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Abstract: Panel count data arise when recurrent events are observed peri-
odically in a study. The response variable of interest is the number of recur-
rent events within different time windows instead of the exact onset times
of the events. The gamma frailty Poisson process model has been proposed
to accommodate the within-subject correlation and overdispersion in panel
count data. Although the existing methods based on the gamma frailty
Poisson process model have shown some robustness against frailty distri-
bution misspecifications, they are also found to produce biased estimates
in some other cases when the gamma frailty assumption is violated. In this
paper, we generalize the gamma frailty Poisson process model to allow an
unknown frailty distribution for analyzing panel count data. Specifically
the frailty distribution is modeled nonparametrically by assigning a Dirich-
let Process Gamma Mixture prior. An efficient Gibbs sampler is developed
to facilitate the Bayesian computation. Extensive simulation results sug-
gest that the proposed Bayesian approach has an excellent performance
in estimating the regression parameters and the baseline mean function
and outperforms the corresponding Bayesian method based on the gamma
frailty Poisson model when the gamma frailty distribution is misspecified.
The proposed method is applied to a skin cancer dataset for an illustration.
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1. Introduction

Panel count data commonly arise when recurrent events are observed period-
ically in a study. The response variable of interest is the number of recurrent
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events within different time windows instead of the exact onset times of the
events. Panel count data often have the following characteristics: (1) subjects
may be observed or examined at different time points during the study period;
(2) the number of observations varies from subject to subject. When covariates
are not considered, the focus of panel count data analysis is to estimate the mean
function, and existing work include [27] adopting isotonic regression techniques,
[34] based on nonhomogeneous Poisson process models, and [18] approximating
the mean function with monotone splines among others.

When covariates are considered, the major research goals in the analysis of
panel count data are to estimate the mean function for the recurrent event
over time and to identify significant covariates and assess their effects on the re-
sponse. Such goals are accomplished by regression analysis, and many statistical
methods have been developed in this category. For example, [28] proposed an
estimation approach based on the proportional mean model when both observa-
tion and censoring times may depend on covariates; [39] studied a semiparamet-
ric pseudolikelihood estimation method based on the nonhomogeneous Poisson
process proportional mean model; [35] considered both pseudo-likelihood esti-
mator and maximum likelihood estimator under the same model; [19] studied
the spline-based sieve version of the MLE by approximating the baseline mean
function using monotone B-spline functions; and [10] developed estimating equa-
tions for a class of marginal mean models which leave the dependence structures
for related types of recurrent events completely unspecified.

Despite the popularity of the non-homogeneous Poisson process model for
analyzing panel count data, this model fails to accommodate the overdispersion
[12, 40] and the within-subject correlation [36] for panel count data. In general,
failing to address the overdispersion will cause underestimation of the standard
errors of the regression parameter estimates and thus lose estimation efficiency
[4, 12]. The gamma frailty Poisson model has been popular to address these
problems in the analysis of panel count data. Among others, [40] proposed an
EM algorithm and [11] developed an estimation approach based on estimating
equations when there are no covariates, [36] studied the within-subject corre-
lation in panel count data and developed an efficient EM algorithm, and [13]
developed a sieve maximum likelihood method adopting monotone B-splines for
the baseline mean function and established the asymptotic properties of their
spline-based estimator, all using the gamma frailty Poisson process model. [12]
developed a spline-based generalized estimating equation (GEE) method and
showed that the GEE method is actually equivalent to the likelihood method
based on the gamma-frailty Poisson process model.

Both [13] and [36] have shown some robustness of their methods under the
gamma frailty Poisson process models in some cases where the gamma frailty
distribution is misspecified. However, both of their simulation studies also re-
veal that the performance of their methods is less desirable in some other cases
of misspecification of the frailty distribution. To tackle this problem, we pro-
pose a more general frailty Poisson process model with unknown frailty dis-
tribution and develop an efficient Bayesian estimation approach. Specifically,
the unknown frailty distribution is modeled by the Dirichlet process Gamma
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mixture. Under this model, the within-subject correlation can be quantified in
terms of Pearson’s correlation with an explicit form. An efficient Gibbs sampler
is developed for Bayesian posterior computation. The proposed approach has
an excellent performance in estimating both the regression coefficients and the
baseline mean function under a variety of frailty distributions in the simulation
study. It outperforms the corresponding Bayesian competitor under the Gamma
frailty Poisson process model.

The rest of the paper is organized as follows. Section 2 presents the frailty non-
homogeneous Poisson process model, monotone splines for modeling the baseline
mean function, and the Dirichlet process Gamma mixture for the frailty distri-
bution. Section 3 provides the details of our exact block Gibbs sampler for the
posterior computation. In Section 4, extensive simulation studies are conducted
to evaluate the performance of our approach with a variety of misspecifications
of the frailty distribution. Section 5 provides an illustration of our proposed
method and its comparison with existing methods via an analysis of the skin
cancer data. Finally, some concluding remarks are given in Section 6.

