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Abstract: Robustness studies of black-box models is recognized as a nec-
essary task for numerical models based on structural equations and pre-
dictive models learned from data. These studies must assess the model’s
robustness to possible misspecification of regarding its inputs (e.g., covari-
ate shift). The study of black-box models, through the prism of uncertainty
quantification (UQ), is often based on sensitivity analysis involving a prob-
abilistic structure imposed on the inputs, while ML models are solely con-
structed from observed data. Our work aim at unifying the UQ and ML
interpretability approaches, by providing relevant and easy-to-use tools for
both paradigms. To provide a generic and understandable framework for
robustness studies, we define perturbations of input information relying
on quantile constraints and projections with respect to the Wasserstein
distance between probability measures, while preserving their dependence
structure. We show that this perturbation problem can be analytically
solved. Ensuring regularity constraints by means of isotonic polynomial
approximations leads to smoother perturbations, which can be more suit-
able in practice. Numerical experiments on real case studies, from the UQ
and ML fields, highlight the computational feasibility of such studies and
provide local and global insights on the robustness of black-box models to
input perturbations.
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1. Introduction

Multiple engineering fields require models for prediction and phenomenological
understanding. Machine learning (ML) and uncertainty quantification (UQ) of
numerical models are essential approaches to developing and manipulating such
models. These two frameworks feed off each other through the duality of sen-
sitivity analyses (SA), a fundamental methodological corpus in UQ, and ML
interpretability methods, as highlighted by [70, 49]: they offer means to better
understand, and thus validate, the use of such models, especially when dealing
with critical systems. In particular, recent advances in explainable ML lever-
age tools from SA to produce meaningful interpretations of black-box models
[35, 17], and novel SA estimation schemes are heavily based on the construc-
tion of suitable ML models [15, 9]. Both SA and ML interpretability rely on
studying the relationships between a black-box model behavior and its inputs
[24, 57, 74]. Formally speaking, let a model f be defined as a mapping between
inputs X ∈ X and outputs Y ∈ Y where (X ,Y) are two metric spaces:

Y = f(X).

In an ML context, f can be understood as a predictive model (e.g., penalized lin-
ear regression, neural network) linking an observation x to a prediction y = f(x)
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[46]. In the UQ framework, a so-called computer model f represents the numeri-
cal implementation of a hypothetical-deductive link (e.g., by systems of ordinary
differential equations, by finite element methods) between X and Y [77].

In both fields, the inputs X are generally assumed to be random, leading to
random outputs Y . Let P be the distribution of X. In the ML context, P is
defined implicitly by the empirical measure associated to the studied dataset.
On the other hand, in the UQ setting, P is often explicitly chosen based on ob-
servations of X, expert assessment (domain knowledge), or stochastic inversion
from observations of Y [82].

Quantities of interest (QoI) are key in measuring the relationships between X
and Y . They are generally expressed as statistics of Y . In the SA literature, they
are often referred to as scores [73], while ML researchers are usually interested
in predictive performance metrics [64]. QoIs can be either global (e.g., variance
[78, 35], loss metric [43, 22, 48]), or local (e.g., a prediction instance [81, 87],
numerical model derivatives [24]). These quantities are usually chosen in accor-
dance with domain experts and decision makers, to ensure their domain-specific
interpretation.

The present paper is concerned with one particular problem: robustness to
input perturbations. More precisely, the main goal is to study the effects a
perturbation on P bears on QoIs. This main problem is analogous to many
frameworks in both the ML field (e.g., domain adaptation [16], covariate shift
[44, 85], adversarial attacks [4]) and SA (e.g., distributional sensitivity analy-
sis [2, 60], distributional robustness [55, 41]) or distributional modifications to
understand the fairness of algorithms [26, 27]. In the context of this work, the
perturbations are subject to four desirability criteria:

• Interpretable, i.e., can be understood by domain experts and decision-
makers;

• Generic, i.e., the overall perturbation scheme should not depend on prop-
erties of either P or f ;

• Proximity, i.e., the perturbed distribution should be as “close” to P as
possible;

• Exploration, i.e., the perturbed distribution should allow exploration of
unobserved or low probability regions of X .

These criteria are mainly motivated by practical concerns (see Section 2.1).
In this context, looking for a perturbed distribution can be formalized through

the following optimization problem:

Q ∈ argmin
G∈P(X )

D(P,G)

s.t. G ∈ C.
(1)

where P(X ) is the space of probability measures on X , D is a discrepancy
between probability measures, and C ⊂ P(X ) is a perturbation class, i.e., a
particular subset of probability measures. Leveraging the pioneering work of
[23] on entropic projections, a particular instance of this problem has been



2724 M. Il Idrissi et al.

studied in the SA field by [55] and in the ML field by [6], where the chosen
discrepancy is the Kullback-Leibler (KL) divergence, and C is defined through
constraints on generalized moments. While this method produces interpretable
perturbed distributions that are close (in the KL sense) to P , they do not allow
for exploration and genericity: the resulting perturbed distribution is a linear
reweighting of P , and the existence of particular generalized moments must be
assumed, further restricting the perturbation class C.

Motivated by the four desirability criteria, the present work motivates, pro-
poses and studies perturbation schemes restricted to the following framework:

• X ⊆ Rd for a positive integer d and Y ⊆ R.
• The 2-Wasserstein distance as a suitable discrepancy between probability

measures to ensure genericity and exploration;
• Perturbation classes C based on three types of constraints: Interpolation

constraints on generalized quantile functions to ensure interpretability and
genericity; Smoothness of the generalized quantile functions to ensure ex-
ploration; Copula-preservation to ensure interpretability.

Several results are uncovered and presented. This particular perturbation prob-
lem reduces to solving univariate constrained projections of quantiles functions
in L2 (see Lemma 2), and even admits an analytical result if no smoothness
restrictions are enforced (see Proposition 1). However, this closed form does not
satisfy the exploration criterion. To that extent, the use of isotonic piece-wise
polynomials to ensure continuity is studied and is shown to lead to a well-posed
quadratic program with convex constraints (see Theorem 1), ensuring practical
feasibility. Aside from theoretical results, the computational tractability of this
methodology is studied and implemented in two use cases from the ML and UQ
fields, where the response of several diagnostics is studied, leading to robustness
to input perturbation insights on the black-box model.

This article is organized as follows. In Section 2, preliminaries are presented.
Section 3 is dedicated to perturbation classes. The desirability criteria are dis-
cussed, as well as the three constraints introduced above. Section 4 presents the
framework of probability measure projection using the 2-Wasserstein distance
and its declination when constrained to the chosen perturbation class. Section 5
showcases insights on ML and UQ fields, highlighting local and global robustness
insights. A discussion section ends this article, opening avenues for improvement.
All proofs of technical results are postponed to a dedicated appendix.

2. Preliminaries

2.1. Motivating the perturbation criteria

The general question that the proposed method aims to answer is:

What are the variations of a black-box model’s diagnostics induced by a given
perturbation of its inputs?

Answering this question entails uncovering a causal link (in the physical sense)
between a perturbation and the behavior of the black-box model. In the liter-
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ature, many methods have been proposed in order to define relevant pertur-
bations (e.g., via geodesics on Fréchet manifolds [41], adversarially [58], using
empirical quantiles [6]). However, while generic and automatic, these methods
often disregard the physical meaning of these perturbations. The overall aim of
the proposed criterion is to ensure that the perturbations are meaningful to the
eyes of domain experts and decision-makers. For instance, perturbations can be
used as proxies for epistemic uncertainty, leading to exploratory studies on the
behavior of a model induced by a lack of knowledge. Another example would be
to prospectively design perturbations to anticipate future changes in the inputs
(e.g., , climate change). Finally, if a gap between some observed data and do-
main experts’ opinions is proven, perturbations can be modeled to enforce this
knowledge while keeping some of the empirical information gathered on the field.

Interpretability The perturbations should be meaningful to domain experts
and decision-makers. It ensures that well-understood phenomena induce the
uncovered variations in the model’s behavior. Hence, designing perturbations
should be done with practitioners and precisely reflect a domain-specific ques-
tion. Perturbation interpretability ensures that the (physical) causal link one
aims to draw of a perturbation on the behavior of a model is insightful on the
question at stake.

Genericity The perturbations should be generic because they should not de-
pend on restrictive properties assumed to hold for either f (e.g., continuity,
derivability) or P (e.g., absolute continuity). Genericity ensures the proposed
methodology is post-hoc [8]. To emphasize the duality between SA and ML inter-
pretability [70, 49], generic perturbation ensures that the proposed methodology
is usable in both settings.

Proximity The perturbed distribution should be “close” to the initial dis-
tribution P . Proximity ensures that the perturbed distribution remains some-
what similar to the initial, where similarity needs to be measured through a
discrepancy. For instance, closeness in the KL divergence sense entails similar
information, whereas closeness in the Wasserstein distance sense has a more ge-
ometric meaning. Either way, the initial distribution, be it empirical or chosen,
bears some information on the behavior of the input, which needs to be partially
preserved.

Exploration The perturbation scheme should allow for exploring unobserved
or low probability regions of X . This criterion ensures that “out of distribu-
tion” scenarios can be reached. Hence, the model’s behavior can be assessed on
“unusual” (for P ) evaluations, which is crucial when testing for robustness.

2.2. Assumptions and notations

In the following, X is an X -valued random vector, where X ⊆ R
d, and Y = f(X)

is an R-valued random variable. Denote by P(X ) the set of probability measures
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Fig 1. Application domain ΩX of P when P admits a density (a.) and when it is empirical
(b.). In (a.), X is the support of the density (in grey), and the application domain ΩX (in
purple) is contained in X . In (b.), X is the interval between the minimum and maximum
observed values (in grey), and the application domain ΩX (in purple) is also contained in X .
In both cases, ΩX is chosen to be strictly included in X , although it can be bigger.

defined on (X ,B(X )). Let p be a positive integer and denote:

Pp(R) = {P ∈ P(R) : E [|X|p] < ∞, X ∼ P} ,

the set of univariate distributions of random variables with finite p-th moment.
Suppose that X ∼ P for some P ∈ P(X ), and denote Xi ∼ Pi the i-th univariate
marginals of X, i = 1, . . . , d. It is assumed that Pi ∈ P2(R), i.e., every univariate
marginal of X has a finite variance. In the remainder of the present work, P is
the initial probability measure.

Remark 1. In practice, the initial probability measure can be defined as an
explicit distribution (e.g., from a parametric family) or empirically using the
empirical measure of a dataset.

For a univariate marginal input Xi, 1 ≤ i ≤ d, let ΩXi ⊂ R be its application
domain. It represents the range in which Xi is intended to vary in practice [72].
Figure 1 illustrates a typical situation for a univariate marginal of X.

Remark 2. In practice, the application domains of marginal distribution can be
defined in many ways. For instance, if P is empirical, it can represent the range
between the smallest and largest observed value of Xi in a specific dataset. If P
is part of a parametric family, it can be defined using experts’ opinions, usually
enforced using truncation. These domains are usually subject to uncertainties in
their bounds.

