞz)

tr(Ξz)
.

By (91), for sufficiently large effective rank, it holds that (E‖Ξ1/2
z H‖2)2 �

tr(Ξz). Therefore, we have

(1 + ε3)2
n

(E‖Ξ1/2
z H‖2)2

(E‖Σ1/2
u Pzv

∗‖2)2 � n log(64/δ) tr(ΣuΞz)
tr(Ξz)2

= n log(64/δ)
R(Ξz)

tr(ΣuΞz)
tr(Ξ2

z)
.

By trivial calculation, for any covariance matrix Σ, we have

tr(Σ) = E‖Σ1/2H‖2
2 = (E‖Σ1/2H‖2)2 + Var‖Σ1/2H‖2

≥ (E‖Σ1/2H‖2)2.

Therefore, we have

‖Σ+
u ω‖2

σ̃

E‖Ξ1/2
z H‖2√
n

(
1 +

√
2 log(8/δ)
r‖·‖2(Ξz)

)

≤ ‖Σ+
u ω‖2

σ̃

√
tr(Ξz)

n

(
1 +

√
2 log(8/δ)
r‖·‖2(Ξz)

)
.

Finally, we obtain the upper bound of ε. As Pz is an l2 projection matrix, let
ε2 be zero. Then, it holds from (92) of Lemma 41 that

ε �
√

rank(Σu)
n

+
√

log(1/δ)
n

+
(

1 + ‖Σ+
u ω‖2

σ̃

√
tr(Ξz)

n

)√
log(1/δ)
r(Ξz)
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+ n log(1/δ)
R(Ξz)

(
1 + tr(ΣuΞz)

tr(Ξ2
z)

)
+ ‖Σ+

u ω‖2

σ̃

√
tr(Ξz)

n
.

By using the inequality (1−x)−1 ≤ 1+2x for x ∈ [0, 1/2] and (91) of Lemma 41,
we finally obtain

(1 + ε)
√
n

E‖Ξ1/2
z H‖2

≤ (1 + ε)
(

1 − 1
r(Ξz)

)−1/2√
n

tr(Ξz)

≤ (1 + ε)
(

1 + 2
r(Ξz)

)1/2√
n

tr(Ξz)
.

As ε ≤ 1, we have

(1 + ε)
(

1 + 2
r(Ξz)

)1/2

=
(

(1 + 2ε + ε2)
(

1 + 2
r(Ξz)

))1/2

≤
(

(1 + 3ε)
(

1 + 2
r(Ξz)

))1/2

≤
(

1 + 3ε + 8
r(Ξz)

)1/2

.

Therefore, it holds that

(1 + ε)
√
n

E‖Ξ1/2
z H‖2

≤
(

1 + 3ε + 8
r(Ξz)

)1/2√
n

tr(Ξz)
,

and we can replace ε with

ε′ =3ε + 8
r(Ξz)

�
√

rank(Σu)
n

+
√

log(1/δ)
n

+
(

1 + ‖Σ+
u ω‖2

σ̃

√
tr(Ξz)

n

)√
log(1/δ)
r(Ξz)

+n log(1/δ)
R(Ξz)

(
1 + tr(ΣuΞz)

tr(Ξ2
z)

)
+ ‖Σ+

u ω‖2

σ̃

√
tr(Ξz)

n
.

Theorem 32 (Benign Overfitting (Non-orthogonal)). Fix any δ ≤ 1/2. Under
the model assumptions with Σx = Ξz + Σu, let γ and ε be as defined in Corol-
lary 10 and Theorem 11. Suppose that n and the effective ranks are such that
R(Ξz) � log(1/δ)2 and γ, ε ≤ 1. Then, with probability at least 1 − δ,

‖θ̂−θ0‖2
Ξz
≤(1+γ)(1+ε)

(
(‖θ0‖2 + ‖Σ+

u ω‖2)
√

tr(Ξz)
n

+(2η1+σ̃+η2)
)2

−σ̃2.
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Proof of Theorem 32. From the result of Theorem 11, if we adopt

B = ‖θ0‖2 + ‖Σ+
u ω‖2 + (1 + ε)1/2(2η1 + σ̃ + η2)

√
n

tr(Ξz)
,

then {θ : ‖θ‖2 ≤ B} ∩ {θ : Xθ = Y} is not empty with high probability. This
intersection necessarily contains the ridgeless estimator θ̂. Clearly, B > ‖θ0‖2
holds. Therefore, it holds from Corollary 10 that

‖θ̂ − θ0‖2
Ξz

≤ max
‖θ‖2≤B,Y=Xθ

‖θ − θ0‖2
Ξz

≤ (1 + γ)B
2tr(Ξz)
n

− σ̃2

≤ (1 + γ)(1 + ε)
(

(‖θ0‖2 + ‖Σ+
u ω‖2)

√
tr(Ξz)

n
+ (2η1 + σ̃ + η2)

)2

− σ̃2.

