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Abstract: Taking subset samples from the original data set is an effi-
cient and popular strategy to handle massive data that is too large to be
directly modeled. To optimize inference and prediction accuracy, it is cru-
cial to employ a subsampling scheme to collect observations intelligently.
In this paper, we propose a space-filling subsampling method that uses
distance metric-based strata to select subsamples from high-volume data
sets. To minimize the maximal distance from pairs of samples that locate
in the same stratum, Voronoi cells of thinnest covering lattices are used
to partition the input space. In addition, subsamples that are space-filling
according to the response are collected from each stratum. With the help
of an algorithm to quickly identify the cell an observation locates in, the
computational cost of our subsampling method is proportional to the num-
ber of observations and irrelevant to the number of cells, which makes our
method applicable to extremely large data sets. Results from simulated
studies and real data analysis show that the new method is remarkably
better than existing approaches when used in conjunction with Gaussian
process models.
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1. Introduction

In recent years, high-volume data has found various applications in many scien-
tific and engineering fields. Even though computational resources have prolifer-
ated with the rapid development of technology, the size of data grows faster than
computational capacity and thus it becomes challenging to restore and model
big data sets. An efficient strategy to overcome such difficulty is subsampling,
that is, taking a subset of the original massive data and fitting models based on
it.
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While in most real applications and theoretical advances such as [13] and [24]
the observations are selected independently and randomly with equal probabil-
ity to the subset, referred to as IR hereinafter, more complex sampling methods
have shown promising performance in reducing modeling error. Most of such
techniques are proposed for linear models or their extensions. For instance, [7]
proposed a local case-control subsampling method for imbalanced data sets. [6]
proposed a subsampling method based on empirical statistical leverage scores of
the covariate matrix to fit linear regression models for large data sets. [19] devel-
oped an optimal subsampling procedure based on A- or L-optimality for logistic
regression models, which is further extended to softmax regression models by
[25]. [21] proposed an information-based optimal subsampling method named
IBOSS to select the most informative points based on the D-optimality criterion,
which is later improved by a divide-and-conquer strategy [20]. [1] studied the
optimal subsampling method under the A-optimality criterion called OSMAC
for generalized linear models. Finally, [22] proposed an orthogonal subsampling
approach, referred to as OSS hereinafter, for linear regression models.

Although linear models are useful in many applications that are associated
with a large number of factors, in many other problems, the data set is tall,
i.e., the number of observations, denoted as N hereinafter, is huge while the
number of factors, denoted as p hereinafter, is much smaller than N . In such
scenarios, linear models are likely found inadequate because they cannot capture
complex relations between covariates and the response that can be easily learned
from nonparametric models. Subsampling is especially essential in these cases
because the time consumption for nonparametric models usually grows rapidly
as N increases.

Given the importance of subsampling for nonparametric models, it is some-
what surprising that few methods have been proposed for big tall data sets.
Three notable exceptions are [14], [26], and [18]. [14] proposed the support point
method, referred to as SP hereinafter, which sample representative points from
massive observations such that the distribution of these representative points
is close to the distribution of original observations. While this method can be
applied to very general applications, it is not tailored for the model fitting pur-
pose. [26] proposed a model-free subsampling method called global likelihood
subsampling, referred to as GLSS hereinafter, which allocates massive data into
balls and then selects the points from the balls. One shortcoming of the method
lies in that many original samples are neglected from the procedure since the
union of balls does not cover the whole input space. [18] proposed radial dis-
tance metric-based uniform subsampling method, referred to as RU hereinafter,
which uses the radial distance metric to cluster massive observations into layers,
samples observations uniformly from the layers, and iteratively switches sam-
ples from the same layer to minimize the standardized mean squared difference
between the quantiles of the subsampled response and the original massive re-
sponse. Although it has been shown that models fitted from RU subsets are
more precise than that from IR, there lacks justification on why samples that
have equal distance to the center of the covariates, which can be far away from
each other, should be grouped to the same layer. Moreover, RU is slower in com-
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putation than fitting Gaussian process model (GP), k-nearest neighbor method
(KNN), and many other nonparametric models.

In this paper, we propose a Euclidean distance metric-based space-filling
subsampling method, referred to as SF hereinafter, for general nonparametric
models. Similar to GLSS and RU, we first divide the original input space into
layers and then collect representative points from each layer. However, in order
to fit accurate nonparametric models, we propose to group observations close
to each other in input values to the same layer and collect representative points
from each layer according to their response values.

Take two popular nonparametric models, KNN and GP, to see why we do
this. For the k-nearest neighbor method (KNN) [8], the prediction at input
location x is the average of the k outcomes corresponding to the k samples that
are nearest to x. Clearly, the best way to ensure accurate prediction is to collect
a certain number of subsamples in any local area. Certainly, each location x
belongs to a layer, say w, provided that the layers partition the input space.
Let q(w) denote the maximal distance between two points inside the region
w, q(w) = supx1,x2∈w ‖x1 − x2‖, where ‖x‖ denotes the Euclidean distance
from x to the zero vector. If k or more subsamples are collected from w, it is
guaranteed that there are at least k subsamples that are located within distance
q(w) to x. Because the bias of the prediction is related to q(w), it is desirable to
partition the input space into layers with low q values, which requires to group
samples close to each other under the Euclidean distance measure to the same
layer. In addition, it is desirable that the subsamples are representative of the
layer. Remark that if the subsamples are purely randomly collected, there is
a chance that the responses are all low or all high relative to the majority of
response values within the layer, causing variance error on predictions. To reduce
this variance error as much as possible, when we decide to select z subsamples
from the layer w, we partition the samples within w into z almost equally-sized
sublayers by grouping samples with close response values together and then
select the sample with the median response value from each sublayer.

Gaussian process model (GP) is another type of widely-used nonparametric
method. [23] provides an upper bound on the modeling error, which is approxi-
mately proportional to σh(x)ρ, where σ and ρ are positive constants related to
the variance and smoothness of the response function and h(x) is the distance
between x and its nearest sample. Clearly, it is desirable that our subsamples
have low h(x) for any x. In fact, space-filling designs that minimize the max-
imum of h(x), also referred to as minimax distance designs [11], are popular
for GP when the experiments are designed. As long as we collect at least one
sample from the layer w that x belongs to, the h(x) will not exceed q(w) and
thus the modeling error is controlled.