For any univariate marginal Pi ∈ P(R), its cumulative distribution function
(cdf) is denoted by:

FP (t) =
∫

(−∞,t]
dP = P

(
(−∞, t]

)
.
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Furthermore, denote F the space of univariate distribution functions:

F =
{
F : R → [0, 1] | F is right-continuous, non-decreasing

such that lim
x→∞

F (x) = 1 and lim
x→−∞

F (x) = 0
}
.

(2)

2.3. Some required definitions

Generalized quantile function The use of generalized quantile functions
(gqf) is motivated by the fact that the marginal distributions Pi can be atomic.
They rely on the two generalized inverses of functions in F . For each marginal
probability measure Pi, one can define a left and right continuous generalized
inverse, the former being usually called the gqf of Xi. However, in the following,
both generalized inverses are of interest. They can be formally defined as follows
[71, 31, 51].

Definition 1 (Generalized quantile function). Let P ∈ P(R) with cdf FP .

(i) The gqf of P is the unique left-continuous, non-decreasing generalized in-
verse of FP , defined, for every a ∈ (0, 1), as:

F←
P (a) = sup {t ∈ R | FP (t) < a},

= inf {t ∈ R | FP (t) ≥ a}.
(3)

(ii) The unique right-continuous non-decreasing generalized inverse F→
P of FP ,

almost-everywhere equal to F←
P , is defined, for every a ∈ (0, 1), as:

F→
P (a) = sup {t ∈ R | FP (t) ≤ a},

= inf {t ∈ R | FP (t) > a},
= F←

P

(
a+) (4)

where F←
P (a+) = lim

x→a+
F←
P (x).

If the cdf FPi of Xi admits an inverse F−1
P in the traditional sense (e.g., it is

continuous, strictly increasing), then the following equality holds:

F−1
P = F←

P = F→
P .

Furthermore, univariate probability measures are intrinsically linked to their
gqf. Denote:

F← =
{
F← : (0, 1) → R | F← is left-continuous and non-decreasing

}
. (5)

the space of gqfs. Recall that each probability measure in P(R) has a unique
gqf in F← [71].

For a fixed α ∈ [0, 1], an α-quantile of P is a number pα ∈ R such that, for
X ∼ P :

P ({X < pα}) ≤ αandP ({X ≤ pα}) ≥ α.
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In certain cases, α-quantiles are not unique. For instance, if P is purely atomic
(e.g., an empirical measure), and its cdf FP takes the constant value α on an
open interval (t0, t1) (i.e., it is the case if t0 and t1 are both atoms of an empirical
probability measure), then any t ∈ (t0, t1) is an α-quantile. One can notice that
F←(α) is the infimum of the α-quantiles of P , (i.e., F←

P (α) = t0), and F→(α)
is the supremum of the α-quantiles of P (i.e., F→

P (α) = t1).

Copulas Dependencies between random variables can be modeled using
copula-based representations [61]. Let X = (X1, . . . , Xd) ∼ P be a d-dimensional
R

d-valued random vector with marginal cdfs FPi , i = 1, . . . , d, assumed to be
continuous. Let U1, . . . , Ud the random variables defined as:

Ui = FPi(Xi)

and denote U = (U1, . . . , Ud)� ∼ UP . For any u = (u1, . . . , ud) ∈ [0, 1]d, denote
Hu = �

d
i=1[0, ui]. The copula of X is the mapping from [0, 1]d to [0, 1], denoted

Cp defined as:

CP (u) = Pr (U1 ≤ u1, . . . , Ud ≤ ud)

=
∫
Hu

dUP

If P is observed (and hence each FPi can jump), the notion of empirical cop-
ula characterizes the dependence structure between the inputs [61]. For j ∈
{1, . . . , d}, denote {xj,i}1≤i≤n the jth marginal sample of observations. The
empirical copula of X is defined as:

ĈP (u1, . . . , ud) = 1
n

n∑
i=1

d∏
j=1

1{Rj,i
n ≤uj

}(uj), (6)

where Rj,k denotes the rank of xj,k in {xj,i}1≤i≤n.

Wasserstein distance Let p be a positive integer. The p-Wasserstein distance
between two univariate marginals can be defined as follows [86]:

Definition 2 (Wasserstein distance on the real line). Let p ∈ N
∗ and P,Q ∈

Pp(R) be two probability measures on R admitting FP and FQ as probability
distribution functions, respectively. Then, the p-Wasserstein distance between P
and Q is:

Wp(P,Q) =
(∫ 1

0

∣∣F→
P (x) − F→

Q (x)
∣∣p dx)1/p

In particular, for p = 2,

W2(P,Q) =

√∫ 1

0

(
F→
P (x) − F→

Q (x)
)2

dx.
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3. Quantile constrained Wasserstein projections

3.1. Quantile perturbation classes

Motivations First, as long as Pi ∈ P(R), its generalized quantile function F←
Pi

always exists. Hence, perturbing marginal quantiles do not require additional
assumptions on the initial probability measure P or the shape of the target
perturbed probability measure Q. It ensures that the proposed methodology is
generic, in contrast to the one proposed in [54] based on generalized moments.

Second, quantiles are interpretable. In many applied problems, quantile spec-
ifications are often key to studying the influence of input variables on a decision-
making output. Beyond the fact that quantiles have a decision-theoretical sense
through pinball cost functions [20], numerous applications dealing with economic
stress tests or risk mitigation against natural hazards use quantiles as influential
inputs of decision-helping models. For instance, in the drought risk studies in
[33], the association between soil wetness, climatic, seismic, and socioeconomic
variables is often carried out using marginal quantiles that are features for pre-
dictive cost models. Input variations of daily value-at-risk percentiles, computed
from legacy data, were recently required by the European Banking Authority for
generating macroeconomic scenarios used for EU-wide stress tests [5]. Reverse
SA studies for financial risk management, such as those conducted in [68], are
primarily based on moving values-at-risk, which are quantiles.

The following examples offer additional concrete illustrations of using quan-
tiles for influence analysis. They also illustrate two quantile perturbation schemes:
quantile shifting and application domain dilatation.
Example 1 (Economic stress test (Inspired by [13])). Assume that an economic
shock happens in an abstract country. Prospective analyses announce a $200
drop in the population median wage. Before the shock, the population wage
distribution P is known (or observed), thanks to some annual census data. This
distribution has a median wage of $2000. The new population wage distribution
is unknown due to the lack of recent data. The economists want to know if they
can be confident in their predictive macro-economic model f w.r.t. this sudden
change. A way to answer this problem would be assessing the behavior of the
model f on a distribution Q, such that:

F←
Q (0.5) = 1800.

Example 2 (River water level). This example is inspired from [50] and more
deeply studied in Section 5.2. The safety of an industrial site located near a
river is studied through the prediction of the water level Y = f(X) where f
is a numerical hydrodynamic model, and X gathers the physical features of
the river. A key dimension of X is the Strickler roughness coefficient for the
upstream water level [40], which is modeled as a truncated Gaussian distribution
on ΩX = [20, 50]. However, this application domain is tainted with epistemic
uncertainties on the actual nature of the riverbed (e.g., more or less subject to
shrubby vegetation). The practical use of f would require assessing its predictive
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power under a wider interval ΩX = [5, 65]. A way to express this prospective
study is to assess the model’s behavior on a distribution Q, such that:

F→
Q (0) = 5, F←

Q (1) = 65.

Formal Definition Since, for a fixed α ∈ [0, 1], α-quantiles are not necessarily
unique, equality constraints on quantile functions seem somewhat arbitrary. It
amounts to constraining the infimum of the set of α-quantitles. Arguably, given
a desired α-quantile value of b ∈ R, a reasonable constraint would be for b
to be in the set of α-quantils of the perturbed distribution. Formally, the any
perturbed distribution Q ∈ P(R) should respect the inequality:

F←
Q (α) ≥ b ≥ F←

Q (α+) = F→
Q (α). (7)

In the case where FQ is invertible, it becomes a traditional equality constraint:
any α-quantile is uniquely defined (i.e., F←

Q (α) = F→
Q (α)). In the following, the

inequality constraints of the form (7) are referred to as quantile constraints.

Definition 3 (Quantile perturbation class). Let K be an integer, and let α =
(α1, . . . , αK)� ∈ [0, 1]K and b = (b1, . . . , bK)� ∈ R

K . The quantile perturbation
class Q(α, b) ⊆ P(R) is the set of probability measures defined as:

Q(α, b) =
{
Q ∈ P(R) | F←

Q (αi) ≤ bi ≤ F→
Q (αi), i = 1, . . . ,K

}
.

An equivalent characterization, thanks to the uniqueness of gqfs, is:

Q(α, b) =
{
Q ∈ P(R) | F←

Q = L ∈ F←, L(αi) ≤ bi ≤ L(α+
i ), i = 1, . . . ,K

}
.

It is possible to derive sufficient conditions on α and b in order for Q(α, b) to
be non-empty (see Appendix A).

Quantile perturbation classes contain probability measures with discontin-
uous gqfs. Ensuring smooth perturbed gqfs is of practical interest (see Sec-
tion 4.1). It entails further restricting the gqfs of the probability measures in
a quantile perturbation class to respect some smoothness conditions. They can
be formally defined as follows.

Definition 4 (Smooth quantile perturbation class). Let K be a positive integer,
α = (α1, . . . , αK)� ∈ [0, 1]K , b = (b1, . . . , bK)� ∈ R

K and let V ⊆ F← be a given
set of smooth non-decreasing functions. The smooth quantile perturbation class
QV(α, b) ⊆ P(R) is the set of probability measures defined as:

QV(α, b) =
{
Q ∈ P(R) | F←

Q ∈ V, F←
Q (αi) ≤ bi ≤ F→

Q (αi), i = 1, . . . ,K
}
.

Note that smooth perturbation classes generalize perturbation classes since
Q = QF← .

Two sets of quantile perturbation classes are introduced: quantile shifts and
application domain dilatation.
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Fig 2. Quantile shift (a.) and application domain dilatation (b.) perturbation schemes. The
initial quantile function is displayed in grey. In (a.), red points indicate different quantile
shifting constraints between η0 and η1, leading to different intensity values θ. In (b.) the
application domain’s width (in magenta) is up to doubled (blue points) or down to halved (red
points), according to an intensity parameter θ ∈ [−1, 1].

