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Abstract: Latent position models are widely used for the analysis of net-
works in a variety of research fields. In fact, these models possess a number
of desirable theoretical properties, and are particularly easy to interpret.
However, statistical methodologies to fit these models generally incur a
computational cost which grows with the square of the number of nodes
in the graph. This makes the analysis of large social networks impractical.
In this paper, we propose a new method characterised by a much reduced
computational complexity, which can be used to fit latent position models
on networks of several tens of thousands nodes. Our approach relies on an
approximation of the likelihood function, where the amount of noise in-
troduced by the approximation can be arbitrarily reduced at the expense
of computational efficiency. We establish several theoretical results that
show how the likelihood error propagates to the invariant distribution of
the Markov chain Monte Carlo sampler. In particular, we demonstrate that
one can achieve a substantial reduction in computing time and still obtain
a good estimate of the latent structure. Finally, we propose applications of
our method to simulated networks and to a large coauthorships network,
highlighting the usefulness of our approach.
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1. Introduction

In the last few decades, network data has become extremely common and read-
ily available in a variety of fields, including the social sciences, biology, finance
and technology. After the pioneering work of [11], latent position models (here-
after LPMs) have become one of the cornerstones in the statistical analysis of
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networks. LPMs are flexible models capable of capturing many salient features
of realised networks while providing results which can be easily interpreted.
However, a crucial aspect in the statistical analyses of networks is scalability:
the computational burden required when fitting LPMs generally grows with the
square of the number of nodes. This seriously hinders their applicability, since
estimation becomes impractical for networks larger than a few hundreds nodes.
Here, we precisely address this issue by introducing a new scalable methodology
to fit LPMs: we study the new approach by providing theoretical guarantees on
its efficiency, and we illustrate its use on simulated and real datasets.

LPMs postulate that the nodes of an observed network are characterised by a
unique random position in a latent space: in the most common setup, each node
is mapped to a point of R2. Additionally, the probability of observing an edge
between two nodes is determined by the corresponding pairwise latent distance.
A common assumption requires that closer nodes are more likely to connect than
nodes farther apart, or, equivalently, that the probability of connection ρ (dij) is
a non-increasing function of the distance dij between nodes i and j. Evidently,
the aforementioned quadratic computing costs originate from the necessity of
keeping track of all of the pairwise distances between the nodes.

In our approach, we construct a partition of the latent space, therefore in-
ducing a partition on the nodes of the graph itself. This allows us to cluster
together nodes that are expected to have approximately the same behaviour,
with regard to their connections. In principle, this is similar to imposing a
stochastic block model structure [39], whereby the nodes belonging to the same
block are assumed to be stochastically equivalent [20]. The crucial advantage of
our approach is that, once the partitioning has been set up, we can bypass the
calculation of the pairwise distances via an approximation, in fact reducing to
a computational complexity (in the number of nodes) that is lower than than
of the standard methods.

Similarly to the original paper of [11], our approach also relies on Markov
chain Monte Carlo (hereafter MCMC) to obtain a Bayesian posterior sample of
the latent positions and other model parameters. However, in contrast to their
approach, we replace the likelihood of the LPM with an approximate (hence
noisy) counterpart that aggregates the latent position of nodes belonging to
the same block. By construction, the cost of the calculation of this surrogate
likelihood grows linearly in the number of nodes, hence giving a significant
computational advantage to our method when compared to the approach of [11]
or other subsequent related works.

Since the LPM likelihood is replaced by a proxy, our method broadly fits
within the context of noisy Markov chain Monte Carlo [1], a topic that has
recently generated a noticeable interest within the field of computational statis-
tics and beyond. The theoretical aspect of our paper relies and builds upon
the core ideas of noisy MCMC. In particular, our methodology is supported by
a collection of theoretical results showing that our approach leads to quantifi-
able gains in efficiency. More precisely, we show that the error in the MCMC
output induced by the likelihood approximation can be arbitrarily bounded by
refining the partition in the latent space. Besides, a finer partition also implies
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higher computational costs. As a consequence, our algorithm allows a trade-off
between speed and accuracy that can be set according to the available compu-
tational budget, and the level of precision required for inference. We study in
detail how this approximation error is affected by the fineness of the partition
as the number of nodes increases, hence providing a detailed characterisation
of the trade-off. In addition, our theoretical developments include a proposition
that can be regarded as an extension of the results of [1] to the widely used
Metropolis-Hastings (MH hereafter) algorithm, and which may thus have ap-
plications beyond the context of LPMs. The theoretical results are established
for a generic LPM framework: the assumptions we use are rather general and
encompass most of the commonly used LPMs.

In addition to these results, we propose applications of our method to both
simulated and real datasets, whereby we focus on a more specific model which
is equivalent to that of [11]. Our simulation study aims at assessing the ap-
proximation error bounds from a much more practical perspective, highlighting
the validity of the procedure in asymptotic settings, and providing useful in-
dications on how one should set up the partitioning. The study demonstrates
that the noisy algorithm succeeds in recovering the latent structure correctly,
achieving the same qualitative results obtained with the currently available ap-
proaches. Crucially, the computing time required by our proposed approach is
only a fraction of that of the non-noisy one.

Finally, we propose an application to a large social network representing coau-
thorships in the astrophysics category of the repository of electronic preprints,
arXiv. This application demonstrates that our approach can be successfully em-
ployed on very large1 networks, to recover the structure of the latent space while
using just a small fraction of the actual computational cost. This effectively ex-
tends the applicability of latent position models to much larger network datasets.

The structure of the paper is as follows: in Section 2 we give an overview of the
literature related to LPMs and noisy Markov chain Monte Carlo. In Section 3,
we formally characterise the main features of the original LPM of [11], giving an
overview of the MH sampling strategy used to perform inference, highlighting
some of its limitations. In Section 4, we lay the foundations for our theoretical
results, by defining the general assumptions that our LPMs must satisfy. In
Section 5, we formally introduce the partitioning of the latent space and all of
the associated notation. Section 6 introduces the novel noisy algorithm, whereas
in Section 7 we describe the main theoretical results. Finally, Sections 8 and 9
illustrate the applications of our methodology to simulated and a real dataset,
respectively.

2. Review of related literature

The study of the mathematical properties of LPMs dates back at least to [6].
However, the first application of these models in the statistical analysis of social
networks is due to [11], who introduced a feasible methodology to fit LPMs to

1This is meant in comparison to previous other analyses in the LPM literature.
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interaction data. Since the work of [11], LPMs have been intensively studied and
widely applied to a variety of contexts, becoming one of the prominent statisti-
cal models for network analyses. There are a number of reasons for this success.
Most importantly, LPMs are particularly easy to interpret, and offer a clear and
intuitive graphical representation of the results. In addition, LPMs are capable
of capturing a number of features of interest such as transitivity, clustering, ho-
mophily and assortativity, which are often exhibited by observed social networks.
An overview of the theoretical properties of realised LPMs is given in [25].

In order to increase the flexibility of these models, a number of extensions of
the basic framework have been considered. [10] introduce a more sophisticated
prior on the latent point process to represent clustering in the network, that is,
the presence of communities. [13] further extends the model to include nodal
random effects, i.e. additional latent features on the nodes capable of tuning
their in-degrees and out-degrees. Both of these extensions are implemented in
the R package latentnet.

LPMs have also been extended to account for multiple network views [8, 4,
31], binary interactions evolving over time [34, 35, 5, 3], ranking network data
[9, 36] and weighted networks [37]. Review papers dealing with LPMs include
[33], [16] and [22].

Similarly to our contribution, three other papers address the issue of scal-
ability for the inference on LPMs. In [32], the authors propose a variational
approximation (coupled with first order Taylor expansions to deal with various
intractabilities) to perform posterior maximisation for the model described by
[10]. One drawback of this approach is that it is not possible to assess the magni-
tude of the error induced by the variational approximation. Also, the modelling
assumptions are not flexible, since the variational framework can only be used
with a restricted selection of parametric distributions.

In [30], the authors consider the same latent position clustering model, and
propose a Gaussian finite mixture prior distribution on the latent point process
that allows one to collapse the posterior distribution. This means that several
model parameters can be analytically integrated out from the posterior distribu-
tion of the model, hence simplifying the sampling scheme and achieving better
estimators with a smaller computational cost.

Finally, [24] proposes a case-control likelihood approximation for the LPM
with nodal random effects. In this paper, the authors argue that the majority of
large social networks are sparse, hence, absent edges contribute the most to the
LPM likelihood. By analogy with the case-control idea from epidemiology, they
estimate the likelihood value using only a subset of the contributions given by
the absent edges. We consider this approach similar to ours, since both methods
rely on a noisy likelihood. We point out that our algorithm benefits from a
series of theoretical results that guarantee its correctness and characterise the
error induced by the approximation. In addition, our method may be applied
to networks of potentially huge size regardless of the level of sparseness.

Regarding the theoretical analysis of our algorithm, the main reference that
we relate to is [1]. These authors argue that the computational problems arising
when dealing with intractable likelihoods, or when inferring very large datasets,
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can often be alleviated by introducing approximations in the MCMC schemes.
These approaches are generally referred to as noisy MCMC, since one ends up
sampling using a noisy transition kernel, rather than the correct one. In [1], the
authors exploit a theoretical result from [17] to characterise the error induced by
these approximations on the invariant distribution of the transition kernel. They
also propose several applications based on the Metropolis-Hastings algorithm to
a number of relevant statistical modelling frameworks. We also point out that,
more recently, the noisy Monte Carlo framework has been adopted by [2] and
[15], as a means to speed up inference for Gibbs random fields and other general
models. Even though the literature on noisy MCMC has been recently enriched
by a number of relevant entries [18, 12, 29], the theoretical framework developed
in [1] proved sufficient to establish our results, as shown in Section 7.

