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Abstract: We propose a data segmentation methodology for the high-
dimensional linear regression problem where regression parameters are al-
lowed to undergo multiple changes. The proposed methodology, MOSEG,
proceeds in two stages: first, the data are scanned for multiple change
points using a moving window-based procedure, which is followed by a
location refinement stage. MOSEG enjoys computational efficiency thanks
to the adoption of a coarse grid in the first stage, and achieves theoretical
consistency in estimating both the total number and the locations of the
change points, under general conditions permitting serial dependence and
non-Gaussianity. We also propose MOSEG.MS, a multiscale extension of
MOSEG which, while comparable to MOSEG in terms of computational
complexity, achieves theoretical consistency for a broader parameter space
where large parameter shifts over short intervals and small changes over
long stretches of stationarity are simultaneously allowed. We demonstrate
good performance of the proposed methods in comparative simulation stud-
ies and in an application to predicting the equity premium.
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1. Introduction

Regression modelling in high dimensions has received great attention with the
development of data collection and storage technologies, and numerous applica-
tions are found in natural and social sciences, economics, finance and genomics,
to name a few. There is a mature literature on high-dimensional linear regres-
sion modelling under the sparsity assumption, see Bühlmann and van de Geer
(2011) and Tibshirani (2011) for an overview. When observations are collected
over time in highly nonstationary environments, it is natural to allow for shifts
in the regression parameters. Permitting the parameters to vary over time in a
piecewise constant manner, data segmentation, a.k.a. multiple change point de-
tection, provides a conceptually simple framework for handling nonstationarity
in the data.
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In this paper, we consider the problem of multiple change point detection un-
der the following model: We observe (Yt,xt), t = 1, . . . , n, with
xt = (X1t, . . . , Xpt)� ∈ R

p where

Yt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x�
t β0 + εt for θ0 = 0 < t ≤ θ1,

x�
t β1 + εt for θ1 < t ≤ θ2,

...
x�
t βq + εt for θq < t ≤ n = θq+1.

(1)

Here, {εt}nt=1 denotes a sequence of errors satisfying E(εt) = 0 and Var(εt) =
σ2
ε ∈ (0,∞) for all t, which may be serially correlated. At each change point

θj , the vector of parameters undergoes a change such that βj−1 �= βj for all
j = 1, . . . , q. Then, our aim is to estimate the set of change points Θ = {θj , 1 ≤
j ≤ q} by estimating both the total number q and the locations θj of the change
points.

The data segmentation problem under (1) is considered by Bai and Perron
(1998), Qu and Perron (2007), Zhao, Jiang and Shao (2022) and Kirch and Reck-
rühm (2022), among others, when the dimension p is fixed. In high-dimensional,
at most one change point settings (q = 1), Lee, Seo and Shin (2016) and Kaul,
Jandhyala and Fotopoulos (2019a) consider the problem of detecting and locat-
ing the change point, respectively. For the general case with unknown q, several
data segmentation methods exist which adopt dynamic programming (Leonardi
and Bühlmann, 2016; Rinaldo et al., 2021; Xu et al., 2022), fused Lasso (Wang
et al., 2022; Bai and Safikhani, 2022) or wild binary segmentation (Wang et al.,
2021) algorithms for the detection of multiple change points, and Bayesian ap-
proaches also exist (Datta, Zou and Banerjee, 2019). A related yet distinct
problem of testing for the presence of a single change point under the regression
model has been considered in Wang and Zhao (2022) and Liu et al. (2022). Gao
and Wang (2022) and Cho, Kley and Li (2024) consider the case where βj−βj−1
is sparse without requiring the sparsity of βj , j = 0, . . . , q, the former under the
more restrictive conditions that p < n and Xit ∼iid N (0, 1), while the latter
permit serial and spatial dependence, non-Gaussianity and p � n.

Against the above literature background, we list the contributions made in
this paper by proposing computationally and statistically efficient data segmen-
tation methods.

(i) Computational efficiency. For the data segmentation problem under (1),
often the computational bottleneck is the local estimation of the regres-
sion parameters via penalised M -estimation such as Lasso. We propose
MOSEG, a moving window-based two-stage methodology, and its multi-
scale extension, which are both highly efficient computationally by strate-
gically selecting the intervals over which the local estimation is performed.
In the first stage, MOSEG scans the data for multiple change points using
a moving window of length G on a coarse grid of size O(nG−1), which is
followed by a simple location refinement step minimising the local residual
sum of squares. The adoption of a coarse grid in the first stage contributes
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Fig 1. Execution time in seconds of MOSEG and MOSEG.MS and competing methodologies
on simulated datasets (y-axis is in log scale for ease of comparison). Left: p varies while
n = 450 is fixed. Right: n varies while p = 100 is fixed. For each setting, 100 realisations are
generated and the average execution time is reported. See Section 5.2 for full details.

greatly to the reduction of Lasso estimation steps while losing little de-
tection power. Figure 1 demonstrates the computational competitiveness
of the proposed MOSEG and MOSEG.MS where they greatly outperform
the existing methodologies in their execution time for a range of n and p.

(ii) Multiscale change point detection. We propose a multiscale extension
of the single-bandwidth methodology MOSEG. Referred to as MOSEG.MS,
it is fully adaptive to the difficult scenarios with multiscale change points,
where large frequent parameter shifts and small changes over long stretches
of stationarity are simultaneously present, while still enjoying computa-
tional competitiveness. Also, among the plethora of data segmentation
methods that propose to apply moving window-based procedures with
multiple bandwidths, MOSEG.MS is the first extension in high dimen-
sions with a guaranteed rate of localisation.

(iii) Theoretical consistency in general settings. We show the consis-
tency of MOSEG and MOSEG.MS in estimating the total number and
the locations of multiple change points. Under Gaussianity, their sep-
aration and localisation rates nearly match the minimax lower bounds
up to a logarithmic factor. Moreover, in our theoretical investigation, we
permit temporal dependence as well as tail behaviour heavier than sub-
Gaussianity. This, compared to the existing literature where independence
and (sub-)Gaussianity assumptions are commonly made, shows that the
proposed methods work well in situations that are more realistic for em-
pirical applications.

The rest of the paper is organised as follows. Section 2 introduces MOSEG,
the single-bandwidth methodology, and establishes its theoretical consistency.
Then in Section 3, we propose its multiscale extension, MOSEG.MS, and show
that it achieves theoretical consistency in a broader parameter space. In Sec-
tion 4, we provide a comprehensive comparison between the existing methods
and MOSEG and MOSEG.MS both on their theoretical and computational
properties, and Section 5 demonstrates the competitiveness of the proposed
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methods through numerical experiments. Section 6 provides a real data applica-
tion to equity premium data. We present all the proofs and additional numerical
results in Appendix. The R software implementing MOSEG and MOSEG.MS
is available from https://github.com/Dom-Owens-UoB/moseg.

Notation For a random variable X, we write ‖X‖ν = [E(|X|ν)]1/ν for ν > 0.
For a = (a1, . . . , ap)� ∈ R

p, we write supp(a) = {i, 1 ≤ i ≤ p : ai �= 0}, |a|0 =∑p
i=1 I{ai �=0}, |a|1 =

∑p
i=1 |ai|, |a|2 = (

∑p
i=1 a

2
i )1/2 and |a|∞ = max1≤i≤p |ai|.

For a square matrix A, let Λmax(A) and Λmin (A) denote its maximum and
minimum eigenvalues, respectively. For a set A, we denote its cardinality by
|A|. For sequences of positive numbers {an} and {bn}, we write an � bn if there
exists some constant C > 0 such that an/bn ≤ C as n → ∞. Finally, we write
a ∨ b = max(a, b) and a ∧ b = min(a, b).

2. Single-bandwidth methodology

We introduce MOSEG, a single-bandwidth two-stage methodology for data seg-
mentation in regression settings. We first describe its two stages in Section 2.1,
establish its theoretical consistency in Section 2.2 and verify meta-assumptions
made for the theoretical analysis in Section 2.3 for a class of linear processes with
serial dependence and heavier tails than that permitted under sub-Gaussianity.

2.1. MOSEG

2.1.1. Stage 1: Moving window procedure on a coarse grid

Single-bandwidth moving window procedures have successfully been adopted for
univariate (Preuss, Puchstein and Dette, 2015; Yau and Zhao, 2016; Eichinger
and Kirch, 2018), multivariate (Kirch and Reckrühm, 2022) and high-dimensional
(Cho et al., 2023) time series segmentation. When applying a moving window-
based procedure to a data segmentation problem, the key challenge is to care-
fully design a detector statistic which, when adopted for scanning the data for
changes, has good detection power against the type of changes which is of in-
terest to detect.

For a given bandwidth G ∈ N satisfying G ≤ n/2, our proposed detector
statistic is

Tk(G) =
√

G

2

∣∣∣β̂k,k+G − β̂k−G,k

∣∣∣
2
, G ≤ k ≤ n−G. (2)

Here, β̂s,e denotes an estimator of the vector of parameters obtained from
(Yt,xt), s + 1 ≤ t ≤ e, for any 0 ≤ s < e ≤ n. The statistic Tk(G) con-
trasts the local parameter estimators from two adjacent data sections over
{k − G + 1, . . . , k} and {k + 1, . . . , k + G}. Then, Tk(G) is expected to form
local maxima near the change points as where the local parameter estimators

https://github.com/Dom-Owens-UoB/moseg
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differ the most, and thus it is well-suited for detecting and locating the change
points under the model (1).

We propose to obtain the local estimator β̂s,e via Lasso, as

β̂s,e(λ) = arg minβ∈Rp

e∑
t=s+1

(Yt − x�
t β)2 + λ

√
e− s|β|1 (3)

for some tuning parameter λ > 0. In what follows, we suppress the dependence
of this estimator on λ when there is no confusion. The estimand of β̂k−G,k is

β∗
k−G,k = 1

G

L(k)∑
j=L(k−G+1)

{(θj+1 ∧ k) − ((k −G) ∨ θj)}βj , (4)

where L(t) = {j, 0 ≤ j ≤ q : θj + 1 ≤ t} denotes the index of a change point
θj that is the closest to t while lying strictly to its left. In short, β∗

k−G,k is a
weighted sum of βj with the weights corresponding to the proportion of the
intervals {k −G + 1, . . . , k} overlapping with {θj + 1, . . . , θj+1}.

Scanning the detector statistic Tk(G) over all k ∈ {G, . . . , n − G} requires
the computation of the Lasso estimator O(n) times. This is far fewer than
O(n2) times required by dynamic programming algorithms for �0-penalised cost
minimisation (Rinaldo et al., 2021; Xu et al., 2022), but it may still pose a
computational bottleneck when the data sequence is very long or its dimension-
ality ultra high. Instead, we propose to evaluate Tk(G) on a coarser grid only
for generating pre-estimators of the change points. Let T denote the grid over
which we evaluate Tk(G), which is given by

T = T (r,G) =
{
G + rG�m, 0 ≤ m ≤

⌊
n− 2G
rG

⌋}
(5)

with some constant r ∈ [G−1, 1) that controls the coarseness of the grid. When
r = G−1, we have the finest grid T = {G, . . . , n − G} and the grid becomes
coarser with increasing r.

Motivated by Eichinger and Kirch (2018), who consider the problem of de-
tecting multiple shifts in the mean of univariate time series using a moving win-
dow procedure, we propose to accept all significant local maximisers of Tk(G)
over k ∈ T as the pre-estimators of the change points. Specifically, for some
threshold D > 0 and a tuning parameter η ∈ (0, 1], we accept all θ̃ ∈ T that
simultaneously satisfy

Tθ̃(G) > D and θ̃ = arg maxk∈T : |k−θ̃|≤ηG Tk(G). (6)

That is, at such θ̃, the detector Tθ̃(G) exceeds the threshold and attains a local
maximum over the grid within the interval of length ηG. We denote the set
collecting all pre-estimators fulfilling (6), by Θ̃ = {θ̃j , 1 ≤ j ≤ q̂ : θ̃1 < . . . < θ̃q̂}
with q̂ = |Θ̃| as the estimator of the number of change points. This grid-based
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approach substantially reduces the computational complexity by requiring the
Lasso estimators to be computed only O(n/rG�) times. Even so, it is sufficient
for detecting the presence of all q change points, provided that r is chosen not
too large (see Theorem 1 (i) below). The next section describes the location
refinement step applied to the pre-estimators of change point locations.

2.1.2. Stage 2: Location refinement

Once the set of pre-estimators Θ̃ is generated by the first-stage moving window
procedure on a coarse grid, we further refine the location estimators. It involves
the local evaluation and minimisation of the following objective function

Q (k; a, b, γ̂L, γ̂R) =
k∑

t=a+1
(Yt − x�

t γ̂
L)2 +

b∑
t=k+1

(Yt − x�
t γ̂

R)2 for k = a + 1, . . . , b,

(7)

for suitably chosen a, b, γ̂L and γ̂R.
For each j = 1, . . . , q̂, let θ̃L

j = θ̃j −G/2� and θ̃R
j = θ̃j + G/2�, and consider

the following local parameter estimators

β̂L
j = β̂0∨(θ̃L

j −G),θ̃L
j

and β̂R
j = β̂θ̃R

j ,(θ̃R
j +G)∧n, (8)

which serve as the estimators of βj−1 and βj , respectively. Then in Stage 2, we
propose to obtain a refined location estimator of θj from its pre-estimator θ̃j ,
as

θ̂j = arg minθ̃j−G+1≤k≤θ̃j+G Q
(
k; θ̃j −G, θ̃j + G, β̂L

j , β̂
R
j

)
, (9)

for all j = 1, . . . , q̂. Referring to the methodology combining the two stages as
MOSEG, we provide its algorithmic description in Algorithm 1 of Appendix C.

A similar approach to (9) has often been taken in the change point literature,
see e.g. Kaul, Jandhyala and Fotopoulos (2019a) and Xu et al. (2022) for the
data segmentation problem under the model (1). Our proposal differs from theirs
only in that the interval over which the search is performed in (9), is chosen to
contain exactly one change point with high probability under Assumption 4 (a)
below. The popularity of this location refinement procedure is partly due to its
computational efficiency, since the evaluation of (9) only requires two Lasso fits
in producing β̂L

j and β̂R
j . We establish the near-optimality of the thus-generated

θ̂j in the following sections.