Quantile shifts Quantile shift perturbations defines constraints on an initial
α-quantile in a pre-determined range. Formally, given a quantile level α ∈ [0, 1],
and an initial α-quantile pα = F←

P (α), quantile shifts defines a set of quantile
perturbations classes of probability measures having their α-quantiles ranging
over a compact interval [η0, η1] ⊆ ΩX such that η0 < pα < η1. In other words, for
each bα ∈ [η0, η1], a quantile perturbation class QV(α, bα) can be constructed.
This particular type of set of quantile perturbation classes can be described by
means of a perturbation intensity θ ∈ [−1, 1] (see Appendix A). Figure 2 (a.)
illustrates this perturbation scheme. Quantile shifts are formally defined as the
collection of perturbation classes {T (η, θ)}θ∈[−1,1] where,

T (η, θ) =
{
Q ∈ P(R) | F←

Q (α) ≤ bα(η, θ) ≤ F→
Q (α)

}
= Q (α, bα(η, θ))

(8)

Application domain dilatations Application domain dilatations consists in
perturbing the bounds of the application domain of a marginal input. For a uni-
variate X ∼ P with ΩX = [ω0, ω1], the dilatation process amounts to widening
or narrowing the width (or diameter diam(ΩX)) of ΩX . It amounts constraining
the extreme quantiles (α ∈ {0, 1}) while preserving the midpoint of ΩX . The
dilatation is characterized by a parameter η > 1 controlling the rescaling mag-
nitude of ΩX . In other words, one aims at finding a distribution Q with support
Supp(Q) = [b0, b1] for b0, b1 ∈ R, b0 < b1, where the midpoint of [b0, b1] is equal
to the midpoint of ΩX , but such that diam(Q) := diam(Supp(Q)) is rescaled
compared to diam(ΩX). Similarly to quantile shift, these two bounds can be ex-
pressed as a function of a perturbation intensity θ ∈ [−1, 1] (see Appendix A).
Figure 2 (b.) illustrates this perturbation scheme. The initial application do-
main is displayed in magenta and is subject to a dilatation of parameter η = 2.
The red constraints halve its width, and the blue constraints double it. One
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can additionally check that in both cases, the midpoint of the original validity
domain is preserved. Application domain dilatations are formally defined as the
collection of perturbation classes {T (η, θ)}θ∈[−1,1] where,

T (η, θ) =
{
Q ∈ P(R) | F←

Q (m) ≤ bm(η, θ) ≤ F→
Q (m),m ∈ {0, 1}

}
= Q

(
(0, 1)�, (b0(η, θ), b1(η, θ))�

)
.

(9)

Remark 3. A domain dilatation and multiple quantile shifts can be applied
simultaneously to the same marginal quantile function, as long as the result-
ing space of constrained distributions remains non-empty (e.g., see Lemma 3).
However, in practice, it is essential to note that applying such schemes simul-
taneously leads to a more complicated perturbation analysis. For that reason,
quantile shifts and domain dilatations are studied independently in Section 5.

3.2. Copula preservation and marginal quantile perturbations

Motivations Regarding multivariate perturbations in general, independence
assumptions are often required [55]. While it facilitates mathematical calcula-
tions, it is questionable in practice. One of the main challenges in ML inter-
pretability and SA is to account for the potential dependence structure between
the inputs (or features) [69].

Dependencies provide helpful information on the global behavior of the in-
puts. In SA, the dependence structure is often chosen after extensive studies [28],
and expresses the physical relationship between the uncertainties on the inputs.
In ML, it can be argued that preserving dependencies avoids creating meaning-
less patterns [10] and is critical in some practical studies [56, 67]. Dependencies
between random variables can be modeled using copula-based representations
[61], which relaxes the framework of probabilistic graphical models usually en-
countered in ML [34].

From the interpretability standpoint, in practice, the intricacies of multivari-
ate insights due to stochastic dependence are much more complicated to grasp.
Moreover, many of the properties presented above do not hold regarding multi-
variate quantile functions. The definition itself of multivariate quantile functions
is a highly non-trivial task. Many interesting approaches have been recently
proposed [19, 45]. However, they lack the broad adoption of their univariate
counterpart in practice, which makes them less interpretable.

In order to ensure the interpretability, the proposed methodology is restricted
to:

• Quantile perturbations on marginal inputs.
• Perturbed probability measures having the same copula as the initial prob-

ability measure.

Marginal perturbation maps and copula preservation Let X ∼ P and
for i = 1, . . . , d, let each marginal input Xi ∼ Pi and (F←

i )i=1,...,d be a collection
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of quantile functions in F←. A marginal perturbation map is a mapping:

T : X → X⎛⎜⎝x1
...
xd

⎞⎟⎠ 
→

⎛⎜⎝T1(x1)
...

Td(xd)

⎞⎟⎠ (10)

where
Tj =

[
F←
j ◦ FPj

]
, j = 1, . . . , d.

Denote X̃ := T (X) the perturbed inputs.

Lemma 1. Suppose that each F←
i , i = 1, . . . , d is strictly increasing:

(i) If P is an empirical measure then X and X̃ have the same empirical copula.
(ii) If P is atomless then X and X̃ have the same copula.

Hence, perturbation maps composed of compositions of marginal cdfs and
strictly increasing quantile functions preserve the copula. For instance, if P
is an empirical measure related to an observed dataset, applying T to every
observation results in a perturbed dataset with the same Spearman correlation
matrix.

Copula-preserving multivariate perturbation classes Combining quan-
tile perturbation classes with marginal perturbation maps allows for defin-
ing multivariate perturbation classes, which are generic and interpretable. Let
X ∼ P , and for i = 1, . . . , d, let θi ∈ [0, 1]K × R

K and θ = (θ1, . . . , θd). Finally,
let Q(i) := Q(θi) be the perturbation class associated with the input Xi. For
Q ∈ P(Rd), and denote Q1, . . . , Qd its marginal distributions. Denote the set:

Qd(θ) =
{
Q ∈ P(Rd) | Qi ∈ Q(i)

}
,

and for any Q ∈ P(Rd), denote TQ the marginal perturbation map defined as:

TQ : X → X⎛⎜⎝x1
...
xd

⎞⎟⎠ 
→

⎛⎜⎝
[
F←
Q1

◦ FP1

]
(x1)

...[
F←
Qd

◦ FPd

]
(xd)

⎞⎟⎠ (11)

Marginal quantile perturbation classes are defined as the set:

Z(P, θ) = {Q ∈ Qd(θ) | TQ(X) ∼ Q,X ∼ P} ,

and, from Lemma 1, copula-preserving marginal quantile perturbation classes
are defined as:

Z̃(P, θ) =
{
Q ∈ Z(P, θ) | F←

Qi
is strickly increasing, i = 1, . . . , d

}
.
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3.3. Wasserstein projections

Motivations The Wasserstein distance is deeply rooted in optimal trans-
portation theory [86] and has been used successfully in many ML and deep
learning applications [38, 3]. It has also been extensively studied as a tool for
guaranteeing distributional robustness to adversarial attacks in ML [30]. It has
been used in SA to produce novel sensitivity indices [36, 14].

The 2-Wasserstein distance is interpretable. The choice of transportation cost
as the squared distance is intrinsically linked to notions of the L2 norms, which
can be interpreted as lengths, analogous to the well-known Euclidean geome-
try [86]. It becomes natural and intuitive to quantify transportation costs as
distances between points. It becomes even more natural in one dimension since
the 2-Wasserstein distance can be interpreted as the absolute difference in ar-
eas between two quantile functions. Hence, proximity between two univariate
probability measures, in the 2-Wasserstein sense, is rather natural.

Moreover, the 2-Wasserstein distance ensures genericity. The only require-
ment for two probability measures to be comparable is the finiteness of their
variance. This assumption is classical in SA and ML interpretability. Compared
to the KL divergence, which requires the absolute continuity of one probability
measure versus the other and the existence of logarithmic moments, it appears
less restrictive. In practice, it allows for more flexible perturbations: if P is an
empirical measure (i.e., purely atomic), then Q is not restricted to be purely
atomic; conversely, if P admits a density, then it does not restrict Q to admit
a density. These benefits are key in unifying the frameworks of SA and ML
interpretability: the flexibility of the 2-Wasserstein distance allows for greater
explicit control (e.g., through smoothing restriction) on the resulting perturbed
measure Q, independently of the properties of P .

Additionally, the 2-Wasserstein distance allows for exploration. Optimal trans-
port maps between two probability measures w.r.t. the 2-Wasserstein distance
are (usually) not linear [75]. In other words, perturbed solutions are not limited
to the support of the initial probability measures: atoms can be added, and
ranges with 0 probability can be made relevant.

Marginal quantile constrained Wasserstein projections The problem of
finding a probability measure Q closest to P , but Q ∈ Z̃(P, θ) can be formalized
as follows:

Q = argmin
G∈P2(Rd)

W 2
2 (P,G) s.t. G ∈ Z̃(P, θ) (12)

However, since the set of probability measures in Z̃(P, θ) share the same copula
as P , this problem can be simplified:

Lemma 2. The perturbation map T : Rd → R
d that minimizes (12) is defined,
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for any x = (x1, . . . , xd)� ∈ R
d, as:

T (x) =

⎛⎜⎝
[
F←
Q1

◦ FP1

]
(x1)

...[
F←
Qd

◦ FPd

]
(xd)

⎞⎟⎠
where, for i = 1, . . . , d:

F←
Qi

= argmin
L∈L2([0,1])

{∫ 1

0

(
L(x) − F→

Pi
(x)
)2

dx

}
s.t. L(αj) ≤ bj ≤ L

(
α+
j

)
, j = 1, . . . ,K,

L is strictly increasing.

(13)

where for α = (α1, . . . , αk)�, b = (b1, . . . , bk)�, θi = (α, b).

Hence, solving the projection problem in (12) is equivalent to solving the d
problems of the form of (13).

Relaxed projection problem Imposing that the resulting optimally per-
turbed marginal gqf be strictly increasing guarantees preserving the initial cop-
ula of the inputs. However, such constraints can lead to the non-existence of an
optimum of (13) due to the non-closure of the set of strictly increasing functions
[12]. To that extent, this work focuses on a relaxation of the problem in (13) to
increasing functions, namely:

F← = argmin
L∈L2([0,1])

{∫ 1

0

(
L(x) − F→

Pi
(x)
)2

dx

}
s.t. L(αj) ≤ bj ≤ L

(
α+
j

)
, j = 1, . . . ,K,

L ∈ V ⊆ F←.

(14)

where V can be understood as a set of “smooth quantile functions” (see , Defi-
nition 4). Notice that this problem is indeed a relaxation of the initial problem.
Indeed, if V is chosen as the set of strictly increasing functions, this problem
becomes equivalent to (13).

Remark 4. In practice, the relaxed problem (14) is frequently computationally
easier to solve and can still lead to strictly increasing solutions.

4. Solving the relaxed quantile perturbation problem

4.1. Relaxed problem with no smoothing

Analytical solution The following proposition provides a convenient way to
solve the perturbation problem (14) in the particular case of V = F←.
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Fig 3. Analytical solution of the perturbation problem (dashed blue). The initial quantile
function is displayed in grey; dashed red lines identify the quantile constraints. (a.) and
(b.) illustrate different possible perturbation configurations, increasing or decreasing initial
quantile values. The grey areas identify the intervals introduced in Proposition 1.

