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Abstract: We study the well known difficult problem of prediction in
measurement error models. By targeting directly at the prediction inter-
val instead of the point prediction, we construct a prediction interval by
providing estimators of both the center and the length of the interval which
achieves a pre-determined prediction level. The constructing procedure re-
quires a working model for the distribution of the variable prone to error. If
the working model is correct, the prediction interval estimator obtains the
smallest variability in terms of assessing the true center and length. If the
working model is incorrect, the prediction interval estimation is still con-
sistent. We further study how the length of the prediction interval depends
on the choice of the true prediction interval center and provide guidance
on obtaining minimal prediction interval length. Numerical experiments
are conducted to illustrate the performance and we apply our method to
predict concentration of Aβ1 − 42 in cerebrospinal fluid in an Alzheimer’s
disease data.
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1. Introduction

Prediction in measurement error models is a notoriously difficult problem. In
fact, prediction has been largely avoided in the measurement error literature
except for a few works (Ganse et al., 1983; Buonaccorsi, 1995; Carroll et al.,
2009; Datta et al., 2018) in special cases, because the difficulties involved are
fundamental and almost impossible to overcome. Instead, a different notion of
prediction is sometimes used, where although the observed data contain mea-
surement errors, the “prediction” is conducted for observed covariates that are
error free, thus changing the true notion of prediction (Zhang et al., 2019, 2021).

The difficulty involved in prediction for measurement error models is rooted
in the problem setting itself, in that the task of prediction involves issues be-
yond the model estimation itself. Indeed, even if the measurement error model
is completely known without any unknown parameters, prediction is still un-
achievable. To see this, assume we have response variable Y and covariate X
that is subject to measurement error. Instead of X, we observe W , which is
linked to X via W = X + U . A typical and simplest measurement error model
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specifies the dependence of Y on X up to some unknown parameters, say β,
and the relation between W and X. Given independent and identically dis-
tributed (iid) observations (Wi, Yi), i = 1, . . . , n, various methods have been
developed to estimate the unknown parameter β. The goal of prediction in
the measurement error model context is to further estimate Yn+1 based on a
new Wn+1, while making use of the link between Y and X and the link be-
tween W and X. This implies that we are obliged to study the dependence
of Y on W , which is not readily available even though we can estimate β.
To see this, fY,W (y, w) =

∫
fY |X(y, x,β)fW |X(w, x)fX(x)dμ(x), and without

the knowledge of the probability density function (pdf) fX(x), even after we
obtain the estimation for β, we still cannot obtain fY |W (y, w). Here, we use
fY |W (y, w) to denote the conditional pdf of Y given W , and similarly for other
notations. Of course, as often raised by people who dismiss measurement er-
ror literatures, one can always directly study the relation between the response
Y and the errored covariates W . Although it is certainly a natural and valid
idea, this approach gives up the existing knowledge on the relation between
the response and the original covariate X, i.e. the model fY |X(y, x,β), hence
giving up any inherent relation between Y and W as well. Indeed, the informa-
tion contained in a completely unspecified function fY |W (y, w) and a partially
specified function

∫
fY |X(y, x,β)fW |X(w, x)fX(x)dμ(x) is not the same, even

though on the surface both contain a single nonparametric component. In fact,
in our numerical experiments, we found that taking into account the existing
relation fY |X(y, x,β) improves the prediction quite substantially in comparison
to a direct approach to predict Y based on W .

In this work, instead of providing a single prediction value, we consider a
prediction interval, or more generally a prediction set, so that the probability
of a future observation belongs to this set is at least some pre-specified value.
Naturally, if we lower this probability level, the prediction interval will shrink.
Ideally, if the probability level is approaching zero, then the interval will ap-
proach a single point which will be the classic prediction value.

While the general idea is simple and intuitive, its treatment in measurement
error problems has its own unique features and properties, which makes the
problem interesting and far from being straightforward. We propose a basic
procedure of constructing a prediction interval (Section 3.1), derive the efficient
(Section 3.2) and local efficient (Section 3.3) influence functions for estimating
the boundary values of the prediction interval. We also study how to achieve
the best prediction performance when the relationship between Y and W is
directly taken into account (Section 5.1) and when the measurement error in
W is ignored (Section 5.2). As far as we are aware, this is the first prediction
method in the measurement error model framework, where the characteristic
of measurement errors is taken into account, and the prediction is honestly
performed under the same data feature for the future observation as for the
observed data. It is also the pioneering work that studies the variability of
the prediction interval, which provides information about the reliability of a
prediction.
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2. Model, goal and problem formulation

2.1. Model and goal

Consider the classical measurement error model framework where fY |X,Z(y, x, z,
β1) is given up to the unknown parameter β1 and the observations are Oi ≡
(Wi,Zi, Yi), i = 1, . . . , n. Here, Zi is the error free covariate, Wi is an errored
version of the error prone covariate Xi. We allow any relation fW |X,Z(w, x, z,β2)
here, while in practice, W often only depends on X, for example, Wi = Xi +Ui

for a random noise Ui, and sometimes the dependence is completely known. In
this case, β2 vanishes. Let β = (βT

1 ,β
T
2 )T ∈ Rp and assume β is identifiable.

Our original goal is to predict Yn+1 given a new observation (Wn+1,Zn+1).
Practically, we aim to predict a prediction set C(Wn+1,Zn+1) so that pr{Yn+1 ∈
C(Wn+1,Zn+1)} ≥ 1 − α for a predetermined α, such as α = 0.05. A familiar
form of C(w, z) is [m(w, z, β̂)−cαs(w, z, β̂),m(w, z, β̂)+cαs(w, z, β̂)], following
the practice of constructing confidence intervals, where m(w, z, β̂) and s(w, z, β̂)
are the estimated conditional mean and conditional standard deviation of Y
given w, z, and cα is a constant that is often the (1 − α/2)th standard normal
quantile in large samples.

Remark 1. We made an assumption that β is identifiable and all the subsequent
results will build on this assumption. Establishing the identifiability of β often
has to be done case by case based on the specific model, although many works
exist in an attempt to establish identifiability in more general situations (Hu and
Schennach, 2008, 2013; Hu et al., 2015, 2016; Hu and Sasaki, 2017; Hu and
Shiu, 2018; Hu et al., 2022).