2.2. Consistency of MOSEG

We make the following assumptions on (xt, εt), 1 ≤ t ≤ n.
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Assumption 1. We assume that E(xt) = 0, E(εt) = 0 and Var(εt) = σ2
ε for all

t = 1, . . . , n, and that Cov(xt) = Σx has its eigenvalues bounded, i.e. there exist
0 ≤ ω ≤ ω̄ < ∞ such that

ω ≤ Λmin(Σx) ≤ Λmax(Σx) ≤ ω̄.

The condition on the eigenvalues of Σx can also be found e.g. in Rinaldo
et al. (2021) and Wang, Lin and Willett (2019). Where relevant, we explic-
itly specify the roles played by ω and ω̄ in presenting the theoretical results,
which indicates how this condition may be relaxed. Assumptions 2 and 3 be-
low extend the deviation bound and restricted eigenvalue (RE) conditions re-
quired for high-dimensional M -estimation (van de Geer and Bühlmann, 2009;
Loh and Wainwright, 2012; Negahban et al., 2012), to the change point setting
in consideration. We later give example scenarios permitting serial dependence
as well as non-Gaussianity, under which Assumptions 2 and 3 hold, see Sec-
tion 2.3 below. We take this general approach to highlight that the consistency
of MOSEG shown later in Theorem 1, carries over to situations whenever these
meta-assumptions are verified.

Assumption 2 (Deviation bound). Let Ψ = max(1,max0≤j≤q |βj |2). Then,
there exist fixed constants C0, CDEV > 0 and some ρn,p → ∞ as n, p → ∞,
such that P(D(1) ∩ D(2)) → 1, where

D(1) =
{

max
0≤s<e≤n, e−s≥C0ρ2

n,p

∣∣∣∣∣ 1√
e− s

e∑
t=s+1

εtxt

∣∣∣∣∣
∞

≤ CDEVρn,p

}
,

D(2) =

⎧⎪⎨⎪⎩ max
0≤s<e≤n, e−s≥C0ρ

2
n,p

|{s+1,...,e}∩Θ|≤1

∣∣∣∣∣ 1√
e− s

e∑
t=s+1

(Yt − x�
t β

∗
s,e)xt

∣∣∣∣∣
∞

≤ ΨCDEVρn,p

⎫⎪⎬⎪⎭ .

Assumption 3 (Restricted eigenvalue). There exist fixed constants CRSC > 0
and τ ∈ [0, 1) such that P(R(1) ∩R(2)) → 1, where

R(1) =
{

e∑
t=s+1

a�xtx�
t a ≥ (e− s)ω|a|22 − CRSC log(p)(e− s)τ |a|21 for all

0 ≤ s < e ≤ n satisfying e− s ≥ C0ρ
2
n,p and a ∈ R

p
}
,

R(2) =
{

e∑
t=s+1

a�xtx�
t a ≤ (e− s)ω̄|a|22 + CRSC log(p)(e− s)τ |a|21 for all

0 ≤ s < e ≤ n satisfying e− s ≥ C0ρ
2
n,p and a ∈ R

p
}
.

For each j = 0, . . . , q, we denote by Sj = supp(βj) the support of βj , and
by s = max0≤j≤q |Sj | the maximum segment-wise sparsity of the regression
parameters. We make the following assumptions on the size of change δj =
|βj − βj−1|2 and the spacing between the neighbouring change points.



Data segmentation in regression settings 2627

Assumption 4. The bandwidth G fulfils the following conditions with Ψ, τ ,
ρn,p and ω introduced in Assumptions 1, 2 and 3.

(a) 2G ≤ min1≤j≤q+1(θj − θj−1).
(b) There exists a fixed constant C1 > 0 such that

min
1≤j≤q

δ2
jG ≥ C1Ψ2 max

{
ω−2sρ2

n,p,
(
ω−1s log(p)

)1/(1−τ)
}
.

Assumption 4 (a) relates the choice of bandwidth G to the minimum spacing
between the change points. Together, (a) and (b) specify the separation rate
imposing a lower bound on

Δ(1) = min
1≤j≤q

δ2
j · min

0≤j≤q
(θj+1 − θj), (10)

for all the q change points to be detectable by MOSEG. Later in Section 3, we
propose a multiscale extension of MOSEG which achieves consistency under a
more relaxed condition than Assumption 4 which permits both small changes
over long intervals of stationarity and large jumps over short intervals simulta-
neously present in the data.

Theorem 1. Suppose that Assumptions 1, 2, 3 and 4 hold. Let the tuning
parameters satisfy λ ≥ 4ΨCDEVρn,p, r ∈ [1/G, 1/4), η ∈ (4r, 1] and

48
√
sλ

ω
< D <

η

4
√

2
min

1≤j≤q
δj
√
G. (11)

Then conditional on D(1) ∩ D(2) ∩R(1) ∩R(2), the following holds.

(i) Stage 1 of MOSEG returns Θ̃ = {θ̃j , 1 ≤ j ≤ q̂ : θ̃1 < . . . < θ̃q̂} which
satisfies

q̂ = q and |θ̃j − θj | ≤
48

√
2sGλ

ωδj
+ rG� <

⌊
G

2

⌋
for each j = 1, . . . , q.

(ii) There exists a large enough constant c0 > 0 such that Stage 2 of MOSEG
returns Θ̂ = {θ̂j , 1 ≤ j ≤ q̂ : θ̂1 < . . . < θ̂q̂} which satisfies

max
1≤j≤q

δ2
j |θ̂j − θj | ≤ c0Ψ2 max

(
sρ2

n,p, (s log(p))
1

1−τ

)
.

Theorem 1 (i) establishes that Stage 1 of MOSEG correctly estimates the
number of change points as well as identifying their locations by the pre-
estimators with some accuracy. There is a trade-off between computational effi-
ciency and theoretical consistency with respect to the choice of r. On one hand,
increasing r leads to a coarser grid T with its cardinality |T | = O(n/(rG)),
and thus reduces the computational cost. On the other, the pre-estimators lie
in the grid such that the best approximation to each change point θj can be
as far from θj as rG�/2, which is reflected on the localisation property of the
pre-estimators.
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Theorem 1 (ii) derives the rate of estimation for the second-stage estimators
θ̂j which shows that the location estimation is more challenging when the size of
change δj is small. Note that we always have
max1≤j≤q δ

−2
j Ψ2 max(sρ2

n,p, (s log(p))1/(1−τ)) � G � min1≤j≤q+1(θj−θj−1) un-
der Assumption 4. In Section 2.3, we consider two scenarios permitting temporal
dependence and non-Gaussianity on (xt, εt), and concretely specify ρn,p and τ .
In particular, the rate derived in Theorem 1 (ii) is near-minimax optimal under
Gaussianity, see Corollary 3 (ii).

Remark 1. Recall Ψ = max(1,max0≤j≤q |βj |2) defined in Assumption 2. We
make its role explicit in our theoretical analysis, while Ψ is often treated as
a constant in the related literature, see e.g. Lee, Seo and Shin (2016), Kaul,
Jandhyala and Fotopoulos (2019a), Wang et al. (2021) and Xu et al. (2022).
Trivially bounded as Ψ �

√
s, it follows immediately that Ψ = O(1) if we

assume that Var(Yt) < ∞ since under Assumption 1, Var(Yt) ≥ ω
∑q

j=0 |βj |22 ·
I{θj+1≤t≤θj}+σ2

ε . We note that the regime Ψ = O(1) defines a more challenging
situation where the size of change δj is at most a fixed constant and allowed to
tend to zero.

2.3. Verification of Assumptions 2 and 3

Assumptions 2 and 3 generalise the deviation bound and restricted eigenvalue
conditions which are often found in the high-dimensional M -estimation liter-
ature, to accommodate change points, serial dependence and non-Gaussianity.
Condition 1 gives instances of {(xt, εt)}nt=1 that fulfil Assumptions 2 and 3 and
specify the corresponding ρn,p and τ .

Condition 1. Suppose that for i.i.d. random vectors ξt = (ξ1t, . . . , ξp+1,t)� ∈
R

p+1, t ∈ Z, with E(ξt) = 0 and Cov(ξt) = I, we have[
xt

εt

]
=

∞∑
�=0

D�ξt−� with D� = [D�,ik, 1 ≤ i, k ≤ p + 1] ∈ R
(p+1)×(p+1) (12)

subject to E(xtεt) = 0. Further, there exist constants Ξ > 0 and ς > 2 such that

|D�,ik| ≤ Cik(1 + �)−ς with max
{

max
1≤k≤p+1

p+1∑
i=1

Cik, max
1≤i≤p+1

p+1∑
k=1

Cik

}
≤ Ξ

(13)

for all � ≥ 0. Finally, we impose either of the two conditions on ξit.

(a) There exist some constants Cξ > 0 and γ ∈ (0, 2] such that (E(|ξit|ν))1/ν =
‖ξit‖ν ≤ Cξν

γ for all ν ≥ 1. In other words, ‖ξit‖ψν := supν≥1 ν
−1/γ‖ξit‖ν

≤ Cξ.
(b) ξit ∼iid N (0, 1).

The condition that Cov(ξt) = I is a technical one which may be relaxed to
require that Cov(ξt) is a diagonal matrix with bounded entries.
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Proposition 2. Suppose that Assumption 1 and Condition 1 hold. Then, there
exist some constants c1, c2 > 0 such that P(D(1) ∩ D(2) ∩ R(1) ∩ R(2)) ≥ 1 −
c1(p ∨ n)−c2 , with ω = Λmin(Σx)/2, ω̄ = 3Λmax(Σx)/2, and τ and ρn,p chosen
as below.

(i) Under Condition 1 (a), we set τ = (4γ+2)/(4γ+3) and ρn,p = log2γ+3/2

(p ∨ n).
(ii) Under Condition 1 (b), we set τ = 0 and ρn,p =

√
log(p ∨ n).

Remark 2. Under Condition 1, {(xt, εt)}nt=1 is a linear process with alge-
braically decaying serial dependence according to the functional dependence
measure of Zhang and Wu (2017). Condition 1 (a) permits heavier tail behaviour
than that allowed under sub-Gaussian or sub-exponential distributions (follow-
ing the definitions in Chapter 2 of Vershynin, 2018) when γ > 1/2 and γ > 1,
respectively. Alternatively, we may directly constrain the degree of temporal
dependence and tail behaviour as in Xu et al. (2022), or impose a mixing-type
condition as in Wang and Zhao (2022), in verifying Assumptions 2 and 3. Under
these assumptions, the common approach is to verify the deviation bound and
restricted eigenvalue conditions analogous to those made in Assumptions 2–3,
with which the uniform consistency of the local Lasso estimators is derived,
see also the literature on the consistency of Lasso-type estimator (when q = 0)
under a variety of characterisations of serial dependence and non-Gaussianity
(Wu and Wu, 2016; Adamek, Smeekes and Wilms, 2020; Han and Tsay, 2020;
Wong, Li and Tewari, 2020). Instead, we explicitly state the meta-assumptions
to highlight that the proposed MOSEG achieves consistency whenever Assump-
tions 2–3 are met, as done in Corollary 3 below.

Corollary 3 follows immediately from Theorem 1 and Proposition 2.

Corollary 3. Suppose that Assumptions 1, 4 and Condition 1 hold, and λ, r, η
and D are chosen as in Theorem 1. Then, there exist constants ci > 0, i = 0, 1, 2,
such that Θ̂ = {θ̂j , 1 ≤ j ≤ q̂ : θ̂1 < . . . < θ̂q̂} returned by MOSEG satisfies the
following.

(i) Under Condition 1 (a), we have

P
(
q̂=q and max

1≤j≤q
δ2
j |θ̂j−θj | ≤ c0Ψ2 (s log(p ∨ n))4γ+3

)
≥1 − c1(p ∨ n)−c2 .

(ii) Under Condition 1 (b), we have

P
(
q̂ = q and max

1≤j≤q
δ2
j |θ̂j − θj | ≤ c0Ψ2s log(p ∨ n)

)
≥1 − c1(p ∨ n)−c2 .

Corollary 3 (ii) shows that under Gaussianity, the rate of localisation attained
by MOSEG matches the minimax lower bound up to a logarithmic term and
Ψ2, see Lemma 4 of Rinaldo et al. (2021) and also Remark 1. At the same time,
Assumption 4 (b) translates to Δ(1) � sΨ2 log(p ∨ n) in this setting, nearly
matching the minimax lower bound on the separation rate derived in Lemma 3
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of Rinaldo et al. (2021). We refer to Section 4 for comprehensive comparison
between MOSEG, its multiscale extension to be introduced in Section 3, and
the existing methods for the change point detection problem under (1), on their
theoretical and computational properties.

3. Multiscale methodology

The single-bandwidth methodology proposed in Section 2 enjoys theoretical
consistency as well as computational efficiency, but faces the difficulty arising
from identifying a bandwidth that satisfies Assumption 4 (a)–(b) simultaneously.
In this section, we propose MOSEG.MS, a multiscale extension of MOSEG, and
show that it achieves consistency in a parameter space broader than that allowed
by Assumption 4.

3.1. MOSEG.MS: Multiscale extension of MOSEG

Similarly to MOSEG, MOSEG.MS consists of moving window-based data scan-
ning and location refinement steps but it takes a set of bandwidths as an input.
The key innovation lies in that for each change point, MOSEG.MS learns the
bandwidth best-suited for its detection and localisation from the given set of
bandwidths. While there exist multiscale extensions of moving sum procedures,
they are mostly developed for univariate time series segmentation (Messer et al.,
2014; Cho and Kirch, 2021a) and to the best of our knowledge, this is a first
attempt at rigorously studying such an extension in a high-dimensional setting.

Below we describe MOSEG.MS step-by-step. An algorithmic description of
MOSEG.MS is given in Algorithm 2 of Appendix C.

Step 1: Pre-estimator generation Given a set of bandwidths G = {Gh, 1 ≤
h ≤ H : G1 < . . . < GH}, we generate the coarse grid associated with each
Gh and the parameter r by Th = T (r,Gh), see (5). As in Stage 1 of MOSEG,
the sets of pre-estimators Θ̃(Gh) are generated for h = 1, . . . , H, and we denote
by Θ̃(G) = ∪H

h=1Θ̃(Gh) the pooled set of all such pre-estimators. By (6), at
each θ̃ ∈ Θ̃(Gh), we have Tθ̃(Gh) > D and θ̃ = arg maxk∈Iη(θ̃)∩Th

Tk(Gh),
where Iη(θ̃) = {θ̃ − ηGh� + 1, . . . , θ̃ + ηGh�} denotes the detection interval
associated with θ̃. For simplicity, we write I1(θ̃) = I(θ̃). Below, we sometimes
write θ̃(G) ∈ Θ̃(G) to highlight that the pre-estimator is obtained with the
bandwidth G, and denote by G(θ̃) the bandwidth involved in the detection of
a pre-estimator θ̃. If some θ̃ is detected with more than one bandwidths, we
distinguish between them.