Proposition 1. Let P be a probability measure in P2(R). Let α ∈ [0, 1]K and
b ∈ Rk, such that α1 < · · · < αK and b1 < · · · < bK , and Q(α, b) the associated
quantile perturbation class. Define the intervals Ai = (ci, di] for i = 1, . . . ,K,
such that:

c1 = min(β1, α1), ci = min
[
max(αi−1, βi), αi

]
, i = 2, . . . ,K,

dK = max(βK , αK), dj = max
[
min(βj , αj+1), αj

]
, j = 1, . . . ,K − 1.

Let A =
⋃K

i=1 Ai and A = [0, 1] \A. Then the problem (14) where V = F← has
a unique solution which can be written as, for any y ∈ [0, 1]:

F←
Q (y) =

{
F→
P (y) if y ∈ A,

bi if y ∈ Ai, i = 1, . . . ,K.
(15)

The statement of Proposition 1 is intuitive. Indeed, the Wasserstein distance
quantifies the amount of work needed to transform a probability measure into
another one [75]. When using W2, the amount of work is quantified using the
Euclidian distance, i.e., transporting a point x0 to x1 requires (x0 − x1)2 units
of work. This intrinsic point-wise way of quantifying similarities can be sensed
in the previous result: perturbing an α-quantile entails giving the initial mass of
an interval adjacent to b to the singleton {b} in order to satisfy the constraint.
This result is illustrated in Figure 3.

4.2. Isotonic piece-wise interpolating polynomial smoothing

The analytical solution provided in Proposition 1 presents a significant draw-
back: part of the application domain ΩX of the perturbed input receives no
mass, which hurts the perturbation exploration criteria. This result is because



Wasserstein projections for robust interpretability analyses 2737

F← contains discontinuous functions. Ensuring continuity through a smooth
perturbation class QV where V is a set of continuous, non-decreasing functions
can solve this issue.

Characterization of the problem This section studies the projection of F←
P

onto a space of piece-wise continuous polynomials. It implies that the support
of Q must be bounded. These bounds are made explicit using extremal quan-
tile constraints (i.e., F←

Q (0) and F←
Q (1) are constrained to take finite values).

Formally, the goal is to find a piece-wise polynomial of the form

G(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

G0(x) if α0 := 0 ≤ x < α1,
...
Gi(x) if αi ≤ x < αi+1,
...
GK(x) if αK ≤ x ≤ 1 =: αK+1.

(16)

under the continuity constraints at each knot on the grid α1 < · · · < αK , i.e.,

Gi(αi+1) = Gi+1(αi+1), i = 0, . . . ,K − 1.

Here, each Gj ∈ R[x]≤p, for j = 0, . . . ,K, where R[x]≤p denotes the set of all real
polynomials of degree at most equal to p. Let Sp denote the space of functions
defined by (16). Restricting the solution of the perturbation problem (14) leads
to the following optimization problem

F←
Q = argmin

L∈L2([0,1])

{∫ 1

0
(L(x) − F→

P (x))2 dx
}

s.t. L(αi) = bi, i = 1, . . . ,K,

L ∈ F← ∩ Sp.

(17)

or, in other words, V = F← ∩ Sp in the initial relaxed problem. Due to the
piece-wise nature of polynomials in Sp defined on the α0 < α1 < · · · < αK <
αK+1 = 1, solving (17) reduces to solve sub-problems on each sub-interval
[αi, αi+1], i = 0, . . . ,K of [0, 1]. (17) is indeed separable into K + 1 independent
optimization sub-problems. Each defines an optimal component Gi of the piece-
wise polynomial G as defined in (16).

Any of these problems can be formulated generically as follows. Let [t0, t1] ⊂
[0, 1], and z0, z1 ∈ R be interpolation values at t0 and t1 respectively. The goal
is to find the solution to the optimization sub-problem

S = argmin
L∈R[x]≤p

{∫ t1

t0

(F←
P (x) − L(x))2dx

}
s.t. L(t0) = z0, L(t1) = z1,

L′(x) ≥ 0, ∀x ∈ [t0, t1].

(18)
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This optimization sub-problem is nothing more than the L2 isotonic (i.e., mono-
tonic, in this case non-decreasing) polynomial approximation on a compact in-
terval [59], with interpolation constraints at the boundaries. The interpolating
polynomials have been extensively studied in the literature [37], as well as iso-
tonic polynomial regression and approximation [76, 88]. However, to our knowl-
edge, this specific optimization problem does not seem to have been particularly
studied.

A strategy for solving (18) is to use the sum-of-squares (SOS) [53] repre-
sentation of nonnegative polynomials. These SOS representations can then be
characterized using semi-definite positive (SDP) matrices [65, 66, 79]. A similar
characterization of isotonic polynomials has been proposed in [79]. The follow-
ing result shows that this optimization problem fits into the category of strictly
convex programs: the solution of (21) is unique [12].

Theorem 1. Let [t0, t1] ⊂ [0, 1]. Let M be the symmetric positive definite
((d + 1) × (d + 1)) moment matrix of the Lebesgue measure on [t0, t1], i.e. for
i, j = 1, . . . , d + 1,

Mij =
∫ t1

t0

xi+j−2dx = (t1)i+j−1 − (t0)i+j−1

i + j − 1 , (19)

and denote r ∈ R
d+1 the moment vector of F→

P (x), i.e., for i = 0, . . . , d

ri =
∫ t1

t0

xiF→
P (x)dx. (20)

Then, the vector s∗ = (s0, . . . , sd)� ∈ R
d+1 of coefficients characterizing the

polynomial S in (18) is the solution of the following convex constrained quadratic
program

s∗ = argmin
s∈Rp+1

s�Ms− 2s�r

s.t. s ∈ K,
(21)

where K is a closed convex subset of Rp+1.

The subset K ⊂ R
p+1 is characterized as the pre-image of the closed convex

cone of SDP matrices through compositions of linear mappings. For conciseness,
a formal definition of K is contained within the proof of Theorem 1.

Remark 5. Constraining the polynomials in (18) to be strictly increasing
(i.e., their derivative being strictly positive) would ensure copula preservation.
However, the set K in Theorem 1 would be open, and the existence of an optimal
solution would not be guaranteed.

Solving strategy and empirical computational cost As solving for s∗

in (21) is a convex-constrained quadratic program, it can be addressed efficiently
using devoted solvers. The problem (17) amounts to solving K +1 optimization
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Algorithm 1 Isotonic interpolating piece-wise continuous polynomial optimiza-
tion strategy
Require: α, b, F→

P , p
1: for i = 0, . . . ,K do (in parallel)
2: Compute M on [αi, αi+1] (19).
3: Compute r on [αi, αi+1] (20).
4: Setup CVXR constraints.
5: s(i) ← Solve (21).
6: Gi(x) ←

∑p
j=0 s

(i)
j xj

7: end for
8: return G(x) ←

∑K
i=0 Gi(x)1[αi,αi+1](x)

Fig 4. Computational solving time in seconds of the optimization problem (21) using CVXR,
w.r.t. the chosen degree of the polynomial.

problems of the form (21). Furthermore, computations can be done in parallel.
The problem (21) can be formulated and solved using CVXR, an R package for
disciplined convex programming [39]. The optimization scheme is illustrated in
Algorithm 1.

While computing the Lebesgue moment matrix M on each sub-interval of
[0, 1] is straightforward, computing strategies for r, the moment vector of F←

P ,
can vary depending on whether P is empirical or not. Additional computational
details are given in Appendix C. The set-up of the CVXR constraints is detailed
in the accompanying GitLab repository1.

To provide a frame of reference for the practical usage of this method, the
empirical computational time of solving one element of G, w.r.t. the polyno-
mial degree is studied. Values t0, t1 ∈ [0, 1], and z0, z1 ∈ ΩX are randomly
selected, and an isotonic interpolating piece-wise continuous polynomial is fit-
ted (i.e., solving (21)). Polynomials of degrees ranging from 2 to 50 are fitted
for each experiment, repeated 150 times. The execution time has been recorded
and is displayed in Figure 4. The mean computational time seems to be lin-
ear w.r.t. the polynomial degree. However, the higher the degree, the wider the

1https://gitlab.com/milidris/qcWasserteinProj

https://gitlab.com/milidris/qcWasserteinProj
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90% time coverage seems to be, which may be caused by the complexity of the
underlying optimization problem. In our limited testing, further numerical ex-
periments showed that small polynomial degrees (≤ 7) often appear sufficient
to obtain good approximations. Moreover, the approximation error tends to
stabilize, w.r.t. the polynomial degree, rather rapidly.

Remark 6. The numerical solver used is SCS V3.2.1 [62]. The quantile func-
tions have been mapped to take values between [−1, 1] to improve numerical sta-
bility. All the figures and all obtained optimal perturbations have been computed
by performing this pre-processing step first.

5. Robustness diagnostics to distributional perturbations

The perturbation method is applied to two use cases to illustrate the robustness
insights one can gather regarding black-box models. First, the robustness to
feature perturbations of a classification model (i.e., a one-layer neural network)
trained on an acoustic fire extinguisher dataset is studied. Local and global di-
agnostics are showcased, leading to tangible insights. The second use case deals
with a numerical hydrological model from the UQ literature. The perturbation
methodology allows going beyond classical metrics for surrogate model valida-
tion.

Remark 7. The following applications apply optimal perturbations using an
isotonic polynomial smoothing with an arbitrarily high degree. The degree is
chosen based on an empirical inspection of the solutions and ensuring that the
approximation error remains relatively the same w.r.t. higher degrees.

Particular attention has been put on copula preservation. Even though the
relaxed problem (14) is solved in the following applications, the solutions are
composed of strictly increasing marginally perturbed quantile functions.

5.1. ML application: acoustic fire extinguisher dataset

The acoustic fire extinguisher dataset comprises 15390 experiments of fire ex-
tinguishing tests of three different liquid fire fuels. Amplified subwoofers are
placed in a collimator with an opening. When activated at different frequencies,
the acoustic waves produce an air escape through the opening, which is used to
extinguish fires. Three features are set using a design of experiment (DoE), and
two are measured using appropriate equipment. One can refer to the in-depth
descriptions in [52, 84] for more details on the experiment’s settings. Table 1
gives additional details on the nature of the features.

For each experiment, a binary output variable Y is measured, representing the
result of the experiment, i.e., , whether the fire has been put out (Y = 1) or not
(Y = 0). The two output classes are relatively balanced (i.e., 48.97% of the ob-
servations describe effectively extinguished fires). The distribution, correlation
structure, and relationship between the features and the output are represented
in Figure 5. Some variables seem fairly correlated (in Spearman’s sense, i.e., the
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Table 1

Description of the features of the acoustic fire extinguisher dataset.
Feature Unit Mode of measure Description

TankSize cm DoE Discrete feature (5 levels) describing the tank
size containing the fuel.

Fuel DoE Fuel type used (3 levels: Gasoline, Kerosene,
Thinner).

Distance cm DoE Distance of the flame to the collimator opening.

Frequency Hz DoE Sound frequency range.

Decibel dB Measured Sound pressure level.

Airflow m/s Measured Airflow created by the sound waves.

