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Abstract: Graphical models are an important tool in exploring relation-
ships between variables in complex, multivariate data. Methods for learning
such graphical models are well-developed in the case where all variables are
either continuous or discrete, including in high dimensions. However, in
many applications, data span variables of different types (e.g., continuous,
count, binary, ordinal, etc.), whose principled joint analysis is nontrivial.
Latent Gaussian copula models, in which all variables are modeled as trans-
formations of underlying jointly Gaussian variables, represent a useful ap-
proach. Recent advances have shown how the binary-continuous case can
be tackled, but the general mixed variable type regime remains challeng-
ing. In this work, we make the simple but useful observation that classical
ideas concerning polychoric and polyserial correlations can be leveraged
in a latent Gaussian copula framework. Building on this observation, we
propose a flexible and scalable methodology for data with variables of en-
tirely general mixed type. We study the key properties of the approaches
theoretically and empirically.
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1. Introduction

Graphical models are widely used in the analysis of multivariate data, providing
a convenient and interpretable way to study relationships among potentially
large numbers of variables. They are key tools in modern statistics and ma-
chine learning and play an important role in diverse applications. Undirected
graphical models are used in a wide range of settings, including, among others,
systems biology, omics, deep phenotyping [see, e.g. 11, 14, 29] and as a compo-
nent within other analyses, including two-sample testing, unsupervised learning,
hidden Markov modeling, and more [examples include 44, 42, 38, 39, 34].

A significant portion of the literature on graphical models has concentrated
on scenarios where either only continuous variables or only discrete variables
are present. Regarding the former case, Gaussian graphical models have been
extensively studied, including in the high-dimensional regime [see among others
27, 17, 2, 21, 49, 37, 7]. In such models, it is assumed that the observed random
vector follows a multivariate Gaussian distribution, and the graph structure
of the model is given by the zero pattern in the inverse covariance matrix.
Generalizations for continuous, non-Gaussian data have also been studied [28,
24, 14]. In the latter case, discrete graphical models – related to Ising-type
models in statistical physics – have also been extensively studied [see, e.g. 43, 36].

However, in many applications, it is common to encounter data that entail
mixed variable types, i.e., where the data vector includes components of different
types (e.g., continuous-Gaussian, continuous-non-Gaussian, count, binary, etc.).
Such “column heterogeneity” (from the usual convention of samples in rows
and variables in columns) is the rule rather than the exception. For instance,
in biomedical applications, the construction of gene regulatory networks using
expression profiling of genes may involve jointly analyzing gene expression levels
alongside categorical phenotypes. Similarly, diagnostic data in many medical
applications may contain continuous measurements such as blood pressure and
discrete information about disease status or pain levels.

In analyzing such data, estimating a joint multivariate graphical model span-
ning the various variable types is often of interest. In practice, this is sometimes
done using ad hoc pipelines and data transformations. However, in graphical
modeling, since the model output is intended to be scientifically interpretable
and involves statements about properties such as conditional independence be-
tween variables, the use of ad hoc workflows without an understanding of the
resulting estimation properties is arguably problematic.

There have been three main lines of work that tackle high-dimensional graph-
ical modeling for mixed data. The earliest approach is conditional Gaussian
modeling of a mix of categorical and continuous data [22] as treated by Cheng
et al. [9], Lee and Hastie [23]. A second approach is to employ neighborhood
selection, which amounts to separate modeling of conditional distributions for
each variable given all others [see, e.g. 8, 47, 41]. A third approach uses latent
Gaussian models, with a key recent reference being the paper of Fan et al. [12],
who proposed a latent Gaussian copula model for mixed data. The generative
structure in their work posits that the discrete data is obtained from latent
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continuous variables thresholded at certain (unknown) levels. However, in [12],
only a mix of binary and continuous data is considered. Their setting does not
allow for more general combinations (including counts or ordinal variables) as
found in many real-world applications.

This third approach will be the focus of this paper, which aims to provide
a simple framework for working with latent Gaussian copula models to analyze
general mixed data. To do so, we combine classical ideas concerning polychoric
and polyserial correlations with approaches from the high-dimensional graphical
models and copula literature. As we discuss below, this provides an overall
framework that is scalable, general, and straightforward from the user’s point
of view.

Already in the early 1900s, Pearson [32, 33] worked on the foundations of
these ideas in the form of the tetrachoric and biserial correlation coefficients.
From these arose the maximum likelihood estimators (MLEs) for the general
version of these early ideas, namely the polychoric and the polyserial corre-
lation coefficients. One drawback of these original measures is that they have
been proposed in the context of latent Gaussian variables. A richer distributional
family is the nonparanormal proposed by Liu, Lafferty and Wasserman [24] as
a nonparametric extension to the Gaussian family. A random vector X ∈ R

d is
a member of the nonparanormal family when f(X) = (f1(X1), . . . , fd(Xd))T is
Gaussian, where {fk}dk=1 is a set of univariate monotone transformation func-
tions. Moreover, if the fj ’s are monotone and differentiable, the nonparanormal
family is equivalent to the Gaussian copula family. As the polychoric and poly-
serial correlation assume that observed discrete data are generated from latent
continuous variables, they adhere to a latent copula approach.

We propose two estimators of the latent correlation matrix, which can sub-
sequently be plugged into existing precision matrix estimation routines, such as
the graphical lasso (glasso) [17], CLIME [7], or the graphical Dantzig selector
[49]. The first is appropriate under a latent Gaussian model and unifies the
aforementioned MLEs. The second is more general and is applicable under the
latent Gaussian copula model. Both approaches can deal with discrete variables
with arbitrarily many levels. We show that both estimators exhibit favorable
theoretical properties and include empirical results based on real and simulated
data. The main contributions of the paper are as follows:

• We posit that integrating polychoric and polyserial correlations into the
latent Gaussian copula framework offers an elegant, straightforward, and
highly effective approach to graphical modeling for comprehensively di-
verse mixed data sets.

• We present theoretical findings on the performance of the proposed esti-
mators, encompassing their behavior in high-dimensional scenarios. The
concentration results underscore the statistical validity of the introduced
procedures.

• We empirically examine the estimators through a series of simulations
and a practical example involving real phenotyping data of mixed types
sourced from the UK Biobank. Our findings illustrate the practical util-
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ity of the proposed methods, demonstrating that their performance often
closely aligns with an oracle model granted access to true latent data.

Our proposed procedure provides users with a method for conducting sta-
tistically sound graphical modeling of mixed data that is both straightforward
to implement and carries no more overhead than conventional high-dimensional
Gaussian graphical modeling approaches. Our procedure requires no manual
specification of variable-type-specific model components, such as bridge func-
tions.

The remainder of this paper is organized as follows. In Sections 2 and 3, we
present the estimators based on polychoric and polyserial correlations, including
theoretical guarantees in terms of concentration inequalities. In Section 4, we
describe the experimental setup used to test the proposed approaches on simu-
lated data together with the results themselves. We conclude with a summary
of our findings in Section 5 and point towards our R package hume, providing
users with a convenient implementation of the methods developed in this study.

2. Background and model set-up

The objective of this paper is to learn the structure of undirected graphical
models applicable to a wide range of mixed and high-dimensional data. To
achieve this, we extend the Gaussian copula model [24, 25, 46], enabling the
incorporation of both discrete and continuous data of any nature.

Definition 2.1 (The nonparanormal model). A random vector of continuous
variables X = (X1, . . . , Xd) follows a d-dimensional nonparanormal distribu-
tion if there exists a set of monotone and differentiable univariate functions
f = {f1, . . . , fd} such that the transformed vector f(X) = (f1(X)1, . . . , fd(X)d)
is multivariate Gaussian with mean 0 and covariance matrix Σ, i.e. f(X) ∼
N(0,Σ). We write

X ∼ NPN(0,Σ, f), (1)
where without loss of generality, the diagonal entries in Σ are equal to one.

As demonstrated by Liu, Lafferty and Wasserman [24], the model in Eq. (1)
is a semiparametric Gaussian copula model. The following definition indicates
how to extend this model to the presence of general mixed data.

Definition 2.2 (latent Gaussian copula model for general mixed data). Let
X = (X1,X2) be a d-dimensional random vector with X1 a d1-dimensional
vector of possibly ordered discrete variables, and X2 a d2-dimensional vector of
continuous variables with d = d1 + d2. Suppose there exists a d1-dimensional
random vector of latent continuous variables Z1 = (Z1, . . . , Zd1)T such that the
following relation holds:

Xj = xr
j if γr−1

j ≤ Zj < γr
j for all j = 1, . . . d1 and r = 1, . . . , lj + 1, (2)

where γr
j represents some unknown thresholds with γ0

j = −∞ and γ
lj+1
j = +∞,

xr
j ∈ N0 and lj + 1 the number of discrete levels of Xj for all j ∈ 1, . . . , d1.
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Then, X satisfies the latent Gaussian copula model if Z := (Z1,X2) ∼
NPN(0,Σ, f). We write

X ∼ LNPN(0,Σ, f,γ), (3)

where γ = ∪d1
j=1{γr

j , r = 0, . . . , lj + 1}.

Note that Definition 2.2 entails the class of Gaussian copula models if no
discrete variables are present and the class of latent Gaussian models if Z =
(Z1,X2) ∼ N(0,Σ). As shown by Fan et al. [12], the latent Gaussian copula
model (LGCM) is invariant concerning any re-ordering of the discrete variables.

We denote [d] = {1, . . . , d}, [d1] = {1, . . . , d1}, and [d2] = {d1 + 1, . . . , d2},
respectively. Several identifiability issues arise in the latent Gaussian copula
class. First, the mean and the variances are not identifiable unless the monotone
transformations f were restricted to preserve them. Note that this only affects
the diagonal entries in Σ, not the full covariance matrix. Therefore, without
loss of generality, we assume the mean to be the zero vector and Σjj = 1
for all j ∈ [d]. Another identifiability issue relates to the unknown threshold
parameters. To ease notation, let Γr

j ≡ fj(γr
j ) and Γj ≡ {fj(γr

j )}
lj+1
r=0 . In the

LGCM, only the transformed thresholds Γj rather than the original thresholds
are identifiable from the discrete variables. We assume, without loss of generality,
that the transformed thresholds retain the limiting behavior of the original
thresholds, i.e., Γ0

j = −∞ and Γlj+1
j = ∞.

Let Ω = Σ−1 denote the latent precision matrix. Then, the zero-pattern of
Ω under the LGCM still encodes the conditional independencies of the latent
continuous variables [24]. Thus, the underlying undirected graph is represented
by Ω just as for the parametric normal. Note that the LGCM for general mixed
data in Definition 2.2 agrees with that of Quan, Booth and Wells [35] and of
Feng and Ning [13]. The problem phrased by Fan et al. [12] is a special case
of Definition 2.2. A more detailed comparison between both approaches can be
found in Section 3. Nominal discrete variables need to be transformed into a
dummy system.

For the remainder of the paper, assume we observe an independent n-sample
of the d-dimensional vector X which is assumed to follow an LGCM of the form
LNPN(0,Σ, f,Γ), where Γ = ∪d1

j=1Γj . We estimate Σ by considering the corre-
sponding entries separately i.e. the couples (Xj , Xk) for j, k ∈ [d]. Consequently,
we have to keep in view three possible cases depending on the couple’s variable
types, respectively:

Case I : Both Xj and Xk are continuous, i.e. j, k ∈ [d2].
Case II : Xj is discrete and Xk is continuous, i.e. j ∈ [d1], k ∈ [d2] and vice

versa.
Case III : Both Xj and Xk are discrete, i.e. j, k ∈ [d1].
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2.1. Maximum-likelihood estimation under the latent Gaussian
model

At the outset, we examine each of the three cases under the latent Gaussian
model, a special case of the LGCM where all transformations are identity func-
tions. Consider Case I, where both Xj and Xk are continuous. This corresponds
to the regular Gaussian graphical model set-up discussed thoroughly, for in-
stance, in [37]. Hence, the estimator for Σ when both Xj and Xk are continuous
is:

Definition 2.3 (MLE Σ̂
(n)

of Σ; Case I ). Let x̄j denote the sample mean
of Xj. The estimator Σ̂

(n)
= (Σ̂(n)

jk )d1<j<k≤d2 of the correlation matrix Σ is
defined by:

Σ̂(n)
jk =

∑n
i=1(xij − x̄j)(xik − x̄k)√∑n

i=1(xij − x̄j)2
√∑n

i=1(xik − x̄k)2
(4)

for all d1 < j < k ≤ d2.

This is the Pearson product-moment correlation coefficient, which, of course,
coincides with the maximum likelihood estimator (MLE) for the bivariate nor-
mal couple {(Xj , Xk)}ni=1.

Turning to Case II, let Xj be ordinal and Xk be continuous. We are interested
in the product-moment correlation Σjk between two jointly Gaussian variables,
where Xj is not directly observed but only the ordered categories (see Eq. (2)).
This is called the polyserial correlation [31]. The likelihood and log-likelihood
of the n-sample are defined by:

L
(n)
jk (Σjk, x

r
j , xk) =

n∏
i=1

p(xr
ij , xik,Σjk) =

n∏
i=1

p(xik)p(xr
ij | xik,Σjk)

�
(n)
jk (Σjk, x

r
j , xk) =

n∑
i=1

[
log(p(xik)) + log(p(xr

ij | xik,Σjk))
]
,

(5)

where p(xr
ij , xik,Σjk) denotes the joint probability of Xj and Xk and p(xik)

the marginal density of the Gaussian variable Xk. MLEs are obtained by dif-
ferentiating the log of the likelihood in Eq. (5) with respect to the unknown
parameters, setting the partial derivatives to zero, and solving the system of
equations for Σjk, μ, σ

2, and Γr
j for r ∈ [lj ]. Under the latent Gaussian model,

we have the special case that the thresholds are identifiable from the observed
data as Γr

j = γr
j .

Definition 2.4 (MLE Σ̂
(n)

of Σ; Case II ). Recall the log-likelihood in Eq. (5).
The estimator Σ̂

(n)
= (Σ̂(n)

jk )1<j≤d1<k≤d2 is defined by:

Σ̂(n)
jk = arg max

|Σjk|≤1
�
(n)
jk (Σjk, x

r
j , xk)

= arg max
|Σjk|≤1

1
n
�
(n)
jk (Σjk, x

r
j , xk)

(6)
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for all 1 < j ≤ d1 < k ≤ d2.

Regularity conditions ensuring consistency and asymptotic efficiency, as well as
asymptotic normality, can be verified to hold here [10].

Lastly, consider Case III, where both Xj and Xk are ordinal. The probability
of an observation with Xj = xr

j and Xk = xs
k is given by

πrs := p(Xj = xr
j , Xk = xs

k)
= p(Γr−1

j ≤ Zj < Γr
j ,Γs−1

k ≤ Zk < Γs
k)

=
∫ Γr

j

Γr−1
j

∫ Γs
k

Γs−1
k

φ(zj , zk,Σjk)dzjdzk,
(7)

where r = 1, . . . , lj and s = 1, . . . , lk and φ(x, y, ρ) denotes the standard bivari-
ate density with correlation ρ. Then, as outlined by Olsson [30] the likelihood
and log-likelihood of the n-sample are defined as:

L
(n)
jk (Σjk, x

r
j , x

s
k) = C

lj∏
r=1

lk∏
s=1

πnrs
rs ,

�
(n)
jk (Σjk, x

r
j , x

s
k) = log(C) +

lj∑
r=1

lk∑
s=1

nrs log(πrs),

(8)

where C is a constant and nrs denotes the observed frequency of Xj = xr
j

and Xk = xs
k in a sample of size n =

∑lj
r=1
∑lk

s=1 nrs. Differentiating the log-
likelihood, setting it to zero, and solving for the unknown parameters yields the
estimator for Σ for Case III :

Definition 2.5 (MLE Σ̂
(n)

of Σ; Case III ). Recall the log-likelihood in Eq. (8).
The estimator Σ̂

(n)
= (Σ̂(n)

jk )1≤j<k≤d1 of Σ is defined by:

Σ̂(n)
jk = arg max

|Σjk|≤1
�
(n)
jk (Σjk, x

r
j , x

s
k)

= arg max
|Σjk|≤1

1
n
�
(n)
jk (Σjk, x

r
j , x

s
k),

(9)

for all 1 < j < k ≤ d1.

Regularity conditions ensuring consistency and asymptotic efficiency, as well as
asymptotic normality, can again be verified to hold here [20].

Summing up, under the latent Gaussian model, a special case of the LGCM,
Σ̂

(n)
is a consistent and asymptotically efficient estimator for the underlying

latent correlation matrix Σ. Corresponding concentration results are derived in
Section 3.5.
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3. Latent Gaussian Copula models

Fan et al. [12] propose the binary LGCM, a special case of the LGCM allow-
ing for the presence of binary and continuous variables. Following the approach
of the nonparanormal SKEPTIC [25], they circumvent the direct estimation of
monotone transformation functions {fj}dj=1 by employing rank correlation mea-
sures, such as Kendall’s tau or Spearman’s rho. These measures remain invariant
under monotone transformations. Notably, for Case I, a well-known mapping ex-
ists between Kendall’s tau, Spearman’s rho, and the underlying Pearson correla-
tion coefficient Σjk. As a result, the primary contribution of Fan et al. [12] lies in
deriving corresponding bridge functions for cases II and III. To reduce compu-
tational burden Yoon, Müller and Gaynanova [48] propose a hybrid multilinear
interpolation and optimization scheme of the underlying latent correlation.