Step 2: Anchor estimator identification Next, we identify anchor change
point estimators θ̃A(G) ∈ Θ̃(G) detected at some G ∈ G which satisfy⋃

h:Gh<G

⋃
k∈Θ̃(Gh)

{
I(k) ∩ I(θ̃A(G))

}
= ∅. (14)
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That is, each anchor change point estimator does not have its detection interval
overlap with the detection interval of any pre-estimator that is detected with a
finer bandwidth. Denote the set of all such anchor change point estimators by
Θ̃A = {θ̃Aj , 1 ≤ j ≤ q̂ : θ̃A1 < . . . < θ̃Aq̂ }, with q̂ = |Θ̃A| as an estimator of the
number of change points q.

Step 3: Pre-estimator clustering We find subsets of the pre-estimators in
Θ̃(G) denoted by Cj , j = 1, . . . , q̂, as described below. Initialised as Cj = ∅, for
each j, we add to Cj the jth anchor estimator θ̃Aj as well as all θ̃ ∈ Θ̃(G) which
simultaneously fulfil

I(θ̃) ∩ I(θ̃Aj ) �= ∅, and

{θ̃ −G(θ̃) − G(θ̃)/2� + 1, . . . , θ̃ + G(θ̃) + G(θ̃)/2�} ∩ I(θ̃Aj′) = ∅ for all j′ �= j.

(15)

It is possible that some pre-estimators do not belong to any of Cj , 1 ≤ j ≤ q̂,
but each cluster contains at least one estimator by construction.

Step 4: Location refinement For each Cj , j = 1, . . . , q̂, we denote the
smallest and the largest bandwidths associated with the detection of the pre-
estimators in Cj , by Gm

j and GM
j , respectively, and the corresponding pre-

estimators by θ̃mj and θ̃Mj (when |Cj | = 1, we have θ̃mj = θ̃Mj = θ̂Aj and
Gm

j = GM
j ). Setting G∗

j = 3Gm
j /4 +GM

j /4�, we identify the local minimiser of
the objective function defined in (7), as

θ̌j = arg minθ̃m
j −G∗

j+1≤k≤θ̃m
j +G∗

j
Q
(
k; θ̃mj −G∗

j , θ̃
m
j + G∗

j , β̂
L
j , β̂

R
j

)
, (16)

with β̂L
j = β̂(θ̃m

j −Gm
j −G∗

j )∨0,θ̃m
j −Gm

j
and β̂R

j = β̂θ̃m
j +Gm

j ,(θ̃m
j +Gm

j +G∗
j )∧n.

Repeatedly performing (16) for j = 1, . . . , q̂, we obtain Θ̌ = {θ̌j , 1 ≤ j ≤ q̂}.

The steps of MOSEG.MS algorithm have been devised to (i) group the change
point estimators across multiple bandwidths, into those detecting the identical
change points, and (ii) adaptively learn the bandwidth best suited to locate each
change point from the bandwidths associated with the estimators in each group.
For (i), we adopt the anchor estimators in Step 2 which closely resemble the final
estimators produced by the bottom-up merging proposed in Messer et al. (2014)
in the context of univariate data segmentation. While the merging procedure is
known to achieve detection consistency, the resultant estimators do not come
with a guaranteed rate of localisation. Nonetheless, they serve as an adequate
‘anchor’ for clustering the pre-estimators in Step 3. Moreover, the restriction
imposed in (15) ensures that the bandwidths associated with the detection of
pre-estimators clustered in Cj , inform us a good choice of bandwidth for the
detection of the j-th change point, with which we perform location refinement
in Step 4.
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Remark 3 (Bandwidth generation). Cho and Kirch (2021a) propose to use G
generated as a sequence of Fibonacci numbers, for a multiscale extension of the
moving sum procedure for univariate mean change point detection (Eichinger
and Kirch, 2018). For some finest bandwidth G0 = G1, we iteratively produce
Gh, h ≥ 2, as Gh = Gh−1 + Gh−2. Equivalently, we set Gh = FhG0 where
Fh = Fh−1 +Fh−2 with F0 = F1 = 1. This is repeated until for some H, it holds
that GH < n/2� while GH+1 ≥ n/2�. By induction, Fh = O(((1 +

√
2)/2)h)

such that the thus-generated bandwidth set G satisfies |G| = O(log(n)).

3.2. Consistency of MOSEG.MS

We make the following assumption on the size of changes by placing a condition
on

Δ(2) = min
1≤j≤q

δ2
j · min(θj+1 − θj , θj − θj−1). (17)

Assumption 4′. Let G denote the set of bandwidths generated as in Remark 3
with G1 ≥ C0 max{ρ2

n,p, (ω−1s log(p))1/(1−τ)}. Then, we assume that

Δ(2) ≥ 32C1Ψ2 max
{
ω−2sρ2

n,p,
(
ω−1s log(p)

)1/(1−τ)
}
,

with C1 from Assumption 4.

In essence, Assumption 4′ relaxes Assumption 4 by requiring that for each
θj , there exists one bandwidth G(j) ∈ G fulfilling the requirements imposed on a
single bandwidth in the latter for all j = 1, . . . , q, see (a)–(b) in Appendix B.3 for
further details. Compared to Δ(1) defined in (10), we always have Δ(1) ≤ Δ(2)

and, if frequent large changes and small changes over long stretches of stationar-
ity are simultaneously present, the former can be considerably smaller than the
latter (Cho and Kirch, 2021b). To the best of our knowledge, Theorem 4 below
provides a first result obtained under the larger parameter space defined with
Δ(2), in establishing the consistency of a data segmentation methodology for the
problem in (1). We refer to Section 4 for further discussions and comprehensive
comparison between MOSEG, MOSEG.MS and competing methodologies on
their theoretical properties.

Theorem 4. Suppose that Assumptions 1, 2, 3 and 4′ hold. Let the tuning
parameters satisfy λ ≥ 4ΨCDEVρn,p, r ∈ [G−1

1 , 1/4), η ∈ (4r, 1] and

48
√
sλ

ω
< D <

η

2

√
Δ(2). (18)

Then, there exists a constant c0 > 0 such that conditional on D(1)∩D(2)∩R(1)∩
R(2), MOSEG.MS returns Θ̌ = {θ̌j , 1 ≤ j ≤ q̂ : θ̌1 < . . . < θ̌q̂} which satisfies

q̂ = q and max
1≤j≤q

δ2
j |θ̌j − θj | ≤ c0Ψ2 max

(
sρ2

n,p, (s log(p))
1

1−τ

)
.
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Corollary 5. Suppose that Assumptions 1, 4′ and Condition 1 hold, and λ, r
and D are chosen as in Theorem 4. Then, there exist constants ci > 0, i = 0, 1, 2,
such that Θ̌ = {θ̌j , 1 ≤ j ≤ q̂ : θ̌1 < . . . < θ̌q̂} returned by MOSEG.MS satisfies
the following.

(i) Under Condition 1 (a), we have

P
(
q̂ = q and max

1≤j≤q
δ2
j |θ̌j − θj | ≤ c0Ψ2 (s log(p ∨ n))4+3γ

)
≥

1 − c1(p ∨ n)−c2 .

(ii) Under Condition 1 (b), we have

P
(
q̂ = q and max

1≤j≤q
δ2
j |θ̌j − θj | ≤ c0Ψ2s log(p ∨ n)

)
≥ 1 − c1(p ∨ n)−c2 .

4. Comparison with the existing methods

4.1. Under (sub-)Gaussianity

Table 1 provides an overview of the theoretical properties of MOSEG and
MOSEG.MS in comparison with the methods proposed in Wang et al. (2021),
Kaul, Jandhyala and Fotopoulos (2019b) and Xu et al. (2022) for the change
point problem in (1) under Gaussianity, as well as their computational complex-
ity.

Specifically, Table 1 reports the separation and localisation rates associated
with each method, which are defined as below. For a given methodology, let K̂
denote the set of estimated change points. Then, when the magnitude of change
Δ, measured by either

Δ(1) = min
1≤j≤q

δ2
j · min

0≤j≤q
(θj+1 − θj) or Δ(2) = min

1≤j≤q
δ2
j min(θj − θj−1, θj+1 − θj),

diverges faster than the separation rate sn,p associated with the method, all q
changes are detected by K̂ with asymptotic power one and their locations are
consistently estimated with the localisation rate �n,p, such that
min1≤j≤q mink̂∈K̂ wj |k̂ − θj | = OP (�n,p). Here, wj refers to the relative diffi-
culty in locating θj which is related to the jump size δj .

Wang et al. (2021) propose a method which learns the projection that is
well-suited to reveal a change over each local segment and combines it with
the wild binary segmentation algorithm (Fryzlewicz, 2014) for multiple change
point detection. Kaul, Jandhyala and Fotopoulos (2019b) propose to minimise
an �0-penalised cost function given a set of candidate estimators of size q̃. Their
theoretical analysis implicitly assumes that minj(θj+1 − θj) scales linearly in n,
and the simulated annealing adopted for minimising the penalised cost, denoted
by SA(q̃) in Table 1, has complexity ranging from O(q̃4) on average to being
exponential in the worst case. In specifying the properties of Kaul, Jandhyala
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Table 1

Comparison of data segmentation methods developed for the model (1) in their theoretical
properties under Gaussianity and computational complexity (for given tuning parameters).
Here, s = max0≤j≤q |Sj | and S = | ∪q

j=0 Sj |, and we treat Ψ as a constant (see Remark 1).
Refer to the text for the definitions of sn,p, �n,p, Δ and wj . For Xu et al. (2022), we report
the rates associated with their preliminary estimators; see the text for further explanation.

Separation Localisation Computational
sn,p Δ �n,p wj complexity

MOSEG s log(p ∨ n) Δ(1) s log(p ∨ n) δj O( n
rG

· Lasso(p))
MOSEG.MS s log(p ∨ n) Δ(2) s log(p ∨ n) δj O( n

rG1
· Lasso(p))

Wang et al. (2021) s log(p ∨ n) Δ(1) s log(n) δj O(n log2(n) · GroupLasso(p))
Kaul, Jandhyala and Fotopoulos (2019b) S log(p ∨ n) Δ(1) S log(p) δ O(q̃ · Lasso(p) + SA(q̃))
Xu et al. (2022) s log(p ∨ n) Δ(1) s log(p ∨ n) δj O(n2p2 + n2 · Lasso(p))

and Fotopoulos (2019b), the global sparsity S = | ∪q
j=0 Sj | can be much greater

than the segment-wise sparsity s, particularly when the number of change points
q is large.

Xu et al. (2022) investigate the dynamic programming algorithm of Rinaldo
et al. (2021) for minimising an �0-penalised cost function in a general setting
permitting non-Gaussianity and temporal dependence, as is the case in the cur-
rent paper. In Table 1, we report the separation and localisation rates derived
in Xu et al. (2022) for their preliminary estimators from the dynamic program-
ming algorithm. These estimators are further refined by a procedure similar
to Stage 2 of MOSEG, which are shown to attain the rate OP (δ−2

j ) under a
stronger condition on the size of changes, namely that Δ(1)/(s2 log3(pn)) → ∞.
We note that the refined rate is derived for the individual change points, rather
than when the estimation of multiple change points is simultaneously considered
as is the case for the rates reported in Table 1.

We also mention Zhang, Geng and Lai (2015) where the data segmentation
problem is treated as a high-dimensional regression problem with a group Lasso
penalty, which only provides that the estimation bias is of oP (n). Leonardi and
Bühlmann (2016) consider both dynamic programming and binary segmentation
algorithms are considered for change point estimation, and we refer to Rinaldo
et al. (2021) for a detailed discussion on their results.

From Table 1, we observe the competitiveness of MOSEG.MS statistically
and in computational regards, it has an edge over the other methods. Figure 1
and Section 5.2 below show that the former takes a fraction of time taken by
the others, while the simulation results reported in Section 5.4 demonstrate
that this computational efficiency is achieved without sacrificing the accuracy
in detection and estimation. Also, we investigate the theoretical properties of
MOSEG.MS in the broadest parameter space possible which is formulated with
Δ(2) instead of Δ(1) as in all the other papers; recall that from the discussion
following (17), we always have Δ(1) ≤ Δ(2) and the former can be much smaller
than the latter when large shifts over short intervals and small changes over
long stretches of stationarity are simultaneously present in the signal.
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4.2. Beyond (sub-)Gaussianity and independence

The theoretical properties of MOSEG.MS reported in Table 1 do not require
independence or Gaussianity, unlike other works with the exception of Xu et al.
(2022). In the presence of serial dependence and sub-Weibull tails (through
having γ > 1 as in Condition 1 (a)), Xu et al. (2022) require that Δ(1) �
(s log(np))4γ+2γ′−1 for the detection of all change points, where a smaller value
of γ′ ∈ (0,∞) imposes a faster decay of the serial dependence. This is compa-
rable to the detection boundary of MOSEG.MS, Δ(2) � (s log(np))4γ+3. The
localisation rate in Corollary 3 (i) is also comparable to that attained by the
preliminary estimators of Xu et al. (2022); as noted above, under a stronger
condition on Δ(1), they derive a further refined rate.

5. Numerical experiments

5.1. Choice of tuning parameters

We discuss the selection of tuning parameters involved in MOSEG and
MOSEG.MS, namely the set of bandwidths G, the grid T (r,G) in (5), η ∈ (0, 1]
involved in the pre-estimation of the change points (see (6)), the penalty pa-
rameter λ and the threshold D.