From the above arguments, it is appealing to select space-filling subsamples
and one practical solution is to minimize the maximal q of the layers. The use
of response values aside from input values to select subsamples further reduces
random error. From our method, we minimize the maximal q by using Voronoi
cells of the thinnest covering lattice as the layers, whose definitions and details
will be provided in Section 2.2. From numerical results that are based on KNN
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and GP, our newly proposed subsampling method SF performs well compared
with other subsampling methods.

The remainder of this paper is organized as follows. In Section 2, the new
subsampling strategy is proposed and analyzed. In Sections 3 and 4, simula-
tions and real data examples are provided to demonstrate the advantage of our
proposed subsampling method. Several conclusions and remarks are given in
Section 5. Proofs and some detailed derivations are provided in Appendix.

2. Subsampling methodology

2.1. Major steps

Our subsampling method can be seen as a proportionate stratified sampling
method that proceeds with three major parts below:

I. Partition the input space into a list of cells.
II. Classify the samples to the cells.

III. Sample representative points from each cell parallelly and collect the se-
lected samples.

In subsections to follow, we give details on the three major parts of our
method. Throughout this paper, let N , Nw, n, nw, m, and p denote the number
of original samples, the number of original samples that locate in cell w, the
number of selected samples, the number of selected samples from cell w, the
number of cells, and the number of covariates, respectively.

2.2. Rotated lattice-based partitioning

In this subsection, we provide Part I of our method, i.e., the steps to partition the
input space into cells. To begin with, Figure 1 gives two partitionings of [0, 1]2,
a square partitioning and a hexagonal partitioning. In both partitionings, the
cells are Voronoi cells of a lattice. A full-rank lattice L ⊂ R

p is an infinite set of
points that can be expressed as the linear combination of p linearly independent
p-dimensional vectors with integer coefficients [3]. That is, L can be expressed
as {a∗G : a∗ ∈ Z

p} with a full rank p× p matrix G, where Z
p denotes the set

consisting of p-dimensional integer vectors. The Voronoi cell of a lattice point ci
that belongs to a lattice L is the region that is nearest to it than other lattice
points,

Vor(ci) = {z : ‖z − ci‖ = min
c∈L

‖z − c‖}.

Clearly, the Voronoi cells of a lattice are identical and the input space is a
subset of the union of the Voronoi cells. Furthermore, if the layers are given by
Voronoi cells of a lattice, the maximal q is twice the radius of the Voronoi cells.
In this sense, the lattice points jointly cover the input space using radius q/2
balls centered at them. For instance, the set of p-dimensional integer vectors
{a∗Ip : a∗ ∈ Z

p} is a lattice, where Ip denotes the p-dimensional identity
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Fig 1. Square (left) and hexagonal (right) partitioning of [0, 1]2, showing the cells (blue
squares or hexagons), centers (red crosses), and original massive samples (black dots).

matrix, and the cells in the left panel of Figure 1 are Voronoi cells of this
lattice. Let m denote the number of cells. From simple derivations, we find that
the radius of this square partitioning is roughly (2m)−1/2 when m is large, and
q is two times the radius, i.e., q is asymptotically 21/2m−1/2 = 1.4142m−1/2

for all squares. In contrast, from the regular hexagon partitioning illustrated in
the right panel of Figure 1, q is asymptotically 23/23−3/4m−1/2 = 1.2408m−1/2,
which is smaller than that for the square partitioning. We thus consider the
hexagon partitioning to be more space-filling than the square partitioning.

We can control the maximal q by using the Voronoi cells of a space-filling
type of lattice as the layers. The type of p-dimensional lattice that has the
lowest asymptotic q is called the p-dimensional thinnest covering lattice. For
2 ≤ p ≤ 22, these lattices can be expressed as [3]

L = {l∗a∗M∗R : a∗ ∈ Z
p}, (1)

where l∗ is a positive constant, M∗ = Ip− [{(1+p)1/2 +1+p}/{p(p+1)}]Jp,p,
Jp,p denotes the p × p matrix with all elements being one, and R is a p-
dimensional orthogonal matrix. Here {a∗M∗R : a∗ ∈ Z

p} is a rotation of
the lattice {a∗M∗ : a∗ ∈ Z

p} since R is orthogonal and {l∗a∗M∗R : a∗ ∈
Z
p} is a rescaling of {a∗M∗R : a∗ ∈ Z

p}. Because rotation and rescaling
do not change the shape of Voronoi cells, the type of lattice and its asymp-
totic q property are solely determined by M∗. From L in (1), q is asymptot-
ically (p + 1)(1−p)/(2p){p(p + 2)/3}1/2m−1/p [3]. In contrast, for regular grids
{laIp : a ∈ Z

p}, which are also called integer lattices, q is asymptotically
p1/2m−1/p. Table 1 summarizes the constants corresponding to m−1/p for the
two types of lattices in 2 ≤ p ≤ 10. It can be seen that L in (1) has substantially
smaller constants than regular grids. For p > 22 the L in (1) is not the thinnest
covering lattice. However, since in this paper, we focus on low p problems, it
suffices to consider this type of lattice.
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Table 1

The constants corresponding to m−1/p of thinnest covering lattices (TCL) in (1) and
integer lattices (IL).

p 2 3 4 5 6 7 8 9 10
TCL 1.24 1.41 1.55 1.67 1.78 1.88 1.97 2.06 2.15
IL 1.41 1.73 2.00 2.24 2.45 2.65 2.83 3.00 3.16

Although asymptotic q value remains unchanged from rotating the lattice,
as discussed in [9] and [10], rotating the lattice makes cell centers to be more
uniformly distributed after projected onto a subset of dimensions of {1, . . . , p},
which is appealing when there is sparsity among input variables. We will verify
this point in Section 3.4. We thus propose to use Voronoi cells of rotated thinnest
covering lattices as the layers.

By definition, a lattice contains infinitely many points. However, the number
of centers of cells intercepting the input space is finite. Let Ω ⊂ R

p denote an
input space with volume V and Ω ⊕ ε = {ξ + ε : ξ ∈ Ω} denote a translation
of Ω. For L in (1) and uniformly distributed random ε, the expected number
of elements of L ∩ (Ω ⊕ ε) is l∗−p(p + 1)1/2V [9]. Consequently, by using l∗ =
m−1/p(p + 1)1/(2p)V 1/p, there will be roughly m cell centers.