2. The proposed model

2.1. A nonparametric frailty Poisson process model

Consider a study that consists of n independent subjects. It is assumed in this
paper that the observational process and the recurrent event process are con-
ditionally independent given covariates. Let Ni(·) denote the recurrent event
counting process for subject i, and {tij , j = 1, . . . , Ji} the set of examination
times for subject i, and xi a vector of q × 1 time-independent covariates for
subject i. The observed data are {xi, N(tij), j = 1, . . . , Ji, i = 1, . . . , n}.

We propose a general frailty non-homogeneous Poisson process model as
follows. Conditioning on frailty φi, Ni(·) is a non-homogeneous Poisson pro-
cess with mean function μ0(·) exp(x′

iβ)φi, where μ0(·) is an unspecified non-
decreasing baseline mean function with μ0(0) = 0, and the frailty φi follows
a continuous distribution with density function f . We allow f to be unknown
and model it nonparametrically in this paper. The details are to be given in the
next subsection. It is worth noting that taking f to be a gamma density with a
common shape and rate parameter leads to the popular gamma frailty Poisson
process model (GFPM). The GFPM was introduced to deal with overdisper-
sion [12, 13] and to account for the within-subject correlation among the counts
within the same subject [36] in the regression analysis of panel count data.

Define Zij = Ni(tij)−Ni(tij−1) as the count of recurrent events within time
interval (tij−1, tij ] for j = 1, . . . , Ji and i = 1, . . . , n, with ti0 = 0 for each i for
notational convenience. By the properties of non-homogeneous Poisson process,
all Zij ’s are conditionally independent given φi and

Zij |φi ∼ Poisson
[
{μ0(tij) − μ0(tij−1)} exp(x′

iβ)φi

]
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for j = 1, . . . , Ji and i = 1, . . . , n. Thus, the observed likelihood is given by

Lobs =
n∏

i=1

∫ ∞

0

{ Ji∏
j=1

P(zij |φi)
}
f(φi)dφi, (1)

where P(·|φi) is the conditional Poisson probability mass function with mean
{μ0(tij) − μ0(tij−1)} exp(x′

iβ)φi.

2.2. Dirichlet process Gamma mixture for the frailty density

There is extensive work of modeling frailty distribution nonparametrically in
the Bayesian literature. Potential methods include Dirichlet process (DP) [5],
Dirichlet process mixture [1], Polya tree [14, 15], mixtures of Polya tree models
[9], and Bernstein polynomials [24], etc. Among these methods, Dirichlet process
priors are particularly useful when modeling unknown distributions with certain
level of clustering characteristics, and such studies include [7], [20], and [22],
among many others. However, a DP is not suitable to model unknown densities
due to the almost sure discreteness of the random measure generated by the DP
[3]. Instead, the Dirichlet process mixture (DPM) prior is naturally adopted in
density estimation using a DP prior for the mixing distribution. The DPM is
popular since it provides a smooth estimation of the density, and existing works
based on the DPM include [6], [8], and [31], among many others.

In many frailty or random effect models, it is usually necessary to set a certain
constraint to ensure the identifiability of the models. For instance, a common
constraint is to set the mean or median of the frailty to be 0 or 1. In our study,
the mean of the frailty is set to be 1 for the purpose of identifiability. We propose
the following Dirichlet process gamma mixture (DPGM) for the frailty density
f ,

f(φi) =
∫

g(φi|τi)dπ(τi), τi|π ∼ π, π ∼ DP (αG0), (2)

where g(·|τi) is a gamma density function with common shape and rate param-
eter τi, and DP (αG0) is a Dirichlet process with a precision parameter α and a
base measure G0 that has support on (0,∞). The use of common shape and rate
parameters in the gamma kernel guarantees that the nonparametric density f
has a mean 1 constraint.

Based on the stick-breaking construction of DP [26], the random distribution
π can be expressed as

π =
∞∑
h=1

phδθh , ph = Vh

∏
k<h

(1 − Vk),

where δθh is a Dirac probability measure concentrated at θh, θh’s are i.i.d.
from G0, and Vh’s are i.i.d. random variables from Beta(1, α). Under this stick-
breaking representation of DP, the unknown frailty density f(φi) can be written
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as a mixture of gamma with an infinite number of components as follows,

f(φi) =
∞∑
h=1

phg(φi|θh). (3)

The inclusion of frailty φi induces correlations among the counts Zij ’s for
subject i, which is called the within-subject correlation. This is one way to
handle the overdispersion problems appearing in the corresponding non-frailty
models. Additionally, the within-subject correlation can be quantified in a simple
closed form. Specifically, we consider the counts Z1 and Z2 of recurrent events
within two non-overlapping intervals (t1, t2] and (t3, t4] from the same subject
with covariates x. It can be shown that Pearson’s correlation coefficient between
Z1 and Z2 takes the following form

ρ(Z1, Z2) = 1√
{1 + λ−1

1 var(φ)−1}{1 + λ−1
2 var(φ)−1}

, (4)

where λ1 = {μ0(t2)− μ0(t1)} exp(x′β) and λ2 = {μ0(t4)− μ0(t3)} exp(x′β) are
the mean numbers of the recurrent event within the time intervals (t1, t2] and
(t3, t4], respectively, and var(φ) =

∑
h=1 phθ

−1
h is the variance of the frailty with

the proposed DPGM prior (3). This expression (4) suggests that both the mean
numbers of the recurrent events and the variance of the frailty term affect the
within-subject correlation. This finding agrees with the conclusion in [36] for
the gamma frailty Poisson process model.

