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Abstract: Statistical depth functions provide measures of the outlying-
ness, or centrality, of the elements of a space with respect to a distribution.
It is a nonparametric concept applicable to spaces of any dimension, for
instance, multivariate and functional. Liu and Singh (1993) presented a
multivariate two-sample test based on depth-ranks. We dedicate this paper
to improving the power of the associated test statistic and incorporating its
applicability to functional data. In doing so, we obtain a more natural test
statistic that is symmetric in both samples. We derive the null asymptotic
of the proposed test statistic, also proving the validity of the testing proce-
dure for functional data. Finally, the finite sample performance of the test
for functional data is illustrated by means of a simulation study and a real
data analysis on annual temperature curves of ocean drifters is executed.
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1. Introduction

Two-sample testing aims at answering the question whether two independent
observed datasets have the same underlying distribution (null hypothesis) or
whether the distributions differ (alternative hypothesis). This question plays a
role in all applications where data from two independent groups are compared.
In univariate statistics, the two commonly used tests for this problem are the
two-sample t-test for normal distributions and the nonparametric Wilcoxon rank
sum test, which is suited for heavy tailed data or data containing outliers. While
Hotelling’s T 2-test provides a suitable generalisation of the two-sample-t-test to
multivariate data, there is not a unique natural generalisation of the Wilcoxon
rank sum test. Generally, two-sample tests can be based on any reasonable
measure of discrepancy between the distributions, for example [65] proposed
a methodology based on the so-called ball divergence while [41, 91] developed
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kernel based two-sample tests for deviations in the mean based on the maximum
mean discrepancy.

Jurečková and Kalina [46] discussed several multivariate rank based test in-
cluding a test first proposed by Liu and Singh [52] and later further studied by
[13, 71, 79, 93]. The statistic involved in the Liu and Singh test is known as the
Liu-Singh-statistic. This statistic is based on the notion of a statistical depth
function [94], which provides ranks of the elements of a sample with respect to
itself and other given sample(s). The Liu-Singh-statistic detects both location
and scale differences in principle but is particularly powerful against pure scale
differences. A different test also based on depth ranks was proposed and numer-
ically investigated in Chenouri and Small [16]. Statistical depth functions are
known for being robust measures that detect characteristics of the underlying
distribution such as location, scale, bias, skewness and kurtosis [12, 51], and,
in fact, statistical depth functions can characterise the underlying distribution
[19]. Thus, a depth based two-sample test is potentially powerful against any
alternative, or, at least, a wide variety. Furthermore, they have the potential of
being more robust (depending on the depths being used).

Control charts based on depth-based ranks as in [52] have been discussed
in [49] and applied to an aviation dataset in [14]. As more and more high-
dimensional data are observed in practice, which can often be regarded as ran-
dom curves, there has been an increased interest in statistical methodology for
functional data in the last decades. For instance, two-sample tests for functional
data have been considered by several authors. Horváth, Kokoszka and Reeder
[43] proposed a test for differences in the mean function for L2(0, 1)-valued func-
tional data. Dette, Kokot and Aue [24] developed a test for relevant differences in
the mean function for observations in the Banach space of continuous functions.
Munko et al. [58] proposed a bootstrap based multisample ANOVA procedure
for functional data. Two-sample tests for differences in the covariance operators
have been introduced by [5, 25, 36]. Wynne and Duncan [87] proposed a kernel
two-sample test for functional data that is based on the maximum mean discrep-
ancy. Jiménez-Gamero and Franco-Pereira [44] proposed a k-sample test that
allows for k to grow. Some of these papers also consider change point statistics
as generalisations of their two-sample tests. Further tests and related estimators
for functional data have been developed by [4, 6, 76] for changes in the mean
and by [77, 81] for changes in the covariance.

1.1. Main contributions

Below, we summarise the main contributions made in this paper:

Symmetrisation of a class of two-sample tests A very important prop-
erty when testing for the inequality of the underlying distributions of two sam-
ples is the symmetry of the procedure with respect to the two samples, i.e. the
outcome of the test should not depend on the choice of label given to the two
samples.
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• In Section 2.2, we prove that the originally proposed Liu-Singh-test does
not have this property to the extent that the power of the test significantly
depends on the labelling with only one labelling having asymptotic power
one.

• In Section 2.4 we derive asymptotic results for the joint tuple obtained
from both orderings under the null hypothesis, which allows us to propose
symmetric, asymptotic size α tests based on this joint tuple.

Improvements on the size and power of the tests Due to the particular
construction of the rejection regions of the proposed test statistics, we tend to
get a better small sample size behaviour. This is achieved by taking more in-
formation from the proofs of the null asymptotics into account. Additionally, as
indicated by an illustrative example in Section 2.2, the proposed symmetrisation
leads to a potentially large increase in power, in particular in those situations
where the original statistic behaved poorly. A different (symmetrised) modifica-
tion of the original statistic was already mentioned in the original paper by Liu
and Singh [52] and later investigated for the two- and multisample case [15, 53]
as well as for the change point situation [66, 68, 67]. But this modification was
constructed to detect differences in the scale of the distributions and, unlike
our proposal, has no or only very little power against location shifts (see, for
instance, [52], Section 4).

Extensions to functional spaces In Section 3, we generalise the depth-
based test for the nonparametric two-sample problem as proposed by Liu and
Singh [52] to functional data. This is done by using depth functions for Hilbert
and Banach space valued observations, see also [61]. Unlike for some other two-
sample tests for functional data, no dimension reduction techniques and no or
only weak moment assumptions are required depending on the depth used. The
proposed tests – after the modifications already mentioned above – can simul-
taneously detect deviations in the mean as well as in the covariance operator
and even have some power against different alternatives such as differences in
higher-order moments or different shapes.

Corrections of previous results Finally, we fill a gap in the proof of the
null asymptotics as provided by Zuo and He [93] and present a counterexample
to their asymptotics result under the alternative (see Remark 2.4).

1.2. Organisation of the material

In Section 2, different variations of the Liu-Singh-statistic are considered and
their asymptotics under the null hypothesis are investigated under reasonable
assumptions. The problem with the asymmetry is addressed and an illustrative
counterexample to [93], Theorem 1 under the alternative, is presented. Section 3
is dedicated to verify the assumptions on the data depth functions used with our
proposed statistics such that the asymptotics results from Section 2 hold true.
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Section 4 contains a summary of our simulation study as well as an analysis
of temperature curves of ocean drifters in order to distinguish between periods
of El Niño and La Niña (in different intensities). For the proofs, an extensive
simulation study and further analysis of the real dataset, we refer the reader to
the appendix.

2. Variations of Liu-Singh-statistics

Wilcoxon’s rank sum statistic measures whether the ranks corresponding to one
sample are too small or too large compared to what could be expected if the
distribution of both samples were the same. Statistical depth functions provide
a centre-outward ordering and as such allow to measure how deep one sample
lies within the other. This motivated Liu and Singh [52] to use statistical depth
functions to generalise Wilcoxon’s rank sum test, as described in the following.

2.1. The Liu-Singh-statistic and an initial modification

Consider two samples X1, ..., Xm (referred to as X-sample) and Y1, ..., Yn (Y -
sample) such that X;X1, ..., Xm ∼ P iid and independent of Y ;Y1, ..., Yn ∼ Q
iid both with values in Ω, where we want to test the null hypothesis P = Q
against the alternative P �= Q. For a depth function D : Ω ×PΩ → R�0, where
PΩ denotes the collection of all probability measures on Ω with respect to an
appropriate σ-algebra, the expression

R̃(y, P ) =
∫

1{D(x,P )�D(y,P )} dP (x). (1)

can be regarded as a measure for the relative deepness of a point y with re-
spect to the probability measure P . The expected value is given by ER̃(Y, P ) =
P(D(X,P ) � D(Y, P )), which equals 1/2 under the null hypothesis of P = Q if
D(X,P ) is continuous (as under Assumption Asm1 below in Subsection 2.3.1).
With P̂m denoting the empirical measure based on X1, ..., Xm, the correspond-
ing empirical version

R̃(Yj , P̂m) = 1
m

m∑
i=1

1{D(Xi,P̂m)�D(Yj ,P̂m)}

can be seen as a generalisation of the rank of observation Yj with respect to
the X-sample. Unlike for R̃(Y, P ), the expected value of the empirical version is
not equal to 1/2, not even for continuous D(X,P ), because equality of D(X,P )
and D(Y,Q) can occur with positive probability under the empirical measure.
For this bias to be asymptotically negligible we need an additional regularity
condition, which can be difficult to evaluate for specific depth functions (see
Remark 2.2 below in Subsection 2.3.1). Therefore, we propose the following
modification

R(y, P ) =
∫

1{D(x,P )<D(y,P )} dP (x) + 1
2

∫
1{D(x,P )=D(y,P )} dP (x), (2)
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R(Yj , P̂m) = 1
m

m∑
i=1

1{D(Xi,P̂m)<D(Yj ,P̂m)} + 1
2

1
m

m∑
i=1

1{D(Xi,P̂m)=D(Yj ,P̂m)}.

(3)

For the theoretical quantity it clearly holds R(y, P ) = R̃(y, P ) a.e. for continuous
distributions P .

Similarly to the Wilcoxon statistic we sum up all these generalised ranks
R(Yj , P̂m) leading to the following version of the Liu-Singh-statistic, to which
we refer as LS-statistic in the rest of the paper.

LS(P̂m, Q̂n) =
∫

R(y, P̂m) dQ̂n(y) = 1
n

n∑
j=1

R(Yj , P̂m),

where Q̂n is the empirical measure based on Y1, ..., Yn. This, in turn, is the
empirical version of the expected value of R(y, P ) with respect to the underlying
distribution of the Y -sample Q, given by

LS(P,Q) =
∫

R(y, P ) dQ(y)

= P(D(X,P ) < D(Y, P )) + 1
2P(D(X,P ) = D(Y, P )). (4)

Roughly speaking, this measure-based index indicates whether or not the ran-
dom variable Y has a similar deepness with respect to P , as X has. Or, in
other words, it measures the outlyingness of the distribution Q with respect to
the distribution P in terms of the depth. Thus, both large and small values
of LS(P,Q) indicate a departure from the null hypothesis of equality of the
distributions.

The original Liu-Singh-statistic introduced in [52] was constructed in the
same way but using R̃ instead of R. In the following sections, we refer to that
statistic as L̃S-statistic.

2.2. Drawbacks of the LS-statistics: an illustrative example

One major drawback of the LS-statistic is the fact that it is not symmetric in
the two samples in the sense that exchanging the labels of the samples may
lead to a different test decision. Any two-sample test checking for inequality
of the two underlying distributions should have such a symmetry property to
guarantee a meaningful statistical interpretation. Otherwise, two practitioners
may come to very different conclusions when applying the same test statistics
to the same data but with exchanged labels.

Furthermore, we illustrate in this section that the combined information from
the two LS-statistics obtained by both labellings, i.e. the LS-tuple
(LS(P̂m, Q̂n),LS(Q̂n, P̂m)), is much greater than each of the two statistics sep-
arately. In addition, this is later confirmed by our simulation results in Sec-
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tion C.1. See also Figure 2, in Subsection 2.4, to get an impression of the rejec-
tion regions (and corresponding empirical size) for different statistics based on
the LS-tuple.

To discuss this point in detail, we use the following illustrative example: Let
one sample follow a U(0, 0.5) distribution and the other a U(0, 1) distribution.

Computing the depth of a U(0, 0.5) sample with respect to a U(0, 1) sample
leads to very similar values to those obtained when computing the depth of a
U(0, 1) sample with respect to a U(0, 1) sample: In the former case, all mass
lies in the same direction from the centre point as opposed to equally split to
both directions in the latter. However, this direction is not taken into account
by depth functions which only constitute a centre-outward ordering. Therefore,
very little power can be expected from a test that is based on this notion. Indeed,
this is confirmed by Theorem 2.1 (a) below for the Tukey depth, which is defined
as

DT (y, P ) = min(P ((−∞, y]), P ([y,∞))) (5)
in the univariate case, cf. (15) in Section 3 below. The original rank definition
in one dimension takes both the centre-outward ordering and the direction from
the centre into account, so the Wilcoxon test does not suffer from this problem.

On the other hand, with exchanged labels the depths of the U(0, 1) sample
compared to the U(0, 0.5) samples is considered, such that about half of the
samples of the U(0, 1) sample will have depth value 0. This is much more than
can be expected under the null hypothesis, resulting in a good power behaviour.
This is confirmed by Theorem 2.1 (b) for the Tukey depth.