To see why a general result is difficult to obtain, consider the simple linear
regression model with normal additive error, i.e. Y = βc + βxX + βT

z Z + ε,
W = X + U , where ε, U are both normal with zero mean and variances σ2, σ2

U

respectively. This corresponds to fY |X,Z(y, x, z) = φ{(y−βc−xβx−zTβz)/σ}/σ
and fW |X,Z(w, x, z) = φ{(w − x)/σU}/σU . It is known that in this very sim-
ple situation, if both σ2

U and σ2 are unknown, hence β1 = (βc, βx,β
T
z , σ)T,

β2 = σU , then the problem is not identifiable. However, as soon as σ is known,
i.e., β1 = (βc, βx,β

T
z )T, β2 = σU , then the problem is identifiable. Thus,

in practice, it is important to first inspect the problem to ensure identifiabil-
ity before proceeding to perform estimation and prediction. In the situation
when the problem is not identifiable, then one needs to collect additional in-
formation such as repeated measurements or instrumental variables to achieve
identifiability. For example, in the normal additive error case with two re-
peated measurements, we can use Wi1,Wi2, i = 1, . . . , n to estimate σU , and
then treat W = (W1 + W2)/2 with known error variance, which leads to the
case of β = β1 in the discussion above. In the case of instrumental variable,
say S which has the relation to X captured by fX|S,Z(x, s, z,α), then we can
consider the expanded model fY |X,Z,S(y, x, z, s,β1) = fY |X,Z(y, x, z,β1) and
fW |X,Z,S(w, x, z, s,β2,α) = fW |X,Z(w, x, z,β2)fX|S,Z(x, s, z,α), where we treat
(ZT, S)T as the new error free covariate Z, and treat (βT

2 ,α
T)T as the new β2



Prediction in measurement error models 2827

in this expanded model.

2.2. Estimation of β

It is natural to believe that to perform reasonable prediction, we would first
need to estimate β. For such a simple, purely parametric measurement error
model, estimation of β is actually not straightforward. The difficulty lies in the
presence of the conditional pdf of X given Z, denoted as η1(x, z), in practically
all estimation approaches. Unfortunately, η1(x, z) is unknown, difficult to model
and even more difficult to estimate (Carroll and Hall, 1988; Fan, 1991), hence
handling η1(x, z) itself or any quantities dependent on it becomes a very thorny
issue. Fortunately, Tsiatis and Ma (2004) eventually bypassed this issue and
prescribed an estimator for β. Their method requires a subjectively posited
conditional pdf η∗1(x, z) which does not have to be equal to or even approximate
the true η1(x, z) that governs the data generation procedure. Specifically, the
estimator β̂ solves an estimating equation of the form

∑n
i=1 S∗

eff(Oi,β) = 0,
where S∗

eff is the efficient score of β computed under the posited conditional
pdf η∗1(x, z). To give a more explicit description of S∗

eff(o,β), we write out the
detailed construction below.

1. Posit a working conditional pdf model for X given Z, denote it η∗1(x, z).
2. Compute the working score function

S∗
β(o,β) =

∂log
∫
fY |X,Z(y, x, z,β1)fW |X,Z(w, x, z,β2)η∗1(x, z)dμ(x)

∂β
.

3. Solve the integral equation E[E∗{a∗(X,Z,β) | O} | X,Z] = E{S∗
β(O,β) |

X,Z}, i.e.∫ ∫
a∗(x, z,β)fY |X,Z(y, x, z,β1)fW |X,Z(w, x, z,β2)η∗1(x, z)dμ(x)∫

fY |X,Z(y, x, z,β1)fW |X,Z(w, x, z,β2)η∗1(x, z)dμ(x)
×fY |X,Z(y, x, z,β1)fW |X,Z(w, x, z,β2)dμ(w, y)

=
∫

S∗
β(y, w, z,β)fY |X,Z(y, x, z,β1)fW |X,Z(w, x, z,β2)dμ(w, y)

to obtain a∗(x, z,β).
4. Compute S∗

eff(o,β) = S∗
β(o,β) −E∗{a∗(X,Z,β) | o}.

Remark 2. In the algorithm above, the only step that may appear nonstandard
is the integral equation solving step. This is a fredholm equation of the first
type and is well studied in numerical analysis (Kress, 1999). In practice, we
can simply discretize the problem by writing ai = a∗(xi, z,β), and converting
the problem into a linear system solving problem of the form Aa = b, where
a = (a1, . . . , am)T, b = (b1, . . . , bm)T with

bi =
∫

S∗
β(y, w, z,β)fY |X,Z(y, xi, z,β1)fW |X,Z(w, xi, z,β2)dμ(w, y),
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and A is a m×m matrix with

Aij =
∫

fY |X,Z(y, xj , z,β1)fW |X,Z(w, xj , z,β2)η∗1(xj , z)∑m
j=1 fY |X,Z(y, xj , z,β1)fW |X,Z(w, xj , z,β2)η∗1(xj , z)

×fY |X,Z(y, xi, z,β1)fW |X,Z(w, xi, z,β2)dμ(w, y).

The linear system is solved at each different z value to yield z-specific a. Because
m is often chosen to be small (8-15 in our experience), the linear system is very
easy to solve hence the overall computation is very fast.

2.3. Prediction problem formulation

After obtaining the estimator β̂
∗

from solving
∑n

i=1 S∗
eff(Oi,β) = 0, we proceed

to consider constructing a prediction interval. A classical prediction interval is
often of the form C(w, z) = [m(w, z,β)− ζ,m(w, z,β) + ζ], where m(w, z,β) is
the center of the prediction interval and 2ζ is the length. Here, we fix m(w, z,β)
and consider how to obtain ζ. In other words, m(w, z,β) is a pre-specified func-
tion. For example, we can imagine m(w, z,β) = E(Y | w, z) if it had been
obtainable. We will study different choices of m(w, z,β) in more detail in Sec-
tion 3.

Let r(o,β) ≡ |y −m(w, z,β)| be the distance of y to the center of the pre-
diction interval. Note that r(o,β) is fully specified once m(w, z,β) is fixed, and
it can be viewed as regression error or residual if we indeed have m(w, z,β) =
E(Y | w, z). If we restrict ourselves to the prediction intervals with its center
m(w, z,β) fixed, then we can equivalently rewrite the prediction problem as
searching for ζ so that pr{r(On+1,β) < ζ} = 1 − α.

3. Performing prediction

3.1. Interval prediction is an estimation problem of ζ

At the end of Section 2.3, by fixing the functional form of the center of the pre-
diction interval, we have converted the problem of finding the prediction region
(interval) C(Wn+1,Zn+1) to the problem of finding ζ so that pr{r(On+1,β) <
ζ} = 1 − α. Although we motivated the r(o,β) function by considering it as a
regression error or residual, the choice of r(o,β) can be arbitrary. Our formu-
lation of the prediction is also considered in the conformal prediction literature
and r(o,β) is officially termed conformal score there (Lei et al., 2018). In fact,
given an arbitrary conformal score r(o,β), we can always define a prediction
region C(w, z) by letting C(w, z) ≡ {y : r(o,β) < ζ}. Thus, we have

pr{Yn+1 ∈ C(Wn+1,Zn+1)} = pr{r(O,β) < ζ} = 1 − α.