2.3. An efficient algorithm to identify the cell

In Part II of the method, we classify observations into cells. Because a cell con-
sists of the region that is closest to its center than other centers, the classification
problem becomes a problem to identify the closest center to observations. Ob-
viously, this can be done by computing the distance between each observation
and each center. The complexity of computing the distance from one center to
one original observation is O(p), the complexity of identifying the nearest center
from m centers to one original observation is O(mp), and thus the complexity
of completing the above identification algorithm is O(Nmp).

To apply our subsampling methodology to scenarios with huge N and large
m, a more efficient algorithm is essential. Remark that the problem of finding the
closest lattice center to a given point is the well-known closest vector problem,
which is known to be NP-complete for arbitrary lattices [5]. Nevertheless, from
exploiting properties of the type of lattice we use, namely, the L in (1), in this
subsection, we propose a classification algorithm that requires O{Np2 log(p)}
computations. This is much faster than O(Nmp) since p is small in our as-
sumption and, as we shall show in later sections, the best choice of m seems
to be proportional to n and thus O(Nmp) is big. The ease of quickly finding
the closest lattice center is another reason besides low q of using thinnest cov-
ering lattice-based partitioning rather than other types of lattice or non-lattice
partitions.
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Let [λ] denote the integer closest to λ, vτ denote the p-vector with the first
τ entries being 1 and the rest entries being 0, uτ = l∗vτM

∗R,

R̃ =
(

R 0Jp,1
0J1,p 1

)
,

F = (p + 1)−1/2
(

Jp,1 (p + 1)1/2Ip − p−1{(p + 1)1/2 + 1}Jp,p

1 JT
p,1

)
,

ṽτ = (vτ , 0), ũτ = (uτ , 0), U = R̃
T
F /l∗, and U τ = ũτU . Algorithm 1 below

gives the steps to find the index of the closest center of an observation x. Remark
that in the algorithm we do not compute the coordinates of cell centers. Instead,
we compute indices of centers given by (τ̂ , s̃τ̂ ). We have three reasons of doing so.
Firstly, as long as we can group original observations that belong to the same
cell together, there is no need to know the coordinates of centers. Secondly,
obtaining the coordinates requires substantially more computations. Thirdly,
the (τ̂ , s̃τ̂ )’s are more convenient in coding because they are integer vectors.

Algorithm 1: The procedure to identify the closest center to given
observation x

1 Compute ỹ = (x, 0)U .
2 for τ = 0, . . . , p do
3 Compute sτ = ỹ −U τ , s̄τ = [sτ ], δτ = sτ − s̄τ , and Δτ = s̄τJp+1,1.
4 Let βτ be the (p + 1)-vector consisting of zeros.
5 If Δτ > 0, replace the entries of βτ that are corresponding to the Δτ

lowest entries of δτ by “-1”.
6 If Δτ < 0, replace the entries of βτ that are corresponding to the

−Δτ highest entries of δτ by “1”.
7 Compute s̃τ = s̄τ + βτ and ‖βτ − δτ‖.
8 Obtain τ̂ , the τ that minimizes ‖βτ − δτ‖.
9 Output (τ̂ , s̃τ̂ ), an index of the cell that is closest to x.

Note that Steps 5 and 6 in the algorithm are well-defined only if Δτ ∈ Z and
|Δτ | ≤ (p + 1)/2. Proposition 2.1 below verifies that this is always the case.

Proposition 2.1. From Algorithm 1, Δτ ∈ Z and |Δτ | ≤ (p + 1)/2 for any
τ ∈ {0, . . . , p}.

Theorem 2.2 below assures that Algorithm 1 identifies the correct center.

Theorem 2.2. Suppose (τ̂ , s̃τ̂ ) is the output from Algorithm 1 with input x.
Let z̃τ (x) = l∗s̃τF

T R̃+ ũτ and zτ (x) denote the first p entries of z̃τ (x). Then
the last entry of z̃τ (x) is zero and zτ̂ (x) gives the center among lattice centers
L in (1) that is closest to x.

The proofs of Proposition 2.1 and Theorem 2.2 are provided in Appendix.
The intuition of the algorithm is as follows: Firstly, the thinnest covering lattice
L in (1) can be partitioned into p + 1 slices via L =

⋃p
τ=0(K ⊕ uτ ), where K
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denotes the lattice given by {l∗bMR : b ∈ Z
p}, Q is the p × p matrix defined

by

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 1 1 · · · 1
−1 1 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

M is the p× p matrix defined by

M = QM∗

= Ip −

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 0
1 0 · · · 0 0

0
. . . . . .

...
...

...
. . . . . . 0 0

0 · · · 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

− (p + 1) 1
2 + 1

p

⎛
⎜⎜⎜⎜⎜⎜⎝

1 · · · · · · 1
0 · · · · · · 0
...

...
...

...
0 · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and K⊕uτ = {z+uτ : z ∈ K} is a translation of K. Secondly, from multiplying
U any point in R×{0} is rotated to a hyperplane of Rp+1 such that the lattice
centers of K ⊕ uτ are mapped into integer vectors. Exploiting this specific
structure of centers, [3] has provided an algorithm that requires O{p log(p)}
computations to find the lattice center of K ⊕ uτ that is nearest to any given
point in the hyperplane. In light of these results, we identify the closest lattice
center from each slice and then find out which of the p + 1 centers are closest
to x.