Theorem 2.1. Consider two independent samples of iid random variables
X,X1, ..., Xm ∼ U(0, 1) with empirical distribution function (EDF) P̂m and
Y, Y1, ..., Yn ∼ U(0, 1/2) with EDF Q̂n and m/(m + n) → τ ∈ (0, 1). Then, it
holds for the LS-statistic with respect to the Tukey depth, LST , that

(a)
√

12 ·m · n
m + n

(
LST (P̂m, Q̂n) − 1

2

)
D−→ N(0, 5 − 4τ),

(b)
√

12 ·m · n
m + n

(
LST (Q̂n, P̂m) − 1

4

)
D−→ N

(
0, 5

4 − τ

)
.

Both (a) and (b) remain true when substituting LST by L̃ST , the original statis-
tic with respect to the Tukey depth.

The limit distributions under the null hypothesis (i.e. when both samples
follow a U(0, 1) distribution) is given by (see Theorem 2.3 below)√

12 ·m · n
m + n

(
LST (P̂m, Q̂n) − 1

2

)
D−→ N(0, 1) and, equally,√

12 ·m · n
m + n

(
LST (Q̂n, P̂m) − 1

2

)
D−→ N(0, 1).

Consequently, for the labelling as in (a) the limit distribution under this alterna-
tive coincedes with the null distribution except for a larger variance. Therefore,
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Fig 1. For 1000 trials, we plotted for m,n = 100 the LS-tuple
(
LS(P̂m, Q̂n),LS(Q̂n, P̂m)

)
and the corresponding projections. Green circles: P,Q = U(0, 1). Orange crosses: P =
U(0, 0.5), Q = U(0, 1). Blue triangles: P = U(0, 1), Q = U(0, 0.5).

the power of the corresponding test will remain bounded away from one due to
the same expectation but with a power larger than the level due to the larger
variance. On the other hand, for the ordering as in (b) the two limit distribu-
tions (under the alternative and the null hypothesis) contract around different
expectations (1/2 under the null hypothesis and 1/4 under the alternative) so
that the test will have asymptotic power one.

A corresponding empirical illustration, based on the univariate Tukey depth,
can be found in Figure 1 for m = n = 100. In the figure, we have a scatter
plot, with 1000 repetitions, of the LS-tuple (LST (P̂m, Q̂n),LST (Q̂n, P̂m)) with
LST (P̂m, Q̂n) corresponding to the x-axis and LST (Q̂n, P̂m) to the y-axis. In
addition, LST (P̂m, Q̂n) is represented below the x-axis and LST (Q̂n, P̂m) in the
left of the y-axis. In the figure, the green circles correspond to the null hypothe-
sis, being all random variables drawn independently from U(0, 1) distributions.
Meanwhile, the orange crosses correspond to the scenario in Theorem 2.1, with
the X random variables being drawn independently from a U(0, 0.5) distribu-
tion. The dark blue dash-dotted secondary diagonal in Figure 1 divides the unit
square into two triangles and the LS-tuple usually takes values in the below
triangle, see Section C.4 for details. As suggested by the above considerations
regarding Theorem 2.1 the orange and green points of the projection onto the
y-axis, LS(Q̂n, P̂m), are centred around 1/2 with the variability of the orange
crosses larger than that of the green circles. On the other hand, when the labels
are switched as in LS(P̂m, Q̂n) (projection onto the x-axis), then the orange
crosses are well separated from the green circles (as indicated by the different
asymptotic expectations). The blue triangles in Figure 1 are a result of switch-
ing the roles of U(0, 0.5) and U(0, 1), where a behaviour in an analogous fashion
to the orange crosses can be observed. The clearly separated point clouds in
Figure 1 indicate that tests based on both entries of the LS-tuple can be con-
structed to have higher power and at the same time not suffer from asymmetry
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problems. From our empirical observations, we conjecture that the location of
the points of the LS-tuple in the unit square gives an indication on the type of
difference between the underlying distributions (see Section C.4).

A different way to symmetrise the LS-test has already been pointed out by
Liu and Singh [52], and later discussed by [15, 53] but has less power against the
important alternative of mean differences (compared to a joint consideration of
both orderings based on the scatter plot above). The reason is that their proposal
measures the deepness of the Y -sample not in the X-sample but in the joint
sample X1, ..., Xm, Y1, ..., Yn. For example, by analogous considerations to above,
a sample of U(0, 0.5) random variables joint with a U(0.5, 1) sample (of the same
size) will have similar behaviour as if both were U(0, 1), thus a corresponding test
suffers from power problems. Note that this joint samples depth approach follows
the original Wilcoxon statistic but its power issue regarding mean differences
arises from the fact that statistical depths only yield a centre-outward ordering
with no distinction of direction from the centre, whereas ranks – that are limited
to the univariate case – make use of that information.

2.3. Joint asymptotic behaviour of the LS-tuple under the null
hypothesis

In the previous section, we have illustrated that a combined consideration of
the LS-statistics with both possible orderings is symmetric by definition and
contains much more information than each of the two projections in the axes
separately. Indeed, due to the better separation between null hypothesis and
alternatives, the joint consideration offers a large potential for a power gain.

Usually, non-rejection regions for a test based on a bi-variate statistic such
as the LS-tuple are constructed as confidence regions of the asymptotic distri-
bution under the null, i.e. regions that contain 1 − α of its probability mass.
In the following, we will shed light onto the joint asymptotic behaviour of the
LS-tuple. We will obtain the following key-observations, which will eventually
motivate our proposed non-rejection regions:

• Theorem 2.3 shows that the joint asymptotic null distribution is degen-
erate, i.e. perfectly negatively correlated asymptotically, where the proof
shows that this is due to the same leading term with different signs.

• This leading term is best captured by the properly scaled difference of the
two statistics (henceforth called LS-difference statistic). As a consequence,
the latter has a much better empirical size behaviour than each of the
original LS-tests, see Figure 2.

• Indeed a suitable rotation transforms the LS-tuple into a tuple of the LS-
difference statistic in addition to an LS-sum statistic, which is defined as
the properly scaled sum of the original LS-statistics. Corollary 2.5 shows
that the latter contracts faster than the LS-difference statistic.

• For the special case of the Tukey depth in the one-dimensional Euclidean
space, we prove the asymptotic independence of the LS-difference and
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LS-sum statistic in Theorem 2.6 also providing the joint asymptotic null
distribution of the LS-tuple.

• Some results for the simplicial depth in the one-dimensional Euclidean
space suggest that the limit of the LS-sum statistic and possibly also
the contraction rate may depend on the underlying depth function, see
Theorem 2.7 and Remark 2.9. In consequence, obtaining confidence regions
from the joint limit distribution may not always be feasible.

• Finally, Section 2.4 discusses how to choose non-rejection regions in light
of the above findings.

For the asymptotic behaviour of the L̃S-statistic, i.e. the projections of the
L̃S-tuple, Liu and Singh [52] already presented some first results for several
depths. Later, Rousson [71] presented ideas for a more general proof, before
Zuo and He [93] gave a general proof based on regularity conditions on the
depths and distributions. We will follow their approach in understanding the
joint behaviour of the LS-tuple, as such an approach has the advantage that
additional depth functions on a variety of probability spaces can be used. In
particular, we focus on applying the LS-test for functional data in Section 4. In
addition, we fill a gap in the proof in Zuo and He [93] (see Remark 2.4), as a
small adaptation of the original regularity conditions is required.

2.3.1. Assumptions on the depths

We state here the necessary regularity conditions on the depths and distribu-
tions, giving the corresponding asymptotic results later in the section. We will
verify these regularity conditions for several important depths in Section 3.

Let D : Ω × PΩ → R�0 be a depth function. In Assumption Asm1 we re-
quire the CDF of D(X,P ) to be β-Hölder-continuous. Essentially, this requires
the random variable X to have a continuous distribution, which is a standard
assumption even for univariate rank-based procedures, in addition to the depth
being sufficiently regular in its first argument.
Assumption Asm1. P(D(X,P ) ∈ [y1, y2]) � C|y2−y1|β for positive constants
C, β and any y1, y2 ∈ R�0 for some 1/2 < β � 1.

In Assumption Asm2 we require sufficiently fast uniform contraction rates in
the L2β-norm for the empirical depth processes.
Assumption Asm2. E(supx∈Ω |D(x, P̂m)−D(x, P )|2β) = O(m−β) with 1/2 <
β � 1 as in Asm1.

Assumption Asm3 gives a deterministic upper bound between the usual em-
pirical depth function and the empirical depth function where one element was
taken out of the sample.
Assumption Asm3. There exist a deterministic constant Cdet and an index
m0 such that for every m � m0:

sup
x∈Ω

|D(x, P̂m) −D(x, P̂−{1}
m )| � Cdet

m
almost surely,
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where P̂−I
m for some I ⊂ {1, ..., n} is the empirical probability measure with

respect to {Xi : i ∈ {1, ..., n} \ I}.
If we take Mn elements out of the set (instead of just 1), then we immediately

get an upper bound of Mn ·Cdet /m in the above assumption. In particular, we
get the same bound (with a different deterministic constant) if we take only a
bounded number of elements Mn � M out. In the proofs we make use of

sup
x∈Ω

|D(x, P̂m) −D(x, P̂−{1,2}
m )| � 2 Cdet

m
almost surely. (6)

In a sense, Asm4 is the empirical analogue of Asm1, but making use of the
L2-norm.

Assumption Asm4. Let X be an independent copy of X1, ..., Xm. Then, for
any constant C > 0, it holds

E

([
P

(
|D(X1, P̂

−{1}
m ) −D(X, P̂−{1}

m )| � C

m

∣∣∣∣X2, ..., Xm

)]2
)

= O(m−2β)

with 1/2 < β � 1 as in Asm1.

In particular, Asm4 implies, for any C > 0,

E

([
P

(
|D(X1, P̂

−{1,2}
m ) −D(X, P̂−{1,2}

m )| � C

m

∣∣∣∣X3, ..., Xm

)]2
)

= O(m−2β).

(7)

The proofs of Theorem 2.3 and Corollary 2.10 go through for 0 < β � 1/2 as
long as we get the bound o(m−1) in Asm4. However, this seems unrealistic in
view of the β-Hölder-continuity in Asm1.

The above assumptions related to the Hölder-continuity provide a uniform
framework – but while they are sufficient, they are not necessary: Theorem 2.7
shows that Theorem 2.3 and consequently Corollary 2.10 also holds for the
univariate simplicial depth which is only Hölder with β = 1/2 and thus is not
covered by the above theory. Indeed, our proof in Section A.1 shows that the
dominating term of the statistic as given by A1 in (20) is asymptotically normal
as long as D(X1, P ) is continuous, i.e. in particular under Asm1 for any β > 0
(see Lemma A.1). The main difficulty, where the assumptions really come into
play, is the derivation of the rate of convergence of the remaining term A2
(see (20)) in Lemma A.3.

Remark 2.2. If we use the original generalised ranks as in (1) instead of (2),
then we need additionally that (see Remark A.5)

E

⎛⎝[Bm∑
i=1

(P(D(X, P̂m) = ci|X1, ..., Xm))2
]2⎞⎠ = o(m−1), (8)

where X is an independent copy of X1, ..., Xm and c1, ..., cBm are the only values
for which P(D(X, P̂m) = ci|X1, ..., Xm) > 0 holds true.
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2.3.2. Joint asymptotic behaviour of the LS-tuple

The following theorem gives the joint limit of the LS-tuple
(LS(P̂m, Q̂n),LS(Q̂n, P̂m)). The localisation constant of 1/2 stems from the fact
that under the null hypothesis and if D(X1, P ) is continuous (as under Asm1),
it holds R(Y1, P ) ∼ U(0, 1), therefore LS(P, P ) = 1

2 .