3. Latent position models

3.1. Definition

A random graph is an object G = {V, E} where V = {1, . . . , N} is a fixed set
of labels for the nodes and E is a list of the randomly realised edges. In the
social sciences, for example, random graphs are used to represent the social
interactions within a set of actors. The values appearing on the undirected ties
are modeled through the random variables:

Y = {Yij : i, j ∈ V, i < j} . (3.1)

In this paper we only deal with undirected binary graphs, hence, the observed
realisations are denoted as follows:

yij =
{

1, if an edge between i and j appears;
0, otherwise;

(3.2)

for every i ∈ V and j ∈ V such that j > i. Note that, in the framework
considered, self-edges are not modelled.

In LPMs the nodes are characterised by a latent position, generically de-
noted z ∈ R

m, which determines their social profile. The choice m = 2 is the
most common since it usually couples a good fit and a convenient framework to
represent the results. Hence, we illustrate our methodology assuming that the
number of latent dimensions is two, noting that extensions to other cases may
be possible.

In the basic LPM, the probability of an edge appearing is determined by the
positions of the nodes at its extremes and by some other global parameters (e.g.
an intercept). This may be formally written as follows:

p (zi, zj ;ψ) := P (yij = 1|zi, zj ,ψ) = 1 − P (yij = 0|zi, zj ,ψ) . (3.3)

Here ψ is a vector of global parameters with dimensions indexed by the labels
K = {1, . . . ,K}. The parameter ψ is sometimes referred to as the static param-
eter of the model, as opposed to the latent field Z := {z1, . . . , zN}. A number
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of possible formulations for the edge probabilities have been proposed. Within
the statistical community, the most common choice is the logit link proposed
by [11]:

log
(

p (zi, zj ;ψ)
1 − p (zi, zj ;ψ)

)
:= ψ − d (zi, zj) ; (3.4)

where d (zi, zj) denotes the Euclidean distance between the two nodes, and
ψ ∈ R may be seen as an intercept parameter (K = 1).2 Alternative formulations
are used in [8] and [25]. In physics, a variety of edge probability functions have
been proposed. A list of these can be found, for example, in [21] and references
therein. One feature that all of these formulations have in common is that the
edge probability is a function of the distance between the two nodes, and that
its value decreases as the latent distance increases, making long edges less likely
to appear.

Since the data observations are conditionally independent given the latent
positions, the likelihood of all undirected LPMs may be written as:

LY (Z,ψ) =
∏

{i∈V}

∏
{j∈V\i}

{
[p (zi, zj ;ψ)]yij [1 − p (zi, zj ;ψ)]1−yij

}1/2
(3.5)

where the square root is introduced to remedy the fact that each edge contributes
twice to the likelihood of the undirected network (the motivation behind this
particular formulation will be more clear in the following sections). We note
that, for a given set of positions Z and global parameters ψ, the computational
cost for the likelihood evaluation is O

(
N2), i.e. it grows with the square of the

number of nodes.

3.2. Bayesian inference

Inference for LPMs is usually carried out in a Bayesian framework, using MCMC
to obtain posterior samples of the model parameters [11, 10, 13, 24]. The pos-
terior density of interest is:

π (Z,ψ|Y) ∝ LY (Z,ψ)π (Z)π (ψ) . (3.6)

Assuming that the cost of the evaluation of the priors π (Z) and π (ψ) is O (N)
or negligible, the computational cost required to evaluate the posterior value
grows with N2, which corresponds to the bottleneck imposed by the likelihood
term. A Markov chain Monte Carlo sampler can be designed to sample each of
the model parameters in turn, using the following full-conditional density:

π (zi|Z−i,ψ,Y) ∝ π (zi)
∏

{j∈V: j �=i}
[p (zi, zj ;ψ)]yij [1 − p (zi, zj ;ψ)]1−yij (3.7)

2In the context of a generalised linear model, we can interpret the parameter ψ as an
intercept for the model. However it is important to point out that this parameter determines
also other aspects of the model. Since the latent distances are lower-bounded by zero, ψ also
determines the highest edge probability value that we may obtain (in fact, corresponding to a
latent distance of zero. As a consequence, generally speaking, ψ directly regulates the overall
density of the network. In this paper we refer to this parameter as the intercept.
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π
(
ψk

∣∣ψ−k,Z,Y
)
∝ π (ψk)LY (Z,ψ) (3.8)

In the previous equations: i ∈ V, k ∈ K, whereas Z−i = {zj}j∈V\{i} and
ψ−k = {ψk′}k′∈K\{k}. Here we have assumed that the model parameters are
all independent a priori: this is indeed very common and it will be formalised in
the following sections. Each evaluation of (3.8) clearly requires O

(
N2). Since

each evaluation of (3.7) requires O (N) calculations, the overall complexity of
the sampler still grows with the square of N .

The full-conditionals (3.7) and (3.8) are generally not in standard form.
Hence, new values for the model parameters are sampled through what is usu-
ally referred to as a Metropolis-Hastings (MH) type algorithm (see e.g. [7]).
More precisely, potential new parameters are drawn from proposal densities
qZ (zi → z′i) and qψ (ψk → ψ′

k) and are then accepted with probability:

αZ (zi → z′i) := 1 ∧
{
qZ (z′i → zi)π (z′i|Z−i,ψ,Y)
qZ (zi → z′i)π (zi|Z−i,ψ,Y)

}
(3.9)

αψ (ψk → ψ′
k) := 1 ∧

{
qψ (ψ′

k → ψk)π
(
ψ′
k

∣∣ψ−k,Z,Y
)

qψ (ψk → ψ′
k)π

(
ψk

∣∣ψ−k,Z,Y
)
}

(3.10)

for the latent positions and global parameters, respectively. In the previous
equations, for two real numbers a and b, a∧ b stands for the minimum between
the two numbers. Also, we point out that, as is common practice, the two
dimensions of the latent positions are dealt with simultaneously, i.e. they are
updated in block.

The MH sampler described above defines a Markov chain whose stationary
distribution is the posterior of interest (3.6). As a consequence, provided that the
Markov chain is ergodic, the samples obtained at stationarity can be used to fully
characterise the posterior distribution of interest. In fact, the MH chain is shown
to be geometrically ergodic for a variety of proposal distributions and under
some regulatory conditions on the invariant distribution π, see [27, Theorem 5].

3.3. Non-identifiability of the latent positions

LPMs are known to be non-identifiable with respect to translations, rotations,
and reflections of the latent positions. This issue has no particular effect on the
sampling itself, yet it may hinder the interpretation of the posterior samples. For
this reason, the latent positions are usually post-processed using the so-called
Procrustes’ matching. This procedure consists of rotating and translating the
configurations of points observed at the end of each iteration, to match a given
reference layout. In this way, the trajectory of each node during the sampling
may be properly assessed, since the overall rotation and translation effect has
been removed. A detailed description of the method is given, for example, in [11]
and [38]. In this paper, we adopt exactly this same strategy to solve the non-
identifiability problem, using as reference either the true positions (if available)
or the maximum a posteriori configuration.
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4. Assumptions

The methodology we develop in this paper relies on several assumptions which
are described in this section.

Assumption 1. All of the model parameters are defined on bounded sets, i.e.:

∀ k ∈ K : ψk ∈ [ψL
k , ψ

U
k ] =: Sk, (4.1)

∀ i ∈ V : zi ∈ [−S, S] × [−S, S] =: SZ , (4.2)

for some finite positive constants S, ψL
k and ψU

k .

Remark 1. We note that, as a consequence of Assumption 1, the parameter
space:

S = SN
Z × S{k=1} × · · · × S{k=K} (4.3)

is a compact set.
Remark 2. Assumption 1 is rather strong and contrasts with the usual LPM
frameworks. However, we argue that, from a practical point of view, these im-
posed conditions do not change the essence of the model. In fact, very large LPM
parameters normally lead to degenerate models, and hence to realised networks
that are meaningless in this modelling context (e.g. full or empty graphs). In
this perspective, there is in fact a necessity to constrain ψ to a bounded space
in order to make the model more tractable.
Remark 3. In the applications sections of this paper, a spherical truncated
Gaussian distribution is used as prior on the latent positions:

π (zi) =
2∏

m=1

⎧⎨
⎩

φ
(

zim
γ

)
γ
[
Φ
(

S
γ

)
− Φ

(
−S
γ

)]
⎫⎬
⎭ , ∀i ∈ V; (4.4)

where zim indicates the m-th coordinate of node i’s latent position, γ > 0, φ
and Φ are the p.d.f. and c.d.f. of a standard Gaussian distribution, respectively.
This prior specification is essential in order to match the grid construction that
is described in Section 5, however other priors could be considered.

Assumption 2. The edge probability function p : R2 × R
2 × R

K → [pL, pU ] ⊂
(0, 1) satisfies the following properties:

a) p depends on the positions only through the latent distances. This
means that there exists a function ρ : R+ × R

K → [pL, pU ] such that

∀zi, zj ∈ R
2, ∀ψ ∈ R

K : p (zi, zj ;ψ) = ρ (d (zi, zj) ,ψ) .

b) ρ is non-increasing w.r.t. distances; i.e. for any zi ∈ SZ , i = 1, 2, 3, 4:

if d (z1, z2) ≥ d (z3, z4) , then p (z1, z2;ψ) ≤ p (z3, z4;ψ) .
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c) ρ is Lipschitz w.r.t. distances; i.e. for any zi ∈ SZ , i = 1, 2, 3, 4:

|p (z1, z2;ψ) − p (z3, z4;ψ)| ≤ κ |d (z1, z2) − d (z3, z4)| ;

for some finite positive constant κ.