2.4. Details of the algorithm and complexity analysis

Let

R1 =
(

(1 − 2 1
2 ){20 − 14(2 1

2 )}− 1
2 (1 + 2 1

2 ){20 + 14(2 1
2 )}− 1

2

{3 − 2(2 1
2 )}{20 − 14(2 1

2 )}− 1
2 {3 + 2(2 1

2 )}{20 + 14(2 1
2 )}− 1

2

)
,

R2 =
(

(1 − 5 1
2 ){20 − 8(5 1

2 )}− 1
2 (1 + 5 1

2 ){20 + 8(5 1
2 )}− 1

2

(3 − 5 1
2 ){20 − 8(5 1

2 )}− 1
2 (3 + 5 1

2 ){20 + 8(5 1
2 )}− 1

2

)
,

R3 =
(

(1 − 13 1
2 ){52 − 12(3 1

2 )}− 1
2 (1 + 13 1

2 ){52 + 12(3 1
2 )}− 1

2

(5 − 13 1
2 ){52 − 12(3 1

2 )}− 1
2 (5 + 13 1

2 ){52 + 12(3 1
2 )}− 1

2

)
,

and A ⊗ B denote the Kronecker product of matrices A and B. Algorithm 2
below give the detailed steps to select n samples from the training data set
{(xi, yi) : i = 1, . . . , N}.

We have several comments for Algorithm 2. Firstly, when p ∈ {2, 4, 8}, we use
the recommended fixed rotation matrix R in [10]. Otherwise, we use random R
as recommended by [9] because no fixed rotation matrix for such p was provided
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Algorithm 2: The main SF subsampling procedure
Input: p, {(xi, yi) : i = 1, . . . , N}, n, m, and V̂ .
Output: A set giving the n selected samples.

1 if p = 2 then
2 Let R = Ip.
3 else if p = 4 then
4 Let R = R1 ⊗R2.
5 else if p = 8 then
6 Let R = R1 ⊗R2 ⊗R3.
7 else
8 for i = 1, . . . , p− 1 and j = i + 1, . . . , p do
9 Let Ri,j(αi,j) be the identify matrix with the (i, i)-th, (i, j)-th, (j, i)-th, and

(j, j)-th entries be replaced by cos(αi,j), − sin(αi,j), sin(αi,j), and cos(αi,j),
respectively, where αi,j is randomly sampled from the uniform distribution
on [0, 2π].

10 Let R =
∏

1≤i<j≤p Ri,j(αi,j).

11 Compute l∗ = m−1/p(p + 1)1/(2p)V̂ 1/p, F , U = R̃
T
F /l∗, M∗, ũτ , and Uτ = ũτU .

12 for i = 1, . . . , N do
13 Identify the cell that xi lies in by using Algorithm 1.
14 Calculate the number of actual cells, denoted as m̂.
15 For each w ∈ {1, . . . , m̂}, calculate the number of points lie in cell w, denoted as Nw,

and let nw = �nNw/N�.
16 while

∑
w(nw) > n do

17 Find the w that yields the highest nw − nNw/N among those with nw > 1 and
let nw = nw − 1.

18 For w = 1, . . . , m̂, collect the nw points closest to the (1 − 1/2)/nw,
(2 − 1/2)/nw, . . . , (nw − 1/2)/nw quantiles of the response from the cell w.

19 Output the n collected samples.

in [10]. These matrices are by far the best choices. Secondly, the algorithm
requires a prior estimate of V , which is denoted as V̂ . If the estimate is poor, the
actual m we find after Step 14, which is denoted as m̂, may be far away from the
m we aim to achieve. In scenarios that we do not have confidence in the V̂ used,
we recommend to check if the V̂ is reasonable after identifying 10% of original
samples during Step 13. Let m̄ and m̄1 denote the numbers of cells that contain
at least one sample and exactly one sample, respectively, after identifying 10%
samples. Then an estimate of m̂ is m̄+ 9m̄1/10 and an re-estimate of V is Ṽ =
V̂ (m̄ + 9m̄1/10)/m. Details of our derivation on these estimators are provided
in the appendix. If the re-estimate is significantly different from V̂ , we should
adjust our estimate on V using the above rule and restart Algorithm 2 from
Step 11. Nevertheless, the estimate of V needs not to be very accurate because
from simulation results we shall show in Sections 3 and 4, SF performs robustly
well when m ∈ [0.3n, 0.7n]. For the same reason, we recommend using m = n/2.
Thirdly, from Steps 15–17 the subsample sizes are determined to be proportional
to the large data in each cell. However, we ensure that each cell has at least
one subsample. Finally, in Step 18 we sort and partition the samples within
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the w layer into nw almost equally-sized sublayers by their response values
and then select the most representative sample from each sublayer, i.e. the one
with the median response value. This maximizes the space-filling property of
the response value for the select representative samples from each cell in the
sense that the empirical distribution of the selected samples is closest to the
empirical distribution of the whole samples in the cell. Also because the cells
are space-filling for the input variables, the final subsamples are space-filling for
both inputs and outputs.

In the rest of this section, we derive the complexity of SF. From Algo-
rithm 1, the computational complexity of Steps 3, 4, 5, 6, and 7 are O(p),
O(p), O{p log(p)}, O{p log(p)}, and O(p), respectively. Therefore, in sum, the
computational complexity of Steps 2–8 is O{p2 log(p)}. Also because the compu-
tational complexity of Step 1 and Step 9 is O(p2), altogether the computational
complexity of identifying the cell of one center is O{p2 log(p)}. Consequently,
the computational complexity of Steps 12–13 of Algorithm 2 is O{Np2 log(p)}.
On the other hand, provided that proper data structure is employed so that
covariate and response values of samples identified to each cell can be quickly
collected, in Step 18 of Algorithm 2, it requires O{Nw log(Nw)} computations to
select the representative points for group w. Summing these complexity, in to-
tal O{N log(N)} computations is required. Because other steps of Algorithm 2
require less computation, in sum SF requires no more than O{Np2 log(p) +
N log(N)} computations. More often than not, N log(N) is smaller than
Np2 log(p), rendering the time complexity to be O{Np2 log(p)}. Because the
cost is largely proportional to p2 log(p), SF is not applicable to large p prob-
lems. On the other hand, because the cost is proportional to N and irrelevant
to n or m, SF is applicable to problems with huge N and n. In sum, SF is
appropriate for tall data sets.

As a comparison, the computational complexity of RU is O{ΛNn log(n) +
N log(N)}, where Λ is a parameter in the RU algorithm that determines the
number of iterations to switch representative samples in each stratum [18]. In
fact, the actual Λ from default settings is almost always greater than n. As-
suming that Λ is proportional to n, the computational complexity of RU is
O{Nn2 log(n) +N log(N)}, which is much larger than SF for tall data sets. On
the other hand, the computational complexity of SP is O{ΛNnp}, where Λ is
the number of iterations [14]. From computation code provided in [14], the Λ by
default is in between of 50 and 250, which is not related to n. Consequently, SP
is in general faster than RU but slower than SF. Finally, the computational com-
plexity of OSS is O{Np log(n)}, and the computational complexity of GLSS is
O{Np log(N)+M log(N)}, where M is the size of the generated low-discrepancy
point set [26]. Empirically, SF is faster than OSS and GLSS when p ≤ 4 but
becomes slower than OSS and GLSS when p ≥ 5.