Theorem 2.3. Let Asm1 - Asm4 hold true and, for m,n → ∞, let

m

m + n
→ τ for some 0 < τ < 1. (9)

Then, under the null hypothesis of P = Q and as m → ∞, we have that√
12 ·m · n
m + n

[(
LS(P̂m, Q̂n)
LS(Q̂n, P̂m)

)
− 1

2

]
D−→ N

((
0
0

)
,

(
1 −1
−1 1

))
. (10)

Remark 2.4. The main result of Zuo and He [93] – this is [93], Theorem 1 –
is actually incorrect under the alternative hypothesis. The limit distribution of√

12 ·m · n
m + n

(
L̃ST (P̂m, Q̂n) − 1

2

)
is claimed there to be standard normal (see also (32), (33)). However, by The-
orem 2.1 (a) the true asymptotic variance is given by 5 − 4τ , which is strictly
greater than 1, and thus, we have a counterexample for their theorem. This the-
oretic result is illustrated in Figure 1. Zuo and He [93] omit the proofs of points
(i) and (ii) in [93], Lemma 1. They only prove point (iii). While (i) can be
proven along the lines of (iii) (see the proof of Lemma A.1), this is not true
for (ii). The reason is that the independence argument used in the proof of (iii)
does not hold for (ii). This concerns the term A2,2(P̂m) (respectively Ã2,2(P̂m))
in the proof of Lemma A.3 (see Remark A.4 for a detailed explanation of the
problem). In order to fill this gap, we need some slightly different regularity con-
ditions (cf. Asm2–Asm4) compared to those in the paper by Zuo and He [93]. As
[93], Lemma 1 is used to prove [93], Theorem 1, we have that, under the null
hypothesis, our Theorem 2.3 and the results that follow from it also require the
above mentioned stronger assumptions.

The limit in Theorem 2.3 is degenerate in the sense that the two statistics
are perfectly negatively correlated asymptotically under the null hypothesis.
Consequently, under the null hypothesis both statistics are asymptotically sym-
metric in both arguments, while this is not the case under alternatives (see
Theorem 2.1 and Figure 1). This is also the reason why the power behaviour
of the LS-statistic depends crucially on the choice of labelling, as illustrated in
Section 2.2. In Section 2.4.1 we propose some symmetric first-order variations
based on the LS-tuple, whose limit distribution can be obtained based only on
Theorem 2.3 above. However, these statistics suffer from size or power problems
because they do not take the full geometry of the LS-tuple into account.
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Indeed, the proof of Theorem 2.3 shows that LS(P̂m, Q̂n) and LS(Q̂n, P̂m)
have the same symmetric leading term (A1 in (20)) with different (asymptoti-
cally negligible) remainder terms (A2 in (20)). This leading term is best captured
by the LS-difference statistic (LS(P̂m, Q̂n)−LS(Q̂n, P̂m))/

√
2 (see also Corol-

lary 2.10 (a) below, where the different variance stems from the fact that the
LS-difference statistic contains the leading term A1 in (20) twice).

This can also be thought of as rotation of the coordinate system, with the
dark blue dash-dotted secondary diagonal and red dashed diagonal in Figure 2
below as new axes and the factor 1/

√
2 corresponding to the rotation matrix.

The projection of the LS-tuple on the red dashed main diagonal, essentially
given by the sum of the two LS-statistics, corresponds to the remainder terms
(A2 in (20)) and contracts faster than the main term (i.e. it is asymptotically
negligible) as shown by the following Corollary (see also Lemma A.3). In Fig-
ure 2, this negligibility is the reason that the variability of the LS-tuple under
the null hypothesis is greater along the dark blue dash-dotted secondary diago-
nal than along the red dashed diagonal.

Using not only the information about the limit with respect to the main term
as reflected by the LS-difference statistic, but also the asymptotic information
about the complementing LS-sum statistic given by LS(P̂m, Q̂n)+LS(Q̂n, P̂m),
can further improve upon the size-power behaviour of the tests. Such symmetric
second-order tests are discussed in Section 2.4.2. Their construction is motivated
by and depends crucially on the following mathematical results.

Corollary 2.5. Under Asm1 - Asm4 and (9), it holds

LS(P̂m, Q̂n) + LS(Q̂n, P̂m) − 1 = OP (δm,n),

where

δm,n =
{(

m+n
mn

)β for 1
2 < β � 2

3 ,(
m+n
mn

) 2+β
4 for 2

3 � β � 1.

In particular, under Lipschitz-continuity the rate δm,n =
(
m+n
mn

) 3
4 is achieved.

The following theorem shows that the true convergence rate associated to a
specific depth can be much faster than suggested by δm,n in Corollary 2.5.

Theorem 2.6. Let LST (·, ·) be the LS-statistic with respect to the Tukey depth
in the one-dimensional Euclidean space.

(a) Then, under the null hypothesis for any continuous probability measure P ,
it holds that

− mn

m + n
·
(
LST (P̂m, Q̂n) + LST (Q̂n, P̂m) − 1

)
D−→ 1 + 1

2χ
2
1,

where χ2
1 is a χ-square-distribution with 1 degree of freedom. Furthermore,

LST (P̂m, P̂n) + LST (P̂n, P̂m) − 1 � 0 almost surely.
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(b) LST (P̂m, Q̂n)+LST (Q̂n, P̂m) and LST (P̂m, Q̂n)−LST (Q̂n, P̂m) are asymp-
totically independent statistics, in the sense that the joint limit distribution
of the properly scaled and shifted versions is the product of their marginal
limit distributions.

For the L̃S-statistics, one obtains the limit result of 1
2χ

2
1 in (a) instead and (b)

holds analogously.

For the two-sample location-scale problem of univariate data, there exist
several further tests, e.g. the Lepage-test which is a combination of the Wilcoxon
statistic with the Ansari-Bradley test [47] or the Cucconi-test which combines
information of squared ranks and anti-ranks [18]. Further details can be found in
[56]. An alternative test statistic can be obtained from Theorem 2.6 by making
use of the joint distribution to obtain a non-rejection region that is as tight as
possible. Such LS-tests are neither based on the Lepage test (respectively the
Wilcoxon test) nor on the Cucconi test. However, even in this simple univariate
situation, the proof of the above theorem is rather involved so that one cannot
expect such a result in more complicated situations.

Finally, we show that for the univariate simplicial depth, despite being only
1/2-Hölder-continuous, the remainder term also contracts faster than the leading
term. This happens with a surprisingly fast rate. The conjecture in Remark 2.9
below suggests that, even with known joint distribution, it might be difficult to
decide on an appropriate shape for the non-rejection regions in general.

Theorem 2.7. Let LSS(·, ·) be the LS-statistic with respect to the univariate
simplicial depth in the U-statistic-representation with respect to closed simplices,

DS(x, P̂m) =
(
m

2

)−1 ∑
1�i<j�m

1{x∈[min(Xi,Xj),max(Xi,Xj)]},

see (16) for details. Then, under the null hypothesis P = Q and (9) for any
continuous probability measure P , it holds

LSS(P̂m, Q̂n) + LSS(Q̂n, P̂m) − 1 = OP

(
log(m + n)

m + n

)
.

Moreover, the limit in (10) holds for the LS-tuple based on LSS, as well as
on L̃SS.

Remark 2.8. The proof of the above theorem is based on the asymptotic be-
haviour of the difference of the LS-statistics with the respect to the univariate
Tukey and simplicial depth: indeed, (62) shows that the difference between L̃SS

and L̃ST is asymptotically negligible, while (64) shows the asymptotic negligi-
bility between L̃SS and LSS.

Remark 2.9. Due to some preliminary considerations we conjecture that the
following asymptotics holds in the situation of Theorem 2.7:
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− mn

(m + n)(log(
√

2m + 3) + log(
√

2n + 3))

·
(
L̃SS(P̂m, P̂n) + L̃SS(P̂n, P̂m) − 1

)
P−→ 1

2 .

The corresponding limit is degenerate and therefore highly non-standard and
cannot be used to derive asymptotic confidence regions even if the joint limit with
the LS-difference statistic were known. Instead, one would need to subtract 1/2
from the left-hand side (including the normalizing sequence) and then consider
the limit distribution of that one.

2.4. Symmetrisation based on the joint LS-tuple

In this section, we discuss possibilities to construct symmetric tests based on
the joint LS-tuple. We distinguish between first-order tests, discussed in Sec-
tion 2.4.1, and second-order tests, in Section 2.4.2. The limit of the first-order
tests is a direct consequence of Theorem 2.3. They do not make any addi-
tional use of the information about the limit of the LS-sum statistic. In conse-
quence, these statistics suffer from unnecessary size or power issues, see Figure 2,
where the power issues are indicated by unnecessary blind spots. In contrast,
second-order tests additionally take the asymptotic information from the LS-
sum statistic into account, thus improving on the power while keeping a good
size behaviour.

2.4.1. First-order tests

The null asymptotics of the original statistics given by the two projection statis-
tics of the LS-tuple, i.e. LS(P̂m, Q̂n) and LS(Q̂n, P̂m), is a direct consequence
of Theorem 2.3.

The following corollary introduces two more statistics and gives the corre-
sponding limit under the null hypothesis.

Corollary 2.10. Let Asm1 - Asm4 and (9) hold. Then, under the null hypoth-
esis of P = Q, it holds for m → ∞

(a)
√

6 ·m · n
m + n

·
[
LS(P̂m, Q̂n) − LS(Q̂n, P̂m)√

2

]
D−→ N(0, 1),

(b) 12 ·m · n
m + n

[
max

(∣∣∣∣LS(P̂m, Q̂n) − 1
2

∣∣∣∣ , ∣∣∣∣LS(Q̂n, P̂m) − 1
2

∣∣∣∣)]2
D−→ χ2

1.

While both asymptotic statements in the corollary follow immediately from
Theorem 2.3, the approximation of the LS-difference statistics, in Corollary
2.10 (a), is quite good, while the approximation of the LS-maximum statistic, in
Corollary 2.10 (b), is not so good – resulting in a size problem for small sample
sizes. The problem is illustrated in the empirical size shown in Figure 2 (d),
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Fig 2. Illustration of the blind spots: in each panel, the circles represent 1000 realizations
of the LS-tuple (LS(P̂m, Q̂n) in the horizontal axis and LS(Q̂n, P̂m) in the vertical axis)
obtained with the univariate Tukey depth under the null hypothesis of P and Q following a
U(0, 1) distribution (m = n = 100). The red circles (unlike the green ones) result in rejections
made by the LS-statistic corresponding to each panel. From left to right and top to bottom,
the used LS-statistics are: (a) LS(P̂m, Q̂n), (b) LS(Q̂n, P̂m), (c) LS-difference, (d) LS-
maximum, (e) Joint-CC and (f) Joint-TP. In each panel, the shaded orange region is the
rejection region of the corresponding variation of the LS-statistic. Each rejection region is
separated in two by a red dashed main diagonal. The numbers at each side of the red dashed
main diagonal correspond to the rejection rate of that side.

corresponding to the LS-maximum statistic, which is of the 11%, being far
higher than the desired 5% that holds asymptotically.

It is worth commenting that recently, Shi, Zhang and Fu [79] have run ex-
tensive simulation studies concerned with the empirical power, but not the em-
pirical size, for the LS-maximum statistic in addition to a LS-ellipsoidal test
with ellipsoid non-rejection regions based on a convex combination of the two
projection tests; see Section C.3 in the for more details.

Figure 2 also contains the corresponding results for the LS-projection statis-
tics in Subfigures (a) and (b). Additionally, Figure 2 (c) corresponds to the
LS-difference statistic in Corollary 2.10 (a). Clearly, the empirical size is much
better in Figure 2 (c) for the LS-difference statistic than for the LS-maximum
statistic or any of the two LS-statistics in Subfigures (a) or (b). Note that the
empirical size shown in Figure 2 (c) is 4.4%, and thus much closer to the asymp-
totically given 5% than those in Figure 2 (a) and (b), which are 6.5% and 7%,
respectively. Furthermore, the size problem of the two LS-projection statistics
clearly stems from the fact that the geometry of the LS-tuple is not taken into
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account resulting also in an asymmetric rejection behaviour in the two disjoint
rejection regions of the LS-statistics. The LS-maximum statistic in Figure 2 (d)
has even greater size problems because it inherits the size behaviour from the
‘bad’ region of both LS-statistics. On the other hand, it has clearly eliminated
the blind spots, i.e. areas that do not belong to the rejection region despite the
fact that LS-tuples will only fall into these areas under alternatives. Figure 1
gives examples where the LS tuple does indeed fall into these blind spots under
alternatives. Thus, the choice of rejection region as indicated in shaded orange in
Figure 2 is truly relevant for the power of the test against different alternatives.

2.4.2. Second-order tests: Joint LS-tests

The problems of the above first-order tests stem from the fact that they do not
consider all available information about the asymptotic behaviour of the LS-
sum statistic under the null hypothesis. Taking this information into account,
in this section, we propose second-order tests that can improve upon the power
while keeping the good size behaviour of the LS-difference statistic. Essentially,
we aim at obtaining tests that

• are symmetric in both samples,
• have no systematic blind spots (making use of Corollary 2.5), and thus

are powerful against more alternatives,
• make use of the asymptotic approximation in Corollary 2.10 (a), with

better small-sample behaviour than e.g. the statistic in Corollary 2.10 (b),
• and have asymptotic size α.