Remark 4. Assumption 2 is satisfied by most link functions, including the logit
link of Eq. (3.4).

5. Grid approximation of the latent distances

Hereafter, we consider a generic LPM satisfying Assumptions 1 and 2, and we il-
lustrate an estimation procedure based on a grid partitioning of the latent space.
Following an approach similar to that of [21], we create a partitioning of the la-
tent positions Z using a grid in R

2. The grid is made of adjacent squares (called
boxes hereafter) of side length b > 0, each having both sides aligned to the axes.
A generic box B[g, h] has corners located in (bg − b, bh− b) , (bg − b, bh) , (bg, bh)
and (bg, bh− b), where the indices g and h are positive or negative but non-null
integers, i.e. g, h ∈ Z\0. Figure 5.1 shows the latent space with the partitioning
given by these boxes.

Fig 5.1. Grid partitioning the latent space.

For simplicity, we indicate with M the number of intervals in which we divide
each axis. This means that the latent space SZ is partitioned into M2 squared
boxes, where the value of M satisfies b = 2S/M .

We denote with N [g, h] the number of points located in a generic box:

N [g, h] = |{i ∈ V : zi ∈ B[g, h]}| , (5.1)
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where |H| denotes the cardinality of the set H.
It is also useful to introduce the centre of a generic box

c[g, h] := (bg − b/2, bh− b/2) . (5.2)

Given a node j ∈ V such that zj ∈ B[g, h], we also indicate the centre of B[g, h]
with cj , representing the centre of the box containing j. An essential aspect
of our proposed approach is determined by the fact that the distance d (zi, zj)
between any two nodes may be approximated by d (zi, cj), i.e. the distance
between node i and the centre of the box containing j.

Finally, we denote with ξi[g, h] the number of edges between node i and the
nodes allocated to B[g, h], i.e.:

ξi[g, h] =
∑

{j∈V: zj∈B[g,h]}
yij ; (5.3)

and by ζi[g, h] the number of absent edges:

ζi[g, h] = N [g, h] − ξi[g, h] − 1 ({zi ∈ B[g, h]}) ; (5.4)

where 1 (A) is 1 if A is true or 0 otherwise. Also, the degree of node i ∈ V, i.e.
the number of edges incident to it, is indicated by Di.

These quantities introduced are exploited in the following sections to illus-
trate a new way of carrying out Bayesian inference for LPMs, requiring a dra-
matically reduced computational cost.

6. Noisy MCMC

As explained in the previous section, the distance from node i to the centre of
a generic box c[g, h] can be used as a proxy for the true distances between i
and all of the points contained in B[g, h], for all g and h. This in turn allows
one to approximate the edge probability p (zi, zj ;ψ) using p (zi, cj ;ψ), for all
j ∈ V such that zj ∈ B[g, h]. This fact may be exploited in a number of ways.
For example, the likelihood defined in (3.5) may be replaced by the following
noisy likelihood:

L̃Y (Z,ψ) :=

⎧⎨
⎩

N∏
i=1

∏
g,h

[p (zi, c[g, h];ψ)]ξi[g,h] [1 − p (zi, c[g, h];ψ)]ζi[g,h]

⎫⎬
⎭

1/2

;

(6.1)
where each edge contribution is essentially replaced by its noisy counterpart.
Here, by counting each edge contribution twice and then correcting with the
square root, one has the possibility to use the noisy approximation in a sym-
metric way, with respect to any pair of nodes i and j. We point out that a
number of alternative estimators are available for the likelihood value using the
grid approximation: the estimator proposed in (6.1) is one that generally works
well in practice and that makes our theoretical developments easier to follow.
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With NoisyLPM, we refer to a MH sampler that relies on the approximate
edge probabilities rather than the true ones, or, equivalently, that uses the noisy
likelihood L̃Y instead of the true likelihood LY . In NoisyLPM the full-conditionals
introduced in (3.7) and (3.8) can be approximated as follows:

π̃ (zi|Z−i,ψ,Y) ∝ π (zi)
∏
g,h

[p (zi, c[g, h];ψ)]ξi[g,h] [1 − p (zi, c[g, h];ψ)]ζi[g,h] ;

(6.2)
π̃
(
ψk

∣∣ψ−k,Z,Y
)
∝ π (ψk) L̃Y (Z,ψ) . (6.3)

It is apparent that the computational cost of one evaluation of the approxi-
mate full-conditionals is much smaller than that of the true counterpart. In fact,
for a given grid, the complexity of a noisy MH update becomes O (1) and O (N)
for latent positions and global parameters, respectively. Overall, this makes the
computational complexity of the NoisyLPM procedure of an order smaller than
O
(
N2).

6.1. Algorithmic complexity

The data is given as an undirected edge list, with L entries. An efficient imple-
mentation of NoisyLPM does not require using an adjacency matrix, however it
does require at least an adjacency list. That is, for every node in the network,
we store in memory all the edge list locations that involve that particular node.
This can be done offline with a storage and computational cost of O(L).

We continue with the contruction of the grid, for the chosen value of M . First,
we identify the thresholds that define the grid using the relation b = 2/M . Each
node is assigned to a random initial position within the two-units-square centred
in the origin of the space. Then, we proceed to allocate each node, based on its
position, to the correct grid box. We store this information using a matrix of
size N × 2, where the first column indicates the box index on the x-axis, and
the second column indicates the box index on the y-axis. In addition, we save
the number of nodes that are contained in each box for future reference. These
operations can all be performed offline with a storage and computational cost
of O(N + M2).

The last offline operation that we need to perform to set up the grid structure
consists of counting how many edges go from a given node to a given box, i.e.
calculating ξi[g, h], for all i’s, g’s, h’s. We store this information as an array
of size N × M × M ; this requires a memory storage cost of O(NM2) and an
operational cost of O(L).

Once the operations above are completed, we can proceed with the MCMC
sampling procedure. Let us consider first an update of a non-node-dependent
parameter φ. From Eq. (6.3) we deduce that the MCMC acceptance probability
can be calculated with O(NM2). If the chain moves to a new value of the pa-
rameter φ, then only an additional O(1) cost is required, since the grid structure
does not require any changes.
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The situation is slightly different when a latent position is updated. In this
case, the acceptance probability can be calculated in O(M2) as Eq. (6.2) sug-
gests. However, should the chain accept the proposal and thus move the node to
a new position, then two possibilities arise. If the new position is still within the
same box, then the move can be performed in a constant time. If the new posi-
tion falls outside of the node’s current box, then we need to update the values
of ξi[g, h] for the particular node i that we are moving, and for every box that
is affected. Since we have stored the memory locations of the edge list where we
can find the neighbours of i, then this operation can be performed efficiently
with cost in the order of the degree of i. As we scan through the nodes and
update the position of each node, we repeat this operation up to N times, thus
obtaining an approximate aggregate cost of O(L) just for moving the nodes.

The overall complexity of the algorithm can be calculated by adding up the
offline costs and the costs arising from the sampling procedure. Here, we con-
sider that we have a negligibly small number of global parameters, and that we
have N nodes in the network. As a result, we obtain an overall complexity of
O
(
TNM2 + TL

)
, where the term NM2 is given by the acceptance probabilities

calculations, the term L is given by the update of the ξ terms for the nodes that
are moved, and T is the total number of MCMC iterations.

We should remark here that, under some scenarios that will be explored in
the simulation study, we could have M2 > N (more grid boxes than nodes).
In that case, necessarily, a number of boxes will be empty. As per our code
implementation, all empty boxes can be effectively ignored thus reducing the
computational term M2 to N , which, in fact, leads back to the original com-
plexity of the standard algorithm.

6.2. Software and parallelisation

Further speed ups of the algorithm can be achieved using parallel computing, by
assigning individual boxes to different calculators. By doing so, we can parallelise
the likelihood ratios calculations whenever they are required. The method has
been implemented in C++, and it uses parallel computing through the library
OpenMPI. All of the computations described in the paper have been performed
on a 8-cores (2.2 GHz) Debian machine. The code for NoisyLPM is available from
the public GitHub repository [26].

7. Theoretical guarantees

This section provides theoretical results that characterise the error induced by
our approximation. Indeed, replacing LY(Z,ψ) with L̃Y(Z,ψ) in the MH ac-
ceptance ratio implies that the stationary distribution of the Markov chain may
not coincide anymore with the posterior distribution of interest described in
Section 3.2. Here, our main goal is to show that a noisy MH sampler, such as
the NoisyLPM, generates a sequence of random variables whose distribution can
be made arbitrarily close to the true posterior π ( · |Y).
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In fact, one can note that, by construction, our noisy MH sampler admits
the approximate posterior π̃ ( · |Y) as stationary distribution. Hence, the ap-
proximation error is directly, and globally, measured by ‖π − π̃‖, i.e. the total
variation distance between the two posteriors. However, obtaining an explicit
expression or an upper bound of ‖π − π̃‖ is challenging. Our main result (The-
orem 2) gives an upper bound of ‖π − π̃‖ obtained by bounding the distance
between the exact and noisy Markov chains, following [17]. The core of our work
has been to devise a bound, which we believe is tight, on the distance between
the two Markov kernels, see Theorem 1 and Corollary 2.