When considering the general mixed case, Fan et al. [12] advocate for bina-
rizing all ordinal variables. This concept has been embraced by Feng and Ning
[13], who suggest an initial step of binarizing all ordinal variables to create pre-
liminary estimators. Subsequently, these estimators are meaningfully combined
using a weighted aggregate. To extend the binary latent Gaussian copula model
and explore generalizations regarding bridge functions, Quan, Booth and Wells
[35] ventured into scenarios where a combination of continuous, binary, and
ternary variables is present. However, a notable drawback of this approach be-
comes evident. Dealing with a mix of binary and continuous variables requires
three bridge functions – one for each case. The complexity grows as discrete
variables introduce distinct state spaces. In fact, a combination of continuous
variables and discrete variables with k different state spaces necessitates

(
k+2
2
)

bridge functions.
For this reason, we adopt an alternative approach to the latent Gaussian

copula model when dealing with general mixed data, allowing discrete variables
to possess any number of states. In this strategy, the number of cases to be
considered remains consistent at three, as already introduced in the preceding
section.

3.1. Nonparanormal Case I

For Case I, the mapping between Σjk and the population versions of Spear-
man’s rho and Kendall’s tau is well known [24]. Here we make use of Spear-
man’s rho ρSp

jk = corr(Fj(Xj), Fk(Xk)) with Fj and Fk denoting the cumu-
lative distribution functions (CDFs) of Xj and Xk, respectively. Then Σjk =
2 sin π

6 ρ
Sp
jk for d1 < j < k ≤ d2. In practice, we use the sample estimate

ρ̂Sp
jk =

∑n
i=1(Rij − R̄j)(Rik − R̄k)√∑n

i=1(Rij − R̄j)2
∑n

i=1(Rik − R̄k)2
,

with Rij corresponding to the rank of Xij among X1j , . . . , Xnj and R̄j =
1/n
∑n

i=1 Rij = (n + 1)/2; compare [25]. From this, we obtain the following
estimator:
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Definition 3.1 (Nonparanormal estimator Σ̂
(n)

of Σ; Case I ). The estimator
Σ̂

(n)
= (Σ̂(n)

jk )d1<j<k≤d2 of the correlation matrix Σ is defined by:

Σ̂(n)
jk = 2 sin π

6 ρ̂
Sp
jk , (10)

for all d1 < j < k ≤ d2.

3.2. Nonparanormal Case II

In Case II, the complexity increases. Employing a rank-based approach for the
nonparanormal model makes direct application of the ML procedure unfeasi-
ble, given that the continuous variable is not observed in its Gaussian form.
Nevertheless, a two-step approach remains viable. First, an estimate of fj must
be formulated and subsequently employed in Definition 2.4. Yet, scrutinizing
convergence rates for this procedure poses challenges, as the estimated trans-
formation appears in multiple instances within the first-order condition of the
MLE. Section A.3 provides further details and compares the two-step likelihood
approach to the one we propose below.

Instead, we will proceed by suitably modifying other approaches that address
the Gaussian case through a more direct ad hoc examination of the relationship
between Σjk and the point polyserial correlation [3, 4]. Section A.3 compares
the nonparanormal Case II estimation strategies.

In what follows, in the interest of readability, we omit the index in the mono-
tone transformation functions but explicitly allow them to vary among the Z.
According to Definition 2.3, we have the following Gaussian conditional expec-
tation

E[f(Xk) | f(Zj)] = μf(Xk) + Σjkσf(Xk)f(Zj), for 1 ≤ j ≤ d1 < k ≤ d2, (11)

where we can assume w.l.o.g. that μf(Xk) = 0. After multiplying both sides with
the discrete variable Xj , we move it into the expectation on the left-hand side
of the equation. This is permissible as Xj is a function of f(Zj), i.e.

E[f(Xk)Xj | f(Zj)] = Σjkσf(Xk)f(Zj)Xj .

Now let us take again the expectation on both sides, rearrange and expand by
σXj , yielding

Σjk = E[f(Xk)Xj ]
σf(Xk)E[f(Zj)Xj ]

=
rf(Xk)Xj

σXj

E[f(Zj)Xj ]
, (12)

where rf(Xk)Xj
is the product-moment correlation between the Gaussian (un-

observed) variable f(Xk) and the observed discretized variable Xj .
All that remains is to find sample versions of each of the three components

in Eq. (12). Let us start with the expectation in the denominator E[f(Zj)Xj ].
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By assumption f(Z) ∼ N(0,Σ) and therefore w.l.o.g. f(Zj) ∼ N(0, 1) for all
j ∈ 1, . . . , d1. Consequently, we have:

E[f(Zj)Xj ] =
lj+1∑
r=1

xr
j

∫ Γr
j

Γr−1
j

f(zj)dF (f(zj)) =
lj+1∑
r=1

xr
j

∫ Γr
j

Γr−1
j

f(zj)φ(f(zj))dzj

=
lj+1∑
r=1

xr
j

(
φ(Γr

j) − φ(Γr−1
j )
)

=
lj∑

r=1
(xr+1

j − xr
j)φ(Γr

j),

(13)

where φ(t) denotes the standard normal density. Whenever the ordinal states
are consecutive integers we have

∑lj
r=1(x

r+1
j −xr

j)φ(Γr
j) =

∑lj
r=1 φ(Γr

j). Based on
this derivation, it is straightforward to give an estimate of E[f(Zj)Xj ] once es-
timates of the thresholds Γj have been formed (see Section 3.4 for more details).
Let us turn to the numerator of Eq. (12). The standard deviation of Xj does not
require any special treatment, and we simply use σ(n)

Xj
=
√

1/n
∑n

i=1(Xij − X̄j)2
to be able to treat discrete variables with a general number of states. How-
ever, the product-moment correlation rf(Xk),Xj

is inherently more challenging
as it involves the (unobserved) transformed version of the continuous variables.
Therefore, we proceed to estimate the transformation.

To this end, consider the marginal distribution function of Xk, namely

FXk
(x) = P (Xk ≤ x) = P (f(Xk) ≤ f(x)) = Φ(f(x)),

such that f(x) = Φ−1(FXk
(x)). In this setting, Liu, Lafferty and Wasserman [24]

propose to evaluate the quantile function of the standard normal at a Winsorized
version of the empirical distribution function. This is necessary as the standard
Gaussian quantile function Φ−1(·) diverges when evaluated at the boundaries
of the [0, 1] interval. More precisely, consider f̂(u) = Φ−1(Wδn [F̂Xk

(u)]),where
Wδn is a Winsorization operator, i.e.

Wδn(u) ≡ δnI(u < δn) + uI(δn ≤ u ≤ (1 − δn)) + (1 − δn)I(u > (1 − δn)).

The truncation constant δn can be chosen in several ways. Liu, Lafferty and
Wasserman [24] propose to use δn = 1/(4n1/4√π logn) in order to control the
bias-variance trade-off. Thus, equipped with an estimator for the transformation
functions, the product-moment correlation is obtained the usual way, i.e.

r
(n)
f̂(Xk),Xj

=
∑n

i=1(f̂(Xik) − μ(f̂))(Xij − μ(Xj)√∑n
i=1

(
f̂(Xik) − μ(f̂)

)2√∑n
i=1

(
Xij − μ(Xj)

)2 ,

where μ(f̂) ≡ 1/n
∑n

i=1 f̂(Xik) and μ(Xj) ≡ 1/n
∑n

i=1 Xij . The resulting esti-
mator is a double-two-step estimator of the mixed couple Xj and Xk.
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Definition 3.2 (Estimator Σ̂
(n)

of Σ; Case II nonparanormal). The estimator
Σ̂

(n)
= (Σ̂(n)

jk )1<j≤d1<k≤d2 of the correlation matrix Σ is defined by:

Σ̂(n)
jk =

r
(n)
f̂(Xk),Xj

σ
(n)
Xj∑lj

r=1 φ(Γ̂r
j)(x

r+1
j − xr

j)
(14)

for all 1 < j ≤ d1 < k ≤ d2.

3.3. Nonparanormal Case III

Lastly, let us turn to Case III where both Xj and Xk are discrete, but they
might differ in their respective state spaces. In the previous section, the ML
procedure could no longer be applied directly because we do not observe the
continuous variable in its Gaussian form. In Case III, however, we only observe
the discrete variables generated by the latent scheme outlined in Definition 2.3.
Due to the monotonicity of the transformation functions, the ML procedure for
Case III from Section 2.1 can still be applied, i.e.

Definition 3.3 (Nonparanormal estimator Σ̂
(n)

of Σ; Case III ). The estimator
Σ̂

(n)
= (Σ̂(n)

jk )1≤j<k≤d1 of the correlation matrix Σ is defined by:

Σ̂(n)
jk = arg max

|Σjk|≤1

1
n
�
(n)
jk (Σjk, x

r
j , x

s
k) (15)

for all 1 < j < k ≤ d1.

In summary, the estimator Σ̂
(n)

under the latent Gaussian copula model is
a simple but important tool for flexible mixed graph learning. By using ideas
from polyserial and polychoric correlation measures, we not only have an easy-
to-calculate estimator but also overcome the issue of finding bridge functions
between all different kinds of discrete variables.

3.4. Threshold estimation

The unknown threshold parameters Γj for j ∈ [d1] play a key role in linking
the observed discrete to the latent continuous variables. Therefore, being able
to form accurate estimates of the Γj is crucial for both the likelihood-based
procedures and the nonparanormal estimators outlined above.

We start by highlighting that we set the LGCM model up such that for each
Γj , there exists a constant G such that |Γr

j | ≤ G for all r ∈ [lj ], i.e., the es-
timable thresholds are bounded away from infinity. Let us define the cumulative
probability vector πj = (π1

j , . . . , π
lj
j ). Then, by Eq. (2), it is easy to see that

πr
j =

r∑
i=1

P (Xj = xi
j) = P (Xj ≤ xr

j)

= P (Zj ≤ γr
j ) = P (fj(Zj) ≤ fj(γr

j )) = Φ(Γr
j).

(16)
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From this equation, it is immediately clear that the thresholds satisfy Γr
j =

Φ−1(πr
j ). Consequently, when forming sample estimates of the unknown thresh-

olds, we replace the cumulative probability vector with its sample equivalent,
namely

π̂r
j =

r∑
k=1

[ 1
n

n∑
i=1

1(Xij = xk
j )
]

= 1
n

n∑
i=1

1(Xij ≤ xr
j), (17)

and plug it into the identity, i.e. Γ̂r
j = Φ−1(π̂r

j

)
for j ∈ [d1]. The following lemma

assures that these threshold estimates can be formed with high accuracy.

Lemma 3.1. Suppose the estimated thresholds are bounded away from infinity,
i.e., |Γ̂r

j | ≤ G for all j ∈ [d1] and r = 1, . . . , lj and some G. The following bound

holds for all t > 0 with Lipschitz constant L1 = 1/(
√

2
π min{π̂r

j , 1 − π̂r
j}):

P
(
|Γ̂r

j − Γr
j | ≥ t

)
≤ 2 exp

(
− 2t2n

L2
1

)
.

The proof of Lemma 3.1 is given in Section B.3. The requirement that the
estimated thresholds are bounded away from infinity typically does not pose
any restriction in finite samples. All herein-developed methods are applied in a
two-step fashion. In the ensuing theoretical results, we stress this by denoting
the estimated thresholds as Γ̄r

j .

3.5. Concentration results

Define Σ∗ and Ω∗ as the true covariance matrix and its inverse, respectively.
We start by stating the following assumptions:

Assumption 3.1. For all 1 ≤ j < k ≤ d, |Σ∗
jk| 
= 1. In other words, there

exists a constant δ > 0 such that |Σ∗
jk| ≤ 1 − δ.

Assumption 3.2. For any Γr
j with j ∈ [d1] and r ∈ [lj ] there exists a constant

G such that |Γr
j | ≤ G.

Assumption 3.3. Let j < k and consider the log-likelihood functions in Defi-
nition 2.4 and in Definition 2.5. We assume that with probability one,

• {−1 + δ, 1 − δ} are not critical points of the respective log-likelihood func-
tions.

• The log-likelihood functions have a finite number of critical points.
• Every critical point that is different from Σ∗

jk is non-degenerate.
• All joint and conditional states of the discrete variables have positive prob-

ability.

Assumptions 3.1 and 3.2 ensure that f(Xj) and f(Xk) are not perfectly
linearly dependent and that the thresholds are bounded away from infinity,
respectively. Importantly, these constraints impose minimal restrictions in prac-
tice. Assumption 3.3 guarantees that the likelihood functions in Section 2.2
exhibit a “nice” behavior, representing a mild technical requirement.
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Convergence results for latent Gaussian models The subsequent the-
orem, drawing on Mei, Bai and Montanari [26], hinges on four conditions, all
substantiated in Section B.1. This concentration result specifically pertains to
the MLEs introduced in Section 2.1 within the framework of the latent Gaussian
model. We remark that related methodology has been applied by Anne, Aurélie
and Clémence [1] in addressing zero-inflated Gaussian data under double trun-
cation.

Theorem 3.2. Suppose that Assumptions 3.1–3.3 hold, and let j ∈ [d1] and
k ∈ [d2] for Case II and j, k ∈ [d1] for Case III. Let α ∈ (0, 1), and let n ≥
4C log(n) log

(
B
α

)
with some known constants B, C, and D depending on cases

II and III but independent of (n, d). Then, it holds that

P

(
max
j,k

∣∣∣Σ̂(n)
jk − Σ∗

jk

∣∣∣ ≥ D

√
log(n)

n
log
(
B

α

))
≤ d(d− 1)

2 α. (18)

Case I of the latent Gaussian model addresses the well-understood scenario
involving observed Gaussian variables, with concentration results and rates of
convergence readily available −see, for example, Lemma 1 in Ravikumar et al.
[37]. Consequently, the MLEs converge to Σ∗ at the optimal rate of n−1/2,
mirroring the convergence rate as if the underlying latent variables were directly
observed.

Convergence of nonparanormal estimators Recall the three cases, which,
in principle, will have to be considered again.

Case I : When both random variables are continuous, concentration results
follow immediately from Liu et al. [25] who make use of Hoeffding’s
inequalities for U -statistics.

Case II : For the case where one variable is discrete and the other one con-
tinuous, we present concentration results below.

Case III : When both variables are discrete, we make an important obser-
vation that Theorem 3.2 above still applies and needs not to be
altered. We do not observe the continuous variables directly but
only their discretized versions. Consequently, the threshold esti-
mates remain valid under the monotone transformation functions,
and so does the polychoric correlation.

The following theorem provides concentration properties for Case II under the
LGCM.

Theorem 3.3. Suppose that Assumptions 3.1 and 3.2 hold and j ∈ [d1] and k ∈
[d2]. Then for any ε ∈

[
CM

√
log d log2 n√

n
, 8(1+4c2)

]
, with sub-Gaussian parameter

c, generic constants ki, i = 1, 2, 3 and constant CM = 48√
π

(√
2M − 1

)
(M + 2)

for some M ≥ 2
( log d2

logn + 1
)

with CΓ =
∑lj

r=1 φ(Γ̄r
j)(xr+1

j − xr
j) and Lipschitz

constant L the following probability bound holds
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P

(
max
jk

∣∣∣Σ̂(n)
jk − Σ∗

jk

∣∣∣ ≥ ε

)

≤ 8 exp
(

2 log d−
√
nε2

(64 L Cγ lmax π)2 logn

)

+ 8 exp
(

2 log d− nε2

(4L Cγ)2 128(1 + 4c2)2

)

+ 8 exp
(
2 log d−

√
n

8π logn

)
+ 4 exp

(
− k1n

3/4√logn
k2 + k3

)
+ 2√

π log(nd2)
.

The proof of the theorem is given in Section B.4. The first four terms in the
probability bound stem from finding bounds to different regions of the support
of the transformed continuous variable. The last term is a consequence of the
fact that we estimate the transform directly.

Regarding the scaling of the dimension in terms of sample size, the ensuing
corollary follows immediately.

Corollary 3.4. For some known constant KΣ independent of d and n we have

P

(
max
j,k

∣∣∣Σ̂(n)
jk − Σ∗

jk

∣∣∣ > KΣ

√
log d logn√

n

)
= o(1). (19)

The nonparanormal estimator for Case II converges to Σ∗
jk at rate n−1/4,

which is slower than the optimal parametric rate of n−1/2. This stems not from
the presence of the discrete variable but from the direct estimation of the trans-
formation function fj and the corresponding truncation constant δn. Both Xue
and Zou [46] and Liu et al. [25] discuss room for improvement of the estimator
for fj to get a rate closer to the optimal one. Improvements depend strongly
on the choice of truncation constant, striking a bias-variance balance in high-
dimensional settings. In all of the numerical experiments below, we find that
Theorem 3.3 gives a worst-case rate that does not appear to negatively impact
performance compared to estimators that attain the optimal rate.

3.6. Estimating the precision matrix

Similar to Fan et al. [12], we plug our estimate of the sample correlation matrix
into existing routines for estimating Ω∗. In particular, we employ the graphical
lasso (glasso) estimator [17], i.e.

Ω̂ = arg min
Ω�0

[
tr(Σ̂

(n)
Ω) − log|Ω| + λ

∑
j �=k

|Ωjk|
]
, (20)

where λ > 0 is a regularization parameter. As Σ̂
(n)

exhibits at worst the same
theoretical properties as established in Liu, Lafferty and Wasserman [24], con-
vergence rate and graph selection results follow immediately.
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We do not penalize diagonal entries of Ω and therefore have to make sure
that Σ̂

(n)
is at least positive semidefinite to establish convergence in Eq. (20).

Hence, we need to project Σ̂
(n)

into the cone of positive semidefinite matrices;
see also [25, 12]. In practice, we use an efficient implementation of the alternating
projections method proposed by Higham [18].

To select the tuning parameter in Eq. (20) Foygel and Drton [16] introduce
an extended BIC (eBIC) in particular for Gaussian graphical models establish-
ing consistency in higher dimensions under mild asymptotic assumptions. We
consider

eBICθ = −2�(n)(Ω̂(E)) + |E| log(n) + 4|E|θ log(d), (21)

where θ ∈ [0, 1] governs penalization of large graphs. Furthermore,|E| represents
the cardinality of the edge set of a candidate graph on d nodes and �(n)(Ω̂(E))
denotes the corresponding maximized log-likelihood which in turn depends on λ
from Eq. (20). In practice, first, one retrieves a small set of models over a range
of penalty parameters λ > 0 (called glasso path). Then, we calculate the eBIC
for each model in the path and select the one with the minimal value.