To understand their construction, the following key observations are impor-
tant:

(a) The normal approximation of the LS-difference statistic is very good even
for small samples.

(b) We cannot control the behaviour of the LS-sum statistic in general, but
we know that it contracts faster than the LS-difference statistic.

(c) We know that the LS-difference and the LS-sum statistic are asymp-
totically independent when making use of the Tukey depth in the one-
dimensional Euclidean space, see Theorem 2.6. We conjecture that this
remains true in more general situations.

Observations (a) and (c) motivate the use of rectangular non-rejection regions
that are oriented as the diagonal lines in Figure 2.

More precisely, we use the LS-tuple with a rectangular non-rejection region
described by the following inequalities

(I)

∣∣∣LS(P̂m, Q̂n) − LS(Q̂n, P̂m)
∣∣∣

√
2

�
√

m + n

12 ·mn
z1−α

2
,

(II) LS(P̂m, Q̂n) + LS(Q̂n, P̂m)√
2

�
√

2
(

1
2 − γm,n

)
, (11)
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for some γm,n → 0 discussed below. That is, the null hypothesis is rejected if
at least one of those two inequalities is violated. For an illustration containing
such types of rectangles, see Subfigures (e) and (f) of Figure 2. For the sake
of completeness, note that (I) and (II) describe a region that is not restricted
to the lower triangle below the dark blue dash-dotted secondary diagonal in
Figure 2 and that with some particular depths and finite samples the LS-tuple
can take values above that secondary diagonal, see Section C.4.

In Figure 2, the term (without the absolute value) on the left-hand side of (I)
corresponds to the projection of the LS-tuple on the dark blue dash-dotted sec-
ondary diagonal, essentially corresponding to the LS-difference statistic. Note
that here the rejection rule is obtained from the corresponding normal approx-
imation, see observation (a) above. On the other hand, the term on the left-
hand side of (II) corresponds to the projection of the LS-tuple on the red
dashed main diagonal, essentially corresponding to the LS-sum statistic. Here,
the rejection rule is obtained from observation (b). As a consequence of the
construction of (I) and (II), the test holds the level α asymptotically by Corol-
laries 2.10 (a) as long as γm,n contracts slower to 0 than the contraction rate
of LS(P̂m, Q̂n) + LS(Q̂n, P̂m) − 1 (corresponding to the remainder term) as in
Corollary 2.5. If faster convergence rates are available, as in Theorems 2.6 or 2.7,
then it is sufficient for γm,n to contract slower than these.

A conservative choice for the contraction in (II) that works for all depth
functions, where the remainder term is indeed negligible compared to the leading
term, is given by

γ1,m,n =
√

χ2
1,0.95

m + n

12mn
, (12)

which contracts at the same rate as the leading term and thus at the same rate
as the LS-difference statistic. The constant reflects the chosen quantiles for the
normal approximation leading to a non-rejection rectangle that extends to the
tip of the non-rejection triangle of the LS-maximum statistic as in Figure 2 (d),
which is a conservative choice. We call the corresponding test Joint-TP test (for
Triangle-Point). This is illustrated in Figure 2 (f).

Alternatively, if faster contraction rates δm,n for the LS-sum statistic
LS(P̂m, Q̂n)+LS(Q̂n, P̂m)−1 (corresponding to the remainder term) are known,
e.g. by Corollary 2.5, then they can be used to further decrease the rectangular
non-rejection region. Any such rectangle should not extend beyond the one cor-
responding to γ1,m,n for any value of m and n and at the same time should only
start to significantly differ for suitably large sample sizes m and n. Both can be
achieved at the same time by the following convex combination of the two rates

γ2,m,n(ξm,n) = (1 − ξm,n) δ+
m,n + ξm,nγ1,m,n,

where δ+
m,n � γ1,m,n with δm,n/δ

+
m,n → 0 (e.g. by choosing δ+

m,n = min(δm,n ·
log(mn/(m + n)), γ1,m,n)) and ξm,n � 0 is a sequence that is bounded away
from 1. In particular, it is recommended to use a sequence ξm,n → 0 sufficiently
fast to have the optimal contraction rates. The enlargement of δm,n by δ+

m,n is
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necessary to guarantee that (II) holds with asymptotic probability 1 under the
null hypothesis. In the simulation study, we use the choices ξm,n = e−100m+n

mn

and δ+
m,n =

(
m+n
mn

) 3
4 , i.e. the contraction rate for Lipschitz-continuous depths

from Corollary 2.10 without enlargement which is justified by Theorem 2.6 (a).
We refer to the corresponding test as Joint-CC test (for Convex-Combination).
It is illustrated in Figure 2 (e).

Figure 2 suggests indeed that these statistics have much improved small
sample size behaviour compared to the two LS-statistics or the LS-maximum-
statistic as in Corollary 2.10 (b). Additional simulation results in this spirit can
be found in Section C.1, confirming for functional and multivariate data the
observations made in this section.

3. Validation of assumptions for selected depth functions

This section is dedicated to study whether there are statistical depth functions
that satisfy Asm1 - Asm4, required in the results of Section 2. Our main objective
is to study functional instances and, in turn, we consider the h-depth [22] and
the multivariate functional generalisation [17] of the integrated depth [35]. For
simplicity, we refer to the generalisation as integrated depth in what follows.

Let the sample space H be a separable Hilbert space, P a probability measure
on H (shortly P ∈ PH), X ∼ P , and consider a univariate kernel function K(·)
as well as a bandwidth h > 0. Then, the h-depth of an element x ∈ H with
respect to P is defined as

Dh(x, P ) := E

(
1
h
·K

(
‖x−X‖H

h

))
. (13)

Its sample version with respect to P̂m (based on iid X1, ..., Xm ∼ P ) reads

Dh(x, P̂m) = 1
mh

m∑
i=1

K

(
‖x−Xi‖H

h

)
.

The opportunity of choosing the norm (respectively the underlying sample
space), the kernel and the bandwidth offers a high amount of flexibility for
several classes of data.

Let Cd([0, 1]) be the space of d-variate continuous functions over [0, 1]. For a
multivariate depth function Dd, d ∈ N, the corresponding integrated depth of
an element x ∈ Cd([0, 1]), with respect to a distribution P ∈ PCd([0,1]) reads

ID(x, P ) :=
∫ 1

0
Dd(x(t), P (t)) dt. (14)

For the sample analog, unless stated otherwise, we make use of the integrated
depth with respect to P̂m. The flexibility here comes from the multivariate
depth selected, as different depth functions highlight different characteristics of
the underlying distribution.
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Asm1 is related to the continuity assumption on the underlying distribution
for univariate rank-based methods. This assumption, and even the stronger as-
sumption of Lipschitz-continuity, has also been made in related previous works.
In particular, Zuo and He [93] as well as Ramsay and Chenouri [66, 68, 67]
do not check whether the different depth functions satisfy it. We proceed here
similarly. Note that this is not an eccentric assumption as, for instance, [26],
Lemma 6.1 shows that the Tukey depth is continuous in the first argument
when computed with respect to absolutely continuous distributions. Proposi-
tion 3.3, below, proves that the univariate Tukey depth computed with respect
to absolutely continuous distributions satisfies this assumption with β = 1.

For the h-depth the below result holds.

Theorem 3.1. Let H be a separable Hilbert space and P ∈ PH. Dh fulfills Asm2
and Asm3 for any bounded kernel K(·) and any fixed bandwidth h > 0.

The following result reveals that the integrated depth fulfills assumptions
Asm2 and Asm3 when based on a multivariate depth taking values in [0, 1] that
fulfills them (see Section 3.1). While Serfling and Zuo [74] restrict the notion of
multivariate depths to have an image in [0, 1], the latter has not been fulfilled
by all multivariate depths proposed more recently, such as e.g. the h-depth with
a kernel not bounded from above by 1. Nevertheless, all depths considered here
meet this requirement. The result is established in Cd[0, 1], however, it can be
replaced by another appropriate space.

Theorem 3.2. Let P ∈ PCd[0,1] with P (t) (the probability distribution of a
functional observation evaluated at t) continuous for all t ∈ [0, 1]. ID satis-
fies Asm2, and respectively Asm3, when based on a multivariate depth function
taking values in [0, 1] that fulfills, uniformly in P , Asm2, and respectively Asm3.

As explained in Section 2.3, Asm4 is different in Zuo and He [93]. We as-
sume Asm4, in the same manner to Asm1. This conjecture seems plausible for
the integrated depth family and the h-depth because they can generally take a
continuous range of values even when computed with respect to the empirical
distribution. It is also worth pointing out that Asm4 is satisfied if the following
conditional Hölder-continuity property holds:

Pm �
(
L

m

)β

with E(L2β) < C < ∞

for the Hölder-exponent β from Asm1 and C not depending on m, where

Pm = P

(
|D(X1, P̂

−{1}
m (·)) −D(X, P̂−{1}

m (·))| � 2Cdet

m

∣∣∣∣X1, ..., Xm

)
= P

(
D(X, P̂−{1}

m (·)) ∈[
D(X1, P̂

−{1}
m (·)) − 2Cdet

m
,D(X1, P̂

−{1}
m (·)) + 2Cdet

m

]∣∣∣∣X1, ..., Xm

)
,

which relates to Asm4.
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3.1. Multivariate depths

Theorem 3.2 requires a multivariate depth function satisfying Asm2 and Asm3.
Multivariate depths were the ones analysed in studying the L̃S-statistic in Zuo
and He [93]; however, the assumptions here differ, as they have been adapted in
Section 2.

As the h-depth, cf. (13), can also be computed for multivariate data, we have
already a multivariate depth satisfying the required assumptions. In Subsec-
tion 3.1.1 we provide the definition of other multivariate depths and in Subsec-
tion 3.1.2 we study whether they satisfy Asm2 and Asm3.

3.1.1. Multivariate depth definitions

The Tukey depth [85] is the most well known multivariate depth function, be-
cause of the properties it satisfies. Its only issue is its computational time [28],
which is easily solved by approximating it by the random Tukey depth [20]. The
Tukey depth of x ∈ Rd with respect to a distribution P on Rd is

DT (x, P ) = inf
H∈H(x)

P (H), (15)

where H(x) denotes the family of closed half spaces in Rd that contain x. For
the sample analogue, we make use of the Tukey depth evaluated at P̂m.

The simplicial depth [48] of x ∈ R
d with respect to a probability measure P

on R
d is

DS(x, P ) = P(x ∈ conv{X1, ..., Xd+1}),
where conv{·} denotes the closed convex hull and X1, ..., Xd+1 iid d-variate
random variables with distribution P . The empirical simplicial depth of x ∈ R

d

is

DS(x, P̂m) =
(

m

d + 1

)−1 ∑
1�i1<...<id+1�m

1{x∈conv{Xi1 ,...,Xid+1}}. (16)

Hence, it can be regarded as a U-statistic. In the proof of Theorem 3.4 we also
consider an empirical depth version that is a V-statistic in an intermediate step.
For the simplicial depth the latter was proposed in [27], page 2 and reads

DS,mod(x, P̂m) =
∫

1{x∈conv{x1,...,xd+1}} dP̂ d+1
m (x1, ..., xd+1).

A less technical theory for the simplicial depth than the one used here is devel-
oped in [29]; it is based on the interior of the convex hull.

The spherical depth, proposed by [30], is very similar to the simplicial depth.
In contrast to closed simplices, closed balls are taken into account. In R

d only
two points are required to define such a closed ball. The spherical depth of
x ∈ R

d with respect to a probability measure P on R
d is

DSph(x, P ) = P
(
(X1 − x)T (X2 − x) � 0

)
,

with X1, X2 iid d-variate random variables with distribution P .
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The lens depth by Liu and Modarres [50] takes hyperlenses into account
instead and is defined as

DLe(x, P ) = P (‖X1 −X2‖ � max(‖x−X1‖, ‖x−X2‖)) ,
with X1, X2 iid d-variate random variables with distribution P .

The multivariate band depth (based on k ∈ N \ {1} bands) of a point x ∈ R
d

with respect to the probability measure P (cf. [54], Section 3) is given by

DBa,k(x, P ) = P

⎛⎝ d⋂
j=1

{
min

�∈{1,...,k}
X

(j)
� � x(j) � max

�∈{1,...,k}
X

(j)
�

}⎞⎠ , (17)

with X1, ..., X� iid d-variate random variables with distribution P .