Fig 5. Histogram, cross-scatterplot, and Spearman’s correlation coefficient of the input fea-
tures. Red dots represent observations resulting in Y = 0, and blue dots for Y = 1.

linear correlation of the rank-transformed data), such as Frequency and Decibel,
as well as Distance and Airflow.

The classification black-box model is a one-layer neural network (composed
of 100 neurons), trained on 500 epochs, with a learning rate of 10−4, similar
to the study conducted in [83]. 5% of the data has been randomly selected for
validation. The model resulted in a good prediction accuracy: 95.15% of the
training data and 94.26% of the validation data are correctly classified. Figure 6
depicts the trained black-box model’s ROC curve and confusion matrix. The
model’s predictive performance can be validated globally with an AUC of 0.992
and less than 3% of type 1 and 2 prediction errors.
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Fig 6. ROC curve (left) and confusion matrix (right) of the neural network model trained on
the acoustic fire extinguisher dataset.

However, global predictive performance only focuses on effectively observed
data points. Studying the model’s behavior on predictions outside these points
is mandatory to improve confidence in its usage. Hence, one can be interested
in the robustness of the model w.r.t. perturbations on its inputs. Note that
ground truths cannot be observed for perturbed data. However, the impact,
either globally or locally, of these perturbations on the predictive behavior of
the model can still be assessed using predictions on the perturbed data. The
feature perturbation scheme is detailed and motivated in the following, and
then the model’s behavior is studied under these perturbations.

Perturbation strategy A straightforward perturbation strategy is proposed
for the Airflow feature. The perturbation is composed of the K = 14 constraints:

• The application domain of the feature is preserved by setting both the 0
and 1-quantiles to the dataset’s minimum and maximum observed value.

• The left tail of the distribution is preserved by constraining every quantile
of level 0.1 to 0.6 with a step of 0.05 to interpolate the empirical quantile
function of the feature.

• A quantile shift perturbation is put on the 0.8-quantile of the feature, with
an initial value of F←

P (0.8) = 12, being shifted between 9.5 (θ = −1) and
14.5 (θ = 1).

In addition to these perturbations, piece-wise continuous isotonic polynomi-
als smoothing is enforced. The degree of each increasing polynomial has been
arbitrarily chosen to be up to 9. The constraints and the resulting quantile-
constrained Wasserstein projections are illustrated in Figure 7 for intensity val-
ues −1, 0, and 1.

The perturbed quantile level has been chosen with the model’s decision
boundary in mind: no observation in the initial dataset with an Airflow value
exceeding 12.3 m/s is classified by the model as not extinguishing the fire, re-
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Fig 7. Quantile functions of the optimally perturbed Airflow feature, with a chosen polynomial
degree equal to 9. The red line represents the preserved tail; meanwhile, the green, blue, and
yellow lines represent various quantile shift intensity levels (θ = −1, θ = 0, and θ = 1,
respectively).

gardless of the values taken by the other features. Perturbing the 0.8-quantile of
the Airflow variable allows for exploring the model’s behavior in regions close to
this decision boundary. More importantly, it allows for assessing the predictive
robustness of the neural network in this region under perturbations of varying
magnitude. Generally, this quantile shift regime can be understood as a pertur-
bation on the right tail of the initial distribution, i.e., on values higher than the
0.6-quantile.

Model robustness assessment First, global robustness insights are high-
lighted. The left plot of Figure 8 presents the proportion of perturbed obser-
vations with predictions of 1 w.r.t. to the intensity of the perturbation. Notice
that the proportion is increasing, along with θ. Hence, decreasing the value of
the initial 0.8-quantile tend to result in a lower number of predicted put-out
fires, and increasing its value results in an increasing number of predicted put-
out fires. This interpretation is rather intuitive: all other things being equal, a
higher Airflow value entails a higher chance of predicting Y = 1. The right plot
of Figure 8 presents the proportion of prediction shift w.r.t. θ. Notice that the
higher the magnitude of the perturbation (positively or negatively), the more
predictions tend to change, and the closest θ is to 0, the fewer predictions shift.
This observation informs on the predictive stability in the vicinity of the decision
boundary of the model: small perturbations tend to result in fewer prediction
shifts than bigger perturbations.
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Fig 8. Proportion of predictions Y = 1 (left) and proportion of classification prediction shift
(right) compared to the initial data, w.r.t. the perturbation intensity parameter θ.

Fig 9. Initial (left) and perturbed (right) target Shapley effects, w.r.t. the intensity parameter
θ, using the same color panel.

Figure 9 presents the target Shapley effects [47], a global SA input importance
measure for binary black-box model outputs with dependent inputs, w.r.t. the
quantile shift intensity parameter θ. These indices have been computed using the
nearest-neighbor (KNN) approach proposed in [15] (with an arbitrarily chosen
number of neighbors equal to 6). Studying the behavior of importance mea-
sures informs on the stability of this diagnostic (i.e., feature importance order)
w.r.t. input perturbation, i.e., if the importance hierarchy between the inputs
changes due to perturbations around the model’s decision boundary. The left
barplot presents the initial target Shapley effects, computed on the model’s pre-
diction on the observed data, and the right plot presents their behavior under
the airflow perturbation. One can notice that the importance indices remain
stable w.r.t. θ. This result indicates that the global SA of the neural network is
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Fig 10. Perturbed datapoints w.r.t. their initial values. The black line represents no pertur-
bation. The red and blue dots represent either a classification shift due to the perturbation or
no classification shift.

robust to the distributional perturbations driven by θ. Hence, one can be con-
fident in those diagnostics under uncertainties in the region near the model’s
decision boundary.

Finally, the robustness of the neural network can also be assessed locally.
Figure 10 allow visualizing whether a prediction has shifted w.r.t. to the effective
magnitude of the perturbation. The black line indicates no perturbation change:
the airflow value of an observation has been mapped to itself. For a fixed initial
airflow datapoint, its vertical distance to the black line indicates the (signed)
magnitude of the applied perturbation. Red points indicate that the prediction
has shifted w.r.t. the initial dataset, and blue points indicate no predictive
change. One can note the presence of red dots close to the black line around the
prediction boundary of the model. Small perturbations for observations with
airflow values around 12, all other features being equal, can lead to a prediction
change. Hence, the confidence in predictions on observations in this region can be
questioned. However, notice the lack of red dots near the black line for airflow
values on the interval [13, 17] and on the interval [7, 10]. Hence, one can be
confident in the model’s predictions for Airflow values on these intervals, which
seem robust w.r.t. the quantile shift.

One may notice the presence of small perturbations resulting in prediction
changes for Airflow values around [0, 5]. However, since the perturbation scheme
focuses on exploring the model’s behavior around the decision boundary, their
interpretation is voluntarily omitted: a different perturbation scheme involving
perturbing the left tail of the airflow distribution would be advised.
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In summary, besides its good prediction accuracy, the model is globally ro-
bust to distributional perturbation focused around the decision boundary of
its Airflow feature. Moreover, one can be confident in the feature importance
indices since they remain relatively similar under perturbation. Locally, the
model prediction seems stable w.r.t. small perturbations, except on a small
interval around its decision boundary (a behavior generally expected in ML ap-
plications). In conclusion, this robust interpretability analysis further assesses
the model’s behavior beyond classical accuracy metrics and provides additional
arguments for its validation.

5.2. SA application: Simplified hydrological model

This use case focuses on a simplified model of the water level of a river. This
model has been extensively used in the safety and reliability of industrial sites,
where the occurrence of a flood can lead to dramatic human and ecological
consequences. It consists of a substantial simplification of the one-dimensional
Saint-Venant equation, with a uniform and constant flow rate, inspired from
[50, 40]. The maximal annual water level from sea level is modeled as follows:

Y = Zv +

⎛⎝ Q

BKs

√
Zm−Zv

L

⎞⎠3/5

,

where the description of each input variable and their explicit marginal proba-
bilistic structure is detailed in Table 2.

Table 2

Inputs of the simplified river water level model and their explicit marginal distributions.
G,N , T denote Gumbel, Normal and Triangular distributions, respectively (trunc means

truncated).

Input Unit Distribution Application Domain Description

Q m3/sec G(1013, 558) trunc. [500, 3000] River maximum annual
water flow rate.

Ks N (35, 5) trunc. [20, 50] Strickler riverbed rough-
ness coefficient.

Zv m T (49, 50, 51) [49, 51] Downstream river level.

Zm m T (54, 55, 56) [54, 56] Upstream river level.

L m T (4990, 5000, 5010) [4990, 5010] River length.

B m T (295, 300, 305) [295, 305] River width.
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Additionally, similarly to [18], a dependence structure is modeled using a
Gaussian copula, with the covariance matrix

RP =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0.5 0 0 0 0

0.5 1 0 0 0 0
0 0 1 0.3 0 0
0 0 0.3 1 0 0
0 0 0 0 1 0.3
0 0 0 0 0.3 1

⎞⎟⎟⎟⎟⎟⎟⎠ , where

⎛⎜⎜⎜⎜⎜⎜⎝
Q
Ks

Zv

Zm

L
B

⎞⎟⎟⎟⎟⎟⎟⎠ ∼ P.

Echoing Example 2, one is interested in uncertainties on the application do-
main of the Ks input, i.e., the Strickler riverbed roughness coefficient (which is
the inverse of the Manning coefficient). Its value can range from around 3 (pro-
liferating algae) to 90 (smooth concrete). We refer the interested reader to the
in-depth study in [40] for more details on the determination and inference of the
Strickler coefficient for realistic rivers. In this use-case, the application domain
ΩX of the Strickler coefficient is initially set between the values of 20 and 50,
corresponding to situations from very cluttered riverbeds to earthen channels.
However, epistemic uncertainties are assumed to affect this application domain
to illustrate our robustness method.

Perturbation strategy In this use case, the three following inputs are per-
turbed. The river’s maximum annual water flow rate Q, the river length L, and
the upstream river level Zm are subject to the following quantile constraints:

• Quantile perturbations on Q:
– Shift of the application domain from [500, 3000] to [500, 3200];
– Preserve the median of the distribution;
– Increase the initial 0.15-quantile by 75;
– Decrease the initial 0.75-quantile by 125;

• Quantile perturbations on L:
– Shift the application domain from [4990, 5010] to [4988, 5012];
– Preserve the median of the distribution;

• Quantile perturbations on Zm:
– Preserve the application domain and the median of the initial distri-

bution;
– Increase the 0.8 and 0.9-quantiles by 0.1;
– Decrease the 0.25-quantile by 0.05.

The initial input distributions, their application domain, and the optimally per-
turbed results are illustrated in Figure 11. These constraints are mainly enforced
to illustrate that multiple inputs can be perturbed simultaneously while preserv-
ing their dependence structure. They can be interpreted, for instance, as domain



2748 M. Il Idrissi et al.

Fig 11. Initial quantile functions, application domains, and corresponding optimally perturbed
quantile functions of the Q, L, and Zm inputs.

experts’ knowledge injection into the initial probabilistic structure of the inputs
(e.g., to study a specific river arm).

