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Abstract: The block maxima method is a classical and widely applied
statistical method for time series extremes. It has recently been found that
respective estimators whose asymptotics are driven by empirical means can
be improved by using sliding rather than disjoint block maxima. Similar re-
sults are derived for general non-degenerate U-statistics of arbitrary order,
in the multivariate time series case. Details are worked out for selected ex-
amples: the empirical variance, the probability weighted moment estimator
and Kendall’s tau statistic. The results are also extended to the case where
the underlying sample is piecewise stationary. The finite-sample properties
are illustrated by a Monte Carlo simulation study.

MSC2020 subject classifications: Primary 62G32, 62E20; secondary
60G70.
Keywords and phrases: Extreme value copula, generalized extreme value
distribution, mixing coefficient, sliding block maxima, stationary time se-
ries.

Received August 2023.

1. Introduction

A common target parameter in various domains of application is the distribution
of componentwise yearly or seasonal maxima calculated from some underlying
multivariate time series [25, 1]. Statistical inference on the target distribution
typically involves the assumption that the block maximum distribution is an
extreme value distribution. The latter is justified by probabilistic results from
extreme value theory: under broad conditions on the time series, the only pos-
sible limit distribution of affinely standardized componentwise maxima, as the
block size goes to infinity, are extreme value distributions; see [28] for the uni-
variate case and [24] for multivariate extensions.

The statistical literature on estimation and testing for extreme-value distri-
butions is abundant, ranging from univariate estimators for the parameters of
the generalized extreme value distribution [34, 23] to nonparametric estimators
for extreme value copulas [20] and parametric estimators for max-stable process
models [32].
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Mathematically, statistical methods are typically validated under the addi-
tional assumption that the block maxima sample is serially independent. How-
ever, heuristically, both the independence assumption as well as the assumption
that block maxima genuinely follow an extreme-value distribution should only
be satisfied asymptotically, for the block size tending to infinity. [16, 19, 17]
have shown that specific univariate estimators are consistent and asymptoti-
cally normal in a sampling scheme where the block size tends to infinity, while
maintaining an i.i.d. assumption on the underlying time series. For specific uni-
variate and multivariate estimators, [6, 7] also relax the i.i.d. assumption, and
allow for more general stationary time series satisfying certain mixing condi-
tions. It has moreover been found that estimators based on block maxima may
be made more efficient by considering sliding rather than disjoint block maxima,
both in the univariate [35, 8, 10] and in the multivariate case [41]. A simple but
incomplete heuristic argument for this superiority consists of the fact that the
sliding block maxima sample contains some observations that are not present in
the disjoint block maxima sample; hence, it can be considered more informative.
A formal argument for the superiority is provided in Lemma A.4 in [41].

In general, the field of asymptotic statistics is based on a number of funda-
mental theoretical tools like the central limit theorem, the delta-method, the
empirical process or the concept of U-statistics [38]. While the efficiency gain
of the sliding block maxima method over its disjoint blocks counterpart men-
tioned in the previous paragraph has been established for classical empirical
means as well as empirical (copula) processes, it has not been studied yet for
the case of U-statistics. The present paper aims at filling this gap by studying
non-degenerate U-statistics of disjoint and sliding block maxima samples. The
topic is related but different to [31], who study U-statistics in the univariate
case where the kernel of order m is evaluated blockwise in the largest m order
statistics of a (disjoint) block of observations.

In general, U-statistics comprise a number of important estimators like the
empirical covariance, Wilcoxon’s statistic or Kendall’s tau statistic. Prominent
examples from extremes are empirical probability weighted moments of order
k ≥ 2 in the univariate case (which give rise to the probability weighted moment
estimator for the parameters of a Generalized Extreme Value distribution [23]),
or sample versions of Kendall’s tau and Spearman’s rho in the bivariate case
[1, Page 274–275]. Mathematical theory for i.i.d. random variables dates back to
[22]; since then, several favorable statistical properties have been demonstrated
[38, Chapter 12]. Asymptotic results on U-statistics have also been generalized to
the time series context [37, 40, 14]; unbiasedness then only holds asymptotically.

The main result of this paper is Theorem 3.2, where we establish a central
limit theorem on the estimation error of U-statistics for multivariate disjoint
and sliding block maxima under mild assumptions on the serial dependence and
the kernel function. As in the papers mentioned before, the disjoint blocks ver-
sion is found to be at most as efficient as the sliding blocks version. In selected
examples, it is in fact found to be less efficient. The results are extended to
a sampling scheme involving piecewise stationarities which is used to capture
certain applications from environmental extremes where maxima are calculated
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based on, for example, summer days [10]. The model is interesting mathemati-
cally, because unlike the disjoint block maxima sample the sliding block maxima
sample is not stationary anymore.

The remaining parts of this paper are organized as follows: the underlying
model assumptions and the definition of respective U-Statistics for disjoint and
sliding block maxima are presented in Section 2. The main limit results are
discussed in Section 3, and illustrated for three selected examples in Section 4.
Extensions to piecewise stationary time series are presented in Section 5. Results
from a Monte Carlo simulation study illustrate the behavior in finite-sample
situations (Section 6). Finally, the proofs are deferred to Section 7. Additional
limit results under strong mixing assumptions and lengthy calculations of some
asymptotic variances are postponed to a supplement [11].

2. U-statistics of block maxima

Recall the Generalized Extreme Value (GEV) distribution with parameters μ
(location), σ (scale) and γ (shape), defined by its cumulative distribution func-
tion (cdf)

G(μ,σ,γ)(x) := exp
[
−
{

1 + γ
(x− μ

σ

)}− 1
γ
]
, 1 + γ

x− μ

σ
> 0.

If η = (μ, σ, γ)′ = (0, 1, γ)′, we will use the abbreviation G(0,1,γ) = Gγ . The
support of Gγ is denoted by Sγ = {x ∈ R : 1 + γx > 0}.

An extension of the classical extremal types theorem to strictly stationary
time series [28] implies that, under suitable broad conditions, affinely standard-
ized maxima extracted from a stationary time series converge to the GEV-
distribution. This was generalized to the multivariate case in [24], where the
marginals are necessarily GEV-distributed. We make this an assumption, and
additionally require the scaling sequences to exhibit some common regularity
inspired by the max-domain of attraction condition in the i.i.d. case [12].
Condition 1 (Multivariate Max-domain of attraction). Let (Xt)t∈Z denote a
stationary time series in R

d with continuous margins, where d ∈ N = {1, 2, . . . }.
There exist sequences (ar)r = (a(1)

r , . . . , a
(d)
r ))r ⊂ (0,∞)d, (br)r = (b(1)r , . . . ,

b
(d)
r )r ⊂ R

d and γ = (γ(1), . . . , γ(d)) ∈ R, such that, for any s > 0 and j ∈
{1, . . . , d},

lim
r→∞

a
(j)
�rs�

a
(j)
r

= sγ
(j)

lim
r→∞

b
(j)
�rs� − b

(j)
r

a
(j)
r

= sγ
(j) − 1
γ(j) , (2.1)

where the second limit is interpreted as log(s) if γ(j) = 0. Moreover, for r → ∞,

Zr = (Z(1)
r , . . . , Z(d)

r ) −→d Z ∼ G (2.2)
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where G denotes a d-variate extreme-value distribution with marginal c.d.f.s
Gγ(1) , . . . , Gγ(d) and where

Z(j)
r = max(X(j)

1 , . . . , X
(j)
r ) − b

(j)
r

a
(j)
r

, j ∈ {1, . . . , d}.

In the case d = 1, we omit all upper indexes; e.g., we write γ = γ(1). In the
case d ≥ 2, let C denote the unique extreme value copula associated with Z. As
is well-known, C can be written as

C(u) = exp
(
−L(− log u(1), . . . ,− log u(d))

)
(2.3)

for some stable dependence function L : [0,∞]d → [0,∞], which satisfies

(L1) L is homogeneous: L(sx) = sL(x) for all s > 0 and all x ∈ [0,∞]d;
(L2) L(ej) = 1 for j = 1, . . . , d, where ej denotes the j-th unit vector in R

d;
(L3) max

(
x(1), . . . , x(d)) ≤ L(x) ≤ x(1) + . . . + x(d) for all x ∈ [0,∞]d;

(L4) L is convex;

see, e.g., [21, 33].
Note that (2.1) and (2.2) may for instance be deduced from Leadbetter’s

D(un) condition, a domain-of-attraction condition on the associated i.i.d. se-
quence with stationary distribution equal to that of X0 and a weak requirement
on the convergence of the c.d.f. of Zr, see Theorem 10.22 in [1].

From now on, we assume to observe X1, . . . ,Xn, an excerpt from a strictly
stationary d-dimensional time series (Xt)t satisfying Condition 1 (some gener-
alizations will be discussed in Section 5). For block size parameter r 	 n, define
componentwise block maxima of size r by

Mr,i :=
(
M

(1)
r,i , . . . ,M

(d)
r,i

)
, M

(j)
r,i := max

{
X

(j)
i , . . . , X

(j)
i+r−1

}
,

where i ∈ {1, . . . , n− r + 1} denotes the first observation within each block.
The traditional block maxima method is based on applying statistical meth-

ods to the sample of disjoint block maxima. The latter is given by M(db)
n,r =(

Mr,i : i ∈ Idb
n

)
, where Idb

n := {(i−1)r+1: 1 ≤ i ≤ m} with m = mn := 
n/r�.
Note that m is the number of disjoint blocks of size r that fit into the sampling
period. Under Condition 1, the sample of disjoint block maxima is stationary
and approximately follows the multivariate extreme value distribution G.

Instead of partitioning the observation period into disjoints blocks, one may
alternatively slide the blocks through the observation period, thereby taking
successive maxima of only one to the right instead of r. The resulting slid-
ing block maxima sample is given by M(sb)

n,r =
(
Mr,i : i ∈ Isb

n

)
, where Isb

n :=
{1, . . . , n− r + 1}. Under Condition 1, the sliding block maxima sample is sta-
tionary as well, with approximate c.d.f. G. Hence, statistical methods that are
based on estimating unknown expectations by empirical means are meaningful.

The case of classical empirical means has been treated in varying generality
in [8, 41, 10]. It was found that estimators based on sliding block maxima are
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typically more efficient than their disjoint block maxima counterparts, despite
the fact that the sample M(sb)

n,r is heavily dependent over time, even if (Xt)t
is an i.i.d. sequence. In this paper we generalize these results to U-statistics of
order p ∈ N, with p = 1 corresponding to classical empirical means.