3.1.2. Multivariate results

The case of d = 1 is a special one as there exists an intrinsic order in R.
Proposition 3.3. Tukey depth with respect to a continuous distribution on R

satisfies Asm1–Asm4, with β = 1 in Asm1.
The following theorem is for R

d and needs for d � 2 the following measura-
bility assumption, (M), to prove that Asm2 holds. It is required in particular for
the application of the Dvoretzky-Kiefer-Wolfowitz inequality [2], Theorem 3.1.
Such inequality is also used in the proof of Asm2 in Proposition 3.3. H denotes
the family of closed halfspaces in R

d and P̂2m the empirical probability measure
corresponding to X1, ..., X2m iid random variables with distribution P on R

d.
(M) For every m ∈ N,

√
m · supH∈H |P̂m(H) − P (H)| is measurable and

√
m · sup

H∈H
|P̂m(H) − P (H)|,

√
m · sup

H∈H

∣∣∣∣∣P̂m(H) − 1
m

2m∑
i=m+1

1{Xi∈H}

∣∣∣∣∣ and

sup
H∈H

|P̂2m(H) − P (H)|

are measurable with respect to the completed product measure of
X1, ..., X2m.

In the theorem we also make use of the function L :×k

j=1 R
d → 2Rd , where

2Rd denotes the power set, and of the notation

A(x, y1, ..., yk−1) = {y ∈ R
d : x ∈ L(y1, ..., yk−1, y)}

for the class of sets generated by L(·). It is also worth saying that the theo-
rem makes use of U-statistics, as we consider depth functions whose empirical
versions can be regarded as U-statistics of order k > 1, i.e.

D(x, P̂m) = 1(
m
k

) ∑
1�i1<....<ik�m

1{x∈L(Xi1 ,...,Xik
)}. (18)
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Theorem 3.4. Let D : Rd × PRd → R be a function with a sample version,
D(x, P̂m), that is a U-statistic of fixed order k > 1 with a bounded kernel Kx(·).
Then, D(x, P̂m) satisfies Asm3. If additionally the kernel has the form Kx(·) =
1{x∈L(·)}, the class of sets A(x, y1, ..., yn−1) has finite VC-dimension and (M)
is fulfilled, we have that the pair D(x, P ), D(x, P̂m) satisfies Asm2.

Proposition 3.5 below makes use of Theorem 3.4 to prove the assumptions
for different depth functions.

Proposition 3.5. Tukey depth, simplicial depth, spherical depth, lens depth
and multivariate band depth satisfy Asm3. Furthermore, they satisfy Asm2 when
computed with respect to a probability measure that fulfills (M).

Remark 3.6. There also exists a version of the multivariate band depth (cf.
[54], Section 3) defined as

DBa(x, P ) =
K∑

k=2

DBa,k(x, P ) for K ∈ N \ {1}.

Its sample version is a sum of the U-statistic-estimators and, consequently, sat-
isfies Asm3 and Asm2 when computed with respect to a probability measure that
fulfills (M).

4. Simulations and real data analysis

In the following, we give short summary of the simulation results that are pre-
sented in more detail in the appendix. In Subsection 4.2, we apply the Joint-TP
test to a dataset of temperature curves from ocean drifters in order to demon-
strate its ability to discriminate between El Niño and La Niña years.

4.1. Summary of the simulation study

The simulation study is divided into four parts. In the first we concentrate
on the performance of the different tests based on the LS-tuple considered in
Section 2.4, regarding the impact of its blind spots. Based on the obtained
results, the Joint-TP test is chosen for further analysis in the second and third
part. In the second part we compare its performance when basing it on different
depth functions. Based on these results we select three that performed well
for location differences, for scale difference respectively overall to use them in a
comparison with other tests from the literature that are available as R-packages.
The fourth part is dedicated to evaluate the performance of the Joint-TP test
in the presence of outliers.

Variations of LS-statistics and their blind spots

We construct two classes of alternatives to compare the performance of the tests
based on the LS-tuple in Section 2.4. One of the classes consists of a simple
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difference in the location of the data and the other of a simultaneous difference
in location and scaling. This is done for multivariate data, making use of the
Tukey depth, and for functional data, with the integrated Tukey depth.

The main observation is that the LS-statistics have blind spots like those
that occur with univariate data (Figure 2). This results in the LS-difference
statistic not being suitable to detect differences in location. Additionally, either
LS(P̂m, Q̂n) or LS(Q̂n, P̂m) has very little power against the class with differ-
ences in location and scaling, due to their asymmetry. Moreover, we observe
that the empirical size of the LS-maximum statistic is above 20%.

Consequently, the only two suitable candidates are the Joint-CC statistic
and the Joint-TP statistic. By construction, the last mentioned one is more
conservative, and we restrict our attention to it for the rest of the study. We
refer to Section C.1 for further details.

Joint-TP test for different functional depths

We compare the small sample behaviour of the Joint-TP test when basing it
on different depth functions for functional data. We make use of the following
depth functions given in Section 3: integrated depths based on Tukey, simplicial
as well as a modification of the simplicial depth and two versions of the h-depth
– one with h = 1 fixed and the other with a data-adaptively chosen h. Addi-
tionally we use the spatial depth [11], the lens metric depth [39], the functional
random Tukey depth [20] and the random projection depth [22]. We consider
three different types of functional data – non-smooth, smooth, smooth with high
fluctuation – for generating the sets of alternatives for the following scenarios:
simple location difference, sine curve location difference, simple scale difference,
simultaneous difference in location and scaling. Under the null hypothesis, even
for samples consisting of only m = n = 50 observations, the empirical size with
most depths is below or close to the desired 5% level. Only with the integrated
simplicial depth in the setting of smooth fluctuating functions, the empirical
size is more than 80%, i.e. too large. That effect vanishes asymptotically, with
m = n = 100 observations the size is 6.5%. This is because of the disturbed
inside-out ordering entailed by the univariate simplicial depth, see Example C.1,
which carries over to the integrated simplicial depth. A slight modification, de-
scribed in Section C.2, eliminates this behaviour, but it leads to a small loss of
power.

Detecting complex deviations in the second order structure (i.e. differences
between Model 1-3) works well, where the integrated Tukey depth has a some-
what lower power that is still above 55% in the worst case. For detecting differ-
ences in the location of the data, the integrated depths give the highest power.
With smooth functional data that rarely intersect, the adaptive h-depth and
the spatial depth offer good performance in the setting of a difference in the
location. When it comes to scale differences, the depths that take the distance
between the curves into account, instead of pointwise comparisons on the time
grid, have a higher power.
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In the setting of a simultaneous location-scale difference, using the integrated
simplicial depth leads to a high sensitivity for location differences if the data
do not fluctuate much. If the adaptive h-depth is used instead, there is an
increase in the sensitivity regarding differences in the second order structure.
When it comes to alternatives with equal location and second order structure,
but different higher order structures (i.e. different shape), the tests based on
the integrated depths have less power compared to the tests that use depths
based on a metric. The reason for this phenomenon is that integrated depths
are computed by averaging pointwise computed values over the time axis, but
the shape difference does not occur pointwise.

Furthermore, functional random Tukey depth as well as the random pro-
jection depth have the advantage of low computational cost, but lead – when
applied with the Joint-TP test – to less power than the other functional depths.
The lens metric depth as well as the h-depth with h = 1 show average perfor-
mance among the other depths that we used with the Joint-TP test.

We recommend applying the Joint-TP test either with the adaptive h-depth
if the focus is more on differences in the second order structure (respectively
higher order structures), or with the integrated simplicial depth if the goal is to
give more weight on detecting differences in the location. The integrated Tukey
depth is also a good candidate as an allround solution because it leads to a
conservative behaviour in comparison to the integrated simplicial depth. The
detailed results as well as additional information are provided in Section C.2.

Comparison of the Joint-TP test with the state-of-the-art functional
two-sample tests

This part is dedicated to compare the performance of the Joint-TP tests based
on the integrated Tukey depth, the integrated simplicial depth and the adaptive
h-depth with several state-of-the-art two-sample tests for functional data. We
are using exactly the same sets of functional alternatives as in the previous
part, where we compared the Joint-TP test for different functional depths. The
considered tests are: (a) two ANOVA tests – a bias-reduced F-type test [78, 89]
and a globalised F-test [90], (b) a test based on PCA [36], (c) a test based on
the energy distance [70, 83] and (d) a ball divergence test [65]. Gretton et al.
[41] and Zhang and Smaga [91] also proposed tests based on the maximum
mean discrepancy similar to the one considered in (c). We have selected (c)
using 10000 bootstrap replicates because of its availability on CRAN. We have
relegated Gretton et al. [41] to the appendix because, while it is also on CRAN,
it performs significantly worse than the test in (c) except for the scenarios in
the third line of Figure 12, where both perform badly.

As expected, the ANOVA-based methods (a) have high power in presence of
a difference in the location, but fail to detect any differences in the second order
structure. In the case of a simultaneous location-scale difference, they are a good
choice as long as the location difference dominates. The PCA-based method (b)
is designed to detect differences in the second order structure and, hence, has no
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power against pure location-difference alternatives. Nevertheless, the Joint-TP
test with the data-adaptive h-depth shows an equal, respectively even better,
performance than all the other tests, of which some are particularly designed to
detect this type of difference, which is surprising. The energy-distance test (c)
has high power against differences in location, but difficulties to discriminate
between alternatives in which only the scaling is different. The ball divergence
statistic (d) has less power than the three versions of the Joint-TP test when it
comes to pure second order differences in non-smooth or smooth data with less
fluctuation. In presence of location differences, it seems to perform better than
the Joint-TP tests with smooth data, but in contrast, with non-smooth data
the Joint-TP test with the integrated simplicial depth is more sensitive.

All in all, there exist alternatives in which some of these test classes dominate
all the other tests, but in general, the choice of the test statistic is closely related
to the type of difference in the underlying distributions. The Joint-TP is a good
choice when there is few or no information on the type of difference to detect.
The detailed simulation results are given in Section C.5.

Performance in the presence of outliers

Here, we compare the LS-tests with the above ANOVA-based tests in the pres-
ence of magnitude outliers. In particular, we analyse the case of having an
additive outlier, where a constant function with a value of +50 was added to
the first curve in either one or both samples. The LS-test is robust with respect
to this type of outlier both under the null hypothesis, with only a slightly more
conservative size, and under the alternative, with comparable power behaviour.
This is not true for the ANOVA-based tests where the size and power break
down completely to empirical rejection rates of 0% both under the null and
alternative hypotheses, with the exception where the additive outlier is added
to the sample with higher mean. The detailed simulation results also including
some results with more than one outlier per sample are given in Section C.6.

4.2. Analysis of ocean drifter temperature data

Temperature curves of ocean drifters contain information on the occurrence of
El Niño respectively its counter event La Niña. For instance, Sun and Genton
[82] use sea surface data from the 1990s related to El Niño as a data example
for their depth based functional boxplot.

For each year between 2002 and 2021 the temperature data for each drifter
deploying in the area with coordinates less than 10◦N and in between 69◦W
and 180◦W (this area contains the region of the Pacific Ocean where El Niño or
La Niña usually appear) were downloaded from [55] accessed via the ERDAP-
platform [80]. These data are given on the same equidistant time grid (time
lag: 6 hours between two consecutive observations). Curves that lack at least a
whole calendar day of observations were removed. For each temperature curve
of each drifter we smoothed the data by computing the median temperature
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Fig 3. Temperature curves of all considered drifters for the years 2015, 2018, 2020 and 2021.
The sample sizes are balanced. The horizontal axis denotes the day of the year, the vertical
axis denotes the temperature in ◦C. 2015 is a strong El Niño year, 2018 a moderate one,
2020 and 2021 are moderate La Niña years.

for each day, with NA-values being ignored. In the leap years, we removed the
temperature value for February 29 and replaced the values for February 28,
respectively March 1, by the mean temperature of February 28 and February
29 respectively by the mean of February 29 and March 1.

Our objective is to investigate whether the Joint-TP test can help to distin-
guish between El Niño- and La Niña-periods, respectively periods of its different
intensities. The periods are selected with respect to the classification given by
[64].

First, we compare samples of balanced sizes, namely the strong El Niño year
2015, the weak El Niño year 2018 as well as the moderate La Niña phase 2020
and 2021 (see Figure 3 for the curves). For all pairs of these 4 years, we compute
the values of the Joint-TP statistic with the integrated Tukey depth (IT), the
integrated simplicial depth (IS) and the h-depth with adaptive bandwidth h.
The corresponding p-values and sample sizes are given in Table 1.