To find the prediction region C(w, z), we only need to find ζ. Note that here
r(o,β) can be any pre-specified conformal score including but not limited to
the form of |y −m(w, z,β)|.
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An important discovery we make here is to realize that finding ζ such that
pr{r(O,β) < ζ} = 1 − α is a semiparametric estimation problem, where
β, η1(x, z), η2(z) are unknown parameters and ζ is a functional of β, η1, η2 im-
plicitly defined. Here, η2(z) denotes the marginal pdf of Z. We exploit this view
point below to develop procedures to assess ζ differently from any existing litera-
ture including conformal prediction. In the following, we first derive the efficient
influence function of ζ under the ideal setting where the joint distribution of
X,Z are correctly specified. This leads to the local efficient influence function
of ζ through replacing the true joint distribution of X,Z by a working model.
The estimator for ζ is then obtained by finding the root of the sum of the local
efficient influence functions. We finally study the asymptotic properties of the
estimator of ζ.

3.2. Efficient influence function of ζ

In the semiparametrics literature, an important approach to construct efficient
estimator for a parameter is through finding its efficient influence function. To
this end, to perform efficient estimation of ζ, we note that the likelihood of a
single observation o can be written as

fO(o,β, η1, η2) = η2(z)
∫

η1(x, z)fY |X,Z(y, x, z,β1)fW |X,Z(w, x, z,β2)dμ(x),

and ζ depends on β, η1, η2 implicitly through

pr{r(O,β) < ζ}

=
∫
r(o,β)<ζ

fO(o,β, η1, η2)dμ(o) = 1 − α.

We then derive the efficient influence function for estimating ζ, which we denote
φ. We find that

Proposition 1. The efficient influence function of ζ is

φ(O,β, ζ)

= cTSeff(O,β) + E{a1(X,Z,β, ζ) | O} + (1 − α) −E[I{r(O,β) < ζ} | Z]
E[δ{ζ − r(O,β)}] ,

where

c =
[
E
{
Seff(O)ST

eff(O)
}]−1

×
(
E[δ{ζ − r(O,β)}∂r(O,β)/∂β] −E[I{r(O,β) < ζ}Sβ(O,β)]

E[δ{ζ − r(O,β)}]
−E [E{a1(X,Z,β, ζ) | O}E{a(X,Z,β) | O}]) , (1)

with a(x, z,β) the same as a∗(x, z,β) defined in Section 2.2 under the true
posited model η1(x, z), and a1(x, z,β, ζ) satisfies

E [E{a1(X,Z,β, ζ) | O} | X,Z]
= E [I{r(O,β) < ζ} | Z] − E [I{r(O,β) < ζ} | X,Z] .

(2)



2830 F. Jiang and Y. Ma

Because the proof of Proposition 1 is lengthy and involved, we provide the
detailed derivation and proofs in Appendix A.1 (Jiang and Ma, 2024). In a
nutshell, we first find the tangent space of the model, which is formed by the
tangent spaces associated with the parameters β, η1 and η2. We then identify
the space of all the influence functions. We finally identify the intersection of
the influence function family and the tangent space to find the efficient influence
function.

Note that (2) uniquely determines E{a1(X,Z,β, ζ) | O} because the effi-
cient influence function φ(O,β, ζ) is unique. Specifically, through solving (2)
we obtain a1(X,Z,β, ζ), which is not necessarily unique, and then we form
E{a1(X,Z,β, ζ) | O}/E[δ{ζ − r(O,β)}], which is the orthogonal projection of
the efficient influence function φ(O,β, ζ) onto the nuisance tangent space cor-
responding to η1, i.e., the space spanned by all the score functions of all the
parametric submodels of η1, hence is a unique function.

3.3. Locally efficient influence function and the estimation of ζ

As expected, the efficient score involves both η1(x, z) and η2(z), which are un-
known. While η2(z) does not involve unobservable variable hence is standard to
estimate, it is not practical to estimate η1(x, z). Fortunately, we discover that
we can use two possibly misspecified working models η∗1(x, z), η�2(z), and the
resulting φ∗�(O,β, ζ) still has mean zero. This is similar to the construction of
the locally efficient score S∗

eff for estimating β, which is robust to η∗1(x, z). Note
that to distinguish functions and operations affected by each working model, we
used two slightly different notations ∗ and � to denote the two different working
models. Specifically, let

φ∗�(O,β, ζ)

= c∗�TS∗
eff(O,β) + E∗{a∗1(X,Z,β, ζ) | O} + (1 − α) −E∗[I{r(O,β) < ζ} | Z]

E∗�[δ{ζ − r(O,β)}] ,

(3)

where a∗1(x, z,β, ζ) is a function that satisfies

E [E∗{a∗1(X,Z,β, ζ) | O} | X,Z]
= E∗ [I{r(O,β) < ζ} | Z] − E [I{r(O,β) < ζ} | X,Z] ,

(4)

and

c∗� =
[
E∗� {S∗

eff(O)S∗T
eff (O)

}]−1

× (−E∗� [E∗{a1(X,Z,β, ζ) | O}E∗{a∗(X,Z,β) | O}]

+ E∗�[δ{ζ − r(O,β)}∂r(O,β)/∂β] − E∗�[I{r(O,β) < ζ}Sβ(O,β)]
E∗�[δ{ζ − r(O,β)}]

)
.

(5)
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We can see that

E{φ∗�(O,β, ζ) | X,Z} = 0 + (1 − α) − E [I{r(O,β) < ζ} | X,Z]
E∗�[δ{ζ − r(O,β)}] ,

hence indeed E{φ∗�(O,β, ζ)} = 0.
In fact, we can avoid positing a working model η�2(z) by estimating all the

marginal expectations involved in φ∗�(O,β, ζ) with sample average, i.e. we can
construct
φ̂∗(O,β, ζ) = ĉ∗TS∗

eff(O,β)

+ E∗{a∗1(X,Z,β, ζ) | O} + (1 − α) − E∗[I{r(O,β) < ζ} | Z]
Ê[δ{ζ − r(O,β)}]

,

(6)

where a∗1(x, z,β, ζ) still satisfies (4), and

ĉ∗ =
[
Ê
{
Seff(O)ST

eff(O)
}]−1

×
(
Ê[δ{ζ − r(O,β)}∂r(O,β)

∂β ] − Ê[I{r(O,β) < ζ}Sβ(O,β, η1, η2)]

Ê[δ{ζ − r(O,β)}]

−Ê [E∗{a1(X,Z,β, ζ) | O}E∗{a(X,Z,β) | O}]
)
.

We can easily verify that

E{φ̂∗(O,β, ζ) | X,Z} = 0 + (1 − α) − E [I{r(O,β) < ζ} | X,Z]
Ê[δ{ζ − r(O,β)}]

,

hence φ̂∗(O,β, ζ) still has mean zero.
Finally, because the values of c∗� and E∗�[δ{ζ− r(O,β)}] does not affect the

mean of φ∗�(O,β, ζ), we can actually replace them by an arbitrary vector and
constant respectively to retain its mean zero property.