In addition to these constraints, the Strickler coefficient Ks is subject to an
application domain dilatation perturbation, with a scaling parameter η = 2.
Each perturbation intensity represents a degree of uncertainty on the type of
riverbed roughness. When θ = −1, the width of the initial application domain is
halved, i.e., from [20, 50] to [27.5, 42.5], which can be interpreted in a situation
where the epistemic uncertainty on the riverbed roughness is narrower, between
a slow winding natural river, up to a plain river without shrub vegetation. When
θ = 1, the epistemic uncertainty on the riverbed is much wider. The application
domain equals [5, 65], depicting a range of riverbed roughness from proliferating
algae to smooth concrete. Figure 12 illustrates the initial Ks distribution and
the optimally perturbed quantile functions for θ equal to −1 and 1. Hence θ
can be interpreted as a proxy for the “amount” of epistemic uncertainty on the
riverbed roughness.

Additionally, the perturbations’ smoothness is enforced using piece-wise con-
tinuous isotonic polynomials of degree up to 12, chosen arbitrarily.

Robustness of the sensitivity analysis From a global standpoint, one can
be interested in the impact of the distributional perturbations on key statistics of
the random output of the river water level model. Figure 13 presents estimated
values for the mean, standard deviation, 0.025 and 0.975-quantiles (shown by
the 95% coverage), and minimum and maximum values of the random output,
computed on 105 Monte Carlo samples, w.r.t. the dilatation intensity θ. These
values are compared to the reference ones according to the initial distribution
of the inputs, estimated on a 2 × 105 Monte Carlo sample.



Wasserstein projections for robust interpretability analyses 2749

Fig 12. Initial quantile function, application domain and corresponding optimally perturbed
quantile functions for Ks, for θ being equal to −1 (left) and 1 (right), for a scaling parameter
η = 2.

Fig 13. Expectation, standard deviation, 95% coverage, minimum and maximum estimators
of the river water level, w.r.t. the application domain dilatation intensity θ.

Notice that the expectation, standard deviation, 95% coverage quantiles, and
minimum value of the model output remain stable under the distributional
perturbations on the application domain of the Strickler coefficient. However,
the estimated upper bound of the output support increases exponentially for
positive values of θ. Widening the uncertainty on the riverbed type allows for
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Fig 14. Reference Shapley effects (left) and Shapley effects of the river water level model
under optimally dilated application domain w.r.t. θ (right), using the same color panel.

relatively rare events of high river water levels since the 0.975-quantile does not
seem dramatically affected by the distributional perturbations.

Figure 14 presents the Shapley effects [63], which are global SA importance
measures for real-valued model outputs with dependent inputs. These indices
have been computed using a double Monte Carlo scheme as depicted in [80],
with fixed simulated sample sizes, for each perturbed distribution Q driven by a
value of θ, Nv = 104 for estimating VarQ(Y ), as well as No = 103 and Ni = 100
to estimate EQ [VarQ (Y | XA)] for every subset XA, A ⊆ {1, . . . , d} of variables.
Additionally, the reference Shapley effects have been computed under the initial
distribution with sample sizes Nv = 105, No = 3 × 103, and Ni = 300.

Note that the distributional perturbations have an impact on the impor-
tance measures. More precisely, increasing the range of the uncertainty of the
riverbed roughness increases its importance for positive values of θ. Conversely,
the importance of both Q and Zv decreases accordingly. However, the variable
importance hierarchy induced by the Shapley effects is preserved. It is also es-
sential to notice that Q and Zv are considered equally important as θ gets large.
Hence, this SA does not seem robust to distributional perturbations and, more
precisely, to a widening of the support of the Strickler coefficient in combination
with the quantile perturbations put on Q, L, and Zm.

Surrogate model validation A surrogate model is trained on an input-
output sample of size 5× 105 of the initial probabilistic structure and validated
on a validation dataset of size 5 × 104. The surrogate model is a neural net-
work comprised of 3 hidden layers, 64 neurons each, and ReLu as an activation
function. The R2 of the model is 99.5% R2 on the training data and 99.5% on
the validation data. Despite the model’s good results on the validation data, it
does not behave the same way as the initial model when perturbed similarly.
Echoing Figure 13, Figure 15 illustrates the model’s behavior when subject to
the previously introduced perturbations.
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Fig 15. Expectation, standard deviation, 95% coverage, minimum and maximum estimators
of the surrogate model, w.r.t. the application domain dilatation intensity θ.

One can notice that the surrogate model does not behave as the numerical
model w.r.t. the epistemic uncertainty of the riverbed roughness. Even though,
on the surface, the surrogate model generalizes well on validation data, its be-
havior on the perturbed data differs from the initial numerical model. More
precisely, the maximal value of the river water level does not seem to be im-
pacted by the epistemic uncertainty of the riverbed roughness. However, the
other statistics (mean, variance, and 95% coverage) align with the numerical
model. Hence, despite its good fit, using this surrogate model would not be
advised if the goal of the sensitivity analysis is to study rare events.

6. Discussion and perspective

Obtaining robustness diagnoses on the influence of input variables and the be-
havior of a model considered a black box is essential for its acceptance and use.
This paper provides a tool to answer this problem by modifying the distributions
of the input variables. These perturbations modify the quantile of marginal dis-
tributions while, in some instances, preserving the dependence structure. This
method revolves around probability measure projection under a 2-Wasserstein
cost, leading to interpretable, generic, and close solutions, allowing for data
exploration. Regularity conditions can be enforced, and the case of piece-wise
interpolating isotonic polynomials is studied. The robustness analyses conducted
on real case studies illustrate its potential flexibility and adequate computational
cost, which are essential for high-dimensional cases. These studies highlighted
validation insights beyond classical tools, allowing for a more complete under-
standing of the black-box model’s behavior.
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Several avenues of improvement can be considered. First, concerning the
piece-wise interpolating isotonic polynomials. An enlightened polynomial de-
gree selection is required. An idea would be to use prior information on the
order of differentiability of the sought-after perturbed gqf. In an ML frame-
work, nonparametric approaches to isotonic regression of the marginal gqfs of
P can provide answers through statistical testing [32, 25] or criteria enforcing a
trade-off between approximation error and sparsity (e.g., inspired from AIC or
BIC). Moreover, while the proposed methodology allows for continuous results,
differentiability is not guaranteed. However, inspiration from the literature on
isotonic splines [46, 76, 37, 88] can be leveraged to offer the practitioner a better
range of smooth solutions. Additionally, other spaces of functions can also be
used for smoothing purposes. Following the work of [7], abstract reproducing
kernel Hilbert space of nonnegative functions can be reached through particular
kernels. Hence, it would allow accessing different sets of nonnegative functions
whose regularities can be assessed through a thorough study of these kernels.

Second, the proposed methodology only focuses on marginal perturbation
preserving the dependence structure of the inputs. As pointed out by the re-
viewers of this article, one may wish to perturb the dependence structure as
well. However, it is argued that copula perturbation should be done indepen-
dently of marginal perturbations for the sake of the final interpretation of the
robustness analyses. It allows separating the effects in the marginal perturba-
tion of the effects of the stochastic dependence perturbation. Association and
concordance measures appear as the most interpretable tools for copula ma-
nipulation (and are frequently used to incorporate expert opinion) [21, 89, 10].
An alternative approach to perturb the stochastic dependence structure and
the marginal would be to consider multivariate quantile functions. However,
defining multivariate quantile functions is not trivial and not as natural as in
the univariate case. Among the many approaches to defining such a notion, the
most theoretically accomplished today is the one resulting from the concept
of center-outward distribution function [19, 45, 11]. Perturbing these quantile
contours can be leveraged to go beyond marginal consideration and will be the
subject of future work.

Finally, one of the primary motivations for using the 2-Wasserstein distance
as a projection metric is that it metricizes weak convergence on a broad set
of probability measures. Other distances between probability measures are en-
dowed with similar properties, such as the Prokhorov-Levy distance. Leveraging
the different relationships between such distances (see [42]) could be beneficial
for generalizing the proposed approach.

Appendix A: Additional results

Conditions for well-defined perturbation classes

Lemma 3. Let α ∈ [0, 1]K and b ∈ R
K , which are assumed to be ordered without

loss of generality. If

0 ≤ α1 < · · · < αK ≤ 1, and b1 < · · · < bK , (22)
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then Q(α, b) is non-empty.

Quantile shifts

Lemma 4. Let Θ = [−1, 1] and denote η = (η0, η1) with η0 < pα < η1. For
θ ∈ Θ, let,

bα(η, θ) =

⎧⎪⎨⎪⎩
pα(1 + θ) − θη0 if − 1 ≤ θ < 0,
pα if θ = 0,
pα(1 − θ) + θη1 if 0 < θ ≤ 1.

Then, for any Q ∈ P(R) such that

F←
Q (α) ≥ bα(η, θ) ≥ F→

Q (α),

one has that, ∀θ ∈ [−1, 1]:

θ = −1 ⇔ bα(η, θ) = η0,

θ = 0 ⇔ bα(η, θ) = pα,

θ = 1 ⇔ bα(η, θ) = η1,

(23)

and for any −1 ≤ θ1 < θ2 ≤ 1,

bα(η, θ1) < bα(η, θ2).

In other words, bα(η, θ) ∈ [η0, η1] is a strictly increasing function of θ and
θ = 0 indicates that pα must remain untouched (i.e., no constraint).

Application domain dilatation

Lemma 5. Let η > 1. For θ ∈ [−1, 1], let:

b0(η, θ) =

⎧⎪⎨⎪⎩
1
2
(
ω0
(
2 − θ(η−1 − 1)

)
+ θω1(η−1 − 1)

)
if − 1 ≤ θ < 0,

ω0 if θ = 0,
1
2
(
ω0
(
2 + θ(η − 1)

)
− θω1(η − 1)

)
if 0 < θ ≤ 1,

b1(η, θ) =

⎧⎪⎨⎪⎩
1
2
(
ω1
(
2 − θ(η−1 − 1)

)
+ θω0(η−1 − 1)

)
if − 1 ≤ θ < 0,

ω1 if θ = 0,
1
2
(
ω1
(
2 + θ(η − 1)

)
− θω0(η − 1)

)
if 0 < θ ≤ 1.

Then, ∀(θ, η) ∈ [−1, 1] × [1,∞),

b0(η, θ) + b1(η, θ) = ω0 + ω1 (midpoints equality).

Denote b(η, θ) = [b0(η, θ), b1(η, θ)], and notice that

θ = −1 ⇔ diam (b(η, θ)) = diam(ΩX)
η

,

θ = 0 ⇔ diam (b(η, θ)) = diam(ΩX),

θ = 1 ⇔ diam (b(η, θ)) = ηdiam(ΩX),

(24)



2754 M. Il Idrissi et al.

and for any −1 ≤ θ1 < θ2 ≤ 1,

diam (b(η, θ1)) < diam (b(η, θ2)) .