The theoretical framework is the analysis of the perturbation of uniformly
ergodic Markov chains, initiated in [17] and refined for the noisy Metropolis-
Hastings case in [1]. We first recall the uniform ergodicity assumption.

Assumption 3. A π-invariant Markov kernel P operating on a state space S
is uniformly ergodic if after t ∈ N iterations, the distance between the chain
distribution and the stationary distribution is bounded as follows:

sup
u∈S

‖P t(θ, · ) − π‖ ≤ Cτ t, (7.1)

for some C < ∞ and τ < 1.

The section is divided in two parts: in the spirit of [1], we first derive an exten-
sion of their theoretical framework to include the analysis of noisy Metropolis-
Hastings algorithms in a generic setup, that is, beyond the LPM context. In
the second part we give a series of theoretical results that are specific to LPMs,
and that aim to characterise the magnitude of the approximation error in the
MH acceptance probabilities, in preparation for applying our general result.
In particular, we show that the distance between the exact algorithm and the
NoisyLPM can be arbitrarily reduced by refining the latent grid.

7.1. Noisy MH aggregated errors

This paper deals with an approximation of a MH Markov chain, where the
parameters of the model are updated in turn. Perturbations of uniformly ergodic
Metropolis-Hastings Markov chains have been studied in [1]. We show, here, that
a similar analysis can be carried out in a generic MH sampler framework.

We introduce the following notation. We indicate with r a generic parameter
update step of the MH, with R indicating the number of updates performed in
a particular algorithmic instance. For example, R may indicate the number of
model parameters that are updated in each iteration of the MCMC algorithm.

An arbitrary sigma-algebra on the compact parameter space S is denoted by
A. For any signed measure μ on (S,A), we denote the total variation distance
of μ by ‖μ‖ := supA∈A |μ(A)|. For any Markov kernel P taking values in S ×A,
we denote the operator norm of P as:

‖P‖ := sup
θ∈S

‖P (θ, ·)‖ = sup
θ∈S

sup
A∈S

|P (θ, A)| . (7.2)
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Finally, let μP be the measure on (S,A) defined as μP :=
∫
S μ(dx)P (x, · ). The

kernel P will generally be considered as the exact kernel, whereas P̃ will denote
its noisy counterpart.

The following proposition shows that the distance between the one step
transition of an elementary MH update and its noisy counterpart is uniformly
bounded.

Proposition 1. Let α
(
θ → θ′) and α̃

(
θ → θ′) be the corresponding exact

and noisy acceptance probabilities (respectively), that arise when considering
a generic update θ → θ′. If there exists some finite constant ω > 0 such that:∣∣α (

θ → θ′)− α̃
(
θ → θ′)∣∣ ≤ ω (7.3)

then we also have:
‖P − P̃‖ ≤ ω . (7.4)

The proof of this proposition is given in Appendix 11.1. Now, we characterize
instead the error that is accumulated over a sweep of the MH sampler over a
collection of the model parameters. We denote with P[R] (resp. P̃[R]) the kernel
corresponding to a sequential update of a number of model parameters using
exact (resp. approximate) acceptance probability:

P[R] (θ, ·) := P1 · · ·PR (θ, ·) ,

=
∫

· · ·
∫

P1 (θ, dθ1) · · ·PR−1 (θR−2, dθR−1)PR (θR−1, ·) ,

P̃[R] (θ, ·) := P̃1 · · · P̃R (θ, ·) .

(7.5)

This corresponds to the composition of the R elementary kernels, indicated with
Pr or P̃r, each characterising the update of one model parameter.

Proposition 2. The error carried by a product of noisy Markov kernels P̃[R] =
P̃1P̃2 · · · P̃R relative to its exact version P[R] = P1P2 · · ·PR is subadditive, in the
sense that:

‖P[R] − P̃[R]‖ ≤
R∑

r=1
‖Pr − P̃r‖ . (7.6)

The proof of this proposition is provided in Appendix 11.2. We can join the
above two results in the following proposition.

Proposition 3. Let α and α̃ be the corresponding exact and noisy acceptance
probabilities (respectively), that arise when considering a generic update for any
of the model parameters. Assume that there exists some finite constant ω > 0,
such that:

|α− α̃| ≤ ω . (7.7)

Then, after R < ∞ parameter updates, the product kernels satisfy:

‖P[R] − P̃[R]‖ ≤ Rω . (7.8)
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Proof. This immediately follows from Propositions 1 and 2.

Finally, as in [1], we rely on Corollary 3.1 of [17] to give our main result for
the NoisyLPM algorithm.

Corollary 1. Let P[R] (resp. P̃[R]) be the transition kernel for the exact MH
sampler (resp. noisy) described in Eq. (7.5). Assume that the Markov chain with
kernel P is uniformly ergodic (Assumption 3). Then, for any t > 0 and for any
starting point θ ∈ S:

‖δθP t
[R] − δθP̃

t
[R]‖ ≤

(
λ + Cτλ

1 − τ

)
Rω , (7.9)

where λ = �log (1/C)/log(τ)
.

7.2. LPM likelihood errors

We now report theoretical results that are specific to LPMs, in preparation of
applying Corollary 1 to this context. In the following theorem, we show that
the error on the MH acceptance probabilities is bounded, and that it can be
arbitrarily reduced by refining the latent grid partition.

Theorem 1. Under Assumptions 1 and 2, the error on the acceptance proba-
bilities for a latent position update satisfies for all i ∈ V:

|αZ (zi → z′i) − α̃Z (zi → z′i)| ≤ κ′bN , (7.10)

and for any k ∈ K identifying a static parameter’s update:

|αψ (ψk → ψ′
k) − α̃ψ (ψk → ψ′

k)| ≤ κ′′bN2 , (7.11)

where κ′ and κ′′ are suitable positive finite constants which do not depend on
either b or N .

The proof of Theorem 1 is given in Appendix 11.4.

Corollary 2. Let P[N+K] and P̃[N+K] be the exact and noisy composite kernels
for the full deterministic scan via MH samplers under Assumptions 1 and 2.
These satisfy:

‖P[N+K] − P̃[N+K]‖ ≤ κbN2 ; (7.12)

for a suitable positive finite constant κ which does not depend on either b or N .

Proof. This is proved using Proposition 3 and Theorem 1. There are N latent
position updates, whereby each of the kernels is upper bounded by κ′bN , for a
suitable positive constant κ′. This gives a composite kernel with an upper bound
of κ′bN2. In addition, there are K < ∞ global parameters, whose number does
not depend on N or b, each yielding an upper bound of κ′′bN2, for a suitable
positive constant κ′′. So, the upper bound for all combined updates is still κbN2,
where κ = max {κ′,Kκ′′} < ∞.
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Now we can state our main result for NoisyLPM, which connects Corollary 2
with the theory on noisy MCMC.

Theorem 2. Let P be the exact MH composite kernel which operates on S =
Sψ × SZ and P̃ be the corresponding kernel of NoisyLPM. If the LPM satisfies
Assumptions 1 and 2, and if P is uniformly ergodic (Assumption 3), then for
any starting point θ ∈ Sψ × SZ and any t > 0:

‖δθP t − δθP̃
t‖ ≤

(
λ + Cτλ

1 − τ

)
κbN2 (7.13)

where λ = �log (1/C)/log(τ)
 depends on the exact sampler convergence prop-
erties, and κ is a positive constant that does not depend on either b or N .

Proof. Assumptions 1 and 2 guarantee that Corollary 2 holds. Then, uniform
ergodicity confirms that an LPM version of Corollary 1 exists, hence Eq. (7.13)
holds true.

Remark 5. The significance of Theorem 2 is two-fold. On the one hand, for a
fixed N , the error upper bound can clearly be made arbitrarily close to zero
by reducing the grid parameter b, denoting the sidelength of the boxes. This
confirms that using a finer grid reduces the approximation error. On the other
hand, since the constant κ does not depend on N , this result emphasises that,
asymptotically, the error grows at most with the squared number of nodes. This
suggests that, as a worst case scenario, the error can be kept constant (as N
increases) by keeping b on the order of 1/N2, or, equivalently, a number of
boxes3 in the order of N4. However, we show in the simulations (in particular
in Section 8.2) that this bound is very conservative.

7.3. Note on the uniform convergence assumption

Assumption 3 is usually strong in the context of MCMC algorithms. However,
since the state space is compact (see Assumption 1), it is easy to show that the
convergence of the MH kernel P[R] to π is uniform. Even though this result is
not surprising, we could not identify a specific entry in the literature provid-
ing a rigorous proof of this fact. For completeness, we include Theorem 3 in
Appendix 11.5.

8. Experiments

In this section we propose three simulation studies to characterise the bias intro-
duced by our approximation, and to gauge the gain in computing time achieved.

3Note that, for a fixed b, we create M2 boxes by partitioning each axis into M segments
of length b. The number of segments M satisfies: M = 2S/b ≈ 2SN2, and so M2 ∼ O(N4).
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We consider an LPM characterised by two global parameters ψ = (β, θ) which
determine the edge probabilities as follows:

log
(

p (zi, zj ;β, θ)
1 − p (zi, zj ;β, θ)

)
:= β − eθd (zi, zj) . (8.1)

Here, β ∈ R, θ ∈ R, and d denotes the Euclidean distance between the two
latent positions.