3. The proposed method

3.1. Monotone splines

Since μ0(·) is an unspecified positive non-decreasing function over the positive
real line, estimating μ0(·) can be challenging because it is infinitely dimensional.
For a finite sample size, the number of parameters involved in μ0(·) is on the
order of sample size when the observation times vary from subject to subject.
To overcome this difficulty, we model the baseline mean function μ0(·) with the
monotone spline of [25] in the following manner,

μ0(t) =
L∑

l=1

γlbl(t), (5)

where bl(·)’s are integrated spline (I-spline) basis functions and γl’s are non-
negative spline coefficients to ensure that μ0(·) is nondecreasing. Each I-spline
basis function is a piecewise polynomial that starts from 0 in the initial region,
increases in the mid-region, and plateaus at 1 in the final region [25]. Here the
nonnegative constraints of γl’s are a simple but sufficient condition to ensure
the monotonicity of μ0(·).
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The use of monotone spline (5) is very appealing because it provides great
flexibility for modeling monotone functions with only a finite number of param-
eters [29, 36]. The spline basis functions are totally determined by the speci-
fication of the knots and degree. In general, the degree determines the overall
smoothness, and the placement of the knots determines the shape of these basis
functions. Setting the degree to 2 and 3 results in piecewise linear and quadratic
polynomials, respectively, and both provide adequate smoothness in practice.
The placement of knots can be either equally spaced or quantile based. The
number of interior knots affects the modeling flexibility and thus potentially af-
fects the estimation performance although many spline-based approaches have
shown a robust performance over such spline specifications [21, 33]. [25] rec-
ommended using only a few knots, say, at the median or at the three quartiles.
[16], [17], and others have advocated that using 10 ∼ 30 knots provides adequate
modeling flexibility for various types of survival data with a sample size up to
hundreds of thousands [16, 17, 32] in Bayesian survival literature. They are us-
ing a shrinkage prior for the spline coefficients, which functions to shrink the
coefficients of those unnecessary basis functions towards zero and thus prevents
the over-fitting problem that is potentially caused by using too many knots. We
adopt the same strategy in this paper.

3.2. Data augmentation

The observed likelihood (1) is difficult to work with since it involves multi-
ple integrals that do not have closed forms. Instead, we consider the following
conditional likelihood by treating all the frailties φi’s as missing data,

Lcon =
n∏

i=1
f(φi)

Ji∏
j=1

(Zij !)−1[{μ0(tij) − μ0(tij−1)} exp(x′
iβ)φi]Zij

× exp[−{μ0(tij) − μ0(tij−1)} exp(x′
iβ)φi].

Ignoring the multiplicative constants and plugging in the monotone spline rep-
resentation of μ0(·), the conditional likelihood takes the form

Lcon ∝
n∏

i=1
f(φi)

Ji∏
j=1

{ L∑
l=1

γlBlij exp(x′
iβ)φi

}Zij

exp
{
−

L∑
l=1

γlBlij exp(x′
iβ)φi

}
,

(6)
where Blij = bl(tij) − bl(tij−1) for l = 1, . . . , L, j = 1, . . . , Ji and i = 1, . . . , n.

The above conditional likelihood involves summations in the product, which
will cause much trouble in the posterior computation. To solve this problem,
we decompose each zij as a sum of conditionally independent Poisson random
variables Zij =

∑L
l=1 Zijl with

Zijl|φi ∼ Poisson{γlBlij exp(x′
iβ)φi},
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for l = 1, . . . , L, j = 1, . . . , Ji and i = 1, . . . , n. Treating all Zijl’s as latent
variables, the augmented data likelihood has the following form

Lcom ∝
n∏

i=1
f(φi)

Ji∏
j=1

L∏
l=1

{
γlBlij exp(x′

iβ)φi

}Zijl

exp
{
− γlBlij exp(x′

iβ)φi

}
.

(7)
This likelihood is appealing with only multiplicative terms and will be treated
as the complete data likelihood for our posterior computation.

3.3. Prior specifications

We need to specify the prior distributions for all of the unknown parameters.
In general, we follow the rule of using vague priors with large variances for
all parameters. Following the idea of [16] and [32] among others, we adopt
shrinkage priors for the spline coefficients γl’s. Specifically we assign independent
exponential priors E(λ) for γl’s and assign a Gamma prior Ga(aλ, bλ) for the
hyperparameter λ. This prior specification is closely related to Bayesian Lasso
[23] and is equivalent to the penalized likelihood approach with L1 penalty
imposed on the spline coefficients, where λ serves as a tuning parameter. These
shrinkage priors function to penalize large values of the spline coefficients and
shrink those coefficients of the unnecessary spline basis functions towards 0, thus
preventing over-fitting.