We also want to point out that given we already have an estimator β̂ based
on the procedure described in Section 2.2, it is reasonable to insert β̂ into
φ∗�(O,β, ζ). This directly leads to the estimating equation

n∑
i=1

φ∗�(Oi, β̂, ζ)

=
n∑

i=1

E∗{a∗1(Xi,Zi, β̂, ζ) | Oi} + (1 − α) − E∗[I{r(Oi, β̂) < ζ} | Zi]
Ê[δ{ζ − r(Oi, β̂)}]

= 0,

which is equivalent to
n∑

i=1

(
E∗{a∗1(Xi,Zi, β̂, ζ) | Oi} + (1 − α) −E∗[I{r(Oi, β̂) < ζ} | Zi]

)
= 0, (7)

and it does not involve the model η2(z). The estimating equation (7) in combi-
nation with (4) suggests that for the purpose of estimating ζ, we do not need
to concern ourselves with handling η2(z).
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3.4. Locally efficient interval prediction and its properties

As we have discussed, the fact that E{φ∗�(O,β, ζ)} = 0 implies that we can per-
form estimation of ζ under the posited models η∗1 , η�2 , by solving

∑n
i=1 φ

∗�(oi, β̃,

ζ) = 0, where β̃ is a consistent estimator of β. Let the resulting estimator be ζ̃.
This is a locally efficient estimator of ζ and it serves as an alternative procedure
to the conformal prediction procedure in assessing ζ. Alternatively, we can use
φ̂∗(oi,β, ζ) to construct estimating equations instead of using φ∗�(oi,β, ζ). Let
the resulting estimator be ζ̂. In practice, unless we have very good knowledge
on the distribution of Z, we recommend this procedure due to its computational
convenience. Further, if the estimator β̃ happens to be β̂, i.e. the estimator that
satisfies

∑n
i=1 S∗

eff(oi, β̂) = 0, then ζ̃ and ζ̂ are identical and they both solve (7).
Interestingly, to perform conformal prediction using the locally efficient es-

timators ζ̃ and ζ̂, we do not need to engage the potential new observation in
estimating β, and we do not require data splitting either. In contrast, engag-
ing potential new data or data splitting is a key requirement in any conformal
prediction procedures. We next provide the theoretical properties of ζ̃ and ζ̂,
with the proofs given in Appendix A.2 (Jiang and Ma, 2024). We also show
that the resulting prediction probability indeed approximates the target value
by providing the bound on the difference in Theorem 2, with its proof given in
Appendix A.4 (Jiang and Ma, 2024).

Theorem 1. Let ζ̂ solve (7). Then ζ̂ is a consistent estimator of ζ and it
satisfies n1/2(ζ̂ − ζ) → N(0, v∗) in distribution as n → ∞, where

v∗ = [E{∂φ∗(O,β, ζ)/∂ζ}]−2E{u∗(O)2},

u∗(oi) = φ∗(oi,β, ζ) −E

{
∂φ∗(O,β, ζ)

∂βT

}[
E

{
∂S∗

eff(O,β)
∂βT

}]−1

S∗
eff(oi,β).

When η∗1(x, z) = η1(x, z), we further obtain n1/2(ζ̂ − ζ) → N [0, E{φ(O,β, ζ)2}]
in distribution as n → ∞, hence the estimator ζ̂ is efficient.

The consistency of β̂ and ζ̂ directly leads to the consistency of the subsequent
prediction probability. A direct prediction probability bias result follows from
the bias property of β̂, ζ̂, as we stated in Corollary 1.

Corollary 1. Assume Conditions (C1)–(C4) and ‖∂2pr{r(O,β) < ζ}/∂θ∂θT‖2
< ∞ for any given θ ∈ Θ. Then we have

|E[pr{r(O, β̂) < ζ̂}] − pr{r(O,β) < ζ}| = O(1/n).

We further establish the finite sample prediction error bound in Theorem 2.
To prove Theorem 2, we first make some definitions. Define the norm ‖X‖ψ2 ≡
supp≥1 p

−1/2{E(|X|p)}1/p, by the Definition 5.7 in Vershynin (2010), we have
that X is sub-Gaussian if ‖X‖ψ2 < ∞. Furthermore, we define ‖X‖ψ1 ≡
supp≥1 p

−1{E(|X|p)}1/p, by the Definition 5.13 in Vershynin (2010), X is sub-
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exponential if ‖X‖ψ1 < ∞. Let ψ(oi,β, ζ) = {S∗
eff(oi,β)T, φ∗�(oi,β, ζ)}T, and

let θ = (βT, ζ)T ∈ Θ. Let ej be a unit vector with the jth element 1.
We make some regularity conditions.

(C1) Assume each eT
j ψ(Oi,β, ζ), j = 1, . . . , (p + 1) is a sub-Gaussian ran-

dom variable with ‖eT
j ψ(Oi,β, ζ)‖ψ2 ≤ M1 for a positive constant M1.

Furthermore, assume for any given θ ∈ Θ, vT∂ψ(Oi,β, ζ)/∂βu is a sub-
exponential random variable for vectors v,u with ‖v‖2 = ‖u‖2 = 1. Thus,
‖vT∂ψ(Oi,β, ζ)/∂βu‖ψ1 ≤ M2 for a positive constant M2.

(C2) Assume ‖∂pr{r(O,β) < ζ}/∂θ‖2 ≤ M3 for any β, ζ and a postive constant
M3.

(C3) For any given θ ∈ Θ, E
{
∂ψ(Oi,β, ζ)/∂θT

}
is non-singular. Let its min-

imum and maximum singular values be λmin, λmax. Then 0 < λmin ≤
λmax < ∞.

(C4) For any given θ ∈ Θ, and v with ‖v‖2 = 1,∥∥∥∥E{
∂2vTψ(Oi,β, ζ)

∂θ∂θT v
}∥∥∥∥

2
= O(1).

Theorem 2. Assume Conditions (C1)–(C3) to hold and n > p. There are
positive constants c, c1 such that

|pr{r(O, β̂) < ζ̂} − (1 − α)| ≤ cM1M3λ
−1
min

√
log(n)/n,

with probability greater than 1 − 92p+22 exp
{
−c1nmin(λ2

min/4, λmin/2)
}
− e/n.

Here, M1,M3, λmin are defined in the regularity conditions (C1), (C2) and (C3)
respectively.

3.5. Conformal prediction estimator of ζ

For completeness and to facilitate comparison, we now briefly summarize the
estimation of ζ in the conformal prediction literature. The conformal prediction
literature includes two general approaches. One approach involves engaging a
potential new observation Wn+1,Zn+1, Yn+1 = y and conducting estimation of
β under each potential y value, hence is computationally intensive and less often
used. The other approach requires data splitting and is easy to implement, hence
is more often recommended as we explain in detail below.