4. Numerical results

To numerically assess the accuracy of our mixed graph estimation approach,
we commence with a simulation study in which the estimators are rigorously
evaluated in a gold-standard fashion and compared against oracles.

4.1. Simulation setup

We start by constructing the underlying precision matrix Ω∗ whose zero pattern
encodes the undirected graph. We set Ω∗

jj = 1 and Ω∗
jk = s ·bjk if j 
= k, where s

is a constant signal strength chosen to assure positive definiteness. Furthermore,
bjk are realizations of a Bernoulli random variable with corresponding success
probability pjk = (2π)−1/2 exp

[
‖vj − vk‖2/(2c)

]
. In particular, vj = (v(1)

j , v
(2)
j )

are independent realizations of a bivariate uniform [0, 1] distribution and c con-
trols the sparsity of the graph.

Throughout the simulation, we set s = 0.15 and incrementally increase the
dimensionality s.t. d ∈ {50, 250, 750}, representing a transition from small to
large-scale graphs. We let Σ∗ = (Ω∗)−1 be rescaled such that all diagonal ele-
ments are equal to 1. Given Σ∗, we first obtain the partially latent continuous
data Z = (Z1,X2) where Z ∼ NPNd(0,Σ∗, f). In practice, we draw n i.i.d.
samples from Nd(0,Σ∗) and apply the back-transform f−1 to each individual
variable.

To generate general mixed data X = (X1,X2) according to the LGCM we
need to appropriately threshold Z1. Let X1 be partitioned into equally sized
collections of binary, ordinal, and Poisson distributed random variables, i.e.,
X1 = (Xbin

1 ,Xord
1 ,Xpois

1 ). We use the inverse probability integral transform
(IPT) to generate random samples from the respective cumulative distribution
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functions, corresponding to the relationship described in Eq. (2). For Xbin
1 IPT

is employed with success probability drawn from Uniform [0.4, 0.6] for 80% of
Xbin

1 . We assign unbalanced classes to the remaining 20%, where the success
probability is drawn from Uniform [0.05, 0.1]. Regarding Xord

1 , IPT is used to
generate samples from the multinomial distribution. To that end, we draw the
number of categories from Uniform [3, 7] and round it to the nearest integer.
We set the probability of falling into one of these categories to be proportional
to their number. Lastly, Xpois

1 is generated using IPT with the rate parameter
set to 6. In case we only need a mix of binary and continuous data, we set
X1 = Xbin

1 .
Throughout the experiments, Ω̂ is chosen by minimizing the eBIC according

to the procedure outlined in Section 3.6 with θ = 0.1 for the low and medium,
θ = 0.5 for the high dimensional graphs. The sample size n is set to 200 for
d ∈ {50, 250} and 300 for d = 750. We set the number of simulation runs to
100. Lastly, we choose the sparsity parameter c such that the number of edges
aligns roughly with the dimension – except for d = 50, where we allow for 200
edges following Fan et al. [12].

Performance metrics To evaluate performance, we report the mean estima-
tion error ‖Ω̂−Ω∗‖F using the Frobenius norm. Additionally, we employ graph
recovery metrics. For this purpose, we calculate the number of true positives
TP(λ) and false positives FP(λ) based on the glasso path. TP(λ) represents the
count of non-zero lower off-diagonal elements that are consistent both in Ω∗ and
Ω̂, while FP(λ) denotes the count of non-zero lower off-diagonal elements in Ω̂
that are zero in Ω∗.

The true positive rate TPR(λ) and false positive rate FPR(λ) are defined
as TPR = TP(λ)

|E| and FPR = FP(λ)
d(d−1)/2−|E| , respectively. Finally, we consider

the area under the curve (AUC), where a value of 0.5 corresponds to random
guessing of edge presence and a value of 1 indicates perfect error-free recovery
of the underlying latent graph (in the rank sense of ROC analysis).

4.2. Simulation results

Binary-continuous data We start by considering a mix of binary and con-
tinuous variables generated as outlined in Section 4.1 to compare our methods
against the bridge function approach of Fan et al. [12]. For this purpose, Figure 1
depicts the mean estimation error ‖Ω̂−Ω∗‖F and the AUC for the different es-
timators under the different (d, n) regimes. We include the following estimators
for Ω∗: (1) An oracle estimator (oracle) that corresponds to estimating Σ̂

(n)

using the mapping between Spearman’s rho and Σ̂∗
jk (Eq. (10)) based on realiza-

tion of the (partially) latent continuous data (Z1,X2). (2) The bridge function
based estimator (bridge) proposed by Fan et al. [12]. (3) The polychhoric and
polyserial MLE estimator (mle) proposed in Section 2.1. (4) The general mixed
estimator (poly) proposed in Section 3. In the left column, we set fj(x) = x
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Fig 1. Simulation results for the binary-continuous data setting based on 100 simulation runs.
The left column corresponds to the latent Gaussian model, where the transformation function
is the identity. The right colum depicts results for the LGCM with fj(x) = x1/3 for all j.
The top row reports mean and standard deviation of the AUC along simulation runs, and
the bottom row depicts boxplots of the estimation error ‖Ω̂ − Ω∗‖F . The y-axis labels have
superscript arrows attached to indicate the direction of improvement: → implies that larger
values are better, and ← implies that smaller values are better.

for all j, i.e., we recover the latent Gaussian model. In the right column, we set
fj(x) = x1/3 for all j to recover the LGCM.

Figure 1 suggests that under the latent Gaussian model (left column), there
are virtually no differences between all non-oracle estimators in graph recovery
or estimation error. As expected, the oracle has the highest AUC and lowest
estimation error across scenarios. The only exception is the estimation error
when the dimension is d = 750. This surprising result stems from an increased
FPR for oracle (see Figure 5 in the appendix) when minimizing the eBIC with
the additional penalty set to θ = 0.5. A higher penalty seems appropriate in
this case. Meanwhile, the non-oracle estimators are more conservative, and the
additional penalty appears to be chosen correctly in these cases.

In the right column of Figure 1, binary-continuous mixed data is generated
from the LGCM. The Case I and Case II MLEs are misspecified in this case,
which translates to lower AUC and higher estimation error. The remaining es-
timators are unaffected by the transformation. Encouragingly, we find no sub-
stantial performance difference between the bridge function approach and our
procedure in any of the metrics considered, including the TPR and FPR results
in Figure 5 in the appendix.

General mixed data Let us turn to the general mixed setting. While the
bridge function approach by Fan et al. [12] does not extend beyond the binary-
continuous mix, we can still compare our approach to the ensemble method
developed by Feng and Ning [13]. Due to its close connection to the original
method, we continue to denote the proposed ensemble estimator bridge.
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Fig 2. Simulation results for the general mixed data setting based on 100 simulation runs.
The left column corresponds to the latent Gaussian model, where the transformation function
is the identity. The right colum depicts results for the LGCM with fj(x) = x1/3 for all j.
The top row reports mean and standard deviation of the AUC along simulation runs, and
the bottom row depicts boxplots of the estimation error ‖Ω̂ − Ω∗‖F . The y-axis labels have
superscript arrows attached to indicate the direction of improvement: → implies that larger
values are better, and ← implies that smaller values are better.

Similar to above, Figure 2 depicts the mean estimation error ‖Ω̂−Ω∗‖F and
the AUC and left and right columns correspond to latent Gaussian und LGCM
settings, respectively. This time, given general mixed data, differences in terms of
AUC between the estimators are noticeable. When the transformations are the
identity, the MLE is correctly specified, and it is tied with poly in terms of AUC.
The bridge estimator performs worse than the other two estimators. When
the transformations are fj(x) = x1/3, the MLE is misspecified, and our poly
estimator performs best among non-oracle estimators in terms of AUC. The
bridge estimator performs only marginally better than the misspecified mle.

Turning to estimation error results, when fj(x) = x, the poly and mle esti-
mators perform similarly across dimensions. As the oracle estimator is formed
on the latent continuous data, it is unaffected by any discretization and behaves
the same as in the binary-continuous case above. The bridge ensemble estima-
tor accounts for a slightly higher estimation error when d = 250 and a lower
one when d = 750. This pattern can be explained by the FPR of the bridge
estimator as illustrated in Figure 6 in the appendix. While the FPR is slightly
higher in the d = 250 case, it is lower in the d = 750 case. Similar to the oracle
results, this appears to be a consequence of the additional penalty term in the
eBIC. Considering the estimation error when fj(x) = x1/3, the poly and bridge
estimators retain their performance. As before, the mle estimator is misspecified
and performs worse than the other two estimators.

Overall, the simulation results suggest that our proposed poly estimator per-
forms similarly (binary-continuous data setting) or better (general mixed set-
ting) than the current state-of-the-art. In particular, the poly estimator achieves
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good performance scores regarding recovery of the graph structure in the gen-
eral mixed setting. Estimation error results are more sensitive to the choice of
the additional high-dimensional penalty. These empirical results suggest that
despite the theoretically slower convergence rate, the poly estimator is compet-
itive regarding graph recovery and estimation error.

5. Conclusion

Estimating high-dimensional undirected graphs from general mixed data is a
challenging task. We propose an innovative approach that blends classical gen-
eralized correlation measures, specifically polychoric and polyserial correlations,
with recent concepts from high-dimensional graphical modeling and copulas.

A pivotal insight guiding our approach is recognizing that polychoric and
polyserial correlations can be effectively modeled through a latent Gaussian
copula. Although adapting polyserial correlation to the nonparanormal case de-
mands careful consideration, the polychoric correlation requires no adjustments.
The resulting estimators exhibit favorable theoretical properties, even in high
dimensions, and demonstrate robust empirical performance in our simulation
study.

The framework we put forward builds on prior work extending the graphical
lasso for Gaussian observations to nonparanormal models and subsequently to
mixed data, as seen in the contributions of Fan et al. [12], followed by Quan,
Booth and Wells [35] and Feng and Ning [13]. A key distinction in our approach
is the absence of the need to specify bridge functions. Indeed, our method seam-
lessly handles various types of mixed data without requiring additional user
effort.

6. Software

Software in the form of the R package hume is available on the corresponding au-
thor’s GitHub page (https://github.com/konstantingoe/hume). The R-code
to reproduce the simulation study conducted in the paper is available under
https://github.com/konstantingoe/mixed_hidim_graphs.

Appendix A: Methodology

In the following sections, we derive the MLEs for the latent Gaussian model.

A.1. Case II MLE derivation

In Case II, we consider the instance where Xj is ordinal and Xk is continuous.
Recall that in the latent Gaussian model, we take all {fk}dk=1 to be the identity.
Consequently, Xk is Gaussian and Γr

j = fj(γr
j ) = γr

j for all j ∈ [d1] and r ∈ [lj ].
Recall that we are interested in the product-moment correlation Σjk between

https://github.com/konstantingoe/hume
https://github.com/konstantingoe/mixed_hidim_graphs


2358 K. Göbler et al.

two jointly Gaussian variables, where Xj is not directly observed, but only the
ordered categories (Eq. (2)) are given. The likelihood of the n-sample is defined
by:

L
(n)
jk (Σjk, x

r
j , xk) =

n∏
i=1

p(xr
ij , xik,Σjk)

=
n∏

i=1
p(xik)p(xr

ij | xik,Σjk),
(22)

where p(xr
ij , xik,Σjk) denotes the joint probability of Xj and Xk and p(xik) the

marginal density of the Gaussian variable Xk, i.e.

p(xik) =
(
2πσ
)− 1

2 exp
[
− 1

2

(
xik − μ

σik

)2
]
.

Furthermore, the conditional probability of Xj in Eq. (5) can be written as:

p(Xj = xr
j | Xk,Σjk) = p(Γr−1

j ≤ Zj < Γr
j | Xk,Σjk)

= p(Zj ≤ Γr
j | Xk,Σjk) − p(Zj ≤ Γr−1

j | Xk,Σjk)
Φ(Γ̃r

j) − Φ(Γ̃r−1
j ), r = 1, . . . , lj ,

(23)

where

Γ̃r
j =

Γr
j − ΣjkX̃k√
1 − (Σjk)2

,

with X̃k = Xk−μk

σk
and Φ(t) denoting the standard normal distribution function.

This follows straight from the fact that the conditional distribution of Zj is
Gaussian with mean ΣjkX̃k and variance (1 − (Σjk)2). The log-likelihood is
then �

(n)
jk (Σjk, x

r
j , xk) with

�
(n)
jk (Σjk, x

r
j , xk) =

n∑
i=1

[
log(p(xik)) + log(p(xr

j | xik,Σjk))
]
. (24)

Due to the heavy computational burden involved when estimating all pa-
rameters simultaneously, a two-step estimator has been proposed [31]. That is,
in a first step μk, σ

2
k are estimated by X̄k and s2

k, respectively. Moreover, the
thresholds Γr

j , r = 1, . . . , lj are estimated by the quantile function of the stan-
dard normal distribution evaluated at the cumulative marginal proportions of
xr
j just as described in Section 3.4.
In a second step, all that remains is obtaining the MLE for Σjk now with the

readily computed estimates from the first step:

∂�
(n)
jk (Σjk, x

r
j , xk)

∂Σjk
=

n∑
i=1

1
p(xr

ij | xik,Σjk)
∂p(xr

ij | xik,Σjk)
∂Σjk

. (25)
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Let us take a closer look at the partial derivative of the conditional probability
in Eq. (25):

∂p(xr
ij | xik,Σjk)
∂Σjk

=
∂Φ(Γ̃r

j)
∂Σjk

−
∂Φ(Γ̃r−1

j )
∂Σjk

= φ(Γ̃r
j)

∂Γ̃r
j

∂Σjk
− φ(Γ̃r−1

j )
∂Γ̃r

j

∂Σjk

= (1 − (Σjk)2)−
3
2

[
φ(Γ̃r

j)(Γr
jΣjk − x̃ik) − φ(Γ̃r−1

j )(Γr−1
j Σjk − x̃ik)

]
,

(26)

where

X̃k = Xk − X̄k√
s2
k

and Γ̃r
j =

Γr
j − ΣjkX̃k√
1 − (Σjk)2

.

The last equality in Eq. (26) follows from taking the derivative and applying
the chain rule. Putting all the pieces together, we obtain

∂�
(n)
jk (Σjk, x

r
j , xk)

∂Σjk
=

n∑
i=1

[
1

p(xr
ij | xik,Σjk)

(1 − (Σjk)2)−
3
2

[
φ(Γ̃r

j)(Γr
jΣjk − x̃ik) − φ(Γ̃r−1

j )(Γr−1
j Σjk − x̃ik)

]]
.

(27)

Setting Eq. (27) to zero and solving for Σjk yields the Case II two-step MLE
for Σjk. Note that this is a nonlinear optimization problem, which can efficiently
be solved utilizing some quasi-Newton method.

A.2. Case III MLE derivation

Turning to Case III, where both Xj and Xk are ordinal variables, we argue
in Section 3.3 in the manuscript that the MLE for the polychoric correlation
remains valid for the LGCM. The probability of an observation taking values
Xj = xr

j and Xk = xs
k is

πrs := p(Xj = xr
j , Xk = xs

k)
= p(Γr−1

j ≤ Zj < Γr
j ,Γs−1

k ≤ Zk < Γs
k)

= p(Γr−1
j ≤ fj(Zj) < Γr

j ,Γs−1
k ≤ fk(Zk) < Γs

k)

=
∫ Γr

j

Γr−1
j

∫ Γk
s

Γs−1
k

φ2(zj , zk,Σjk)dzjdzk,

(28)
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where r ∈ [lj ] and s ∈ [lk] and φ2(x, y, ρ) denotes the standard bivariate density
with correlation ρ. Then, as in the manuscript, the likelihood and log-likelihood
of the n-sample are defined as:

L
(n)
jk (Σjk, x

r
j , x

s
k) = C

lj∏
r=1

lk∏
s=1

πnrs
rs ,

�
(n)
jk (Σjk, x

r
j , x

s
k) = log(C) +

lj∑
r=1

lk∑
s=1

nrs log(πrs).

(29)

where C is a constant and nrs denotes the observed frequency of Xj = xr
j and

Xk = xs
k in a sample of size n =

∑lj
r=1
∑lk

s=1 nrs. Similar to Case II above, we
employ the two-step estimator for the polychoric correlation. Given the thresh-
old estimates from the first step, let us state the derivative of �(n)

jk (Σjk, x
r
j , x

s
k)

with respect to Σjk explicitly. First, recall that from Eq. (28)

πrs =
∫ Γr

j

Γr−1
j

∫ Γk
s

Γs−1
k

φ2(zj , zk,Σjk)dzjdzk

= Φ2(Γr
j ,Γs

k,Σjk) − Φ2(Γr−1
j ,Γs

k,Σjk)
− Φ2(Γr

j ,Γs−1
k ,Σjk) + Φ2(Γr−1

j ,Γs−1
k ,Σjk),

(30)

where Φ2(u, v, ρ) is the standard bivariate normal distribution function with
correlation parameter ρ. Note also that we have ∂Φ2(u,v,ρ)

∂ρ = φ2(u, v, ρ); see
[40]. Taking the derivative of �(n)

jk (Σjk, x
r
j , x

s
k) with respect to Σjk yields

∂�(n)(Σjk, x
r
j , x

s
k)

∂Σjk
=

lXj∑
r=1

lXk∑
s=1

nrs

πrs

∂πrs

∂Σjk

=
lXj∑
r=1

lXk∑
s=1

nrs

πrs

[
φ2(Γr

j ,Γs
k,Σjk) − φ2(Γr−1

j ,Γs
k,Σjk)−

φ2(Γr
j ,Γs−1

k ,Σjk) + φ2(Γr−1
j ,Γs−1

k ,Σjk)
]
.

Again, setting the derivative to zero and solving for Σjk using some quasi-
Newton method yields the Case III two-step MLE for Σjk.