Theorem 33. Under Assumption 1, let θ̂ be the ridgeless estimator. Suppose
that as n goes to ∞, the covariance splitting Σx = Ξz+Σu satisfies the following
conditions:

(i) (Small large-variance dimension.)

lim
n→∞

rank(Σu)
n

= 0.

(ii) (Large effective dimension.)

lim
n→∞

n

R(Ξz)
= 0.

(iii) (No aliasing condition.)

lim
n→∞

‖θ0‖2

√
tr(Ξz)

n
= 0.

(iv) (Condition for the minimal interpolation of instrumental variable in the
non-orthogonal case)

lim
n→∞

‖Σ+
u ω‖2

σ̃

√
tr(Ξz)

n
= 0.

(v) (Non-orthogonality)
(a)

lim
n→∞

η1 = 0.
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(b)
lim
n→∞

η2 = 0.

(c)

lim
n→∞

n

R(Ξz)
tr(ΣuΞz)
tr(Ξ2

z)
= 0.

Then, ‖θ̂ − θ0‖2
Ξz

converges to 0 in probability.

Proof of Theorem 33. Fix any κ > 0 and δ > 0. From Lemma 5 of Bartlett
et al. (2020), it holds that R(Ξz) ≤ r(Ξz)2. If R(Ξz) = υ(n) holds as the second
condition in Theorem 33, we have r(Ξz) = υ(

√
n) = υ(1), which implies the con-

vergence of 1/r(Ξz) to zero. Hence, conditions (i) and (ii) in Theorem 33 make γ
sufficiently small for large enough n. Clearly, (‖θ0‖2 + ‖Σ+

u ω‖2)
√

tr(Ξz)/n goes
to zero from conditions (iii) and (iv). By the definition of ε, conditions (i), (ii),
(iv), and (v)(c) in Theorem 33 imply that ε can be arbitrarily small. Combined
with conditions (v)(a) and (v)(b), for sufficiently large n, we obtain

(1 + γ)(1 + ε)
(

(‖θ0‖2 + ‖Σ+
u ω‖2)

√
tr(Ξz)

n
+ (2η1 + σ̃ + 2η2)

)2

− σ̃2 ≤ κ.

(80)

We have shown that γ, ε, (‖θ0‖2 + ‖Σ+
u ω‖2)

√
tr(Ξz)/n, η1, and η2 are so small

that equation (80) holds for sufficiently large n. Therefore, we obtain

P(‖θ̂ − θ0‖2
Ξz

> κ) ≤ δ,

for any fixed κ. As κ and δ are arbitrary, we have for any κ,

lim
n→∞

P(‖θ̂ − θ0‖2
Ξz

> κ) = 0.

Lemma 34. Suppose limn→∞ ω�Σ+
u ΞzΣ+

u ω = 0 holds. Suppose the second con-
dition of Theorem 33 holds. Then, with probability at least 1−δ, limn→∞ η1 = 0.

Proof of Lemma 34. By the definition of η1, we have

η1 =
√

(1 + ε1)2
n

R‖·‖(Ξz)
‖Ξ1/2

z Σ+
u ω‖2. (81)

By (91), for sufficiently large effective rank, it holds that
(
E‖Ξ1/2

z H‖2

)2
�

tr(Ξz) and so

(1 + ε1)2
n

R‖·‖2(Ξz)
= n

(1 + ε1)2(E‖v∗‖Ξz )2(
E‖Ξ1/2

z H‖2

)2 � n log(4/δ) tr(Ξ2
z)

tr(Ξz)2
= n log(4/δ)

R(Ξz)

As n/R(Ξz) and ω�Σ+
u ΞzΣ+

u converge to zero, we have limn→∞ η1 = 0.
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Lemma 35. Suppose limn→∞ ω�Σ+
u ΞzΣ+

u ω = 0 holds. The fourth condition of
Theorem 33 implies limn→∞ η2 = 0.

Proof of Lemma 35. By the definition of η2, we have

η2 :=

√√√√ (E‖Ξ1/2
z H‖2)2
n

(
1 +

√
2 log(8/δ)
r‖·‖2(Ξz)

)
‖Σ+

u ω‖2
2 + ‖Ξ1/2

z Σ+
u ω‖2

2.

By trivial calculation, for any covariance matrix Σ, it holds that

tr(Σ) = E‖Σ1/2H‖2
2 = (E‖Σ1/2H‖2)2 + Var(‖Σ1/2H‖2) ≥ (E‖Σ1/2H‖2)2.

From the result of (92), we have

η2 �

√√√√ tr(Ξz)
n

(
1 +

√
log(1/δ)
r(Ξz)

)
‖Σ+

u ω‖2
2 + ‖Ξ1/2

z Σ+
u ω‖2

2.