We randomly split the data into two parts, with sizes n1 and n2. One part is
used to estimate β. Let the size of this part be n2 and the data be On1+1, . . .On.
Typically, n2 = o(n). Let the estimator be β̃. The other part of size n1 is used
to estimate ζ via solving n−1

1
∑n1

i=1 I{ζ − r(oi, β̃) > 0} = (1 − α). Let the
resulting estimator be qζ. To obtain the asymptotic properties of the result-
ing estimator qζ, we note that solving the equation is equivalent to minimiz-
ing

∑n1
i=1 ρ1−α{r(oi, β̃) − ζ}, where ρ1−α(u) ≡ u{1 − α − I(u < 0)} is the

check function. So we directly use the standard quantile regression asymptotic
results to obtain n

1/2
1 (qζ − ζ) → N{0, α(1 − α)(E[δ{ζ − r(O,β)}])−2} in dis-

tribution, where we used β̃ → β. Further note that n1/n → 1, hence we get
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n1/2(qζ − ζ) → N{0, α(1 − α)(E[δ{ζ − r(O,β)}])−2}. For completeness, we also
provide a more detailed derivation of the results in Appendix A.5 (Jiang and
Ma, 2024).

Compared to the locally efficient estimators ζ̂, we will see that qζ generally
leads to larger variability. In fact, when η∗1(x, z) = η1(x, z), it is certain that ζ̂
is efficient hence has the smallest variability. In our numerical implementations,
we find that even when η∗1(x, z) is dramatically misspecified, ζ̂ still performs
similarly to the efficient estimator hence is more efficient than qζ.

4. Shortest prediction interval

We have fixed the center of the prediction interval m(w, z,β) and focused on
estimating ζ so far. As long as the functional form of m(w, z,β) is fixed, the true
value of ζ is well defined hence the prediction interval length 2ζ is determined.
Different estimators of ζ only leads to different estimated values of the prediction
interval length. Hence, our next question is: what choice of m(w, z,β) will lead
to the shortest prediction interval, i.e. the smallest ζ?

To this end, note that

1 − α = pr{Yn+1 ∈ [m(Wn+1,Zn+1,β) − ζ,m(Wn+1,Zn+1,β) + ζ]}
= E[FY |W,Z{m(Wn+1,Zn+1,β) + ζ} − FY |W,Z{m(Wn+1,Zn+1,β) − ζ}],

hence we need to choose m(w, z,β) so that at any (w, z), m(w, z,β) is the center
of the length 2ζ interval so that the area under the conditional pdf fY |W,Z(o)
curve restricted to this interval is the largest among all choices of length 2ζ
intervals. Figure 1 provides an illustration of these intervals. This interval is

Fig 1. Illustration of the intervals with the largest area under the conditional pdf curves.
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what is known as the highest density interval in the Bayesian statistics literature.
Obviously, when fY |W,Z(o) is a symmetric unimodal function of y, m(w, z) is the
mode/mean. However, interestingly, the optimal m(w, z) is not necessarily the
mean function E(Y | w, z) in general. In fact, we cannot give more descriptive
statement than the above in general.

Of course, in practice, we are faced with the issue that fY |W,Z(o) is unknown.
We suggest to compute f∗

Y |W,Z(o, β̂) instead, and then identify the optimal
m(W,Z,β) based on f∗

Y |W,Z(o, β̂) using an iterative procedure. Specifically, we
select an initial m(w, z, β̂), for example m(w, z, β̂) = E∗(Y | W,Z, β̂). We
then estimate ζ. Based on the estimator ζ̂ and f∗

Y |W,Z(o, β̂), we identify the
optimal m(w, z, β̂) as an updated choice of m(w, z, β̂). We repeat the procedure
of estimating ζ and updating m(w, z, β̂), until ζ̂ does not decrease sufficiently
large for our application purpose.

Clearly, the whole procedure of identifying the optimal m(w, z, β̂) relies on
the posited model η∗1(x, z,β, ζ). If we wish, we can choose several candidate
models and retain the result associated with the smallest ζ̂. We do not need
to adjust for multiple testing here, since each probability statement 1 − α =
pr{Yn+1 ∈ C(Wn+1,Zn+1)}, regardless the posited η∗1(x, z), is valid.

5. Alternative prediction methods

We now prescribe two alternative ways for prediction in the measurement error
models. The first method is a direct approach, where the relation between Y and
X is completely bypassed. Instead, one directly inspects the relation between Y
and W,Z for prediction. The second approach is a naive approach, where one
treats W as if it is X. In the prediction interval context, we show that both
methods are consistent, although they have drawbacks in comparison to the
semiparametric method.

5.1. Direct prediction

Because our goal is to predict Y based on W,Z, which are observed in our data,
so a direct approach is to establish the relation between Y and W,Z and perform
prediction. In this sense, the measurement error issue is completely dismissed.
Specifically, in the direct prediction approach, we assume Y = m(w, z) + ε
and we estimate m(w, z) nonparametrically to form the residuals r(O). We
then find the prediction interval by estimating ζ based on the same relation
pr{r(O) < ζ} = 1−α. In Appendix A.6 (Jiang and Ma, 2024), we show that in
this approach, the efficient influence function for estimating ζ is

φdirect(O, ζ) = (1 − α) − I{r(O,m) < ζ} − εE[δ{ζ − r(O,m)} | W,Z]
E[δ{ζ − r(O)}] .

We subsequently estimate ζ via solving
∑n

i=1 φdirect(Oi, ζ) = 0.
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5.2. Naive prediction

A naive approach in measurement error models is to treat W as if it were X and
perform the standard analysis. While it is known that this will lead to an incon-
sistent estimator for β, this is nevertheless a valid method for prediction interval
construction. Specifically, we can estimate β by the usual regression methods,
and then form the prediction interval by estimating

∑n
i=1 φnaive(Oi, β̂, ζ) = 0.

In Appendix A.7 (Jiang and Ma, 2024), we show that the efficient influence
function for estimating ζ is

φnaive(O,β, ζ)

= 1 − α− I{r(O,β) < ζ}
E[δ{ζ − r(O,β)}] + ε

E[εI{r(O,β) < ζ} | W,Z]
E[δ{ζ − r(O,β)}]E(ε2 | W,Z)

+εm′
β(w, z,β)T

[
E

{
m′

β(W,Z,β)⊗2

var(ε2 | W,Z)

}]−1

×E

(
δ{ζ − r(O,β)}∂r(O,β)/∂β

E[δ{ζ − r(O,β)}] +
εI{r(O,β) < ζ}m′

β(W,Z,β)
E[δ{ζ − r(O,β)}]E(ε2 | W,Z)

)
.