A priori, the latent positions are IID variables distributed according to a
truncated Gaussian, as shown in (4.4). The proposal distributions used in the
sampling procedures are also truncated Gaussians, defined as random walks over
the parameter space, but we note that other proposals may be considered. We fix
both the threshold parameter S and the standard deviation γ to 1. This choice
does not hinder the flexibility of the model; in fact, the likelihood parameter θ
directly regulates the magnitude of the effect of the latent space. In other words,
eθ may simply be considered as the standard deviation for the latent positions.
The likelihood parameters β and θ are assumed to be independent a priori, and
both distributed according to non-informative Gaussian priors with fixed large
standard deviations.

We note that the model specification considered does not completely satisfy
Assumption 1, since, for example, the supports of β and θ are not bounded.
However, we argue that large values of these parameters correspond to degener-
ate LPMs, which are of little interest in practical situations, and highly unlikely
to occur. In other words, the extreme values of the LPM parameters do not
play a role and do not affect the MCMC estimation unless the observed graph
is degenerate or near-degenerate.

8.1. Study 1: likelihood approximations

In the first study, we focus only on the approximation of the log-likelihood, i.e.
we analyse the error introduced when (3.5) is replaced with the noisy counterpart
in (6.1). We do not use any MCMC sampling in this first simulation study.

8.1.1. Case A: given and fixed M

First, we generate random LPMs with global parameters set to β = 0.5 and
θ = log (3), and with latent positions drawn uniformly in the rectangle SZ .
This combination of parameters yields realised networks where about 10% of
the possible edges appear. We simulate 100 networks for each value of N vary-
ing in the set {100, 250, 500, 1000, 2500, 5000, 10000}. For each of these realised
networks, we evaluate the exact log-likelihood function derived from (3.5) for
the true parameter values.

On each axis, the interval [−1, 1] is segmented in M = 8 adjacent intervals of
the same length, hence obtaining a grid of 64 squared boxes of side length 1/4.
The noisy log-likelihood derived from (6.1) is thus evaluated using such grid.
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In fact, the same procedure is repeated on the same networks using various
grids determined by M in the set {8, 16, 32, 64}. Note that the highest values
of N and M are rather extreme: N = 10000 gives networks so large that even
storing or working with the adjacency matrix is computer intensive (in fact
our implementation does not require calculating the adjacency matrix at any
stage); M = 64 gives a grid which contains 4096 boxes, so, for several N values,
we would have more boxes than data points. This scenario is proposed only to
provide a more complete assessment, since having so many boxes (compared to
nodes) defeats the whole purpose of applying our procedure for a computational
advantage.

A preliminary plot is provided in Figure 8.1. This plot shows the proportion
of boxes that contain 2 or more nodes. This is derived without using the log-
likelihood, but simply by constructing the grid over the randomly generated
data. The plot emphasises that, at least for the starting configuration of the
noisy algorithms, most boxes would contain more than 1 node. The proportion
seems to converge to 1 rather quickly with N increasing, with the only exception
being given by the extreme value M = 64.

Fig 8.1. Simulation study 1A. Proportion of grid boxes that contain more than 1 node.

A proportion close to 1 is ideal for NoisyLPM, since only these boxes guarantee
a gain in computational efficiency. By contrast, boxes containing 0 or 1 nodes
would require the algorithm to perform inefficient steps which are less conve-
nient than the corresponding ones under a standard likelihood calculation. The
figure thus confirms that, in theory, good computational improvements should
be obtained for very small M values.

Figure 8.2 shows the log-likelihood error and the average log-likelihood com-
puting times for all of the combinations of N and M . The left panel of this figure
shows the absolute value of the error, divided by N2. Since we get roughly con-
stant lines for every value of M , this gives evidence that each of the N2 terms
that form the likelihood of Eq. (3.5) is characterised by an error bounded by a
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Fig 8.2. Simulation study 1A. The absolute value of the log-likelihood error, divided by N2,
is shown on the left panel. The right panel shows instead the average (across 100 networks)
computing time for the same log-likelihood evaluations.

constant. The most accurate algorithm is obtained with M = 64, which gives a
very minimal average error on each likelihood term.

The right panel shows instead the computing time for one log-likelihood cal-
culation, averaged out across the 100 repetitions. In this plot we can see that
the computational complexity is highest for the standard algorithm (labelled as
True): we know that the complexity of this particular algorithm is quadratic in
the number of nodes. The noisy algorithms all exhibits a computational com-
plexity of a lower order, and an overall lower computing time. These algorithms
require the construction and maintainment of the grid structure, which involves
some roughly constant computing time. As a consequence, for M = 64, the
noisy algorithm gives a convenient trade-off only when N becomes very large.
Again, this is reasonable since this particular value of M is extreme and would
not be considered in applications, unless N is also especially large. Figure 8.2
confirms two basic but fundamental asymptotical facts: on the one hand, the
log-likelihood errors can be arbitrarily reduced by choosing a finer grid, for a
fixed N . On the other, for any grid fineness (fixed M), there exists an N large
enough such that the noisy algorithm is faster than the standard one.

8.1.2. Case B: asymptotics for M growing with N

While the study above confirms the correctness of our approach for fixed N
and M values, it does not address an asymptotical setting where N and M are
determined using the results of Section 7. In fact, Theorem 2 indicates that we
can control the approximation error as long as M grows at most with N2, up
to a proportionality constant. We show in this simulation study some numerical
results that are consistent with these theoretical findings. In particular, we illus-
trate that the bounds of Theorem 2 are rather conservative, and, in practice, we
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can achieve an asymptotically decreasing error and convienent computational
costs for smaller order values of M .

In terms of study setup, we use a similar framework to Section 8.1.1. We
generate random LPMs with global parameters set to β = 0.5 and θ = log (3),
and with latent positions drawn uniformly in the rectangle SZ . We simulate
200 networks for each value of N varying from 400 to 800. As concerns M , for
each network we define M ∝ NP , where P can be one of the values in the set
{1, 1.5, 2}. The case P = 2 corresponds to the result of Theorem 2, whereby
we expect the errors to be bounded essentially by a constant. By contrast, the
other two values represent two more ambitious setups, where we hope to get
a more convenient computational cost while still controlling the errors with a
constant bound.

As Figure 8.3 shows, it turns out that the errors are asymptotically decreasing
for all three values of P . The trends are not exactly monotonous due to the
transformation from N to M , which is not guaranteed to return an integer
value for M . As a consequence, we always round the value of M to the closest
integer, and this creates groups of points in the plot that are obtained from the
same value of M , even while N is increasing along the x-axis. This result is in
agreement with our theoretical findings, and, in fact, it highlights that the given
theoretical bounds are very conservative.

Fig 8.3. Simulation study 1B. The absolute value of the log-likelihood error is shown on the
left panel, for the three cases M ∝ N , M ∝ N1.5, and M ∝ N2. The value of M corresponding
to each point is indicated by the color shift. The overlap between some of the lines is due to
the same value of M being used under the three cases, which leads to similar errors. The right
panel shows instead the average computing time for the same log-likelihood evaluations. True
refers to the standard algorithm, which has a quadratic computing time in N .

As regards the computing costs, we start by saying that, in principle, the
complexity of the standard algorithm corresponds to a worst case scenario. This
is because, even in the case of an extraordinarily high number of boxes, we would
only be using the non-empty boxes of which there are up to N . The right panel
of Figure 8.3 indicates that we get a clear advantage in the case P = 1. The
case P = 1.5 remains unclear. As per the case P = 2, which corresponds to the
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bounds of Theorem 2, this leads to an algorithm that for a large N might be
comparable or slower than the standard algorithm. These results highlight how
the choice M ∝ N is ideal as a compromise between accuracy and computational
efficiency, since for any network size N , we can achieve a relatively small error
but with a much faster algorithm compared to the standard procedures.

8.2. Study 2: Metropolis-Hastings asymptotics

In the second simulation study, we aim at characterising the estimation errors
using the complete MCMC sampling procedure. This means that we run the
MH sampler on a number of networks, for both the non-noisy (which we take as
ground truth) and noisy procedures. Then, we compare noisy and exact posterior
distributions using their means. In particular, we quantify the discrepancy by
calculating the Mean Squared Error (MSE) from 100 replications of both chains,
for each parameter setting.

Since running the complete sampling procedure requires a much higher com-
putational cost, we only provide these results for relatively smaller networks
and for fixed values of M . However, in our third simulation study, we provide
further evidence that the results hold also for larger networks.

The setup of this study is as follows. We consider networks of N nodes where
N varies in the set {20, 40, 60, 80, 100}. For each value N we generate 100 net-
works using β = 2.5 and θ = log (3.5), and run the exact MH sampler for 20,000
iterations. The first 10,000 iterations are discarded as burn-in, and only one
draw every 10-th is stored to be kept in the final sample. We consider grids
defined by M in the set {4, 8, 12}, and run the three corresponding samplers
using the same number of iterations. Although we do not check convergence di-
agnostics for each individual generated network and posterior sample, we argue
that convergence is satisfactory across all experiments. Besides, this aspect is
not critical since we can study the errors even if convergence is not reached; or,
in other words, we are studying the errors after 20,000 MCMC iterations.

Figure 8.4 shows the results that we obtained. Even though Theorem 2 sug-
gests that M should scale with N2, the evidence from the simulations highlight
a much more positive outcome, where, in fact, the errors do not increase with
N for M = 8 and M = 12. The approximation with M = 4 ends up being
too rough, as the posterior mean MSEs slightly increases between N = 80 and
N = 100. The bound of Theorem 2 offers a scaling which is, as expected, too
conservative. Recall that Theorem 2 was essentially obtained by bounding the
distance between both Markov kernels. Thus, since more data points propagate
a larger discretisation error, the approximation offered by the noisy Markov
kernel and the exact one appears to get rougher too.