In other words, diam (b(η, θ)) ∈
[
η−1diam(ΩX), ηdiam(ΩX)

]
is a strictly in-

creasing function of θ, and for θ = 0, one has that b(η, θ) = ΩX , i.e., the
application domain is not perturbed.

Interpretation of the analytical solution In order to interpret this result,
illustrated in Figure 3, let us recall that when a quantile function is constant on
an interval, it implies that its related probability measure admits an atom at
the constant value taken by the gqf. Moreover, the mass allocated to this atom
is equal to the length of the interval. Additionally, each jump of the quantile
function induces an interval with no mass. The solution displayed in (15) shows
that both initial and perturbed quantile functions are equal on A. However,
they differ on every interval Ai in the following fashion:

• Q have atoms at each constraint point bi, i = 1, . . . ,K;
• Each of these atoms have mass Q({bi}) = di − ci, for i = 1, . . . ,K;
• Each open interval Ii ⊂ R defined as

Ii =

⎧⎨⎩
(
max(F←

P (αi), bi−1), bi
)
, when bi > F←

P (αi),(
bi,min (bi+1, F

←
P (αi))

)
, when bi < F←

P (αi)
(25)

with, by convention, b0 = −∞ and bK+1 = ∞, has no mass. To put it
briefly, Q(Ii) = 0 for every i = 1, . . . ,K.

In other words, whenever an α-quantile pα is shifted up to a value b, the
perturbation entails sending every possible value in the range (pα, b) to b. Hence,
every value in (pα, b) cannot be sampled according to Q. Moreover, the singleton
{b} now admits a probability of being observed equal to the initial probability
of this interval, i.e., Q({b}) = P

(
(pα, b)

)
. When an α-quantile is shifted to b,

the interval becomes (b, pα), and the same reasoning can be done.

Appendix B: Proofs

Proof of Lemma 3. Notice that if (22) is respected, then the constraints are
non-decreasing. Then, there exists at least a function F← in F← such that the
constraints are respected (e.g., the linear interpolant of the constraints). So,
there exists a probability measure with F← as a generalized quantile function.

Proof of Lemma 4. Since [η0, η1] is bounded, one can define a standardized in-
tensity parameter θ ∈ Θ = [−1, 1] as:

θ(b) = pα − b

pα − η1
1{b>pα}(b) + b− pα

pα − η0
1{b<pα}(b).

Equivalently, one can express b in terms of θ, which directly provides the ex-
pression of bα(η, θ).
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Proof of Lemma 5. Preserving the midpoint of ΩX while perturbing its width
requires that, for any couple (b0, b1) ∈ R

2, that⎧⎨⎩
b0 + b1

2 = ω0 + ω1

2
b1 − b0 = κ(ω1 − ω0)

⇐⇒

⎧⎪⎨⎪⎩
b1 = ω1(κ + 1) − ω0(κ− 1)

2
b0 = ω0(κ + 1) − ω1(κ− 1)

2

where κ ∈ [ 1
η , η]. Using the transformation

θ(κ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−κ− 1

1
η − 1

if 1
η
≤ κ < 1

0 if κ = 1
κ− 1
η − 1 if 1 < κ < η

allows defining the formulas for b0 and b1 provided in the result’s statement.

Proof of Lemma 1. (i) Suppose that P is empirical. Notice that the empirical
copula (see Section 2.3) only depends on the ranks of the observed data points.
Since each F←

i is strictly monotone increasing, the ranks between the initial
and perturbed data points are preserved. Hence, the empirical copula between
X and X̃ is the same.
(ii) Let F ∈ F , and recall that if F← is strictly increasing then from [31], for
all u ∈ [0, 1]

(F ◦ F←)(u) = u

Now let F1, . . . , Fd ∈ F , such that F←
i is strictly increasing, and denote:

F : R → [0, 1]d

(u1, . . . , ud)� 
→ (F1(u1), . . . , Fd(ud))�

One then has that:
F (T (X)) = FP (X) a.s.

and hence, X and T (X) have the same copula.

Proof of Lemma 2. Notice that, from Lemma 1, every probability measure in
Z̃(P, θ) has the same copula as P . Leveraging the work in [1] (Proposition 1.1),
if P and Q share the same copula, one can rewrite their 2-Wasserstein distance
as:

W 2
2 (P,Q) =

d∑
i=1

W 2
2 (Pi, Qi) =

d∑
i=1

∫ 1

0

(
F→
Pi

(x) − F→
Qi

(x)
)2

dx (26)

Moreover, noticing that each marginal perturbation class Qi(θ) can be written as
constraints on the generalized inverses of the cdf of Qi. Hence, minimizing (26)
entails minimizing each univariate transportation problem under marginal con-
straints. Finally, the perturbation map T is thus optimal between P and Q.
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Proof of Proposition 1. First, note that the intervals Ai, i = 1, . . . ,K are dis-
joint. Moreover for any i = 1, . . . ,K − 1, consider the four cases:

1. If αi < βi < αi+1 and, then Ai = (αi, βi];
2. If βi < αi < βi+1 and, then Ai = (βi, αi];
3. If αi < βi and assume that αi+j < βi+j−1 for j = 1, . . . ,m where m ≤

K − i is some non-negative integer, then Ai = (αi, αi+1], additionally for
j = i+1, . . . , i+m−1, Aj = (αj , αj+1] and finally Ai+m = (αi+m, βi+m];

4. If βi < αi and assume that αi+j < βi+j+1 for j = 1, . . . ,m where m ≤
K − i − 1 is some non-negative integer, then Ai = (βi, αi] and for j =
i + 1, . . . , i + m, Aj = (αj−1, αj ].

The integral can be decomposed as follows:∫ 1

0
(L(x) − F→

P (x))2 dx =
∫
A

(L(x) − F→
P (x))2 dx+

K∑
i=1

∫
Ai

(L(x) − F→
P (x))2 dx

where ∫
A

(L(x) − F→
P (x))2 dx ≥ 0.

Since the quantile constraints are of the form:

L(αi) ≤ bi ≤ L
(
α+
i

)
.

one can always write L(y) = bi + h(y) for y ∈ Ai, and where h is an non-
decreasing, left-continuous function. Moreover, note that:

• h(y) is non-negative, and F→
P (y) − bi ≤ 0 if Ai falls in cases 2. and 4.

• h(y) is non-positive, and F→
P (y) − bi ≥ 0 if Ai falls in cases 1. and 3.

Then one has:∫
Ai

(L(x) − F→
P (x))2 dx =

∫
Ai

(L(x) − bi − h(y))2 dx

=
∫
Ai

(F→
P (x) − bi)2 dx +

∫
Ai

h(x)2dx

− 2
∫
Ai

h(x) (F→
P (x) − bi) dx

≥
∫
Ai

(F→
P (x) − bi)2 dx

since h(x) and F→
P (x) − bi have different sign. Due to the constraint and the

left-continuous non-decreasing nature of L, this bound is tight and is attained
if and only if h(y) = 0 for all y ∈ Ai. Globally, this entails that

∫ 1

0
(L(x) − F→

P (x))2 dx ≥
K∑
i=1

∫
Ai

(F→
P (x) − bi)2 dx
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and this tight bound is uniquely attained by the left-continuous non-decreasing
function defined as

F←
Q (y) =

{
F→
P (y) if y ∈ A

bi if y ∈ Ai, i = 1, . . . ,K.

Proof of Theorem 1 (ingredients) This proof relies on the following results
from [65, 66, 53], and further recalled in [79]. They involve sum-of-squares (SOS)
polynomials, which can be defined as follows.

Definition 5 (SOS polynomials). A polynomial S of even degree p is said to be
a SOS polynomial if, for m ∈ N

∗, there exists s1, . . . , sm polynomials of degree
at most equal to d

2 , and such that, ∀x ∈ R:

S(x) =
m∑
i=1

(
si(x)

)2
.

Theorem 2. Let t0, t1 ∈ R such that t0 < t1, and let p ∈ N
∗.

(i) A univariate polynomial S of even degree d = 2p is non-negative on [t0, t1]
if and only if it can be written as, ∀x ∈ [t0, t1]

S(x) = Z(x) + (x− t0)(t1 − x)W (x)

where Z is a SOS polynomial of degree at most equal to d, and W is an
SOS polynomial of degree at most equal to d− 2.

(i) An univariate polynomial S of odd degree d = 2p + 1 is non-negative on
[t0, t1] if and only if it can be written as, ∀x ∈ [t0, t1]

S(x) = (x− t0)Z(x) + (t1 − x)W (x)

where Z,W are SOS polynomials of degree at most equal to d.

It is important to note that Theorem 2 is quite general in the sense that
it allows for extensions to multivariate polynomials (i.e., polynomials taking
values from R

d). As pointed out in [29] (Thm. 1.4.2), nonnegative polynomials
on compact intervals can also be defined as a linear combination of squared
polynomials. It may facilitate the identification of the nonnegative polynomials’
coefficients, as done in [59] in the context of statistical learning. However, for
the sake of potential future genericity, the direct powerful link between SOS
polynomials and semi-definite positive matrices is leveraged, as expressed in the
following theorem.

Theorem 3. Let S be a univariate polynomial of even degree d = 2p, with coef-
ficients s = (s0, . . . , sd), and denote xp the usual monomial basis of polynomials
of degree at most equal to p, i.e., xp = (1, x, x2, . . . , xp−1, xp)�. S is an SOS
polynomial if and only if there exists a (p× p) symmetric semi-definite positive
(SDP) matrix

Γ =
[
Γij

]
i,j=1,...,p
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that satisfies, ∀x ∈ R,
S(x) = x�

p Γxp.

Moreover, for k = 0, . . . , d, let I
p
k be the (p × p) matrix defined by, for i, j =

1, . . . , p: [
I
p
k

]
i,j

= 1{i+j=k+2}(i, j).

Then one additionally has that, for i = 0, . . . , d

si = 〈Ipi ,Γ〉F =
∑

j+k=i+2
Γj,k (27)

where, 〈., .〉F denotes the Frobenius norm on matrices.

Theorem 4. Let Sn the subspace of real-valued symmetric matrices, in the
vector space of square matrices. The set of symmetric SDP matrices ΣN is a
proper cone in Sn, and thus is a closed convex set.

A few results on the preservation of convexity of sets under transformations
are also required. These lemmas can be found in [12].

Lemma 6 (Linear maps preserve convexity). Let V,W be two vector spaces
over the same field F . Let T : V → W be a linear map, and let C ⊂ V be a
convex set. Then the image of C under T , i.e., :

T (C) = {T (x) ∈ W | x ∈ C ⊂ V }

is also a convex set.

Lemma 7 (Cartesian product of convex sets is a convex set). Let C1 be a subset
of Rm and C2 be a convex subset of Rn. Then, the Cartesian product C1 × C2
is a convex subset of Rm × R

n.

Two additional results, proven beneath, are required before proceeding to the
proof of Theorem 1.