More precisely, let h : (Rd)p → R be a known symmetric measurable function
of p d-dimensional input variables, subsequently referred to as a kernel of order
p. The main objects of interest in this paper are the associated U-statistic of
order p given by, for mb ∈ {db, sb},

Umb
n,r := Umb

n,r (h) :=
(
nmb

p

)−1 ∑
(i1,...,ip)∈Jmb

n

h
(
Mr,i1 , . . . ,Mr,ip

)
, (2.4)

where nmb = |Imb
n | denotes the length of the block maxima sample (i.e., ndb = m

if mb = db and nsb = n− r + 1 if mb = sb) and where

Jmb
n := Jmb

n (p) := {(i1, . . . , ip) ∈ (Imb
n )p : i1 < · · · < ip}.

A standard heuristic argument suggests that, for the majority of summands
in (2.4), the underlying block maxima can be considered as asymptotically in-
dependent. As a consequence, Umb

n should be considered as an estimator for

θr = θr(h) :=
∫

· · ·
∫

h(x1, . . . ,xp) dPMr,1(x1) . . .dPMr,1(xp)

= E[h(M̃ (1)
r,1 , . . . ,M̃

(p)
r,1 )], (2.5)

where M̃
(1)
r,1 , . . . ,M̃

(p)
r,1 are i.i.d. copies of Mr,1. We are interested in obtaining

asymptotic results for the estimation error

Umb
n,r (h) − θr(h)

in an asymptotic framework where r = rn → ∞ such that r = o(n) for n → ∞.

3. Limit theorems for U-statistics of block maxima

We start by introducing further conditions and notations. First, throughout the
proofs we will use traditional blocking techniques relying on mixing coefficients.
The latter are well-known to control the serial dependence of the underlying
time series. A similar condition has been imposed in [6], among others.
Condition 2 (Block size and serial dependence). For the block size sequence
(rn)n it holds that, as n → ∞,

(a) rn → ∞ and rn = o(n).
(b) There exists a sequence (�n)n ⊂ N such that �n → ∞, �n = o(rn) and

rn
�n
α(�n) = o(1) and n

rn
α(�n) = o(1).

(c)
(

n
rn

)1+ω
β(rn) = o(1) for some ω > 0.

Here, α and β denote the alpha- and beta-mixing coefficients, see [5] for exact
definitions and basic properties. Subsequently, we often write r = rn and � = �n.
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The expectation and higher order moments of h(Mr,i1 , . . . ,Mr,ip) in (2.4)
will be controlled by uniform integrablity and by relying on the convergence of
rescaled block maxima from Condition 1. For that purpose, we need the kernel
function h to behave well under location-scale transformations; see also [36],
Chapter 5, and [31] for a similar, slightly more restrictive assumption.
Condition 3 (Location-scale property of the kernel function). There exist func-
tions f : (Rd)p → (0,∞), � : (Rd)p → R such that, for all x1, . . . ,xp, b ∈ R

d and
a ∈ (0,∞)d,

h

(
x1 − b

a
, . . . ,

xp − b

a

)
= h(x1, . . . ,xp)

f(a, b) − �(a, b), (3.1)

where x/y :=
(
x(1)/y(1), . . . , x(d)/y(d)) for x ∈ R

d,y ∈ (0,∞)d.

Example 3.1. Condition 3 is met for the following kernel functions. Note that
the kernels in (5) to (7) may be used to construct tests for stochastic indepen-
dence; see, for instance, [29]. In the current case, this corresponds to testing
asymptotic independence of the coordinates of X1.
(1) The mean kernel: h(x) = x with d = 1, p = 1, f(a, b) = a, �(a, b) = b.
(2) The variance kernel: h(x, y) = (x − y)2/2 with d = 1, p = 2, f(a, b) =

a2, � ≡ 0.
(3) Gini’s mean difference kernel: h(x, y) = |x−y|/2 with d = 1, p = 2, f(a, b) =

a, � ≡ 0.
(4) The modified probability weighted moment kernel of degree k ∈ N (see

also Section 4.2): hk(x1, . . . , xk) = max{x1, . . . , xk}/k with d = 1, p =
k, f(a, b) = a, l(a, b) = 1

k · b
a .

(5) Kendall’s τ kernel: h(x,y) = 1
{
(x(1) − y(1))(x(2) − y(2)) > 0

}
with d =

2, p = 2, f ≡ 1, � ≡ 0.
(6) Spearman’s ρ kernel: h(x1,x2,x3) = 2−1 ∑

π∈S3
sgn(x(1)

π1 − x
(1)
π2 ) sgn(x(2)

π1 −
x

(2)
π3 ) with d = 2, p = 3, f ≡ 1, � ≡ 0 and where Sn denotes the symmetric

group of order n.
(7) Hoeffding’s D kernel and Bergsma and Dassio’s t∗ kernel: we refer to [29]

for the kernel definition, which satisfy d = 2, f ≡ 1, � ≡ 0 and p = 4 and
p = 5, respectively.

From now on, for the ease of notation, we only consider the case p = 2 (see
also [14], among others). For i ∈ {1, . . . , n− r + 1}, let

Zr,i :=
(
Z

(1)
r,i , . . . , Z

(d)
r,i

)
, Z

(j)
r,i := (M (j)

r,i − b(j)r )/a(j)
r .

with ar and br from Condition 1. Note that (Zr,i)i is stationary with Zr,1 � G
as n → ∞. Further, under Condition 3 one has

h (Mr,i,Mr,j) = f(ar, br)
{
h (Zr,i,Zr,j) + �(ar, br)

}
, (3.2)

which will ultimately allow to deduce asymptotic results on Umb
n,r defined in (2.4)
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from respective results on

Umb
n,r,Z := Umb

n,r,Z(h) :=
(
nmb

2

)−1 ∑
(i,j)∈Jmb

n

h(Zr,i,Zr,j) . (3.3)

Heuristically, the expectation of Umb
n,Z is close to

ϑr = ϑr(h) =
∫ ∫

h(x,y) dPZr,1(x) dPZr,1(y) = E[h(Zr,1, Z̃r,1)] (3.4)

with Z̃r,1 an independent copy of Zr,1. The sequence ϑr in turn converges to

ϑ := E[h(Z, Z̃)], (3.5)

under suitable integrability assumptions; here Z, Z̃ ∼ G are independent (see
Lemma 8.1 below). The necessary integrability condition, which will also ensure
convergence of higher order moments, is as follows.
Condition 4 (Asymptotic integrability). There exists a ν > 2/ω with ω from
Condition 2 such that:

(a) lim supr→∞
∫ ∫

|h(x,y)|2+ν dPZr,1(x) dPZr,1(y) < ∞,
(b) lim supr→∞ sups∈N

∫
|h(x,y)|2+ν dP(Zr,1,Zr,1+s)(x,y) < ∞.

Note that the two moment assumptions may be understood as an asymptotic
formulation of uniform moments as used in [15]. In many situations, the condi-
tions are easily satisfied, see, e.g., Section 4. Finally, for kernels of higher order
than p = 2, more complicated versions of this condition will be needed, see [40].

Additional notation is needed to formulate the asymptotic limit results for
Umb
n,r . Recall G from Condition 1. Let L denote the stable tail dependence func-

tion of G if d ≥ 2, and the identity on [0,∞] if d = 1. For u,v ∈ [0, 1]d and
ξ ≥ 0, let

Cξ(u,v) = exp
[
− Lξ

(
− log u(1), . . . ,− log u(d),− log v(1), . . . ,− log v(d)

)]
,

(3.6)

where, for x,y ∈ [0,∞]d,

Lξ(x,y) := (ξ ∧ 1) ·
{
L(x(1), . . . , x(d)) + L

(
y(1), . . . , y(d)

)}
+ (1 − (ξ ∧ 1)) · L

(
x(1) ∨ y(1), . . . , x(d) ∨ y(d)

)
. (3.7)

As shown in Lemma 8.6 below, Cξ defines a 2d-variate extreme-value copula
with stable tail dependence function Lξ. Let Gξ denote the 2d-variate extreme
value distribution with copula Cξ and margins Gγ(1) , . . . , Gγ(d) , Gγ(1) , . . . , Gγ(d) ,
i.e.,

Gξ(x,y) = Cξ

{
Gγ(1)(x(1)), . . . , Gγ(d)(x(d)), Gγ(1)(y(1)), . . . , Gγ(d)(y(d))

}
(3.8)
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for x,y ∈ R
d. Note that Gξ(x,y) = G(x)G(y) for ξ > 1. Further, Gξ is the

multivariate analogue of Gα0,ξ in Formula (5.1) in [8] and, in the case d = 1,
also appeared in Formula (13) in [10].

Finally, for (Z1,ξ,Z2,ξ) ∼ Gξ, let

σ2
db := 4 Var(h1(Z)), σ2

sb := 8
∫ 1

0
Cov

(
h1(Z1,ξ), h1(Z2,ξ)

)
dξ. (3.9)

where,

h1 : Rd → R, h1(z) := E[h(z,Z)] − ϑ (3.10)

with Z ∼ G and ϑ from (3.5). The following result is the main result of this
paper. Here and throughout, λλ2d denotes the Lebesgue measure on R

2d.

Theorem 3.2. Suppose Conditions 1, 2, 3 and 4 are met. Furthermore let h
be λλ2d-a.e. continuous and bounded on compact sets. Then, for mb ∈ {db, sb},

√
m

f(ar, br)
· (Umb

n,r − θr) � N
(
0, σ2

mb
)
,

with θr from (2.5) and σ2
mb from (3.9). Moreover, σ2

sb ≤ σ2
db.

Note that, under Condition 3, θr = f(ar, br){ϑr+�(ar, br)} with ϑr from (3.4).
In certain situations (in particular when � = 0 and f ≡ const; see, e.g., Kendall’s
tau), one may be willing to regard Umb

n,r as an estimator for the asymptotic ana-
logue

ϑ̃r = f(ar, br){ϑ + �(ar, br)}. (3.11)

For instance, in case of the variance kernel (see also Section 4.1), ϑ̃r is the vari-
ance of the GEV(br, ar, γ)-distribution, which is exactly the GEV-distribution
approximating the distribution of Mr,1, see Assumption 1. Under an additional
bias condition, we may deduce the following result on the estimation error.

Corollary 3.3. Additionally to the assumptions made in Theorem 3.2, suppose
that the limit B = limn→∞ Bn exists, where

Bn :=
√
m(ϑr − ϑ). (3.12)

Then, for mb ∈ {db, sb},
√
m

f(ar, br)
· (Umb

n,r − ϑ̃r) � N
(
B, σ2

mb
)
,

with σ2
mb from (3.9) and ϑ̃r from (3.11).