With balanced sample sizes the p-values given in Table 1 help to clearly
distinguish between the strong El Niño year 2015 and the weak El Niño year 2018
as well as the moderate La Niña phase 2020–2021. In Figure 3 the temperature
curves of these four periods are plotted. Obviously, there are fewer drifters with
low temperature in 2015 than in the other depicted years. Moreover, there are
less drifters with temperatures above 30◦C in 2021 than in 2018. Between the
pair 2020 and 2021, the analysis does not indicate a difference.
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Table 1

p-values of the Joint-TP statistic for the data from Figure 3 with the integrated Tukey depth
(IT), the integrated simplicial depth (IS) and the adaptive h-depth (h). 2015 is considered
as very strong El Niño year, 2018 is considered a weak El Niño period and 2020–2021 is

considered a moderate La Niña period.

Sample 1 Sample 2
2018 2020 2021
(153 curves) (130 curves) (142 curves)

2015 (110 curves) 0.341 · 10−3 (IT) 0.791 · 10−3 (IT) 0.721 · 10−3 (IT)
0.122 · 10−3 (IS) 0.488 · 10−3 (IS) 0.392 · 10−3 (IS)
0.703 · 10−3 (h) 0.007 · 10−3 (h) 0.009 · 10−3 (h)

2018 (153 curves) 0.068 (IT) 0.365 (IT)
0.067 (IS) 0.351 (IS)
0.017 (h) 0.051 (h)

2020 (130 curves) 0.266 (IT)
0.292 (IS)
0.362 (h)

Next, we compare samples of unbalanced sizes, namely the temperature
curves from 2002 (a moderate El Niño year) and the pooled temperature curves
of the years 2011–2012 (a moderate La Niña period) as well as of the years
2020–2021 (another moderate La Niña period). The unbalancedness arises be-
cause of an increase of interest in the Global drifter program [55], which results
in more drifters being added every year. The plots of the curves for these three
periods are given in Figure 3 (c)–(d) and Figure 4. The corresponding p-values
for the comparison between the pooled 2020–2021 sample (with 272 curves)
versus the years 2002 (with 52) as well as (pooled) 2011-12 (with 54 curves)
are given in Table 2 again for the Joint-TP statistic with the integrated Tukey
depth (IT), the integrated simplicial depth (IS) and the h-depth with adaptive
bandwidth h.

Fig 4. Temperature data of the year 2002 and the period 2011–2012 with unbalanced sample
sizes. The horizontal axis denotes the day of the year, the vertical axis denotes the temperature
in ◦C. The period in (a) is considered as moderate El Niño year, the years in (b) are a
moderate La Niña period.
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Table 2

p-values of the Joint-TP statistic for the data from Figure 4 for unbalanced sample sizes
with the integrated Tukey depth (IT), the integrated simplicial depth (IS) and the adaptive
h-depth (h): 2011–2012 as well as 2020–2021 are considered as moderate La Niña periods.

In 2002 a moderate El Niño occured.

Sample 1 Sample 2
2002 (52 curves) Pooled 2011–2012 (54 curves)

Pooled 2020–2021 (272 curves) 0.039 (IT) 0.169 (IT)
0.021 (IS) 0.347 (IS)
0.001 (h) 0.203 (h)

With such unbalanced sample sizes the p-values for the Joint-TP statistic still
indicate a difference between the underlying distributions of the temperature
curves from 2002 (a moderate El Niño year) and the pooled temperature curves
of the years 2020–2021 (a moderate La Niña period) but are much larger than
what has been observed in the balanced situation (with both samples having
between 100 and 150 curves). Indeed, in contrast to both of the pooled periods
(Figure 3 (c)–(d), Figure 4 (b)), there are less drifters with lower temperature in
2002 (Figure 4 (a)). Similarly to before, the analysis indicates no difference be-
tween the distributions of the pooled temperature curves of the years 2011–2012
and the pooled temperature curves of the years 2020–2021 (both moderate La
Niña periods).

Furthermore, in Section C.7, we make use of all the curves that were in the
relevant area on January 1st of the respective year, including those that are only
observed over part of the grid domain. This increases significantly the number
of sample curves, depending on the year by at least a factor of two, often much
more. There, we only use integrated data depth functions as they can be easily
adapted to the situation of partially observed data by integrating only over the
observed part of the domain, following Elías et al. [31]. Probably due to the
larger sample size, all significant results remain significant with smaller (partly
by magnitudes) p-values. Interestingly, that analysis suggests that the weak El
Niño year of 2018 may be closer to the moderate La Niña period of 2020 than
that of 2021. This is consistent with the shapes of the curves of the Oceanic
Niño index given in [64].

5. Discussion and outlook

In this paper, we revisit a depth-based test for the two-sample problem origi-
nally proposed by Liu and Singh [52], later picked up by several other authors for
further investigation. While the original test is able to detect various location,
scale and location-scale differences, it was originally proposed as a one-sided
test for a scale increase, possibly combined with a location shift. In this paper,
we shed some additional light onto this situation by considering the LS-tuple
jointly: This indicates in particular, that scale increases, possibly combined with
location shifts do typically not fall into the blind spots as made visible in Fig-
ure 2. For such a one-sided test, the inherent asymmetry of the original test is



Symmetrisation of a class of two-sample tests 3049

not problematic. Nevertheless, Liu and Singh [52] already propose a symmet-
ric version of their test, where the depth values are calculated with respect to
the pooled sample, noting that such a test will only have power against scale
differences but not against differences in location. Motivated by the asymptotic
properties of the joint LS-tuple of the original statistics with exchanged labels,
we propose a different class of symmetric LS-statistics improving upon both
the size and the power behaviour. The corresponding observations also give in-
sight into how one could construct unbiased one-sided tests with better size
behaviour, see Section C.4 for more information. Detailed analysis is left for
future work.

We extend the asymptotic theory for the LS-test as given by Zuo and He
[93] to our proposed generalisation, the Joint-TP test. Indeed, the main term
and the remainder terms in their proof do have a mathematical correspondence
to the location of the LS-tuple which directly corresponds to our construction
of the rejection regions of the Joint-TP test. Based on this asymptotic theory,
the critical values can be directly computed in a time efficient way. Incidentally,
we fill a gap in the original proof and give an illustrative and mathematically
interesting counterexample to their main result under the alternative.

Furthermore, we extend the test from multivariate to functional data by
combining it with several functional depths, which did not exist when the test
was first proposed by Liu and Singh [52]. In particular, we apply the test with
the integrated Tukey and simplicial depth or the h-depth. In the context of
functional data, it is worthwhile mentioning that our Joint-TP test makes use
of the full information within the data and does not require dimension reduction
such that a loss of information by considering a finite-dimensional subspace is
excluded.

A large simulation study and an application to ocean drifter data illustrate
that the corresponding functional two-sample tests are competitive with the
potential of being more robust in comparison to state-of-the-art methodology
for functional data.

In practise, functional data are often not observed over dense and equally
spaced grid domains. Different scenarios are possible: For instance, a curve can
be observed over a grid domain with sparse and dense regions or it could be
observed only on a few grid points, which may or may not be concentrated on
certain regions of the domain. As such, it is an interesting research question
in its own right which functional depth functions can be well adapted to deal
with this situation, see [31, 75] for some first results in that direction. When
dealing with a dataset that contains curves not observed over the whole grid
domain, our proposed test statistic is in principle applicable. It simply requires
that an empirical version of the depth can be calculated and evaluated. For inte-
grated depths this can be achieved by integrating over the observed domains, see
[31]. Because our assumptions to obtain the limit distributions depend on the
convergence rates of the empirical to the population version (see e.g. Assump-
tion Asm2), obtaining such rates for empirical functional depths in the light of
a data containing curves not observed over the whole grid domain is another
interesting question for future research. The results on the ocean drifter dataset
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including those curves not observed over the whole grid domain indicate that
our proposed tests also work well in practice under this type of scenario.

Furthermore, future work may include constructing tests for change point
problems based on the notion of depth-based ranks as well as investigating
whether this test is applicable to other types of data for which statistical depth
functions exist, e.g. fuzzy data [37, 38], random graphs and networks [34] or text
data [8].

Appendix A: Proofs of Section 2

We will move the proof of Theorem 2.1 to Section A.2 behind the proofs of
Section 2.3 as the notation and part of the arguments are being used.

A.1. Proof of Theorem 2.3 and Corollary 2.5

In this section, we are under the null hypothesis with Q = P .
The proof is an extension of the proof of Theorem 1 in [93], filling a gap there

(see also Remark 2.4). As such we adopt part of their notation and only sketch
the parts of the proof that are already done there.

Throughout the proof we make use of the following notation

I(x, y, P ) = 1{D(x,P )<D(y,P )} + 1
21{D(x,P )=D(y,P )}. (19)

If instead the ranks (1) (as in [93]) are used, we denote Ĩ(x, y, P ) =
1{D(x,P )�D(y,P )} and similarly, for all decompositions, the tilde-term is used
in combination with (1). As LS(P, P ) = 1

2 , it holds

LS(P̂m, Q̂n) − 1
2

=
∫ ∫

I(x, y, P̂m) dP̂m(x) dQ̂n(y) −
∫ ∫

I(x, y, P ) dP (x) dQ(y)

= A1(P̂m, Q̂n) + A2(P̂m, Q̂n), (20)

where

A1(P̂m, Q̂n) =
∫ ∫

I(x, y, P ) dP̂m(x) dQ̂n(y) −
∫ ∫

I(x, y, P ) dP (x) dQ(y),

A2(P̂m, Q̂n) =
∫ ∫

(I(x, y, P̂m) − I(x, y, P )) dP̂m(x) dQ̂n(y).

Under the null hypothesis it holds by definition I(X,Y, P ) = 1 − I(Y,X, P )
hence A1(P̂m, Q̂n) = −A1(Q̂n, P̂m). In fact, A1 is the leading term responsible
for the asymptotic behaviour and also the reason why the two statistics are
perfectly negatively correlated asymptotically while A2 converges to 0 faster
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than A1 and is asymptotically negligible (see Figure 2 for an empirical illus-
tration). Note, however, that this is only true under the null hypothesis be-
cause under the alternative for the permuted samples the integrand becomes
I(x, y,Q) �= I(x, y, P ) (see also Theorem 2.1 and Remark 2.4). The following
lemma gives the asymptotic behaviour of the leading term A1.

Lemma A.1. If D(X1, P ) is continuously distributed (as e.g. guaranteed
by Asm1) and under (9), it holds A1(P̂m, Q̂n) = −A1(Q̂n, P̂m) and√

12 ·m · n
m + n

A1(P̂m, Q̂n) D−→ N(0, 1).

Proof. We have already observed the first statement above the lemma. Decom-
pose further into

A1(P̂m, Q̂n) =
∫ ∫

I(x, y, P ) dP (x) d(Q̂n(y) −Q(y))

+
∫ ∫

I(x, y, P ) d(P̂m(x) − P (x)) dQ(y)

+
∫ ∫

I(x, y, P ) d(P̂m(x) − P (x)) d(Q̂n(y) −Q(y))

= A1,1(P̂m, Q̂n) + A1,2(P̂m, Q̂n) + A1,3(P̂m, Q̂n). (21)

Concerning the third term, it holds

A1,3(P̂m, Q̂n) = OP

(
1√
mn

)
. (22)

This fact was already stated in Lemma 1 (i) in [93], but the proof was omitted.
Thus, we give a sketch here: by the independence of the two samples and the
independence within the samples and I(x, y, P ) � 1 it holds

E

(
A1,3(P̂m, Q̂n)

)2

= E

⎛⎝Var

⎛⎝ 1
n

n∑
j=1

∫
I(x, Yj , P ) d(P̂m(x) − P (x))

∣∣∣∣∣∣X1, ..., Xm

⎞⎠⎞⎠
� 1

n2

n∑
j=1

E

(∫
I(x, Yj , P ) d(Pn(x) − P (x))

)2

= 1
n
E

(
Var

(
1
m

m∑
i=1

I(Xi, Y1, P )

∣∣∣∣∣Y1

))
= 1

mn
.

So, the statement follows from Markov’s inequality.
By (2), it holds

∫
I(x, y, P ) dP (x) = R(y, P ) and due to the continuity of

D(X1, P ) under Asm1 R(Y1, P ) ∼ U(0, 1) under the null hypothesis as well as∫
I(x, y, P ) dQ(y) = 1 −R(x, P ) with 1 −R(X1, P ) ∼ U(0, 1).
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Therefore, A1,1 and A2,2 are independent centred sums of length n and m
respectively of iid U(0, 1) random variables, i.e. have variance 1/12. So, the
results follows by a standard application of the central limit theorem.