To complete the prior specifications, we assign a multivariate normal prior
N (μ0,Σ0) for β and a gamma prior Ga(aα, bα) for the DP precision parameter
α. The base distribution G0 in the DP is specified as Ga(a0, b0) in our paper.

3.4. Gibbs sampler

The posterior distribution is proportional to the product of the complete like-
lihood (7) and all of the prior densities including the DPM prior for the frailty
density f in Section 2.2 and the priors in Section 3.3. For the posterior com-
putation, we propose an efficient block Gibbs sampler by considering the full
conditional distributions for each parameter and latent variable.

To develop an efficient posterior computation algorithm, we first rewrite the
proposed DPGM into the following hierarchical form,

φi
ind∼ Ga(τi, τi), τi|π iid∼ π, π =

∞∑
h=1

phδθh

for i = 1, · · · , n. To avoid sampling from the infinite components of the DP,
we propose an exact block Gibbs sampler [37] that only requires us to sample
from a mixture of a finite number N of components for the frailty distribution
without the need of truncating the DP [31, 37]. Let {θ1, · · · , θN} denote the set
of unique values in τ = (τ1, . . . , τn) and K = {K1, ...,Kn} denote the vector
of configuration indicators so that τi = θKi . Let mh =

∑n
i=1 I(Ki = h) be
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the number of subjects that share the same gamma frailty distribution with
parameter θh for h = 1, . . . , N . Our algorithm allows N to increase when an
additional component θh ∼ G0 is needed for the DP.

In the proposed Gibbs sampler, the initial values of all unknown parameters
and latent variables are generated from their prior distributions. Specifically for
the parameters involved in the DPGM, we initialize N to be 2 and sample θh’s
independently from G0 = Ga(a0, b0) for h = 1, . . . , N . Sample α from Ga(aα, bα)
and Vh’s independently from Beta(1, α) for h = 1, . . . , N and then calculate ph’s
according to their relationship with Vh’s in section 2.2. The initial value of Ki

takes the position of 1 in the vector generated from Multinomial(1,p) for each
i, where p = (p1, . . . , pN ). Then the frailty φi is generated from Ga(θKi , θKi) for
each i. After generating the initial values for all unknowns, the proposed exact
Gibbs sampler cycles through the following steps:

1. For each i and j, sample (Zij1, ..., ZijL) from Multinomial(zij , (qij1, ...,
qijL)), where

qijl = γl{bl(tij) − bl(tij−1)}∑L
j=1 γj{bj(tij) − bj(tij−1)}

, l = 1, . . . , L.

2. For each l = 1, . . . , L, sample γl from

Ga
( n∑

i=1

Ji∑
j=1

Zijl + 1,
n∑

i=1
{bl(tiJi) − bl(ti0)} exp(x′

iβ)φi + λ

)
.

3. Sample λ from Ga(aλ + L, bλ +
∑L

l=1 γl).
4. Sample β by using adaptive rejection metropolis sampling (ARMS) from

the following full conditional distribution

L(β|·) ∝ exp
{ n∑

i=1

Ji∑
j=1

Zijx′
iβ −

n∑
i=1

{μ0(tiJi) − μ0(ti0)}φi exp(x′
iβ)

−1
2(β − μ0)′Σ−1

0 (β − μ0)
}
.

5. Sample φi from Ga(Zi + τi, {μ0(tiJi) − μ0(ti0)} exp(x′
iβ) + τi) for each i.

6. Sample θh from the following full conditional distribution

θh ∝ θa0−1
h exp(−b0θh)

∏
{i:Ki=h}

θθhh
Γ(θh)φ

θh−1
i exp(−θhφi)

by using ARMS for h = 1, ..., N .
7. Sample Vh from Beta(1 + mh, α +

∑N
s=h+1 ms), for h = 1, ..., N . Then

calculate p1 = V1 and ph = Vh(1 − Vh−1) · · · (1 − V1) for h = 2, ..., N .
8. Sample Ui ∼ Uniform(0, pKi), for i = 1, . . . , n.
9. Sample Ki for i = 1, . . . , n as follows. Let U∗ = min(U1, · · · , Un).
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(a) If
∑N

h=1 ph > 1−U∗, sample Ki from Multinomial(1, qi), where qi =
(qi1, ..., qiN ) and

qih = phg(φi|θh)∑N
l=1 plg(φi|θl)

for h = 1, . . . , N and i = 1, . . . , n. Then update τi = θKi for i =
1, . . . , n.

(b) Otherwise, keep updating N = N +1 and sampling VN ∼ Beta(1, α)
and θN ∼ Ga(a0, b0) until

∑N
h=1 ph > 1 − U∗. Then sample Ki as in

(a).
10. Sample α from Ga(aα + N, bα −

∑N
h=1 log(1 − Vh)).

This Gibbs sampler allows us to sample from the DPGM without any approx-
imation with only a finite number N of components. It allows N to increase in
the algorithm when a new component is needed. A truncated version of DPGM
with a fixed N can be also used but is less desirable here because in general
using an overly large value of N will result in a loss of computational efficiency
while using a too small value will restrict the flexibility of the frailty distribution
and affect the overall estimation performance.