6. Simulation studies

In our first simulation, we let Z = (1, Z1, Z2)T, where Z1 ∼ U(0, 1), Z2 is
a Bernoulli random variable with probability 0.8 to be one. We generate X
from a scaled and shifted beta distribution X ∼ 2

√
3Beta(2, 2) −

√
3, and set

W = X + U , where U ∼ N(0, σ2
U ) with σU = 0.3. We then generate Y =

m(X,Z,β) + ε, where ε ∼ N(0, σ2
ε ), σε = 0.1. Here we experiment with three

different mean models:

• m1(X,Z,β) = (X,X2)β1 + ZTβ2,
• m2(X,Z,β) = sin{(X,X2)β1 + ZTβ2},
• m3(X,Z,β) = exp[−{(X,X2)β1 + ZTβ2}2],

where β = (βT
1 ,β

T
2 )T = (4, 1, 1, 1, 0.5)T. We simulate the data with sample sizes

n = 100 and n = 500 respectively.
We implement six methods to perform prediction. In all these methods, we

use Ê(Y |w, z) to denote the kernel estimator of the conditional mean of Y given
w, z. In addition, in obtaining a(X,Z,β) and a1(X,Z,β, ζ), we use a K-means
algorithm to group Z to two groups, and adopt the same Z in each group.

• m1s: r(o,β) = |y − E∗(Y |w, z,β)|. We use semiparametric method to
estimate both β and ζ.

• m1c: r(o,β) = |y − E∗(Y |w, z,β)|. We use semiparametric method to
estimate β and conformal prediction to estimate ζ.

• m2s: r(o,m) = |y−Ê(Y |w, z)|. We use nonparametric method to estimate
m and the direct method in Section 5.1 to estimate ζ.

• m2c: r(o,m) = |y−Ê(Y |w, z)|. We use nonparametric method to estimate
m and conformal prediction to estimate ζ.
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• m3s: r(o,β) = |y−m(w, z,β)|. We adopt the naive model y = m(w, z,β)+
ε to estimate β, and use the native method in Section 5.2 to estimate ζ.

• m3c: r(o,β) = |y−m(w, z,β)|. We adopt the naive model y = m(w, z,β)+
ε to estimate β, and use conformal prediction estimate ζ.

In all the implementation of the conformal prediction method, we use the split
data approach, where we use half of the data for model estimation and the other
half for prediction. We can see that methods m1s and m1c both take into account
the model information and the measurement issue, where m1s is our proposed
method using semiparametrics to form prediction, while m1c uses conformal
prediction approach as a direct competitor. In contrast, methods m2s and m2c
completely ignores the model information when forming the “residual” r(·).
Both methods use nonparametric approach to perform estimation of the mean
function to form residual r(o,m), while m2s subsequently uses semiparametrics
to estimate ζ, m2c uses the conformal prediction to do so. Please see Section A.6
in the Appendix (Jiang and Ma, 2024) for the details on m2s. Note that methods
m2s and m2c correspond to the approach by those who hold the view point that
measurement error problems do not need to be treated as long as one directly
study the relation between the response and the observed variables. Finally,
methods m3s and m3c both ignore the presence of the measurement error and
treat W as X, so are naive methods. m3s and m3c also differ in terms of whether
prediction is carried out using semiparametric or conformal prediction, please
see Section A.7 (Jiang and Ma, 2024) for the details in the semiparametric
method. In implementing all the methods that require a working model η∗,
we adopted the correct distribution in Simulation 1. Specifically, we selected
30 grid points (xj , j = 1, . . . , 30) on the support of X, and let the weights be
η∗(xi) =

∑30
j=1 I(xi = xj)ηx(xj)/

∑30
j=1 ηx(xj), where ηx is the density of the

scaled and shifted Beta(2, 2) distribution.
Based on the n estimated 90% prediction intervals, we computed the cover-

age probability (CP) and the average length (LPI), and provided the box-plots
from the 100 simulations in Figures 2 and 3. Further, in Table 1, we present
the mean and standard deviation of the 100 CPs, as well as the mean and
standard deviation of the 100 prediction interval lengths. We can see that in
general, all methods provide coverage close to the nominal level 90%, hence are
all consistent.

In most cases, the prediction intervals of all the consistent estimators tend to
be the shortest in m1s and m1c, where we used the model information. They are
the largest in m3c, where the measurement error issue is naively ignored, and
are in the middle for m2s and m2c, when the model information is completely
ignored. Within each of the three method classes, the semiparametric approach
leads to better performance, in that the box is generally narrower, reflecting
smaller variability. Among all six methods, it is quite clear that m1s has the best
performance, in terms of its good coverage, short length and small variabilities.
The observed small variability agrees with our theory, because when the working
model is correct, under the same residual form, the semiparametric method
provides the most efficient estimation of the prediction interval. Further, as we
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Fig 2. Simulation 1: Boxplots of the 90% coverage probability (CP) and prediction interval
length (PI) of the estimated prediction interval in the three models using the six methods.
n = 100.
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Fig 3. Simulation 1: Boxplots of the 90% coverage probability (CP) and prediction interval
length (PI) of the estimated prediction interval in the three models using the six methods.
n = 500.
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Table 1

Simulation 1, true distribution for X. The average and standard deviation of the coverage
probabilities (CP (SD)), and the average and standard deviation of the lengths (LPI (SD))

of the estimated 90% prediction intervals.
m1s m1c m2s m2c m3s m3c

n = 100
model 1

CP (SD) 0.9 (0.021) 0.903 (0.042) 0.904 (0.035) 0.902 (0.046) 0.904 (0.022) 0.902 (0.041)
LPI (SD) 4.024 (0.241) 4.102 (0.596) 4.38 (0.457) 4.796 (0.945) 4.111 (0.275) 4.271 (0.607)

model 2
CP (SD) 0.889 (0.02) 0.904 (0.041) 0.88 (0.046) 0.896 (0.042) 0.906 (0.024) 0.905 (0.044)
LPI (SD) 1.949 (0.095) 2.057 (0.231) 2.011 (0.202) 2.207 (0.266) 2.633 (0.197) 2.679 (0.402)

model 3
CP (SD) 0.895 (0.022) 0.897 (0.051) 0.902 (0.036) 0.9 (0.044) 0.898 (0.024) 0.899 (0.046)
LPI (SD) 0.862 (0.079) 0.881 (0.146) 0.959 (0.101) 1.035 (0.175) 1.076 (0.094) 1.133 (0.259)

n = 500
model 1

CP (SD) 0.896 (0.016) 0.9 (0.023) 0.904 (0.017) 0.9 (0.022) 0.899 (0.015) 0.9 (0.023)
LPI (SD) 3.974 (0.106) 4.015 (0.29) 4.054 (0.22) 4.065 (0.309) 3.941 (0.187) 4.017 (0.301)

model 2
CP (SD) 0.894 (0.013) 0.9 (0.019) 0.895 (0.019) 0.899 (0.02) 0.903 (0.019) 0.901 (0.019)
LPI (SD) 1.901 (0.039) 2.022 (0.105) 2.026 (0.096) 2.041 (0.104) 2.511 (0.138) 2.603 (0.187)

model 3
CP (SD) 0.893 (0.016) 0.899 (0.022) 0.899 (0.019) 0.902 (0.021) 0.899 (0.017) 0.899 (0.021)
LPI (SD) 0.852 (0.042) 0.873 (0.064) 0.888 (0.063) 0.906 (0.078) 1.001 (0.081) 1.044 (0.137)

