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Abstract: High-dimensional linear models have been widely studied, but
the developments in high-dimensional generalized linear models, or GLMs,
have been slower. In this paper, we propose an empirical or data-driven
prior leading to an empirical Bayes posterior distribution which can be
used for estimation of and inference on the coefficient vector in a high-
dimensional GLM, as well as for variable selection. We prove that our pro-
posed posterior concentrates around the true/sparse coefficient vector at
the optimal rate, provide conditions under which the posterior can achieve
variable selection consistency, and prove a Bernstein–von Mises theorem
that implies asymptotically valid uncertainty quantification. Computation
of the proposed empirical Bayes posterior is simple and efficient, and is
shown to perform well in simulations compared to existing Bayesian and
non-Bayesian methods in terms of estimation and variable selection.

MSC2020 subject classifications: Primary 62C12, 62E20, 62J12.
Keywords and phrases: Data-dependent prior, logistic regression, model
selection, Poisson log-linear model, posterior asymptotics.

Received May 2023.

1. Introduction

Generalized linear models, or GLMs, which include normal, logistic, and Poisson
regression as important special cases, are essential tools for data analysis in
all quantitative fields; see, e.g., McCullagh and Nelder (1989) for a thorough
introduction. In modern applications, it is common for the number of predictor
variables, p, to greatly exceed the sample size, n; this is the so-called “p �
n” problem. For example, logistic regression for presence/absence of a trait,
with gene expression levels as covariates is one such problem. By now there is
an enormous body of literature on the p � n problem in the case of normal
linear regression. Popular methods include the lasso and its variants (Hastie,
Tibshirani and Friedman, 2009). Bayesian efforts in the normal linear regression
problem can be split into two categories: those based on shrinkage priors such as
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the horseshoe (Bhadra et al., 2017, 2019a,b; Carvalho, Polson and Scott, 2010;
van der Pas, Szabó and van der Vaart, 2017) and those based on spike-and-slab
mixture priors (Belitser and Ghosal, 2020; Castillo, Schmidt-Hieber and van der
Vaart, 2015; Castillo and van der Vaart, 2012; George and McCullogh, 1993).
On the non-Bayesian side, a number of these methods have been extended from
the normal linear model to other GLMs, e.g., the R package glmnet (Friedman,
Hastie and Tibshirani, 2010) offers a comprehensive lasso-based toolkit, but the
Bayesian developments in this direction are still limited; the methods tend to
be tailored to logistic regression (Cao and Lee, 2020; Narisetty, Shen and He,
2019) and the theory focuses mostly on variable selection; the one exception,
Jeong and Ghosal (2021) gave results on posterior concentration rates in high-
dimensional GLMs but did not address model selection or implementations of
the Bayesian solutions they studied. The main goal of the present paper is
to offer a Bayesian (or at least Bayesian-like) solution to the high-dimensional
GLM problem, having both strong theoretical support and an efficient numerical
implementation that is not tailored to any one specific GLM.

A challenge for Bayesian inference in high-dimensional models is that the
priors for which posterior computations are relatively simple generally do not
produce good theoretical posterior concentration properties and, vice versa, the
priors with theoretical justification make posterior computations difficult and
expensive. For example, in normal linear regression, a computationally simple
prior is a mixture of conjugate mean-zero normal priors on the coefficients, each
component corresponding to a subset of active variables, but it has been shown
(Castillo and van der Vaart, 2012) that the thin tails of the normal can lead to
sub-optimal theoretical properties. A theoretically better choice of prior is one
with heavier, Laplace-type tails, but this added complexity translates to higher
computational cost. To overcome this obstacle, Martin, Mess and Walker (2017)
proposed the idea of using the data to properly center the prior. The motivation
is that the tails of the prior should not matter if the prior is strategically cen-
tered, so then the computationally simpler conjugate normal priors could still be
used. Centering the model-specific conjugate normal priors on the correspond-
ing least-squares estimators makes the approach empirical Bayes, in a certain
sense, and the previous authors show that the corresponding empirical Bayes
posterior has optimal asymptotic concentration properties and has strong em-
pirical performance compared to existing Bayesian and non-Bayesian methods.
In other words, the double-use of data—in the prior and in the likelihood—does
not hurt the method’s performance in any way; in fact, one could argue that
the double-use of data actually helps. Beyond the normal linear model (Martin,
Mess and Walker, 2017; Martin and Tang, 2020), there is strong general theory
in Martin and Walker (2019) and promising results in applications, including
Liu and Martin (2019); Liu, Martin and Shen (2023); Martin (2019).

The goal here is to develop the aforementioned empirical Bayes strategy for
the case of high-dimensional GLMs. In Section 2, we introduce the set up of the
GLM problem and review the empirical Bayes approach for linear regression.
In Section 3, we present our empirical Bayes GLM, including the particular
choice of data-driven prior, the corresponding empirical Bayes posterior, and
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our proposed computational strategy. The key challenge in the present GLM
case compared to previous efforts in the linear model setting is that the models
are sufficiently complicated that there is no conjugacy and, therefore, no pos-
terior computations can be done in closed form. Here the “informativeness” of
the data-driven prior allows for some simple and accurate approximations. In
Section 4, we offer theoretical support for our proposed solution. In particular,
we have two basic kinds of posterior concentration results: those for the GLM
coefficients, which are relevant to estimation, and those for the so-called configu-
ration, or active set, which are relevant to variable selection. In the former case,
we give sufficient conditions for the posterior to concentrate around the true
(sparse) coefficient vector at rates equivalent to those established in, e.g., Jeong
and Ghosal (2021), which agree with the minimiax optimal rates in the linear
model setting. In the latter case, we give sufficient conditions (e.g., on the size of
the smallest non-zero coefficient), comparable to those in Narisetty, Shen and He
(2019), that ensure our marginal posterior for the configuration will concentrate
on a set that contains exactly the true set of active variables. While the results
we obtain are similar to those found elsewhere in the literature, it is important to
emphasize that, to our knowledge, there is no single Bayesian method for which
both of these kinds of posterior concentration properties have been established.
And, again, the lack of conjugacy and closed-form expressions for (parts of) the
posterior distribution creates some challenges compared to the linear model case,
so some relatively new proof techniques—in-probability versus in-expectation
bounds—are needed compared to Martin, Mess and Walker (2017) and Martin
and Walker (2019). Beyond posterior concentration, we offer a Bernstein–von
Mises theorem, comparable to that for linear models in Castillo, Schmidt-Hieber
and van der Vaart (2015), which establishes a large-sample Gaussian approx-
imation of the posterior and, among other things, implies that the marginal
posterior uncertainty quantification (e.g., credible intervals) are asymptotically
valid. Section 5 investigates the numerical performance of the proposed method
in terms of estimation and variable selection in logistic and Poisson regression
compared to existing methods. Finally, some concluding remarks are given in
Section 6; proofs are presented in the Appendix.

2. Setup and background

2.1. Problem setup

Suppose y1, . . . , yn are independent, where yi has density/mass function

fηi(yi) ∝ exp{yiηi − b(ηi)}, i = 1, . . . , n,

indexed by the real-valued natural parameters η1, . . . , ηn, where b is a known,
strictly convex function, i.e., b̈(η) > 0 for all η. The interpretation of b is that the
expected value and variance of yi are ḃ(ηi) and b̈(ηi), respectively. If the response
yi has an associated vector of predictor variables xi ∈ R

p, for i = 1, . . . , n, then
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introduce a coefficient vector θ ∈ R
p into the model via the relationship

(h ◦ ḃ)(ηi) = x�
i θ, i = 1, . . . , n,

where h is a given bijection called the link function. The “canonical” link is
h = ḃ−1 and, in this case, the above simplifies to ηi = x�

i θ. But there are cases
when non-canonical link functions h are used and our theory here allows for
this. For example, in the Bernoulli data case, our results apply to both logistic
regression (canonical link) and probit regression (non-canonical link).

Write fθ(yi | xi) for the density/mass function determined by the parameter
vector θ. Then the likelihood and log-likelihood functions are, respectively,

Ln(θ) =
n∏

i=1
fθ(yi | xi) and �n(θ) = logLn(θ).

To ease the notation, set ξ(η) = (h ◦ ḃ)(η); if h is the canonical link, then ξ is
the identity mapping. Then the maximum likelihood estimator (MLE) θ̂ is the
solution to the equation

�̇n(θ̂) = 0 ⇐⇒ {y − ḃ(Xθ̂)}�diag{ξ̇(Xθ)}X = 0, (1)

where diag(·) denotes the diagonal matrix determined by its vector argument,
and ξ̇(Xθ) is the application of ξ̇ to each entry in the vector Xθ; if h is the
canonical link, then ξ̇ ≡ 1. The negative second derivative of the log-likelihood
function is a matrix

Jn(θ) = −�̈n(θ) = X�W (θ)X,

where W (θ) is a diagonal matrix with entries

Wii(θ) = w(x�
i θ) = u̇(x�

i θ)ξ̇(x�
i θ), i = 1, . . . , n,

where u = h−1 is the inverse link function. When h is the canonical link,
we get Wii(θ) = b̈(x�

i θ). The observed Fisher information matrix is Jn(θ̂) =
X�W (θ̂)X, the negative Hessian of the log-likelihood function evaluated at θ̂,
which is positive definite. For example, in binary regression with the canonical
logit link, the W matrix has diagonal entries

Wii(θ) = exp(x�
i θ)

{1 + exp(x�
i θ)}2 , i = 1, . . . , n,

which is bounded as a function of θ. Similarly, in Poisson regression with the
canonical log link, the W matrix has diagonal entries

Wii(θ) = exp(x�
i θ), i = 1, . . . , n.