Remark 3.4 (Generalizations). Using the Cramér-Wold Theorem it is possible
to generalize the limit theorems to the case of joint convergence involving a fi-
nite number of kernel functions. Moreover, as mentioned before and at the cost
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of a more complicated notation, one might extend the results to higher kernel
degrees p ∈ N. Joint weak convergence then even holds for kernels of different de-
grees. These generalizations allow, for example, to handle the joint convergence
of probability weighted moments estimators of different order, which would be
needed to deduce the asymptotics of the PWM-estimator for the parameters
of the GEV-distribution. Further generalizations concerning different model as-
sumptions are worked out in Section 5 and Section B in the supplement.
Remark 3.5 (A bias-corrected version of the sliding blocks estimator). In view of
Lemma 8.6 below, the block maxima Mr,i and Mr,j are asymptotically indepen-
dent for |i− j| ≥ r and asymptotically dependent otherwise. As a consequence,
the summands h(Mr,i,Mr,j) with |i − j| < r induce a dependency bias, which
suggests to replace U sb

n,r by

Ũ sb
n,r :=

(
ñsb

2

)−1 ∑
(i,j)∈J̃sb

n

h(Mr,i,Mr,j),

where J̃ sb
n = {(i, j) ∈ (Isb

n )2 : j − i ≥ r}; see also [10], Remark 3.1. Note that
|J̃ sb

n | =
(
nsb−r+1

2
)

=
(
n−2r+2

2
)

and |J sb
n \ J̃ sb

n | = O(nr), which can used to show
that

√
m

f(a,b) (Ũ
sb
n,r − U sb

n,r) = OP

(
(1 + �(ar, br))m−1/2) with � from Condition 3.

Hence, the two estimators are typically asymptotically equivalent. However, in
finite-sample situations, the bias-reduction may actually be superimposed by an
increase in estimation variance (see Section D in the supplement), whence we
cannot recommend its usage in general (this is akin to the recommendation in
[10], Section E.3).

4. Examples

Details are worked out for specific kernel functions of interest.

4.1. Variance estimation

The variance is one of the most fundamental parameters to describe a distribu-
tion of interest, which, in our case, is σ2

r := Var(Mr,1), where (Xt)t is a univariate
time series. The respective empirical variance, based on either disjoint or sliding
block maxima, is given by

σ̂2
n,r,mb = 1

nmb − 1
∑

i∈Imb
n

(
Mr,i −M

mb
r

)2
, mb ∈ {db, sb},

where M
mb
r := n−1

mb
∑

i∈Imb
n

Mr,i. As is well-known, the empirical variance can
be written as a U-statistic of order p = 2, that is,

σ̂2
n,r,mb = Umb

n,r (hVar), hVar(x, y) = (x− y)2/2.

The following result is a direct consequence of Theorem 3.2.



U-statistics for block maxima 2859

Fig 1. Graph of γ �→ σ2
db/σ

2
sb with σ2

mb as in (C.1) and (C.2).

Corollary 4.1. Let d = 1 and suppose that Conditions 1 and 2 are met with
γ < 1/4. Moreover, assume that there exists a constant ν > 2/ω such that
lim supr E|Zr,1|4+ν < ∞. Then

√
m

a2
r

(
σ̂2
n,r,mb − σ2

r

)
� N

(
0, σ2

mb
)
,

where σ2
db and σ2

sb only depend on the tail index γ. Explicit formulas are provided
in (C.1) and (C.2) in the supplement, respectively. Moreover, σ2

sb < σ2
db.

The assumption γ < 1/4 is natural, as asymptotic normality results on empir-
ical variances require finite fourth moments; in the case of the GEV-distribution,
this exactly corresponds to γ < 1/4. Figure 1 shows the ratio of the asymptotic
variances, σ2

db/σ
2
sb as a function of γ. We observe that the estimator based on

sliding blocks has a significantly smaller variance for negative γ, say γ < −.25,
while hardly any difference is visible for positive γ.

The previous results may be made more explicit when imposing a specific
time series model. We exemplary work out details for a marginal transformed
version of the ARMAX-model. The model is defined as follows: for an i.i.d.
sequence (Wt)t∈Z of Fréchet(1) distributed random variables and α ∈ (0, 1],
consider the ARMAX(1) recursion defined as

Yt = max {αYt−1, (1 − α)Wt} , t ∈ Z. (4.1)

The recursion has the stationary solution Yt := maxj≥0(1 − α)αjWt−j , which
has Fréchet(1) distributed marginals and extremal index θ = 1−α, see Example
10.5 in [1]. Define Xt as the transformed random variables Xt := F←

γ (FW (Yt)),
where FW is the c.d.f. of a Fréchet(1) distribution, Fγ is the c.d.f. of the Pareto
family defined as

Fγ(x) :=

⎧⎪⎨
⎪⎩
(
1 − (1 + γx)−1/γ)1{x ≥ 0} , γ > 0(
1 − (1 + γx)−1/γ)1{0 ≤ x ≤ −1/γ} , γ < 0

(1 − exp(−x))1{x ≥ 0} , γ = 0
, (4.2)
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and where F← is the left continuous generalized inverse of F . By [3] and [5]
the untransformed time series (Yt)t is exponentially β-mixing, which implies
the same for (Xt)t. This results in a large spectrum of choices for rn and �n
satisfying Condition 2, which can hence be regarded as non-restrictive. We will
prove in Section 7.2 that, if γ < 1/4 and if r = o(n), n = o(r3), all assumptions
from Corollary 4.1 are met, with ar = (r(1−α))γ and br = {(r(1−α))γ −1}/γ.
Hence, √

m

(r(1 − α))2γ (σ̂2
n,r,mb − σ2

r) � N
(
0, σ2

mb
)

(4.3)

as asserted. Moreover, one may show that the bias condition is met with B = 0,
whence σ2

r may be replaced by (r(1−α))2γτ2(γ), where τ2(γ) := 1
γ {Γ(1−2γ)−

Γ(1−γ)2}1(γ ∈ (−∞, 1/2)\{0})+(π2/6)1(γ = 0) is the variance of the GEV(γ)
distribution, with Γ(x) :=

∫∞
0 tx−1e−t dt, x > 0, the Gamma function.

4.2. The probability weighted moment estimator

Let M be a random variable following a GEV distribution with parameter η =
(μ, σ, γ)′ ∈ R × (0,∞) × (−∞, 1) and cdf Gη. For k ∈ N0, the kth probability
weighted moment (PWM) of M is given by

βη,k := E[MGk
η(M)]. (4.4)

It is well-known that η is a one-to-one function of the first three probability
weighted moments [23]. Replacing the moments in (4.4) by suitable estimators
and plugging those into the one-to-one function results in (the) PWM estimator
for η. One version, as proposed in [30], is given by

β̃0 := 1
n

n∑
i=1

Mi, β̃k := 1
n

n∑
i=1

(i− 1) · . . . · (i− k)
(n− 1) · . . . · (n− k)M(i), k ≥ 1 (4.5)

where M = (M1, . . . ,Mn) is a sample of random variables distributed as M and
M(1) ≤ . . . ≤ M(n) is the ordered sample. If M is an i.i.d. sample, then there
are no ties with probability 1, whence β̃k = β̂k, where, for k ∈ N,

β̂k−1 =
(
n

k

)−1 ∑
1≤i1<...<ik≤n

hpwm,k(Mi1 , . . . ,Mik) (4.6)

with the permutation invariant kernel function

hpwm,k(x1, . . . , xk) := 1
k

k∑
j=1

1
{

max
1≤i≤k,i =j

xi ≤ xj

}
xj (4.7)

Clearly, β̂k−1 is a U-statistic of order k that is unbiased for E[β̂k−1] = βη,k−1 in
case the sample is i.i.d.
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In this section, we apply Theorem 3.2 to derive limit results for the estimator

β̂mb
k−1 = Umb

n,r (hpwm,k)

with mb ∈ {db, sb}. For simplicity, we restrict attention to the case k = 2, which
yields a U-statistic of order 2. Since the function hpwm,2 does not satisfy Con-
dition 3, we will need the modified kernel function h̃pwm,2(x, y) := max(x, y)/2
from Example 3.1.

Proposition 4.2. Let d = 1 and suppose that (Xt)t∈Z satisfies Condition 1,
does not contain ties with probability one, and that Condition 2 is met. If there
exists ν > 2/ω such that lim supr→∞ E|Zr,1|2+ν < ∞, then, for mb ∈ {db, sb},

√
m

ar

{
Umb
n,r (hpwm,2) − Umb

n,r (h̃pwm,2)
} L2

−−→ 0.

If, moreover, the limit B := limn Bn exists, where Bn =
√
mE[Fr(Zr,1)Zr,1 −

Gγ(Z)Z] with Fr the c.d.f. of Zr,1 and Z ∼ Gγ , then

√
m

(
β̂mb

1 − β(br,ar,γ),1

ar

)
� N

(
B, σ2

mb
)
,

with 0 < σ2
sb < σ2

db.

Note that similar asymptotics have also been worked out in [10] and [19]. In
[10], who also provide explicit formulas for the asymptotic variances, the deriva-
tion was based on explicit expansions of the kernel function involving empirical
cumulative distribution functions. Comparing our result with their Theorem 3.5,
we observe that our result is slightly more restrictive, since we impose β-mixing
rather than α-mixing. An extension to α-mixing is given in Section B in the
supplement. [19] only consider the i.i.d. case and the disjoints blocks estima-
tor. Under this setting and using an approach based on the quantile process
of the block maxima sample, they were able to provide explicit expressions for
the asymptotic bias under a mild and natural second order condition; see their
Theorem 2.2. They also provide an alternative representation for the asymptotic
normal distribution.

4.3. Estimation of Kendall’s tau

Kendall’s tau statistic is a well-known nonparametric distribution-free mea-
sure of rank correlation that quantifies the degree of association between two
variables [26]. The population version τ = τ(X) for a bivariate vector X =
(X(1), X(2)) is defined as follows: for i.i.d. copies X1,X2 of X, we have τ :=
πc − πd = 2πc − 1, where πc := P((X(1)

1 − X
(1)
2 )(X(2)

1 − X
(2)
2 ) > 0) and

πd := P((X(1)
1 − X

(1)
2 )(X(2)

1 − X
(2)
2 ) < 0) denote the probabilities of concor-

dance and discordance of X1,X2, respectively. Applied to bivariate extreme
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value distributions, Kendall’s tau provides a useful summary of extremal de-
pendence; see [1, pp. 274–275] and the references therein.

For a bivariate sample (X1, . . . ,Xn) Kendall’s τ -statistic can be written as
τ̂n =

(
n
2
)−1 ∑

1≤i<j≤n{2hτ (Xi,Xj) − 1} with hτ as in Example 3.1(5). For
mb ∈ {db, sb}, let τ̂mb

n,r denote Kendall’s τ -statistic applied to the sample of
disjoint or sliding block maxima. An application of Theorem 3.2 yields the
following result.