In practice, the prediction accuracy of nonparametric models is likely to be
more sensitive to the number of training samples n than the uniformity of train-
ing samples. Consequently, it is not wise to invest a major part of computational
resource on subsampling rather than on model fitting and prediction. For KNN,
the computational complexity of making one prediction is O(np). Usually, a
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cross-validation procedure is employed to identify the optimal k for KNN. If
altogether H choices of k are tried and Nt testing samples are used to vali-
date each choice of k, it requires O(npHNt) computations, which is larger than
O{Np2 log(p) +N log(N)} in many scenarios. For GP, the computational com-
plexity of fitting one model with fixed roughness and scale parameters is O(n3)
[17], which is much larger than O{Np2 log(p) + N log(N)} in most scenarios.
Moreover, the scale parameters from GP are usually estimated from data, and
the parameter estimation procedure requires much larger computation time than
fitting one GP model. Therefore, we conclude that the SF method is suitable to
be used in combination with KNN or GP models.

There are two techniques to further reduce the computation of SF. Firstly, in
many applications, some covariates are remarkably more effective in predicting
the response than other covariates and these important covariates can be found
without too much complexity. In these cases, we can use the important covari-
ates only for the SF algorithm. Since the computational cost of SF is mainly
proportional to p2 log(p), by reducing p, the cost of SF can be remarkably re-
duced. Secondly, we can select N̂ samples from the original data set using IR
and then apply SF to select n samples from the N̂ samples. This strategy applies
to applications with very big N .

3. Simulation study

3.1. Comparison setup

In this section, we compare our proposed subsampling method to several other
types of methods using five numerical examples. The methods in the comparison
include:

IR Pure random subsampling in which observations are selected indepen-
dently with equal probability.

SP The support point subsampling method by [14].
RU The proportionate stratified subsampling method that uses the radial

distance metric to partition the original observations [18].
OSS The orthogonal subsampling method by [22].

GLSS The global likelihood subsampling method by [26].
SF-m Our newly proposed thinnest covering lattice-based space-filling sub-

sampling method that partitions the input space into m Voronoi cells.
HC-m The space-filling subsampling method that is the same as SF-m but uses

hypercubes (squares) instead of Voronoi cells of the thinnest covering
lattices to partition the input space.

For each testing function g(x) that will be provided in subsections to follow,
we generate N = 104 or N = 105 observations as the training data set. We then
use the seven subsampling methods to obtain a subset of n = 1,000 training
samples and fit KNN and GP models using them. For SF, the number of cells
m is set to be 100, 300, 500, or 700 while m is set to be 500 for HC. We evaluate
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the prediction accuracy using the mean absolute error (MAE) given by

MAE = N−1
t

Nt∑
i=1

|g(xi) − ĝ(xi)|, (2)

where Nt is the size of testing data and g(xi) and ĝ(xi) denote the real and
fitted response value from the i-th testing sample, respectively. We repeat the
data generation, subsampling, and model-fitting process 100 times and record
all MAE values. Because RU is very time-consuming for these examples, we
set the number of iterations to be 50, which is lower than the default value, to
accelerate the computation.

3.2. A 2-dimensional example with uniformly distributed
observations

We use the Branin-Hoo function [16] below as the first test function:

g(x) = 1/51.95[{x̄2 − 5.1x̄2
1/(4π2) + 5x̄1/π}2

+ {10 − 10/(8π)} cos(x̄1) − 44.81],

where x̄1 = 15x1−5, x̄2 = 15x2, and in the full data set x = (x1, x2) is assumed
to follow the uniform distribution on [0, 1]2.

Figure 2 shows the boxplots of MAE values from the subsampling methods
except OSS. Here we omit the results for OSS because the MAE for OSS is
dramatically higher than that for other subsampling methods. In fact, all sub-
sampling points that OSS selects are in the corners, which is appealing for linear
models but certainly undesirable for KNN or GP. From the results, SF-500 and
SF-700 are the best methods for GP. For KNN, SP is the best method and
SF-500 is the second best. However, the MAEs for KNN are thousands of times
higher than those for GP, showing that SF-500 or SF-700 with GP is the best
combination. In all cases, HC-500 is only slightly inferior to SF-500. This shows
that the choice of the type of covering does not contribute much to the per-
formance of subsampling methods. We thus infer that our strategies of using
Voronoi cells to partition the input space and select subsamples for each cell
according to response values play a more important role in reducing MAE.

Using one 3.2-GHz core of our computer, it takes roughly 0.04 minutes, 0.02
minutes, 0.50 minutes, 0.12 minutes, 0.12 minutes, and 19.88 minutes for SF,
HC, SP, OSS, GLSS, and RU to select one subset of N = 104 samples, re-
spectively, while it takes roughly 0.64 minutes, 0.51 minutes, 4.94 minutes, 1.13
minutes, 1.23 minutes, and 864.57 minutes for SF, HC, SP, OSS, GLSS and RU
to select one subset of N = 105 samples, respectively. On the other hand, it
takes roughly 2.69 minutes to fit one GP model. As the time consumed in SF is
negligible compared to that for GP modeling, we conclude that SF is appealing
when GP is employed. In contrast, even though we accelerate the algorithm by
modifying the default number of iterations, RU still takes much longer time than
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Fig 2. MAE values from the KNN (left) and GP (right) models for the Branin-Hoo test
function when N is 104 (top) and 105 (bottom) where the covariates follow the uniform
distribution on [0, 1]2.

fitting GP model, showing that RU is not appropriate for the problem unless
a model that requires much longer fitting time than GP is employed. The SP,
OSS, and GLSS are also slower than SF and HC. Fitting a KNN model usually
requires a cross-validation procedure to find the optimal k, namely the number
of neighbors that is employed in prediction. Provided that altogether 104 and
105 validation samples are used to compare 20 choices of k’s, it takes 1.5 seconds
and 21.67 seconds to find the optimal k, respectively. Although KNN requires
much less time, it is substantially not as accurate as GP in prediction.