Our interest is in high-dimensional cases where the number of predictor vari-
ables p exceeds the sample size n. In such cases, the direct model fitting as
described above cannot be done; intuitively, the data is not informative enough
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to reliably learn the very high-dimensional parameter θ. To side-step this ob-
stacle, we shall assume, as is common, that the GLM is sparse in the sense that
most of the θ coefficients are 0 (or at least negligible). Then there is an “active
set” of the predictor variables corresponding to the non-zero coefficient values,
but this is unknown because θ itself is unknown. To avoid overusing the term
“model”, here we will call the unknown active set of variables a configuration
and denote it generically by S. Since the configuration is unknown, it makes
sense to decompose the unknown θ as (S, θS), where S is a set of indices that
corresponds to the “active” coefficients in θ and θS is the vector of coefficients
that correspond to a configuration S. Then, the above notation can be adjusted
in a natural way. That is, the likelihood and log-likelihood functions can be
written as Ln(S, θS) and �n(S, θS), respectively, the configuration-specific MLE
is θ̂S , the observed Fisher information is Jn(S, θ̂S), etc. Throughout we will
write |S| for the cardinality of a configuration S, θ� for the true coefficients,
and S� for the true configuration; in some cases, we will write s = |S| for the
configuration size and, naturally, s� = |S�| for the true sparsity level. Also, with
a slight abuse of this notation, we will occasionally write S(θ) = {j : θj 	= 0} to
denote the configuration corresponding to a given coefficient vector.

All of the results in Narisetty, Shen and He (2019) and in Cao and Lee
(2020) are established by focusing on configurations S that are supersets of the
true S�. Since our asymptotic analysis goes beyond those in the aforementioned
references, we will also need to consider configurations that are not supersets of
S�, so some generalizations are in order. The key observation is that, if S 	⊃ S�,
then θ̂S is not estimating θ�S . Instead, θ̂S is estimating the minimizer of the
Kullback–Leibler divergence which, in our case, is a solution to the equation

{ḃ(Xθ�) − ḃ(XSθS)}�diag{ξ̇(XSθS)}XS = 0.

Let θ†S denote this solution. Note that, first, this notation is slightly misleading,
since there is no “full vector” θ† of which θ†S is the S-specific sub-vector; instead,
there is a different |S|-vector θ†S for each S. Second, if S is a superset of S�,
then θ†S = θ�S ; this explains why Narisetty, Shen and He (2019) do not need θ†S
in their superset-only analysis. Lemmas 1–2 in Appendix A.1 below generalize
Lemmas A1 and A3 in Narisetty, Shen and He (2019) to cover the case where
θ̂S is compared to θ†S rather than θ�S .

2.2. Empirical priors

A very general construction of empirical or data-driven priors and the corre-
sponding posterior concentration rate theory is given in Martin and Walker
(2019). There are elements of their general formulation used here in this appli-
cation, but it is not necessary to review these for our purposes; see Appendix A.3
for some of the relevant technical details. For this reason, we focus our review
here on the high-dimensional linear regression case investigated in Martin, Mess
and Walker (2017) and in Martin and Tang (2020).
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The normal linear model assumes that yi ∼ N(x�
i θ, σ

2), independent, for
i = 1, . . . , n; for the discussion here, we take σ to be known, but the case where
σ is unknown and assigned a prior has been considered in Martin and Tang
(2020) and Fang and Ghosh (2023). As above, the idea is to reinterpret the
high-dimensional coefficient vector θ as the pair (S, θS), the configuration and
configuration-specific parameters. Then the natural Bayesian approach to this
would be to specify the prior hierarchically: first introduce a marginal prior for
S, then a conditional prior for θS , given S.

1. For the marginal prior for S, the previous authors suggest the sparsity-
encouraging prior mass function π(S) ∝

(
p
|S|

)−1
fn(|S|), i.e., a rapidly de-

caying marginal prior mass function fn for the configuration size |S| times
a conditional uniform prior for S of a given size |S|. Here we consider the
complexity prior that takes

fn(s) ∝ p−βs, s = 1, 2, . . . , smax,

where smax is a specified maximum complexity, which could be just the
trivial choice p or something smaller, such as smax = rank(X). The hyper-
parameter β > 0 plays a crucial role and is discussed further below.

2. The conditional prior for θS , given S, is where the data enters into the
prior. To avoid the sub-optimal behavior of the thin-tailed Gaussian prior
while simultaneously retaining the computational convenience of the con-
jugate Gaussian form, Martin, Mess and Walker (2017) suggested

(θS | S) ∼ N|S|
(
θ̂S , γ(X�

S XS)−1), S ⊂ {1, 2, . . . , p},

where θ̂S is the S-specific least squares estimator—which makes the prior
data-dependent—and γ > 0 is a tuning parameter to be specified.

This empirical prior is combined with the data-driven likelihood basically
according to Bayes’s theorem, resulting in a (data-dependent) probability dis-
tribution Πn that can be used for making inference on θ. In particular, the
corresponding marginal posterior for the configuration S = S(θ) can be used
for model selection purposes. Computation is simple and fast, via an efficient
Metropolis–Hastings-style Markov chain Monte Carlo procedure, thanks to the
conjugacy of the data-centered empirical prior. An associated R package ebreg
(Tang and Martin, 2021) is also available.

The data-driven prior distribution, among other things, implies that this is
not a genuinely “Bayesian” solution, so we cannot expect that it automati-
cally inherits the good properties that Bayesian solutions typically enjoy. But
Martin, Mess and Walker (2017) demonstrate theoretically that the posterior
Πn achieves the adaptive, minimax optimal asymptotic concentration rate at
the true/sparse θ�. In other words, there is no other posterior distribution—
genuinely Bayesian or otherwise—that can concentrate around the true θ� any
faster. They also established that, under suitable conditions, the aforemen-
tioned marginal posterior distribution for the configuration concentrates its mass
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asymptotically on the true configuration, thus providing consistent model selec-
tion. We establish similar properties here in this paper, but for the case of
high-dimensional GLMs, so more details about the construction and the results
will be given below.

3. Empirical Bayes for high-dimensional GLMs

3.1. Prior distribution

As before, write the structured, high-dimensional coefficient vector θ as (S, θS),
where the configuration S is a subset of {1, 2, . . . , p} and θS is a configuration-
specific parameter that respects the structure determined by S. Based on this
decomposition, we follow Martin, Mess and Walker (2017) and proceed with
specification of the (empirical) prior Πn for θ hierarchically. First, the marginal
prior for S has mass function

πn(S) ∝
(

p
|S|

)−1
p−β|S|, S ⊂ {1, 2, . . . , p} such that |S| ≤ sn, (2)

where β > 0 is a constant to be specified and sn is a deterministic, diverging
sequence. This is the same as the marginal prior for S in Section 2.2. Second,
the data-driven conditional prior for θS , given S, is

(θS | S) ∼ Πn,S := N|S|
(
θ̂S , γJn(S, θ̂S)−1), (3)

where γ > 0 is a constant to be specified. Above, the prior center is θ̂S , the data-
driven maximum likelihood estimator for the given S and, similarly, Jn(S, θ̂S)
is the corresponding data-driven observed Fisher information matrix. So this
empirical conditional prior has a similar form as that in Section 2.2 for the
linear model case, but the specific pieces that go into it are just different here
in the GLM setting.

As indicated above, the conditional prior for θS , given S, is data-driven in the
sense that both the prior mean vector and covariance matrix depend on data
y through θ̂S . Also, recall that the diagonal entries of the information matrix
Jn(S, θ̂S) are growing like O(n), so the prior covariance matrix is rather small.
This is counter-intuitive when the prior center is a fixed constant, but makes
perfect sense when the prior mean is data-driven. That is, we “believe in” the
data-driven prior center so the prior ought to be relatively tightly concentrated
there; plus, if the prior covariance matrix were large, then there would be no
point in/benefit to the data-driven prior centering.

To summarize, the sparsity-encouraging empirical prior θ ∼ Πn is given by

Πn(dθ) =
∑
S

πn(S)N|S|(dθS | θ̂S , γJn(S, θ̂S)−1) ⊗ δ0Sc (dθSc), (4)

where the sum is over all configurations S supported by the prior mass function
πn and δ0Sc (dθSc) denotes a Dirac point mass differential term at the origin
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for the component θSc . The empirical prior depends on the hyperparameters
(β, γ, sn) which will be discussed in more detail below. As is common, the theory
offers some guidance on how to choose these hyperparameters, but not enough
to fully determine their values.

3.2. Posterior distribution

If Ln denotes the GLM’s likelihood, and Πn the empirical prior in (4) with the
mixture form, then the proposed posterior distribution for θ is defined as

Πn(dθ) = Ln(θ)α Πn(dθ)∫
Rp Ln(ϑ)α Πn(dϑ)

, θ ∈ R
p, (5)

where α ∈ (0, 1) is a fixed constant that can be chosen arbitrarily close to 1.
Our proposed use of a power-likelihood in the Bayesian updating might make

some readers uncomfortable, so some remarks on this are in order. First, with
our use of a data-driven prior, the lines between the “likelihood part” and “prior
part” in Bayes’s formula have been blurred. So, one can easily adjust the above
formula so that it is the ordinary likelihood Ln combined with a slightly modified
empirical prior Π̃n(dθ) ∝ Ln(θ)−(1−α) Πn(dθ), and get exactly the same poste-
rior. In our opinion, the version in (5) is preferred because it is more transparent.
Second, the original motivation for choosing α < 1 (e.g., Martin and Walker,
2014) was to prevent the posterior from tracking the data too closely as a result
of its double-use of the data; this is discussed extensively in, e.g., Walker and
Hjort (2001) and Walker, Lijoi and Prünster (2005). Relatively recent evidence
suggests that a choice of α < 1 is not necessary for good posterior concentration
properties (e.g., Belitser and Ghosal, 2020; Belitser and Nurushev). But what is
needed to accommodate α = 1 adds significant technical complications without
any benefits in terms of faster rates, etc. Indeed, in the case of GLMs, Jeong and
Ghosal (2021) pointed out that there are non-trivial differences in the strength
of their theoretical results for α = 1 versus α < 1; in particular, much stronger
conditions are required in some cases to get the same concentration rates using
α = 1 compared to α < 1. Finally, there may even be some practical benefits to
the use of power-likelihoods, e.g., in terms of robustness (e.g., Miller and Dun-
son, 2019; Syring and Martin, 2018, 2023), “safety” (e.g., Grünwald and Mehta,
2020; Grünwald and van Ommen, 2017), and/or uncertainty quantification (e.g.,
Martin and Ning, 2020; Martin and Tang, 2020).