Proposition 4.3. Let d = 2 and suppose Conditions 1 and 2 are met. Then,
with τr := τ(M (1)

r,1 ,M
(2)
r,1 ), we have, for mb ∈ {db, sb},

√
m
(
τ̂mb
n,r − τr

)
� N

(
0, σ2

mb
)
,

where the asymptotic variances can be represented as a function of the extreme-
value copula C from (2.3) as follows:

σ2
db = 16

{∫
[0,1]2

{
C(u) + C̄(u)

}2 dC(u) − 4
(∫

[0,1]2
C(u) dC(u)

)2
}
,

σ2
sb = 32

∫ 1

0

(∫
[0,1]2×[0,1]2

{
C(u) + C̄(u)

}{
C(v) + C̄(v)

}
dCξ(u,v)

− 4
(∫

[0,1]2
C(u) dC(u)

)2
)

dξ,

where C̄(u) = 1− u(1) − u(2) + C(1− u(1), 1 − u(2)) denotes the survival copula
of C.

For the case C = Π, where Π denotes the independence copula, one can show
that σ2

db = 4/9, σ2
sb = 32(7/12−2 log(4/3)) resulting in σ2

db/σ
2
sb ≈ 1.7428, which

has also been validated in a simulation experiment.
Remark 4.4 (Treating τ̂mb

n,r as an estimator τ = τ(C)). Proposition 4.3 quantifies
the (asymptotic) estimation error when treating τ̂mb

n,r as an estimator for τr. In
some situations one may rather be interested in treating τ̂mb

n,r as an estimator
for τ = τ(C), with C the max-attractor copula from Condition 1. In that case,
a bias term may show up, which can be calculated more explicitly under some
suitable second-oder conditions.

It is instructive to start with the i.i.d. case: let D denote the copula of
X1 = (X(1)

1 , X
(2)
1 ), such that the copula Cr of the block maximum distribution

with block size r satisfies Cr(u(1), u(2))1/r = D((u(1))1/r, (u(2))1/r). Condition 1
implies that, for all u = (u(1), u(2)) ∈ [0, 1]2, limr→∞ Cr(u) = C(u). A natu-
ral second order condition [9] reads as follows: suppose there exists a function
ϕ : (0,∞) → (0,∞) with limr→∞ ϕ(r) = 0 and a non-null-function S on [0, 1]2
such that

lim
r→∞

Cr(u) − C(u)
ϕ(r) = S(u), u ∈ [0, 1]2, (4.8)
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where the convergence is uniform on [δ, 1]2, for all δ > 0. As shown in [9],
under some mild assumptions, the condition is equivalent to common second
order conditions imposed on the stable tail dependence function L, and holds
for selected copula families. Moreover, the convergence in (4.8) is necessarily
uniform on [0, 1]2 and the function ϕ is regularly varying of some order ρ ≤ 0.

Next, recall that τr = 4
∫
Cr dCr − 1. A standard argument shows that

lim
r→∞

∫
Cr − C

ϕ(r) d(Cr − C) = 0.

Further,
∫
C dCr =

∫
Cr dC; this equality holding for all pairs of copulas. As a

consequence,

1
4(τr − τ) =

∫
Cr dCr −

∫
C dC

=
∫

(Cr − C) d(Cr − C) +
∫

(Cr − C) dC +
∫

C d(Cr − C)

= o(ϕ(r)) + 2
∫

(Cr − C) dC.

Overall, we obtain that

lim
r→∞

τr − τ

ϕ(r) = 8
∫

S(u) dC(u).

Hence, if the block size r = rn is chosen in such a way that the limit λ0 :=
limn→∞

√
mϕ(r) ≥ 0 exists, we obtain, under the conditions of Proposition 4.3

and in the i.i.d. case,

√
m(τ̂mb

n,r − τ) =
√
m(τ̂mb

n,r − τr) +
√
mϕ(r)τr − τ

ϕ(r) � N (λ0B, σ2
mb),

where B = 8
∫
S(u) dC(u).

Treating the block size r as a tuning parameter, the previous result allows to
make statements on rate-optimal choices of r. Indeed, assuming that ϕ(r) = rρ

with ρ < 0 for simplicity (see [9] for examples), the previous equation can be
restated as

τ̂mb
n,r − τ ≈d N

(
rρB,

σ2
mb
m

)
.

Minimizing the (asymptotic) MSE defined as r2ρB2 + σ2
mb/m with respect to

r, we obtain the ‘optimal choice’ r ∝ n−2ρ/(1−2ρ), with the (asymptotic) MSE
then being of the order nρ/(1−2ρ).

Finally, note that the previous argumentation remains true in the time series
case, provided we require that the convergence in (4.8) holds uniformly on [0, 1]2.
However, it will typically be much harder to calculate Cr, let alone to obtain
asymptotic expansions.
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5. Extensions to piecewise stationarity

Environmental data typically involve different forms of non-stationarity. A par-
ticular source is seasonality, which may statistically be approached by restricting
attention to seasons rather than years, bearing in mind that the inner-season
variability should be approximately stationary. This idea may be approached
mathematically by working with data satisfying the following assumption taken
from [10].
Condition 5 (Piecewise stationary observation scheme). For sample size n ∈ N,
we have observations Xn,1, . . . ,Xn,n taking values in R

d. Moreover, for some
block length sequence (rn)n ⊂ N diverging to infinity such that rn = o(n), we
have

(Xn,1, . . . ,Xn,n) = (Y1,1, . . . ,Y1,rn ,Y2,1, . . . ,Y2,rn , . . .

. . . ,Yndb,1, . . . ,Yndb,rn ,Yndb+1,1, . . . ,Yndb+1,n−ndbrn),

where ndb = 
n/rn� and where (Y1,t)t, (Y2,t)t, . . . denote i.i.d. copies from a
stationary time series satisfying Condition 1 with continuous marginal c.d.f. F .
Note that Yj,t should be regarded as the t-th observation in the j-th season.

We refer to [10] for further discussions of Condition 5, see in particular Re-
mark 2.3. For the rest of this section, we tacitly assume Condition 5 and write
Xj := Xn,j for simplicity. Note that the triangular array (Xn)n is rn-dependent,
which in fact simplifies the analysis of the disjoint block maxima method. For the
sliding block maxima method however, mathematical challenges arise from the
fact that the sliding block maxima sample is typically non-stationary. Indeed,
for x ∈ R

d, generally

P (Mr,1 ≤ x) �= P (X2, . . . ,Xr ≤ x) · P (Xr+1 ≤ x) = P (Mr,2 ≤ x) .

In [10], Lemma 2.4, it is shown that this non-stationarity disappears asymptot-
ically, which suggests that statistical methodology derived under stationarity
assumptions (as in Section 3) may also be applicable under Condition 5. For
deriving respective limit results, some modifications of the previous conditions
are necessary. First of all, the integrability conditions from Condition 4 take the
following, slightly more involved form.
Condition 6. There exists a ν > 2/ω with ω from Condition 2 such that

(a) lim supr→∞ sup1≤i≤j≤r

∫ ∫
|h(x,y)|2+ν dPZr,i(x) dPZr,j (y) < ∞,

(b) lim supr→∞ sup1≤i≤j≤r E[|h(Zr,i,Zr,j)|2+ν ] < ∞.
It is worth noting that, if there exist monotone functions g1, g2 such that

|h(x, y)| ≤ |g1(x)|+ |g2(y)|, the inner supremum may be omitted; examples can
be found in Section 4.

Next, we quantify the average non-stationarity for the sliding block maxima.
For i, j ∈ {1, . . . , r}, let

ϑr,i,j := E[h(Zr,i, Z̃r,j)], ϑ̄r := 1
r2

∑
1≤i,j≤r

ϑr,i,j , (5.1)
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where (Z̃r,j)j=1,...,r is an independent copy of (Zr,j)j=1,...,r. Note that ϑr,1,1 =
ϑr with ϑr from (3.4), while ϑr,i,j �= ϑr in general. We do however have ϑ̄r =
ϑr + o(1) under the previous conditions (see also Lemma B.5 and B.6 in [10] for
similar results).

Lemma 5.1. Suppose Conditions 3, 5 and 6(a),(b) are met and that h is λλ2d-
a.e. continuous. Then, for n → ∞,

E[U sb
n,r,Z ] = ϑ̄r + O(m−1), ϑ̄r = ϑr + o(1).

This result suggests that the non-stationarity of the sliding block maxima
method under Condition 5 may show up in the asymptotic bias of the U-statistic
U sb
n,r. The following assumption requires r to be sufficiently large to make this

bias negligible.
Condition 7 (Negligibility of the bias due to non-stationarity). The limit D :=
limn→∞ Dn exists, where

Dn =
√
m
(
ϑ̄r − ϑr

)
. (5.2)

Theorem 5.2. Within the setting of Condition 5, suppose that the block size and
the underlying time series (Yj,t)t satisfy Condition 2(a),(b) and that the kernel
satisfies Condition 3. Additionally, for mb = db, suppose that Condition 4(a)
is met, and for mb = sb, suppose that Condition 6 and 7 are met. Then, if h is
λλ2d-a.e. continuous and bounded on compact sets, we have, for n → ∞,

√
m

f(ar, br)
(
Umb
n,r − θr

)
�

{
N
(
0, σ2

db
)
, mb = db

N
(
D,σ2

sb
)
, mb = sb

with σ2
mb from (3.9) satisfying σ2

sb ≤ σ2
db. If, additionally, the limit B =

limn→∞ Bn with Bn from (3.12) exists, then, again for n → ∞,
√
m

f(ar, br)
(
Umb
n,r − ϑ̃r

)
�

{
N
(
B, σ2

db
)
, mb = db,

N
(
B + D,σ2

sb
)
, mb = sb

with ϑ̃r from (3.11).

6. Simulation study

A Monte Carlo simulation study was conducted to evaluate the finite sample
performance of two selected estimators based on U-statistics: the empirical vari-
ance (univariate) as well as Kendall’s τ statistic (bivariate). The study mainly
aims at comparing the disjoint and sliding block maxima method for various
extreme value indices and time series models. The discussion is divided into two
subsections, depending on the nature of the target parameter: it can either be a
parameter of the block maximum distribution with some fixed r (e.g., r = 365
or r = 90), or a parameter of the max-attractor distribution from Condition 1;
in that case, n should be considered fixed while r may be treated as a tuning
parameter.
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6.1. Estimating parameters of the block maximum distribution

6.1.1. Estimating the block maxima variance

In Section 4.1, the empirical variance based on sliding block maxima, σ̂2
n,r,sb,

was found to be an asymptotically more efficient estimator of σ2
r := Var(Mr,1)

than its disjoint blocks counterpart, σ̂2
n,r,db. We assess the performance in finite-

sample situations for data-generating processes made up from the following
marginal and temporal models:

Stationary distribution of Xt We consider the generalized Pareto distribu-
tion GPD(0, 1, γ) with shape parameter γ ∈ {−0.4,−0.2, 0, 0.1}, see (4.2). Note
that the largest value of γ = 0.1 is close to the non-integrability point 0.25 for
the variance estimator.