3.3. A 2-dimensional example with Gaussian distributed
observations

In our next example, we use the same Branin-Hoo function that was used in
the previous subsection. However, we assume for the full data set x = (ϕ1, ϕ2 +
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Fig 3. MAE values from the KNN (left) and GP (right) models for the Branin-Hoo test func-
tion when N is 104 (top) and 105 (bottom) where the covariates follow a bivariate Gaussian
distribution.

ϕ2
1/1.2) and (ϕ1, ϕ2) follows the standard bivariate Gaussian distribution.
Figure 3 shows the boxplots of MAE of the subsampling methods. Again, we

omit the results for OSS because they are very poor. The comparison is similar
to that in Section 3.2, except that the gap in performance between SF/HC and
other methods is even wider for GP. This suggests that SF and HC are more
advantageous when the inputs are not uniformly distributed. Furthermore, the
MAE values are insensitive to m, especially for GP, showing that SF is robust
on the choice of m. Since the N , p, and n are the same, it takes roughly the
same computation time as in the previous example.

3.4. A 2-dimensional example with sparsity on input variables

Next, we use the
g(x) = cos(55x2

1),
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Fig 4. MAE values from the KNN (left) and GP (right) models when N is 104 (top) and
105 (bottom), where the covariates follow the uniform distribution on [0, 1]2 and there is an
inert covariate.

where x = (x1, x2) is assumed to follow the uniform distribution on [0, 1]2 as our
third test function. Clearly, for this function, only x1 is related to the output
value. However, we assume that the data set contains two input variables and
we do not know that x2 does not affect the output when we select subsamples.

Figure 4 shows the boxplots of MAE values from the subsampling methods.
Again, we omit the results for OSS because they are very poor. The comparison
is again similar to that provided in Section 3.2. However, we find that for this
function HC-500 is remarkably inferior to SF-500 for GP when N = 105. To
explain this observation, in Figure 5, we show the histograms of the x1 of the
subsamples selected from HC-500 and SF-500 from one repetition. We can see
from the histograms that the subsamples from SF-500 are much more uniform
than those from HC-500. This is because the cell centers of the rotated thinnest
covering lattice are more uniform when projected onto one dimension than that
from the unrotated integer lattice. As only one variable is important, from the
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Fig 5. Histograms of the first input variable of the subsample obtained by HC-500 (left) and
SF-500 (right) from the N = 105 training data.

GP model the prediction is almost solely determined by x1. It is thus desirable
that the Voronoi cells are space-filling after being projected onto the first di-
mension. Moreover, since the five squares in each column of the graph in the left
panel of Figure 1 will be projected to the same interval, the cells become much
less space-filling after the projection. On the other hand, since the projections
of the hexagons of the right panel in Figure 1 do not coincide, the hexagons are
more space-filling than the squares after the project. We conjecture that this
makes SF-500 better than HC-500. To sum it up, when there is sparsity among
input variables subsampling method that is based on more uniformly projected
cells is better.

3.5. A 3-dimensional example

Next, we use the 3-dimensional function below, which is similar to the function
used in [12], as our fourth test function:

g(x) = sin(π(x1 + x2 + x3)/3) − x1 − x2
2,

where x = (x1, x2, x3) follows the uniform distribution on [0, 1]3.
Figure 6 shows the boxplots of MAE values for the subsampling methods. The

comparison is again similar to that provided in Section 3.2. For this example, it
takes roughly 0.05, 0.02, 0.66, 0.13, 0.13, and 22.79 minutes for SF, HC, SP, OSS,
GLSS, and RU to select one subsample from N = 104 samples, while it takes
roughly 0.75, 0.63, 5.92, 1.31, 1.36, and 997.02 minutes for SF, HC, SP, OSS,
GLSS, and RU to select one subset from N = 105 samples. On the other hand,
it takes roughly 3.68 minutes to fit one GP model. Again, the time consumed
by SF subsampling is negligible compared with GP modeling, showing that SF
can be applied when GP is used.



A distance metric-based space-filling subsampling method 3263

Fig 6. MAE values from the KNN (left) and GP (right) models when N is 104 (top) and
105 (bottom) where the covariates follow the uniform distribution on [0, 1]3.

3.6. A 6-dimensional example

Finally, we use the 6-dimensional spiky function below [2] as our fifth test func-
tion:

g(x) = 104/2[φ{10(x− 1/3)} + φ{10(x− 2/3)}],

where φ(κ) = {1/(2π)}2 exp(−0.5‖κ‖2) and x follows the uniform distribution
on [0, 1]6.

Figure 7 shows boxplots of MAE values for the subsampling methods. Un-
likely the first four test functions, for this function OSS performs the best. For
both KNN and GP, SF and HC are the second-best methods and are consid-
erably better than IR, SP, GLSS, and RU. Furthermore, SF with larger m is
slightly better than SF with lower m. For this example, it takes roughly 0.15,
0.02, 0.99, 0.13, 0.14 and 23.8 minutes for SF, HC, SP, OSS, GLSS, and RU to
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Fig 7. MAE values from the KNN (left) and GP (right) models when N is 104 (top) and 105

(bottom) where the covariates follow the uniform distribution on [0, 1]6.

select one subsample for N = 104, while it takes roughly 2.07, 0.68, 9.81, 1.31,
1.51, and 1012.53 minutes for SF, HC, SP, OSS, GLSS, and RU to select one
subsample for N = 105. Meanwhile, it takes roughly 3.76 minutes to fit one GP
model. Recall that the computational complexity of SF is O{Np2 log(p)}. This
is why for this 6-dimensional example, SF takes much longer time than previous
2-dimensional and 3-dimensional examples. Nevertheless, SF is still faster than
fitting a GP model, showing that SF is applicable for GP modeling.