One fundamental aspect that is not taken into account by our analysis is that
more data points also bring more information available for inference. Our rea-
sonably regular models imply that both noisy and exact posterior distributions
see their probability mass concentrate towards the Maximum Likelihood Esti-
mator (MLE) as N increases, in an asymptotic regime typically described by
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Fig 8.4. Simulation study 2. The Mean Squared Error, where the mean is calculated across
the N nodes. The boxplot represents the variability across the 100 repetitions, for each com-
bination of N and M .

a Bernstein-von Mises concentration result. The fact that M needs to increase
with N is thus necessary since, both MLEs being different, the total variation
distance between both posterior distributions will eventually (as N gets larger)
increase. What this study shows is that before entering this asymptotic regime,
both posteriors actually get first closer. In fact, the discretisation approximation
is clearly overcompensated by that concentration phenomenon, since keeping M
constant one still observes an improvement as N increases. We suspect that for
M = 4, the Bernstein-von Mises regime kicks in after N = 80. We also suspect
that for a large enough N , a similar observation could be done for M = 8 and
M = 12.

For the noisy posterior to keep track of the exact one even in the asymptotic
regime, it could be possible that a (much) less aggressive scaling than M =
O(N2) is sufficient. One way to answer that question could be to search for
tighter bounds between both posterior distributions using their Bernstein-von
Mises approximation, hence by totally bypassing the analysis of both Markov
kernels.

A second aspect that transpires from this simulation study is a confirma-
tion that finer grids will give more accurate results, with major improvements
happening with relatively coarse grids. We expand more on this aspect in the
next simulation study, where we show that we can choose very small values of
M (relative to N), and still obtain very accurate inference results, with only a
fraction of the computing time.
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8.3. Study 3: Metropolis-Hastings error

As data, we use three artificial networks, which are generated so that each of
them has network density close to 10%. In this simulation study we do not use
any repetitions, so we analyse exactly three networks. Another difference with
the previous setup is that, in this study, node 1 is assumed to be located exactly
at the origin of the space, for comparison purposes. The number of nodes N
of the networks is set to 200, 400 and 600, respectively. For the NoisyLPM, we
consider three different grid structures: the number of intervals M in each axis
varies in the set {8, 12, 16} (the results are shown for M = 8 and M = 16, but
all results are available from the authors upon request).

The non-noisy MH sampler and the NoisyLPM are run on each dataset for a
total of 200,000 iterations. The first 100,000 iterations are discarded as burn-
in, and only one draw every 10-th is stored to be kept in the final sample.
Eventually, all of the algorithms are bound to return a collection of 10,000 draws
for each model parameter. In this simulation study, we checked and confirmed
MCMC convergence using trace plots, individually for each of the posterior
samples. In addition, we used Raftery and Lewis’s diagnostic [23] to estimate the
required sample size to find a q = 0.025 quantile with a r < 0.01 error, for each
MCMC run. This returned the required sample sizes (averaged across all model
parameters) as reported in Table 1. This table highlights that the convergence
properties of the chains are not likely not affected by the grid approximations.

Table 1

Simulation study 3. Required sample size to estimate a q = 0.025 quantile with a r < 0.01
error, according to Raftery and Lewis’s diagnostic [23].

N Ground truth NoisyLPM
M = 8 M = 12 M = 16

200 1,181 1,157 1,135 1,181
400 1,076 1,066 1,083 1,074
600 1,050 1,063 1,042 1,049

Figure 8.5 shows the posterior densities for the node located in the centre of
the space. The two NoisyLPM posterior densities shown are extremely similar
to the ground truth, proving that the uncertainty in the positioning is not
necessarily amplified by the approximation.

Figure 8.6 focuses instead the (posterior) average position as a point estima-
tor, and compares the estimated positions of all nodes in the ground truth and
noisy case. Again, the approximation appears to have very limited consequences
on the correctness of the results. In particular, the estimation error is almost
non-existent when M = 16.

Figures 8.7 and 8.8 illustrate the posterior densities for the global parame-
ters β and θ. Note that, in both figures, the horizontal axes of the plots are
on different scales. In fact, these plots confirm that the uncertainty on global
parameters tends to vanish as N increases, for both non-noisy and noisy algo-
rithms. As expected, a larger M gives results closer to the ground truth.
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Fig 8.5. Simulation study 3. Posterior densities for the node in the centre.

Fig 8.6. Simulation study 3. Comparison between ground truth and noisy estimates of the
positions. The black circles correspond to the posterior means of the positions in the ground
truth configuration, whereas the green and pink nodes correspond to the noisy counterparts.
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Fig 8.7. Simulation study 3. Posterior densities for β. Note the different scaling in the
horizontal axis.

Fig 8.8. Simulation study 3. Posterior densities for θ. Note the different scaling in the
horizontal axis.

We further analyse the results by comparing the estimated edge probabilities
in Figure 8.9. These plots also confirm the correctness of the noisy procedure,
and the limited effects of the approximation on the results.

Finally, in Table 2 we show the computing time required for each sampler.
The highest gain is achieved for M = 8 and N = 600, where the NoisyLPM
is roughly three times faster than the benchmark. As we will show in the
next section, the gain can become substantial when larger networks are con-
sidered.
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Fig 8.9. Simulation study 3. Comparison between ground truth and noisy estimates of the
edge probabilities. These estimates are obtained by pluggin-in the posterior mean estimates
of the model parameters in (8.1).

Table 2

Simulation study 3. Seconds (rounded value) required to obtain 200,000 iterations from
each of the networks, for both algorithms.

N Ground truth NoisyLPM
M = 8 M = 12 M = 16

200 2,310 1,669 2,252 2,767
400 7,242 3,515 5,458 7,673
600 14,347 4,718 7,501 11,825

9. Coauthorship in astrophysics

9.1. Binary case

The coauthorship network studied in this section was first analysed by [14]. The
nodes correspond to authors, whereas the presence of an edge between two nodes
means that the two researchers appear as coauthors on a paper submitted to
arXiv, in the astrophysics category. The network is by construction undirected
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and without self-edges. The number of nodes is 18,872, whereas the number of
edges is 198,110, corresponding to an average degree of about 21.

We fit the LPM of Section 8 to this data using the NoisyLPM with M = 16.
First, we let the algorithm run for a large number of iterations. We use this
phase as burn-in, and to tune the proposal variances individually for each
parameter until the corresponding acceptance probability lies between 20%
and 50%. Then, we run the NoisyLPM for 50,000 iterations, storing only one
draw every 10-th. Trace plots and other standard convergence diagnostics sug-
gest good mixing and good convergence of the chain to its stationary distri-
bution. In summary, for each latent position and global parameter, we ob-
tain 5,000 random draws that can be used to characterise the distribution of
interest. In order to check MCMC convergence, we used the trace plots for
the global parameters and for a selection of latent positions. We also used
Raftery and Lewis’s diagnostic [23] to estimate the required sample size to
find a q = 0.025 quantile with a r < 0.01 error. This returned an average
sample size of 2,198 across all parameters, which is well below our choice of
5,000.

As regards the results, Figure 9.1 shows the average latent positions for all
of the nodes in the network. We point out that the nodes have a tendency to
be distributed close to the centre of each box. Quite reasonably, this is a nat-
ural consequence of our construction, since the centre of the boxes is used as
a proxy to calculate the latent distances. For example, if a node with a low
degree is connected only to nodes allocated to the same box, it will tend to
move towards the centre of the same box, since that would maximise the likeli-
hood of those edges appearing. More generally, we argue that, while the overall
macro-structure of the latent space (i.e. the association of nodes to boxes, or
the association of nodes to sub-regions of the space) is properly recovered, the
micro-structure, given by the relative positions of the nodes within each box,
may not necessarily be accurate.

Figure 9.2 shows instead the posterior densities for the global parameters β
and θ. We find the parameter θ to be rather large, signalling that the hetero-
geneity of the graph is well captured by the latent space.

The computing time required to obtain the sample was about 46 hours (3.3
seconds per iteration). After convergence of the Markov chain, we also ran the
non-noisy MH sampler for 50 additional iterations, to compare the computa-
tional efficiency of the two methods. The non-noisy MH sampler required an
average of 453 seconds per iteration, corresponding to a theoretical 262 days of
computations for the full sample. The vast difference between the two computing
times highlights the scalability of our method, which extends the applicability
of LPMs to networks of much larger sizes.

9.2. Poisson case

The coauthorship network data was in fact collected as a weighted graph, where
the non-negative weights of edges represent the strength of the collaboration



2558 R. Rastelli et al.

Fig 9.1. Astrophysics. Average latent positions of the nodes with circle size proportional to
the node’s degree. The grid in dashed red line corresponds to the partitioning imposed.

relations4. This dataset offers then a nice setup to extend our methodology
to a discrete Poisson setup, where edge weights are non-negative integers. The
extension of our framework turns out to be rather straightforward, since the
model can be defined as:

Yij ∼ Pois(λij)
log λij = β − eθd (zi, zj)

(9.1)

As regards NoisyLPM, the implementation of the algorithm requires some
modifications to take into account the fact that the grid does not partition the

4Note that the edge weights are not exactly equal to the number of coauthored papers,
however, they are constructed from this information through some rescaling. Details can be
found in the paper by [19]. In our paper, we use these weights in a discretised way to fit our
Poisson model.
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Fig 9.2. Astrophysics. Posterior densities for the global parameters β and θ.

nodes into homogeneous boxes: the boxes now include different nodes which give
different likelihood contributions based on their Poisson weight. To overcome
this, we add an new dimension to our grid, whereby we split up each box into
subgroups of nodes that carry the same Poisson weight. In other words, we
further break down the partition to recover the homogeneity within each of the
partition sets.