Lemma 8. The mapping in (27), V : Sp → R
2p, defined, for any Γ ∈ Sp, as:

V (Γ) =

⎛⎝ ∑
j+k=i+2

Γj,k

⎞⎠
i=0,...,2p

is linear.

Proof of Lemma 8. We need to show that:

• For A,B ∈ Sp, T (A + B) = T (A) + T (B);
• For α ∈ R, Γ ∈ Sp, T (αΓ) = αT (Γ).

First, one has, for i = 0, . . . , 2p:[
T (A + B)

]
i
=

∑
j+k=2p−i

[
A + B

]
jk
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=
∑

j+k=i+2
Ajk + Bjk

=
∑

j+k=i+2
Ajk +

∑
j+k=i+2

Bjk

=
[
T (A)

]
i
+
[
T (B)

]
i

since it holds for i = 0, . . . , 2p, it entails:

T (A + B) = T (A) + T (B).

Moreover, one has, for i = 0, . . . , 2p:[
T (αΓ)

]
i
=

∑
j+k=i+2

αΓjk

= α
[
T (Γ)

]
i

and since it holds for i = 0, . . . , 2p, it entails:

T (αΓ) = αT (Γ).

Hence T is a linear map between Sp and R
2p.

Lemma 9. Let S be a univariate polynomial of degree d and s = (s0, . . . , sd)� ∈
R

d+1 its coefficients. Let S′ be its derivative, i.e., a polynomial of degree d− 1,
with coefficients s̆ = (s1, . . . , sd)� ∈ R

d. Let Z and W be SOS polynomials,
with coefficients z and w, and assume that S′ is non-negative on [t0, t1] as a
combination of Z and W as in Theorem 2. Moreover, let

D = diag(1, 2, . . . , d)

be the (d×d) diagonal matrix with (1, . . . , d) as a diagonal elements and denote
the bloc-matrices

Ii,d =
(

Id
0i,d

)
, Ii,d =

(
0i,d

Id

)
, Ii,d =

⎛⎝0i,d

Id
0i,d

⎞⎠
where 0i,d denotes the (i × d) matrix of zeros, and Id be the (d × d) identity
matrix. If d is odd, then z ∈ R

d and w ∈ R
d−2 and furthermore

s̆ = Az + Bw

where A and B are (d× d) and (d× d− 2) matrices, respectively. If the degree
d of S is even, one has that z, w ∈ R

d−1 and furthermore:

s̆ = Cz + Dw.

where C and D are (d× d− 1) matrices. More specifically,

A = D−1
d , B = D−1

d

(
(t0 + t1)I1,d−2 − I2,d−2−t0t1I2,d−2

)
,

C = D−1
d

(
I1,d−1 − t0I1,d−1

)
, D = D−1

d

(
t1I1,d−1 − I1,d−1

)
.
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Proof of Lemma 9. First, assume that S is a polynomial of odd degree d =
2p+ 1, meaning that its derivative, S′, is a polynomial of even degree 2p. From
Theorem 2, one has that S′(x) is positive on an interval [t0, t1] if and only if it
can be expressed as :

S′(x) = Z(x) + (x− t0)(t1 − x)W (x)

where Z is an SOS polynomial of degree at most equal to d − 1 and W is an
SOS polynomial of degree at most equal to d− 3. Denote s̆ = (s1, . . . , sd) ∈ Rd

the coefficients of S′ and z = (z1, . . . , zd) ∈ R
d and w = (w1, . . . , wd−2) ∈ R

d−2

the coefficients of Z and W respectively. One has that :

S′(x) =
d∑

i=1
isix

i−1

=
d−1∑
j=0

(j + 1)si+1x
i

and if S′ is assumed to be non-negative on [t0, t1]

S′(x) = Z(x) + (x− t0)(t1 − x)W (x)

=
d−1∑
j=0

zj+1x
j + (−x2 + (t0 + t1)x− t0t1)

d−3∑
j=0

wj+1x
j

leading to the following identification :⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

s1 = z1 − t0t1w1

s2 = 1
2 (z2 − t0t1w2 + (t0 + t1)w1)

si = 1
i (zi − t0t1wi + (t0 + t1)wi−1 − wi−2) , for i = 3, . . . , d− 2

sd−1 = 1
d−1 (zd−1 + (t0 + t1)wd−2 − wd−3)

sd = 1
d (zd−1 − wd−2) ,

or, written in a matrix form:

s̆ = D−1
d

(
z +
(
(t0 + t1)I1,d−2 − I2,d−2 − t0t1I2,d−2

)
w
)
.

If S is assumed to be a polynomial of even degree d = 2p, S′ is necessarily
odd degree. From Theorem 2, one has that S′(x) is positive on an interval [t0, t1]
if and only if it can be expressed as :

S′(x) = (x− t0)Z(x) + (t1 − x)W (x)

where Z and W are SOS polynomials of degree at most equal to d − 2 with
z = (z1, . . . , zd−1) ∈ R

d−1 and w = (w1, . . . , wd−1) ∈ R
d−1 as coefficients,

respectively. It leads to the following identification:⎧⎪⎨⎪⎩
s1 = −t0z1 + t1w1

si = 1
i (zi−1 − t0zi + t1wi − wi−1) for i = 2, . . . , d− 1

sd = 1
d (zd−1 − wd−1) ,
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which can be written in matrix form as

s̆ = D−1
d

((
I1,d−1 − t0I1,d−1

)
z +
(
t1I1,d−1 − I1,d−1

)
w
)
.

We can now proceed to prove Theorem 1.

Proof of Theorem 1 (rationale). This rationale can be broken down in two
steps: (a) proving that the objective function (18) can indeed be written in a
quadratic form, and:(b) proving that the problem constraints form a feasible
set in R

d+1 which is closed and convex.

(a) Notice first that the initial objective function∫ t1

t0

(L(x) − F→
P (x))2dx

where L ∈ R[x]≤d with coefficients s ∈ R
d+1, can be rewritten as:∫ t1

t0

(F→
P (x) − L(x))2dx =

∫ t1

t0

(
d∑

i=0
six

i − F→
P (x))2dx

=
∫ t1

t0

⎛⎝( d∑
i=0

six
i

)2

+ (F→
P (x))2 −2

d∑
i=0

six
iF→

P (x)

⎞⎠ dx

=
∫ t1

t0

(
d∑

i=0
six

i

)2

dx− 2
d∑

i=0
si

∫ t1

t0

xiF→
P (x)dx

+
∫ t1

t0

(F→
P (x))2 dx.

Note that ∫ t1

t0

(
d∑

i=0
six

i

)2

dx =
d∑

i=0

d∑
j=0

sisj

∫ t1

t0

xi+jdx

= s�Ms

where M is the moment matrix of the Lebesgue measure on [t0, t1], i.e., defined
entry-wise, for i, j = 1, . . . , d + 1 as

Mij =
∫ t1

t0

xi+j−2dx = (t1)i+j−1 − (t0)i+j−1

i + j − 1 .

and further notice that M is thus positive definite since, for any u ∈ R
d+1,

u�Mu =
∫ t1

t0

(
d∑

i=0
ui+1x

i

)2

dx ≥ 0
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is always non-negative, and equal to 0 if and only if ui = 0, i = 1, . . . , d + 1.
Moreover, note that:

d∑
i=0

si

∫ t1

t0

xiF→
P (x)dx = s�r

where r ∈ R
d+1 is the moment vector of G with respect to the Lebesgue measure

on [t0, t1], defined for i = 0, . . . , d as:

ri =
∫ t1

t0

xiF→
P (x)dx

Since a polynomial is completely characterized by its coefficients, searching for:

S∗ = argmin
L∈R[x]≤d

∫ t1

t0

(L(x) − F→
P (x))2dx

is equivalent to finding the coefficients s∗ of S∗, i.e.,

s∗ = argmin
s∈Rp+1

s�Ms− 2s�r

and thus proving the first part of the proposition.

(b) Notice that the interpolation constraints{
S(t0) = b0

S(t1) = b1

can be written as {
s�t0d = b0

s�t1d = b1

where, for a ∈ R, one denote ad the vector of powers of a up to d, i.e., ad =
(1, a, . . . , ad−1, ad) ∈ R

d+1. Moreover, by letting:

T =
(
t0d
t1d
)
, b =

(
b0
b1

)
,

where T is a (2 × d + 1) bloc-matrix, the constraint can be written as:

Ts = b.

Furthermore, notice that

C0 = {s ∈ R
d+1 | Ts = b}

is a convex subset of Rd+1, since the equality constraints are linear. Concerning
the monotonicity constraint

S′(x) ≥ 0, ∀x ∈ [t0, t1],
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from Lemma 9 one can quite generically write⎛⎜⎝sd
...
s1

⎞⎟⎠ = T0(z, w) := Az + Bw

where z and w are the coefficient of SOS polynomials of degrees depending on
d. Additionally, notice that the mapping T0 : Rd × Rd−2 → Rd is linear. Next,
let V1 : Sp → R

2p, and V2 : Sq → R
2q be defined as in (27), where p = d− 1/2

and q = d− 3/2 if d is odd, or p = d− 2/2 and q = d− 2/2 if d is even, and
note that both mappings are linear thanks to Lemma 8.

Moreover, denote the following sets:

Z = {V1(E) | E ∈ Σp}, W = {V2(E) | E ∈ Σp−1}

and notice the polynomial Z (resp. W ) is SOS if and only its coefficients z
(resp. w) are in Z (resp. W) thanks to Theorem 4. In addition again, notice
that, thanks to Lemma 6, and due to the fact that Σp is a closed convex set
in Sp as per Theorem 4, both Z and W are convex subsets of R

2p and R
2q

respectively. Besides, thanks to Lemma 7, the set Z ×W is a convex subset of
R

2p × R
2q as well. Moreover, let

C1 =
{(

T0(w, z)
x

)
∈ R

d+1 | x ∈ R, (z, w) ∈ Z ×W
}

and note that it is a convex subset of Rd+1 due to the fact that T0 is a linear
map.

Finally, since both C0 and C1 are convex sets, their intersection:

K = C0 ∩ C1

is as well, and note that any element s ∈ K are the coefficients of a polynomial
respecting both equality and monotonicity constraints. In other words, K is the
feasible set of coefficients of the initial optimization problem.

Appendix C: Computing moment vector of arbitrary quantile
functions

One wishes here at computing the vector described in (20). In the case where
P is an empirical measure built on a n-sample, one has that for [t0, t1] ∈ [0, 1],
i = 0, . . . , p:

ri = 1
i + 1

[∑
j∈J

X(j)

ni+1

(
(j + 1)i+1 − ji+1

)

+ X(j)
(
ti+1
1 −

(
j

n

)i+1)
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+ X(j−1
)
((

j

n

)i+1

− ti+1
0

)]

where J = {i ∈ N | �nt0� < i < �nt1�}, j = �t1n�, j = �t0n� + 1, and where
X(j) denotes the j-th order statistic of the observe sample. In cases where F←

P

is continuous, it is possible to use numerical quadrature methods in order to
evaluate each integral composing the elements ri of r.
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