Steps 6–10 in the Gibbs sampler are used to update the parameters involved
in the DPGM prior for the nonparametric frailty. The proposed algorithm can be
simplified to analyze panel count data under the gamma frailty Poisson process
model by deleting steps 6-10. This simplified version was reported in [30] and is
a Bayesian version of [36] under the gamma frailty Poisson process model.

4. Simulation study

Extensive simulation studies were conducted to assess the performance of the
proposed approach. We considered the following scenarios for the frailty distri-
bution,

I. φi ∼ Ga(0.5, 0.5);
II. φi ∼ 0.5Ga(1, 1) + 0.5Ga(15, 15);

III. φi ∼ LN (−0.55, 1.05);
IV. φi ∼ LL(π, sin(1));
V. φi ∼ 0.5LN (−0.11, 0.47) + 0.5LN (−0.35, 0.83);

VI. φi ∼ 0.5Ga(10, 10) + 0.5LN (−0.55, 1.05),
where LN and LL represent log-normal distribution and log-logistic distribu-
tion, respectively. All these frailty distributions have the mean 1 constraint.

For each scenario, we simulated 1,000 data sets with sample size n = 100 for
each. To generate the observational process for subject i, we first generated Ji,
the total number of observation times, from 1 plus a Poisson distribution with
a mean of 6. This mechanism guarantees a minimum of one observation time
per subject, while also allowing for varying numbers of observation times among
subjects. Then we generated Ji gap times independently from an exponential
distribution with a rate parameter 2 to form up the observation times {tij , j =
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1, . . . , Ji} for subject i. We generated φi from a frailty distribution in Scenarios
I ∼VI, and conditioning on φi, the counting process associated with subject i
was generated from the following model,

Zij = Ni(tij)−Ni(tij−1) ∼ Poisson
[
{μ0(tij)−μ0(tij−1)} exp(xi1β1 +xi2β2)φi

]
,

where μ0(t) = log(1 + t) + t, xi1 ∼ Bernoulli(0.5), xi2 ∼ N(0, 0.52), and the
true values of regression coefficients (β1, β2) were taken to be (1,−1) or (−1, 1).

As reported in the literature, methods based on the monotone splines are rel-
atively robust with respect to the degree and number of knots when the knots
are adequate [29, 33, 36]. Here we fixed the order of monotone spline as 3 for
adequate smoothing and used 18 equally-spaced interior knots in all the simu-
lations for illustration. In specifying prior distributions for our model, we aimed
to achieve a balance between flexibility in model fitting and the avoidance of
overfitting by using weakly informative priors. Specifically, for the Gamma hy-
perprior of λ, parameters aλ and bλ were both set to 1; for the normal prior of β,
we chose μ0 as a zero vector and Σ0 as a diagonal matrix with diagonal elements
valued at 100; for the Dirichlet Process (DP) framework, the Gamma hyperprior
of α was similarly set with aα = 1 and bα = 1, and the base distribution G0 was
taken to be Ga(0.01, 0.01), i.e., a0 = 0.01 and b0 = 0.01.

In the simulation, we also implemented the Bayesian approach under the
gamma frailty Poisson process model mentioned in Section 3.4 as a benchmark
for comparison with the proposed approach. It was observed that all the chains
mix well and converge fast for both approaches. For each method, we ran MCMC
with a total of 5000 iterations with the first 1000 iterations as a burn-in.

Table 1 summarizes the simulation results from the proposed method (termed
as DPGM-PM) using the Dirichlet process gamma mixture prior for the frailty
distribution and the Bayesian method (termed as GFPM) under the gamma
frailty Poisson model in the six different scenarios of frailty distributions. The
presented results include the estimation of (β1, β2) from the two methods in
terms of bias, the difference between the average of 1,000 posterior means and
the true parameter value; ASD, the average of the estimated posterior standard
deviations; SSD, the sample standard deviation of the 1,000 posterior means;
and CP95, the coverage rate based on the 1,000 95% credible intervals.

As shown in Table 1, both the proposed method, DPGM-PM, and GFPM
exhibit commendable performance in Scenario I, where the true frailty distribu-
tion is gamma. Both methods demonstrate minimal bias in the point estimate,
the ASD in close agreement with SSD, and 95% coverage probability close to the
nominal value of 0.95. In this Scenario, DPGM-PM yields results comparable
to GFPM regarding bias, estimated standard deviations, and coverage prob-
ability. However, in Scenarios II – VI where the true frailty distributions are
non-gamma, GFPM’s performance is unsatisfactory, with a large discrepancy
between ASD and SSD and a poor coverage probability. It is clear that DPGM-
PM has a better estimation performance than GFPM across these scenarios,
presenting smaller differences between ASD and SSD, and a 95% coverage prob-
ability that aligns more closely with the nominal value of 0.95. Also, DPGM-PM
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Table 1

Simulation results from the proposed method (DPGM-PM) using the Dirichlet process
gamma mixture prior for the frailty distribution and the Bayesian method (GFPM) under
the gamma frailty Poisson model in six different scenarios (I ∼ VI) of frailty distributions.
Summarized results include the bias (Bias), the average of the estimated posterior standard
deviations(ASD), the sample standard deviation of the 1,000 posterior means (SSD), and

the 95% coverage rate (CP95).