Back to the task at hand, thanks to the parametrization θ = (S, θS) and the
hierarchical prior, a marginal posterior distribution for S is available, i.e.,

πn(S) =
πn(S)

∫
R|S| Ln(S, θS)α N|S|(θS | θ̂S , γJn(S, θ̂S)−1) dθS∑

R πn(R)
∫
R|R| Ln(R, θR)α N|R|(θR | θ̂R, γJn(R, θ̂R)−1) dθR

∝ πn(S)
∫
R|S|

Ln(S, θS)α N|S|(θS | θ̂S , γJn(S, θ̂S)−1) dθS ,



3220 Y. Tang and R. Martin

where x �→ N(x | μ, σ2) denotes a N(μ, σ2) density. Although there is generally
no closed-form expression for the last integral above, a formal Laplace approxi-
mation gives a nice, simple expression:

πn(S) ∝ π(S) (1 + αγ)−|S|/2 Ln(S, θ̂S)α, all large n. (6)

Cao and Lee (2020) also employ a Laplace approximation, though their expres-
sion is different because their prior is different. Of course, it is too much to expect
that this approximation be accurate simultaneously across all configurations,
but we do not need such a strong result. It is enough that this approximation
be accurate over a class of relatively small configurations (e.g., Barber, Drton
and Tan, 2016; Shun and McCullagh, 1995). This class is described in Section 4
below, and a precise result on the Laplace approximation’s accuracy is given in
Lemma 4 in Appendix A.2. Details on posterior computation are given next.

3.3. Computation

If variable selection is the goal, then focus is on the marginal posterior for
S. We propose to use the Laplace approximation of πn(S) in (6) in a simple
Metropolis–Hastings Markov chain Monte Carlo scheme. Note that this does
not require that we can evaluate the normalizing constant implicit in (6).

Given a proposal function q(S′ | S), one iteration of the Metropolis–Hastings
algorithm is as follows:

1. Given a current state S, sample S′ ∼ q(· | S).
2. Go to the new state S′ with probability

min
{

1, π
n(S)

πn(S′)
q(S′ | S)
q(S | S′)

}
,

where πn(S) is defined in (6). Otherwise, stay in the current state S.

We use a proposal distribution that is symmetric, one that samples S′ uniformly
from those that differ from S in exactly one position. This simplifies our compu-
tations as the q-ratio above is simply 1. This process is repeated M times, which
yields a sample of configurations S(1), . . . , S(M) from our posterior distribution
πn(S); this is after a burn-in period that excludes the first 20% of the samples
generated. This is relatively efficient, since the likelihood-based ingredients—the
MLE θ̂S , the Fisher information Jn(S, θ̂S), etc.—only need to be evaluated for
the configurations S that are selected in the MCMC.

For variable selection, a relevant quantity is the inclusion probability asso-
ciated with each candidate variable j = 1, . . . , p that could be included. The
simplest way to express this is as the posterior probability that coefficient θj
attached to variable Xj is non-zero. With a slight abuse of notation, we will
refer to the inclusion probability for variable j as πn(j), which is

πn(j) := πn({S : S � j}) ≈ 1
M

M∑
m=1

1{S(m) � j}, (7)
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where the right-hand side is the Monte Carlo approximation, the proportion of
those configurations S(m)’s drawn that include variable j. From here, a natu-
ral variable selection procedure would include all those variables for which the
inclusion probability exceeds a specified threshold; see Section 5 below.

If there is also interest in estimation of/inference on the coefficients θ, then
one can easily augment the above Monte Carlo scheme by inserting a rejection
sampling step where, given S, the corresponding coefficient θS is drawn from the
corresponding conditional posterior. Thanks to the empirical prior structure, a
simpler alternative would be to average the S-specific MLEs with respect to the
the posterior distribution πn of S, which is akin to the exponential aggregation
in, e.g., Rigollet and Tsybakov (2012). Similarly, if the goal is prediction of a
new response ỹ associated with a new set of covariate values X̃, then a third
step is added where in a draw is made from the posited model given (S, θS , X̃).

When S is the sole focus, alternatively, a shotgun stochastic search (SSS)
algorithm can be employed, as in Algorithm 1 of Cao and Lee (2020). In SSS,
models that are neighbors of a selected model are evaluated, and then the next
chosen model is sampled from these neighbors proportional to their posterior
probabilities, repeating the process. This is more efficient than the aforemen-
tioned Monte Carlo strategy in effectively exploring the configuration space.
In practice, however, we found that our method with M = 104 posterior sam-
ples (with a 20% burn-in), computes significantly faster; this is likely due to
SSS having to compute posterior probabilities for all the neighboring mod-
els.

4. Asymptotic properties

4.1. Setup and conditions

Narisetty, Shen and He (2019) and Cao and Lee (2020) investigate certain
asymptotic properties of their proposed posterior for θ, but they focus exclu-
sively on (a) logistic regression and (b) results concerning the marginal poste-
rior πn for the configuration S. Here we extend the analysis beyond the logistic
regression case to arbitrary GLMs as described above, with arbitrary link func-
tions, and establish conditions under which our proposed posterior distribution
Πn for θ concentrates around the true θ� at (nearly) the optimal rate (e.g.,
Rigollet, 2012), adaptive to the unknown sparsity level |S(θ�)|.

Below are two conditions crucial to the developments here and in Narisetty,
Shen and He (2019) and Cao and Lee (2020). These can be roughly classified as
conditions on the dimension of the problem and on the design matrix X. The
third condition concerns the hyperparameters in our empirical prior.
Condition 1. p = pn → ∞ and log p = o(n) as n → ∞.
Condition 2. There exists K > 0, λ > 0, τ ∈ [0, 1], and τ ′ ∈ (τ, 1] such that

(a) the entries in X are bounded in absolute value by K
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(b) if λmin and λmax are operators that return the smallest and largest eigen-
values of their arguments, respectively, then

λ ≤ min
S:|S|≤|S�|+sn

λmin{n−1Jn(S, θ†S)} ≤ Λ|S�|+sn ≤ K2(n/ log p)τ , (8)

where
Λk = max

S:|S|≤k
λmax{n−1Jn(S, θ†S)}, k = 1, 2, . . . ,

and
sn = O

(
(n/ log p)(1−τ ′)/2), n → ∞. (9)

Condition 3. The power α > 0 in (5) is strictly less than 1. Also:

(a) the prior hyperparameter γ > 0 in (3) satisfies

γ = O(Λ2
2sn), n → ∞, (10)

where Λs and sn are as defined above, and
(b) the prior hyperparameter β > 0 in (2) is such that pβ−κ > sn, where κ > 1

is the constant specified in Lemma 3 and sn is as in (9).

Conditions 1 and 2(a) are standard in the high-dimensional inference litera-
ture. The lower bound in Condition 2(b) is a type of restricted eigenvalue condi-
tion, similar to those assumed in Narisetty, Shen and He (2019) and Cao and Lee
(2020). The upper bound weakens and generalizes the “bounded eigenvalue con-
dition” in, e.g., Bondell and Reich (2012). Since Jn(S, θ†S) = X�

S W (S, θ†S)XS ,
it is clear that if n−1X�

S XS has bounded eigenvalues, and if the entries of W
are uniformly bounded, as would be the case in Examples 5–8 in Jeong and
Ghosal (2021), including logistic regression, then the upper bound in (8) holds
with τ = 0. Such cases correspond to the weakest constraint (9) on the support
for S, since we can take τ ′ = 0 too. More generally, if n−1X�

S XS has bounded
eigenvalues, then Λ|S| is bounded by the maximum entry on the diagonal of
W (S, θ†S). Since the diagonal entries are typically increasing functions of their
arguments, the bound is w(‖XSθ

†
S‖∞). Since the focus is on large configurations,

and since ‖XSθ
†
S‖∞ = ‖XSθ

�
S‖∞ = ‖Xθ�‖∞ for S ⊃ S�, the upper bound in (8)

is only slightly stronger than assuming “w(‖Xθ�‖∞) � (n/ log p)τ”. The Poisson
log-linear model is one of the most challenging examples, where h = ḃ−1 and ξ
is the identity, so w(η) = eη. For our Condition 2 to be met in the Poisson case,
we would roughly need θ� to satisfy

‖Xθ�‖∞ � log{(n/ log p)τ} = O(log n).

When p is polynomial in n, this restriction is equivalent to that in Remark 2 of
Jeong and Ghosal (2021); when log p is a small power of n, the above restriction
is stronger than theirs. But our sometimes-stronger condition here allows for a
more extensive asymptotic analysis, i.e., results on the marginal posterior for S.

For Condition 3(a), the constant τ in (8) is determined by X, so, theoretically,
it is not impossible to determine τ and to set γ in (10) accordingly. For example,
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if X is such that s �→ Λs is uniformly bounded, then (8) holds with τ = 0 and
then γ can be taken as a constant too. When τ > 0, the corresponding γ is a
diverging sequence in n. Recall that the primary part of the (θS | S) covariance
matrix is Jn(S, θ̂S)−1, which itself is O(n−1). So, multiplying this by γ → ∞ still
allows the prior mass to be concentrating around the data-driven center θ̂S , just
slower. Finally, as argued in Narisetty, Shen and He (2019), the constant κ can
be chosen arbitrarily close to 1, so “β > κ,” which is implied by Condition 3(b),
is just a little stronger than “β > 1.” Indeed, since sn is growing strictly slower
than n1/2, it suffices to take β − κ greater than 1

2 (logn)/(log p) ≤ 1
2 .

Below we present two different types of results. The first type concerns gen-
erally how the posterior distribution Πn for the coefficient vector θ concentrates
its mass around the sparse true value θ�. The second type concerns how the
marginal posterior mass function πn for S concentrates around its true value S�,
where S� = S(θ�) is the configuration corresponding to the true θ�. The proofs,
presented in Appendix B, follow those in Martin, Mess and Walker (2017) and
Martin and Walker (2014) relatively closely. The key difference is that, here, we
cannot get closed-form expressions for the posterior, so suitable in-expectation
bounds as in the above references are out of reach. The proofs here are based
on in-probability bounds, which are more flexible, so our general strategies here
might be applicable in other situations too.

Although the Gaussian linear model is a GLM, it is possible to derive equiv-
alent results for this model directly and under weaker conditions (Martin, Mess
and Walker, 2017). So the machinery presented below is intended only for the
genuinely more complex GLM setting.