We make use of the following inequality in the proof of Lemma A.3.

Lemma A.2. It holds for all probability measures Pj, j = 1, 2

|I(x, y, P1) − I(x, y, P2)| � 1{|D(x,P1)−D(y,P1)|�2 supz∈Ω |D(z,P1)−D(z,P2)|}.

Proof. Since the left hand side is 0 when D(x, P1) < D(y, P1) and D(x, P2) <
D(y, P2) or when in both expressions the inequality is given by >, it is sufficient
to show that the right hand side is 1 if D(x, P1) � D(y, P1) and D(x, P2) �
D(y, P2) or vice versa. Indeed, in the first case,

|D(x, P1) −D(y, P1)| = D(y, P1) −D(x, P1)
� D(y, P1) −D(x, P1) + D(x, P2) −D(y, P2)
� |D(y, P1) −D(y, P2)| + |D(x, P2) −D(x, P1)|
� 2 sup

z∈Ω
|D(z, P1) −D(z, P2)|.

The second case is analogous.

Lemma A.3. Under Asm1 - Asm4 and (9), it holds√
12 ·m · n
m + n

A2(P̂m, Q̂n) P−→ 0,
√

12 ·m · n
m + n

A2(Q̂n, P̂m) P−→ 0.

More precisely,

A2(Q̂n, P̂m) = OP (δm,n), A2(P̂m, Q̂n) = OP (δm,n),

where

δm,n =
{(

m+n
mn

)β for 1
2 < β � 2

3 ,(
m+n
mn

) 2+β
4 for 2

3 � β � 1.

Proof. We only prove the first equation as the second follows analogously by
equality of distributions under the null hypothesis. Firstly, we decompose A2
into

A2(P̂m, Q̂n) =
∫ ∫

(I(x, y, P̂m) − I(x, y, P )) dP̂m(x) d(Q̂n(y) −Q(y))

+
∫ ∫

(I(x, y, P̂m) − I(x, y, P )) dP̂m(x) dQ(y)

= A2,1(P̂m, Q̂n) + A2,2(P̂m) (23)
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We first prove that A2,1(P̂m, Q̂n) = OP (1/(n1/2 mβ/4)). While the proof is anal-
ogous to the proof of Lemma 1 (iii) in [93] we sketch it for the sake of complete-
ness because of our many (minor) modifications: By Jensen’s inequality

E(A2,1(P̂m, Q̂n)2)

� E

(∫ (∫
(I(x, y, P̂m) − I(x, y, P )) d(Q̂n(y) −Q(y))

)2
dP̂m(x)

)

= E

[(∫
(I(X1, y, P̂m) − I(X1, y, P )) d(Q̂n(y) −Q(y))

)2
]

= E

⎛⎝Var

⎛⎝ 1
n

n∑
j=1

(I(X1, Yj , P̂m) − I(X1, Yj , P ))

∣∣∣∣∣∣X1, ..., Xm

⎞⎠⎞⎠
� 1

n
E

(
E

((
I(X1, Y1, P̂m) − I(X1, Y1, P )

)2
∣∣∣∣X1, ..., Xm

))
.

By Lemma A.2, Asm1 and Asm2 it follows

E(A2,1(P̂m, Q̂n)2)

� 1
n
E

(
P

(
|D(Y1, P ) −D(X1, P )| � 2 sup

z∈Ω
|D(z, P̂m) −D(z, P )|

))
= O

(
1
n

)
E

(
sup
z∈Ω

|D(z, P̂m) −D(z, P )|β
)

= O

(
1

nmβ/2

)
= O

(
δ2
m,n

)
. (24)

So, the assertion follows from applying the Markov inequality. Finally, we need to
investigate the term A2,2(P̂m), for which the rate was only stated without proof
in [93] (see also Remark A.4 below). Unlike above, in A2,2, we sum over Xi while
at the same time all summands depend on the whole X-sample via P̂m, therefore
conditional independence as above cannot be used. Nevertheless, we use an L2-
argument, explicitly considering the mixed term (effectively corresponding to
the covariances) that arises. We will deal with this mixed term in a similar
fashion as in (24), by looking at the difference when P̂m and P̂

−{1,2}
m (notation

as introduced in Asm3) instead of P̂m and P are being used. For the latter, the
same type of arguments as above can be used. However, additional regularity
conditions are required to treat the difference. With the notation J(x, P̂m) =∫

(I(x, y, P̂m) − I(x, y, P )) dQ(y) and P̂
−{1,2}
m as defined in Asm3 it holds

E

(
A2,2(P̂m)2

)
= E

(
1
m

m∑
i=1

J(Xi, P̂m)
)2

= E

⎡⎣( 1
m

m∑
i=1

(
J(Xi, P̂m) − J(Xi, P̂

−{i}
m )

)
+ 1

m

m∑
i=1

J(Xi, P̂
−{i}
m )

)2
⎤⎦
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� 2 · E

⎡⎣( 1
m

m∑
i=1

(
J(Xi, P̂m) − J(Xi, P̂

−{i}
m )

))2
⎤⎦

+ 2 · E

⎡⎣( 1
m

m∑
i=1

J(Xi, P̂
−{i}
m )

)2
⎤⎦ = 2 ·B1 + 2 ·B2.

For B1, we obtain by the analytic version of Jensen’s inequality (applied to the
squared sum inside the expectation)

B1 � E

[(
J(X1, P̂m) − J(X1, P̂

−{1}
m )

)2
]
.

By Lemma A.2 and Asm3 we get∣∣∣J(X1, P̂m) − J(X1, P̂
−{1}
m )

∣∣∣ � ∫
|I(X1, y, P̂m) − I(X1, y, P̂

−{1}
m )| dQ(y)

� P

(
D(X1, P̂

−{1}
m ) −

2Cdet
m

� D(Y, P̂−{1}
m )

� D(X1, P̂
−{1}
m ) +

2Cdet
m

∣∣∣∣ X1, X3, ..., Xm

)
.

(25)

Because of the above inequality and Asm4, it holds

B1 = O(m−2β) = O
(
δ2
m,n

)
.

For B2 we have

E
(
B2

2
)

= E

⎡⎣( 1
m

m∑
i=1

J(Xi, P̂
−{i}
m )

)2
⎤⎦

= 1
m

EJ2(X1, P̂
−{1}
m ) +

(
1 − 1

m

)
E

(
J(X1, P̂

−{1}
m ) · J(X2, P̂

−{1}
m )

)
.

For any x and P̃ it holds by Lemma A.2 and Asm1∣∣J(x, P̃ )
∣∣ � ∫

1{|D(y,P )−D(x,P )|�2 supz∈Ω |D(z,P )−D(z,P̃ )|} dQ(y)

� 2C sup
z∈Ω

|D(z, P ) −D(z, P̃ )|β .

By this and Asm2 it holds

1
m

EJ2(X1, P̂
−{1}
m ) = O

(
1
m

E sup
z∈Ω

|D(z, P ) −D(z, P̂−{1}
m )|2β

)
= O

(
1

m1+β

)
= O

(
δ2
m,n

)
. (26)
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Finally, for any probability measure P1 (independent of X and Y ) it holds under
the null hypothesis of X D= Y , i.e. P = Q and I(X,Y, P1)

D= I(Y,X, P1), that∫ ∫
I(x, y, P1) dP (x) dQ(y)

= 1
2

∫ ∫
(I(x, y, P1) + I(y, x, P1)) dP (x) dP (y) = 1

2 , (27)

because I(x, y, P1) + I(y, x, P1) = 1. So,

E

(
J(X1, P̂

−{1,2}
m )

∣∣∣X3, ..., Xm

)
= 0 a.s.,

E

(
J(X1, P̂

−{1}
m )

∣∣∣X2, ..., Xm

)
= 0 a.s. (28)

Moreover

E

(
J(X1, P̂

−{1}
m ) · J(X2, P̂

−{2}
m )

)
= E

(
(J(X1, P̂

−{1}
m ) − J(X1, P̂

−{1,2}
m ))(J(X2, P̂

−{2}
m ) − J(X2, P̂

−{1,2}
m ))

)
+ 2 · E

(
(J(X1, P̂

−{1}
m ) − J(X1, P̂

−{1,2}
m ))J(X2, P̂

−{1,2}
m )

)
+ E

(
J(X1, P̂

−{1,2}
m )J(X2, P̂

−{1,2}
m )

)
,

where the first term is O(m−2β) = O(δ2
m,n) by first upper bounding by an

adapted version of (25) (replace P̂m by P̂
−{1}
m and P̂

−{1}
m by P̂

−{1,2}
m ), then

using conditional independence given X3, ..., Xm and then Asm4. For the second
term, observe that

E

(
(J(X1, P̂

−{1}
m ) − J(X1, P̂

−{1,2}
m ))J(X2, P̂

−{1,2}
m )

)
= E

(
E

(
(J(X1, P̂

−{1}
m ) − J(X1, P̂

−{1,2}
m ))J(X2, P̂

−{1,2}
m )

∣∣∣X2, ..., Xm

))
= E

(
E

(
J(X1, P̂

−{1}
m ) − J(X1, P̂

−{1,2}
m )

∣∣∣X2, ..., Xm

)
· J(X2, P̂

−{1,2}
m )

)
= 0.

The last term is 0 by (28) and a conditional independence argument. This
concludes the proof.

Remark A.4. In [93] it is shown that

Ã2,2(P̂m) =
∫ ∫

(Ĩ(x, y, P̂m)− Ĩ(x, y, P )) d(P̂m(x)−P (x)) dQ(y)+ oP (m−1/2)

(see the last lines in the proof of Lemma 3 in [93]), where Ã is the version of
A as in the above proof but with the ranks (1). Then, in their Lemma 1 (ii),
[93] claim that the term

∫ ∫
(I(x, y, P̂m) − I(x, y, P )) d(P̂m(x) − P (x)) dQ(y)

is also oP (m−1/2) under their regularity conditions. However, the proof of this
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part of their lemma is omitted. It seems that the authors had a similar proof in
mind as for Ã2,1(P̂m, Q̂n) which they did prove correctly in the same lemma.
Personal communication with the authors could not solve this issue. However,
there is a fundamental difference between Ã2,1 and Ã2,2 because of the follow-
ing: In both cases the integrand Ĩ(x, y, P̂m) depends on P̂m, but in the former
case we integrate over Q̂n (which yields independent summands conditionally
on X1, ..., Xm) while in the latter case we integrate with respect to P̂m such that
the summands are not independent (and no corresponding conditioning argu-
ment can be made). Therefore, the term Ã2,2 is more difficult to deal with than
Ã2,1 despite the fact that it looks simpler. This is the reason why we need Asm3
and Asm4.

Remark A.5. If the ranks R̃ as in (1) are used, then instead of (27) it holds∫ ∫
Ĩ(x, y, P1) dP (x) dQ(y) = 1

2

∫ ∫ (
Ĩ(x, y, P1) + Ĩ(y, x, P1)

)
dP (x) dQ(y)

= 1
2 + 1

2

∫ ∫
1{D(x,P1)=D(y,P1)} dP (x) dQ(y),

where the second term for P1 = P̂
−{1,2}
m is oP (1/

√
m) if (8) holds and 0 for

P1 = P .

Proof of Theorem 2.3. The decomposition in (20) in combination with
Lemma A.3 shows that the joint asymptotic distribution of LS(P̂m, Q̂n) − 1/2
and LS(Q̂n, P̂m) − 1/2 coincide with that of A1(P̂m, Q̂n). By Lemma A.1, we
have that A1(Q̂n, P̂m) = −A1(P̂m, Q̂n) a.s. and the result follows.

Proof of Corollary 2.5. By (20) and Lemma A.1 it holds LS(P̂m, Q̂n) +
LS(Q̂n, P̂m) − 1 = A2(P̂m, Q̂n) + A2(Q̂n, P̂m) a.s., and consequently the as-
sertion follows from Lemma A.3.

Remark A.6. Instead of considering LS(P̂m, Q̂n), it is possible to consider

1
mn

m∑
i=1

n∑
j=1

1{D(Xi,P̂
−{i}
m )<D(Yj ,P̂

−{i}
m )}+

1
2

1
mn

m∑
i=1

n∑
j=1

1{D(Xi,P̂
−{i}
m )=D(Yj ,P̂

−{i}
m )}

inspired by leave-one-out cross validation. This was implicitely used in the proof
of Lemma A.3 and the rest of the proofs go through analogously. Thus, for this
modification, Theorem 2.3 and Corollary 2.5 also hold. In practice, this statistic
is too computationally expensive.