Table 2

Simulation 2, misspecified distribution for X. The average and standard deviation of the
coverage probabilities (CP (SD)), and the average and standard deviation of the lengths

(LPI (SD)) of the estimated 90% prediction intervals.
m1s m1c m2s m2c m3s m3c

n = 100
model 1

CP (SD) 0.893 (0.017) 0.898 (0.038) 0.915 (0.026) 0.897 (0.038) 0.908 (0.019) 0.904 (0.04)
LPI (SD) 2.91 (0.215) 3.087 (0.593) 3.407 (0.343) 3.673 (0.962) 2.843 (0.218) 2.952 (0.534)

model 2
CP (SD) 0.895 (0.019) 0.91 (0.036) 0.906 (0.032) 0.907 (0.041) 0.913 (0.02) 0.909 (0.034)
LPI (SD) 1.544 (0.086) 1.66 (0.215) 1.818 (0.192) 1.975 (0.372) 1.98 (0.201) 2.052 (0.343)

model 3
CP (SD) 0.907 (0.021) 0.906 (0.038) 0.905 (0.041) 0.904 (0.039) 0.904 (0.029) 0.902 (0.039)
LPI (SD) 0.907 (0.056) 0.92 (0.125) 1.012 (0.12) 1.091 (0.164) 1.141 (0.085) 1.185 (0.241)

n = 500
model 1

CP (SD) 0.893 (0.013) 0.898 (0.021) 0.894 (0.02) 0.898 (0.021) 0.897 (0.014) 0.896 (0.022)
LPI (SD) 2.79 (0.11) 2.907 (0.293) 2.68 (0.208) 2.802 (0.28) 2.618 (0.16) 2.636 (0.241)

model 2
CP (SD) 0.901 (0.013) 0.898 (0.023) 0.891 (0.022) 0.897 (0.023) 0.902 (0.016) 0.898 (0.022)
LPI (SD) 1.613 (0.042) 1.607 (0.103) 1.555 (0.129) 1.632 (0.125) 1.771 (0.145) 1.893 (0.253)

model 3
CP (SD) 0.9 (0.012) 0.897 (0.024) 0.896 (0.02) 0.898 (0.024) 0.897 (0.022) 0.897 (0.021)
LPI (SD) 0.884 (0.027) 0.887 (0.067) 0.883 (0.059) 0.916 (0.067) 1.022 (0.086) 1.054 (0.131)

have pointed out, among the three semiparametric methods m1s, m2s, m3s, we
can see that m1s has the best performance in general. This indicates that it is
beneficial to make use of the model information and to take into account the
measurement error issue.

We also conducted a simulation 2, where we adopted a misspecified model
for the distribution of X. In this simulation, we generated X via X ∼ N(−1, 1),
while we choose η∗ to be a discrete uniform distribution function with 30 positive
masses on (μ̂x − 3σ̂x, μ̂x + 3σ̂x). Here μ̂x is the estimated mean of X calculated
by the sample average of W , and σ̂2

x is the estimated variance of X calculated
by the sample variance of W minus σ2

U . All other aspects of the simulation are
identical to those in Simulation 1. The results are in Table 2. Similar conclusions
can be drawn as in Simulation 1. Note that here because the distribution of X
is misspecified, there is no theoretical guarantee that the prediction interval
is optimally estimated. However, we observe smaller variability throughout in
comparison to the corresponding conformal approach.
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Fig 4. Simulation 2: Boxplots of the 90% coverage probability (CP) and prediction interval
length (PI) of the estimated prediction interval in the three models using the six methods.
n = 100.
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Fig 5. Simulation 2: Boxplots of the 90% coverage probability (CP) and prediction interval
length (PI) of the estimated prediction interval in the three models using the six methods.
n = 500.
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We also performed an additional simulation study to investigate the perfor-
mance when the model error distribution is misspecified. The methods are very
robust, while we provide the simulation details in Appendix A.8 (Jiang and Ma,
2024).

7. Real data analysis

Alzheimer’s disease (AD) is the most common cause of dementia and is charac-
terized by accumulation of amyloid-β (Aβ) plaques in the earliest phase of the
disease (Masters and Bateman, 2015; Scheltens et al., 2016). Two established
methods for detecting the presence of Aβ pathology are reduced concentrations
of Aβ1 − 42 (Aβ42) in cerebrospinal fluid (CSF) and increased retention of
Aβ positron emission tomography (PET) tracers (Mattsson et al., 2017). It is
often assumed that CSF Aβ42 and Aβ PET can be used interchangeably, be-
cause there are mounting evidences showing that PET and CSF biomarkers are
strongly associated (Schipke et al., 2017; Leuzy et al., 2016; Palmqvist et al.,
2015). It is natural to ask how accurate it would be if we use one marker, for
example Aβ PET to predict the other. Ideally, if one perfectly predicts the
other, patients will no longer need to take multiple examinations, which reduces
the chance of side effect and lowers patients’ psychological stress. However, pre-
diction based on neuroimage data is challenging because neuroimage data are
often subject to measurement errors resulting from the data acquisition and
processing steps.

We utilize the prediction interval methods m1s–m3c discussed in Section 6
to study the performance of using the standardized uptake value ratio (SUVR)
of florbetapir (radiotracer) from the Aβ PET to predict the Aβ42 from CSF.
We download the preprocessed CSF (Shaw et al., 2016) and florbetapir PET
(Landau et al., 2021) data from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) phase 2/Go study, from which we obtain a subsample with
Aβ42 values from the CSF tests that were taken within 30 days of the PET
scans. Furthermore, we only retain the healthy subjects and the subjects with
Alzheimer’s disease who had their diagnoses within 30 days of the CSF tests.
After removing missing data, we obtain 669 subjects (48.5% female) with an
average age of 74.5 years, where 388 are classified as CSF negative subjects
at the risk of cognitive impairment, and among which 220 are subjects with
AD. Let Y be the logarithm of Aβ42 from CSF, W be the SUVR from PET,
Z = {1, gender, log(age)}T. The scatter plot in the left panel of Figure 6 indi-
cates an approximate quadratic relationship between Y and W , therefore we
assume m(X,Z,β) = (X,X2)β1 + ZTβ2, where X is the underlying error free
covariate. The box plots in the right panel of Figure 6 indicate that there is a
significant difference in CSF values between healthy (199.748 ± 51.30) and AD
groups (135.465 ± 37.57), with the p-value from a student t-test to be less than
0.0001.