Selection of G As described in Remark 3, the set of bandwidths G is deter-
mined once the finest bandwidth G1 is chosen. To gain insights about the min-
imum bandwidth required for the reasonable performance of the local Lasso es-
timators, we conducted numerical experiments by simulating datasets under (1)
with q = 0, xt ∼iid Np(0, Ip), εt ∼iid N (0, 1) and β0 = (β0,1, . . . , β0,p)� where
β0,i, 1 ≤ i ≤ s, are sampled uniformly from [−1, 1] while β0,i = 0, s + 1 ≤
i ≤ p. Generating 100 realisations for each setting with varying (n, p, s, G),
we record the relative �2-error max0≤k≤n−G |β0|−1

2 |β̂k,k+G − β0|2 for each re-
alisation. Then, we obtain a simple rule to determine the finest bandwidth as
G1 = G1(n, p) = c∗0 exp(c∗1 log log(n) + c∗2 log log(p))� with pre-determined con-
stants c∗i , i = 0, 1, 2, which are chosen as transforms of the estimated regression
coefficients from regressing the 90%-percentile of the logarithm of the estima-
tion errors over 100 realisations, onto the corresponding log(G), log log(p) and
log log(n) (with R2 = 0.8945). Adopting the Fibonacci sequence in Remark 3
sometimes gives a sequence of bandwidths that grows too quickly when the sam-
ple size n is small. Therefore, with the finest bandwidth G1 chosen as above, we
recommend generating bandwidths as Gh = (h+ 2)G1/3� for h ≥ 2. Through-
out the simulation studies and real data applications, we set H = 3.

Selection of D and λ Theorems 1 and 4 provide ranges of values for λ and D
for theoretical consistency, but they involve unknown parameters as is typically
the case in the change point literature. For their simultaneous selection, we
adopt a cross validation (CV) method motivated by Zou, Wang and Li (2020).
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Let Λ = Λ(G) denote the grid of possible values for λ which, dependent on the
bandwidth G, is chosen as an exponentially increasing sequence from 10−3λmax
up to λmax with λmax = max0≤k≤n−G |

∑k+G
t=k+1 xtYt|∞/

√
G the smallest value

with which we obtain β̂k,k+G = 0 for all 0 ≤ k ≤ n−G. For given G ∈ G and λ ∈
Λ, we generate Θ̃(G,λ) = {θ̃j(G,λ), 1 ≤ j ≤ q̃0(G,λ)}, the set of pre-estimators
with D = 0, i.e. we take all local maximisers of the MOSUM statistics according
to (6); due to the detection rule, we always have q̃0(G,λ) ≤ n/(2ηG). Sorting the
elements of Θ̃(G,λ) in the decreasing order of the associated MOSUM detector
values, we generate a sequence of nested change point models

∅ = Θ̃[0](G,λ) ⊂ Θ̃[1](G,λ) ⊂ . . . ⊂ Θ̃[q̃0(G,λ)](G,λ) = Θ̃(G,λ).

Then, using the odd-indexed observations (Yt,xt), t ∈ J1 = {2t + 1, t =
0, . . . , (n − 1)/2�}, we produce local estimators of the regression parameters
and the even-indexed observations (Yt,xt), t ∈ J0 = {1, . . . , n} \ J1, is used for
validation. Specifically, we evaluate CV(G,λ,m) = RSS0(Θ̃[m](G,λ), λ), where
for any L = {�j , 1 ≤ �j ≤ L : 0 = �0 < �1 < . . . < �L < �L+1 = n},

RSS0(L, λ) =
L∑

j=0

∑
t∈J0∩

{�j+1,...,�j+1}

(
Yt − x�

t β̂
(1)
j (L, λ)

)2
.

Here, β̂(1)
j (L, λ) denotes the Lasso estimator obtained using (Yt,xt), t ∈ J1 ∩

{�j , . . . , �j+1} with the penalty parameter λ. Then for each Gh ∈ G, we find

(λ∗,m∗) = arg min (λ,m):λ∈Λ,
0≤m≤q̃0(Gh,λ)

CV(Gh, λ,m)

and obtain the set of pre-estimators Θ̃(Gh) = Θ̃[m∗](Gh, λ
∗) using λ∗ and m∗.

This amounts to selecting the bandwidth-dependent threshold D at a value just
below the m∗th largest MOSUM detector value. Such Θ̃(Gh), Gh ∈ G, serve as
an input to Steps 2–4 of MOSEG.MS. In all numerical experiments reported in
this paper, we set |Λ| = 5.

Selection of other tuning parameters For change point estimation, we
recommend to use η = 0.5 in (6) based on extensive simulations, which show that
the performance of MOSEG and MOSEG.MS is not too sensitive to its choice. As
noted in Section 5.2, MOSEG.MS is highly competitive computationally against
the existing methods even without adopting a coarse grid. Therefore, we report
the results obtained with r = G−1 (i.e. T = {G, . . . , n−G} in (5)) in the main
text and provide the results obtained with coarser grids in Appendix A.1, where
we observe that adopting a coarse grid does not undermine the performance of
MOSEG provided that r is sufficiently small, say r ≤ 1/5.

5.2. Computational complexity and run time

Let Lasso(p) denote the cost of solving a Lasso problem with p variables. For
the coordinate descent algorithm (Friedman, Hastie and Tibshirani, 2010), each
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complete iteration of the coordinate descent has the cost O(p2). Then, the com-
bined computational cost of Stages 1 and 2 of MOSEG is O(n(rG)−1Lasso(p)),
and the memory cost is O(np). Similarly, with the set of bandwidths generated as
described in Remark 3, the complexity of the multiscale extension MOSEG.MS
is O(n(rG1)−1Lasso(p)) with G1 denoting the finest scale, which follows from
that

∑H
h=1 n/(rGh) ≤ n/(rG1)

∑∞
h=1 F

−1
h = O(n(rG1)−1) (see Remark 3 for

the notations). For the CV outlined in Section 5.1, we generate pre-estimators
and evaluate the CV objective function on a sequence of nested models for each
λ ∈ Λ, which brings the computational complexity of the complete MOSEG.MS
methodology to O(|Λ|n(rG1)−1Lasso(p)).

We investigate the run time of change point detection methodologies for
the problem in (1). MOSEG (with G = n/6�) and MOSEG.MS are applied
with the tuning parameters chosen as in Section 5.1 and the finest grid (i.e.
T = {G, . . . , n−G}); we include the CV procedure in run time. For comparison,
we consider VPWBS (Wang et al., 2021), DPDU (Xu et al., 2022) and ARBSEG
(Kaul, Jandhyala and Fotopoulos, 2019b) applied with the recommended tuning
parameters. In particular, the default implementations of VPWBS and DPDU
adopt a grid of size 3 and 4, respectively, for the Lasso tuning parameter while
MOSEG and MOSEG.MS are applied with the grid Λ of size |Λ| = 5. We
generate the data under the model (M3) described in Section 5.3 below, with
δ = 1.6 and varying (n, p).

Figure 1 reports the average execution time (in seconds) over 100 realisa-
tions for each setting, for the five methods in consideration. Both MOSEG and
MOSEG.MS take only a fraction of time taken by the competing methodologies
in their computation even when we do not use the coarser grid for Stage 1,
and their run time does not vary much with increasing n or p in the ranges
considered. As expected, MOSEG is faster than MOSEG.MS but the difference
in execution time is much smaller than that between MOSEG.MS and other
competitors.

5.3. Simulation settings

We apply MOSEG.MS to datasets simulated with varying (n, p, s) and change
point configurations. In each setting, we generate xt as i.i.d. Gaussian random
vectors with mean 0 and the covariance matrix Σx which are specified below,
and εt ∼iid N (0, σ2

ε); unless specified otherwise, we use σε = 1. We report the
results from non-Gaussian and serially dependent data in Appendix A.2 where
overall, the results are not sensitive to tail behaviour or temporal dependence.
Additionally, we report the results when p = 1000 in Appendix A.3 which, to-
gether with the experiments reported in Section 5.2, demonstrate the scalability
of MOSEG.MS.

The models (M1)–(M3) below are taken from Wang et al. (2021); in (M2)
where non-diagonal Σx is considered, we adapt their model by randomly gen-
erating the set S on each realisation and in (M3), we consider a broader range
of values for δ. In what follows, we assume that for given S ⊂ {1, . . . , p} with
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|S| = s, the parameter vector β0 = (β0,1, . . . , β0,p)� has β0,i �= 0 for i ∈ S and
β0,i = 0 otherwise, i.e. S is the support of β0. For each setting, we generate 100
realisations.

(M1) Setting p = 100, q = 3 and Σx = I, we vary n ∈ {480, 560, 640, 720, 800}
and the change points are at θj = jn/4, j = 1, 2, 3. Fixing S = {1, . . . , s}
with s = 4, we set β0,i = 0.4 · (−1)i−1 for i ∈ S and βj = (−1)j · β0.

(M2) We set n = 300, p = 100 and q = 2, and Σx = [0.6|i−i′|]pi,i′=1. The
change points are at θj = jn/3, j = 1, 2, and we vary s ∈ {10, 20, 30}.
For each realisation, we randomly draw S ⊂ {1, . . . , p} of size s, and set
β0,i = 1/

√
4s for i ∈ S and βj = (−1)j · β0.

(M3) We have n = 300, p = 100, q = 2, s = 10 and Σx = [0.6|i−i′|]pi,i′=1.
The change points are at θj = jn/3 and fixing S = {1, . . . , s}, we set
β0,i = δ · (−1)i−1 for i ∈ S with varying δ ∈ {0.2, 0.4, 0.8, 1.6}/

√
s, and

βj = (−1)j · β0.
(M4) We set n = 840, p = 50, q = 5, s = 10 and Σx = I. The change points

are at θ1 = 60, θ2 = 120, θ3 = 240, θ4 = 360 and θ5 = 600 and fixing
S = {1, . . . , s}, we set β0,i = δ · (−1)i−1 for i ∈ S with varying δ ∈
{0.2, 0.4, 0.8, 1.6}/

√
s, and β1 = −β2 = −2β0, β3 = −β4 = −

√
2β0 and

β5 = −β6 = −β0.
(M5) The data are generated as in (M3) except for that q = 0, Σx = [102 ·

0.6|i−i′|]pi,i′=1 and σε = 10, and we use δ ∈ {1, 1.2, 1.4, 1.6}.

In setting (M4), the change points are multiscale in the sense that the size
of change and spacing between the change points vary, but δ2

j · min(θj+1 −
θj , θj − θj−1) is kept constant for j = 1, 3, 5 and for j = 2, 4, respectively. This
results in Δ(1) being much smaller than Δ(2), see Equations (10) and (17) for
their definitions. The setting (M5) is designed to test the performance of data
segmentation methods when q = 0, where we scale the data to examine the
sensitivity of the tuning parameter choices discussed in Section 5.1.

5.4. Simulation results

We apply MOSEG.MS with the tuning parameters selected as described in Sec-
tion 5.1. For the purpose of illustration only, we also apply MOSEG with the
bandwidth chosen with the knowledge of the minimum spacing between the
change points; for (M1)–(M3) where change points are evenly spaced, we set
G = 3/4 · min0≤j≤q(θj+1 − θj). For (M4) with multiscale change points, there
does not exist a single bandwidth that works well in detecting all change points
so we simply set G = 125. For (M5) with q = 0, we set G = G1 selected as de-
scribed in Section 5.1. For comparison, we apply the methods proposed by Wang
et al. (2021) (referred to as VPWBS) and Xu et al. (2022) (DPDU). The VPWBS
method learns the projections well-suited for the detection of the change points
and applies the wild binary segmentation algorithm to the projected univariate
series, and has been shown to outperform the methods proposed in Leonardi
and Bühlmann (2016) and Lee, Seo and Shin (2016). Based on dynamic pro-
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gramming, the DPDU algorithm minimises the �0-penalised cost function for
multiple change point detection. Both methods have been applied with the de-
fault tuning parameters recommended by the authors. We also considered the
method proposed by Kaul, Jandhyala and Fotopoulos (2019b) but omit the re-
sults due to its poor performance on the simulation models considered in this
paper.

In Tables 2–5, we report the distribution of the bias in change point number
estimation (q̂ − q) for each method over the 100 realisations generated under
each setting. Additionally, we report the scaled Hausdorff distance between the
sets of estimated (Θ̂) and true (Θ) change points, i.e.

dH(Θ̂,Θ) = 1
n

max
{

max
θ̂∈Θ̂

min
θ∈Θ

|θ̂ − θ|,max
θ∈Θ

min
θ̂∈Θ̂

|θ̂ − θ|
}
, (19)

averaged over 100 realisations; by convention, we set dH(∅,Θ) = 1. We remark
that the Hausdorff distance tends to favour the cases when the change points
are over-detected, than when they are under-detected. In Table 6 (considering
the case q = 0), we report the proportion of realisations where any false positive
is returned.

Generally, as expected, we observe better performance from all methods with
increasing sample size in (M1) or increasing change size with δ in (M3)–(M4)
while varying the sparsity level s brings in less clear patterns in the performance.
In the presence of homogeneous change points under (M1)–(M3), MOSEG per-
forms as well as MOSEG.MS in terms of correctly estimating the number of
change points, but it suffers from the lack of adaptivity in the presence of mul-
tiscale change points under (M4) where both large frequent shifts and small
changes over long intervals are present. Here, we observe the benefit of the
multiscale approach taken by MOSEG.MS particularly as δ grows, where it
achieves better accuracy in detection and localisation against MOSEG. Com-
paring the performance of MOSEG.MS and VPWBS, we note that the former
generally attains better detection power while the latter exhibits better locali-
sation properties under (M2) and (M3) (when δ is large). DPDU tends to show
good detection power in the more challenging scenarios, such as when n is small
(under (M1)), s is large (under (M2)) or the change size is small (see Table A.2).
At the same time, it is observed to over-estimate the number of change points
across all scenarios.

Under (M5), where no changes are present, our methods are shown to control
the number of false positives well. Here, we do not include VPWBS or DPDU
in Table 6 as they tend to detect false positives in most cases.