As a demonstration, we fit the model to the same data, this time using a grid
obtained through M = 8: the latent space is shown in Figure 9.3. The latent
space for the weighted case appears to be equivalent to that obtained in the
binary case, with a stronger clustering effect around the centres of the boxes,
as a consequence of using a coarser grid. The posterior average of β and θ are
−2.83 and 2.34, respectively. This again signals a relatively strong latent space
effect in the model, and thus a good fit to the data.

10. Conclusions

In this paper, we have introduced a new methodology to perform inference on
latent position models. Our approach specifically addresses a crucial issue: the
scalability of the method with respect to the size of the network. By taking ad-
vantage of a discretisation of the latent space, our proposed approach is charac-
terised by a reduced computational complexity compared to the state-of-the-art
procedures.

The framework introduced heavily relies on several important results intro-
duced in the context of noisy MCMC. We have followed the core ideas of such
strand of literature, and adapted the main results to the latent position model
context, thereby giving theoretical guarantees for our proposed approximate
method. In particular, our results underline the existence of a trade-off between
the speed and the bias of the noisy algorithm, whereby the user can arbitrarily
increase the accuracy at the expense of speed.
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Fig 9.3. Astrophysics, weighted. Average latent positions of the nodes with circle size propor-
tional to the node’s weighted degree. The grid in dashed red line corresponds to the partitioning
imposed.

Additionally, we have proposed applications to both simulated and real
datasets. When compared to the non-noisy algorithm, the noisy results did not
show any relevant qualitative difference, yet they were obtained with a substan-
tially smaller computing time. In an asymptotic context for networks of large
size, we show that our theoretical result can provide some guidance to deter-
mine a suitable approximation framework. In our simulations we show that our
theoretical analysis leads to results that are conservative in the asymptotic set-
ting, both in terms of likelihood errors and in terms of algorithmic complexity.
This opens up the possibility of future research that may explore whether our
theoretical bounds can be refined, and whether there may be other procedures
to optimise the latent space discretisation.

In terms of applicability, while we describe and illustrate our method in
the case of binary networks, we also provide an application to Poisson weighted
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networks, showing that the method could be extended to other common network
structures. The code for NoisyLPM is available from the public GitHub repository
[26].

A limitation of our work is that it might not cope well with an increasing
number of latent dimensions. This would imply an increase in the dimensionality
of the grid, and, in turn, a much larger number of boxes. Similarly, introducing
nodal random effects or covariates would create additional heterogeneity within
any given box, thus requiring further dimensions in the latent grid. This would
make our approach impractical. For these reasons, our approach, in its current
version, is best suited for a setting where covariates are not available or not
included, and where we are interested in a two dimensional latent space. We
stress the importance of future research in this direction, which could address
this limitation and thus make our method more widely applicable and useful in
applied fields.

Finally, our work can be easily extended to include different distributions on
the latent space, such as Gaussian mixture models [10] or different types of edge
probabilities, or, more generally, networks factor models, such as the projection
models of [11].

11. Appendix

Before proceeding with two lemmas that will be useful in the proof of Proposi-
tion 2, we start with some elements of context. Consider a state-space (S,A) and
define M1 the set of probability measures on (S,A). A Markov kernel P operates
(from the left) on M1 by μ �→ μP :=

∫
μ(dθ)P (θ, · ) ∈ M1. Define the total

variation of P as the number ‖P‖ := supμ∈M1
‖μP‖ = supθ∈S ‖P (θ, · )‖ where

for any measure μ defined on (S,A), the positive number ‖μ‖ := supA∈A |μ(A)|
denotes its total variation.

Lemma 1. The total variation norm of a Markov kernel is 1.

Proof. On the one hand, we have

‖P‖ = sup
θ∈S

‖P (θ, · )‖ = sup
θ∈S

sup
A∈A

|P (θ, A)| ≤ 1

but, since S ∈ A, 1 = P (θ,S) ≤ supA∈A P (θ, A), for all θ ∈ S, and we thus
also have that

1 = sup
θ∈S

P (θ,S) ≤ sup
θ∈S

sup
A∈A

|P (θ, A)| = ‖P‖ .

We now consider a signed Markov kernel K which is the difference between
two Markov kernels P1 and P2, that is K = P1 − P2. Define by M0 the set of
signed measures on (S,A) such that for all μ ∈ M0, μ(S) = 0. It is easy to
see that K operates (from the left) on M0 by μ �→ μK :=

∫
μ(dθ)K(θ, · ) ∈

M0. Hence, we define the total variation of such a signed Markov kernel K by
‖K‖ = supμ∈M0

‖μK‖ = supμ∈M0
supA∈A |μK(A)|.
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Lemma 2. The total variation norm for signed kernels is submultiplicative: for
two signed kernels K1 and K2 wih K1(θ,S) = K2(θ,S) = 0, we have ‖K1K2‖ ≤
‖K1‖‖K2‖.
Proof. First, note that

sup
ν∈M0

‖νK1K2‖ = max
[

sup
ν∈M0 : ‖νK1‖>0

‖νK1K2‖, sup
ν∈M0 : ‖νK1‖=0

‖νK1K2‖
]

= sup
ν∈M0 : ‖νK1‖>0

‖νK1K2‖ ,

(11.1)

since for all ν ∈ M0, ‖νK1‖ = 0 implies that νK1 is the null measure, which
implies that νK1K2 is also the null measure and thus that ‖νK1K2‖ = 0. We
have that

‖K1K2‖ = sup
ν∈M0

‖νK1K2‖ = sup
ν∈M0 : ‖νK1‖>0

‖νK1K2‖

= sup
ν∈M0 : ‖νK1‖>0

‖νK1K2‖
‖νK1‖

‖νK1‖

≤ sup
ν∈M0 : ‖νK1‖>0

‖νK1K2‖
‖νK1‖

sup
ν∈M0

‖νK1‖

= sup
ν∈M0 : ‖νK1‖>0

‖νK1K2‖
‖νK1‖

‖K1‖ .

(11.2)

But note that for all ν ∈ M0 with ‖νK1‖ > 0, we have for all A ∈ A

νK1K2

‖νK1‖
(A) =

∫∫
ν(dθ)K1(θ,dθ′)

‖νK1‖
K2(θ′, A) =

∫
ν′(dθ′)K2(θ′, A) = ν′K2(A) ,

where ν′ =
∫
ν(dθ)K1(θ, · )

‖νK1‖ . This implies that ‖νK1K2‖
‖νK1‖ = ‖ν′K2‖. But since

ν′ ∈ M0,
‖νK1K2‖
‖νK2‖

≤ sup
ν′∈M0

‖ν′K2‖ = ‖K2‖ ,

which does not depend on ν. The proof is completed by taking the supremum
over all ν ∈ M0 in the last inequality.

11.1. Proof of Proposition 1

Proof. By definition: ‖P − P̃‖ = supθ∈S ‖P (θ, ·) − P̃ (θ, ·) ‖. Now, P (θ, ·) and
P̃ (θ, ·) are measures that admit a similar decomposition, and, in particular for
any θ ∈ S and A ∈ A,

P (θ, A) =
∫
A

Q
(
θ, dθ′)α (

θ → θ′) + δθ (A) r (θ) ,

P̃ (θ, A) =
∫
A

Q
(
θ, dθ′) α̃ (

θ → θ′) + δθ (A) r̃ (θ)
(11.3)
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so that the signed measure μθ := P (θ, ·) − P̃ (θ, ·) decomposes as:

μθ (A) =
∫
A

Q
(
θ, dθ′) (α (

θ → θ′)− α̃
(
θ → θ′)) + δθ (A) (r (θ) − r̃ (θ)) .

(11.4)
It is well known that for this type of measure with atoms, the total variation
verifies:

‖μθ‖ = 1
2

∫
A

Q
(
θ, dθ′) ∣∣α (

θ → θ′)− α̃
(
θ → θ′)∣∣ + 1

2 |r (θ) − r̃ (θ)| . (11.5)

But since r (θ) =
∫
Q
(
θ, dθ′) (1 − α

(
θ → θ′)), with a similar result for r̃ (θ),

we have that:

|r (θ) − r̃ (θ)| =
∣∣∣∣
∫

Q
(
θ, dθ′) (α (

θ → θ′)− α̃
(
θ → θ′))∣∣∣∣

≤
∫

Q
(
θ, dθ′) ∣∣α (

θ → θ′)− α̃
(
θ → θ′)∣∣ .

(11.6)

Since by assumption
∣∣α (

θ → θ′)− α̃
(
θ → θ′)∣∣ ≤ ω, we have that:

‖μθ‖ ≤
∫

Q
(
θ, dθ′) ∣∣α (

θ → θ′)− α̃
(
θ → θ′)∣∣ ≤ ω , (11.7)

which is independent of θ and thus concludes the proof.