4.2. Posterior concentration results

As a first result, we consider concentration of the full posterior for θ around the
true, sparse coefficient vector θ� under a statistically universal metric, namely,
the Hellinger distance between joint distributions of y determined by the true
θ� and by a generic θ. More specifically, if pθ(y | x) denotes the distribution
of (scalar) y, given covariate vector x and coefficient vector θ, then define the
(expected) Hellinger distance Hn as

Hn(θ�, θ) =
[ 1
n

n∑
i=1

∫
{pθ(yi | xi)1/2 − pθ�(yi | xi)1/2}2 dyi

]1/2
. (11)

This is just the expected squared Hellinger distance between marginals, where
expectation is with respect to the empirical distribution of the rows xi in the
matrix X. Note that Hn depends on X.

Theorem 1. Under Conditions 1–3, the posterior Πn defined above satisfies

sup
θ�:|S(θ�)|≤sn

Eθ�Πn({θ : Hn(θ�, θ) > Mεn(θ�)}) → 0, n → ∞, (12)

where ε2
n(θ�) = n−1s� log p, with s� = |S(θ�)| and M > 0 a large constant.
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This is the same rate established in Theorem 2 of Jeong and Ghosal (2021) for
a class of Bayesian posterior distributions based on priors that do not depend on
data. This is also effectively the minimax optimal rate, i.e., {n−1s� log(p/s�)}1/2,
in sparse, high-dimensional linear regression that is attained by Abramovich and
Grinshtein (2010), Abramovich and Grinshtein (2016), Arias-Castro and Lounici
(2014), Martin, Mess and Walker (2017), and Belitser and Ghosal (2020). The
difference between the rate in Theorem 1 and the minimax optimal rate is
negligible since p � s� and, consequently, log(p/s�) ∼ log p. It is also important
to recognize that the rate achieved is optimal corresponding to the unknown,
true sparsity level |S(θ�)|. Since the method itself has no knowledge of this
sparsity level, we say that the minimax optimal rate is achieved adaptively.

Admittedly, the Hellinger rate is not so easily interpretable, but rates under
different metrics are possible. For a more interpretable result (modulo more
complicated conditions), we can appeal to the arguments given in the proof of
Theorem 3 in Jeong and Ghosal (2021). Their proof shows that a Hellinger rate
like in Theorem 1 above and an effective-dimension bound like in Theorem 2
below together imply a rate in terms of other distances, including the �2-distance
on θ. Their argument is not for a specific kind of posterior distribution, so
what works for them in their case works equally well for us here. The following
corollary makes our claims precise.

Corollary 1. Under Conditions 1–3, the posterior Πn defined above satisfies

sup
θ�:|S(θ�)|≤sn

Eθ�Πn
({

θ : ‖θ − θ�‖2
2 >

Mε2
n(θ�)

φ2(K|S(θ�)|,W (θ�))

})
→ 0, n → ∞,

(13)
where ε2

n(θ�) = n−1|S(θ�)| log p, M > 0 and K > 0 are constants, and

φ(s,W ) = inf
θ:1≤|S(θ)|≤s

‖W 1/2Xθ‖2

n1/2‖θ‖2
,

denotes the smallest s-sparse singular value of X�WX.

The appearance of an additional term—the sparse singular value—depending
on X is expected since the response y depends directly on Xθ, not on θ itself.
This is easy to see in the linear model case where the Hellinger distance is
proportional to the �2-norm between fitted values. So to strip the X away and
investigate the posterior concentration directly in terms of θ requires some con-
ditions on X, which are baked into the effect the φ term has on the rate. For
example, if the φ term in (13) is bounded away from 0, which amounts to a
condition on X, then that term can be absorbed into the constant M and the
�2-rate agrees with the Hellinger rate above. In any case, the result here is the
same as that proved in Jeong and Ghosal (2021), so the reader interested in
details about φ can refer to their discussion.

That the posterior for θ concentrates at the (near) optimal rate for sparse θ�

true vector suggests that the posterior for S is concentrating on the true S� =
S(θ�), but this is not a consequence of Theorem 1. The asymptotic behavior of
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the S-posterior must be investigated directly. The first such result concerns the
“effective dimension” of the posterior distribution for θ is not much larger than
that of θ�. In other words, πn concentrates on S with |S| that are smaller than
a multiple of |S�|, where S� = S(θ�).

Theorem 2. Under Conditions 1–3, for any C > (1 − ακ/β)−1 > 1,
∑

S:|S|>C|S�|
πn(S) → 0, in Pθ�-probability,

for all θ� such that |S�| ≤ sn.

That the constant C above is greater than 1 follows from the fact that β > κ
and α < 1. Again, the take-away message here is that the posterior distribution
for θ is concentrating on a space that is genuinely low-dimensional and, in
particular, is of dimension not much greater than |S�|. Theorem 2 also suggests
that πn is concentrating on S�, but this is not a direct consequence. Towards
this, we have one more result which states that πn tends to not over-fit, i.e., it
tends to avoid supersets of S�.

Theorem 3. Under Conditions 1–3,∑
S:S⊃S(θ�)

πn(S) → 0 in Pθ�-probability,

for all θ� such that |S(θ�)| ≤ sn.

Virtually the same argument used to prove Theorem 3 can be used to conclude
that πn will not concentrate on any S that contains an unimportant variable. To
ensure that πn does not concentrate on models that exclude at least one impor-
tant variable, it is necessary to assume that the non-zero coefficients attached to
the important variables are not too small. The intuition is that, if an important
variable is “just barely” important, the data may not be informative enough to
detect it given the relatively strong penalty on model complexity. The following
result imposes a version of the familiar beta-min condition (Bühlmann, 2011;
Bühlmann and van de Geer, 2011) to ensure that the signals are large enough
to be detected; see (14).

Theorem 4. Under Conditions 1–3, πn{S(θ�)} → 1 with Pθ�-probability → 1
for all θ� such that c|S(θ)�| ≤ sn and

min
j∈S(θ�)

θ�2j ≥ cn−1|S(θ�)|Λc|S(θ�)| log p, (14)

for some constant c > 1.

The condition (14) is exactly the same as in Narisetty, Shen and He (2019)
and Cao and Lee (2020). It is also equivalent to the beta-min condition for lasso
variable selection consistency when w = 0, and is slightly stronger when w > 0.
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4.3. Posterior distribution approximation

Aside from knowing that the posterior distribution for θ concentrates around
the true θ� sufficiently fast, there is interest in knowing the approximate form
or shape of that limiting posterior. In particular, this helps to demonstrate that
uncertainty quantification about θ (e.g., credible sets) derived from the posterior
distribution is at least asymptotically valid in a frequentist sense. Along these
lines, under the same conditions as in the previous theorems, Theorem 5 below
establishes a Bernstein–von Mises result comparable to that in Corollary 2 of
Castillo, Schmidt-Hieber and van der Vaart (2015) for a high-dimensional linear
regression model. To our knowledge, this is the first posterior normality result
in the literature on sparse, high-dimensional GLMs.

Towards this, define the Gaussian approximation

Ψn(dθ) = N|S�|
(
dθS� | θ̂S� , � Jn(S�, θ̂S�)−1)⊗ δ0S�c (dθS�c), (15)

where the variance multiplier � depends only on the inputs (α, γ) as follows:

� = γ(1 + αγ)−1.

This is effectively the Gaussian posterior approximation that the data analyst
would use if he/she knew the configuration S� and, in particular, the marginal
posterior credible intervals for θj , with j ∈ S�, would virtually agree with the
classical likelihood-based confidence intervals returned from, say, R’s glm func-
tion for large n; more on these points below. Theorem 5 below states that
our proposed posterior distribution Πn asymptotically resembles the near-oracle
Gaussian approximation (15) in the total variation sense.

Theorem 5. Under Conditions 1–3, for Ψn as in (15),

Eθ� dtv

(
Πn,Ψn

)
→ 0,

for any θ� such that (14) holds and

n−1|S(θ�)|3Λ|S(θ�)| log p → 0. (16)

Recall that Condition 3 requires that, in most cases, γ = γn is a diverging
sequence, i.e., γ → ∞ as n → ∞. In that case, � = �n also depends on n and
satisfies � → α−1 as n → ∞. Even if γ is allowed to be a constant, we can choose
that constant to make � as close to α−1 as we like. Since α ∈ (0, 1) is a fixed
constant that can be (and is) taken arbitrarily close to 1, the limiting multiplier
α−1 need only be slightly greater than 1. So, Ψn in (15) is effectively the oracle
Gaussian approximation and, likewise, our posterior uncertainty quantification
is asymptotically both valid and effectively efficient.

Condition (16) amounts to assuming that the true θ� is a bit lower complex-
ity compared to what was needed for posterior concentration rates, etc. This
restriction is not too surprising, since the result is closely tied to the accuracy
of Laplace’s approximation, which is only expected in relatively low-complexity
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cases. Indeed, Shun and McCullagh (1995) show that Laplace approximations
are expected to be accurate for integrals over spaces of dimension o(n1/3), which
is precisely the range of |S(θ�)| that would satisfy (16); see, also, Barber, Drton
and Tan (2016). The restriction (16) can also be compared to the corresponding
result in Castillo, Schmidt-Hieber and van der Vaart (2015). For one thing, in the
case of a Gaussian likelihood, there is already a strong, built-in nudge towards
a Gaussian posterior, so it makes sense that these authors could prove a result
comparable to that in Theorem 5 under weaker conditions. They also adopt a
“small lambda regime”—referring to the rate parameter in their Laplace prior for
non-zero coefficients—which offers additional flexibility to handle more complex
configurations. All this being said, we make no claims that (16) is necessary for
our proposed posterior to enjoy a Bernstein–von Mises theorem—improvements
on some of the bounds used in our analysis may be available.

5. Numerical results

5.1. Methods and metrics

Our focus here is on variable selection and estimation performance of our pro-
posed empirical Bayes method compared to existing methods in two different
GLM contexts. There is a plethora of literature (e.g., Bhadra et al., 2019a; Cao
and Lee, 2020; Narisetty, Shen and He, 2019; Wei and Ghosal, 2020) that focuses
on high-dimensional logistic regression, but a dearth of literature on Bayesian
methods—with numerical implementations—that can handle GLMs besides lo-
gistic regression. For this reason, we showcase our method’s performance in both
logistic regression and Poisson regression (with canonical log link).