Time series models In addition to the i.i.d. case, two time series models
were considered, each with three parameter choices. The first model is the
(transformed) ARMAX(1) model, see Section 4.1, with time series parameter
α ∈ {0.25, 0.5, 0.75}; note that the extremal index is θ = 1 − α. As the second
model we chose the Cauchy-AR model, defined as the stationary solution (Yt)t
of the Cauchy-AR recursion

Yt = φYt−1 + Wt, t ∈ Z, (Wt)t
i.i.d.∼ Cauchy(0, 1),

with time series parameter φ ∈ {0.25, 0.5, 0.75}. This corresponds to the ex-
tremal index θ = 1−φ, see, e.g., Problem 7.9 in [27]. Realizations from the model
were transformed to the GPD(0, 1, γ) distribution by setting Xt = F←

γ (FY (Yt)),
where FY and Fγ denote the c.d.f. of the Cauchy(0,1) and the GPD(0,1, γ)-
distribution, respectively.

Combining each marginal model with each time series models results in a
total of 4 × 7 = 28 different models. Throughout, we chose to fix the block
size to r = 90, which roughly corresponds to the number of days in the sum-
mer months and which is a common block length in environmental applications.
The number of blocks, denoted as m, ranged from 10 to 100, resulting in cor-
responding sample sizes ranging from n = 900 to n = 9,000 observations. The
performance of the estimators was assessed based on approximating the MSE,
the squared bias and the variance of the estimators based on N = 10,000 simula-
tion repetitions. For assessing the bias, the true variance σ2

90 was determined in
a preliminary simulation experiment involving a huge sample of size 106 drawn
from the distribution of Mr,1; with one such sample for each of the 28 models.

The results for the i.i.d. and the ARMAX-models are illustrated in Figure 2,
where we depict the ratio MSE(σ̂2

n,r,db)/MSE(σ̂2
n,r,sb) as a function of the num-

ber of seasons (results for the Cauchy-AR-model are omitted because they are
qualitatively similar). Across all considered numbers of seasons, tail indices and
time series parameter, the sliding blocks estimator consistently outperforms its
disjoint blocks counterpart. Notably, the depicted ratio is significantly larger
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Fig 2. For the estimation of σ2
r = Var(Mr,1), the ratio MSE(σ̂2

n,r,db)/MSE(σ̂2
n,r,sb) is de-

picted as a function of number of blocks m.

than one for small tail indices and for small sample sizes. This particular obser-
vation is promising because obtaining large sample sizes is sometimes challenging
in the area of extreme value statistics. Also, it should be noted that the serial
dependence does not substantially influence the relative performance (as was
to be expected from the asymptotic results). Finally, we would like to report
that the estimation variance was found to be of much larger order than the
bias, whence the MSE-ratio is nearly the same as the respective variance ratio.
This is different when the target variable is a parameter of the max-attractor
distribution G from Condition 1, as will be discussed in Section 6.2 below.

6.1.2. Estimating Kendall’s tau

We investigate the finite-sample performance in the bivariate case for the esti-
mation of Kendall’s τ = τr = τ(M (1)

r,1 ,M
(2)
r,1 ) based on the estimators τ̂db

n,r and
τ̂ sb
n,r from Section 4.3. Note that both Kendall’s τ and its estimators do not

depend on the marginal distributions (in case they are continuous). The data
generating processes are as follows:

Time series models Three types of time series models were considered: bi-
variate versions of the ARMAX(1) and Cauchy-AR(1) model from the previous
section as well as i.i.d. observations. The bivariate ARMAX(1) model is defined
as the stationary bivariate solution to the recursion equation:

X
(j)
t = max{αX(j)

t−1, (1 − α)W (j)
t }, t ∈ Z, j ∈ {1, 2},

where α ∈ (0, 1] and where (Wt)t is an i.i.d. sequence with Fréchet(1)-distributed
margins and with copula as specified below. Throughout, the value of α was fixed
to 0.5; and the i.i.d. case is obtained for α = 0. The bivariate Cauchy-AR(1)
model is defined as the stationary solution of the bivariate Cauchy-AR(1) re-
cursion

X
(j)
t = φX

(j)
t−1 + W

(j)
t , t ∈ Z, j ∈ {1, 2},



2868 A. Bücher and T. Staud

Fig 3. MSE of τ̂mb
n,r (upper panel) and MSE ratio MSE(τ̂db

n,r)/MSE(τ̂ sb
n,r) (lower panel) plotted

against the number of blocks m.

where φ ∈ (0, 1] and where (Wt)t is an i.i.d. sequence with Cauchy(1) margins
and with copula as specified below. Throughout, the value of φ was fixed to 0.5.

Copula of Wt Seven different copulas were considered: the independence cop-
ula, the Gaussian copula, the tν-copula with ν = 4 degrees of freedom, and the
Gumbel-Hougard copula, where the parameter of three last-named copulas was
chosen in such a way that the associated value of Kendall’s tau is in {0.3, 0.6}.
Note that the Gaussian copula is tail independent, while the t- and Gumbel cop-
ula exhibit upper tail dependence. The upper tail dependence coefficients as a
function of Kendall’s tau are given by 2·t5(−

√
5(1− sin(πτ/2))/(1+ sin(πτ/2))∈

{0.23, 0.5} and 2− 21−τ ∈ {0.375, 0.68} for the t4 and Gumbel-Hougard copula,
respectively; see [18].

Overall, we obtain 3 × 7 = 21 different models. As in the previous section,
we fix the block length to r = 90 and vary m between 10 and 100, resulting in
sample sizes n = mr ranging from 900 to 9,000 observations (results for other
choices of fixed r were found to be qualitatively similar). The estimators are
evaluated in terms of the mean squared error (MSE), the bias and the variance,
based on N = 1,000 simulation repetitions. The true value of τr was assessed in
a preliminary simulation involving a sample of size 100,000 from Mr,1.

The results are presented in Figure 3, where we restrict attention to the
Cauchy-AR(1) model, as the performance in the other two time series is nearly
identical. As in the previous section, the bias was found to be of much smaller
order than the variance, whence we further restrict attention to MSE(τ̂db

n,r) and
to the MSE ratio MSE(τ̂db

n,r)/MSE(τ̂ sb
n,r). We observe that the sliding blocks

estimator consistently outperforms the disjoint blocks counterpart. The level of
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dependence impacts the performance in that the estimation is more precise for
higher dependence (for both estimators), and in that the advantage of the sliding
blocks estimator over its disjoint blocks counterpart is highest for low levels of
dependence/independence. Furthermore, as in the previous section, the sliding
blocks estimator’s advantage is slowly decreasing in the number of blocks.

6.2. Estimating parameters of the max-attractor distribution

If the target variable is a parameter of the max-attractor distribution, the total
sample size n can be considered fixed, with the block size r serving as a tuning
parameter to be chosen by the statistician. The arguments from Remark 4.4
then suggest that a bias-variance trade-off shows up: a large block size should
correspond to small bias and large variance, and vice versa.

We restrict attention to the estimators τ̂db
n,r and τ̂ sb

n,r from Section 4.3, now
considered as estimators for τ = τ(Z(1), Z(2)) with (Z(1), Z(2)) from Condition 1.
We chose to fix the sample size to n = 1000, and consider various choices for
the block length between r = 4 and r = 50. For simplicity, we restrict attention
to the iid case, where explicit calculations of τ = τ(C) are possible such that
we do not need to rely on preliminary Monte Carlo approximations. Regarding
the copula D of Xi = (X(1)

i , X
(2)
i ), we chose to work with to the outer power

transform of the Clayton copula (see [6], Formula (4.5)) with parameter θ fixed
to θ = 1 and with parameter β chosen in such a way that Kendall’s tau τ = τ(C)
of the extreme value attractor C (which is the Gumbel-Hougaard copula with
parameter β) varies in {0.35, 0.4, 0.45, 0.5}.

The results, based on N = 1000 simulation runs each, are summarized in
Figure 4. As expected, the squared bias is an increasing function of m, while
the variance is decreasing. In fact, the curves agree with the theoretical results
from Remark 4.4 and Section 3.1 in [9], where it is shown that ϕ from (4.8) can
be chosen as r−1 for i.i.d. samples from the outer power Clayton copula. As a
consequence, the squared bias is of the theoretical order r−2 = (m/n)2, while
the variance is of the order m−2. The sum of the two rates corresponds to the
MSE, which is a u-shaped function of m with minimal value attained at a point
proportional to m = n2/3, which in our case is n = 100. This is indeed close to
the argmins of the MSE-curves depicted in Figure 4.

7. Proofs

Recall the definitions of θr, ϑr, σ2
mb from (2.5), (3.4) and (3.9), respectively.

7.1. Proofs for Section 3

Proof of Theorem 3.2. Recall the definition of U (mb)
n,r,Z in (3.3). By Condition 3

we have
Umb
n,r − θr

f(ar, br)
= U

(mb)
n,r,Z − ϑr.
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Fig 4. Mean squared error (top row), squared bias (middle row) and estimation variance
(bottom row) when considering τ̂mb

n,r as an estimator for τ = τ(C) with fixed sample size
n = 1000. From left to right: Kendall’s tau of the attractor copula 0.35, 0.4, 0.45, 0.5.

Hence it suffices to show that
√
m · (Umb

n,r,Z − ϑr) � N
(
0, σ2

mb
)
, (7.1)

for mb ∈ {db, sb} and

σ2
sb ≤ σ2

db. (7.2)

For the proof of (7.1) we will use a Hoeffding decomposition and verify weak
convergence of the linear part to the normal limit and L2-convergence to zero
of the asymptotically degenerate part. For both parts we will employ common
blocking techniques to deal with the serial dependence, (see e.g., [13], page 31).
Define

h1,r : Rd → R, x �→ h1,r(x) := E[h(x,Zr,1)] − ϑr (7.3)
h2,r : R2d → R (x,y) �→ h2,r(x,y) := h(x,y) − h1,r(x) − h1,r(y) − ϑr

and notice the algebraic identity

Umb
n,r − ϑr = 2

nmb

∑
i∈Imb

n

h1,r(Zr,i) + 2
nmb · (nmb − 1)

∑
(i,j)∈Jmb

n

h2,r(Zr,i,Zr,j)

≡ Lmb
n,r + Dmb

n,r. (7.4)
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Proof of (7.1) for mb = db: We start by proving
√
m · Ldb

n,r = 2√
m

∑
i∈Idb

n

h1,r(Zr,i) � N
(
0, σ2

db
)
. (7.5)

By Lemma 8.5, we may switch to i.i.d. copies of Zr,i. The assertion then follows
from Ljapunov’s central limit theorem, with the Ljapunov Condition being a
straightforward consequence of Lemma 8.2 and Condition 4.