As R(Ξz) → ∞ implies r(Ξz) → ∞, we have the following result:(
1 +

√
log(1/δ)
r(Ξz)

)
→ 1.

Moreover, the conditions

lim
n→∞

‖Σ+
u ω‖2

σ̃

√
tr(Ξz)

n
= 0 and lim

n→∞
ω�Σ+

u ΞzΣ+
u ω = 0

lead to the conclusion limn→∞ η2 = 0.

Theorem 5 (Sufficient conditions: Non-Orthogonal Case) Under Assump-
tion 1, let θ̂ be the ridgeless estimator. Suppose that as n goes to ∞, the covari-
ance splitting Σx = Ξz + Σu satisfies the following conditions:

(i) (Small large-variance dimension.)

lim
n→∞

rank(Σu)
n

= 0.

(ii) (Large effective dimension.)

lim
n→∞

n

R(Ξz)
= 0.

(iii) (No aliasing condition.)

lim
n→∞

‖θ0‖2

√
tr(Ξz)

n
= 0.
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(iv) (Condition for the minimal interpolation of instrumental variable in the
non-orthogonal case)

lim
n→∞

‖Σ+
u ω‖2

σ̃

√
tr(Ξz)

n
= 0.

(v) (Non-orthogonality)
(a)

lim
n→∞

n

R(Ξz)
tr(ΣuΞz)
tr(Ξ2

z)
= 0.

(b)
lim
n→∞

ω�Σ+
u ΞzΣ+

u ω = 0.

Then, ‖θ̂ − θ0‖2
Ξz

converges to 0 in probability.

Proof of Theorem 5. By Lemma 34, it holds that from conditions (ii) and (v)(b)
that limn→∞ η1 = 0. We also have limn→∞ η2 = 0 by Lemma 35. Therefore, from
Theorem 33, ‖θ̂ − θ0‖2

Ξz
converges to 0 in probability.

Appendix G: Supportive result

Proposition 36. The necessary condition for limn→∞ rank(Σu)/n = 0 in The-
orem 2 is

rank(Σu) ≥ p− min{rank(Σz), rank(Π0)}.

Proof of Proposition 36. As we have rank(A) = rank(A�) = rank(AA�) =
rank(A�A) for any matrix A, we have rank(Π0Σ1/2

z ) = rank(Ξz). From the
property of the matrix, we have

rank(Π0Σ1/2
z ) ≤ min{rank(Σ1/2

z ), rank(Π0)}.

Under Assumption 2, we have

rank(Ξz) + rank(Σu) = p.

Therefore, we obtain the statement.

Lemma 37. Assume Assumption 2 holds. Then, we obtain the following co-
variance splitting:

Σx = Ξz + Σu,

where Ξz and Σu are positive semidefinite matrices and subspaces generated
from ΞzandΣu, which are orthogonal.
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Proof of Lemma 37. By construction, we have

Xi = Π0Zi + ui,

where E[ui|Zi] = 0. Therefore, we have

Σx = E[XiX
�
i ] = Π0E[ZiZ

�
i ]Π�

0 + E[uiu
�
i ] = Ξz + Σu.

By construction, clearly Ξz,Σu are positive semidefinite. By Assumption 2, sub-
spaces generated by Ξz,Σu are orthogonal. Therefore, we have Σx = Ξz+Σu.

Lemma 38. Under Assumptions 1 and 2, we have the following inequality:

‖ρ‖2
2 = ‖ω‖2

Σ+
u
≤ σ2.

Furthermore, the covariance matrix of (W1,i,W2,i, ξi)� in (17) is positive semi-
definite.

Proof of Lemma 38. First, we clarify the necessary and sufficient condition of
positive semi-definiteness of the covariance matrix of (Xi, ξi)�. The definition
of positive semi-definiteness is

(a, b)
(

Σx Σ1/2
u ρ

ρ�Σ1/2
u σ2

)
(a, b)� ≥ 0,

for any a ∈ R
p and b ∈ R. By trivial calculation, we have

(a, b)
(

Σx Σ1/2
u ρ

ρ�Σ1/2
u σ2

)
(a, b)� = a�Σxa + 2ba�Σ1/2

u ρ + b2σ2. (82)

By solving the first order condition of (82) with respect to a ∈ R
p, we have the

solution a∗ = −bΣ−1
x Σ1/2

u ρ. By substituting a∗ into (82), it holds that

b2ρ�Σ1/2
u Σ−1

x Σ1/2
u ρ− 2b2ρ�Σ1/2

u Σ−1
x Σ1/2

u ρ + b2σ2 = b2(σ2 − ρ�Σ1/2
u Σ−1

x Σ1/2
u ρ).