A.3. Comparison of Case II estimators under the LGCM

In this section, we conduct an empirical comparison of Case II estimators within
the framework of the LGCM. Specifically, we examine the Case II MLE derived
under the latent Gaussian model, as discussed in Section 2.1, which involves
incorporating the estimated transformations f̂ at appropriate locations. Fur-
thermore, we investigate the ad hoc estimator presented in Section 3.2 in more
detail.
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We start by rewriting Eq. (27), where we replace occurrences of the Xk with
the corresponding transformation f̂k(Xk). The resulting transformation-based
first-order condition (FOC) for the Case II MLE under the LGCM becomes:

∂�
(n)
jk (Σjk, x

r
j , f̂k(xk))

∂Σjk
(31)

=
n∑

i=1

[
1

Φ(Γ̃r
j(f̂k)) − Φ(Γ̃r−1

j (f̂k))
(1 − (Σjk)2)−

3
2 (32)

[
φ(Γ̃r

j(f̂k))(Γr
jΣjk − f̂k(x̃ik)) − φ(Γ̃r−1

j (f̂k))(Γr−1
j Σjk − f̂k(x̃ik))

]]
, (33)

where

f̂k(x̃ik) = f̂k(xik) − f̂k(x̄k)√
f̂k(sk)2

and Γ̃r
j(f̂k) =

Γr
j − Σjkf̂k(x̃ik)√

1 − (Σjk)2
.

In the ensuing empirical evaluation, the data generation scheme is as follows.
First, we generate n data points (zij , xik)ni=1 from a standard bivariate normal
with correlation Σ∗

jk. Second, we apply the same transformation f−1
t (x) = 5x5

for t ∈ {j, k} to all the data points. Third, we generate binary data xr
ij by ran-

domly choosing f−1
j (zij)-thresholds (guaranteeing relatively balanced classes)

and then applying inversion sampling.
Computing the transformation-based MLE for Case II can be achieved in

several ways. Consider the plugged-in log-likelihood function, i.e.

�
(n)
jk (Σjk, x

r
j , f̂k(xk)) =

n∑
i=1

[
log(p(f̂k(xik))) + log(p(xr

j | f̂k(xik),Σjk))
]

=
n∑

i=1

[
log(p(f̂k(xik))) + Φ(Γ̃r

j(f̂k)) − Φ(Γ̃r−1
j (f̂k))

]
.

(34)

One strategy to optimize Eq. (34) is direct maximization with a quasi-Newton
optimization procedure to determine the optimal values for Σ̂jk. This strategy
is used, for instance, in the R package polycor [15]. Alternatively, another
approach involves utilizing the Eq. (31) and solving for Σ̂jk through a nonlinear
root-finding method. To do this, we employ Broyden’s method [6].

In Figure 3, we generate data according to the scheme above for n = 1000
and a grid of true correlation values Σ∗

jk ∈ [0, 0.98] with a step size of s = 0.02.
Due to symmetry, taking only positive correlations is sufficient for compari-
son purposes. For each correlation value along the grid, we generate 100 mixed
binary-continuous data pairs and compute the MLE (using the abovementioned
strategies) and the ad hoc estimator from Section 3.2. We plot the true corre-
lation values against the absolute difference between estimates and true corre-
lation and the corresponding Monte-Carlo standard error for the MLE and the
ad hoc estimator.
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Fig 3. Comparison of the Case II MLE under the LGCM and the ad hoc estimator.

As expected, both strategies for attaining the MLE yield the same results.
The ad hoc estimator’s bias becomes noticeable only when the underlying cor-
relation Σ∗

jk exceeds 0.75 and it remains at such a mild level that we consider it
negligible [see 31, for a similar observation]. The strength of the ad hoc estima-
tor lies in its simplicity and computational efficiency. The left panel of Figure 4
shows the median computation time surrounded by the first and third quartiles.
We compare the two MLE optimization strategies and the ad hoc estimator for
a grid of sample sizes n ∈ [50, 10000] with a step size of st = 50. Here we fix
Σ∗

jk = .87 and repeat each calculation 100 times recording the time elapsed.
The right panel of Figure 4 demonstrates computation time across a grid of

length 200 of values for Σ∗
jk ∈ [−.98, 98]. The sample size is, in this case, fixed

at n = 1000. The ad hoc estimator is consistently and considerably faster than
the MLE, regardless of the strategy used. The difference in computation time is
especially pronounced for large sample sizes and correlation values approaching
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Fig 4. Computation time in milliseconds for the Case II MLE and ad hoc estimators. We
report the median (solid line) and the first and third quartile (shaded area) of recorded com-
putation time. In the left panel, we compare computation time against a grid of sample sizes
n ∈ [50, 10000] with a step size of st = 50. In the right panel, we compare computation time
against a grid of true correlation values Σ∗

jk ∈ [−.98, .98].

the endpoints of the [−1, 1]-interval. Setting the FOC to zero and solving for Σjk

is computationally more efficient than directly maximizing the log-likelihood
function. The time difference in MLE strategies is more pronounced at the
endpoints of the [−1, 1] interval. The ad hoc estimator is not affected by this
issue. Therefore, in the high-dimensional setting we consider in this paper, the
ad hoc estimator is preferable to the MLE due to (1) its computational efficiency,
(2) its simplicity, which allows us to form concentration inequalities, and (3) its
robustness to the underlying correlation value.
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Appendix B: Proofs

B.1. Proof of Theorem 3.2

Condition B.1 (Gradient statistical noise). The gradient of the log-likelihood
function is τ2-sub-Gaussian. That is, for any λ ∈ R and for all Σjk ∈ [−1 +
δ, 1 − δ] for j, k according to Case II or Case III.

E

[
exp
(
λ
( ∂�jk
∂Σjk

− E
∂�jk
∂Σjk

))]
≤ exp

(τ2λ2

2

)
, (35)

where �jk corresponds to the log-likelihood functions in Definitions 2.4 and 2.5,
respectively.

Case II: Recall that

∂�jk(Σjk, x
r
j , xk)

∂Σjk
= 1

p(xr
ij | xik,Σjk)

∂p(xr
ij | xik,Σjk)
∂Σjk

.

Replacing these with the derivations made in Eq. (27), we write

∂�jk(Σjk, x
r
j , xk)

∂Σjk
=

(1 − (Σjk)2)−
3
2

Φ(Γ̃r
j) − Φ(Γ̃r−1

j )

[
φ(Γ̃r

j)(Γr
jΣjk − x̃k) − φ(Γ̃r−1

j )(Γr−1
j Σjk − x̃k)

]
.

It is easy to see that p(xr
ij | xik,Σjk) ∈ (0, 1) almost surely. Assumption 3.3

makes sure that we exclude impossible events where p(xr
ij | xik,Σjk) = 0.

Moreover, we require that Γr
j > Γr−1

j ,∀j ∈ 1, . . . , d1 this implies that Φ(Γ̃r
j) >

Φ(Γ̃r−1
j ). In other words, there exists a κ > 0 such that p(xr

ij | xik,Σjk) ≤ 1
κ .

Let us now turn to ∂p(xr
ij | xik,Σjk)/∂Σjk. First, for all Σjk ∈ [−1+ δ, 1− δ]

we clearly have 1 ≤ (1− (Σjk)2)−
3
2 ≤ � for � > 1. What’s more, the density of

the standard normal is bounded, i.e.,
∣∣φ(t)
∣∣ ≤ (2π)− 1

2 for all t ∈ R. Similarly,
∣∣∣φ(Γ̃r

j)(Γr
jΣjk − x̃k) − φ(Γ̃r−1

j )(Γr−1
j Σjk − x̃k)

∣∣∣ ≤ ∣∣∣φ(Γ̃r
j)(Γr

jΣjk − x̃k)
∣∣∣ ≤ L1,

due to Assumption 3.2. Therefore,∣∣∣∣∣∂�jk(Σjk, x
r
j , xk)

∂Σjk

∣∣∣∣∣ ≤ κL1,

and
(

∂�jk
∂Σjk

−E
∂�jk
∂Σjk

)
is zero-mean and bounded. Then by Hoeffding’s [19] lemma,

the gradient of the log-likelihood function is τ2-sub-Gaussian with τ = 2κL1
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Case III: Recall that we have

∂�jk(Σjk, x
r
j , x

s
k)

∂Σjk
= 1

πrs

∂πrs

∂Σjk
, for some j < k ∈ [d1].

Considering

πrs =Φ2(Γr
j ,Γs

k,Σjk) − Φ2(Γr−1
j ,Γs

k,Σjk)
−Φ2(Γr

j ,Γs−1
k ,Σjk) + Φ2(Γr−1

j ,Γs−1
k ,Σjk),

we note that this again has to be in (0, 1) due to Assumptions 3.1 and 3.2. such
that πrs ≤ 1

ξ .
Now let us show that

∂πrs

∂Σjk
=
[
φ2(Γr

j ,Γs
k,Σjk) − φ2(Γr−1

j ,Γs
k,Σjk)

−φ2(Γr
j ,Γs−1

k ,Σjk) + φ2(Γr−1
j ,Γs−1

k ,Σjk)
]

is bounded. Indeed, the density of the standard bivariate normal random variable
is of the form φ2(x, y) = ce−q(x,y). Since q(x, y) is a quadratic function of x, y
it follows that

∣∣φ2(x, y)
∣∣ ≤ c. Therefore, every element in ∂πrs

∂Σjk
is bounded and

thus
∣∣∣ ∂πrs

∂Σjk

∣∣∣ ≤ K1. By the same argument as for Case II
(

∂�jk
∂Σjk

−E
∂�jk
∂Σjk

)
is zero-

mean and bounded and by Hoeffding’s lemma the gradient of the log-likelihood
function is τ2-sub-Gaussian with τ = 2ξK1. Based on these arguments, we can
conclude that the condition for gradient statistical noise is satisfied.

Condition B.2 (Hessian statistical noise). The Hessian of the log-likelihood
function is τ2-sub-exponential, i.e. for all Σjk ∈ [−1 + δ, 1 − δ] and for j, k
according to Case II or Case III we have

∥∥∥∥∥∂
2�jk

∂Σ2
jk

∥∥∥∥∥
ψ1

≤ τ2, (36)

where ‖·‖ψ1
denotes the Orlicz ψ1-norm, defined as

‖X‖ψ1
:= sup

p≥1

1
p
E

(∣∣X − E(X)
∣∣p ) 1

p

.

Note that �jk corresponds to the respective log-likelihood functions in Defini-
tions 2.4 and 2.5.
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Case II: We have

∂2�jk
∂Σ2

jk

=
∂2p(xr

j | xk,Σjk)/∂Σ2
jk

p(xr
j | xk,Σjk)

−
(
∂p(xr

j | xk,Σjk)/∂Σjk

p(xr
j | xk,Σjk)

)2

.

Clearly,

∣∣∣∣∣∂
2�jk

∂Σ2
jk

∣∣∣∣∣ ≤
∣∣∣∂2p(xr

j | xk,Σjk)/∂Σ2
jk

∣∣∣∣∣∣p(xr
j | xk,Σjk)

∣∣∣ +
(∣∣∣∂p(xr

j | xk,Σjk)/∂Σjk

∣∣∣∣∣∣p(xr
j | xk,Σjk)

∣∣∣
)2

≤ κL2 + κ2L2
1,

(37)

where it remains to show that
∣∣∣∂2p(xr

ij | xik,Σjk)/∂Σ2
jk

∣∣∣ ≤ L2. Indeed, we can
rewrite our objective as follows:

∂

∂Σjk

(
∂�jk(Σjk, x

r
j , xk)

∂Σjk

)

= ∂

∂Σjk

(
(1 − (Σjk)2)−

3
2

[
φ(Γ̃r

j)(Γr
jΣjk − x̃k) − φ(Γ̃r−1

j )(Γr−1
j Σjk − x̃k)

])

= 3Σjk

1 − Σ2
jk

(1 − (Σjk)2)−
3
2φ(Γ̃r

j)(Γr
jΣjk − x̃k) +

φ′(Γ̃r
j)(Γr

jΣjk − x̃k)2

(1 − Σ2
jk)3

+
φ(Γ̃r

j)Γr
j

(1 − Σ2
jk)−

3
2
− 3Σjk

1 − Σ2
jk

(1 − (Σjk)2)−
3
2φ(Γ̃r−1

j )(Γr−1
j Σjk − x̃k)

−
φ′(Γ̃r−1

j )(Γr−1
j Σjk − x̃k)2

(1 − Σ2
jk)3

−
φ(Γ̃r−1

j )Γr−1
j

(1 − Σ2
jk)−

3
2
.

(38)

Thus,∣∣∣∣∣∣
∂

∂Σjk

(
∂�jk(Σjk, x

r
j , xk)

∂Σjk

)∣∣∣∣∣∣ ≤
∣∣∣∣∣ 3Σjk

1 − Σ2
jk

(1 − (Σjk)2)−
3
2φ(Γ̃r

j)(Γr
jΣjk − x̃k)

∣∣∣∣∣
+

∣∣∣∣∣∣
φ′(Γ̃r

j)(Γr
jΣjk − x̃k)2

(1 − Σ2
jk)3

+
φ(Γ̃r

j)Γr
j

(1 − Σ2
jk)−

3
2

∣∣∣∣∣∣
≤ L2,

due to Assumptions 3.1 and 3.2 and because both φ(t) and φ′(t) are bounded for

all t ∈ R. Therefore, the inequality in Eq. (37) follows and ∂2�jk
∂Σ2

jk
−E

(
∂2�jk
∂Σ2

jk

)
is

bounded by 2(κL2 + κ2L2
1). Hence, for all p ≥ 1

1
p
E

[∣∣∣∂2�jk/∂Σ2
jk − E

(
∂2�jk/∂Σ2

jk

)∣∣∣p
] 1

p

≤ 2
p

(
κL2 + κ2L2

1
)
. (39)
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Finally, for τ = 2κL1 we can choose L1 and κ such that

2(κL2 + κ2L2
1) ≤ τ2 = 4κ2L2

1.

Thus, the Hessian statistical noise-condition for Case II is satisfied.

Case III: Let us start with the Hessian of �jk in the polychoric case:

∂2�jk(Σjk, x
r
j , x

s
k)

∂Σ2
jk

=
∂2πrs/∂Σ2

jk

πrs
−
(
∂πrs/∂Σjk

πrs

)2

Thus:

∣∣∣∣∣∂
2�jk(Σjk, x

r
j , x

s
k)

∂Σ2
jk

∣∣∣∣∣ ≤
∣∣∣∂2πrs/∂Σ2

jk

∣∣∣
|πrs|

+
(∣∣∂πrs/∂Σjk

∣∣
|πrs|

)2

≤ ξK2 + ξ2K2
1 .

(40)

Again it remains to show that ∂2πrs/∂Σ2
jk ≤ K2. Consider∣∣∣∣∣ ∂

∂Σjk

(
∂πrs

∂Σjk

)∣∣∣∣∣
=
∣∣∣ ∂

∂Σjk
φ2(Γr

j ,Γs
k,Σjk) − φ2(Γr−1

j ,Γs
k,Σjk)

− φ2(Γr
j ,Γs−1

k ,Σjk) + φ2(Γr−1
j ,Γs−1

k ,Σjk)
∣∣∣

≤
∣∣∣∣∣ ∂

∂Σjk
φ2(Γr

j ,Γs
k,Σjk)

∣∣∣∣∣+
∣∣∣∣∣ ∂

∂Σjk
φ2(Γr−1

j ,Γs
k,Σjk)

∣∣∣∣∣
+

∣∣∣∣∣ ∂

∂Σjk
φ2(Γr

j ,Γs−1
k ,Σjk)

∣∣∣∣∣+
∣∣∣∣∣ ∂

∂Σjk
φ2(Γr−1

j ,Γs−1
k ,Σjk)

∣∣∣∣∣
≤ K2,

where each of the derivatives of the bivariate density is bounded, since we assume
that the correlation is bounded away from one and minus one, i.e., Σjk ∈ [−1+
δ, 1 − δ].

Similar to Case II, for τ = 2ξK1 we can choose K1 and ξ such that

2(ξk2 + ξ2k2
1) ≤ τ2 = 4ξ2K2

1 .

Consequently, the Hessian statistical noise-condition for Case III is satisfied,
which concludes the proof of the Hessian statistical noise-condition.

Concerning the third condition, we introduce some additional notation. De-
note the sample risk by R̂

(n)
jk (Σjk) for j, k according to Case II and Case III,

i.e.,

Case II : R̂
(n)
jk (Σjk) = 1

n

n∑
i=1

[
log(p(xik)) + log(p(xr

ij | xik,Σjk))
]
,
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and

Case III : R̂
(n)
jk (Σjk) = 1

n

lXj∑
r=1

lXk∑
s=1

nrs log(πrs).

Lastly, we define Rjk(Σjk) = EΣ∗
jk
R̂

(n)
jk (Σjk) to be the population risk for each

of the respective cases.

Condition B.3 (Hessian regularity). The Hessian regularity condition consists
of three parts:

1. The second derivative of the population risk Rjk(Σjk) is bounded at one
point. That is, there exists one |Σ̄jk| ≤ 1 − δ and H > 0 such that
|R′′

jk(Σ̄jk)| ≤ H.
2. The second derivative of the log-likelihood with respect to Σjk is Lipschitz

continuous with integrable Lipschitz constant, i.e. there exists a M∗ > 0
such that E[M ] ≤ M∗, where

M = sup
|Σ(1)

jk |, |Σ(2)
jk |≤1−δ,

Σ(1)
jk �=Σ(2)

jk

∣∣∣�′′jk(Σ(1)
jk ) − �′′jk(Σ

(2)
jk )
∣∣∣∣∣∣Σ(1)

jk − Σ(2)
jk

∣∣∣ .