We start with some details about the competitor methods we consider, in-
cluding lasso, adaptive lasso, SCAD, MCP, horseshoe, and skinnyGibbs. Most
of these methods were implemented via R packages: lasso and adaptive lasso
with glmnet and SCAD and MCP through ncvreg. No R package is available
for the horseshoe in GLMs, so we relied instead on STAN. For logistic regres-
sion, the horseshoe method is coded using the rstan package, and hyperpa-
rameters were chosen based on recommendation of Piironen and Vehtari (2017)
and Bhadra et al. (2019a). Specifically, we use the regularized horseshoe prior
with c2 ∼ InvGamma(2, 8), and τ determined based on the number of effective
nonzero coefficients. The MCMC for the horseshoe was run with two chains and
5,000 posterior draws for each chain. Posterior samples were obtained for the
coefficient vector θ, and for the task of variable selection, we follow the default
procedure that deems a variable as “active” if its 95% posterior credible interval
does not include zero. For Poisson regression, there was not as much guidance
in the literature on implementation; we used the rstanarm package (Goodrich
et al., 2022), but these results are not reported here as the horseshoe was com-
putationally restrictive in terms of runtime when running simulations with a
large number of replications. SkinnyGibbs was implemented with R package
skinnybasad, directly obtained from the authors. Since this method was devel-
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oped exclusively for variable selection in logistic regression, we do not present
results for skinnyGibbs in the Poisson regression setting.

We implement the proposed empirical Bayes solution using the Metropolis–
Hastings strategy in Section 3.3. We also tried the shotgun stochastic search
as discussed there, but we found that this produced similar results to Monte
Carlo with no appreciable gain in computational efficiency; so we opted for the
simpler of the two. After a burn-in period in our sampling scheme, we return
M = 104 posterior samples of the configuration S, from which we can evaluate
the inclusion probabilities as defined in (7). For a variable selection procedure
based on our empirical Bayes solution, we propose

Ŝ = Ŝ(t) = {j : πn(j) > t},

where πn(j) is the (Monte Carlo approximation of) inclusion probability in (7)
and t ∈ (0, 1) is a user-specified threshold. We investigate the performance of our
proposed method with two different choices of the threshold t, namely, t = 0.1
and t = 0.5; we refer to these below as EB1 and EB2, respectively. The latter
threshold 0.5 corresponds to selecting the so-called “median probability model”
advocated for in, e.g., Barbieri and Berger (2004). The former threshold 0.1
is designed to select a larger subset of variables and is motivated by Bayesian
decision-theoretic considerations where a Type II error (missing an important
variable) is taken to be 9 times as costly as a Type I error.

For comparing the performance of the different variable selection methods,
we report three different metrics: sensitivity (TPR), specificity (TNR), and
Matthew’s correlation coefficient (MCC). Sensitivity, or true positive rate, al-
lows us to see how well the method does in identifying true signals or genuinely
non-zero coefficients; specificity, or true negative rate, shows the method’s abil-
ity to correctly identify the noise or genuinely zero coefficients; and MCC looks
at all the four categories of the confusion matrix and combines them into one
single metric. An MCC of 1 means the method perfectly distinguished signal
from noise, while an MCC of 0 means the signal discovery was no better than
random guessing. These metrics are defined as

TPR = TP
TP + FN TNR = TN

TN + FP

MCC = TP × TN − FP × FN
{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}1/2 ,

where, TP, TN, FP, and FN are the number of true positives, true negatives,
false positives, and false negatives, respectively, and for MCC, we adopt the
convention 0/0 ≡ 0. The relevance of these metrics depends on the data analyst’s
priorities. For example, if Type II errors are more costly than Type I, then TPR
would be the relevant metric. On the other hand, if the two errors cost roughly
the same, then MCC would be a more relevant metric. MCC has been shown to
be more reliable than other measures that are commonly used, including area
under the receiver operating characteristic curve, balanced accuracy, bookmaker
informedness, and markedness (Chicco and Jurman, 2023).
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For logistic regression, we focused on variable selection since skinnyGibbs, the
most competitive method in the Bayesian landscape, is designed only for logis-
tic regression variable selection. For Poisson regression, in addition to variable
selection, we also compare estimation performance of our method to the others
(lasso, adaptive lasso, SCAD, and MCP). Neither horseshoe nor skinnyGibbs
are included in the Poisson regression comparisons—horseshoe is too restric-
tive in terms of runtime and no version of skinnyGibbs is currently available
for GLMs besides logistic regression. For estimation, the metric we consider is
mean squared error (MSE).

5.2. Simulation studies

5.2.1. Logistic regression

We fixed the sample size at n = 100 and considered two different values of p,
namely, p = 200 and p = 400. The true coefficient vector θ� is set to have its first
s many components equal to 3 and the rest set to 0; here the cardinality s can
take two values, s = 4 and s = 8. The rows of the design matrix X are randomly
simulated from a multivariate normal with mean 0, variance 1, and covariance
matrix Σ, where Σij = r|i−j| corresponds to a first-order autoregressive corre-
lation structure. The correlation parameter r takes values r = 0 and r = 0.2.
The response variables y1, . . . , yn are generated independently, where yi has a
Bernoulli distribution with success probability exp(x�

i θ
�)/{1 + exp(x�

i θ
�)}, for

i = 1, . . . , n. The settings are determined by the triple (p, s, r), so there are
altogether eight simulation settings. There are 500 replications performed at
each of the eight settings, and the variable selection results for the methods and
metrics described above are summarized in Table 1.

Our results showed that our EB method performs comparably to the other
methods. First, if the data analyst places higher priority on correctly identifying
the active variables, then TPR would be his/her preferred metric. In this case,
EB1—with a smaller cutoff t = 0.1, consistent with the higher priority on finding
active variables—performs fairly well in terms of TPR compared to the other
five methods. Lasso has the highest TPR in two of the eight settings but, as is
common, it tends to over-select as evidenced by its low TNR. SCAD has the
highest TPR in the other six settings. Horseshoe has the lowest TPR in all but
one of the settings. This is because the standard/default strategy recommends
using 95% credible intervals, which is too conservative; a lower credibility level
should be used if a less conservative selection procedure is desired. Second, if the
data analyst’s priorities are more balanced, i.e., aiming for parsimonious models
with good overall performance, then MCC would be the go-to metric and he/she
would prefer the more balanced EB2 with a larger cutoff t = 0.5. Here, EB2
has an MCC comparable with the other methods. Adaptive lasso has the lowest
MCC in six of the settings, whereas SkinnyGibbs has the highest across all eight
settings. This is not unexpected, given that skinnyGibbs is designed specifically
for variable selection in logistic regression.
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Table 1

Comparison of TPR, TNR, and MCC for the two EB methods with different cutoffs and the
six other methods across various settings in logistic regression.

p |S| r Metric EB1 EB2 HS lasso alasso SCAD MCP skinny

200 4 0
TPR 0.980 0.966 0.871 0.998 0.701 1.000 0.999 0.997
TNR 0.971 0.992 1.000 0.953 0.854 0.962 0.986 0.999
MCC 0.676 0.859 0.927 0.630 0.228 0.597 0.783 0.980

200 4 0.2
TPR 0.962 0.926 0.786 0.995 0.806 0.999 0.996 0.985
TNR 0.975 0.994 1.000 0.966 0.847 0.955 0.983 0.999
MCC 0.691 0.856 0.878 0.708 0.272 0.561 0.744 0.973

200 8 0
TPR 0.746 0.643 0.276 0.959 0.579 0.962 0.925 0.813
TNR 0.940 0.983 1.000 0.895 0.851 0.948 0.982 0.998
MCC 0.519 0.618 0.498 0.528 0.206 0.640 0.790 0.865

200 8 0.2
TPR 0.747 0.648 0.287 0.953 0.705 0.951 0.888 0.714
TNR 0.956 0.988 1.000 0.932 0.837 0.952 0.984 0.998
MCC 0.570 0.663 0.514 0.631 0.268 0.644 0.780 0.806

400 4 0
TPR 0.922 0.897 0.582 0.993 0.741 1.000 1.000 0.980
TNR 0.989 0.996 1.000 0.973 0.924 0.974 0.991 0.998
MCC 0.728 0.841 0.728 0.618 0.265 0.543 0.744 0.920

400 4 0.2
TPR 0.926 0.860 0.568 0.994 0.836 0.998 0.995 0.952
TNR 0.993 0.998 1.000 0.980 0.931 0.971 0.990 0.998
MCC 0.795 0.860 0.737 0.685 0.336 0.514 0.718 0.899

400 8 0
TPR 0.490 0.407 0.057 0.896 0.468 0.917 0.843 0.498
TNR 0.974 0.987 1.000 0.941 0.930 0.962 0.987 0.996
MCC 0.406 0.401 0.145 0.493 0.196 0.546 0.694 0.591

400 8 0.2
TPR 0.548 0.438 0.092 0.931 0.617 0.922 0.842 0.565
TNR 0.983 0.992 1.000 0.958 0.921 0.965 0.989 0.996
MCC 0.513 0.501 0.226 0.580 0.260 0.564 0.714 0.646

In terms of runtime, we compared the methods by fixing n = 100, |S| = 4,
and r = 0, but varying p ∈ {200, 300, 400, 500, 600, 700, 800}. Each method was
run 5 times to generate an average runtime. Figure 1 plots the runtime of our
EB method and the skinnyGibbs method as p increases. This comparison might
be rather striking, so some remarks are in order. It is not possible for a Markov
chain to explore the S-space thoroughly in an acceptable amount of time when p
is even moderately large. Our proposed method is not designed to thoroughly ex-
plore the S-space; instead, the goal is to do a careful-but-admittedly-incomplete
exploration focused on the high-probability configurations so that it can provide
reliable variable selection. As our results show, apparently this latter goal can
be accomplished competitively with far shorter runtimes.

5.2.2. Poisson regression

The data X is generated the same way as in the logistic regression settings,
with one minor change—the common standard deviation across the rows of X
is set at 0.3 instead of 1. This is to ensure that the Poisson variables generated
are not exponentially large. The response variables y1, . . . , yn are generated
independently, with yi having a Poisson distribution with rate exp(x�

i θ
�). All
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Fig 1. A comparison of the runtimes (in seconds) of EB and skinnyGibbs with fixed n =
100, |S| = 4, r = 0 and varying p = {200, 300, 400, 500, 600, 700, 800}.