In the next part we show that the (asymptotically) degenerate part converges
to zero in L2, i.e., E[(

√
m · Ldb

n,r)2] = o(1). For that purpose, it is sufficient to
show that

m

n4
db

∑
(i1,i2)∈Jdb

n
(j1,j2)∈Jdb

n

E[h2,r(Zr,i1 ,Zr,i2)h2,r(Zr,j1 ,Zr,j2)] = o(1). (7.6)

The Cauchy-Schwarz inequality, standard inequalities for the expectation and
Condition 4 imply that

sup
(i1,i2)∈Jdb

n
(j1,j2)∈Jdb

n

∣∣E[h2,r(Zr,i1 ,Zr,i2)h2,r(Zr,j1 ,Zr,j2)]
∣∣ ≤ sup

s∈N

E[h2
2,r(Zr,1,Zr,1+s)]

= O(1).

Consider a tuple (i, j) = (i1, i2, j1, j2) ∈ {(i1, i2) ∈ Jdb
n , (j1, j2) ∈ Jdb

n } such
that both the distance between the smallest, min(i, j), and the second smallest
index and the largest, max(i, j), and the second largest index is at most 2r.
Clearly, the cardinality of the set of all those (i, j) is of the order O(m2), whence
the expression in (7.6) with the sum restricted to those tuples is of the order
O(m−1). It is hence sufficient to consider the sum over those summands for
which either the distance between the smallest index and all other indices is
strictly larger than 2r, or the distance between the largest index and all other
indices is strictly larger than 2r. We only consider the first case, as the other
can be treated similarly. Without loss of generality, let i1 be the smallest index,
and let Jn,db = denote the respective set of indices, that is, Jn,db = {(i, j) ∈
Jdb
n × Jdb

n : i2 − i1 > 2r, j1 − i1 > 2r}.
For each tuple (i, j) ∈ Jn,db, we may use Berbee’s coupling Lemma [2] to

construct a random variable Z∗
r,i1

having the same distribution as Zr,i1 that
is independent of (Zr,i2 ,Zr,j1 ,Zr,j2) and which satisfies P(Zr,i1 �= Z∗

r,i1
) ≤

β(σ(Zr,i1), σ(Zr,i2 ,Zr,j1 ,Zr,j2)) ≤ β(r) where σ(X) denotes the initial σ-field
of X. Now decompose

E[h2,r(Zr,i1 ,Zr,i2)h2,r(Zr,j1 ,Zr,j2)]
= E[

{
h2,r(Zr,i1 ,Zr,i2) − h2,r(Z∗

r,i1 ,Zr,i2)
}
h2,r(Zr,j1 ,Zr,j2)]

+ E[h2,r(Z∗
r,i1 ,Zr,i2)h2,r(Zr,j1 ,Zr,j2)] =: I(i,j)

1,n + I
(i,j)
2,n .

Using stationarity, basic properties of the conditional expectation and the prop-
erties of Z∗

r,i1
we obtain, via conditioning on (Zr,i2 ,Zr,j1 ,Zr,j2), that I(i,j)

2,n ≡ 0.
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Next, repeated applications of Hölder’s inequality imply that, uniformly in
(i, j) ∈ Jn,db,

|I(i,j)
1,n | ≤ E

[
1
{
Zr,i1 �= Z∗

r,i1

} ∣∣{h2,r(Zr,i1 ,Zr,i2) − h2,r(Z∗
r,i1 ,Zr,i2)

}
× h2,r(Zr,j1 ,Zr,j2)

∣∣]
� β(r)ν/(2+ν),

where we have used Condition 4. Overall,
m

n4
db

∑
(i,j)∈Jn,db

|E[h2,r(Zr,i1 ,Zr,i2)h2,r(Zr,j1 ,Zr,j2)]| � m · sup
(i,j)∈I

|I(i,j)
1,n + I

(i,j)
2,n |

�
(
m1+2/νβ(r)

)ν/(2+ν)

which converges to zero by Condition 2 (c) as 2/ν < ω. This implies (7.6), and
in combination with (7.4) and (7.5) we obtain (7.1).

Proof of (7.1) for mb = sb: In order to show that the degenerate part of the
rescaled sliding blocks U-statistic converges to zero, it is sufficient to show that

m

n4
sb

∑
(i1,i2)∈Jsb

n
(j1,j2)∈Jsb

n

E[h2,r(Zr,i1 ,Zr,i2)h2,r(Zr,j1 ,Zr,j2)] → 0.

This can be worked out analogously to the disjoint case: again, we may restrict
the sum in the upper display to tuples in J sb

n = {(i, j) ∈ J sb
n × J sb

n : i2 − i1 >
2r, j1 − i1 > 2r}, as the set of the remaining tuples is of the order O((nr)2).
We can then copy the disjoint blocks proof verbatim by replacing Jn,db and ndb
with Jn,sb and nsb.

It remains to show

2
√
m

n

∑
i∈Isb

n

h1,r(Zr,i) � N
(
0, σ2

sb
)
.

For this purpose use Theorem 8.7 with fr,s := h1,r, f := h1 and note that all
conditions are satisfied, where we use Lemma 8.6 and an easy adaptation of
Lemma B.15 in [10] to obtain the weak convergence condition in (8.3).

Proof of (7.2): The inequality follows from Lemma A.10 in [41], where Xn,i :=
h1,r(Zr,i) and the preconditions of Lemma A.10 can be deduced from Condi-
tion 2(a), (c) and 4(a).

Proof of Corollary 3.3. By Condition 3 and the assumption on Bn, we have
√
m

f(ar, br)
(
θr − f(ar, br)(ϑ + �(ar, br)

)
=

√
m(ϑr − ϑ) = Bn = B + o(1).

Hence, the assertion follows from Theorem 3.2 and Slutsky’s theorem.
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7.2. Proofs for Section 4

Proof of Corollary 4.1. Note that |hVar(x, y)|2+ν/2 ≤ 22+ν/2(|x|4+ν + |y|4+ν).
Hence, by assumption, Condition 4 is met for a ν > 0 as in the formulation
of Theorem 3.2. The statement follows by the continuity of hVar and Exam-
ple 3.1.

Proof of Equation (4.3). Fix γ < 1/4 and omit the lower index 1 everywhere;
e.g., write Zr instead of Zr,1. We need to verify the conditions of Corollary 4.1.

We start by proving Condition 1, for which we restrict attention to the
case γ > 0 since the other cases can be treated similarly. Using F←

W (Fγ(t)) =
−1/ log{1 − (1 + γt)−1/γ} for t > 0 and equation (10.5) from [1] we have

P

(
Mr − br

ar
≤ x

)
= exp

[
− 1 + (1 − α)(r − 1)
F←
W (Fγ(arx + br))

]

= exp
[
r(1 − α) log{1 − (1 + γ(arx + br))−1/γ}

]
+ o(1)

= exp
[
−r(1 − α)(1 + γ(arx + br))−1/γ

]
+ o(1)

=Gγ(x) + o(1),

where we substituted ar = (r(1− α))γ , br = {(r(1− α))γ − 1}/γ. Hence Condi-
tion 1 is satisfied.

Condition 2(a) holds by assumption. Conditions (b) and (c) hold since r =
o(n3) and since there exists c > 0 with α(k) ≤ β(k) ≤ exp(−ck) for k ∈ N by
the discussion in Section 4.1. Note that (c) does hold for all ω > 0.

In view of the latter statement, it remains to prove lim supr E[|Zr|4+ν ] < ∞
for some ν > 0. Note that this in turn is equivalent to lim supr E[|Z ′

r|4+ν ] < ∞,
where Z ′

r := (Mr − b′r)/a′r and where b′r ∈ R, a′r > 0 are sequences with Z ′
r �

GEV(μ, σ, γ) for some μ ∈ R, σ > 0.
Define a′r := rγ and b′r := (rγ−1)/γ, where the latter is defined by continuity

as b′r = log r if γ = 0. The p.d.f. of Z ′
r is then given by

fZ′
r
(t) = (1−α+α/r) ·

⎧⎪⎨
⎪⎩

(1 + γt)−(1+1/γ)
(
1 − (1+tγ)−1/γ

r

)r(1−α)+α−1
, γ �= 0

e−t
(
1 − e−t

r

)r(1−α)+α−1
, γ = 0

for t ∈ supp(Z̃r). We will only present the case γ > 0 as the other cases use
similar ideas. Substituting 1 + tγ, we obtain

E[|Z̃r|4+ν ]

= 1 − α + α/r

γ

∫ ∞

1/rγ

( |t− 1|
γ

)4+ν

t−1−1/γ
(
1 − t−1/γ

r

)r(1−α)+α−1
dt

≤ 1 − α + α/r

γ5+ν

{∫ 1/2

1/rγ
t−1−1/γ

(
1 − t−1/γ

r

)r(1−α)+α−1
dt
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+
∫ ∞

1/2
t3+ν−1/γ

(
1 − t−1/γ

r

)r(1−α)+α−1
dt
}

=: Ir1 + Ir2

By the monotone convergence theorem the first integral converges to
∫ 1/2
0 t−1−1/γ

exp(−(1− α)t−1/γ) dt < ∞; hence limr→∞ Ir1 < ∞. Finally, let ν = 1/(2γ)− 2
and invoke the monotone convergence theorem again to obtain

lim
r→∞

Ir2 = 1 − α

γ3+γ/2

∫ ∞

1/2
t1−1/(2γ) exp(−(1 − α)t−1/γ) dt < ∞

as 1 − 1/(2γ) < −1. Overall, we have shown that lim supr E[|Zr|4+ν ] < ∞ as
asserted.

Using similar ideas as before, one can show that n = o(r3) implies limn→∞ Bn

= 0.

Proof of Proposition 4.2. Write hpwm,2 = hpwm and h̃pwm,2 = h̃pwm. First of all,
we have √

m

ar

{
Umb
n,r (hpwm) − Umb

n,r (h̃pwm)
}

= Smb
n + Rmb

n

where

Smb
n =

√
m

(
nmb

2

)−1 ∑
(i,j)∈Jmb

n
j−i>2r

{
hpwm(Zr,i, Zr,j) − h̃pwm(Zr,i, Zr,j)

}

Rmb
n =

√
m

(
nmb

2

)−1 ∑
(i,j)∈Jmb

n
j−i≤2r

{
hpwm(Zr,i, Zr,j) − h̃pwm(Zr,i, Zr,j)

}
.

The number of summands in Rmb
n is of the order O(nr) for mb = sb and of

the order O(m) for mb = db, whence Rmb
n = OL2(m−1/2) = oL2(1) by the

integrability assumption.
Next, we have

Smb
n =

√
m

(
nmb

2

)−1 ∑
(i,j)∈Jmb

n
j−i>2r

1
21(Zr,i = Zr,j)Zr,i

which is zero with probability one by the no-ties assumption; note that all indices
in the sum refer to blocks that do not overlap.

The second statement follows from Corollary 3.3, applied to Umb
n,r (h̃pwm).

Finally, the inequality for the asymptotic variances can be found in [10].