3. The constants H and M∗ are such that H ≤ τ2 and M∗ ≤ τ3.

We need some intermediate results that make dealing with Rjk(Σjk) easier. First,
note that EΣ∗

jk
R̂

(n)
jk (Σjk) = EΣ∗

jk
�jk(Σjk). Second, for all Σjk ∈ [−1 + δ, 1 − δ]

and m ∈ {1, 2}

Rm
jk(Σjk) = ∂m

∂Σm
jk

EΣ∗
jk
�jk(Σjk) = EΣ∗

jk

∂m

∂Σm
jk

�jk(Σjk),

by Lemma B.7 and Corollary B.8.

1. Recall the first part of the Hessian regularity condition, whereby Eq. (37)
and Eq. (40) for all Σjk ∈ [−1 + δ, 1 − δ] we have

Case II: | ∂2

∂Σ2
jk

�jk(Σjk)| ≤ κL2 + κ2L2
1

and

Case III: | ∂2

∂Σ2
jk

�jk(Σjk)| ≤ ξK2 + ξ2K2
1

for cases II and III, respectively. Consequently, the claim in the first part
of the Hessian regularity condition holds for Case II and Case III for any
|Σ̄jk| ≤ 1 − δ with H1 = κL2 + κ2L2

1 and H2 = ξK2 + ξ2K2
1 . Moreover,

we also have H1 ≤ τ2 = 4κ2L2
1 and H2 ≤ τ2 = 4ξ2K2

1 .
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2. The second part of the Hessian regularity condition requires that the second
derivative of the log-likelihood with respect to Σjk is Lipschitz continuous
with integrable Lipschitz constant. By the mean-value-theorem, all we need
to show is that we can find a bound on the third derivative of the log-
likelihood function.

Case II: Note that we have

∂3

∂Σ3
jk

�jk(Σjk)

= ∂

∂Σjk

[
∂2�jk
∂Σ2

jk

]

= ∂

∂Σjk

[
∂2p(xr

j | xk,Σjk)/∂Σ2
jk

p(xr
j | xk,Σjk)

−
(
∂p(xr

j | xk,Σjk)/∂Σjk

p(xr
j | xk,Σjk)

)2]

=
∂3p(xr

j | xk,Σjk)/∂Σ3
jk

p(xr
j | xk,Σjk)

− 3
(
∂p(xr

j | xk,Σjk)/∂Σjk

)(
∂2p(xr

j | xk,Σjk)/∂Σ2
jk

)
(p(xr

j | xk,Σjk))2

+ 2
(
∂p(xr

j | xk,Σjk)/∂Σjk

p(xr
j | xk,Σjk)

)3

.

Hence ∣∣∣∣∣ ∂3

∂Σ3
jk

�jk(Σjk)

∣∣∣∣∣ ≤ κL3 + 3κ2L2L1 + 2κ3L3
1.

It remains to show therefore, that∣∣∣∂3p(xr
j | xk,Σjk)/∂Σ3

jk

∣∣∣ ≤ L3.

When taking the derivative of Eq. (38), it is obvious that the resulting
statement is bounded due to Assumptions 3.1 and 3.2 and the fact that
φ(t), φ′(t), φ′′(t) are all bounded for all t ∈ R.
Therefore, by applying the mean-value-theorem we get

M1 ≤ κL3 + 3κ2L2L1 + 2κ3L3
1,

and the natural choice for

M∗
1 = κL3 + 3κ2L2L1 + 2κ3L3

1,

where it follows that
M∗

1 ≤ τ3 = 8κ3L3
1.
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Case III: We proceed similarly and first consider

∂3

∂Σ3
jk

�jk(Σjk)

= ∂

∂Σjk

[
∂2�jk(Σjk, x

r
j , x

s
k)

∂Σ2
jk

]

= ∂

∂Σjk

[
∂2πrs/∂Σ2

jk

πrs
−
(
∂πrs/∂Σjk

πrs

)2]

=
∂3πrs/∂Σ3

jk

πrs
− 3
(
∂πrs/∂Σjk

)(
∂2πrs/∂Σ2

jk

)
(πrs)2

+ 2
(
∂πrs/∂Σjk

πrs

)3

.

(41)

Hence ∣∣∣∣∣ ∂3

∂Σ3
jk

�jk(Σjk)

∣∣∣∣∣ ≤ ξK3 + 3ξ2K2K1 + 2ξ3K3
1 .

Taking a closer look at
∣∣∣∂3πrs/∂Σ3

jk

∣∣∣, boundedness again follows from the
fact that the quadratic function in the exponential of the bivariate normal
density does not vanish. Thus, we have

M2 ≤ ξK3 + 3ξ2K2K1 + 2ξ3K3
1 ,

and the natural choice for

M∗
2 = ξK3 + 3ξ2K2K1 + 2ξ3K3

1 ,

where we have
M∗

2 ≤ τ3 = 8ξ3K3
1 .

These steps validate the Hessian regularity condition.

Condition B.4 (Population risk is strongly Morse). There exist ε > 0 and
η > 0 such that Rjk(Σjk) is (ε, η)-strongly Morse, i.e.

1. For all Σjk such that |Σjk| = 1 − δ we have that |R′
jk(Σjk)| > ε.

2. For all Σjk such that |Σjk| ≤ 1 − δ:

|R′
jk(Σjk)| ≤ ε =⇒ |R′′

jk(Σjk)| ≥ η.

Put differently, Rjk(Σjk) is (ε, η)-strongly Morse if the boundaries {−1+δ, 1−δ}
are not critical points of Rjk(Σjk) and if Rjk(Σjk) only has finitely many critical
points that are all non-degenerate.

Let us verify that R′′(Σjk) 
= 0 for cases II and III. Indeed by Lemma B.7
and Corollary B.8 we can rewrite R′′

jk(Σjk) and obtain
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R′′(Σjk)

= EΣjk

[
∂2�jk(Σjk)

∂Σ2
jk

]

= EΣ∗
jk

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂2p(xr
j | xk,Σjk)/∂Σ2

jk

p(xr
j | xk,Σjk)

−
(
∂p(xr

j | xk,Σjk)/∂Σjk

p(xr
j | xk,Σjk)

)2

Case II,

∂2π(Σjk)rs/∂Σ2
jk

π(Σjk)rs
−
(
∂π(Σjk)rs/∂Σjk

π(Σjk)rs

)2

Case III,

where in π(Σjk)rs we made the dependence on Σjk explicit.

Case II: Recall that we have

EΣ∗
jk

[
∂2p(xr

j | xk,Σ∗
jk)/∂Σ2

jk

p(xr
j | xk,Σ∗

jk)

]

=
∫ ∞

−∞

lj+1∑
r=1

∂2p(xr
j | xk,Σ∗

jk)/∂Σ2
jk

p(xr
j | xk,Σ∗

jk)
p(xr

j , xk; Σ∗
jk)dxk

=
∫ ∞

−∞

lj+1∑
r=1

∂2p(xr
j | xk,Σ∗

jk)/∂Σ2
jk

p(xr
j | xk,Σ∗

jk)
p(xr

j | xk,Σ∗
jk)p(xk)dxk

=
lj+1∑
r=1

∂2p(xr
j | xk,Σ∗

jk)/∂Σ2
jk,

with
lj+1∑
r=1

∂2p(xr
j | xk,Σ∗

jk)/∂Σ2
jk

=
lj+1∑
r=1

[
3Σjk

1 − Σ2
jk

(1 − (Σjk)2)−
3
2φ(Γ̃r

j)(Γr
jΣjk − x̃k)

+
φ′(Γ̃r

j)(Γr
jΣjk − x̃k)2

(1 − Σ2
jk)3

+
φ(Γ̃r

j)Γr
j

(1 − Σ2
jk)−

3
2

− 3Σjk

1 − Σ2
jk

(1 − (Σjk)2)−
3
2φ(Γ̃r−1

j )(Γr−1
j Σjk − x̃k)

−
φ′(Γ̃r−1

j )(Γr−1
j Σjk − x̃k)2

(1 − Σ2
jk)3

−
φ(Γ̃r−1

j )Γr−1
j

(1 − Σ2
jk)−

3
2

]

= 0,

since all terms except the ones involving φ(Γ̃0
j ) and φ(Γ̃j

lj+1) cancel and further-
more lim

t→±∞
φ(t) = lim

t→±∞
φ′(t) = 0.
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Case III: Similarly, consider

EΣ∗
jk

[
∂2π(xr

j , x
k
s ; Σ∗

jk)/∂Σ2
jk

π(xr
j , x

k
s ; Σ∗

jk)

]

=
∑
r

∑
s

[
∂2π(xr

j , x
k
s ; Σ∗

jk)/∂Σ2
jk

π(xr
j , x

k
s ; Σ∗

jk)
P (Xj = xr

j , Xk = xs
k)
]

=
∑
r

∑
s

[
∂2π(xr

j , x
k
s ; Σ∗

jk)/∂Σ2
jk

]

=
∑
r

∑
s

[
q(Γr

j ,Γs
k,Σ∗

jk)φ2(Γr
j ,Γs

k,Σ∗
jk)

− q(Γr−1
j ,Γs

k,Σ∗
jk)φ2(Γr−1

j ,Γs
k,Σ∗

jk)
− q(Γr

j ,Γs−1
k ,Σ∗

jk)φ2(Γr
j ,Γs−1

k ,Σ∗
jk)

+ q(Γr−1
j ,Γs−1

k ,Σ∗
jk)φ2(Γr−1

j ,Γs−1
k ,Σ∗

jk)
]

= q(Γlj+1
j ,Γlk+1

k ,Σ∗
jk)φ2(Γ

lj+1
j ,Γlk+1

k ,Σ∗
jk)

− q(Γlj+1
j ,Γ0

k,Σ∗
jk)φ2(Γ

lj+1
j ,Γ0

k,Σ∗
jk)

− q(Γ0
j ,Γ

lk+1
k ,Σ∗

jk)φ2(Γ0
j ,Γ

lk+1
k ,Σ∗

jk)
+ q(Γ0

j ,Γ0
k,Σ∗

jk)φ2(Γ0
j ,Γ0

k,Σ∗
jk)

= 0,

with q(s, t,Σ∗
jk)) denoting the corresponding quadratic function from the deriva-

tive of the bivariate normal density. As above, Γlk+1
k = ∞ and Γ0

k = −∞ for
all k ∈ 1, . . . d1. This, together with the fact that all other terms cancel when
summing over r, s, φ(·) is zero in all points containing Γlk+1

k ,Γ0
k and so the last

equality follows.
From this it follows, that R′′

jk(Σ∗
jk) can only be zero if ∂p(xr

j | xk,Σ∗
jk)/∂Σjk

for Case II and ∂π(Σ∗
jk)rs/∂Σjk for Case III are zero. However, this is not

possible due to Assumptions 3.2 and 3.3. To see this note that in Eq. (26)
∂p(xr

j | xk,Σ∗
jk)/∂Σjk can only be zero if either Γr

j = Γr−1
j which we ruled

out in the definition of the LGCM, or if |Γr
j | = |Γr−1

j | = ∞ which is ruled out
by Assumption 3.2.We would not observe any discrete states in the first place if
we had r = {0, lj + 1}. Assumption 3.3 rules this case out. Consequently, there
exist ε > 0 and η > 0 such that Rjk(Σjk) is (ε, η)-strongly Morse

With these considerations, we have verified the required four conditions to
hold such that Theorem 2 in Mei, Bai and Montanari [26] holds for each couple
(j, k) according to cases II and III. More precisely, let α ∈ (0, 1). Now, letting
n ≥ 4C log(n) log(Bα ) where C = C0

(
τ2

ε2 ∨ τ4

η2 ∨ τ2L2

η4

)
and B = τ(1 − δ) with

τ = 2[κL1 ∨ ξK1] and C0 denoting a universal constant. Letting further L =
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supΣjk:|Σjk|≤1−δ|R′′′
jk(Σjk)| we obtain

P

(∣∣∣Σ̂(n)
jk − Σ∗

jk

∣∣∣ ≥ 2τ
η

√
C0

log(n)
n

[
log
(
B

α

)
∨ 1
])

≤ α, (42)

and consequently, the result in Theorem 3.2 follows.

B.2. Proof of Lemmas B.5 to B.8

Lemma B.5. For all |Σjk| ≤ 1 − δ and all j ∈ [d1], k ∈ [d2] we have∫
S

∂

∂Σjk
p(xr

j | xk,Σjk)dμ(xr
j) = ∂

∂Σjk

∫
S

p(xr
j | xk,Σjk)dμ(xr

j),

where μ is the counting measure on S, the corresponding discrete space.

Proof. Clearly, from Eq. (26) we have

∂

∂Σjk
p(xr

j | xk,Σjk)

= (1 − (Σjk)2)−
3
2

[
φ(Γ̃r

j)(Γr
jΣjk − x̃k) − φ(Γ̃r−1

j )(Γr−1
j Σjk − x̃k)

]
,

and therefore∫
S

(1 − (Σjk)2)−
3
2

[
φ(Γ̃r

j)(Γr
jΣjk − x̃k) − φ(Γ̃r−1

j )(Γr−1
j Σjk − x̃k)

]
dμ(xr

j)

= (1 − (Σjk)2)−
3
2

lj∑
r=1

[
φ(Γ̃r

j)(Γr
jΣjk − x̃k) − φ(Γ̃r−1

j )(Γr−1
j Σjk − x̃k)

]
= 0

= ∂

∂Σjk

lj∑
r=1

p(xr
j | xk,Σjk)

= ∂

∂Σjk
1,

since all terms except the ones involving φ(Γ̃0
j ) and φ(Γ̃lj+1

j ) cancel and

lim
t→±∞

φ(t) = lim
t→±∞

φ′(t) = 0,

and probabilities associated with all possible values must sum up to one.

Corollary B.6. For all |Σjk| ≤ 1 − δ and all j ∈ [d1], k ∈ [d2] we have∫
S

∂2

∂Σ2
jk

p(xr
j | xk,Σjk)dμ(xr

j) = ∂2

∂Σ2
jk

∫
S

p(xr
j | xk,Σjk)dμ(xr

j),

where μ is the counting measure on S, the corresponding discrete space.
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Proof. From Eq. (38) we obtain

∂2

∂Σ2
jk

p(xr
j | xk,Σjk)

= 3Σjk

1 − Σ2
jk

(1 − (Σjk)2)−
3
2φ(Γ̃r

j)(Γr
jΣjk − x̃k)

+
φ′(Γ̃r

j)(Γr
jΣjk − x̃k)2

(1 − Σ2
jk)3

+
φ(Γ̃r

j)Γr
j

(1 − Σ2
jk)−

3
2

− 3Σjk

1 − Σ2
jk

(1 − (Σjk)2)−
3
2φ(Γ̃r−1

j )(Γr−1
j Σjk − x̃k)

−
φ′(Γ̃r−1

j )(Γr−1
j Σjk − x̃k)2

(1 − Σ2
jk)3

−
φ(Γ̃r−1

j )Γr−1
j

(1 − Σ2
jk)−

3
2
.

By similar arguments to Lemma B.5, when taking the sum over all possible
states, all terms except the ones involving φ(Γ̃0

j ) and φ(Γ̃lj+1
j ) still cancel as they

appear in every additive term in the above equation – recall that φ′(t) = −tφ(t)
– and equality then follows immediately.

Lemma B.7. For all |Σjk| ≤ 1 − δ we have

1.
∂

∂Σjk
EΣ∗

jk

[
�jk(Σjk, x

r
j , xk)

]
= EΣ∗

jk

[
∂

∂Σjk
�jk(Σjk, x

r
j , xk)

]
,

i.e.
∂

∂Σjk

∫
S×R

logLjk(Σjk, x
r
j , xk)Ljk(Σ∗

jk, x
r
j , xk)dε(xr

j , xk)

=
∫
S×R

∂

∂Σjk
logLjk(Σjk, x

r
j , xk)Ljk(Σ∗

jk, x
r
j , xk)dε(xr

j , xk)

where ε is the product measure on S × R defined by

ε := μ⊗ λ

with μ denoting the counting measure on the corresponding discrete space
S and λ the Lebesgue measure on the corresponding Euclidean space.

2.
∂

∂Σjk
EΣ∗

jk

[
�jk(Σjk, x

r
j , x

s
k)
]

= EΣ∗
jk

[
∂

∂Σjk
�jk(Σjk, x

r
j , x

s
k)
]
,

i.e.
∂

∂Σjk

∫
S×S′

logLjk(Σjk, x
r
j , x

s
k)Ljk(Σ∗

jk, x
r
j , x

s
k)d�(xr

j , x
s
k)

=
∫
S×S′

∂

∂Σjk
logLjk(Σjk, x

r
j , x

s
k)Ljk(Σ∗

jk, x
r
j , x

s
k)d�(xr

j , x
s
k)
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where � is the product measure on S × S′ defined by

� := μ⊗ μ′

with μ and μ′ denoting the counting measure on the corresponding discrete
space S and S′, respectively.

Proof. Let us start with 1. and rewrite the right-hand side:∫
S×R

∂

∂Σjk
logLjk(Σjk, x

r
j , xk)Ljk(Σ∗

jk, x
r
j , xk)dε(xr

j , xk)

=
∫
R

lj∑
r=1

∂

∂Σjk
log p(xr

j , xk,Σjk)p(xr
j , xk,Σ∗

jk)dxk.

The left-hand side corresponds to

∂

∂Σjk

∫
S×R

logLjk(Σjk, x
r
j , xk)Ljk(Σ∗

jk, x
r
j , xk)dε(xr

j , xk)

= ∂

∂Σjk

∫
R

lj∑
r=1

log p(xr
j , xk,Σjk)p(xr

j , xk,Σ∗
jk)dxk.

By Lebesgue’s Dominated Convergence Theorem, we can interchange integra-
tion and differentiation as log p(xr

j , xk,Σjk) is absolutely continuous s.t. its
derivative exists almost everywhere and∣∣∣∣∣∂ log p(xr

j , xk,Σjk)
∂Σjk

∣∣∣∣∣
is upper bounded by some integrable function. Indeed, the latter requirement
has already been shown in Condition B.1. The second point follows by the same
arguments where log p(xr

j , x
s
k,Σjk) = log(C) + log(πrs) is absolutely continuous

and bounded as shown in Condition B.1. This concludes the proof.