Therefore, (σ2 − ρ�Σ1/2
u Σ−1

x Σ1/2
u ρ) ≥ 0 is the sufficient and necessary condition

for positive semi-definiteness. Likewise, we obtain (σ2−ρ�ρ) ≥ 0 as the sufficient
and necessary condition for positive semi-definiteness for the covariance matrix
of (W1,i,W2,i, ξi)�.

Finally, under Assumptions 1 and 2, we show that positive semi-definiteness
of the covariance matrix of (Xi, ξi)� implies that the covariance matrix of
(W1,i,W2,i, ξi)� is positive semi-definite. As ρ is defined as the one that has
the minimum norm subject to ω = Σ1/2

u ρ, ρ := argmin{‖b‖ : ω = Σ1/2
u b}. By

the property of the generalized inverse matrix, we have

ρ = (Σ1/2
u )+ω.

Under Assumption 2, ΣuΞz = 0. As Σu and Ξz are symmetric, we have

Σx(Σ+
u + Ξ+

z ) = (Σu + Ξz)(Σ+
u + Ξ+

z )
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= ΣuΣ+
u + ΣuΞ+

z + ΞzΣ+
u + ΞzΞ+

z

= Iu + ΣuΞ�
z (ΞzΞ�

z )+ + ΞzΣ�
u (ΣuΣ�

u )+ + (Ip − Iu)
= Ip.

Hence, Σ−1
x = Σ+

u + Ξ+
z . Then, we have

ρ�Σ1/2
u Σ−1

x Σ1/2
u ρ = ω�Σ−1

x ω = ω�Σ+
u ω + ω�Ξ+

z ω = ω�Σ+
u ω = ρ�ρ.

The third equality holds because ω = Σ1/2
u ρ and Σu is orthogonal to Ξz. The

above discussion suggests

σ2 − ρ�Σ1/2
u Σ−1

x Σ1/2
u ρ = σ2 − ρ�ρ.

Therefore, by the positive semi-definiteness of the covariance matrix of (Xi, ξi)�,
we have

σ2 − ρ�ρ = σ2 − ω�Σ−1
x ω ≥ 0.

Proof of Proposition 3. By Theorem 2 (1) in Bartlett et al. (2020), the first and
second conditions of Definition 2 are satisfied. As tr(Ξz) converges to a finite
value, the third condition also holds under the assumption ‖θ0‖2 = o(

√
n).

We show the condition in Theorem 2 is satisfied under the setting of Propo-
sition 3. By the setting, we have

1
n
‖Σ+

u ω‖2
2 = 1

n

k∗
n∑

i=1
i2 log2β(i + 1) · (Uω)2i � 1

n

k∗
n∑

i=1

i2 log2β(i + 1)
i2 log2β(i + 1)

= k∗n
n
.

As limn→∞ k∗n/n = 0 holds, we have limn→∞ ‖Σ+
u ω‖2

2/n = 0.

Proof of Proposition 4. By Theorem 2 (2) in Bartlett et al. (2020), the first and
second conditions of Definition 2 are satisfied.

We prove θ0 and tr(Ξz) satisfy the third condition stated in Definition 2. By
the definition of the matrices, we have

tr(Ξz) ≤ tr(Σx) =
p∑

i=1
(γi + εn) =

p∑
i=1

γi + pεn. (83)

As pεn is equal to ne−o(n), the second term of (83) converges to zero. It also
holds from the definition that

p∑
i=1

γi �
p∑

i=1
exp(−i/τ).

As
∑∞

i=1 exp(−i/τ) is finite, tr(Ξz) is also finite. Therefore, limn→∞ ‖θ0‖2√
tr(Ξz)/n = 0 holds.
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Finally, we show the setting in Proposition 4 satisfies the condition stated in
Theorem 2. By the assumption of Proposition 4, we have

1
n
‖Σ+

u ω‖2
2 = 1

n

k∗
n∑

i=1

(Uω)2i
(γi + εn)2 ≤ 1

n

k∗
n∑

i=1

(Uω)2i
γ2
i

� 1
n

k∗
n∑

i=1

exp(−2i/τ)
exp(−2i/τ) = k∗n

n
.

As k∗n/n goes to zero, limn→∞ ‖Σ+
u ω‖2

2/n = 0 holds.

Proof of Proposition 7. rank(Σu) in Proposition 7 is the same as rank(Σu) de-
fined in Proposition 3. Hence, by Theorem 2 (1) in Bartlett et al. (2020), the
first condition of Definition 2 is satisfied.