We remark that in all five examples, the N and n are smaller than that of
real-world big data problems. We do not set larger N or n values here because,
for numerical comparison purposes, we need to repeat the subsampling and
modeling procedure 100 times. Provided that replication is not needed, SF is
applicable to much bigger data sets because its time consumption is largely
linear to N and not related to n. Also note that the code we use for SF is
written in R. Provided that we rewrite our code in C, we expect SF to run
much faster.
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4. Real data examples

4.1. Total column ozone data

We continue to compare subsampling methods using real data sets. The first
data set is the level 2 total column ozone data, which was calibrated and pre-
processed by NASA and previously studied by [4] and [15]. The data set has
one response, the ozone content, and two covariates giving the longitude and
latitude of the position.

The original data set contains 173,405 observations. We randomly choose
Nt = 34,681 observations as testing samples to evaluate the accuracy of pre-
dictions, and randomly select N̂ = 10,000 observations from the remaining
N = 138, 724 observations as the candidates for subsampling methods. We then
apply the seven subsampling methods to select n = 500 or n = 1000 subsamples
from the N̂ = 10,000 observations and fit KNN and GP models. For SF, we set
m to be 50, 150, 250, and 350 when n = 500 and 100, 300, 500, and 700 when
n = 1000. For HC, we set m to be 250 and 500 when n = 500 and 1000, respec-
tively. For reliable comparison of subsampling methods, we repeat the whole
process of randomly choosing N̂ observations, subsampling, and model fitting
100 times. Remark that it is possible for SF to select samples from the original
173,405 observations directly. However, this will be very time-consuming if RU
is applied or repetition is introduced.

Figure 8 shows the boxplots of MAE values of the seven subsampling methods
excepts OSS. We omit the results for OSS because the MAE for OSS is much
higher than that for other methods. Seen from the results, for both n = 500
and n = 1000 scenarios GP is substantially better than KNN. For GP, SF with
m = n/2 and m = 0.7n perform the best and HC-500 is only slightly inferior to
SF-500. For KNN, SP is the best method and SF-700, SF-500, and HC-500 are
the second best methods. The computation time for SF, HC, SP, OSS, GLSS,
RU, and GP model fitting are roughly 0.03 minutes, 0.01 minutes, 0.24 minutes,
0.06 minutes, 0.07 minutes, 16.8 minutes, and 0.23 minutes, respectively, when
n = 500 and 0.04 minutes, 0.02 minutes, 0.50 minutes, 0.12 minutes, 0.12 min-
utes, 22.28 minutes, and 2.39 minutes, respectively, when n = 1000. Similar to
numerical examples provided in Section 3, SF and HC are the fastest methods
which are much faster than GP model fitting. Furthermore, as the time con-
sumption of GP model fitting is known to be proportional to n3 while the time
consumption of SF is largely unrelated to n, we expect that the ratio of time
consumption between SF and GP to be smaller for higher n. This is partially
confirmed by comparing the n = 500 and n = 1000 scenarios here.

4.2. Windfarm data

The second data set is the windfarm data that was used in [18] to evaluate
subsampling methods. The data set consists of 31,266 data points with seven
covariates, which are generator torque, ramp rate between generator torque and
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Fig 8. MAE values from the KNN (left) and GP (right) models when n is 500 (top) and 1000
(bottom) for the total column ozone data.

blade pitch angle, blade pitch angle, ramp rate between wind speed and blade
pitch angle, wind speed, ramp rate between wind speed, and wind deviation
of a commercial wind farm. The purpose here is to use the seven covariates
to predict the response, namely tower vibratory acceleration. Because the data
set is observational, the seven covariates are not uniformly distributed. We set
Nt = 10,422 samples as testing samples and the rest N = 20,844 observations
as training samples. We then apply the seven subsampling methods to select
n = 1,000 subsamples from the N = 20,844 observations and fit KNN and GP
models. The whole process of subsampling and model fitting is repeated 100
times.

Figure 9 gives the MAE values from the seven subsampling methods. Since
OSS and GLSS have dramatically larger MAE than the other five methods,
which can be ovserved from the top two panels, in the bottom two panels we
omit the results from the two methods. From the results, GP is better than
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Fig 9. MAE values from the KNN (left) and GP (right) models for all seven subsampling
methods (top) and the five subsampling methods except OSS and GLSS (bottom) for the
windfarm data.

KNN in MAE for all subsampling methods. For both KNN and GP, SF and HC
have the best MAE values, while SF-500 is slightly better than HC-500 for GP.
Moreover, the performance of SF is insensitive to the choice of m. Remark that
for this data set, the testing samples are themselves associated with random
errors and thus no method can predict the testing response very well. The time
consumption for SF, HC, SP, OSS, GLSS, RU, and GP are roughly 0.3 minutes,
0.13 minutes, 1.13 minutes, 0.19 minutes, 0.3 minutes, 56.54 minutes, and 4.88
minutes, respectively.

Since the time consumption of SF is proportional to p2 log(p), one approach
to reduce SF time consumption is to reduce the number of covariates considered
in the subsampling process. To exploit this idea, we fit a Lasso regression model
that consists of the intercept and linear and quadratic main effects and find
that four out of the seven covariates contribute 99.48% of the total sensitivity
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Fig 10. MAE values from the KNN (left) and GP (right) models for the windfarm data in
which the subsampling process is associated with four covariates only.

indices. We then try using the four covariates only for the subsampling methods,
whose results are provided in Figure 10. Remark that in fitting KNN and GP
models, we still use all seven covariates. Since the performance of the subsam-
pling methods is almost the same as those when using all seven corvariates in
subsampling, we conclude that for windfarm data, it suffices to use four covari-
ates in choosing subsamples. Using four corvariates, it takes SF, HC, SP, OSS,
GLSS, and RU roughly 0.11, 0.03, 0.74, 0.17, 0.27, and 55.16 minutes to select
one subset of samples. Obviously, SF and HC are faster than fitting GP models,
SP, OSS, GLSS, and RU. This cues us that in practice, we may accelerate SF
by using important covariates only.