Corollary B.8. For all
∣∣Σjk

∣∣ ≤ 1 − δ we have

∂2

∂Σ2
jk
EΣ∗

jk

[
�jk(Σjk, x

r
j , xk)

]
= EΣ∗

jk

[
∂2

∂Σ2
jk
�jk(Σjk, x

r
j , xk)

]
, for Case II and

∂2

∂Σ2
jk
EΣ∗

jk

[
�jk(Σjk, x

r
j , x

s
k)
]

= EΣ∗
jk

[
∂2

∂Σ2
jk
�jk(Σjk, x

r
j , x

s
k)
]
, for case III.

Proof. The claim follows immediately by the same arguments as in Lemma B.7
and the bound on the second derivative of the log-likelihood functions in Con-
dition B.2, respectively.
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B.3. Proof of Lemma 3.1

First, note that Φ−1(·) is Lipschitz on [Φ(−G),Φ(G)] with a Lipschitz constant
L1 = ∇Φ−1(π̂r

j ) = 1/(
√

2
π min{π̂r

j , 1 − π̂r
j}). Then we have

|Γ̂r
j − Γr

j | =
∣∣∣Φ−1( 1

n

n∑
i=1

1(Xij ≤ xr
j)
)
− Φ−1(Φ(Γr

j)
)∣∣∣

≤ L1

∣∣∣ 1
n

n∑
i=1

1(Xij ≤ xr
j) − Φ(Γr

j)
∣∣∣.

Applying Hoeffding’s inequality, we obtain for some t > 0

P
(
|Γ̂r

j − Γr
j | ≥ t

)
≤ P
(
L1

∣∣∣ 1
n

n∑
i=1

1(Xij ≤ xr
j) − Φ(Γr

j)
∣∣∣ ≥ t
)

≤ 2 exp
(
− 2t2n

L2
1

)
.

This concludes the proof.

B.4. Proof of Theorem 3.3

In what follows, the proof of Theorem 3.3 revolves largely around the Winsorized
estimator introduced in Section 3.2. Recall that

f̂(x) = Φ−1(Wδn [F̂Xk
(x)])

where

Wδn(u) ≡ δnI(u < δn) + uI(δn ≤ u ≤ (1 − δn)) + (1 − δn)I(u > (1 − δn)),

with truncation constant δn = 1/(4n1/4√π logn). Recall f(x) = Φ−1(FXk
(x)),

and let g = f−1.
Assume w.l.o.g. that we have consecutive integer scoring in our discrete vari-

able Xj such that the polyserial ad hoc estimator simplifies as

Σ̂(n)
jk =

r
(n)
f̂(Xk),Xj

σ
(n)
Xj∑lj

r=1 φ(Γ̄r
j)(x

r+1
j − xr

j)
=

r
(n)
f̂(Xk),Xj

σ
(n)
Xj∑lj

r=1 φ(Γ̄r
j)

=
Sf̂(Xk)Xj

σ
(n)
f̂(Xk)

∑lj
r=1 φ(Γ̄r

j)
, (43)

for all j ∈ [d1], k ∈ [d2]. Sf̂(Xk)Xj
denotes the sample covariance between the

f̂(Xk) and the Xj , i.e.

Sf̂(Xk)Xj
= 1

n

n∑
i=1

(
f̂(Xik) − μn(f̂)

)(
Xij − μn(Xj)

)
,
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where μn(f̂) = 1/n
∑n

i=1 f̂(Xik) and μn(Xj) = 1/n
∑n

i=1 Xij . Moreover, σ(n)
f̂(Xk)

denotes the sample standard deviation of the Winsorized estimator, i.e.

σ
(n)
f̂(Xk)

≡

√√√√ 1
n

n∑
i=1

(
f̂(Xik) − μn(f̂)

)2
.

Recall that we treat the threshold estimates as given. In particular, we have
here φ(Γ̄r

j), therefore note further that φ(·), namely the density function of the
standard normal is Lipschitz with Lipschitz constant L0 = (2π)−1/2 exp(−1/2),
s.t. ∣∣∣φ(Γ̄r

j) − φ(Γr
j)
∣∣∣ ≤ L0

∣∣∣Γ̄r
j − Γr

j

∣∣∣ ≤ ∣∣∣Γ̄r
j − Γr

j

∣∣∣ ,
as L0 < 1. Consequently, the statements regarding the accuracy of the threshold
estimates in Section 3.4 still hold here.

The outline of the proof is as follows: We start by forming concentration
bounds for the sample covariance and the sample standard deviation separately.
Then, we argue that the quotient of the two will be accurate in terms of a
Lipschitz condition on the corresponding compactum. Let us start with the
sample covariance. To study the Winsorized estimator, we consider the interval
[g(−

√
M logn), g(

√
M logn)] for a choice of M > 2. As the behavior of the

estimator is different for the endpoints, we further split this interval into a
middle and an end part, respectively, i.e.,

Mn ≡ (g(−
√

β logn), g(
√

β logn))

En ≡ [g(−
√
M logn), g(−

√
β logn)) ∪ (g(

√
β logn), g(

√
M logn)].

This is only necessary for f̂(Xk) since Xj ∈ 1, . . . , lj is discrete and can therefore
only take finitely many values. Now consider the sample covariance, where we
have for any t > 0 that

P

(
max
j,k

∣∣∣Sf̂(Xk)Xj
− Sf(Xk)Xj

∣∣∣ > 2t
)

= P

(
max
j,k

∣∣∣ 1
n

n∑
i=1

[
f̂(Xik)Xij − f(Xik)Xij

− μn(f̂)μn(Xj) + μn(f)μn(Xj)
]∣∣∣ > 2t

)

≤ P

(
max
j,k

∣∣∣∣∣∣
1
n

n∑
i=1

[
(f̂(Xik) − f(Xik))Xij)

]∣∣∣∣∣∣ > t

)

+ P

(
max
j,k

∣∣∣(μn(f̂) − μn(f))μn(Xj)
∣∣∣ > t

)
.
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Let us take a closer look at the second term

P

(
max
j,k

∣∣∣(μn(f̂) − μn(f))μn(Xj)
∣∣∣ > t

)

= P

(
max
j,k

∣∣∣∣∣∣
1
n

n∑
i=1

(
f̂(Xik) − f(Xik)

) 1
n

n∑
i=1

Xij

∣∣∣∣∣∣ > t

)

= P

(
max

k

∣∣∣∣∣∣
1
n

n∑
i=1

(
f̂(Xik) − f(Xik)

)∣∣∣∣∣∣max
j

∣∣∣∣∣∣
1
n

n∑
i=1

Xij

∣∣∣∣∣∣ > t

)

≤ P

(
max

k

∣∣∣∣∣∣
1
n

n∑
i=1

(
f̂(Xik) − f(Xik)

)∣∣∣∣∣∣ >
t

lmax

)
,

where Xj is a discrete random variable with finite level set and lmax ≡ maxj lj >
0.

Now, define
�i(j, k) ≡ (f̂(Xik) − f(Xik))Xij

and
�̃r,s ≡ (f̂(s) − f(s))r,

for r = 1, . . . , lj . Furthermore, consider the event An, where

An ≡ {g(−
√

M logn) ≤ X1k, . . . , Xnk ≤ g(
√

M logn), k = d1 + 1, . . . , d}.

The bound for the complement arises from the Gaussian maximal inequality
Liu, Lafferty and Wasserman [24, Lemma 13], i.e.,

P (Ac
n) ≤ P

(
max

i,k∈{1,...,n}×{d1+1,...,d}

∣∣f(Xik)
∣∣ >√2 log(nd2)

)
≤ 1

2
√
π log(nd2)

.

The following lemma gives insight into the behavior of the Winsorized esti-
mator along the end region.

Lemma B.9. On the event An, consider β = 1
2 , t ≥ CM

√
log d2log2n

n1/2 and

A =
√

2
π (

√
M −

√
β), then

P

(
max
j,k

1
n

∑
Xk∈En

∣∣∣(f̂(Xik) − f(Xik))Xij

∣∣∣ > t

2

)
≤ exp

(
− k1n

3/4√logn
k2 + k3

)
,

and

P

(
max

k

1
n

∑
Xk∈En

∣∣∣f̂(Xik) − f(Xik)
∣∣∣ > t

2

)
≤ exp

(
− k1n

3/4√logn
k2 + k3

)
,

where ki, i ∈ {1, 2, 3} are generic constants independent of sample size and
dimension.
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Proof. Let θ1 ≡ nβ/2t
4A

√
logn

and let us first consider the bound for the first in-
equality.

P

(
max
j,k

1
n

∑
Xk∈En

∣∣∣(f̂(Xik) − f(Xik))Xij

∣∣∣ > t

2

)

= P
(

max
j,k

1
n

∑
i:Xik∈En

∣∣∣(f̂(Xik) − f(Xik))Xij

∣∣∣ > t

2

∩ max
jk

sup
r∈{1,...,lj},s∈En

∣∣∣f̂(t) − f(t)
∣∣∣|r| > θ1

)

+ P
(

max
j,k

1
n

∑
i:Xik∈En

∣∣∣(f̂(Xik) − f(Xik))Xij

∣∣∣ > t

2

∩ max
jk

sup
r∈{1,...,lj},s∈En

∣∣∣f̂(s) − f(s)
∣∣∣|r| ≤ θ1

)

≤ P
(

max
jk

sup
r∈{1,...,lj},s∈En

∣∣∣f̂(s) − f(s)
∣∣∣|r| > θ1

)
+P
( 1
n

n∑
i=1

1{Xik∈En} >
t

2θ1

)
.

Similarly, for the bound of the second inequality, we have

P
(

max
k

1
n

∑
i:Xik∈En

∣∣∣f̂(Xik) − f(Xik)
∣∣∣ > t

2

)

= P
(

max
k

1
n

∑
i:Xik∈En

∣∣∣f̂(Xik) − f(Xik)
∣∣∣ > t

2 ∩ max
k

sup
s∈En

∣∣∣f̂(s) − f(s)
∣∣∣ > θ1

)

+ P
(

max
k

1
n

∑
i:Xik∈En

∣∣∣f̂(Xik) − f(Xik)
∣∣∣ > t

2 ∩ max
k

sup
s∈En

∣∣∣f̂(s) − f(s)
∣∣∣ ≤ θ1

)

≤ P
(

max
k

sup
s∈En

∣∣∣f̂(s) − f(s)
∣∣∣ > θ1

)
+ P
( 1
n

n∑
i=1

1{Xik∈En} >
t

2θ1

)
.

Recall that sup{1, . . . , lj} = lj > 0. Furthermore, Lemma 16 in [24] states that
for all n

sup
s∈En

∣∣∣f̂(s) − f(s)
∣∣∣ <√2(M + 2) logn (44)

With this in mind, we have

P
(

max
k

sup
s∈En

∣∣∣f̂(s) − f(s)
∣∣∣ > θ1

)
≤ d2P

(
sup
s∈En

∣∣∣f̂(s) − f(s)
∣∣∣ > θ1

)
.

Recall that CM = 8/
√
π(
√

2M − 1)(M + 2) and since t ≥ CM

√
log d2log2n

n1/2 , we
have
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θ1 = nβ/2t

4A
√

logn
≥ CM

√
log d2log2n

4A
√

logn
= 2(M + 2) logn.

Consequently, we have

θ1 ≥ 2(M + 2) logn ≥
√

2(M + 2) logn,

as well as
θ1

lj
≥
√

2(M + 2) logn,

such that

P
(

sup
t∈En

∣∣∣f̂(t) − f(t)
∣∣∣ > θ1

)
= P
(

sup
r∈{1,...,lj},s∈En

∣∣∣f̂(s) − f(s)
∣∣∣|r| > θ1

)
= 0.

In both cases, the second term is equivalent. We have

P
( 1
n

n∑
i=1

1{Xik∈En} >
t

2θ1

)
= P
( n∑

i=1
1{Xik∈En} >

nt

2θ1

)

= P
( n∑

i=1

(
1{Xik∈En} − P (X1k ∈ En)

)
>

nt

2θ1
− P (X1k ∈ nEn)

)

≤ P
( n∑

i=1

(
1{Xik∈En} − P (X1k ∈ En)

)
>

nt

2θ1
− nA

√
logn
nβ

)
.

Choosing θ1 this way guarantees that

nt

2θ1
− nA

√
logn
nβ

= nA

√
logn
nβ

> 0.

Then, using Bernstein’s inequality, we get

P
( 1
n

n∑
i=1

1{Xik∈En} >
t

2θ1

)

≤ P
( n∑

i=1

(
1{Xik∈En} − P (X1k ∈ En)

)
> nA

√
logn
nβ

)

≤ exp
(
− k1n

2−β logn
k2n1−β/2√logn + k3n1−β/2√logn

)
,

where k1, k2, k3 > 0 are generic constants independent of n and d2. Collecting
terms finishes the proof.
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Turning back to the first decomposition of the sample covariance, we have

P

(
max
j,k

∣∣∣∣∣∣
1
n

n∑
i=1

[
(f̂(Xik) − f(Xik))Xij)

]∣∣∣∣∣∣ > t

)

≤ P

(
max
j,k

∣∣∣∣∣∣
1
n

n∑
i=1

�i(j, k)

∣∣∣∣∣∣ > t,An

)
+ P (Ac

n)

≤ P

(
max
j,k

∣∣∣∣∣∣
1
n

n∑
i=1

�i(j, k)

∣∣∣∣∣∣ > t ∩ An

)
+ 1

2
√
π log(nd2)

.

Further, we have

P

(
max
j,k

∣∣∣∣∣∣
1
n

n∑
i=1

�i(j, k)

∣∣∣∣∣∣ > t ∩ An

)

≤ P

(
max
j,k

1
n

∑
Xk∈Mn

∣∣�i(j, k)
∣∣ > t

2

)
+ P

(
max
j,k

1
n

∑
Xk∈En

∣∣�i(j, k)
∣∣ > t

2

)

+ 1
2
√
π log(nd2)

≤ P

(
max
j,k

1
n

∑
Xk∈Mn

∣∣�i(j, k)
∣∣ > t

2

)
+ exp

(
− k1n

3/4√logn
k2 + k3

)

+ 1
2
√
π log(nd2)

,

where Xk ∈ Mn is shorthand notation for i : Xik ∈ Mn. We derive the bound of
the second term in Lemma B.9. Thus, let us continue with the first term, where

P

(
max
j,k

1
n

∑
Xk∈Mn

∣∣�i(j, k)
∣∣ > t

2

)

≤ d2P

(
sup

r∈{1,...,lj},s∈Mn

∣∣∣�̃r,s

∣∣∣ > t

2

)

= d2P

(
sup

r∈{1,...,lj},s∈Mn

∣∣∣(f̂(s) − f(s))
∣∣∣|r| > t

2

)

= d2P

(
sup
s∈Mn

∣∣∣(f̂(s) − f(s))
∣∣∣ > t

2lj

)
,

where clearly sup{1, . . . , lj} = lj > 0. Define the event

Bn ≡ {δn ≤ F̂Xk
(gj(s)) ≤ 1 − δn, k ∈ [d2]}.
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Now, from the definition of the Winsorized estimator, we observe that

d2P

(
sup
s∈Mn

∣∣∣(f̂(s) − f(s))
∣∣∣ > t

2lj

)

≤ d2P

(
sup
s∈Mn

∣∣∣Φ−1(Wδn [F̂Xk
(s)]) − Φ−1(FXk

(s))
∣∣∣ > t

2lj
∩ Bn

)
+ P (Bc

n)

≤ d2P

(
sup
s∈Mn

∣∣∣Φ−1(F̂Xk
(s)) − Φ−1(FXk

(s))
∣∣∣ > t

2lj

)

+ 2 exp
(
2 log d−

√
n

8π logn

)
,

where the expression for P (Bc
n)) follows directly from Lemma 19 in [24]. Now,

define

T1n ≡ max
{
FXk

(g(
√

β logn)), 1 − δn

}
T2n ≡ 1 − min

{
FXk

(g(−
√

β logn)), δn
}
,

where it follows directly that T1n = T1n = 1 − δn. Consequently, we apply the
mean value theorem and get

P

(
sup
s∈Mn

∣∣∣Φ−1(F̂Xk
(s)) − Φ−1(FXk

(s))
∣∣∣ > t

2lj

)

≤ P

(
(Φ−1)′(max(T1n, T2n)) sup

s∈Mn

∣∣∣F̂Xk
(s) − FXk

(s)
∣∣∣ > t

2lj

)

= P

(
(Φ−1)′(1 − δn) sup

s∈Mn

∣∣∣F̂Xk
(s) − FXk

(s)
∣∣∣ > t

2lj

)

≤ P

(
sup
s∈Mn

∣∣∣F̂Xk
(s) − FXk

(s)
∣∣∣ > t

(Φ−1)′(1 − δn)2lj

)

≤ 2 exp
(

− 2 nt2

4l2j [(Φ−1)′(1 − δn)]2

)
,

where the last inequality arises from applying the Dvoretzky-Kiefer-Wolfowitz
inequality. Now, we have that

(Φ−1)′(1 − δn) = 1
φ
(
Φ−1(1 − δn)

)
≤ 1

φ
(√

2 log 1
δn

) =
√

2π
( 1
δn

)
= 8πnβ/2

√
β logn.
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Therefore,

d2P

(
sup
s∈Mn

∣∣∣Φ−1(F̂Xk
(s)) − Φ−1(FXk

(s))
∣∣∣ > t

2lj

)

≤ 2 exp
(

2 log d−
√
nt2

64l2jπ2 logn

)
.