To satisfy the second condition of Definition 2, we prove n/R(Ξz) goes to
zero as n goes to infinity. By the definition of R(Ξz), we have

n

R(Ξz)
= n

tr(Ξ2
z)

(tr(Ξz))2

= n

1
n2α

∑k∗
n

i=1 λ
2
i +

∑p
i=k∗

n+1 λ
2
i(

1
nα

∑k∗
n

i=1 λi +
∑p

i=k∗
n+1 λi

)2

=
1

n2α

∑k∗
n

i=1 λ
2
i +

∑p
i=k∗

n+1 λ
2
i∑p

i=k∗
n+1 λ

2
i

· n
∑p

i=k∗
n+1 λ

2
i(∑p

i=k∗
n+1 λi

)2

·

(∑p
i=k∗

n+1 λi

)2

(
1
nα

∑k∗
n

i=1 λi +
∑p

i=k∗
n+1 λi

)2

=
( ∑k∗

n
i=1 λ

2
i

n2α∑p
i=k∗

n+1 λ
2
i

+ 1
)

· n
∑p

i=k∗
n+1 λ

2
i(∑p

i=k∗
n+1 λi

)2 ·
( ∑k∗

n
i=1 λi

nα
∑p

i=k∗
n+1 λi

+ 1
)−2

.

(84)

As λi = Ci−1 log−β(i + 1) where β > 1, it holds that

lim
n→∞

k∗
n∑

i=1
λ2
i ≤ lim

n→∞

⎛⎝ k∗
n∑

i=1
λi

⎞⎠2

=

⎛⎝ lim
n→∞

k∗
n∑

i=1
λi

⎞⎠2

< ∞. (85)

Moreover, we have

n2α
p∑

i=k∗
n+1

λ2
i�n2α(p− k∗n)

(
1

p logβ(p + 1)

)2

=1
q

(
1 − 1

q

k∗n
n

)(
n

2α−1
2β

log(qn + 1)

)2β

.

(86)

As
(
n

2α−1
β / log(qn + 1)

)2β
diverges to infinity and k∗n/n converges to zero as

n goes to infinity, it holds from (86) that n2α∑p
i=k∗

n+1 λ
2
i diverges to infinity.
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Therefore, we have

lim
n→∞

( ∑k∗
n

i=1 λ
2
i

n2α∑p
i=k∗

n+1 λ
2
i

+ 1
)

= 1. (87)

In a similar way to (85) and (86), we obtain

lim
n→∞

k∗
n∑

i=1
λi < ∞, and nα

p∑
i=k∗

n+1

λi �
(

1 − 1
q

k∗n
n

)(
n

α
β

log(qn + 1)

)β

.

Hence, we have

lim
n→∞

( ∑k∗
n

i=1 λi

nα
∑p

i=k∗
n+1 λi

+ 1
)−2

= 1. (88)

Combining the result in the proof of Proposition 3, limn→∞ n
∑p

i=k∗
n+1 λ

2
i /(∑p

i=k∗
n+1 λi

)2
= 0, with (87) and (88), we have

lim
n→∞

n

R(Ξz)
= 0.

We show the third condition in Definition 2 is satisfied under the setting of
Proposition 7. By the definition of λi, we have

tr(Ξz) ≤ tr(Σx) < ∞.

Hence, the third condition of Definition 2 clearly holds under the assumption
‖θ0‖2 = o(

√
n).

We prove Σu and ω satisfy the first condition stated in Theorem 5. As
limn→∞(σ2 − ‖ω‖2

Σ+
u
) > 0 holds by assumption, it is sufficient to show limn→∞

‖Σ+
u ω‖2

√
tr(Ξz)/n = 0. By the assumption of Proposition 7, we have

1
n
‖Σ+

u ω‖2
2 = 1

n

k∗
n∑

i=1

n2α

(nα − 1)2 i
2 log(i + 1))2β(Uω)2i

� 1
n

1
1 − 2/nα + 1/n2α

k∗
n∑

i=1

i2 log(i + 1))2β

i2 log(i + 1))2β .

From the discussion in the proof of Proposition 3, limn→∞ ‖Σ+
u ω‖2

2/n = 0 holds.
For the second condition of Theorem 5, we need to show tr(ΣuΞz)/tr(Ξ2

z) is
finite. By the definition of Σu and Ξz, we have

tr(ΣuΞz)
tr(Ξ2

z)
=

(
nα−1
n2α

∑k∗
n

i=1
1

i2 log(i+1)2β

)
1

n2α

∑k∗
n

i=1
1

i2 log(i+1)2β +
∑p

i=k∗
n+1

1
i2 log(i+1)2β
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=

⎛⎝ 1
nα − 1 +

n2α

nα−1
∑p

i=k∗
n+1

1
i2 log(i+1)2β(∑k∗

n
i=1

1
i2 log(i+1)2β

)
⎞⎠−1

.

By trivial calculation, we have

n2α

nα − 1

p∑
i=k∗

n+1

1
i2 log(i + 1)2β = nα

nα − 1n
α

p∑
i=k∗

n+1

1
i2 log(i + 1)2β

� nα

nα − 1

(
1 − 1

q

k∗n
n

)(
n

α−1
2β

log(qn + 1)

)2β

.