6. Real data application

There exists an extensive literature on the prediction of the equity premium,
which is defined as the difference between the compounded return on the S&P
500 index and the three month Treasury bill rate. Using 14 macroeconomic
and financial variables (see Table D.1 for full descriptions), Welch and Goyal
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Table 2

(M1) Performance of MOSEG, MOSEG.MS, VPWBS and DPDU over 100 realisations.
The best performer in each setting is denoted in bold.

q̂ − q
n Method −3 −2 −1 0 1 2 ≥ 3 dH

480 MOSEG 3 3 6 81 7 0 0 0.0852
MOSEG.MS 1 6 7 84 2 0 0 0.0710

VPWBS 1 3 14 58 16 5 3 0.0795
DPDU 0 0 3 80 13 4 0 0.0405

560 MOSEG 2 3 5 72 17 1 0 0.0742
MOSEG.MS 0 1 5 93 1 0 0 0.0299

VPWBS 1 0 10 73 5 8 3 0.0579
DPDU 3 0 1 79 15 2 1 0.0660

640 MOSEG 1 3 5 64 23 4 0 0.0652
MOSEG.MS 0 1 2 91 6 0 0 0.0203

VPWBS 0 1 3 89 3 2 2 0.0291
DPDU 0 0 0 77 18 5 1 0.0344

720 MOSEG 1 3 1 76 18 1 0 0.0433
MOSEG.MS 0 0 0 97 3 0 0 0.0104

VPWBS 0 0 1 92 3 3 1 0.0190
DPDU 1 0 0 75 22 2 0 0.0390

800 MOSEG 2 3 7 61 25 2 0 0.0753
MOSEG.MS 0 0 0 100 0 0 0 0.0073

VPWBS 0 0 2 92 3 2 1 0.0202
DPDU 0 0 0 68 25 7 0 0.0385

Table 3

(M2) Performance of MOSEG, MOSEG.MS, VPWBS and DPDU over 100 realisations.
The best performer in each setting is denoted in bold.

q̂ − q
s Method −2 −1 0 1 2 ≥ 3 dH

10 MOSEG 27 28 35 10 0 0 0.4204
MOSEG.MS 11 32 44 13 0 0 0.3117

VPWBS 45 17 11 9 15 3 0.2465
DPDU 55 5 33 7 0 0 0.5981

20 MOSEG 14 31 50 5 0 0 0.3016
MOSEG.MS 8 32 48 12 0 0 0.2726

VPWBS 44 13 18 13 9 3 0.2302
DPDU 49 3 45 3 0 0 0.5300

30 MOSEG 14 25 50 11 0 0 0.2765
MOSEG.MS 11 30 41 18 0 0 0.2848

VPWBS 24 20 33 9 9 5 0.1843
DPDU 26 9 51 14 0 0 0.3294

(2008) demonstrate the difficulty of this prediction problem, in part due to the
time-varying nature of the data. Koo et al. (2020) note that the majority of
the variables are highly persistent with strong, positive autocorrelations, and
develop an �1-penalised regression method that identifies co-integration rela-
tionships among the variables. Accordingly, we transform the data by taking
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Table 4

(M3) Performance of MOSEG, MOSEG.MS, VPWBS and DPDU over 100 realisations.
The best performer in each setting is denoted in bold.

q̂ − q√
10δ Method −2 −1 0 1 2 ≥ 3 dH

0.2 MOSEG 12 19 63 6 0 0 0.2367
MOSEG.MS 4 16 64 15 1 0 0.1609

VPWBS 77 9 5 6 1 2 0.3025
DPDU 4 4 36 24 17 15 0.1779

0.4 MOSEG 7 9 81 3 0 0 0.1401
MOSEG.MS 3 21 71 5 0 0 0.1488

VPWBS 53 20 12 8 4 3 0.2681
DPDU 0 0 21 23 34 22 0.1498

0.8 MOSEG 6 10 82 2 0 0 0.1242
MOSEG.MS 2 14 77 6 1 0 0.1099

VPWBS 13 7 58 14 6 2 0.1061
DPDU 0 0 11 29 19 41 0.1644

1.6 MOSEG 3 5 91 1 0 0 0.0732
MOSEG.MS 0 10 88 2 0 0 0.0737

VPWBS 1 1 84 10 4 0 0.0404
DPDU 0 0 14 12 25 49 0.1682

Table 5

(M4) Performance of MOSEG, MOSEG.MS, VPWBS and DPDU over 100 realisations.
The best performer in each setting is denoted in bold.

q̂ − q√
10δ Method −3 −2 −1 0 1 2 ≥ 3 dH

0.2 MOSEG 45 6 4 5 21 9 10 0.4518
MOSEG.MS 17 9 19 12 15 8 20 0.2263

VPWBS 95 1 2 1 1 0 0 0.4073
DPDU 99 0 0 0 1 0 0 0.9578

0.4 MOSEG 44 7 10 10 8 5 16 0.4347
MOSEG.MS 15 12 16 17 7 16 17 0.2015

VPWBS 73 2 7 6 7 5 0 0.3247
DPDU 80 5 3 5 5 2 2 0.7317

0.8 MOSEG 4 23 31 27 9 5 1 0.1978
MOSEG.MS 0 3 34 38 15 9 1 0.0834

VPWBS 13 40 29 11 4 2 1 0.1165
DPDU 0 0 0 43 36 21 8 0.0629

1.6 MOSEG 0 7 45 43 3 2 0 0.0970
MOSEG.MS 0 1 32 59 7 1 0 0.0387

VPWBS 3 35 38 19 1 3 1 0.0900
DPDU 0 0 0 54 32 14 5 0.0444

the first difference of any variable labelled as being persistent by Koo et al.
(2020), and scale each covariate series to have unit standard deviation. With
the thus-transformed variables, we propose to model the monthly equity pre-
mium observed from 1927 to 2005 as Yt, with the 14 variables at lags 1, 2, 3 and
12 as regressors xt via piecewise stationary linear regression; in total, we have
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Table 6

(M5) Proportions of detecting false positives when q = 0 for MOSEG and MOSEG.MS over
100 realisations.

δ
Method 1 1.2 1.4 1.6

MOSEG 0.05 0.01 0.01 0.02
MOSEG.MS 0.04 0.01 0.01 0.02

Fig 2. Equity premium data: Parameter estimates from each estimated segment obtained by
MOSEG.MS. Variables at different lags are coloured differently in the y-axis.

n = 936 and p = 57 including the intercept.

We apply MOSEG.MS with G = {72, 96, 120} in line with the choice de-
scribed in Section 5.1 but we select Gh to be multiples of 12 for interpretability
as the observation frequency is monthly. MOSEG.MS returns q̂ = 7 change
point estimators reported in Table 7, and takes 45 seconds in total (including
CV). When applied to the same dataset, DPDU takes 25 minutes and VPWBS
takes 15 minutes, and neither detects any change point. In Figure 2, we plot the
local parameter estimates obtained from each of the seven estimated segments.
We can relate the change detected in 1954 to the findings reported in Rapach,
Strauss and Zhou (2010), where they attribute the instability in the pairwise
relationships between the equity premium and each of the 14 variables to the
Treasury-Federal Reserve Accord and the transition from the wartime economy.
Dividend price ratio (d/p, at lag two) is active throughout the observation pe-
riod which agrees with the observations made in Welch and Goyal (2008). They
also remark that the recession from 1973 to 1975 due to the Oil Shock drives the
good predictive performance of many models proposed for equity premium fore-
casting, and most perform poorly over the 30 year period (1975–2005) following
the Oil Shock. The two last segments defined by the change point estimators
reported in Table 7 are closely located with these important periods, which sup-
ports the validity of the segmentation returned by MOSEG.MS. We note that
regardless of the choice of bandwidths, both of the two estimators in 1974 and
1975 defining the two periods are detected separately.
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Table 7

Equity premium data: Change point estimators detected by MOSEG.MS.

Estimator θ̂1 θ̂2 θ̂3 θ̂4 θ̂5 θ̂6 θ̂7

Date Oct 1935 Apr 1943 Aug 1951 Nov 1954 Nov 1958 May 1974 Aug 1975

7. Conclusions

In this paper, we propose MOSEG, a high-dimensional data segmentation
methodology for detecting multiple changes in the parameters under a linear
regression model. It proceeds in two steps, first grid-based scanning of the
data for large changes in local parameter estimators over a moving window,
followed by a computationally efficient location refinement step. We further
propose its multiscale extension, MOSEG.MS, which alleviates the necessity to
select a single bandwidth. Both numerically and theoretically, we demonstrate
the efficiency of the proposed methodologies. Computationally, they are highly
competitive thanks to the strategic design of the algorithms that limit the re-
quired number of Lasso fits. Theoretically, we show the consistency of MOSEG
and MOSEG.MS in a general setting permitting serial dependence and non-
Gaussianity and establish their (near-)minimax optimality. In particular, the
consistency of MOSEG.MS is derived for a parameter space that simultane-
ously permits large changes over short intervals and small changes over long
stretches of stationarity, which is much broader than that typically adopted in
the literature. Comparative simulation studies and findings from the application
of MOSEG.MS to equity premium data support its efficacy. The R software im-
plementing MOSEG and MOSEG.MS is available from https://github.com/
Dom-Owens-UoB/moseg.

Supplementary material

Appendix A: Additional simulations

A.1. Choice of the grid

We investigate the performance of MOSEG as the coarseness of the grid varies
with r ∈ {1/3, 1/5, 1/10, 1/G}. Recall that when r = 1/G, we use the full
grid T = {G, . . . , n − G} in Stage 1 of MOSEG, see (5). For this, we set
n = 300, p = 100, s = 2 and q = 1, and generate the data under (1) with
xt ∼iid Np(0, I) and εt ∼iid N (0, 1). For each realisation, the change point θ1 is
randomly sampled from {51, . . . , 250}. Varying δ ∈ {0.1, 0.2, 0.4, 0.8}, we gen-
erate β0 = (β0,1, . . . , β0,p)� with β0,i = δ · (−1)i−1 for i ∈ {1, . . . , s} and have
β1 = −β0. Setting G = 50, we select the maximiser of the MOSUM statistic as
the pre-estimator θ̃1 in Stage 1 of MOSEG, which then is refined as in (9) in
Stage 2. Table A.1 reports the average and the standard error of n−1|θ̃1 − θ1|
and n−1|θ̂1 − θ1| over 100 realisations when different grids are used. See also

https://github.com/Dom-Owens-UoB/moseg
https://github.com/Dom-Owens-UoB/moseg
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Figure A.1 which plots the Hausdorff distance dH (see (19)) against r. When
the size of change is very small, estimators from both Stages 1 and 2 perform
equally poorly regardless of the choice of r. However, as δ increases, we quickly
observe that the estimation error becomes close to zero for the estimators from
both stages provided that r is not too large. Also, for δ ≥ 0.2, we observe
that Stage 2 brings in small improvement in the localisation performance. From
this, we conclude that the performance of MOSEG is robust to the choice of r
provided that it is chosen reasonably small, say r ≤ 1/5.

Table A.1

Comparison of Hausdorff distance dH for Stage 1 and Stage 2 estimators from MOSEG
when different grids are used. The average and the standard error of estimation errors over

100 realisations are reported.

r = G−1 r = 1/10

Stage 1 Stage 2 Stage 1 Stage 2
δ Mean SD Mean SD Mean SD Mean SD

0.1 0.2043 0.1561 0.2099 0.1670 0.2003 0.1525 0.2096 0.1683
0.2 0.1194 0.1367 0.1149 0.1442 0.1302 0.1402 0.1296 0.1549
0.4 0.0089 0.0104 0.0038 0.0053 0.0115 0.0179 0.0039 0.0050
0.8 0.0070 0.0089 0.0022 0.0052 0.0086 0.0096 0.0020 0.0049

r = 1/5 r = 1/3

Stage 1 Stage 2 Stage 1 Stage 2
δ Mean SD Mean SD Mean SD Mean SD

0.1 0.2142 0.1525 0.2232 0.1683 0.2179 0.1525 0.2255 0.1683
0.2 0.1383 0.1402 0.1349 0.1549 0.2165 0.1402 0.2061 0.1549
0.4 0.0142 0.0179 0.0039 0.0050 0.2696 0.0179 0.2359 0.0050
0.8 0.0126 0.0096 0.0016 0.0049 0.2303 0.0096 0.1929 0.0049

Fig A.1. Hausdorff distance dH against r for Stage 1 (solid line) and Stage 2 (dashed line)
estimators from MOSEG, as the size of changes varies.
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A.2. Non-Gaussianity and temporal dependence

We examine the performance of MOSEG.MS, VPWBS (Wang et al., 2021) and
DPDU (Xu et al., 2022) in the presence of heavier-tailed noise and temporal
dependence. For this, we generate datasets with n = 300, p = 100, s = 10 and
q = 2 where the two change points are located at θj = jn/3, j = 1, 2. We use β0
generated as in Appendix A.1 with δ ∈ {0.2, 0.4, 0.8, 1.6} and set βj = (−1)j ·β0.

We consider the following three settings for the generation of xt and εt.

(E1) xt ∼iid Np(0, I) and εt ∼iid N (0, 1) for all t.
(E2) Xit ∼iid

√
3/5 · t5 for all i and t and εt ∼iid

√
3/5 · t5 for all t.

(E3) {(xt, εt)}nt=1 is generated as in (12) where D1 is a diagonal matrix with
0.3 on its diagonals, D� = O for � ≥ 2 and ζt ∼iid Np+1(0,

√
1 − 0.32I)

for all t.

Under (E2)–(E3), the data are generated from t5-distributed/serially corre-
lated noise, respectively; (E1) serves as a benchmark. Table A.2 reports the
average and standard error of the Hausdorff distance in (19) and q̂− q over 100
realisations. It shows that generally, the performance of all three methods is less
sensitive to the tail behaviour of the data or temporal dependence, compared
to their sensitivity to the size of changes. VPWBS shows good localisation per-
formance, while MOSEG.MS tends to achieve better detection accuracy when
the size of change is small. DPDU performs very well in the more challenging
setting with small δ. However, as noted in Section 5, it is more prone to over-
estimate the number of change points as δ increases with which the localisation
performance also deteriorates.

A.3. When the dimensionality is large

We additionally examine the case where p = 1000, adopting the simulation set-
ting (E1) from Appendix A.2. We exclude VPWBS (Wang et al., 2021) and
DPDU (Xu et al., 2022) which, as shown in Section 5.2, tends to take consid-
erably longer time to run compared to MOSEG.MS. Table A.3 shows that, in
comparison to the the results under (E1) in Table A.2 obtained when p = 100,
the greater sample size is required to detect smaller changes. Also, the localisa-
tion performance worsens as p increases. Nonetheless, MOSEG.MS demonstrates
itself to be scalable as the dimensionality increases when the size of change is
sufficiently large, which is in line with the theoretical requirements.