Collecting the remaining terms we have

P

(
max
j,k

1
n

∑
Xk∈Mn

∣∣�i(j, k)
∣∣ > t

2

)

≤ 2 exp
(

2 log d−
√
nt2

64l2jπ2 logn

)
+ 2 exp

(
2 log d−

√
n

8π logn

)
.

Thus, we have for the first term in the covariance matrix decomposition

P

(
max
j,k

∣∣∣∣∣∣
1
n

n∑
i=1

[
(f̂(Xik) − f(Xik))Xij)

]∣∣∣∣∣∣ > t

)

≤ P

(
max
j,k

1
n

∑
Xk∈Mn

∣∣�i(j, k)
∣∣ > t

2

)

+ exp
(
− k1n

3/4√logn
k2 + k3

)
+ 1

2
√
π log(nd2)

≤ 2 exp
(

2 log d−
√
nt2

64l2jπ2 logn

)
+ 2 exp

(
2 log d−

√
n

8π logn

)

+ exp
(
− k1n

3/4√logn
k2 + k3

)
+ 1

2
√
π log(nd2)

.

Let us turn back to the second term of the first sample covariance decomposition,
i.e.

P

(
max
j,k

∣∣∣(μn(f̂) − μn(f))μn(Xj)
∣∣∣ > t

)

≤ P

(
max

k

∣∣∣∣∣∣
1
n

n∑
i=1

(
f̂(Xik) − f(Xik)

)∣∣∣∣∣∣ >
t

lmax
∩ An

)
+ 1

2
√
π log(nd2)

.

Now, analogous to before, we find

P
(

max
k

1
n

n∑
i=1

∣∣∣f̂(Xik) − f(Xik)
∣∣∣ > t

lmax
∩ An

)
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≤ P
(

max
k

1
n

∑
Xk∈Mn

∣∣∣f̂(Xik) − f(Xik)
∣∣∣ > t

2lmax

)

+ P
(

max
k

1
n

∑
Xk∈En

∣∣∣f̂(Xik) − f(Xik)
∣∣∣ > t

2lmax

)

≤ P
(

max
k

1
n

∑
Xk∈Mn

∣∣∣f̂(Xik) − f(Xik)
∣∣∣ > t

2lmax

)

+ exp
(
− k1n

3/4√logn
k2 + k3

)
≤ d2P

(
sup
t∈Mn

∣∣∣f̂(t) − f(t)
∣∣∣ > t

2lmax

)

+ exp
(
− k1n

3/4√logn
k2 + k3

)
.

(45)

Let us take a closer look at

d2P
(

sup
t∈Mn

∣∣∣f̂(t) − f(t)
∣∣∣ > t

2lmax

)

≤ d2P

(
sup
t∈Mn

∣∣∣Φ−1(Wδn [F̂Xk
(t)]) − Φ−1(FXk

(t))
∣∣∣ > t

2lmax
∩ Bn

)

+ d2P (Bc
n)

≤ d2P

(
sup
t∈Mn

∣∣∣Φ−1(F̂Xk
(t)) − Φ−1(FXk

(t))
∣∣∣ > t

2lmax

)

+ 2 exp
(

log d2 −
√
n

8π logn

)
.

The definition of the event Bn is the same as above. Then applying once more
the Dvoretzky–Kiefer–Wolfowitz inequality we end up with the following upper
bound:

d2P

(
sup
t∈Mn

∣∣∣Φ−1(F̂Xk
(t)) − Φ−1(FXk

(t))
∣∣∣ > t

2lmax

)

≤ 2 exp
(

log d2 −
√
nt2

64 l2max π2 logn

)
.

Collecting terms and simplifying yields

P

(
max
j,k

∣∣∣∣∣∣
1
n

n∑
i=1

[
(f̂(Xik) − f(Xik))Xij)

]∣∣∣∣∣∣ > t

)
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+ P

(
max
j,k

∣∣∣(μn(f̂) − μn(f))μn(Xj)
∣∣∣ > t

)

≤ 2 exp
(

2 log d−
√
nt2

64 l2j π2 logn

)
+ 2 exp

(
2 log d−

√
n

8π logn

)

+ exp
(
− k1n

3/4√logn
k2 + k3

)
+ 1

2
√
π log(nd2)

+ 2 exp
(

log d2 −
√
nt2

64 l2max π2 logn

)
+ 2 exp

(
log d2 −

√
n

8π logn

)

+ exp
(
− k1n

3/4√logn
k2 + k3

)
+ 1

2
√
π log(nd2)

≤ 4 exp
(

2 log d−
√
nt2

64 l2max π2 logn

)
+ 4 exp

(
2 log d−

√
n

8π logn

)

+ 2 exp
(
− k1n

3/4√logn
k2 + k3

)
+ 1√

π log(nd2)
.

Then

P

(
max
j,k

∣∣∣Sf̂(Xk)Xj
− Sf(Xk)Xj

∣∣∣ > 2t
)

≤ 4 exp
(

2 log d−
√
nt2

64 l2max π2 logn

)
+ 4 exp

(
2 log d−

√
n

8π logn

)

+ 2 exp
(
− k1n

3/4√logn
k2 + k3

)
+ 1√

π log(nd2)
,

(46)

which completes the considerations regarding the sample covariance.
As a next step, we need to bound the error of the sample standard deviation

of the Winsorized estimator

σ
(n)
f̂(Xk)

≡

√√√√ 1
n

n∑
i=1

(
f̂(Xik) − μn(f̂)

)2
.

Consider the following decomposition of the standard deviation of the Win-
sorized estimator,

∣∣∣∣σ(n)
f̂(Xk)

− σ
(n)
f(Xk)

∣∣∣∣
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=

∣∣∣∣∣∣∣
√√√√1/n

n∑
i=1

(
f̂(Xik) − μn(f̂)

)2
−

√√√√1/n
n∑

i=1

(
f(Xik) − μn(f)

)2∣∣∣∣∣∣∣
= 1√

n

∣∣∣∣(‖f̂(Xk) − μn(f̂)‖2 − ‖f(Xk) − μn(f)‖2

)∣∣∣∣
≤ 1√

n
‖f̂(Xk) − μn(f̂) − f(Xk) + μn(f)‖2

≤ 1√
n

√
n‖f̂(Xk) − μn(f̂) − f(Xk) + μn(f)‖∞

= sup
i:Xik∈{1,...,n}

∣∣∣f̂(Xik) − f(Xik) + μn(f) − μn(f̂)
∣∣∣

= sup
i:Xik∈{1,...,n}

∣∣∣f̂(Xik) − f(Xik)
∣∣∣+∣∣∣μn(f̂) − μn(f)

∣∣∣
≤ sup

i:Xik∈{1,...,n}

∣∣∣f̂(Xik) − f(Xik)
∣∣∣+ 1

n

n∑
i=1

∣∣∣f̂(Xik) − f(Xik)
∣∣∣ .

The first inequality is due to the reverse triangle inequality. The ensuing inequal-
ities arise from applying standard norm equivalences. As before, we analyze both
terms separately since we have to take care of the behavior of the Winsorized
estimator, taking values at the end and the middle interval. We have for any
t > 0,

P

(
max

k

∣∣∣∣σ(n)
f̂(Xk)

− σ
(n)
f(Xk)

∣∣∣∣ > 2t
)

≤ P
(

max
k

sup
i:Xik∈{1,...,n}

∣∣∣f̂(Xik) − f(Xik)
∣∣∣ > t,An

)

+ P
(

max
k

1
n

n∑
i=1

∣∣∣f̂(Xik) − f(Xik)
∣∣∣ > t,An

)
+ P (Ac

n).

Note that the second term is, in effect, equivalent to Eq. (45) above such that
we can immediately conclude that

P
(

max
k

1
n

n∑
i=1

∣∣∣f̂(Xik) − f(Xik)
∣∣∣ > t ∩ An

)

≤ d2P
(

sup
t∈Mn

∣∣∣f̂(t) − f(t)
∣∣∣ > t

2

)
+ exp

(
− k1n

3/4√logn
k2 + k3

)

≤ 2 exp
(

log d2 −
√
nt2

64π2 logn

)
+ 2 exp

(
log d2 −

√
n

8π logn

)

+ exp
(
− k1n

3/4√logn
k2 + k3

)
.

The bound for the end region follows again from Lemma B.9.
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Similarly, we find that

P
(

max
k

sup
i:Xik∈{1,...,n}

∣∣∣f̂(Xik) − f(Xik)
∣∣∣ > t ∩ An

)

≤ d2P
(

sup
t∈Mn

∣∣∣f̂(t) − f(t)
∣∣∣ > t

2

)
+ d2P

(
sup
t∈En

∣∣∣f̂(t) − f(t)
∣∣∣ > t

2

)

= d2P
(

sup
t∈Mn

∣∣∣f̂(t) − f(t)
∣∣∣ > t

2

)
,

where the bound over the end region has been shown in Lemma B.9. Thus, we
only have to take care of

P
(

sup
t∈Mn

∣∣∣f̂(t) − f(t)
∣∣∣ > t

2

)

≤ P

(
sup
t∈Mn

∣∣∣Φ−1(Wδn [F̂Xk
(t)]) − Φ−1(FXk

(t))
∣∣∣ > t

2 ∩ Bn

)
+ P (Bc

n)

≤ P

(
sup
t∈Mn

∣∣∣Φ−1(F̂Xk
(t)) − Φ−1(FXk

(t))
∣∣∣ > t

2

)
+ 2 exp

(
log d2 −

√
n

8π logn

)
.

The definition of the event Bn is the same as above. Then again, by the Dvoretzky-
Kiefer-Wolfowitz inequality, we end up with the following upper bound:

P

(
sup
t∈Mn

∣∣∣Φ−1(F̂Xk
(t)) − Φ−1(FXk

(t))
∣∣∣ > t

2

)
≤ 2 exp

(
−

√
nt2

64π2 logn

)
.

Collecting terms, we arrive at the concentration bound for the sample standard
deviation:

P

(
max

k

∣∣∣∣σ(n)
f̂(Xk)

− σ
(n)
f(Xk)

∣∣∣∣ > 2t
)

≤ 4 exp
(

log d2 −
√
nt2

64π2 logn

)
+ 4 exp

(
log d2 −

√
n

8π logn

)

+ exp
(
− k1n

3/4√logn
k2 + k3

)
+ 1

2
√
π log(nd2)

.

With these intermediate results, we have shown that the sample covariance
(numerator) and the sample standard deviation (denominator) can be estimated
accurately.

The following lemma provides us with the means to form a probability bound
for

max
jk

∣∣∣Σ̂(n)
jk − Σ∗

jk

∣∣∣ .
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Lemma B.10. Consider the polyserial ad hoc estimator Σ̂(n)
jk for 1 ≤ j ≤ d1 <

k ≤ d2 and let ε ∈
[
CM

√
log d2log2n

n1/2 , 8(1 + 4c2)
]
, where c is the corresponding

sub-Gaussian parameter of the discrete variable. Both the numerator and the
denominator are bounded, i.e.

Sf̂(Xk)Xj
∈ [−(1 + ε), 1 + ε],

and
σ

(n)
f̂(Xk)

∈ [1 − ε, 1 + ε].

Consequently, Σ̂(n)
jk is Lipschitz with constant L. The following decomposition

holds

max
jk

∣∣∣Σ̂(n)
jk − Σ∗

jk

∣∣∣ = max
jk

∣∣∣Σ̂(n)
jk − Σ(n)

jk + Σ(n)
jk − Σ∗

jk

∣∣∣
≤ max

jk

∣∣∣Σ̂(n)
jk − Σ(n)

jk

∣∣∣+ max
jk

∣∣∣Σ(n)
jk − Σ∗

jk

∣∣∣
≤ L
(

max
jk

∣∣∣Sf̂(Xk)Xj
− Sf(Xk)Xj

∣∣∣+ CΓ max
k

∣∣∣∣σ(n)
f̂(Xk)

− σ
(n)
f̂(Xk)

∣∣∣∣
+ max

jk

∣∣∣Sf(Xk)Xj
− S∗

f(Xk)Xj

∣∣∣+ CΓ max
k

∣∣∣σ(n)
f(Xk) − 1

∣∣∣ ),
where CΓ ≡

∑lj
r=1 φ(Γ̄r

j)(xr+1
j − xr

j).

Proof. Let us assume w.l.o.g. that Xj – the discrete variable – has mean zero
and variance one. By the Cauchy-Schwarz inequality, the true covariance of the
pair is bounded from above by 1, i.e.∣∣∣S∗

f(Xk)Xj

∣∣∣ ≤ σ2
f(Xk)σ

2
Xj

= 1.

Earlier we have shown that for some t ≥ CM

√
log d2log2n

n1/2 we have

P

(
max
j,k

∣∣∣Sf̂(Xk)Xj
− Sf(Xk)Xj

∣∣∣ > 2t
)

≤ 4 exp
(

2 log d−
√
nt2

64 l2max π2 logn

)
+ 4 exp

(
2 log d−

√
n

8π logn

)

+ 2 exp
(
− k1n

3/4√logn
k2 + k3

)
+ 1√

π log(nd2)
.

(47)

According to Lemma 1 in [37] with sub-Gaussian parameter c > 0, f(Xk) is
standard Gaussian and thus sub-Gaussian and Xj is discrete and bounded and
therefore also sub-Gaussian we have the following tail bound

P

(
max
jk

∣∣∣Sf(Xk)Xj
− S∗

f(Xk)Xj

∣∣∣ ≥ t

)
≤ 4d2 exp

{
− nt2

128(1 + 4c2)2

}
,
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for all t ∈ (0, 8(1 + 4c2)). Therefore with high probability for j ∈ [d1], k ∈ [d2],
we have

Sf̂(Xk)Xj
∈ [Sf(Xk)Xj

− 2t, Sf(Xk)Xj
+ 2t],

and since
Sf(Xk)Xj

∈ [−1 − t, 1 + t],
with high probability, we have

Sf̂(Xk)Xj
∈ [−(1 + 3t), 1 + 3t].

Similar considerations hold for the sample standard deviation. We have already
shown that

P

(
max

k

∣∣∣∣σ(n)
f̂(Xk)

− σ
(n)
f(Xk)

∣∣∣∣ > 2t
)

≤ 4 exp
(

log d2 −
√
nt2

64π2 logn

)
+ 4 exp

(
log d2 −

√
n

8π logn

)

+ exp
(
− k1n

3/4√logn
k2 + k3

)
+ 1

2
√
π log(nd2)

.

Furthermore, we use Lemma 1 again in [37] to form a bound for the variance.
Since f(Xk) is standard Gaussian and hence sub-Gaussian with parameter c = 1
we immediately get

P

(
max

k

∣∣∣(σ(n)
f(Xk))

2 − 1
∣∣∣ ≥ t

)
≤ 4d2 exp

{
− nt2

128(1 + 4)2

}
.

Put differently, with high probability

(σ(n)
f(Xk))

2 ∈ [1 − t, 1 + t],

and consequently, we also have with high probability

σ
(n)
f(Xk) ∈ [

√
1 − t,

√
1 + t].

Since the interval [1− t, 1 + t] is always as least as wide as [
√

1 − t,
√

1 + t], for
all t > 0 with high probability we then also have

σ
(n)
f(Xk) ∈ [1 − t, 1 + t].

Putting these things together, we obtain that with high probability

σ
(n)
f̂(Xk)

∈ [1 − 3t, 1 + 3t].

In order to finish the proof consider the following function h : R × R+ → R

defined by
h(u, v) = u

v
,

with ∇h = (1/v,−u/v2)T .
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As we have just shown for the polyserial ad hoc estimator, ∇h = (1/v,−u/v2)T
is bounded with

sup‖∇h‖2 =

√(
1

1 − 3t

)2

+
(
− (1 + 3t)

(1 − 3t)2

)2
:= L.

Consequently, h is Lipschitz, and we have the following decomposition∣∣h(u, v) − h(u′, v′)
∣∣ = ∣∣h(u, v) − h(ũ, ṽ) + h(ũ, ṽ) − h(u′, v′)

∣∣
≤
∣∣h(u, v) − h(ũ, ṽ)

∣∣+∣∣h(ũ, ṽ) − h(u′, v′)
∣∣

≤ L
(
|u− ũ| +|v − ṽ|

)
+ L
(∣∣ũ− u′∣∣+∣∣ṽ − v′

∣∣ ).
Finally, taking ε = 3t finishes the proof.

At last, collecting terms, we find that for j ∈ [d1] and k[d2] and any

ε ∈
[
CM

√
log d log2 n√

n
, 8(1 + 4c2)

]

the following bound holds

P

(
max
jk

∣∣∣Σ̂(n)
jk − Σ∗

jk

∣∣∣ ≥ ε

)

≤ P

(
max
j,k

∣∣∣Sf̂(Xk)Xj
− Sf(Xk)Xj

∣∣∣ > ε

4L

)

+ P

(
max

k

∣∣∣∣σ(n)
f̂(Xk)

− σ
(n)
f(Xk)

∣∣∣∣ > ε

4LCΓ

)

+ P

(
max
jk

∣∣∣Sf(Xk)Xj
− S∗

f(Xk)Xj

∣∣∣ ≥ ε

4L

)

+ P

(
max

k

∣∣∣(σ(n)
f(Xk))

2 − 1
∣∣∣ ≥ ε

4lCΓ

)

The conclusion of Theorem 3.3 follows by plugging in the corresponding con-
centration bounds and simplifying.

Appendix C: Additional simulation setup and results

C.1. FPR and TPR results for binary and general mixed data

This section provides additional simulation results for the binary-continuous
and general mixed data setting. In particular, we report TPR and FPR for the
latent Gaussian model and the LGCM with fj(x) = x1/3 for all j. The results
are depicted in Figures 5 and 6 for the binary-continuous and general mixed
data settings, respectively.
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Fig 5. Simulation results for the binary-continuous data setting based on 100 simulation runs.
The left column corresponds to the latent Gaussian model, where the transformation function
is the identity. The right colum depicts results for the LGCM with fj(x) = x1/3 for all j.
The top and bottom rows report mean and standard deviation of the TPR and FPR along
simulation runs, respectively. The y-axis labels have superscript arrows attached to indicate
the direction of improvement: → implies that larger values are better.