As
(
n

α−1
β / log(qn + 1)

)2β
diverges to infinity and k∗n/n converges to zero as n

goes to infinity, it holds that limn→∞ tr(ΣuΞz)/tr(Ξ2
z) = 0.

Finally, we show the setting in Proposition 7 satisfies the last condition stated
in Theorem 5. By trivial calculation, we have

ω�Σ+
u ΞzΣ+

u ω � 1
nα − 1

k∗
n∑

i=1

1
i logβ(i + 1))

� k∗n
nα

.

Therefore, limn→∞ ω�Σ+
u ΞzΣ+

u ω = 0 holds.

Lemma 39 (Application of Theorem 5.1.4 in Vershynin (2018)). Assume S is
a subspace of dimension d in R

n where n ≥ 4. Let PS denote the orthogonal
projection onto S and let V denote a spherically symmetric random variable.
Then, with at least 1 − δ probability, we have

‖PSV ‖2

‖V ‖2
≤
√

d

n
+ 2

√
log(2/δ)

n
. (89)

From this inequality, we also have

|〈s, V 〉| = |〈s, PSV 〉| ≤ ‖s‖2‖PSV ‖2 ≤ ‖s‖2‖V ‖2

(√
d

n
+ 2

√
log(2/δ)

n

)
. (90)

Lemma 40 (Theorem 3.1.1 in Vershynin (2018)). Suppose that Z ∼ N(0, In).
Then,

P(|‖Z‖2 −
√
n| ≥ t) ≤ 4e−t2/4.

Lemma 41 (Lemma 9 in Koehler et al. (2021)). Let H be normally distributed
with mean zero and variance Id, that is, H ∼ N(0, Id). For any covariance
matrix Σ, it holds that(

E‖Σ1/2H‖2

)2
≥
(

1 − 1
r(Σ)

)
tr(Σ) (91)
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and
1

tr(Σ) ≥
(

1 −
√

8
r(Σ)

)
E

[
1

HTΣH

]
.

Consequently, it holds that

r(Σ) − 1 ≤ r‖·‖2(Σ) ≤ r(Σ) (92)

and

1 − 4√
r(Σ)

≤
R‖·‖2(Σ)
R(Σ) ≤

(
1 −

√
8

r(Σ2)

)−1

,

where we define

r(Σ) = tr(Σ)
‖Σ‖op

, R(Σ) = tr(Σ)2

tr(Σ2) , r‖·‖(Σ) =
(

E‖Σ1/2H‖∗
sup‖u‖≤1 ‖u‖Σ

)2

,

and

R‖·‖(Σ) =
(
E‖Σ1/2H‖∗
E‖v∗‖Σ

)2

.

Lemma 42 (Lemma 10 in Koehler et al. (2021)). Let H be normally distributed
with mean zero and variance Id, that is, H ∼ N(0, Id). For any covariance
matrix Σ, it holds that with probability at least 1 − δ

1 − ‖Σ1/2H‖2
2

tr(Σ) � log(4/δ)√
R(Σ)

(93)

and
‖ΣH‖2

2 � log(4/δ)tr(Σ2).

Therefore, provided that R(Σ) � log(4/δ)2, it holds that(
‖ΣH‖2

‖Σ1/2H‖2

)2

� log(4/δ) tr(Σ2)
tr(Σ) . (94)

Theorem 43 (Theorem 3.25 in van Handel (2014)). Assume f is L-Lipschitz
continuous with respect to the Euclidean norm with L > 0, that is, for f : Rn →
R,

|f(x) − f(y)| ≤ L‖x− y‖2,

for all x, y ∈ R
n. Then, we have

P(|f(Z) −E[f(Z)]| ≥ t) ≤ 2e−t2/2L2
, (95)

where Z ∼ N(0, In).



Benign overfitting of linear regression with correlated noise 4195

Funding

T.Tsuda was supported by JSPS Grant-in-Aid for JSPS Research Fellows (23KJ0713).
M.Imaizumi was supported by JSPS KAKENHI (21K11780), JST CREST (JP-
MJCR21D2), and JST FOREST (JPMJFR216I).

References

Ai, C. and Chen, X. (2003) Efficient estimation of models with condi-
tional moment restrictions containing unknown functions, Econometrica, 71,
1795–1843. MR2015420

Andrews, I., Stock, J. H. and Sun, L. (2019) Weak instruments in instrumental
variables regression: Theory and practice, Annual Review of Economics, 11,
727–753.