Table 2

Comparison of TPR, TNR, and MCC for the two EB methods with different cutoffs and the
four other methods across various settings in Poisson regression.

p |S| r Metric EB1 EB2 lasso alasso SCAD MCP

200 4 0
TPR 1.000 1.000 1.000 0.998 0.975 0.950
TNR 0.999 1.000 0.893 0.949 0.983 0.987
MCC 0.973 0.998 0.395 0.547 0.879 0.906

200 4 0.2
TPR 1.000 1.000 1.000 1.000 0.973 0.903
TNR 1.000 1.000 0.907 0.964 0.995 0.998
MCC 0.992 0.999 0.425 0.620 0.905 0.893

200 8 0
TPR 1.000 1.000 0.979 0.983 0.598 0.494
TNR 0.997 1.000 0.856 0.915 0.981 0.989
MCC 0.969 0.998 0.437 0.555 0.549 0.514

200 8 0.2
TPR 1.000 1.000 0.983 0.958 0.514 0.421
TNR 0.998 1.000 0.898 0.946 0.983 0.988
MCC 0.980 0.998 0.508 0.625 0.512 0.470

400 4 0
TPR 1.000 1.000 1.000 1.000 0.990 0.975
TNR 1.000 1.000 0.926 0.955 0.995 0.999
MCC 0.991 1.000 0.350 0.445 0.868 0.936

400 4 0.2
TPR 1.000 1.000 1.000 0.998 0.945 0.863
TNR 1.000 1.000 0.940 0.971 0.977 0.978
MCC 0.994 0.999 0.392 0.533 0.863 0.850

400 8 0
TPR 1.000 1.000 0.979 0.971 0.494 0.299
TNR 0.999 1.000 0.914 0.942 0.986 0.992
MCC 0.985 1.000 0.417 0.499 0.434 0.322

400 8 0.2
TPR 1.000 1.000 0.960 0.946 0.415 0.318
TNR 0.998 1.000 0.936 0.960 0.989 0.993
MCC 0.973 0.999 0.465 0.552 0.401 0.357

other settings remain the same as in the logistic regression simulations above,
with the same (p, r, s) combinations. The Poisson regression simulation results
for variable selection are summarized in Table 2, where 100 replications were
run at each simulation setting.

We see that EB does very well compared to the other methods, and even bet-
ter comparatively than in the logistic regression settings. EB2 has the highest
MCC value in all eight configurations, and in fact, both EB1 and EB2 per-
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Table 3

Comparison of mean squared error (MSE) values for the EB method and the four other
methods across various settings in Poisson regression.

p |S| r EB lasso alasso SCAD MCP
200 4 0 0.117 2.642 1.365 2.064 2.375
200 4 0.2 0.094 1.677 0.813 6.536 7.714
200 8 0 0.196 10.143 9.906 43.698 48.180
200 8 0.2 0.469 16.201 17.839 56.941 61.823
400 4 0 0.207 3.925 2.105 2.184 3.195
400 4 0.2 0.100 2.177 1.176 9.638 10.754
400 8 0 4.691 16.920 14.248 59.989 59.021
400 8 0.2 7.419 17.451 14.531 60.560 64.833

form better than all other methods across all the settings for all three metrics.
Comparing the methods, SCAD and MCP are not as competitive in Poisson
regression as in logistic regression.

For estimation, we use the same simulation settings as above, and compare
the (empirical) mean squared error (MSE) values, Eθ�‖θ̂− θ�‖2, for the various
methods. The results summarized in Table 3 show that our proposed method is
an incredibly strong performer across all the settings.

6. Conclusion

In this paper, we extend the empirical or data-driven prior specification strat-
egy first proposed by Martin, Mess and Walker (2017) to the case of high-
dimensional GLMs and investigate its theoretical and practical performance.
In particular, we show that the proposed solution is ideal in the sense that it
balances the strong theoretical performance that is necessary to justify its use
in applications with the computational simplicity and efficiency necessary to
be applicable in these problems. The balance comes from the data-driven prior
centering: we enjoy the computational advantage of a relatively simple, thin-
tailed prior without subjecting ourselves to the theoretical sub-optimality that
results from thin-tailed priors with fixed centers. Compared to the linear models
previously investigated, a challenge here in the GLM context is that there is no
conjugacy in the prior and, therefore, no closed-form expressions for any of the
posterior features. These challenges affect both the theory and computation,
but we have used some new techniques to successfully overcome them here in
this paper. While there are other methods available in the literature that have
good empirical performance, and others that have powerful theoretical results,
our contribution here is unique in the sense that our solution achieves both. The
solution is general and can be applied beyond logistic regression setting.

Our numerical investigations in this paper focused on variable selection and
point estimation, but the method itself is capable of answering other questions.
In a follow-up work it would be interesting to explore the performance of the
proposed method in the context of uncertainty quantification about the co-
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efficient vector θ. In the high-dimensional linear model setting, work has been
done in Martin and Tang (2020) to look at how the method does in prediction—
similar work with a focus on point prediction and uncertainty quantification of
prediction can be carried out in this high-dimensional GLM context. On the
theoretical side, there are some new techniques employed here in the proofs,
namely, relying on in-probability bounds as opposed to bounds in expectation.
The latter have their advantages, but the former are more flexible. We expect
that this added flexibility would be useful in other cases where, as is common,
the priors would not be exactly conjugate.

Appendix A: Technical preliminaries

A.1. Likelihood-related properties

First, we present here two key results from Narisetty, Shen and He (2019),
namely, Lemmas A1 and A3, respectively, both concerning asymptotic proper-
ties of the likelihood function and MLEs in the specific case of high-dimensional
logistic regression with Bernoulli response variables. Lemmas 1 and 2 suitably
generalize these two results.

It is not enough for us to focus on the true θ� exclusively, so the results pre-
sented below cover general configurations S that may or may not be supersets
of S(θ�), i.e., where θ†S is needed in place of θ�S . Fortunately, the arguments
Narisetty, Shen and He (2019) used to prove their Lemmas A1 and A3 go
through almost word-for-word when replacing θ�S with θ†S where appropriate.
Finally, none of the considerations that follow make sense if S = ∅, e.g., if there
is no parameter, then it does not make sense to ask about properties of the
information matrix or about consistency of the MLE. This detail is not rele-
vant when only considering S that are supersets of S�, but our analysis requires
consideration of general S. So, without loss of generality, wherever relevant, we
restrict attention to S 	= ∅, so |S| ≥ 1.

The first result establishes an important continuity property for the observed
information matrix.

Lemma 1. Under Conditions 1–2, for any fixed constant c > 0, there exists
ζn → 0 such that

(1 − ζn)Jn(S, θS) ≤ Jn(S, θ†S) ≤ (1 + ζn)Jn(S, θS),

for any (S, θS) such that |S| ‖θS − θ†S‖2 = o(1).

Note, for a given S, the corresponding ζn = ζn,S sequence is of the order

ζn ∼ {n−1|S|2Λ|S| log p}1/2,

so the choice of ζn that holds uniformly over all the sufficiently low-complexity
configurations is of the order {n−1s2

nΛsn log p}1/2.
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The next result is a convergence rate for the MLE uniformly over configura-
tions that are not “too complex.” This corresponds to Lemma A3 in Narisetty,
Shen and He (2019) covering the case where the GLM’s score function has sub-
Gaussian tails. The critical sub-exponential case is covered in Lee, Chae and
Martin (2024), based on key results in Spokoiny (2017).

Lemma 2. Under Conditions 1–2,

max
S:|S|=s

‖θ̂S − θ†S‖2 = OP (n−1sΛs log p), n → ∞,

uniformly over all s with 1 ≤ s ≤ sn

The following result is an important consequence of the two lemmas above.
The sub-Gaussian case is based on Lemma 3 in Lee and Cao (2021), quoted as
Equation A7 of Cao and Lee (2020), both based primarily on the analysis in
Narisetty, Shen and He (2019). The sub-exponential case is substantially more
involved, and addressed in Lee, Chae and Martin (2024).

Lemma 3. Under Conditions 1–2, there exists a constant κ > 1 such that

�n(S, θ̂S) − �n(S�, θ̂S�) ≤ κ(log p)(|S| − |S�|), with Pθ�-probability → 1,

uniformly over S with S ⊃ S� and |S| ≤ sn.

A.2. Marginal likelihood

Here we provide justification for the approximation (6) of the marginal posterior
πn at configuration S. Recall that the marginal posterior satisfies

πn(S) = πn(S)mn(S)∑
S′ πn(S)mn(S) ,

where mn(S) is the marginal likelihood for configuration S:

mn(S) =
∫
R|S|

Ln(S, θS)α N|S|(θS | θ̂S , γJn(S, θ̂S)−1)︸ ︷︷ ︸
= g(θS), say

dθS .

So the goal is to lower- and upper-bound the integral mn(S). Aside from provid-
ing justification for our simple computational strategy, the result in Lemma 4
below will be useful in the proofs of our main results below. In particular, we
will have a need to bound

πn(S)
πn(S�) = πn(S)mn(S)

πn(S�)mn(S�)

Lemma 4. Under Conditions 1–2, the marginal likelihood my(S) satisfies

1 ≤ mn(S)
(1 + αγ)−|S|/2 Ln(S, θ̂S)α

≤ 1 + e−C|S|Λ|S| log p,
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with Pθ�-probability tending to 1, for a constant C > 0. Consequently,

πn(S)
πn(S�) ≤ 2 πn(S)

πn(S�) (1 + αγ)−(|S|−|S�|)/2 Ln(S, θ̂S)α

Ln(S�, θ̂S�)α
. (17)

Proof. Thanks to Lemma 2, it is safe to assume that the MLEs θ̂S are all
within a small neighborhood of their respective targets θ†S . Split the marginal
likelihood integral into two parts according to R

|S| = AS∪Ac
S , where AS = {θS :

‖θS − θ̂S‖2 ≤ r2
n(S)}, and r2

n(S) = n−1|S|Λ|S| log p. For θS ∈ AS , by Taylor’s
theorem and Lemma 1, we get

�n(S, θS) − �n(S, θ̂S) ≥ −1
2 (1 + ζn)(θS − θ̂S)�Jn(S, θ̂S)(θS − θ̂S)

�n(S, θS) − �n(S, θ̂S) ≤ −1
2 (1 − ζn)(θS − θ̂S)�Jn(S, θ̂S)(θS − θ̂S).