DPGM-PM GFPM
(β1, β2) Est Bias ASD SSD CP95 Bias ASD SSD CP95

I (1,−1) β̂1 -0.0029 0.1312 0.1323 0.945 -0.0032 0.1314 0.1325 0.944
β̂2 -0.0032 0.1344 0.1302 0.958 -0.0042 0.1345 0.1313 0.953

(−1, 1) β̂1 -0.0111 0.1427 0.1406 0.962 -0.0109 0.1416 0.1414 0.956
β̂2 0.0012 0.1452 0.1436 0.953 0.0014 0.1442 0.1444 0.946

II (1,−1) β̂1 -0.0028 0.0702 0.0714 0.946 -0.0056 0.0911 0.0996 0.927
β̂2 -0.0017 0.0696 0.0702 0.946 -0.0093 0.0932 0.0992 0.933

(−1, 1) β̂1 -0.0026 0.0930 0.0937 0.945 -0.0052 0.1016 0.1098 0.928
β̂2 -0.0010 0.0912 0.0902 0.956 0.0012 0.1030 0.1107 0.941

III (1,−1) β̂1 -0.0084 0.0835 0.0931 0.919 -0.0025 0.0830 0.0973 0.888
β̂2 0.0012 0.0847 0.0978 0.916 -0.0035 0.0845 0.1009 0.909

(−1, 1) β̂1 0.0058 0.0977 0.1040 0.929 -0.0054 0.0974 0.1085 0.920
β̂2 -0.0098 0.0987 0.1099 0.919 -0.0013 0.0986 0.1130 0.909

IV (1,−1) β̂1 -0.0075 0.0627 0.0675 0.932 0.0020 0.0645 0.0777 0.893
β̂2 0.0081 0.0637 0.0672 0.937 -0.0033 0.0655 0.0766 0.916

(−1, 1) β̂1 0.0094 0.0783 0.0792 0.945 -0.0034 0.0797 0.0874 0.928
β̂2 -0.0093 0.0778 0.0825 0.940 -0.0034 0.0797 0.0874 0.928

V (1,−1) β̂1 -0.0156 0.0973 0.1114 0.911 -0.0029 0.0972 0.1299 0.862
β̂2 0.0074 0.0991 0.1140 0.904 -0.0047 0.0990 0.1294 0.857

(−1, 1) β̂1 0.0165 0.1117 0.1206 0.926 0.0009 0.112 0.1349 0.897
β̂2 -0.0160 0.1133 0.1289 0.910 0.0021 0.114 0.1414 0.879

VI (1,−1) β̂1 -0.0076 0.0698 0.0706 0.940 -0.0012 0.0770 0.0952 0.893
β̂2 0.0070 0.0704 0.0739 0.927 0.0007 0.0785 0.1021 0.856

(−1, 1) β̂1 0.0124 0.0862 0.0874 0.949 0.0017 0.0908 0.1070 0.911
β̂2 0.0090 0.0858 0.0888 0.935 0.0046 0.0918 0.1108 0.892

produces smaller ASDs and SSDs than GFPM in all settings, indicating that
DPGM-PM is more efficient than GFPM in estimating the regression param-
eters. These results demonstrate the superior performance of DPGM-PM over
GFPM when the gamma frailty assumption is violated.

We also summarized the estimation results in terms of the absolute bias and
the mean squared errors for the regression parameter estimators from the two
Bayesian methods for all scenarios (results not shown). The same conclusions
are drawn based on the comparison results as above.

To examine the baseline mean function estimation, Figure 1 displays the true
baseline mean function and the average of the baseline mean function estimates
from DPGM-PM and GFPM over 1,000 data sets when (β1, β2) = (1,−1) in the
6 simulation Scenarios. As seen in Figure 1, the two estimated curves are both
close to the true mean baseline functions in all scenarios, which suggests that
the two methods are comparable and have a good performance in estimating



3698 L. Wang et al.

Fig 1. The true baseline mean function (dotted) and the average of the estimated baseline
mean curves under DPGM-PM (solid) and GFPM (dashed) in the six simulation scenarios.

the baseline mean function.
In summary, these two methods have comparably good performance when

the frailty truly follows a gamma distribution. However, DPGM-PM performs
much better in terms of parameter estimation when the true frailty distribution
is non-gamma. This is not surprising due to the following two reasons: (1) the
multiple observations from the same subjects in panel count data provide much
information about the underlying frailty distribution, which is not necessarily
gamma; and (2) our proposed method is flexible to accommodate the uncertainty
in the frailty distribution, thus improving efficiency of estimating the covariate
effects.