Baiocchi, M., Cheng, J. and Small, D. S. (2014) Instrumental variable methods
for causal inference, Statistics in medicine, 33, 2297–2340. MR3257582

Bartlett, P. L., Long, P. M., Lugosi, G. and Tsigler, A. (2020) Benign overfitting
in linear regression, Proceedings of the National Academy of Sciences, 117,
30063–30070. MR4263288

Belkin, M., Hsu, D., Ma, S. and Mandal, S. (2019) Reconciling modern machine-
learning practice and the classical bias–variance trade-off, Proceedings of the
National Academy of Sciences, 116, 15849–15854. MR3997901

Belloni, A., Chen, D., Chernozhukov, V. and Hansen, C. (2012) Sparse models
and methods for optimal instruments with an application to eminent domain,
Econometrica, 80, 2369–2429. MR3001131

Belloni, A., Chernozhukov, V., Fernández-Val, I. and Hansen, C. (2017) Program
evaluation and causal inference with high-dimensional data, Econometrica,
85, 233–298. MR3611771

Belloni, A., Chernozhukov, V. and Hansen, C. (2010) Lasso methods for gaussian
instrumental variables models, arXiv preprint arXiv:1012.1297.

Belloni, A., Chernozhukov, V. and Hansen, C. (2014) High-dimensional meth-
ods and inference on structural and treatment effects, Journal of Economic
Perspectives, 28, 29–50.

Belloni, A., Hansen, C. and Newey, W. (2022) High-dimensional linear mod-
els with many endogenous variables, Journal of Econometrics, 228, 4–26.
MR4393285

Bunea, F., Strimas-Mackey, S. and Wegkamp, M. H. (2022) Interpolating pre-
dictors in high-dimensional factor regression., Journal of Machine Learning
Research, 23, 10–1. MR4420735

Chen, X. and Pouzo, D. (2012) Estimation of nonparametric conditional mo-
ment models with possibly nonsmooth generalized residuals, Econometrica,
80, 277–321. MR2920758

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey,
W. and Robins, J. (2018) Double/debiased machine learning for treat-
ment and structural parameters, The Econometrics Journal, 21, C1–C68.
MR3769544

https://mathscinet.ams.org/mathscinet-getitem?mr=2015420
https://mathscinet.ams.org/mathscinet-getitem?mr=3257582
https://mathscinet.ams.org/mathscinet-getitem?mr=4263288
https://mathscinet.ams.org/mathscinet-getitem?mr=3997901
https://mathscinet.ams.org/mathscinet-getitem?mr=3001131
https://mathscinet.ams.org/mathscinet-getitem?mr=3611771
https://arxiv.org/abs/1012.1297
https://mathscinet.ams.org/mathscinet-getitem?mr=4393285
https://mathscinet.ams.org/mathscinet-getitem?mr=4420735
https://mathscinet.ams.org/mathscinet-getitem?mr=2920758
https://mathscinet.ams.org/mathscinet-getitem?mr=3769544


4196 Tsuda and Imaizumi

Chernozhukov, V., Hansen, C. and Spindler, M. (2015a) Post-selection and post-
regularization inference in linear models with many controls and instruments,
American Economic Review, 105, 486–90.

Chernozhukov, V., Hansen, C. and Spindler, M. (2015b) Valid post-selection
and post-regularization inference: An elementary, general approach, Annual
Review of Economics, 7, 649–688.

Chernozhukov, V., Hansen, C. and Spindler, M. (2016) hdm: High-dimensional
metrics, The R Journal, 8, 185.

Dikkala, N., Lewis, G., Mackey, L. and Syrgkanis, V. (2020) Minimax estimation
of conditional moment models, Advances in Neural Information Processing
Systems, 33, 12248–12262.

Dobriban, E. and Wager, S. (2018) High-dimensional asymptotics of prediction:
Ridge regression and classification, The Annals of Statistics, 46, 247–279.
MR3766952

Fan, J. and Liao, Y. (2014) Endogeneity in high dimensions, The Annals of
Statistics, 42, 872. MR3210990

Frei, S., Chatterji, N. S. and Bartlett, P. (2022) Benign overfitting without
linearity: Neural network classifiers trained by gradient descent for noisy linear
data, in Conference on Learning Theory, PMLR, pp. 2668–2703.

Gautier, E. and Rose, C. (2011) High-dimensional instrumental variables regres-
sion and confidence sets, arXiv preprint arXiv:1105.2454.

Gautier, E. and Tsybakov, A. B. (2013) Pivotal estimation in high-dimensional
regression via linear programming, in Empirical Inference: Festschrift in
Honor of Vladimir N. Vapnik, Springer, pp. 195–204. MR3236866

Gold, D., Lederer, J. and Tao, J. (2020) Inference for high-dimensional
instrumental variables regression, Journal of Econometrics, 217, 79–111.
MR4093746

Han, Q. and Shen, Y. (2023) Universality of regularized regression estimators
in high dimensions, The Annals of Statistics, 51, 1799–1823. MR4658577

Hastie, T., Montanari, A., Rosset, S. and Tibshirani, R. J. (2022) Surprises in
high-dimensional ridgeless least squares interpolation, The Annals of Statis-
tics, 50, 949–986. MR4404925

Hill, B. M. (1975) A simple general approach to inference about the tail of a
distribution, The Annals of Statistics, pp. 1163–1174. MR0378204

Koehler, F., Zhou, L., Sutherland, D. J. and Srebro, N. (2021) Uniform conver-
gence of interpolators: Gaussian width, norm bounds and benign overfitting,
Advances in Neural Information Processing Systems, 34, 20657–20668.