The first of the above two displays gives a lower bound on the marginal likeli-
hood,

mn(S) ≥
∫
AS

g(θS) dθS

≥ {1 + αγ/(1 + ζn)}−|S|/2 Ln(S, θ̂S)α

≥ (1 + αγ)−|S|/2
{1 + αγ/(1 + ζn)

1 + αγ

}−|S|/2
Ln(S, θ̂S)α

≥ (1 + αγ)−|S|/2 Ln(S, θ̂S)α,

which agrees with the familiar Laplace approximation expression used in (6).
Similarly, for an upper bound on the marginal likelihood, we get

mn(S) =
(∫

AS

+
∫
Ac

S

)
g(θS) dθS ≤ (1 + αγ)−|S|/2Ln(S, θ̂S)α +

∫
Ac

S

g(θS) dθS ,

where, again, the first term in the above bound agrees with the Laplace ap-
proximation expression in (6). For θS ∈ Ac

S , we have �n(S, θS) − �n(S, θ̂S) ≤
−Cnr2

n(S), so∫
Ac

S

g(θS) dθS ≤ Ln(S, θ̂S)αe−αCnδ2
n(S) Πn,S(Ac

S) ≤ Ln(S, θ̂S)αe−αCnr2
n(S).

The prior probability of Ac
S has a non-trivial, exponentially small upper bound,

but it is no smaller than the other exponentially small term in the above display,
so its inclusion does not improve the overall bound. Since the above arguments
all hold with probability tending to 1, this completes the proof of the lemma’s
first claim. For the second claim, we consider the ratio

mn(S)
mn(S�) ≤ (1 + αγ)−|S|/2{1 + e−Cnr2

n(S)}
(1 + αγ)−|S�|/2

Ln(S, θ̂S)α

Ln(S�, θ̂S�)α
.

Then the second claim follows since the term in curly braces above is bounded
by 2, uniformly in S.
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A.3. Empirical priors and posterior concentration

We briefly describe the general framework in Martin and Walker (2019) for es-
tablishing posterior concentration rates with empirical priors in high-dimensional
problems. They put forward sufficient conditions on the empirical prior, one they
called local and the other global. In what follows, let Πn = (πn,Πn,S) be a gen-
eral empirical prior for Θ = (S,ΘS), and Πn = Πn,α the corresponding posterior
that uses power α ∈ (0, 1) on the likelihood function. Also, let εn = εn(θ�) be
a generic deterministic sequence that satisfies εn → 0 and nε2

n → ∞ and may
depend on the true θ�.
Local Prior Condition. Given εn, there exists constants B,D > 0 such that

πn(S�) � e−Bnε2n , for all large n, (18)

Pθ�

[
Πn,S�{Ln(S�)} > e−Dnε2n

]
→ 1, n → ∞, (19)

where

Ln(S�) = {θ ∈ R
p : Ln(S�, θS�) ≥ e−dnε2nLn(S�, θ̂S�)}, d > 0,

Global Prior Condition. Given εn, there exists G > 0 and m > 1 such that∑
S

πn(S)
∫

[Eθ�{πn,S(θS)m}]1/m dθS � eGnεn , n large. (20)

Under these conditions, a convergence rate in terms of Hellinger distance
between joint distributions follows; see Theorem 2 in Martin and Walker (2019).
In regression cases like the GLMs under consideration here, the Hellinger rate
in terms of joint distributions implies the same rate for the root average squared
conditional Hellinger distances in (11); see Appendix B.1 below for details.

Appendix B: Proofs

B.1. Proof of Theorem 1

The proof proceeds by first checking that the local and global prior conditions,
as described above, are met under the conditions stated in Theorem 1 above.
Then Theorem 2 of Martin and Walker (2019) implies the Hellinger rate result
in (12). Since Theorem 2 holds independently and under the same conditions as
the theorem we are currently proving, we can assume, where relevant, that S is
such that |S| ≤ C|S�|.
Lemma 5. Under Conditions 1–3, our proposed empirical prior satisfies the
local prior condition as described above, with εn(θ�) = (n−1|S(θ�)| log p)1/2.

Proof. Fix θ� and set s� = |S(θ�)|. The first part of the local prior condition is
easy to check, with nε2

n = s� log p. Indeed, using the inequality
(
p
s

)
≤ ps we get

πn(S�) = (p−a)s�(
p
s�

) ≥ e−(1+a)s� log p = e−(1+a)nε2n ,
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so the bound in (18) holds with B = 1 + a > 0.
Next, for (19), the data-dependent neighborhood Ln(S�) is given by

Ln(S�) = {θS� : �n(S�, θS�) − �n(S�, θ̂S�) > −dnε2
n}.

Since �n is concave, this is a bounded neighborhood of θ̂S� . It is a relatively
small neighborhood too, since the log-likelihood is of order n; this means that
Lemma 1 applies to any θS� ∈ Ln(S�) and to θ̂S� . For θS� ∈ Ln(S�), Taylor’s
theorem implies

�n(S�, θS�) − �n(S�, θ̂S�) = −1
2 (θS� − θ̂S�)�Jn(S�, θ̃S�)(θS� − θ̂S�),

where θ̃S� ∈ Ln(S�) satisfies ‖θ̃S� − θ̂S�‖ ≤ ‖θS� − θ̂S�‖. Applying Lemma 1
first with θ̃S� and then with θ̂S� gives

Jn(n, θ̃S�) ≤ cn Jn(S�, θ̂S�), with probability → 1, (21)

where cn = (1 − ζn)(1 + ζn) → 1. Therefore,

Ln(S�) ⊃ {θS� : γ−1(θS� − θ̂S�)�Jn(S�, θ̂S�)(θS� − θ̂S�) < δn},

where δn := 2dnε2
n/cnγ � p−1. The prior probability of the event on the right-

hand side of the above display is the probability that Z < δn, where Z ∼
ChiSq(s�). Therefore,

Πn,S�{Ln(S�)} = P(Z < δn)

= 1
2s�/2Γ(s�/2)

∫ δn

0
zs

�/2−1e−z/2 dz

≥ e−δn/2

2s�/2Γ(s�/2)

∫ δn

0
zs

�/2−1 dz

= 2e−δn/2δ
s�/2
n

s�2s�/2Γ(s�/2)
.

The lower bound on Πn{Ln(S�)} is ≥ e−Dnε2n = e−Ds� log p for some D > 0, as
was to be shown. The prior probability bound holds surely, so (19) follows from
the “probability → 1” conclusion in (21).

Lemma 6. Under Conditions 1–3, our proposed empirical prior satisfies the
global prior condition as described above, with εn(θ�) = (n−1|S(θ�)| log p)1/2.

Proof. The empirical prior density πn,S is given by

πn,S(θS) = (2π)−|S|/2|γ−1Jn(S, θ̂S)|1/2 exp
{
− 1

2γ (θS − θ̂S)�Jn(S, θ̂S)(θS − θ̂S)
}
.

Lemma 2 establishes the MLE bounds

‖θ̂S − θ†S‖2 � n−1|S|Λ|S| log p, uniformly in S with |S| � |S�|, (22)
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and, therefore, with probability tending to 1,

(1 − ζn)Jn(S, θ†S) ≤ Jn(S, θ̂S) ≤ (1 + ζn)Jn(S, θ†S).

Let En denote the event in (22); since Pθ�(En) → 1, we will restrict attention to
cases where En holds in what follows. Then

πn,S(θS) ≤ (2π)−|S|/2(1 + ζn)|S|/2|γ−1Jn(S, θ†S)|1/2

× exp
{
−1−ζn

2γ (θS − θ̂S)�Jn(S, θ†S)(θS − θ̂S)
}
.

If ΣS = γ(1 − ζn)−1Jn(S, θ†S)−1, then the upper bound can be simplified as

πn,S(θS) ≤
( 1+ζn

1−ζn

)|S|/2 (2π)−|S|/2|ΣS |−1/2 exp{−1
2 (θS − θ̂S)�Σ−1

S (θS − θ̂S)}.

Write θS − θ̂S = (θS − θ†S) + (θ†S − θ̂S) and then expand the quadratic form in
the above display to get

(θS − θ̂S)�Σ−1
S (θS − θ̂S) ≥ (θS − θ†S)�Σ−1

S (θS − θ†S)+2(θS − θ†S)�Σ−1
S (θ̂S − θ†S).

Then it is easy to check that

πn,S(θS) ≤
( 1+ζn

1−ζn

)|S|/2
e|(θS−θ†

S)�Σ−1
S (θ̂S−θ†

S)| N|S|(θS | θ†S ,ΣS).

Apply Cauchy–Schwarz to the quadratic form in the exponent above gives

|(θS − θ†S)�Σ−1
S (θ̂S − θ†S)| ≤ ‖Σ−1/2

S (θS − θ†S)‖ ‖Σ−1/2
S (θ̂S − θ†S)‖.

By Condition 2 and Lemma 2, the second term above can be bounded as

‖Σ−1/2
S (θ̂S − θ†S)‖2 ≤ γ−1nΛ|S| ‖θ̂S − θ†S‖2 � γ−1 |S|Λ2

|S| log p.

By Condition 3(a), this is upper bounded by a constant times |S| log p. Let
t2S ∼ |S| log p denote that upper bound. Then the empirical prior density is
bounded as

πn,S(θS) ≤
( 1+ζn

1−ζn

)|S|/2
etS‖Σ−1/2

S (θS−θ†
S)‖ N|S|(θS | θ†S ,ΣS).

This is constant in data y, so the expectation in (20) can be ignored—and m
can be arbitrarily close to 1. Moreover, the integral in (20) over θS can now
be upper bounded by the moment generating function of a chi distribution,
with |S| degrees of freedom, evaluated at tS . This moment generating function
does not have a convenient closed-form expression—it involves the confluent
hypergeometric function—but since tS is large (proportional to log p) for all S,
we can apply the standard asymptotic approximation of the chi distribution’s
moment generating function (Abramowitz and Stegun, 1966, Ch. 13) to get∫

etS‖Σ−1/2
S (θS−θ†

S)‖ N|S|(θS | θ†S ,ΣS) dθS � eG|S| log p,

for some constant G > 0. Multiplying by {(1 + ζn)/(1 − ζn)}|S|/2 does not
affect the bound. Averaging the bound eG|S| log p over low-complexity S’s, with
|S| � s�, is upper bounded by eGs� log p = eGnε2n , which proves (20).
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B.2. Proof of Theorem 3

By (17), the marginal posterior mass function πn satisfies

πn(S)
πn(S�) � πn(S)

πn(S�) (1 + αγ)−(|S|−|S�|)/2 exp[α{�n(S, θ̂S) − �n(S�, θ̂S�)}],

where the constant baked into “�” is 2. By Lemma 3, with probability converg-
ing to 1, the exponential term is uniformly upper-bounded in S with S ⊃ S�

and |S| ≤ sn by exp{ακ(log p)(|S| − |S�|)}. Then the prior mass ratio satisfies

πn(S)
πn(S�) �

(
p

|S�|
)

(
p
|S|

) p−a(|S|−|S�|),

so summing the (limiting) upper bound over all S ⊃ S� gives

∑
S:S⊃S�

πn(S) �
∑

S:S⊃S�

πn(S)
πn(S�)

=
sn∑

s=|S�|+1

(
p

|S�|
)(

p−|S�|
p−s

)
(
p
s

) {(1 + αγ)−1/2}s−|S�|p−(β−ακ)(s−|S�|)

≤
sn∑

s=|S�|+1

ss−|S�|p−(β−ακ)(s−|S�|)

≤
sn∑

s=|S�|+1

(snp−(β−ακ))s−|S�|.