Proof of Proposition 4.3. Recall Example 3.1(5) and apply Theorem 3.2. A short
calculation yields the formulas for the asymptotic variances.
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7.3. Proofs for Section 5

Proof of Lemma 5.1. For ξ ∈ (0, 1), let ξr = 1 + 
rξ�. Then,

ϑ̄r =
∫ 1

0

∫ 1

0
E[h(Zr,ξr , Z̃r,ξ′r)] dξ dξ′

By Lemma 8.9, we have Zr,ξr � Z ∼ G for any ξ ≥ 0. Hence, by independence
and the continuous mapping theorem, h(Zr,ξr , Z̃r,ξ′r) � h(Z, Z̃). Therefore, by
the previous display, dominated convergence (use Condition 6(a)) and Example
2.21 in [38], we obtain ϑ̄r = ϑ + o(1). This implies the second statement, since
ϑr = ϑ + o(1) by Lemma 8.1.

For the first convergence assume that n = mr for simplicity. We have

E[U sb
n,r,Z ] = 1

nsb(nsb − 1)
∑

1≤i �=j≤nsb
j−i>2r

E[h(Zr,i,Zr,j)] + O(m−1),

where the O-term is due to leaving nearby summands out. Next, by indepen-
dence, piecewise stationarity and including nearby summands again,∑
1≤i �=j≤nsb

j−i>2r

E[h(Zr,i,Zr,j)] =
∑

1≤i �=j≤nsb
j−i>2r

E[h(Zr,i, Z̃r,j)] = m2
∑

1≤i,j≤r

ϑr,i,j +O(rn).

Overall,

E[U sb
n,r,Z ] = m2r2

nsb(nsb − 1) ϑ̄r + O(m−1) = ϑ̄r + O(m−1).

Proof of Theorem 5.2. For mb = db, (Zr,i)i∈Idb
n

is an i.i.d. sample. Thus the
proof essentially is an easier version of the proof of Theorem 3.2.

For mb = sb note that, by Lemma 5.1, Conditions 7 and 3, it is sufficient
to show that

√
m(U sb

n,r,Z − E[U sb
n,r,Z ]) � N

(
0, σ2

sb
)
. Note that we might replace

n− r+1 with n, since (n− r+1)/n = 1+O(m−1). Unlike in the situation from
Theorem 3.2, the sliding block maxima sample is not stationary anymore, which
requires a different version of the Hoeffding decomposition. For 1 ≤ i, j ≤ n,
introduce functions h1,r,i : Rd → R and h2,r,i,j : R2d → R by

h1,r,i(x) := E[h (x,Zr,i)] − ϑr,i,i

h2,r,i,j(x,y) := h(x,y) − h1,r,i(x) − h1,r,j(y) − ϑr,i,j ,

with ϑr,i,j from (5.1). Note, that by Lemma 5.1

U sb
n,r,Z − 2

n(n− 1)
∑

1≤i<j≤n

E[h(Zr,i,Zr,j)]

= 2
n

n∑
i=1

h1,r,i(Zr,i) + 2
n(n− 1)

∑
1≤i<j≤n

h2,r,i,j(Zr,i,Zr,j) + O(m−1) (7.7)

≡ Lsb
n,r + Dsb

n,r + O(m−1)
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The asymptotic normality of
√
mLsb

n,r follows from Theorem 8.8 with fr,i :=
2h1,r,i, where the preconditions are met since the time series is piecewise sta-
tionary and by assumption; moreover, (8.3) is a consequence of Lemma 8.11.
We omit the proof of

√
mDsb

n,r = oP(1) as the proof is similar to the proof of the
respective statement in the proof of Theorem 3.2.

8. Auxiliary results

8.1. Disjoint blocks – stationary case

Lemma 8.1 (Convergence of ϑr). Assume Condition 1 is met. Furthermore
suppose that h is λλ2d-a.e. continuous and that there exists ν > 0 with
lim supr→∞

∫ ∫
|h(x,y)|1+ν dPZr,1(x) dPZr,1(y) < ∞. Then limr→∞ ϑr = ϑ

with ϑr and ϑ from (3.4) and (3.5), respectively.

Proof. We have h(Zr,1, Z̃r,1) � h(Z, Z̃) by independence and the continuous
mapping theorem. The assertion then follows from Example 2.21 in [38] and the
integrability assumption.

Recall the definition of h1,r from (7.3).

Lemma 8.2 (Weak convergence of h1,r(Zr,1)). Suppose Conditions 1, 4(a)
hold and that h is λλ2d-a.e. continuous and bounded on compact sets. Then, for
r → ∞,

h1,r(Zr,1) � h1(Z).

Moreover, for any p < 2 + ν with p ∈ N, we have limr→∞ E[hp
1,r(Zr,1)] =

E[hp
1(Z)].

Proof. Since ϑr → ϑ by Lemma 8.1, we may assume ϑr ≡ 0. We will use
Wichura’s Theorem [4, Theorem 4.2]. Note that

Tr := h1,r(Zr,1) =
∫

h(Zr,1,y) dPZr,1(y), T := h1(Z) =
∫

h(Z,y) dPZ(y)

and define, for B := B(b) := [−b, b]d with b ∈ N,

Tr(b) :=
∫
B

h(Zr,1,y) dPZr,1(y), T (b) :=
∫
B

h(Z,y) dPZ(y).

In order to show weak convergence of Tr(b) to T (b) we use the extended con-
tinuous mapping theorem (Theorem 1.11.1 in [39]). Let xr → x ∈ R

d and note
that the map (x,y) �→ h(x,y)1{y ∈ B} is P⊗2

Z -a.e. continuous. By the ordinary
continuous mapping theorem we obtain weak convergence of h(xr,Zr,1)1{Zr,1 ∈}
to h(x,Z)1{Z ∈ B}. Next, since there exists a compact set A containing (xr)r,
we have

lim sup
r→∞

E[h2(xr,Zr,1) · 1{Zr,1 ∈ B}] ≤ sup
x∈A,z∈B

h2(x,z) < ∞,
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which in turn implies moment convergence of h(xr,Zr,1)1{Zr,1 ∈ B}. This
shows continuous convergence of the mapping sequence x �→

∫
B
h(x,y) dPZr,1(y),

and the extended continuous mapping theorem finally implies weak convergence
of Tr(b) to T (b) as asserted.

Next, we have weak convergence of T (b) to T , for b → ∞. Indeed, with Z̃ an
independent copy of Z, we have

E |T − T (b)| ≤ E
[
|h(Z, Z̃)|1{Z̃ ∈ B(b)}

]
≤ ‖h(Z, Z̃)‖L2(P) · P(Z̃ �∈ B(b))1/2

= o(1)

as b → ∞.
We finally verify limb→∞ lim supr→∞ P (|Tr(b) − Tr| > ε) = 0 for any fixed

ε > 0. Let Z̃r,1 be an independent copy of Zr,1. Applying the Markov inequality,
we have

P (|Tr(b) − Tr| > ε) ≤ P

(∫
Bc

|h(Zr,1,y)|dPZr,1(y) > ε

)
≤ ε−1

E[|h(Zr,1, Z̃r,1)|1{Z̃r,1 ∈ B(b)c}].

Applying the Cauchy-Schwarz inequality and taking the limit over r results
in the upper bound C · P (Z ∈ B(b)c)1/2 by the Portmanteau Theorem and
Condition 4 (a), for a constant C not depending on b. The bound goes to 0 for
b → ∞ since B(b)c ↓ ∅.

Wichura’s theorem implies weak convergence of h1,r(Zr,1) to h1(Z), for r →
∞. The stated convergence of moments follows by Example 2.21 in [38] using
the Jensen inequality and Condition 4 (a).

Let � = �n ∈ N denote the sequence from Condition 2(b). We may assume
that 1 < � < r. For j ∈ N, recall that

Mr−�,j = max(Xj , . . .Xj+r−�−1), Zr−�,j = (Mr−�,j − br−�)/ar−�. (8.1)

Lemma 8.3 (Weak convergence of clipped blocks). Suppose Conditions 1
and 2(a) and (b) are met. Then, as n → ∞,

(Zr,1,Zr−�,1) � (Z,Z).

Proof. Since (Zr,1,Zr−�,1) = (Zr,1,Zr,1) − (0,Zr−�,1 − Zr,1) and since Zr,1
converges weakly to Z by assumption, it suffices to show that Zr−�,1 − Zr,1 =
oP(1). In particular, we may assume d = 1 and note (Mr−�,1 − br−�)/ar−�

converges weakly to Z.
Condition 1 yields local uniform convergence, see the proof of Lemma B.15

in [10], hence ar/ar−� = 1 + o(1) and (br−� − br)/ar = o(1). By Lemma B.15
from [10] we have, for any ε > 0,

P (|Zr−�,1 − Zr,1| ≥ ε) = P (|Zr−�,1 − Zr,1| ≥ ε,Mr−�,1 = Mr,1) + o(1).
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Using the convergence of the rescaling sequences and that Zr−� is stochastically
bounded we have

Mr−�,1 − br−�

ar−�
− Mr−�,1 − br

ar
= Zr−�,1

(
1 − ar−�

ar

)
− br−� − br

ar

= OP(1)o(1) + o(1) = oP(1).

This implies Zr−�,1 − Zr,1 = oP(1).

For the next results, let Δr,�(j) := h1,r(Zr,j) − h1,r−�(Zr−�,j) for j ∈ Idb
n .

Furthermore let (X̃j , . . . , X̃j+r−1)j∈Idb
n

be i.i.d. copies of (Xj , . . . ,Xj+r−1)j∈Idb
n

and define M̃r,j = max(X̃j , . . . , X̃j+r−1) and Z̃r,j = (M̃r,j − br)/ar and
M̃r−�,j , Z̃r−�,j analogously to (8.1).

Lemma 8.4. Suppose Conditions 1, 2(a), (b) and 4(a) are met and that h is
λλ2d-a.e. continuous. Then

lim
n→∞

E

[{ 1√
m

∑
j∈Idb

n

Δr,�(j)
}2]

= 0, lim
n→∞

E

[∣∣Δr,�(1)
∣∣p] = 0

for all p ∈ N with p < 2 + ν.

Proof. We start by showing the second convergence. Let ‖ · ‖p denote the Lp-
norm. Writing Δr,�(1) =

∫
h(Zr,1, y1) − h(Zr−�,1, y2) dPZ̃r,1

⊗ PZ̃r−�,1
(y1, y2) +

ϑr−� − ϑr, we obtain

‖Δr,�(1)‖p ≤ ‖h(Zr,1, Z̃r,1) − h(Zr−�,1, Z̃r−�,1)‖p + |ϑr − ϑr−�| =: r1,n + r2,n,

by Jensen’s inequality. Since limr→∞ ϑr = ϑ, we have r2,n = o(1) for n → ∞. By
Lemma 8.3 and independence, the vector (Zr,1,Zr−�,1, Z̃r,1, Z̃r−�,1) converges
weakly to (Z,Z, Z̃, Z̃), where Z, Z̃ are i.i.d. with cdf G. Therefore, the con-
tinuous mapping theorem yields |h(Zr,1, Z̃r,1) − h(Zr−�,1, Z̃r−�,1)| = oP(1). By
Condition 4(a) we have asymptotic uniform integrability of |h(Zr,1, Z̃r,1)|2+ν so
that r1,n = o(1) by Example 2.21 in [38] and stationarity.