5. Conclusions and discussion

In this paper, we introduce a new subsampling method called SF for large-N -
small-p data sets. The SF method can largely be seen as a proportionate strati-
fied sampling method in which the strata are Voronoi cells of thinnest covering
lattices. In addition, for each cell SF selects subsamples that are space-filling ac-
cording to their response values. From numerical results based on simulated and
real data sets, the new method is remarkably better than existing approaches
when used in conjunction with Gaussian process models. We have also tried a
modification of SF that uses hypercubes as the strata. Although this method
performs as good as SF under several scenarios, we find that when there is spar-
sity among corvariates the hypercube subsampling method may not be as good
as SF. The SF method is fast in computation when the number of covariates is
small. Because the most time-consuming steps are identifying the cell of sam-
ples and selecting representative samples from cells and both steps can be run in
parallel, we believe the SF method can be accelerated by parallel computation.
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The newly proposed subsampling method may be suitable for other nonpara-
metric models, but more work needs to be done to verify its performance. It is
also interesting to see if the new method can be used for other computer ex-
periment problems such as numerical integration and quantile estimation. The
subsampling method might as well be useful for data checking. For example, if
a cell contains only one sample, the sample is a potential outlier; on the other
hand, if a cell contains unusually too many samples, it is possibly because the
error code of missing values falls into the cell.

Appendix A: Proof of Proposition 2.1

Proof. Because FJp+1,1 = (0, . . . , 0, (p+1)1/2)T , for any x ∈ R
p and 0 ≤ τ ≤ p,

sτJp+1,1 = (x−uτ , 0)R̃T
FJp+1,1 = ((x−uτ )RT , 0)(0, . . . , 0, (p+1)1/2)T = 0.

Because the entries of s̄τ and sτ differ by at most 1/2, |Δτ | ≤ (p+1)/2. Because
s̄τ ∈ Z

p, Δτ ∈ Z.

Appendix B: Proof of Theorem 2.2

Proof. Let G be the p× p matrix given by

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −(p− 1) −(p− 2) · · · −1
1 2 −(p− 2) · · · −1

1 2 3
. . .

...
...

...
...

. . . −1
1 2 3 · · · p

⎞
⎟⎟⎟⎟⎟⎟⎠

/(p + 1).

Then from simple derivations M∗ = GM . Furthermore, for any integer vector
a∗ ∈ Z

p, a∗G ∈ Z
p if and only if p + 1 divides

∑p
i=1 a

∗
i . For any x ∈ L, there

exists an a∗ ∈ Z
p such that x = l∗a∗M∗R. Clearly, there exists an 0 ≤ τ ≤ p

such that (
∑p

i=1 a
∗
i − τ)/(p+1) ∈ Z. Let b = (a∗−vτ )G, then b ∈ Z

p. Because

l∗a∗M∗R = l∗vτM
∗R + l∗(a∗ − vτ )GMR = uτ + l∗bMR,

x ∈ K ⊕ uτ . Conversely, for any x ∈ K ⊕ uτ , there is an b ∈ Z
p such that

x−uτ = l∗bMR. Let a∗ = vτ +bQ. Then x = l∗a∗M∗R, i.e., x ∈ L. To sum
it, K ⊕ uτ with τ = 0, . . . , p partitions L.

Let M̃ be the p × (p + 1) matrix whose first p columns is M and the last
column consists of zeros and

P = M̃F =

⎛
⎜⎜⎜⎜⎝

−1 1 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 −1 1

⎞
⎟⎟⎟⎟⎠ .
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Because s̃τJp+1,1 = s̄τJp+1,1 + βτJp+1,1, there exists an integer c ∈ Z
p such

that s̃τ = cP . Therefore,

z̃τ (x) = l∗s̃τFR̃ + ũτ = l∗cPF T R̃ + ũτ = l∗cM̃R̃ + ũτ .

Because the first p columns of M̃ is M and the last row with the first p columns
of R̃ is R, the first p columns of M̃R̃ is MR. Because the last column of M̃
consists of zeros and the first p rows with the last column of R̃ consists with
zeros, the last column of M̃R̃ consists of zeros. Also because ũτ = (uτ , 0), the
last entry of z̃τ (x) is 0 and

zτ (x) = l∗cMR + uτ ∈ K ⊕ uτ .

Because R̃ and F are orthogonal matrices, l∗U is an orthogonal matrix. There-
fore, for arbitrary c ∈ Z

p,

‖(l∗cMR + uτ ) − x‖ = ‖l∗cM̃R̃ + ũτ − (x, 0)‖
= l∗‖l∗cM̃R̃U + ũτU − (x, 0)U‖
= l∗‖cP − sτ‖.

Because cPJ1,p+1 = 0,

‖cP − sτ‖ ≥ ‖s̃τ − sτ‖.

That is, zτ (x) is one of the closest point in K ⊕ uτ to x.
Also because K ⊕ uτ with τ = 0, . . . , p partitions L, zτ̂ (x) is one of the

closest point in L to x.

Appendix C: Estimation of V

Proof. Let mj denote the number of cells that contain exactly j samples after
all N original samples are identified to the cells. Then the expected number of
cells that contain exactly one sample after N̄ ∈ N samples are identified, m̄1, is

m̄1 =
N∑
j=1

{
mjN̄(j/N)N − j

N − 1 · · · N − j − N̄ + 2
N − N̄ + 1

}

=
N∑
j=1

{
mjN̄(j/N)N − N̄

N − 1 · · · N − j − N̄ + 2
N − j + 1

}
.

When N̄ is much less than N , it is not hard to see that the terms with j > 3N/N̄
do not contribute much to the summation. Also assuming that m1 = · · · =
m3N/N̄ = x and plugging N̄ = N/10, m̄1 is approximately

(x/10)
+∞∑
j=1

{
j(9/10)j−1} = 10x.
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Consequently, m̄1/10 is an estimate of x after N/10 samples are identified.
Similarly, the expected number of cells (among those who contain at least

one point after all N original samples are identified) that contain no sample
after N/10 ∈ N samples are identified, m̄0, is approximately

x

N∑
j=1

N − j

N
· · · N − j − (N/10) + 1

N − (N/10) + 1

+∞∑
j=1

(9/10)j = 9x.

Consequently, 9m̄1/10 is an estimate of m̄0 after N/10 samples are identified.
Therefore, an estimate of the number of cells that contain at least one point
after all N original samples are identified is m̄ + 9m̄1/10, where m̄ is the num-
ber of cells that contain at least one sample after N/10 samples are identified.
Consequently, an re-estimate of V is V̂ (m̄+9m̄1/10)/m, where m and V̂ are the
target number of cells and the estimated volume of the input space, respectively,
that have been used in identifying the N/10 samples.
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