Since sn < pβ−ακ by Condition 3, the dominating series converges and, there-
fore, the tail of that same series must form a divergent sequence as |S�| → ∞,
which proves the claim.

B.3. Proof of Theorem 2

Those S with |S| > C|S�| that are proper supersets of S� have already been
covered in the proof of Theorem 3 above. So it suffices to consider S that are large
but exclude some important variables. Define the mapping S → S+ = S ∪ S�.
The only part of the posterior πn that depends on S itself—not just on |S|—is
the likelihood component, and the likelihood is increasing in complexity, i.e.,

Ln(S, θ̂S) ≤ Ln(S+, θ̂S+).

So, if S = {S : C|S�| < |S| ≤ sn and S 	⊃ S�}, then we can proceed as follows:

∑
S∈S

πn(S) �
∑
S∈S

πn(S)
πn(S�)
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≤
∑
S∈S

πn(S)
πn(S�) (1 + αγ)−(|S|−|S�|)/2 eα{n(S+,θ̂S+ )−n(S�,θ̂S� )}

≤ pακ|S
�|

∑
s>C|S�|

ss−|S�|
n p−(β−αK)(s−|S�|)

= pακC|S�|(snp−a)(C−1)|S�| ×O(1).

Since sn � pβ and β > ακC/(C − 1) by definition of C, the upper bound
vanishes, proving the claim.

B.4. Proof of Theorem 4

Take any fixed θ� that meets the stated conditions, and set S� = S(θ�) and
s� = |S�|. Define S ∈ S := {S : |S| ≤ Cs� and S 	⊇ S�}, where C > 1 is as in
the statement of Theorem 2. The key point is that there is at least one important
variable omitted in the models S ∈ S. Let ρ2

n = ρ2
n(θ�) = n−1v log p denote the

lower bound on θ�2j for j ∈ S�, as defined in (14), where v = v(s�) = cs�Λcs� .
In their Supplementary Materials, Narisetty, Shen and He (2019) showed that,
with probability tending to 1,1

�n(S, θ̂S) − �n(S�, θ̂S�) ≤ −F |S \ S�|nρ2
n, uniformly over S ∈ S,

for a constant F > 0. Then we get the bound∑
S∈S

πn(S) �
∑
S∈S

πn(S)
πn(S�)

≤
∑
S∈S

πn(S)
πn(S�) (1 + αγ)−(|S|−|S�|)/2 eα{n(S,θ̂S)−n(S�,θ̂S� )}

≤
∑
S∈S

(
p
s�

)(
p
|S|

) (1 + αγ)−(|S|−s�)/2p−β(|S|−s�)−αFv(|S|−s�),

where we used the fact that |S\S�| ≥ |S|−s�. Since the summands only depend
on |S|, the sum over S ∈ S can be simplified by first choosing the overall size
of the model, then choosing the size of S ∩ S�. That is,

∑
S∈S

(· · · ) =
Cs�∑
s=0

s∧(s�−1)∑
t=0

(
s�

t

)(
p− s�

s− t

)
(· · · ),

where t indexes the size of S ∩ S�. Note that t can be at most s� − 1 since S
is not allowed to be a superset of S�. Plugging in the expression for (· · · ) and
using the bound (

s�

t

)(
p−s�

s−t

)(
p
s�

)
(
p
s

) ≤ ss−tps
�−t,

1The result that they stated, i.e., �n(S, θ̂S)− �n(S�, θ̂S� ) � −nρ2
n, is incorrect—the differ-

ence should depend on how close S is to S�. But the result that they proved is the one stated
here.
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we get ∑
S∈S

πn(S) ≤
Cs�∑
s=0

s∧(s�−1)∑
t=0

(φp−β)s−s�ss−t(p1−αJv)s
�−t,

where φ = (1 + αγ)−1/2. Split the outer sum on the right-hand side above into
two pieces: s ≤ s� − 1 and s ≥ s�. For the first sum,

s�−1∑
s=0

s∑
t=0

(φp−β)s−s�ss−t(p1−αFv)s
�−t =

s�−1∑
s=0

(pβ
sφ

)s�−s s∑
t=0

(sp1−αFv)s
�−t

�
s�−1∑
s=0

(φ−1p1+β−αFv)s
�−s

� φ−1p1+β−αFv.

We have that αFv > 1 + β because v = v(s�) is or can be made large: if
s� → ∞ then v → ∞ or, otherwise, the constant c > 1 baked into v can be
chosen sufficiently large. Since φ−1 is linear in γ, which is at most polynomial
in n, the negative power of p dominates so the bound is o(1). Similarly, for the
second sum

Cs�∑
s=s�

s�−1∑
t=0

(φp−β)s−s�ss−t(p1−αFv)s
�−t =

Cs�∑
s=s�

(pβ
sφ

)s�−s s�−1∑
t=0

(sp1−αFv)s
�−t

� s�p1−αFv
Cs�∑
s=s�

(s�φ
pβ

)s−s�

� s�p1−αFv,

where the last “�” follows because pβ � s� and φ < 1. By the same argument
as given for the first summation, the remaining term is o(1), so we can conclude
that

∑
S∈S πn(S) → 0 with probability tending to 1, which proves the claim.

B.5. Proof of Theorem 5

To start, write the posterior distribution Πn as

Πn(dθ) =
∑
S

πn(S)Πn
S(dθS) ⊗ δ0Sc (dθSc),

where Πn
S is the conditional posterior of θS , given S, having a density with

respect to Lebesgue measure on the corresponding |S|-dimensional Euclidean
space. Then the total variation distance between Πn and the Gaussian approx-
imation Ψn in (15) is

dtv

(
Πn,Ψn

)
≤

∑
S

πn(S) dtv

(
Πn

S ⊗ δ0Sc , Ψn
)
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= πn(S�) dtv

(
Πn

S� ⊗ δ0S�c , Ψn
)

+
∑
S 
=S�

πn(S) dtv

(
Πn

S ⊗ δ0Sc , Ψn
)
.

Since the total variation distance is bounded by 2 and
∑

S 
=S� πn(S) → 0 in
Pθ�-probability by Theorem 4, the latter term is oPθ�

(1). It remains to show
the same for dtv

(
Πn

S� ⊗ δ0S�c , Ψn
)
. Since both distributions concentrate on the

same S� configuration, we can drop the “⊗” terms both above and in (15). That
is, the goal is simply to bound

dtv

{
Πn

S� , N|S�|
(
θ̂S� , � Jn(S�, θ̂S�)−1)}.

The posterior Πn
S� has a density πn

S� with respect to Lebesgue measure; simi-
larly, the normal distribution in the above display has a density with respect to
Lebesgue measure, which we will denote by ψn

S� . Following the argument used
to establish the Laplace approximation result in Lemma 4, it suffices to focus
our attention here on integrals over θS in a sufficiently small neighborhood of
the MLE θ̂S . Once localized, using the form of the proposed empirical prior, we
can apply the continuity property in Lemma 1 to get (locally) pointwise lower
and upper bounds, respectively, on the density πn

S� , i.e.,

Lα
n(S�, θ̂S�)

mn(S�) {1 + αγ(1 ± ζn)}|S�|/2︸ ︷︷ ︸
=G±

n

N
(
θS� | θ̂S� , γ

1+αγ(1±ζn)Jn(S�, θ̂S�)−1)︸ ︷︷ ︸
=g±

n (θS� )

,

where mn(S�) denotes the marginal likelihood under configuration S� and ζn =
ζn,S� is the vanishing sequence identified in Lemma 1; more on ζn below. Denote
the lower and upper bounds as πn

S� and πn
S� , respectively. If we can show that

both the lower and upper bounds have vanishing L1-distance to the Gaussian
approximation, then we are done. And since both of the bounds have the same
form, we will focus here on the upper bound πn

S� , the one where “± = −.”
A simple triangle inequality-type argument gives the bound

|πn
S�(·) − ψn

S�(·)| ≤ G−
n |g−n (·) − ψn

S�(·)| + |G−
n − 1|ψn

S�(·),

and, consequently,

dtv(πn
S� , ψn

S�) ≤ G−
n dtv(g−n , ψn

S�) + |G−
n − 1|.

It follows from Lemma 4 that the G−
n → 1 in Pθ�-probability as n → ∞. So

it remains to bound the total variation distance in the above display, which
is between two Gaussians with a common mean and very similar variances.
A special case of the general result in Theorem 1.8 of Arbas, Ashtiani and Liaw
(2023)—see, also, Devroye, Mehrabian and Reddad (2023)—gives that

dtv(g−n , ψn
S�) �

∣∣∣�÷ γ

1 + αγ(1 − ζn) − 1
∣∣∣ |S�|1/2.

It is easy to check that the upper bound is of the order ζn|S�|1/2, so we need
to consider how quickly ζn is vanishing. Recall that, following the statement of
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Lemma 1, it was noted that, for a particular configuration, in this case S = S�,
the choice of ζn was of the order {n−1|S�|2Λ|S�| log p}1/2. That means

dtv(g−n , ψn
S�) � {n−1|S�|3Λ|S�| log p}1/2.

By the additional configuration size condition (16), the upper bound above is
vanishing. This proves that dtv

(
Πn,Ψn

)
→ 0 in Pθ�-probability and, since it

is also uniformly bounded, the theorem’s statement (in term of expectations)
follows from the dominated convergence theorem.
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