5. Real data applications

The skin cancer study was conducted by the University of Wisconsin Compre-
hensive Cancer Center in Madison, Wisconsin. The primary goal of the study
was to determine whether daily dose of 500mg/m2 of difluoromethylornithine
(DFMO) would reduce new skin cancers in patients with a history of non-
melanoma skin cancers including basal cell carcinoma and squamous cell carci-
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noma. In this randomized, double-blind, placebo-controlled phase 3 clinical trial,
two hundred and ninety-one participants with a history of prior non-melanoma
skin cancer were randomized to receive DFMO or placebo for 3 to 5 years, de-
pending on when they entered the study. These patients were scheduled to be
assessed every six months and the number of recurrences of new skin cancers
between the observation times suppose to be recorded. However, the actual ob-
servational times varied from subject to subject. For more details about this
study, please refer to [2].

Our analysis is focused on a total of 290 patients (147 in the placebo group
and 143 in the DFMO group) after deleting one patient with missing cancer
information. Four covariates were included in the analysis: x1 (age at enroll-
ment), x2 (gender with 1 for male and 0 otherwise), x3 (treatment indicator
with 1 for DFMO group and 0 for placebo group), and x4 (the number of prior
skin tumors). The two quantitative covariates, age and the number of prior skin
tumors, were standardized before the model fitting. The baseline mean function
was approximated by monotone splines with 21 equally-spaced knots and degree
of 3. We implemented the proposed approach as well as the Bayesian method
(GFPM-B) developed by [30] and the EM algorithm (GFPM-EM) developed
by [36] under the gamma frailty Poisson model for this analysis. The following
priors were adopted for the parameters in the proposed method, aλ = bλ = 1
leading a Ga(1, 1) for λ, N(04, 100I4) for β, Ga(1, 1) for α, and the base distri-
bution G0 is Ga(2, 0.01).

The total iterations of the MCMC was set to be 30000 for the two Bayesian
methods, and it took 33.65 and 29.88 minutes for the proposed method and
GFPM-B on a computer with Intel i7-8700K@3.70GHz CPU and 32 GB RAM,
respectively. For both methods, the trace plots indicated that all the chains mix
well and converge fast. The autocorrelation plots showed that the autocorre-
lations of these key parameters go to zero quickly. To play conservatively, we
summarized results based on the thinned samples by taking every 30th element
of each chain after discarding the first 3000 iterations as a burn-in.

Table 2 presents the summarized estimation results in terms of the point es-
timate (MLE or posterior mean), the estimated standard error (posterior stan-
dard deviations), and the 95% confidence (credible) interval for each regression
parameter from the three methods. As seen in Table 2, the three methods pro-
duce comparable point estimates and 95% confident (credible) intervals, which
lead to the same conclusions. Specifically, the DFMO treatment did not have
a significant effect on the recurrence of the new skin tumors, indicating that
the DFMO treatment was not effective in reducing the number of new cancers.
Also, the age and gender of patients did not seem to be significantly related to
the tumor recurrence. In contrast, the number of prior skin tumors had a signif-
icantly positive effect on the occurrence of new skin tumors. These conclusions
are consistent with prior studies in [2], [36], and [38].

We also compared the estimation of frailty distribution from the three meth-
ods. Under the gamma frailty Poisson model, the estimates of parameter for
gamma frailty from the Bayesian method and EM algorithm were 1.24 and
1.26, respectively. Figure 2 presents the estimated frailty density curves from
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Table 2

Analysis results of the skin cancer data analysis from the DPGM-PM and two competitive
methods: GFPM [30] and GFPM-EM [36]. Summarized results are the point estimates

(Point), the standard errors (SE) or posterior standard deviations (SD), and the
corresponding 95% credible/confidence intervals (CI95) for all the regression parameters

(β1 ∼ β4).

DPGM-PM GFPM GFPM-EM
Point SD CI95 Point SD CI95 Point SE CI95

β1 0.01 0.08 (-0.13, 0.16) -0.00 0.07 (-0.15, 0.14) -0.01 0.07 (-0.15, 0.13)
β2 0.17 0.15 (-0.14, 0.45) 0.17 0.15 (-0.13, 0.49) 0.24 0.15 (-0.05, 0.53)
β3 -0.10 0.15 (-0.38, 0.18) -0.10 0.15 (-0.39, 0.21) -0.04 0.15 (-0.32, 0.25)
β4 0.63 0.09 (0.47, 0.80) 0.63 0.09 (0.47, 0.81) 0.65 0.08 (0.49, 0.81)

Fig 2. Plot of the estimated frailty density curves from nonparametric frailty Poisson process
model (DPGM-PM) and gamma frailty Poisson model (GFPM) with v = 1.24.

the nonparametric frailty Poisson process model and gamma frailty Poisson
model. As seen in Figure 2, there is some noticeable difference between the es-
timated frailty densities although their overall shapes are close. These results
suggest that the true frailty distribution does not seriously deviate from gamma
if it is not a gamma distribution. Using the proposed approach does not need to
worry about this gamma assumption since the approach does not assume any
specific frailty distribution.

To illustrate the estimation of the within-subject correlation, we consider
Pearson’s correlation coefficient of new skin cancer recurrences over two con-
secutive two-year periods for patients in each gender group and each treatment
group with the mean age (60.9 years old) and baseline tumor count (4.3). Pear-
son’s correlation coefficients across the two gender groups and the two treat-
ment groups were calculated using the formula proposed in Section 2.2 in each
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Table 3

The posterior mean and 95% credible intervals for Pearson’s correlation coefficient between
the numbers of recurrences of new skin cancers in the first two years and the next two years

for each gender group within each treatment group from two models: DPGM-PM and
GFPM.