Appendix B: Proofs

In what follows, for any vector a ∈ R
p and a set A ⊂ {1, . . . , p}, we denote

by a(A) = (ai, i ∈ A)� the sub-vector of a supported on A. We write the
population counterpart of Tk(G) with β∗

s,e defined in (4) as

T ∗
k (G) =

√
G

2
∣∣β∗

k,k+G − β∗
k−G,k

∣∣
2 .
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Table A.2

Performance of MOSEG.MS and VPWBS under (E1)–(E3) over 100 realisations. The best
performer in each setting is denoted in bold.

q̂ − q
δ Setting Method −2 −1 0 1 2 ≥ 3 dH

0.2 (E1) MOSEG.MS 10 35 46 9 0 0 0.2905
VPWBS 56 10 9 14 9 2 0.2583
DPDU 0 0 86 12 1 1 0.0239

(E2) MOSEG.MS 6 53 34 6 1 0 0.2779
VPWBS 60 10 7 13 10 0 0.2663
DPDU 0 0 89 11 0 0 0.0168

(E3) MOSEG.MS 8 30 44 17 1 0 0.2644
VPWBS 10 15 18 13 28 16 0.1671
DPDU 0 0 85 13 2 0 0.0211

0.4 (E1) MOSEG.MS 0 9 86 4 1 0 0.0766
VPWBS 1 3 87 7 2 0 0.0361
DPDU 0 0 82 16 1 1 0.0240

(E2) MOSEG.MS 1 11 83 5 0 0 0.0830
VPWBS 1 7 83 4 5 0 0.0567
DPDU 0 0 82 16 2 0 0.0248

(E3) MOSEG.MS 1 9 81 9 0 0 0.0678
VPWBS 0 1 80 14 4 1 0.0397
DPDU 0 0 71 24 5 0 0.0359

0.8 (E1) MOSEG.MS 0 0 99 1 0 0 0.0119
VPWBS 0 0 97 3 0 0 0.0095
DPDU 0 0 81 18 1 0 0.0227

(E2) MOSEG.MS 0 0 98 2 0 0 0.0100
VPWBS 0 0 98 2 0 0 0.0104
DPDU 0 0 80 17 1 2 0.0209

(E3) MOSEG.MS 0 1 96 3 0 0 0.0153
VPWBS 0 0 98 2 0 0 0.0103
DPDU 0 0 73 24 3 0 0.0285

1.6 (E1) MOSEG.MS 0 0 97 3 0 0 0.0097
VPWBS 0 0 100 0 0 0 0.0037
DPDU 0 0 75 22 1 2 0.0309

(E2) MOSEG.MS 0 0 100 0 0 0 0.0036
VPWBS 0 0 100 0 0 0 0.0033
DPDU 0 0 78 18 1 3 0.0249

(E3) MOSEG.MS 0 1 96 3 0 0 0.0076
VPWBS 0 0 99 1 0 0 0.0045
DPDU 0 0 69 24 6 1 0.0307

Table A.3

Performance of MOSEG.MS under (E1) when p = 1000 over 100 realisations.

q̂ − q
δ −2 −1 0 1 2 ≥ 3 dH

0.2 6 47 29 18 0 0 0.3051
0.4 10 34 44 11 1 0 0.2972
0.8 1 22 65 11 1 0 0.1391
1.6 4 3 92 1 0 0 0.0673
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Further, we write Ss,e = supp(β∗
s,e).

B.1. Proof of Theorem 1

B.1.1. Supporting lemmas

Lemma B.1. We have

T ∗
k (G) =

{ 1√
2G (G− |k − θj |)δj if {k −G + 1, . . . , k + G} ∩ Θ = {θj},

0 if {k −G + 1, . . . , k + G} ∩ Θ = ∅

Lemma B.2. Define Δs,e = β̂s,e − β∗
s,e. With λ ≥ 4ΨCDEVρn,p, we have

P(B) ≥ 1 − P(R(1) ∩ D(2)) where

B=
{
|Δs,e|2 ≤

12
√

2sλ
ω
√
e− s

and
∣∣Δs,e(Sc

s,e)
∣∣
1 ≤3 |Δs,e(Ss,e)|1 for all 0≤s < e ≤ n

with |{s + 1, . . . , e} ∩ Θ| ≤ 1 and e− s ≥ C0 max
[
(ω−1s log(p))

1
1−τ , ρ2

n,p

]}
.

Proof. For given 0 ≤ s < e ≤ n, we have
e∑

t=s+1

(
Yt − x�

t β̂s,e

)2
+ λ

√
e− s|β̂s,e|1 ≤

e∑
t=s+1

(
Yt − x�

t β
∗
s,e

)2 + λ
√
e− s|β∗

s,e|1,

from which it follows that

λ
√
e− s

(
|β∗

s,e|1 − |β̂s,e|1
)
≥

e∑
t=s+1

[
(x�

t β̂s,e)2 − (x�
t β

∗
s,e)2 − 2Ytx�

t (β̂s,e − β∗
s,e)
]

=
e∑

t=s+1

[
Δ�

s,extx�
t Δs,e − 2(Yt − x�

t β
∗
s,e)x�

t Δs,e

]
.

Then, noting that β∗
s,e(Sc

s,e) = 0,

1√
e− s

e∑
t=s+1

[
Δ�

s,extx�
t Δs,e − 2(Yt − x�

t β
∗
s,e)x�

t Δs,e

]
+ λ

∣∣∣β̂s,e(Sc
s,e)
∣∣∣
1

≤ λ
(∣∣β∗

s,e(Ss,e)
∣∣
1 −

∣∣∣β̂s,e(Ss,e)
∣∣∣
1

)
≤ λ |Δs,e(Ss,e)|1 . (B.1)

Since λ ≥ 4ΨCDEVρn,p, it follows from (B.1) that on D(2),

1√
e− s

e∑
t=s+1

Δ�
s,extx�

t Δs,e −
λ

2 |Δs,e|1 + λ
∣∣Δs,e(Sc

s,e)
∣∣
1 ≤ λ |Δs,e(Ss,e)|1 ,

∴ 0 ≤ 1√
e− s

e∑
t=s+1

Δ�
s,extx�

t Δs,e ≤
λ

2

(
3 |Δs,e(Ss,e)|1 −

∣∣Δs,e(Sc
s,e)
∣∣
1

)
,
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such that ∣∣Δs,e(Sc
s,e)
∣∣
1 ≤ 3 |Δs,e(Ss,e)|1 . (B.2)

This in particular leads to

|Δs,e|1 ≤ 4 |Δs,e(Ss,e)|1 ≤ 4
√

2s |Δs,e|2
from the definition of s. Then on R(1), we have

6
√

2sλ |Δs,e|2 ≥ 1√
e− s

e∑
t=s+1

Δ�
s,extx�

t Δs,e

≥ ω
√
e− s |Δs,e|22 −

32CRSCs log(p)(e− s)τ√
e− s

|Δs,e|22

≥ ω

2
√
e− s |Δs,e|22 ,

where the last inequality follows for (e − s)1−τ ≥ 64CRSCω
−1s log(p). In sum-

mary,

|Δs,e|2 ≤ 12
√

2sλ
ω
√
e− s

. (B.3)

Combining (B.2) and (B.3), the proof is complete.

B.1.2. Proof of Theorem 1 (i)

Let Tj = {θj −ηG�+1, . . . , θj +ηG�}∩T for 1 ≤ j ≤ q. Under Assumption 4,
we have G ≥ Ψ2(min1≤j≤q δj)−2C1 max{ω−2sρ2

n,p, (ω−1s log(p))1/(1−τ)} such
that the lower bound on (e− s) made in B (see Lemma B.2) is met by all s = k
and e = k + G, k = 0, . . . , n−G. By Lemma B.2,

max
G≤k≤n−G

|Tk(G) − T ∗
k (G)| ≤

max
G≤k≤n−G

√
G

2

(∣∣∣β̂k−G,k − β∗
k−G,k

∣∣∣
2

+
∣∣∣β̂k,k+G − β∗

k,k+G

∣∣∣
2

)
≤ 24

√
sλ

ω
. (B.4)

First, consider some k for which {k −G + 2, . . . , k + G− 1} ∩ Θ = ∅. Then,
we have T ∗

k (G) = 0 from Lemma B.1 such that by (B.4),

max
k: min1≤j≤q |k−θj |≥G

Tk(G) ≤ max
G≤�≤n−G

|T�(G) − T ∗
� (G)| ≤ 24

√
sλ

ω
≤ D. (B.5)

This ensures that any θ̃ ∈ Θ̃ satisfies min1≤j≤q |θ̃− θj | < G. Next, let θL
j and θR

j

denote two points within Tj which are the closest to θj from the left and and
the right of θj , respectively, with θL

j = θR
j when r = 1/G. Then by construction

of T ,

max(kj − θL
j , θ

R
j − θj) ≤ rG� and min(θj − θL

j , θ
R
j − θj) ≤

rG�
2 , (B.6)



Data segmentation in regression settings 2649

such that from Lemma B.1,

max
(
T ∗
θL
j
(G), T ∗

θR
j
(G)

)
≥ δj(G− rG�/2)√

2G
≥
√

G

2 δj(1 − r/2).

From this and by (B.4), at θ̃j = arg maxk∈Tj Tk(G), we have

Tθ̃j
(G) ≥ max

(
TθL

j
(G), TθR

j
(G)

)
≥
√

G

2 δj

(
1 − r

2

)
− 24

√
sλ

ω
>

1 − r/2
2

√
G

2 δj > D,

where the second last inequality follows from Assumption 4 (b), and the last
one from (11). When η = 1, this and (B.5) indicates that such θ̃j satisfies (6).
When η < 1, note that

max
(
TθL

j
(G), TθR

j
(G)

)
− max {Tk(G) : |k − θj | > (1 − η)G, k ∈ T }

≥
√

G

2 δj

(
η − 3r

2

)
− 48

√
sλ

ω
≥ 5η

8
√

2
min

1≤j≤q
δj
√
G− 48

√
sλ

ω
> 0

from (11). These arguments ensure that we detect at least one change point in Tj
at t = θ̃j for each j = 1, . . . , q. For such θ̃j , suppose that θ◦j = arg mink∈{θL

j ,θ
R
j }|θ̃j

− k|. Then,

δj√
2G

(G− |θ̃j − θj |) + 24
√
sλ

ω
≥ Tθ̃j

(G)

≥ Tθ◦
j
(G) ≥ δj√

2G
(G− |θ◦j − θj |) −

24
√
sλ

ω

and re-arranging, we obtain

δj√
2G

(
|θ̃j − θj | − |θ◦j − θj |

)
≤ 48

√
sλ

ω
, such that

|θ̃j − θj | ≤
48

√
2sGλ

ωδj
+ rG� <

⌊
G

2

⌋
,

for large enough C1 in Assumption 4 (b).
Finally, let LT (t) denote the largest time point k′ ∈ T that satisfies k′ ≤ t,

and define RT (t) analogously. Then, we establish that

TLT (θj− ηG
2 m)(G) > max

{
Tk(G) : ηG

2 (m + 1) ≤ θj − k ≤ ηG

2 (m + 2), k ∈ T
}
,

(B.7)

TRT (θj+ ηG
2 m)(G) > max

{
Tk(G) : ηG

2 (m + 1) ≤ k − θj ≤
ηG

2 (m + 2), k ∈ T
}
,

(B.8)
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for m = 0, . . . , �2/η� − 2. The inequality in (B.7) follows from noting that

TLT (θj− ηG
2 m)(G) − max

{
Tk(G) : ηG

2 (m + 1) ≤ θj − k ≤ ηG

2 (m + 2), k ∈ T
}

≥
√

G

2 δj

(η
2 − r

)
− 48

√
sλ

ω
≥ η

4
√

2
min

1≤j≤q
δj
√
G− 48

√
sλ

ω
> 0

under (11), and the inequality in (B.8) follows analogously. This ensures that θ̃j
by its construction is the unique local maximiser of Tk(G) within the interval
{θj −G+1, . . . , θj +G}∩T satisfying (6) for each j = 1, . . . , q, which completes
the proof.

B.1.3. Proof of Theorem 1 (ii)

Recalling (7), we write

Qj(k) =
k∑

t=θ̃j−G+1

(Yt − x�
t β̂

L
j )2 +

θ̃j+G∑
t=k+1

(Yt − x�
t β̂

R
j )2.

Theorem 1 (i) establishes that for each j = 1, . . . , q, we have θ̃j ∈ Θ̃ that
satisfies |θ̃j − θj | < G/2, and Θ̃ contains no other estimator. Then under As-
sumption 4 (a), we have the following statements satisfied for all j.

(i) Defining I(θ̃j) = {θ̃j −G + 1, . . . , θ̃j + G}, it fulfils I(θ̃j) ∩ Θ = {θj}.
(ii) {θ̃L

j −G+1, . . . , θ̃L
j } ⊂ {θj−1 +1, . . . , θj} and {θ̃R

j +1, . . . , θ̃R
j +G} ⊂ {θj +

1, . . . , θj+1}, such that denoting by ΔL
j = β̂L

j − βj−1 and ΔR
j = β̂R

j − βj ,
we have

max
(∣∣ΔL

j

∣∣
2 ,
∣∣ΔR

j

∣∣
2

)
≤ 12

√
2sλ

ω
√
G

,∣∣ΔL
j (Sc

j−1)
∣∣
1 ≤ 3

∣∣ΔL
j (Sj−1)

∣∣
1 and

∣∣ΔR
j (Sc

j )
∣∣
1 ≤ 3

∣∣ΔR
j (Sj)

∣∣
1 (B.9)

in B, see Lemma B.2.

Then we show that for all k ∈ I(θ̃j) satisfying δ2
j |k − θj | > Ψ2vn,p with

vn,p = max
(
sρ2

n,p, (s log(p))
1

1−τ

)
· max

{
max

[
9CRSC

2ω ,
32CRSC

ω̄

] 1
1−τ

,

(
96CDEV

ω

)2
}
, (B.10)

we have Qj(k) −Qj(θj) > 0, which completes the proof.
First, suppose that k ≥ θj + 1. Then,

Qj(k) −Qj(θj) =
k∑

t=θj+1

[
(Yt − x�

t β̂
L
j )2 − (Yt − x�

t β̂
R
j )2
]
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=
k∑

t=θj+1

(βj − β̂L
j )�xtx�

t (βj − β̂L
j ) −

k∑
t=θj+1

(β̂R
j − βj)�xtx�

t (β̂R
j − βj)

+ 2
k∑

t=θj+1
εtx�

t

[
(βj − βj−1) + (β̂R

j − βj) − (β̂L
j − βj−1)

]
= I1 + I2 + I3.