Fig 6. Simulation results for the general mixed data setting based on 100 simulation runs.
The left column corresponds to the latent Gaussian model, where the transformation function
is the identity. The right colum depicts results for the LGCM with fj(x) = x1/3 for all j.
The top and bottom rows report mean and standard deviation of the TPR and FPR along
simulation runs, respectively. The y-axis labels have superscript arrows attached to indicate
the direction of improvement: → implies that larger values are better.

Figure 5 illustrates that our poly estimator performs almost identical to
the gold standard bridge estimator proposed by Fan et al. [12]. In the right
column, the mle estimator is misspecified, and TPR is noticeably lower than
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for the remaining estimators. Interestingly, it appears that the misspecified mle
estimator does not infer additional edges, which is reflected in the FPR holding
level with the other estimators.

The general mixed data setting results reported in Figure 6 are similar. The
poly estimator performs almost identically to the mle estimator under the latent
Gaussian model in terms of FPR and TPR. The bridge estimator has higher
FPR and TPR in the d = 50 case and lower FPR and TPR in the d = 750
case. Under the LGCM, similar to the binary-continuous data setting, the mle
estimator is misspecified and has a lower TPR than the other estimators while
the FPR holds level. The bridge ensemble estimator has an even higher FPR
and TPR in the d = 50 case and a slightly lower FPR and TPR in the d = 750
case.

C.2. Ternary mixed data results

We additionally compare our poly and mle estimators with a generalization of
the bridge function approach proposed by Quan, Booth and Wells [35] given a
mix of ternary, binary, and continuous data. In this case,

(2+2
2
)

= 6 individual
bridge functions are needed.

The (d, n)-setup is analogous to the binary-continuous data setting from the
main text. Starting with mle, the pattern from the binary-continuous setting
continues to show in the ternary-binary-continuous mix. Whenever f(x) = x, the
mle estimator generally performs best, in particular concerning graph recovery.

Table 1: Ternary mixed data structure learning; Simulated data with 100 sim-
ulation runs. Standard errors in brackets.

d, n, f(x) Oracle Ω̂ ternary Ω̂τ Ω̂MLE Ω̂r

50, 200, x

‖Ω̂ − Ω‖F 2.860 2.936 2.935 2.930
(0.098) (0.105) (0.106) (0.109)

FPR 0.016 0.067 0.071 0.075
(0.005) (0.017) (0.021) (0.023)

TPR 0.340 0.370 0.381 0.389
(0.046) (0.061) (0.068) (0.070)

AUC 0.880 0.758 0.769 0.764
(0.013) (0.019) (0.019) (0.020)

50, 200, x3

‖Ω̂ − Ω‖F 2.856 2.942 3.053 2.935
(0.116) (0.102) (0.098) (0.108)

FPR 0.016 0.068 0.076 0.075
(0.007) (0.019) (0.020) (0.022)

TPR 0.342 0.372 0.280 0.391
(0.051) (0.059) (0.051) (0.066)

AUC 0.882 0.759 0.691 0.768
(0.015) (0.019) (0.020) (0.019)
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250, 200, x

‖Ω̂ − Ω‖F 3.185 3.742 3.709 3.711
(0.097) (0.090) (0.089) (0.091)

FPR 0.006 0.025 0.024 0.025
(0.001) (0.003) (0.003) (0.003)

TPR 0.308 0.238 0.237 0.235
(0.034) (0.033) (0.031) (0.030)

AUC 0.884 0.759 0.773 0.768
(0.014) (0.018) (0.018) (0.018)

250, 200, x3

‖Ω̂ − Ω‖F 3.199 3.757 3.894 3.724
(0.096) (0.096) (0.096) (0.087)

FPR 0.006 0.025 0.026 0.025
(0.001) (0.003) (0.003) (0.003)

TPR 0.302 0.239 0.143 0.237
(0.034) (0.032) (0.027) (0.032)

AUC 0.882 0.759 0.691 0.767
(0.012) (0.016) (0.016) (0.015)

750, 300, x

‖Ω̂ − Ω‖F 11.181 10.830 10.640 10.659
(0.134) (0.129) (0.122) (0.118)

FPR 0.256 0.179 0.180 0.179
(0.006) (0.006) (0.006) (0.005)

TPR 0.937 0.723 0.744 0.736
(0.009) (0.016) (0.017) (0.016)

AUC 0.939 0.820 0.831 0.828
(0.006) (0.009) (0.009) (0.009)

750, 300, x3

‖Ω̂ − Ω‖F 11.196 10.838 11.250 10.646
(0.130) (0.129) (0.130) (0.137)

FPR 0.256 0.180 0.173 0.179
(0.006) (0.006) (0.006) (0.006)

TPR 0.937 0.724 0.590 0.737
(0.009) (0.016) (0.020) (0.016)

AUC 0.939 0.820 0.743 0.828
(0.006) (0.008) (0.011) (0.009)

However, when fj(x) = x3, performance drops notably, which is driven not by
an increased FPR but by a decreased TPR. Again, results for bridge and poly
behave similarly across metrics. No performance reduction, neither in estimation
error nor in graph recovery, can be detected when comparing poly to the ternary
bridge estimator.

Appendix D: Application to COVID-19 data

This section presents the results of an analysis of real-world health data (from
the UK Biobank). We are interested in investigating associations between the
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severity of a COVID-19 infection and various potential risk factors. This analysis
is intended to illustrate the use of the proposed methods in a real-world, mixed
variable type example.

Table 2. Estimated partial correlations between COVID-19 severity and the listed variables
for data sets A, B and C.

Covid-19 severity assoc. Variables Data set A Data set B Data set C
age 0.162 0.134 0.140
waist circ. 0.031 0.009 0.011
deprev. idx 0.016 – –
sex 0.007 – –
hypertension 0.075 0.035 0.037
heart attack – 0.073 0.065
diabetes – 0.062 0.055
chr. bronch. – – 0.012
wisd. teeth surg. – −0.003 −

D.1. Data set and variables

We first describe the data set used here, which is a part of the UK Biobank
COVID-19 resource in which UK Biobank data were linked to clinical COVID
data. To construct an indicator of COVID-19 severity, we consider subjects who
tested positive for COVID-19 at some point in 2020. Based on that, we created
an indicator variable (COVID severity) to capture whether each subject had a
severe outcome within six weeks of infection (meaning either hospitalized, hos-
pitalized, receiving critical care, or died). Around 14% experienced such a severe
outcome. The analysis includes n = 8672 observations on d = 712 variables (risk
factors and covariates with less than 40% missingness). Missing values were im-
puted using missForest R-package using default settings. Variables expressing
more than 20 states were treated as continuous. The remaining data include 665
binary variables, 25 count variables, and 8 categorical variables. Many of the
binary variables represent the status for relatively rare conditions. This means
that the share of the minority class of these indicators (i.e., the fraction of sam-
ples with the least frequent value of the variable) can often be minimal. To
understand the effects of such rare events on the analysis, we define three data
sets (named A, B, and C) with inclusion rules requiring respectively at least a
25%, 2%, 1% share of observations falling into the minority class.

D.2. Results

We present the results of a joint analysis of the variables using real UK Biobank
data. We emphasize that the analysis aims to illustrate the proposed estimators’
behavior and not fully understand the risk factors for severe COVID-19. There
has been much work done on factors influencing the risk of severe COVID-19
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Fig 7. Plot of the estimated adjacency matrix of data set A.

and its treatment [see, among others, 45, 5] and we direct the interested reader
to the references for further information.

Table 2 gives a summary of the estimated links (indicated as a visualiza-
tion of the partial correlations) between the variables (including COVID-19
severity). Considering in particular links to COVID-19 severity, we see that
age, waist circ., hypertension, heart attack and diabetes are quite sta-
ble links throughout the different data sets. The effect sizes in terms of partial
correlations are penalized and should be interpreted in relative terms. In partic-
ular, age retains a relatively large signal, which is in line with the known strong
influence of age on COVID-19 severity [see, e.g. 45].

Finally, we present more detailed results of the analysis of data set A. Figure 7
shows the estimated adjacency matrix and Figure 8 depicts the estimated pre-
cision matrix Ω̂A. These results highlight the type of output, spanning different
kinds of variables, that is readily available from the proposed method.

D.3. Variable description for real-world data application

Table 3 gives an overview of the variables in the UK Biobank data set.
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Fig 8. Plot of the estimated precision matrix of data set A.

Table 3: Variable description of the real world application.

Variable Name Description
age age in. years in 2020
waist circ. waist circumference in cm
height standing in height in cm
first illn. age at which illness first occurred
first surg. age at which operation was done first
pulse rate pulse rate measured in bpm
deprev. idx Townsend deprivation index at recruitment
dur. walks duration of walks in minutes per day
dur. mod. act. duration of moderate activity in minutes per day
dbp diastolic blood pressure in mmHg
sbp systolic blood pressure in mmHg
BMI in kg/m2
weigth in kg
b.f. perc. body fat percentage in %
walking number of days per week walked 10+ minutes
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mod. phys. act. number of days per week of moderate physical activ-
ity 10+ minutes

vig. phys. act. number of days per week of vigorous physical activity
10+ minutes

cheese answer to “How often do you eat cheese per week?”
stair climb. answer to “At home, during the last 4 weeks, about

how many times a DAY do you climb a flight of
stairs? (approx 10 steps)”

curr. smoking categorial, “Do you smoke tobacco now?” (yes, no,
occasionally)

past smoking categorial, “How often did you smoke tobacco?”
(never, once/twice, occasionally, on most days)

diet var. categorial, “Does your diet change?” (never, some-
times, often)

alc. freq. categorial, “How often do you drink alcohol?” (never,
special occasions only, 1-3 per month, 1-2 per week,
3-4 per week, almost daily)

alc. var. categorial, “Compared to 10 years ago, do you
drink?” (more, about the same, less)

sex binary indicator with 0=female, 1=male
hypertension hypertension, binary indicator with 0=no, 1=yes
angina angina, binary indicator with 0=no, 1=yes
heart attack heart attack, binary indicator with 0=no, 1=yes
stroke stroke, binary indicator with 0=no, 1=yes
dvt deep venous thrombosis, binary indicator with 0=no,

1=yes
asthma asthma, binary indicator with 0=no, 1=yes
chr. bronch. emphysema/chronic bronchitis, binary indicator

with 0=no, 1=yes
gord gastro-oesophageal reflux/gastric reflux, binary indi-

cator with 0=no, 1=yes
ibs irritable bowel syndrome, binary indicator with

0=no, 1=yes
gall stones cholelithiasis/gall stones, binary indicator with

0=no, 1=yes
kidn./bladder stone kidney stone/ureter stone/bladder stone, binary in-

dicator with 0=no, 1=yes
diabetes diabetes, binary indicator with 0=no, 1=yes
diabtes 2 type 2 diabetes, binary indicator with 0=no, 1=yes
myxoedema hypothyroidism/myxoedema, binary indicator with

0=no, 1=yes
migraine migraine, binary indicator with 0=no, 1=yes
glaucoma glaucoma, binary indicator with 0=no, 1=yes
cataract cataract, binary indicator with 0=no, 1=yes
depression depression, binary indicator with 0=no, 1=yes
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panic attacks anxiety/panic attacks, binary indicator with 0=no,
1=yes

back probl. back problems, binary indicator with 0=no, 1=yes
osteoporosis osteoporosis, binary indicator with 0=no, 1=yes
spine arthr. spine arthritis/spondylitis, binary indicator with

0=no, 1=yes
slipped disc prolapsed disc/slipped disc, binary indicator with

0=no, 1=yes
anaemia iron deficiency anaemia, binary indicator with 0=no,

1=yes
ut. fibroids uterine fibroids, binary indicator with 0=no, 1=yes
allerg. rhinitis heyfever/allergic rhinitis, binary indicator with

0=no, 1=yes
enlarged prost. enlarged prostate, binary indicator with 0=no, 1=yes
pneumonia pneumonia, binary indicator with 0=no, 1=yes
endometr. endometriosis, binary indicator with 0=no, 1=yes
ear disor. ear/vestibular disorder, binary indicator with 0=no,

1=yes
headaches headaches (not migraine), binary indicator with

0=no, 1=yes
ecz./dermat. eczema/dermatitis, binary indicator with 0=no,

1=yes
psoriasis psoriasis, binary indicator with 0=no, 1=yes
div. disease diverticular disease/diverticulitis, binary indicator

with 0=no, 1=yes
osteoarthr. osteoarthritis, binary indicator with 0=no, 1=yes
gout gout, binary indicator with 0=no, 1=yes
high chol. high cholesterol, binary indicator with 0=no, 1=yes
hiat. hern. hiatus hernia, binary indicator with 0=no, 1=yes
sciatica sciatica, binary indicator with 0=no, 1=yes
appendic. appendicitis, binary indicator with 0=no, 1=yes
back pain back pain, binary indicator with 0=no, 1=yes
arthritis arthritis (nos), binary indicator with 0=no, 1=yes
measles measles/morbillivirus, binary indicator with 0=no,

1=yes
chickpox chickenpox, binary indicator with 0=no, 1=yes
tonsillitis tonsillitis, binary indicator with 0=no, 1=yes
ptca coronary angioplasty (ptca)+/-stent, binary indica-

tor with 0=no, 1=yes
ear surg. ear surgery, binary indicator with 0=no, 1=yes
sinus surg. nasal/sinus,nose surgery, binary indicator with

0=no, 1=yes
vasectomy vasectomy, binary indicator with 0=no, 1=yes
soft tiss. surg. mucsle/soft tissue surgery, binary indicator with

0=no, 1=yes
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hip repl. hip replacement/revision, binary indicator with
0=no, 1=yes

knee repl. knee replacement/revision, binary indicator with
0=no, 1=yes

spine surg. spine or back surgery, binary indicator with 0=no,
1=yes

bil. ooph. bilateral oophorectomy, binary indicator with 0=no,
1=yes

hysterect. hysterectomy, binary indicator with 0=no, 1=yes
steril. sterilisation, binary indicator with 0=no, 1=yes
lumpect. lumpectomy, binary indicator with 0=no, 1=yes
ing. hernia rep. inguinal/femoral hernia repair, binary indicator with

0=no, 1=yes
umb. hernia rep. umbilical hernia repair, binary indicator with 0=no,

1=yes
cataract extr. catarct extraction/lens implant, binary indicator

with 0=no, 1=yes
red./fix. bone frac. reduction or fixationof bone fracture, binary indica-

tor with 0=no, 1=yes
cholecystect. cholecystectomy/gall bladder removal, binary indi-

cator with 0=no, 1=yes
appendicect. appendicectomy, binary indicator with 0=no, 1=yes
c-sec. caesarian section, binary indicator with 0=no, 1=yes
tonsillest. tonsillectomy, binary indicator with 0=no, 1=yes
var. vein surg. varicose vein surgery, binary indicator with 0=no,

1=yes
wisd. teeth surg. wisdom teeth surgery, binary indicator with 0=no,

1=yes
piles surg. haemorroidectomy/piles surgery/banding of piles,

binary indicator with 0=no, 1=yes
male circ. male circumcision, binary indicator with 0=no,

1=yes
squint corr. squint correction, binary indicator with 0=no, 1=yes
arthrosc. arthroscopy (nos), binary indicator with 0=no,

1=yes
foot surg. foot surgery, binary indicator with 0=no, 1=yes
knee surg. knee surgery (not replacement), binary indicator

with 0=no, 1=yes
shoulder surg. shoulder surgery, binary indicator with 0=no, 1=yes
car. tunn. surg. carpal tunnel surgery, binary indicator with 0=no,

1=yes
valg. surg. bunion/hallus valgus surgery, binary indicator with

0=no, 1=yes
rem. mole removal of mole/skin lesion, binary indicator with

0=no, 1=yes
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ov. cyst. rem. ovarian cyst removal/surgery, binary indicator with
0=no, 1=yes

d+c dilatation and curettage, binary indicator with 0=no,
1=yes

cone biops. cone biopsy, binary indicator with 0=no, 1=yes
endosc. endoscopy/gastroscopy, binary indicator with 0=no,

1=yes
colonosc. colonoscopy/sigmoidoscopy, binary indicator with

0=no, 1=yes
laparosc. laparoscopy, binary indicator with 0=no, 1=yes
rhinoplast. rhinoplasty/nose surgery, binary indicator with

0=no, 1=yes
tonsil surg. tonsillectomy/tonsil surgery, binary indicator with

0=no, 1=yes
ing. hern. rep. inguinal hernia repair, binary indicator with 0=no,

1=yes
illn. ind. diet Major dietary changes in the last 5 years because of

illness, binary indicator with 0=no, 1=yes
diet change Major dietary changes in the last 5 years because of

other reason, binary indicator with 0=no, 1=yes
ethn. Mixed Ethnicity – mixed, binary indicator with 0=no,

1=yes
ethn. Asian Ethnicity – Asian, binary indicator with 0=no, 1=yes
ethn. Black Ethnicity – Black, binary indicator with 0=no, 1=yes
no eggs Never eat eggs or foods containing eggs, binary indi-

cator with 0=no, 1=yes
no dairy Never dairy products, binary indicator with 0=no,

1=yes
no wheat Never eat wheat, binary indicator with 0=no, 1=yes
no sugar Never eat sugar or foods/drinks containing sugar, bi-

nary indicator with 0=no, 1=yes
walk. f. pleas. Types of physical activity in last 4 weeks – walking

for pleasure, binary indicator with 0=no, 1=yes
exercises Types of physical activity in last 4 weeks – other

exercises (swimming, bowling etc.), binary indicator
with 0=no, 1=yes

stren. Sports Types of physical activity in last 4 weeks – strenuous
sports, binary indicator with 0=no, 1=yes

Covid-19 severity Covid-19 severity, binary indicator with 0=mild out-
come and 1=severe outcome
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