We randomly sample two thirds of the subjects to construct the prediction
interval and evaluate the coverage probability on the remaining one third. We
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Fig 6. Left: The scatterplots of CSF Aβ and SUVR from amyloid PET. Right: The distribu-
tion of CSF values in healthy and AD subjects.

Fig 7. Boxplots of the 90% coverage probability (CP) and prediction interval length (PI) of
the estimated prediction interval using the six methods m1s–m3c over 100 cross validations.

repeat the above cross validation process 100 times to compare the performance
of m1s–m3c. In m1s and m1c, we choose η∗ to be a normal probability density
function and assign 30 positive masses evenly spaced on (μ̂x − r1σ̂x, μ̂x + r2σ̂x).
Here μ̂x is the estimated mean of X calculated by the sample average of W , and
σ̂2
x is the estimated variance of X calculated by the sample variance of W minus

σ2
U . We set σU to be 10% of the standard deviation of W based on empirical

knowledge and experience. Furthermore, following Romano et al. (2019) we cal-
ibrate the tuning parameters σε, r1, r2 (in m1s, m1c) and the kernel bandwidths
(in m2s, m2c) to allow the coverage probabilities in the test samples to achieve
the nominal 90% level on average in the cross validation. Figure 7 indicates that
all six methods are consistent, which yield the coverage probabilities close to
90%, while the semiparametric methods generally have much smaller variations
in CP and PI.
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Fig 8. Boxplots over 100 cross validation of AUC from interval and mean strategies of pre-
dicting CSF Aβ postive and negative samples. The dash-line represents the AUC of using
CSF positive/negative to classify AD and healthy subject (AUC = 0.7583).

Table 3

The mean and standard deviation over 100 cross validation of AUC from interval and mean
strategies of predicting CSF Aβ postive and negative samples.

m1s m1c m2s m2c m3s m3c
Interval strategy

Mean 0.7738 0.7691 0.7784 0.7755 0.7755 0.7704
Standard deviation 0.0204 0.0238 0.0247 0.0252 0.0224 0.0236

Mean strategy
Mean 0.7554 0.7526 0.7468 0.7354 0.7525 0.7550

Standard deviation 0.0259 0.0291 0.0279 0.0321 0.0283 0.0261

To illustrate how to use the prediction interval in practice, we propose two
strategies to predict whether a subject has AD or is healthy based on his/her
SUVR value. In strategy 1 (interval strategy), we categorize a subject to be an
AD patient if the lower bound of his/her 90% PI is less than the estimated mean
of log(Aβ42) in the AD group. In strategy 2 (mean strategy), we categorize a
subject to AD if the estimated conditional mean of Y given W is less than the
90% upper confidence bound of mean log(Aβ42) in the AD group. Here, the
specific form of the conditional mean for m1s, m1c is E∗(Y |w, z, β̂), for m2s,
m2c is Ê(Y |w, z), and for m3s, m3c is m(w, z, β̂) as described in the definitions
of these methods in Section 6.

We show the area under the receiver operating characteristic (AUC) curve
of the two prediction strategies in Figure 8. As shown in Figure 8, the interval
strategy outperforms the mean strategy in all methods. Furthermore, in the in-
terval strategy, the AUCs from the semiparametric methods (m1s, m2s and m3s)
have smaller variations than those from their conformal counterparts (m1c, m2c
and m3c) as shown in the upper part of Table 3, which likely attributes to the
fact that the semiparametric methods have smaller variations in PI. Moreover,
by considering the measurement errors, the combination of the interval strategy
and m1s method achieves the smallest variability in AUC. It is worth mention-
ing that the interval strategy also outperforms the standard clinical practice of
using CSF positive/negative to diagnose AD as shown in Figure 8.
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8. Discussion

Many interesting problems are worth further research in the prediction issue for
measurement error models. We highlight some here.

We have used the method in Tsiatis and Ma (2004) as the estimator due
to its generality and root-n rate. Other estimation methods can certainly be
used. When the original model is nonparametric and semiparametric, various
other methods exist based on deconvolution or Sieve (Chen et al., 2008, 2009;
Carroll et al., 2010), and some even handle high dimensional covariates (Jiang
and Ma, 2022; Jiang et al., 2023, 2024). See Li and Ma (2024) for a recent re-
view. These methods can also be incorporated with the prediction procedures
proposed here. When different estimators are combined with the prediction in-
terval construction, their subsequent analysis will be different and some could
be challenging.

As we have mentioned, more general choice of the conformal score r(o,β) is
possible beyond the form |y − m(w, z,β)|. Under the general conformal score
r(o,β), one can also ask the question: what choice of the conformal score will
lead to the smallest prediction set C(Wn+1,Zn+1), where it satisfies pr{Yn+1 ∈
C(Wn+1,Zn+1)} = pr{r(o,β) < ζ} = 1 − α. Note that as soon as the func-
tional form of r(o,β) is chosen, different estimators of β and ζ only affect the
estimated version of C(Wn+1,Zn+1). So identifying the smallest conformal set
C(Wn+1,Zn+1) is not a statistical problem, but a mathematical problem, which
involves inverting r(On+1,β) < ζ to obtain C(Wn+1,Zn+1) and finding the op-
timal r which yields a smallest C(Wn+1,Zn+1) under a predefined measure.
Unfortunately, this is a very difficult question to answer in general. To see the
potential difficulties, as an example, if we have set r(o,β) = −logf∗

Y |W,Z(o,β),
then we get

1 − α = pr{−logf∗
Y |W,Z(On+1,β) < ζ}

= E[pr{−logf∗
Y |W,Z(On+1,β) < ζ | Wn+1,Zn+1}].

From here, we cannot further conclude that ζ is directly linked to the size of
C(Wn+1,Zn+1), unless we assume special features of f∗

Y |W,Z(o,β) as a function
of y. Thus we suspect this problem has to be studied case-by-case in specific
concrete models.

Lastly, we comment on the original issue of predicting a single response Yn+1
given Wn+1,Zn+1. Indeed, at any m(w, z,β), we can estimate the prediction
interval associated with any η∗1(x, z). Thus, we can use the smallest non-empty
intersection of any of these intervals as a most aggressive prediction interval.
Now if we consider an increasing series of α values that approach 1, we can
obtain a series of intervals, which approximates the single prediction value. This
of course does not necessarily lead to a single value. In fact, we cannot guarantee
that the interval length will approach zero.
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Supplementary Material

Supplement to “Prediction in measurement error models”
(doi: 10.1214/24-EJS2272SUPP; .pdf). The supplement includes the theoretical
proofs and additional numerical results.
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