Using stationarity and observing that the Δr,�(j) are centered we have

E

[{ 1√
m

∑
j∈Idb

n

Δr,�(j)
}2]

≤ 3 Var(Δr,�(1)) + 2
m−1∑
s=2

(1 − s

m
)|Cov(Δr,�(1),Δr,�(1 + rs))|.

By Lemma 3.11 in [13], Condition 4(a) and 2 (c), there exists a constant C > 0
that is independent of s ≥ 2 and n such that |Cov(Δr,�(1),Δr,�(1 + rs))| ≤
Cα(r)v/(2+ν). Now α(r) ≤ β(r) and Condition 2 (c) imply that the sum in the
upper display converges to 0. Hence, an application of the second claim of this
lemma implies the first claim and the proof is finished.
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Lemma 8.5 (Restriction to independent blocks). Suppose Conditions 1,
2(a), (b), and 4(a) are met, and that h is λλ2d-a.e. continuous. Then
m−1/2 ∑

j∈Idb
n

h1,r(Zr,j) converges weakly if and only if m−1/2 ∑
j∈Idb

n
h1,r(Z̃r,j)

converges weakly. In that case the weak limits coincide.

Proof. The result follows from a standard argument involving characteristic
functions and Lemma 8.4; see, for instance, the proof of Theorem 3.6 in [7].

8.2. Sliding blocks – stationary case

Recall the definitions of Gξ, Lξ and Cξ from (3.8), (3.7) and (3.6), respectively.
Recall the convention that L := id[0,∞] if d = 1, which implies C = id[0,1]. The
following is a generalization of Lemma B.3 in (the supplementary material to)
[10] for dimensions d ≥ 1.

Lemma 8.6. Suppose that Conditions 1, 2(a) and (b) are met. Then, for any
ξ ≥ 0 and x,y ∈ R

d,

lim
n→∞

P(Zr,1 ≤ x,Zr,ξr ≤ y) = Gξ(x,y),

where ξr = 1 + 
rξ�. Furthermore, Gξ is the cdf of a 2d-variate extreme value
distribution with copula Cξ and stable tail dependence function Lξ.

Proof. We only consider the case ξ ∈ [0, 1]; the case ξ > 1 can be treated
similarly. By the same arguments as in the proof of Lemma B.3 in [10], we
obtain that

lim
n→∞

P(Zr,1 ≤ x,Zr,ξr ≤ y)

= G

(
ξ−γ(1)

x(1) + ξ−γ(1) − 1
γ(1) , . . . , ξ−γ(d)

x(d) + ξ−γ(d) − 1
γ(d)

)

×G

(
ξ−γ(1)

y(1) + ξ−γ(1) − 1
γ(1) , . . . , ξ−γ(d)

y(d) + ξ−γ(d) − 1
γ(d)

)

×G

(
(1 − ξ)−γ(1)

(
x(1) ∧ y(1)

)
+ (1 − ξ)−γ(1) − 1

γ(1) , . . .

. . . , (1 − ξ)−γ(d)
(
x(d) ∧ y(d)

)
+ (1 − ξ)−γ(d) − 1

γ(d)

)
. (8.2)

Since − logGγ(x) = (1 + γx)−1/γ , we may write

G(x) = exp
{
− L

(
− (1 + γ(1)x(1))−1/γ(1)

, . . . , (1 + γ(d)x(d))−1/γ(d)
)}

,

A straightforward calculation then shows that the expression on the right-hand
side of (8.2) can be written as Gξ(x,y). In particular, Cξ is a copula, which
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can easily be seen to be max-stable, i.e., Cξ(us,vs) = Cξ(u,v)s for all s > 0
and u,v ∈ [0, 1]d. It is hence an extreme-value copula with the given stable tail-
dependence function Lξ and Gξ is the cdf of an extreme-value distribution.

Theorem 8.7 (CLT for sliding blocks). Suppose that Conditions 1, 2(a), (b)
are satisfied and that there exists an ω > 0 with m1+ω

n α(rn) → 0. For each
r = rn let Fr = {fr,i : Rd → R | i ∈ N} be a family of deterministic maps with
the following properties:

(i) fr,r+s = fr,s for all s ∈ N and r = rn with n ∈ N;
(ii) The random variables fr,i(Zr,i) are centered for all i ∈ N and r = rn with

n ∈ N;
(iii) There exists a ν > 2/ω with lim supn→∞ supi∈N E[|fr,i(Zr,i)|2+ν ] < ∞.
(iv) There exists a map f : Rd → R such that for, all ξ ∈ [0, 1], ξ′ ∈ [0, 2], as

n → ∞,(
fr,ξr (Zr,ξr ), fr,ξ′r (Zr,ξ′r )

)
�

(
f(Z1,|ξ−ξ′|), f(Z2,|ξ−ξ′|)

)
, (8.3)

where ξr = 1 + 
rξ�, ξ′r = 1 + 
rξ′� and (Z1,|ξ−ξ′|,Z2,|ξ−ξ′|) ∼ G|ξ−ξ′|.

Then, for n → ∞,
√
m

n

n∑
i=1

fr,i(Zr,i) � N (0, σ2
f ), σ2

f := 2
∫ 1

0
Cov(f(Z1,ξ), f(Z2,ξ)) dξ.

Proof. The proof is very similar to the one of Theorem 2.6 in [8]. For complete-
ness, it is carried out in the supplement.

8.3. Sliding blocks – non-stationary case

The following theorem is an adaptation of Theorem 8.7 to the non-stationary
setting of Section 5.

Theorem 8.8. Suppose that the sampling scheme from Condition 5 is met
and that the underlying time-series (Yt)t satisfies Conditions 2(a), (b) and
m1+ω

n α(rn) → 0 for some ω > 0. For each r = rn, let Fr = {fr,i : Rd →
R | i ∈ N} be a family of deterministic maps satisfying Conditions (i) – (iv) of
Theorem 8.7. Then, for n → ∞,

√
m

n

n∑
i=1

fr,i(Zr,i) � N (0, σ2
f ), σ2

f := 2
∫ 1

0
Cov(f(Z1,ξ), f(Z2,ξ)) dξ.

Proof. The proof is essentially the same as for Theorem 8.7, with the following
simple adaptation: independence of S+

n,1, S
+
n,2, . . . is a direct consequence of the

imposed sampling scheme.

The following result is an extension of Lemma 2.4 from [10] to multivariate
time series.
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Lemma 8.9. Suppose the sampling scheme from Condition 5 is met. Then, for
every ξ ≥ 0 and x ∈ R

d,

lim
n→∞

P(Zr,ξr ≤ x) = G(x),

with G from Condition 1 and with ξr := 1 + 
rξ�.
Proof. Note first that for univariate x ∈ R and s > 0, γ ∈ R we have Gγ(x/sγ +
(s−γ − 1)/γ) = Gγ(x)s. This implies, for x ∈ R

d,γ ∈ R
d,

G
[(

x(i)

sγ
(i) + s−γ(i)−1

γ(i)

)
i=1,...,d

]
= C

[(
Gγ(i)

(
x(i)

sγ
(i) + s−γ(i)−1

γ(i)

))
i=1,...,d

]
= Cs

[(
Gγ(i)

(
x(i)))

i=1,...d

]
= Gs(x),

by (2.3) and (L1) from Condition 1.
By piecewise stationarity and Condition 1 it suffices to show the result for

ξ ∈ (0, 1). Analogous to the proof of Lemma 2.4 from [10] we have

lim
r→∞

P(Zr,ξr ≤ x)

= G
[(

x(i)

(1−ξ)γ(i) + (1−ξ)−γ(i)−1
γ(i)

)
i=1,...,d

]
·G

[(
x(i)

ξγ
(i) + ξ−γ(i)−1

γ(i)

)
i=1,...,d

]
= G(x),

where the last equality follows from the identity in the previous display.

Lemma 8.10. Suppose the sampling scheme from Condition 5 is met and that
the underlying time series (Yt)t satisfies Conditions 2(a) and (b). Then, for any
ξ, ξ′ ≥ 0 and x,y ∈ R

d,

lim
n→∞

P(Zr,ξr ≤ x,Zr,ξ′r ≤ y) = G|ξ−ξ′|(x,y).

Proof. This is a slight adaption of the proof of Lemma 8.6 using standard clip-
ping techniques and Lemma 8.9.

Lemma 8.11. Suppose the sampling scheme from Condition 5 is met and that
the underlying time series (Yt)t satisfies Conditions 2(a) and (b). Furthermore,
let h be λλ2d-a.e. continuous and bounded on compact sets and suppose that
Condition 6(a) is met. Then, for ξ, ξ′ ∈ [0,∞)(

h1,r,ξr (Zr,ξr ), h1,r,ξ′r (Zr,ξ′r )
)
�

(
h1(Z1,|ξ−ξ′|), h1(Z2,|ξ−ξ′|)

)
and marginal moments of order p < 2 + ν, with p ∈ N, converge.

Proof. We proceed similar as in the proof of Lemma 8.2 and employ the Cramér-
Wold Theorem and Wichura’s Theorem. Fix a = (a(1), a(2)) ∈ R

2 \ {0} and let

Tn := a(1)h1,r,ξr (Zr,ξr ) + a(2)h1,r,ξ′r (Zr,ξ′r )

=
∫

a(1)h(Zr,ξr ,y1) + a(2)h(Zr,ξ′r ,y2) dPZr,ξr
⊗ PZr,ξ′r

(y1,y2),
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T := a(1)h1(Z1,|ξ−ξ′|) + a(2)h1(Z2,|ξ−ξ′|)

=
∫

a(1)h(Z1,|ξ−ξ′|,y1) + a(2)h(Z2,|ξ−ξ′|,y2) dP⊗2
Z (y1,y2)

and define, for B := B(b) := [−b, b]d with b ∈ N,

Tn(b) :=
∫
B×B

a(1)h(Zr,ξr ,y1) + a(2)h(Zr,ξ′r ,y2) dPZr,ξr
⊗ PZr,ξ′r

(y1,y2),

T (b) :=
∫
B×B

a(1)h(Z1,|ξ−ξ′|,y1) + a(2)h(Z2,|ξ−ξ′|,y2) dP⊗2
Z (y1,y2).

We may now proceed analogous to the proof of Lemma 8.2, where we use
the extended continuous mapping theorem and the weak convergence from
Lemma 8.10 to show that Tn(b) � T (b) for n → ∞.
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