Koltchinskii, V. and Lounici, K. (2017) Concentration inequalities and moment
bounds for sample covariance operators, Bernoulli, 23, 110–133. MR3556768

Li, Z., Su, W. J. and Sejdinovic, D. (2022) Benign overfitting and noisy features,
Journal of the American Statistical Association, pp. 1–13. MR4681627

Montanari, A. and Saeed, B. N. (2022) Universality of empirical risk minimiza-
tion, in Conference on Learning Theory, PMLR, pp. 4310–4312.

Nakakita, S. and Imaizumi, M. (2022) Benign overfitting in time series linear
model with over-parameterization, arXiv preprint arXiv:2204.08369.

Newey, W. K. and Powell, J. L. (2003) Instrumental variable estimation of

https://mathscinet.ams.org/mathscinet-getitem?mr=3766952
https://mathscinet.ams.org/mathscinet-getitem?mr=3210990
https://arxiv.org/abs/1105.2454
https://mathscinet.ams.org/mathscinet-getitem?mr=3236866
https://mathscinet.ams.org/mathscinet-getitem?mr=4093746
https://mathscinet.ams.org/mathscinet-getitem?mr=4658577
https://mathscinet.ams.org/mathscinet-getitem?mr=4404925
https://mathscinet.ams.org/mathscinet-getitem?mr=0378204
https://mathscinet.ams.org/mathscinet-getitem?mr=3556768
https://mathscinet.ams.org/mathscinet-getitem?mr=4681627
https://arxiv.org/abs/2204.08369


Benign overfitting of linear regression with correlated noise 4197

nonparametric models, Econometrica, 71, 1565–1578. MR2000257
Rockafellar, R. T. (1997) Convex analysis, vol. 11, Princeton university press.

MR1451876
Söderström, T. and Stoica, P. (2002) Instrumental variable methods for system

identification, Circuits, Systems and Signal Processing, 21, 1–9. MR1889846
Stock, J. H., Wright, J. H. and Yogo, M. (2002) A survey of weak instruments

and weak identification in generalized method of moments, Journal of Busi-
ness & Economic Statistics, 20, 518–529. MR1973801

Thrampoulidis, C., Abbasi, E. and Hassibi, B. (2018) Precise error analysis of
regularized m-estimators in high dimensions, IEEE Transactions on Informa-
tion Theory, 64, 5592–5628. MR3832326

Thrampoulidis, C., Oymak, S. and Hassibi, B. (2015) Regularized linear regres-
sion: A precise analysis of the estimation error, in Conference on Learning
Theory, PMLR, pp. 1683–1709.

Tsigler, A. and Bartlett, P. L. (2023) Benign overfitting in ridge regression,
Journal of Machine Learning Research, 24, 1–76. MR4583284

van Handel, R. (2014) Probability in high dimension: Lecture notes.
Vershynin, R. (2018) High-dimensional probability: An introduction with appli-

cations in data science, vol. 47, Cambridge university press. MR3837109

https://mathscinet.ams.org/mathscinet-getitem?mr=2000257
https://mathscinet.ams.org/mathscinet-getitem?mr=1451876
https://mathscinet.ams.org/mathscinet-getitem?mr=1889846
https://mathscinet.ams.org/mathscinet-getitem?mr=1973801
https://mathscinet.ams.org/mathscinet-getitem?mr=3832326
https://mathscinet.ams.org/mathscinet-getitem?mr=4583284
https://mathscinet.ams.org/mathscinet-getitem?mr=3837109

	Introduction
	Notation
	Paper organization

	Preliminary
	Setting
	Measure for estimation error
	Ridgeless estimator

	Error analysis: orthogonal case
	Orthogonality assumption
	Result 1: upper bound on projected RMSE
	Result 2: benign condition for consistency
	Examples


	Error analysis: non-orthogonal case
	Example

	Extension to general norm
	Proof outline
	Approach with CGMT
	Step (i): bound projected RMSE by optimization form
	Step (ii): bound norm of estimator

	Experiment
	Projected RMSE of ridgeless estimator
	Setups
	Results

	Comparison with related method
	Setups
	Results

	Real data analysis

	Discussion and conclusion
	Organization of Appendix
	Proof of CGMT
	Upper bound for projected residual mean squared error
	Bounds for the ridgeless estimator
	Benign overfitting
	Non-orthogonal case
	When Xi and i are independent
	When Xi and i are dependent

	Supportive result
	Funding
	References