From the definition of s and the Cauchy-Schwarz inequality,

|βj − βj−1|1 ≤
√

2s|βj − βj−1|2 (B.11)

and from (B.9), we have

|ΔL
j |1 ≤ 4|ΔL

j (Sj)|1 ≤ 4
√

2s|ΔL
j |2 and analogously, |ΔR

j |1 ≤ 4
√

2s|ΔR
j |2.
(B.12)

From (B.11)–(B.12), we derive∣∣∣β̂L
j − βj

∣∣∣
2
≤ δj

(
1 + 12

√
2sλ

ωδj
√
G

)
≤ 3δj

2 and similarly,
∣∣∣β̂L

j − βj

∣∣∣
2
≥ δj

2 ,

∣∣∣β̂L
j − βj

∣∣∣
1
≤

√
sδj

(
1 + 96

√
sλ

ωδj
√
G

)
≤ 3

√
sδj
2 ,

for a large enough C1 in Assumption 4 (b). Then on R(1), we have

I1 ≥ |k − θj |ωδ2
j

(
1
4 − 9CRSCs log(p)

4|k − θj |1−τω

)
≥ ω

8 δ
2
j |k − θj | (B.13)

from that |k − θj | > δ−2
j Ψ2vn,p ≥ vn,p from (B.10). As for I2, from

Lemma B.2, (B.10) and (B.12) we have on R(2),

|I2| ≤
∣∣ΔR

j

∣∣2
2 [|k − θj |ω̄ + 32CRSCs log(p)|k − θj |τ ]

≤ 2|k − θj |ω̄
∣∣ΔR

j

∣∣2
2 ≤ 576ω̄s|k − θj |λ2

ω2G
. (B.14)

Turning our attention to I3, from (B.11)–(B.12),∣∣∣(βj − βj−1) + (β̂R
j − βj) − (β̂L

j − βj−1)
∣∣∣
1

≤ |βj − βj−1|1 +
∣∣∣β̂R

j − βj

∣∣∣
1

+
∣∣∣β̂L

j − βj−1

∣∣∣
1

≤
√
sδj

(
1 + 192

√
sλ

ωδj
√
G

)
≤ 2

√
sδj ,

where the last inequality follows from Assumption 4 (b). Then on D(1),

1
2 |I3| ≤

∣∣∣∣∣∣
k∑

t=θj+1

εtx�
t

∣∣∣∣∣∣
∞

∣∣∣(βj − βj−1) + (β̂R
j − βj) − (β̂L

j − βj−1)
∣∣∣
1
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≤ 2CDEVδj

√
s(k − θj)ρn,p. (B.15)

Then from (B.13), (B.14) and (B.15), we derive

|I2|
I1

= 4608ω̄sλ2

ω3δ2
jG

≤ 1
3 and |I3|

I1
= 32CDEV

√
sρn,p

ωδj
√
k − θj

≤ 1
3

under Assumption 4 (b), for all k ∈ Ij satisfying δ2
j |k−θj | > Ψ2vn,p from (B.10).

Analogous arguments apply when k ≤ θj , and the above arguments are deter-
ministic on M. In summary, we have

min
1≤j≤q

min
k∈Ij

δ2
j |k−θj |>Ψ2vn,p

(Qj(k) −Qj(θj)) >
ω

24Ψ2vn,p > 0,

which concludes the proof.

B.2. Proof of Proposition 2

B.2.1. Supporting lemmas

Define K(b) = B0(b) ∩ B2(1) with some b ≥ 1, where Bd(r) = {a : |a|d ≤ r}
with the dimension of a determined within the context. Let ei denote a vector
that contains zeros except for its ith component set to be one. We denote the
time-varying vector of parameters under (1) by β(t) =

∑q+1
j=1 βjI{θj−1+1≤t≤θj}.

Denote by Zt = (x�
t , εt)� ∈ R

p+1 which admits Zt =
∑∞

�=0 D�ξt−� un-
der (12). For some a,b ∈ B2(1), define Ut(a) = a�Zt and Wt(a,b) = a�ZtZ�

t b.
Let ξ′t denote an independent copy of ξt, and define Zt,{0} =

∑∞
�=0, ��=t D�ξt−�+

Dtξ
′
0. We denote the functional dependence measure and the dependence-adjusted

norm for Ut(a) as defined in Zhang and Wu (2017), by

δt,ν(a) =
∥∥a�Zt − a�Zt,{0}

∥∥
ν

and |||U·(a)|||ν =
∞∑
t=0

δt,ν(a),

respectively. Analogously, we define

δt,ν(a,b) =
∥∥∥a�ZtZ�

t b − a�Zt,{0}Z�
t,{0}b

∥∥∥
ν

and |||W·(a,b)|||ν =
∞∑
t=0

δt,ν(a,b)

for Wt(a,b). Finally, for some κ ≥ 0, we denote the dependence adjusted sub-
exponential norm of Wt(a,b) by ‖W·(a,b)‖ψκ = supν≥2 ν

−κ|||W·(a,b)|||ν . In
what follows, we denote by CΠ with Π ⊂ {γ, ν,Ξ, ς} a constant that depends on
the parameters included in Π which may vary from one occasion to another.

Lemma B.3. Suppose that Condition 1 holds.

(i) Under Condition 1 (a), we have supa,b∈B2(1) ‖W·(a,b)‖ψκ ≤ Cγ,Ξ,ςC
2
ξ <

∞ with κ = 2γ + 1.
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(ii) Under Condition 1 (b), we have supa∈B2(1) |||U·(a)|||2 ≤ CΞ,ς .
Proof. In what follows, we denote by μν = ‖ξit‖ν . For given ν > 1, we have

sup
a∈B2(1)

δt,ν(a)=
∥∥a�Dt(ξ0 − ξ′0)

∥∥
ν
≤ Cνμν

√
2 sup

a∈B2(1)
|a�Dt|22 ≤ CνμνΞ(1 + t)−ς

(B.16)

with Cν = max(1/(ν−1),
√
ν − 1), where the inequality follows from Lemma 2 of

Chen, Wang and Wu (2021) (Burkholder’s inequality) and Minkowski inequality,
and the second from Condition 1 and from that ‖Dt‖2 ≤

√
‖Dt‖1‖Dt‖∞ (with

‖ · ‖a denoting the induced matrix norms). Therefore, under Condition 1 (b),

sup
a∈B2(1)

|||U·(a)|||2 ≤ Ξ
∞∑
t=0

(1 + t)−ς ≤ CΞ,ς ,

which proves (ii). Note that by Hölder and Minkowski’s inequalities,

δt,ν(a,b) ≤
∥∥∥∥∥

∞∑
�=0

a�D�ξt−�

∥∥∥∥∥
2ν

∥∥b�Dt(ξ0 − ξ′0)
∥∥

2ν

+

∥∥∥∥∥∥
∞∑

�=0, ��=t

b�D�ξt−� + b�Dtξ
′
0

∥∥∥∥∥∥
2ν

∥∥a�Dt(ξ0 − ξ′0)
∥∥

2ν .

For given ν > 2, similarly as in (B.16), we can show that

sup
a∈B2(1)

∥∥∥∥∥
∞∑
�=0

a�D�ξt−�

∥∥∥∥∥
2ν

≤
∞∑
�=0

sup
a∈B2(1)

∥∥a�D�ξt−�

∥∥
2ν

≤ C2νμ2ν

∞∑
�=0

√
sup

a∈B2(1)
|a�D�|22 ≤ C2νμ2ν

∞∑
�=0

Ξ(1 + �)−ς ≤ Cγ,Ξ,ςCξν
γ+1/2

(B.17)

under Condition 1 (a). Then, (B.16)–(B.17) lead to

sup
a,b∈B2(1)

δt,ν(a,b) ≤ Cγ,Ξ,ςC
2
ξ ν

2γ+1(1 + t)−ς , and

sup
a,b∈B2(1)

|||W·(a,b)|||ν ≤ Cγ,Ξ,ςC
2
ξ ν

2γ+1
∞∑
t=0

(1 + t)−ς ≤ Cγ,Ξ,ςC
2
ξ ν

2γ+1,

such that we have supa,b∈B2(1) ‖W·(a,b)‖ψκ ≤ Cγ,Ξ,ςC
2
ξ with κ = 2γ +1, which

proves (i).

Lemma B.4. Under Condition 1 (a), there exist fixed constants C ′, C ′′ > 0
such that for all 0 ≤ s < e ≤ n and z > 0, we have

sup
a,b∈B2(1)

P
(

1√
e− s

∣∣∣∣∣
e∑

t=s+1
a�ZtZ�

t b − E
(

e∑
t=s+1

a�ZtZ�
t b
)∣∣∣∣∣ ≥ z

)
≤ C ′ exp

(
−C ′′z

2
4γ+3

)
.
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Proof. By Lemma B.3 (i) and Lemma C.4 of Zhang and Wu (2017), there exist
constants C ′, C ′′ > 0 that depend on γ,Ξ, ς and Cξ, such that for all z > 0,

sup
a,b∈B2(1)

P
(

1√
e− s

∣∣∣∣∣
e∑

t=s+1
a�ZtZ�

t b − E
(

e∑
t=s+1

a�ZtZ�
t b
)∣∣∣∣∣ ≥ z

)

≤ C ′ exp
(
− (4γ + 3)z

2
4γ+3

4e(Cγ,Ξ,ςC2
ξ )

2
4γ+3

)
≤ C ′ exp

(
−C ′′z

2
4γ+3

)
.

Lemma B.5. Under Condition 1 (b), there exists a fixed constants C ′′′ > 0
such that for all 0 ≤ s < e ≤ n and 0 < z < C2

Ξ,ς

√
e− s, we have

sup
a,b∈B2(1)

P
(

1√
e− s

∣∣∣∣∣
e∑

t=s+1
a�ZtZ�

t b − E
(

e∑
t=s+1

a�ZtZ�
t b
)∣∣∣∣∣ ≥ z

)
≤ 6 exp(−C ′′′z2).

Proof. By Lemma B.3 (ii) and Theorem 6.6 of Zhang and Wu (2021), there
exists an absolute constant C > 0 such that for all 0 < z < C2

Ξ,ς

√
e− s,

sup
a∈B2(1)

P
(

1√
e− s

∣∣∣∣∣
e∑

t=s+1
a�ZtZ�

t a − E
(

e∑
t=s+1

a�ZtZ�
t a
)∣∣∣∣∣ ≥ z

)

≤ 2 exp
[
−C min

(
z2

C4
Ξ,ς

,
z
√
e− s

C2
Ξ,ς

)]
≤ 2 exp(−CC−4

Ξ,ςz
2).

Then noting that

sup
a,b∈B2(1)

P
(

2√
e− s

∣∣∣∣∣
e∑

t=s+1
a�ZtZ�

t b − E
(

e∑
t=s+1

a�ZtZ�
t b
)∣∣∣∣∣ ≥ z

)
≤

sup
a,b∈B2(1)

P
(

1√
e− s

∣∣∣∣∣
e∑

t=s+1
(a + b)�ZtZ�

t (a + b)

− E
(

e∑
t=s+1

(a + b)�ZtZ�
t (a + b)

)
Biggr| ≥ z

3

)

+ 2 sup
a∈B2(1)

P
(

1√
e− s

∣∣∣∣∣
e∑

t=s+1
a�ZtZ�

t a

− E
(

e∑
t=s+1

a�ZtZ�
t a
)∣∣∣∣∣ ≥ z

3

)
≤ 6 exp

(
− Cz2

9C4
Ξ,ς

)
,

we can find C ′′′ that depends on Ξ and ς.
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B.2.2. Proof of Proposition 2 (i)

Recalling C ′ from Lemma B.4, we set c1 = 3C ′.
Verification of Assumption 2:

By assumption, we have E(xtεt) = 0. Then setting a = ei, i = 1, . . . , p,
b = ep+1 and z = CDEV log2γ+3/2(p ∨ n) in Lemma B.4,

P(D(1)) ≥ 1 − C ′pn2 exp
(
−C ′′C

2
4γ+3
DEV log(p ∨ n)

)
. (B.18)

Next, by construction,
e∑

t=s+1
(β(t) − β∗

s,e) = 0 and max
0≤s<e≤n

|{s+1,...,e}∩Θ|≤1

max
s<t≤e

∣∣β(t) − β∗
s,e

∣∣
2 ≤ 2Ψ,

(B.19)

and

E
[

e∑
t=s+1

xtx�
t (β(t) − β∗

s,e)
]

= Σx

e∑
t=s+1

(β(t) − β∗
s,e) = 0 (B.20)

under Assumption 1. Then setting a = ei, i = 1, . . . , p, b = β(t)−β∗
s,e for given

s, e and t ∈ {s + 1, . . . , e} and z = CDEV log2γ+3/2(p ∨ n) in Lemma B.4,

P(D(2)) ≥ 1 − C ′pn3 exp
(
−C ′′C

2
4γ+3
DEV log(p ∨ n)

)
, (B.21)

from (B.19) and (B.20). Combining (B.18) and (B.21), we can find large enough
CDEV that depends only on C ′′, γ and c2 such that P(D(1) ∩D(2)) ≥ 1− 2c1(p∨
n)−c2/3.
Verification of Assumption 3:

Let bs,e denote an integer that depends on (e − s) for some 0 ≤ s < e ≤ n,
and define

R=
{

sup
a∈K(2bs,e)

1
e− s

∣∣∣∣∣
e∑

t=s+1
a� (xtx�

t − Σx

)
a

∣∣∣∣∣≥Λmin(Σx)
54 for all 0 ≤ s < e ≤ n

with e− s ≥ C0 log4γ+3(p ∨ n)
}
.

By Lemma B.4 and Lemma F.2 of Basu and Michailidis (2015), we have

P (Rc) ≤
∑

0≤s<e≤n
e−s≥C0 log4γ+3(p∨n)

C ′ exp
[
−C ′′

(√
e− sΛmin(Σx)

54

) 2
4γ+3

+ 2bs,e log(p)
]

≤ C ′n2 exp

⎡⎣−C ′′

2

(
C

1/2
0 Λmin(Σx)

54

) 2
4γ+3

log(p ∨ n)

⎤⎦ ,
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where the last inequality follows with

bs,e =
⌊

C ′′

4 log(p)

(√
e− sΛmin(Σx)

54

) 2
4γ+3

⌋
,

which satisfies bs,e ≥ 1 for large enough C0. Further, we can find C0 that depends
only on C ′′, Λmin(Σx), γ and c2 which leads to P(R) ≥ 1−c1(p∨n)−c2/3. Then,
by Lemma 12 of Loh and Wainwright (2012), on R, we have

e∑
t=s+1

a�xtx�
t a ≥Λmin(Σx)(e− s)|a|22

− Λmin(Σx)
2 (e− s)

×
(
|a|22 + 4 log(p)

C ′′

( 54√
e− sΛmin(Σx)

) 2
4γ+3 |a|21

)
≥ω(e− s)|a|22 − CRSC log(p)(e− s)

4γ+2
4γ+3 |a|21

for all a ∈ R
p, with ω = Λmin(Σx)/2 and CRSC depending only on C ′′, γ and

Λmin(Σx). Analogously we have on R,
e∑

t=s+1
a�xtx�

t a ≤ ω̄(e− s)|a|22 + CRSC log(p)(e− s)
4γ+2
4γ+3 |a|21

for all a ∈ R
p, with ω̄ = 3Λmax(Σx)/2.