11.2. Proof of Proposition 2

Proof. If R = 1 then ‖P[1] − P̃[1]‖ = ‖P1 − P̃1‖. If R = 2, then, using the fact
that the signed kernel Pr − P̃r satisfies conditions of Lemma 2, we have

‖P[2] − P̃[2]‖ = ‖P1P2 − P̃1P̃2‖
= ‖P1(P2 − P̃2) + P̃2(P1 − P̃1)‖
≤ ‖P1(P2 − P̃2)‖ + ‖P̃2(P1 − P̃1)‖
≤ ‖P1‖‖P2 − P̃2‖ + ‖P̃2‖‖P1 − P̃1‖
= ‖P2 − P̃2‖ + ‖P1 − P̃1‖ ,

(11.8)

where last inequality follows from Lemma 1. Now, we assume that (7.6) is valid
for every r ≤ R − 1, and prove the statement for r = R. We note that P[R−1]
and P̃[R−1] are both Markov kernels. Hence:

‖P[R] − P̃[R]‖ = ‖PRP[R−1] − P̃RP̃[R−1]‖
≤ ‖PR(P[R−1] − P̃[R−1])‖ + ‖P̃[R−1](PR − P̃R)‖
= ‖PR − P̃R‖ + ‖P[R−1] − P̃[R−1]‖

(11.9)

proving the proposition by mathematical induction.
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11.3. Preliminary results

We define here two independent results which are needed to prove the main
theorem of our paper.

Lemma 3. Let x, y ∈ R
+, then:

|1 ∧ x− 1 ∧ y| ≤ | log x− log y| . (11.10)

Proof. We note that:

|1 ∧ x− 1 ∧ y| ≤ | log(1 ∧ x) − log(1 ∧ y)| , (11.11)

because the logarithm function acts as a expansive mapping locally in the set
[0, 1], or, equivalently, the exponential function is a contraction in the set [0, 1].

Then, we can proceed with:

| log(1 ∧ x) − log(1 ∧ y)| ≤ |1 ∧ log x− 1 ∧ log y| . (11.12)

The following cases are now possible:

1. If x ≥ 1 and y ≥ 1, then |1 ∧ log x− 1 ∧ log y| ≤ 0.
2. If x < 1 and y < 1, then |1 ∧ log x− 1 ∧ log y| = | log x− log y|.
3. If x < 1 and y ≥ 1 (or, analogously, x ≥ 1 and y < 1), then

|1 ∧ log x− 1 ∧ log y| ≤ | log x− 0| ≤ | log x− log y| ,

because log x is a negative number.

As a worst case scenario across the above cases, we have the required statement

|1 ∧ x− 1 ∧ y| ≤ | log x− log y| .

Lemma 4. Let x, y and z be real numbers such that x ∧ y ≥ z > 0. Then:

| log x− log y| ≤ 1
z
|x− y| . (11.13)

Proof. We assume, without loss of generality, that x ≥ y. We have:

| log x− log y| =
∣∣∣∣log x

y

∣∣∣∣ =
∣∣∣∣log y + x− y

y

∣∣∣∣
=

∣∣∣∣log
(

1 + x− y

y

)∣∣∣∣ ≤
∣∣∣∣x− y

y

∣∣∣∣ ≤ 1
y
|x− y| ;

(11.14)

where we have used the fact that log(1 + u) ≤ u for any u ≥ 0.
In the case of y ≥ x, the inequality becomes

| log x− log y| ≤ 1
x
|x− y| ; (11.15)

so, we can combine the two inequalities to obtain the statement of the lemma,
for any z ≤ x ∧ y.
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Proposition 4. If the edge probability function ρ (d,ψ) defined in Assumption 2
satisfies: ∣∣ρ (d,ψ) − ρ

(
d̃,ψ

)∣∣ ≤ κ0|d− d̃| ,

for some distances d and d̃, model parameters ψ, and positive constant κ0, then
it also satisfies:

∣∣log ρ (d,ψ) − log ρ
(
d̃,ψ

)∣∣ ≤ κ1|d− d̃| ;

for a suitable positive constant κ1.

Proof. Thanks to Lemma 4, we have:

∣∣log ρ (d,ψ) − log ρ
(
d̃,ψ

)∣∣ ≤ 1
ρ (d,ψ) ∧ ρ

(
d̃,ψ

) ∣∣ρ (d,ψ) − ρ
(
d̃,ψ

)∣∣
≤ 1

ρL
∣∣ρ (d,ψ) − ρ

(
d̃,ψ

)∣∣ ;
(11.16)

where ρL = inf
d≥0

{ρ (d,ψ)}. We can now use the Proposition’s assumption to
obtain the result.

Corollary 3. Analogously to the previous proposition, we have that
∣∣log [1 − ρ (d,ψ)] − log

[
1 − ρ

(
d̃,ψ

)]∣∣ ≤ κ2|d− d̃| ,

for a suitable positive constant κ2.

11.4. Proof of Theorem 1

Proof. First we use Lemma 3 to obtain:

|αZ (zi → z′i) − α̃Z (zi → z′i)| ≤
∣∣∣∣log π (z′i|Z−i,ψ,Y)

π (zi|Z−i,ψ,Y) − log π̃ (z′i|Z−i,ψ,Y)
π̃ (zi|Z−i,ψ,Y)

∣∣∣∣ .

(11.17)
Simplify the notation with:

pij = p (zi, zj ;ψ)
p′ij = p (z′i, zj ;ψ)
qij = 1 − p (zi, zj ;ψ)
q′ij = 1 − p (z′i, zj ;ψ)

with approximate counterparts indicated with a tilde, respectively.
We note that in the right hand side of (11.17), all the terms referring to the

prior and proposal distributions cancel each other out. The only remaning terms
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are:

|αZ (zi → z′i) − α̃Z (zi → z′i)| ≤

≤

∣∣∣∣∣∣
∑

j∈V\{i}
yij

[
log p′ij − log p̃′ij − log pij + log p̃ij

]
+

+
∑

j∈V\{i}
(1 − yij)

[
log q′ij − log q̃′ij − log qij + log q̃ij

]∣∣∣∣∣∣
≤

∑
j∈V\{i}

yij
[∣∣log p′ij − log p̃′ij

∣∣ + |log pij − log p̃ij |
]
+

+
∑

j∈V\{i}
(1 − yij)

[∣∣log q′ij − log q̃′ij
∣∣ + |log qij − log q̃ij |

]
.

(11.18)

We note that each of the terms in absolute values are upper bounded by κb, for
some positive constant κ. This follows from Proposition 4, whereby |d−d̃| ≤ b

√
2

by construction. Hence, we can conclude with

|αZ (zi → z′i) − α̃Z (zi → z′i)| ≤ κ′bN . (11.19)

The proof for the global parameters is done analogously.

11.5. Uniform convergence of Metropolis-Hastings kernels
operating on a compact state space

Theorem 3. Let S be a bounded state space with S ⊂ R
d (for some d > 0)

and A be a sigma-algebra on S. Let P be a MH kernel operating on S ×A with
invariant distribution π defined on (S,A). Then the function u �→ ‖P (u, , ·)t−π‖
converges uniformly to 0 as t → ∞, at a geometric rate.

Proof. For simplicity, we take the case d = 3, but generalizing the following
reasoning for all d > 0 is straightforward. Denoting with Pi the MH kernel that
keeps x−i := (x1, . . . , xi−1, xi+1, . . . , xd) fixed, we have for all x ∈ S

Pi(x,dx′) = {Qi(x,dx′
i)αi(x, x′) + δxi(dx′

i)ρi(x)} δx−i(dx′
−i) , (11.20)

where Qi is the proposal kernel of the i-th dimension, αi(x, x′)=1∧π(x′)Qi(x′x)/
π(x)Qi(x, x′) and ρi(x) = 1 −

∫
Q(x,dx′)αi(x, x′). With regulatory conditions

on the proposal kernels Q1, Q2, . . . and since the state space is compact, we have
for all i ∈ {1, . . . , d}:

Qi := sup
(x,y)∈S2

Qi(x, y) < ∞ , Q
i
:= inf

(x,y)∈S2
Qi(x, y) > 0 . (11.21)

Moreover, since the pdf of π is a continuous function and S is bounded, we have:

0 < π ≤ π(x) ≤ π < ∞ . (11.22)
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Assuming that, for all i, Qi is absolutely dominated by a common dominating
measure, we have that Qi(x,dx′

i) = Q(x, x′
i)dx′

i which combined
with Eqs. (11.20), (11.21) and (11.22) yields

Pi(x,dx′) ≥ Qi(x, x′
i)αi(x, x′)δx−i(dx′

−i)dx′
i ≥ Q

i
αiδx−i(dx′

−i)dx′
i , (11.23)

where αi := πQ
i
/πQi. Now, the (systematic-scan) Metropolis-Hastings transi-

tion kernel writes

P (x,dx′) := P1P2P3(x,dx′)

=
∫

P1(x,dy)P2P3(y,dx′) ,

≥
∫

Q1α1dy1P2P3(y1, x2, x3,dx′) ,

≥
∫

Q1α1dy1

∫
Q2α2dz2P3(y1, z2, x3,dx′) ,

≥
∫

Q1α1dy1

∫
Q2α2dz2Q3

{
1 ∧ π(x′)Q3

πQ3

}
dx′

3δy1(dx′
1)δz2(dx′

2) ,

≥
{ 2∏

i=1
Q

i
αi

}
Q3

{
1 ∧

π(x′)Q3
πQ3

}
dx′ ,

since
∫∫

dy1δy1(dx′
1)dz2δz2(dx′

2) = dx′
1dx′

2. Hence, defining ν as the absolutely
continuous probability measure with pdf ν(x) ∝ 1 ∧ π(x′)Q3/πQ3, we have

P (x,dx′) ≥ βν(dx′) , (11.24)

with β :=
{∏2

i=1 Qi
αi

}
Q3

∫
1∧π(x′)Q3/πQ3dx′. We conclude from Eq. (11.24)

that the whole state space S is small for P and that therefore P is uniformly
ergodic (with geometric rate 1 − β), see e.g. Theorem 8 in [28].
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