DPGM-PM GFPM
Treatment Placebo Treatment Placebo

Famale 0.366 0.388 0.380 0.403
(0.276, 0.471) (0.294, 0.501) (0.286, 0.485) (0.311, 0.505)

Male 0.406 0.430 0.421 0.444
(0.314, 0.505) (0.334 , 0.533 ) (0.328, 0.520) (0.353, 0.546)

iteration of the MCMC, and the posterior means and the corresponding 95%
credible intervals are reported in Table 3. For instance, the posterior mean of
Pearson’s correlation coefficient for females in placebo group is 0.388, with a
95% credible interval of (0.294, 0.501). In comparison, under the Gamma frailty
Poisson model, the corresponding Bayesian approach yields a posterior mean
of 0.403, with a 95% credible interval of (0.311, 0.505). Based on the results in
Table 3, we conclude that (1) the results suggest a moderate positive correla-
tion between new skin cancer recurrences in consecutive two-year periods; (2)
the within-subject correlation for males is slightly higher than that for females
with the same characteristics; (3) the within-subject correlation for a subject in
the Placebo group is higher than that for a subject with the same characteris-
tics in the treatment group; and (4) GFPM produces a higher within-subject
correlation than the proposed DPGM-PM.

6. Concluding remarks

In this paper, we propose a frailty non-homogeneous Poisson process model with
an unknown frailty distribution for analyzing panel count data. Specifically, a
Dirichlet process gamma mixture prior is assigned to the unknown frailty den-
sity. The adoption of monotone splines for the baseline mean function provides
a simple form with only a finite number of parameters but maintains great
modeling flexibility. An efficient Bayesian approach is then developed to carry
out the estimation based on a well-calibrated data augmentation. The proposed
exact block Gibbs sampler allows us to sample all the parameters and latent
variables without the need of truncating the Dirichlet process. Our simulation
results suggest that the proposed method works well in estimating both the
regression parameters and the baseline mean function when frailty follows a va-
riety of different distributions. In contrast, the corresponding Bayesian method
under the gamma frailty Poisson process model produces unsatisfactory estima-
tion results when the gamma frailty assumption is violated. For the purpose of
dissemination, the R code for the proposed approach has been made publicly
available on GitHub at https://github.com/luwstat/DPGM_PN_skintumor.

For identification purpose, the mean of the frailty distribution is required to
be one, and this is accomplished by restricting the shape and rate parameters in
the gamma kernel to be the same in our proposed model. Although this strategy

https://github.com/luwstat/DPGM_PN_skintumor
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is simple and sufficient to meet the mean one constraint for the unknown frailty
distribution, the theoretic properties of the proposed frailty distribution are
unclear and are worth studying for future research.

The derivation of within-subject correlation

As defined in section 2.2, Z1 and Z2 are the counts of recurrent events within
two non-overlapping intervals (t1, t2] and (t3, t4] from the same subject with
covariates x. Based on the proposed model in section 2.1,

Z1|φ ∼ Poisson
[
{μ0(t2) − μ0(t1)} exp(x′β)φ

]
,

Z2|φ ∼ Poisson
[
{μ0(t4) − μ0(t3)} exp(x′β)φ

]
.

Using the law of total covariance, we can get

cov(Z1, Z2) = E{cov(Z1, Z2|φ)} + cov{E(Z1|φ), E(Z2|φ)}
= cov

[
{μ0(t2) − μ0(t1)} exp(x′β)φ, {μ0(t4) − μ0(t3)} exp(x′β)φ

]
= {μ0(t2) − μ0(t1)}{μ0(t4) − μ0(t3)} exp(2x′β)var(φ).

Define Δμ12 = μ0(t2) − μ0(t1). Using the law of total variance yields

var(Z1) = E{var(Z1|φ)} + var{E(Z1|φ)}
= E{Δμ12 exp(x′β)φ} + var{Δμ12 exp(x′β)φ}
= Δμ12 exp(x′β)E(φ) + Δμ2

12 exp(2x′β)var(φ)
= Δμ12 exp(x′β) + Δμ2

12 exp(2x′β)var(φ)

and

var(Z2) = {μ0(t4) − μ0(t3)} exp(x′β) + {μ0(t4) − μ0(t3)}2 exp(2x′β)var(φ).

It is straightforward to show that

ρ(Z1, Z2) = cov(Z1, Z2)√
var(Z1)var(Z2)

= 1√
{1 + λ−1

1 var(φ)−1}{1 + λ−1
2 var(φ)−1}

,

where λ1 = {μ0(t2) − μ0(t1)} exp(x′β) and λ2 = {μ0(t4) − μ0(t3)} exp(x′β),
respectively. Additionally, the variance of the frailty with the proposed DPGM
prior (2) is obtained as follows,

var(φ) = E{var(φ|τ)} + var{E(φ|τ)} = E{τ−1} + var{1} =
∑
h=1

phθ
−1
h .
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