Combining the arguments above, we have P(D(1) ∩ D(2) ∩ R(1) ∩ R(2)) ≥
1 − c1(p ∨ n)−c2 , with τ = (4γ + 2)/(4γ + 3) and ρn,p = log2γ+3/2(p ∨ n).

B.2.3. Proof of Proposition 2 (ii)

We set c1 = 18.
Verification of Assumption 2:

By assumption, we have E(xtεt) = 0. Then setting a = ei, i = 1, . . . , p,
b = ep+1 and z = CDEV

√
log(p ∨ n) in Lemma B.5,

P(D(1)) ≥ 1 − 6pn2 exp
(
−C ′′′C2

DEV log(p ∨ n)
)
, (B.22)

provided that C0 > C−4
Ξ,ςC

2
DEV. Also, setting a = ei, i = 1, . . . , p, b = β(t)−β∗

s,e

for given s, e and t ∈ {s + 1, . . . , e} and z = CDEV

√
log(p ∨ n) in Lemma B.5,

P(D(2)) ≥ 1 − 6pn3 exp
(
−C ′′′C2

DEV log(p ∨ n)
)
, (B.23)

from (B.19) and (B.20). Combining (B.22) and (B.23), we can find large enough
CDEV that depends only on C ′′′ and c2 such that P(D(1) ∩ D(2)) ≥ 1 − 2c1(p ∨
n)−c2/3.
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Verification of Assumption 3:
Let bs,e denote an integer that depends on (e − s) for some 0 ≤ s < e ≤ n,

and define

R=
{

sup
a∈K(2bs,e)

1
e− s

∣∣∣∣∣
e∑

t=s+1
a� (xtx�

t − Σx

)
a

∣∣∣∣∣≥Λmin(Σx)
54 for all 0 ≤ s < e ≤ n

with e− s ≥ C0 log(p ∨ n)} .

Then by Lemma B.5 and Lemma F.2 of Basu and Michailidis (2015), we have

P (Rc) ≤
∑

0≤s<e≤n
e−s≥C0 log(p∨n)

6 exp
[
−C ′′′(e− s)

(
Λmin(Σx)

54

)2

+ 2bs,e log(p)
]

≤ 6n2 exp
[
−C ′′′C0

2

(
Λmin(Σx)

54

)2

log(p ∨ n)
]
,

where the last inequality follows with

bs,e =
⌊
C ′′′(e− s)
4 log(p)

(
Λmin(Σx)

54

)2
⌋
,

which satisfies bs,e ≥ 1 for large enough C0. Further, we can find C0 that depends
only on C ′′′, Λmin(Σx) and c2 which leads to P(R) ≥ 1− c1(p∨ n)−c2/3. Then,
by Lemma 12 of Loh and Wainwright (2012), on R, we have

e∑
t=s+1

a�xtx�
t a ≥Λmin(Σx)(e− s)|a|22

−Λmin(Σx)
2 (e− s)

(
|a|22 + 4 log(p)

C ′′′(e− s)

(
54

Λmin(Σx)

)2

|a|21

)
≥ω(e− s)|a|22 − CRSC log(p)|a|21

for all a ∈ R
p, with ω = Λmin(Σx)/2 and CRSC depending only on C ′′′ and

Λmin(Σx). Analogously we have on R,
e∑

t=s+1
a�xtx�

t a ≤ ω̄(e− s)|a|22 + CRSC log(p)|a|21

for all a ∈ R
p, with ω̄ = 3Λmax(Σx)/2.

Combining the arguments above, we have P(D(1) ∩ D(2) ∩ R(1) ∩ R(2)) ≥
1 − c1(p ∨ n)−c2 , with τ = 0 and ρn,p =

√
log(p ∨ n).

B.3. Proof of Theorem 4

In what follows, we operate on M = D(1) ∩ D(2) ∩ R(1) ∩ R(2) ∩ B. Under As-
sumption 4′, we have all G ∈ G satisfy G ≥ C0 max{ρ2

n,p, (ω−1s log(p))1/(1−τ)}
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such that the lower bound on (e − s) made in B (see Lemma B.2) is met by
all s = k and e = k + G, k = 0, . . . , n − G. Additionally, thanks to the con-
struction of the bandwidths described in Remark 3, the ordered bandwidths
G1 < G2 < . . . < GH , satisfy Gh < Gh+1 ≤ 2Gh for all 1 ≤ h ≤ H − 1. This
ensures that for each j, there exists some Gh which satisfies

4Gh ≤ min(θj − θj−1, θj+1 − θj) < 4Gh+1 ≤ 8Gh.

Then, under Assumption 4′, it follows that

δ2
jGh ≥ 4C1 max

{
ω−2sρ2

n,p,
(
ω−1s log(p)

)1/(1−τ)
}
.

Referring to such Gh by G(j), we summarise these observations in the following:
For each change point θj , j = 1, . . . , q, there exists a bandwidth G(j) ∈ G such
that

(a) 4G(j) ≤ min(θj+1 − θj , θj − θj−1), and
(b) δ2

jG(j) ≥ 4C1 max
{
ω−2sρ2

n,p,
(
ω−1s log(p)

)1/(1−τ)
}

.

Also, from (18), we have

48
√
sλ

ω
< D <

η

4
√

2
min

1≤j≤q
δj

√
G(j). (B.24)

For some k and G ∈ G, we write I(k,G) = {k − G + 1, . . . , k + G}. Recall
that for each pre-estimator θ̃ ∈ Θ̃(G), we denote by I(θ̃) = I(θ̃, G) its detection
interval. By the same arguments adopted in (B.4) and Lemmas B.1 and B.2, we
have

max
G∈G

max
G≤k≤n−G

|I(k,G)∩Θ|≤1

|Tk(G) − T ∗
k (G)| ≤24

√
sλ

ω
and T ∗

k (G)=0 if I(k,G) ∩ Θ=∅.

(B.25)

Then, we make the following observations.

(i) From (B.25) and the requirement on D in (B.24), we have I(θ̃) ∩ Θ �= ∅
for all θ̃ ∈ Θ̃(G), i.e. each pre-estimator in Θ̃(G) has (at least) one change
point in its detection interval.

(ii) Under Assumption 4′, for each θj , j = 1, . . . , q, there exists one pre-
estimator θ̃ ∈ Θ̃(G(j)) such that I(θ̃) ∩ Θ = {θj} and |θ̃ − θj | < G(j)/2�,
by the arguments used in the proof of Theorem 1 (i).

Thanks to (ii), there exists an anchor estimator θ̃A ∈ Θ̃A for each θj , in the
sense that θj ∈ I(θ̃A) and further, this anchor estimator θ̃A is detected with
some bandwidth G ≤ G(j). At the same time, there is at most a single anchor
estimator θ̃A fulfilling θj ∈ I(θ̃A) by its construction in (14), and (i) ensures
that all anchor estimators contain one change point in its detection interval.
Therefore, we have q̂ = |Θ̃A| = q and we may write Θ̃A = {θ̃Aj , 1 ≤ j ≤ q :
θ̃A1 < . . . < θ̃Aq }.
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Next, by (ii), there exists some θ̃ ∈ Θ̃(G(j)) fulfilling (15) for each j = 1, . . . , q.
To see this, note that if θ̃ ∈ Θ̃(G(j)) detects θj in the sense that θj ∈ I(θ̃),{

θ̃ −G(j) −
⌊
G(j)

2

⌋
+ 1, . . . , θ̃ + G(j) +

⌊
G(j)

2

⌋}
⊂
{
θj − 2G(j) + 1, θj + 2G(j)

}
, while

I(θ̃Aj−1) ⊂
{
θj−1 − 2G(j−1) + 1, . . . , θj−1 + 2G(j−1)

}
and

I(θ̃Aj+1) ⊂
{
θj+1 − 2G(j+1) + 1, . . . , θj+1 + 2G(j+1)

}
,

and the sets on RHS do not overlap under (a). This in turn implies that we have
|Cj | ≥ 1. Also for θ̃Mj ∈ Cj , we have that its detection bandwidth GM

j satisfies
3
2G

M
j ≤ min(θj+1 − θj , θj − θj−1) and GM

j ≥ G(j)

by the construction of Cj . Also, the bandwidths generated as in Remark 3 satisfy

G�−1 + 1
2G�−1 ≤ G�−1 + G�−2 = G� ≤ 2G�−1, such that

1
2G� ≤ G�−1 ≤ 2

3G� for � ≥ 2,

and therefore
1
4G(j) ≤ G∗

j and G∗
j ≤

(
3
4 · 2

3 + 1
4

)
GM

j ≤ 1
2 min(θj+1 − θj , θj − θj−1).

(B.26)

Further, by that |θ̃mj − θj | < Gm
j (see (i)) and

2Gm
j + G∗

j = 11
4 Gm

j + 1
4G

M
j ≤ 11

4 G(j) + 1
4G

M
j ≤ 41

48 min(θj+1 − θj , θj − θj−1),

we have

{θ̃mj −Gm
j −G∗

j+1, . . . , θ̃mj −Gm
j } ∩ {θ̃mj +Gm

j +1, . . . , θ̃mj +Gm
j +G∗

j} ∩ Θ=∅.
(B.27)

From (B.26) and (b), we have

δ2
jG

∗
j ≥ C1 max

{
ω−2sρ2

n,p,
(
ω−1s log(p)

)1/(1−τ)
}

and from (B.27) and Lemma B.2, we have ΔL
j = β̂L

j − βj−1 and ΔR
j = β̂R

j − βj

satisfy

max
(∣∣ΔL

j

∣∣
2 ,
∣∣ΔR

j

∣∣
2

)
≤ 12

√
2sλ

ω
√
G∗

j

≤ 24
√

2sλ
ω
√
G(j)

,∣∣ΔL
j (Sc

j−1)
∣∣
1 ≤ 3

∣∣ΔL
j (Sj−1)

∣∣
1 and

∣∣ΔR
j (Sc

j )
∣∣
1 ≤ 3

∣∣ΔR
j (Sj)

∣∣
1 ,

such that the arguments analogous to those employed in the proof of Theo-
rem 1 (ii) are applicable to establish the localisation rate of θ̌j , which completes
the proof.
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Appendix C: Algorithms

Algorithm 1: MOSEG: Single-bandwidth two-stage data segmentation
methodology under a regression model.
input : Bandwidth G, grid resolution r, penalty λ, threshold D, η ∈ (0, 1]

initialise: Θ̃ = ∅, Θ̂ = ∅
// Stage 1
Compute Tk(G) in (2) for all k ∈ T = T (r,G)

Add all θ̃ satisfying T
θ̃
(G) > D and θ̃ = arg min

k∈{θ̃−�ηG�+1,...,θ̃+�ηG�}∩T Tk(G) to
Θ̃, and set Θ̃ = {θ̃j , 1 ≤ j ≤ q̂}

// Stage 2
for j = 1, . . . , q̂ do

Identify θ̂j = arg min
θ̃j−G+1≤j≤θ̃j+G

Q(k; θ̃j −G, θ̃j + G, β̂L
j , β̂

R
j ) with β̂L

j and

β̂R
j computed as in (8), and add it to Θ̂

end
return Θ̂

Algorithm 2: MOSEG.MS: Multiscale extension of MOSEG.
input : A set of bandwidths G, grid resolution r, penalty λ, threshold D, η ∈ (0, 1]

initialise: Θ̃A = ∅, Θ̌ = ∅, Cj = ∅ for all j
// Pre-estimator generation
for h = 1, . . . , H do

Initialise Θ̃(Gh) = ∅
Compute Tk(Gh) in (2) for all k ∈ Th = T (r,Gh)

Add all θ̃ satisfying T
θ̃
(Gh) > D and θ̃ = arg min

k∈Iη(θ̃)∩Th
Tk(Gh), to Θ̃(Gh)

end
// Anchor change point estimator identification

Identify all θ̃(G) ∈ ∪H
h=1Θ̃(Gh) satisfying (14), and add all such estimators to Θ̃A,

which is denoted by Θ̃A = {θ̃Aj , 1 ≤ j ≤ q̂ : θ̃A1 < . . . < θ̃Aq̂ }

for j = 1, . . . , q̂ do
// Pre-estimator clustering

Identify all θ̃ ∈ ∪H
h=1Θ̃(Gh) satisfying (15) and add it to Cj

// Location refinement

Add θ̌j obtained as in (16) to Θ̂
end
return Θ̌
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Appendix D: Further information on the real dataset

Table D.1 lists the covariates included in the dataset analysed in Section 6.

Table D.1

Covariates contained in the equity premium dataset analysed in Section 6 (cf. Koo et al.
(2020), Table 3)

Name Description

d/p Dividend price ratio: difference between the log of dividends and the log of prices
d/y Dividend yield: difference between the log of dividends and the log of lagged prices
e/p Earnings price ratio: difference between the log of earnings and the log of prices
d/e Dividend payout ratio: difference between the log of dividends and the log of earnings
b/m Book-to-market ratio: ratio of book value to market value for the Dow Jones Industrial Average
ntis Net equity expansion: ratio of 12-month moving sums of net issues by NYSE listed stocks over

the total end-of-year market capitalization of NYSE stocks
tbl Treasury bill rates: 3-month Treasury bill rates
lty Long-term yield: long-term government bond yield
tms Term spread: difference between the long term bond yield and the Treasury bill rate
dfy Default yield spread: difference between Moody’s BAA and AAA-rated corporate bond yields
dfr Default return spread: difference between the returns of long-term corporate and government bonds
svar Log of stock varianceobtained as the sum of squared daily returns on S&P500 index
infl Inflation: CPI inflation for all urban consumers
ltr Long-term return: return of long term government bonds
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