The limit distribution as in Theorem 2.6 (a) for this version of the statistic
is now centered, namely is given by 1

2χ
2
1 − 1

2 .

A.2. Proof of Theorem 2.1 and Remark 2.4

The depth regions of Tukey depth as in (5) with respect to P̂m are given by
[X(i), X(i+1)) ∪ (X(m−i), X(m−i+1)], i = 0, ..., �m/2�, (with X(0) = −∞ and
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X(m+1) = ∞). Thus,

E

(
m∑
i=1

1{DT (X(i),P̂m)=DT (Y�,P̂m)}

∣∣∣∣∣X1, ..., Xm

)
� 4

m∑
i=1

(X(i+1) −X(i)) � 4.

By an application of the Markov inequality, this yields
LS(P̂m, Q̂n) = L̃S(P̂m, Q̂n) + OP (1/m). Hence, it is sufficient to derive the
asymptotic distribution of L̃S(P̂m, Q̂n). Denote the distribution function corre-
sponding to P resp. Q by FP resp. FQ. Then, by continuity of FP and FQ,

DT (X,P ) = min(FP (X), 1 − FP (X)) = min(X, 1 −X) ∼ U(0, 1/2), (29)
DT (Y,Q) = min(FQ(Y ), 1 − FQ(Y )) = min(2Y, 1 − 2Y ) ∼ U(0, 1/2),
DT (Y, P ) = min(FP (Y ), 1 − FP (Y )) = min(Y, 1 − Y ) = Y ∼ U(0, 1/2),

DT (X,Q) = min(FQ(X), 1 − FP (X)) =

⎧⎪⎨⎪⎩
0 for X > 1/2,
1 − 2X for 1/4 < X � 1/2,
2X for X � 1/4.

Thus, with Ĩ as in (19) but with R̃ rather than R, simple calculations lead to∫ ∫
Ĩ(x, y, P ) dP (x) dQ(y) = P(DT (X,P ) � DT (Y, P )) = 1

2 , (30)∫ ∫
Ĩ(y, x,Q) dQ(y) dP (x) = P(DT (Y,Q) � DT (X,Q)) = 1

4 . (31)

For the statement of Remark 2.4 we need to calculcate σ2
PQ and σ2

QP as in
Theorem 1 in [93]. Indeed, it follows from the above considerations that

σ2
PQ = E

(
[2DT (Y, P )]2

)
−
(

1
2

)2

= 1
12 , (32)

σ2
QP = E

(
[1 − 2DT (X,P )]2

)
−
(

1
2

)2

= 1
12 . (33)

A careful check entails that the choice P = U(0, 1), Q = U(0, 0.5) satisfies all
the prerequisites of Zuo and He [93, Theorem 1]. In particular, Assumptions
(A1)–(A4) of [93] are fulfilled, see Zuo and He [93, Example 2] respectively
Proposition 3.3. Note, that for verifying Assumption (A4) of [93], some calcu-
lations using the joint density of two order statictics of the U(0, 1)-distribution
show that there exists a constant C > 0 such that E((FQ(X(i+1))−FQ(X(i)))2) �
C/m2 for all i ∈ {1, ...,m− 1} and then applying Hölder’s inequality entails the
rate.

To prove Theorem 2.1 (a) we decompose

L̃ST (P̂m, Q̂n)

=
∫ ∫

Ĩ(x, y, P ) dP (x) dQ̂n(y)
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+
(∫ ∫

Ĩ(x, y, P̂m) dP̂m(x) dQ(y) −
∫ ∫

Ĩ(x, y, P ) dP (x) dQ(y)
)

+
∫ ∫

Ĩ(x, y, P ) d(P̂m(x) − P (x)) d(Q̂n(y) −Q(y))

+
∫ ∫

(Ĩ(x, y, P̂m) − Ĩ(x, y, P )) dP̂m(x) d(Q̂n(y) −Q(y))

= K1(Q̂n;P ) + K2(P̂m;P,Q) + K3(P̂m, Q̂n;P,Q) + K4(P̂m, Q̂n;P,Q), (34)

where K3(P̂m, Q̂n;P,Q) corresponds to Ã1,3 as in (21) and K4(P̂m, Q̂n;P,Q)
corresponds to Ã2,1 as in (23) but based on the R̃ depth-ranks and under the
given alternatives. Nevertheless, analogous proofs (see also Lemma 1 (i) and
(iii) in [93]) show K3(P̂m, Q̂n;P,Q) = oP (1/

√
n) as well as K4(P̂m, Q̂n;P,Q) =

oP (1/
√
n). Concerning K1(Q̂n;P ) it holds∫ ∫
Ĩ(x, y, P ) dP (x) dQ̂n(y)

= 1
n

n∑
j=1

P (DT (X,P ) � DT (Yj , P ) | Yj) = 1
n

n∑
j=1

2Yj ,

and by the central limit theorem√
12 ·m · n
m + n

·
(

K1(Q̂n;P ) − 1
2

)
D−→ N(0, τ).

This term is independent of K2(P̂m;P,Q) which by (30) fufills

K2(P̂m;P,Q) = 1
m

m∑
i=1

P

(
DT (X(i), P̂m) � DT (Y, P̂m)

∣∣∣X1, ..., Xm

)
− 1

2 .

It holds (irrespective of the distributional assumptions on P and Q)

DT (X(i), P̂m) � DT (Y, P̂m) ⇐⇒ X(min(i,m−i+1)) � Y � X(max(i,m−i+1)).
(35)

Thus, we obtain for K2(P̂m;P,Q)

1
m

m∑
i=1

P

(
DT (X(i), P̂m) � DT (Y, P̂m)

∣∣∣X1, ..., Xm

)
− 1

2
a.s.= 2

m

∑
i�m

2

P
(
Y ∈ [X(i), X(m−i+1)]

∣∣X1, ..., Xm

)
− 1

2

= 2
m

∑
i�m

2

(
FQ(X(m−i+1)) − FQ(X(i))

)
− 1

2
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= 4
m

∑
i�m

2

(
min

(
X(m−i+1),

1
2

)
− min

(
X(i),

1
2

))
− 1

2 (36)

= 8
m

∑
i�m

2

min
(
X(m−i+1) −

1
2 , 0

)
+ 4

m

m∑
i=1

(
3
8 − min

(
Xi,

1
2

))
+ O

(
1
m

)
.

(37)

Concerning the second sum in (37) first note that with Y ∼ U(0, 1/2)

E

(
min

(
Xi,

1
2

))
= 1

2 P

(
Xi �

1
2

)
+ E(Y )P

(
Xi �

1
2

)
= 3

8 ,

and similary E(min (Xi, 1/2)2) = 1/6 such that Var(min (Xi, 1/2)) = 5/(42 ·12).
Thus, an application of the central limit theorem yields√

12 ·m · n
m + n

· 4
m

m∑
i=1

(
3
8 − min

(
Xi,

1
2

))
D−→ N(0, 5 · (1 − τ)).

We will now complete the proof by showing that the first sum in (36) is
oP (1/

√
m). It holds∣∣∣∣∣∣

∑
i�m

2

min
(
X(m−i+1) −

1
2 , 0

)∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
i�m

2

(
X(m−i+1) −

1
2

)
· 1{X(m−i+1)� 1

2
}
∣∣∣∣∣∣

�
∑

i�m
2 −m3/4

1{X(m−i+1)� 1
2
} + m3/4 ·

∣∣∣∣X(⌈
m
2
⌉) − 1

2

∣∣∣∣ ,
where the last summand is OP (m1/4) = oP (

√
m) due to the asymptotic nor-

mality of the sample median. For the sum we obtain the result by Markov’s
inequality on noting

E

⎛⎝∣∣∣∣∣∣
∑

i�m
2 −m3/4

1{X(m−i+1)� 1
2
}
∣∣∣∣∣∣
⎞⎠ =

∑
i�m

2 −m3/4

P

(
X(m−i+1) �

1
2

)

=
∑

i�m
2 −m3/4

P

⎛⎝ m∑
j=1

(
1{Xj� 1

2
} − 1

2

)
� m− i + 1 −

⌊m
2

⌋⎞⎠
� C ·

∑
i�m

2 −m3/4

m

m− i + 1 −
⌊
m
2
⌋ = O(m)

∫ m/2

m3/4

1
x2 dx

= O(m)m−3/4 = o(
√
m).

So, the proof of (a) is completed.
For (b), we use exactly the same decomposition as in (34) but with P and Q

(respectively P̂m and Q̂n) switched. In that case, we obtain√
12 ·m · n
m + n

(
K1(P̂m;Q) − 1

4

)
D−→ N

(
0, 5

4 · (1 − τ)
)
, (38)
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due to∫ ∫
Ĩ(y, x,Q) dP̂m(x) dQ(y)

= 1
m

m∑
i=1

E
(
1{DT (Y,Q)�DT (Xi,Q)}

∣∣X1, ..., Xm

)
= 2

m

m∑
i=1

DT (Xi, Q).

By using the same arguments as in (a) both K3(Q̂n, P̂m;Q,P ) and
K4(Q̂n, P̂m;Q,P ) are oP (1/

√
n).

Analogously to (36) it holds

K2(Q̂n;Q,P ) a.s.= 2
n

∑
j�n

2

(
Y(n−j+1) − Y(j)

)
− 1

4 = 2
n

n∑
j=1

∣∣∣Yj − Y(n
2
)∣∣∣− 1

4 .

[7, Theorem 2.5] entails that

1√
n

⎛⎝ n∑
j=1

∣∣∣Yj − Y(n
2
)∣∣∣− 1

8

⎞⎠ D−→ N

(
0, 1

192

)
.

Thus, √
12mn

m + n
·

⎛⎝ 2
n

n∑
j=1

∣∣∣Yj − Y(n
2
)∣∣∣− 1

4

⎞⎠ D−→ N

(
0, 1

4 · τ
)

and by combining this with (38) due to the independence of these two terms,
Theorem 2.1 (b) follows.

A.3. Proof of Theorems 2.6 and 2.7

In this section, we make use of the following square-bracket notation (later also
for random variables U, V )

X[i] = X(min(i,m−i+1)), X
[i] = X(max(i,m−i+1)).

Furthermore, we introduce

Ui := F (Xi) ∼ U(0, 1), Vj := F (Yj) ∼ U(0, 1) (39)

and denote V(a) = V(�a�) for a ∈ (0, n] (and analogously for U).
The proof of Theorem 2.6 is based on the following Lemmas.

Lemma A.7. Let U1, ..., Um be a sample of iid U(0, 1)-distributed random vari-
ables. Then it holds:

(a) U(k) ∼ Beta(k,m − k + 1) for each k ∈ {1, ...,m} and for any sample of
independent and identically distributed random variables X1, ..., Xm with
continuous distribution function F , we have that F (X(k))

D= U(k) for each
k ∈ {1, ...,m}.
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(b) U(b) − U(a) ∼ Beta(b− a,m− (b− a) + 1) for any a, b ∈ {1, ...,m}, a < b.
(c) E(U(k)) = k/(m + 1) for each k ∈ {1, ...,m}.
(d) U(m)

P−→ 1 as well as U(1)
P−→ 0 for m → ∞.

(e) For m → ∞,
√
m

(
U(m

2
) − 1

2

)
D−→ N

(
0, 1

4

)
.

(f) For the joint distribution

(
U(1), ..., U(m)

) D=
(

Z1

Z1 + ... + Zm+1
, ...,

Z1 + ... + Zm

Z1 + ... + Zm+1

)
,

where Z1, ..., Zm+1 ∼ Exp(1) independent.
(g) (

U(1), ..., U(m)
)
|U(m/2)=u

D=
(
U ′(

1
), ..., U ′(⌈

m
2 −1

⌉), u, U ′′(
1
), ..., U ′′(⌊

m
2
⌋)) ,

where
(
U(1), ..., U(m)

)
|U(m/2)=u is the conditional distribution of(

U(1), ..., U(m)
)

given U(m
2
) = u for some u ∈ (0, 1), and independent

random variables U ′
i(u), i < m

2 , U ′′
j (u), j � m

2 , (also independent of each
other) with U ′

i(u) ∼ U (0, u) and U ′′
j (u) ∼ U (u, 1).

All of the above assertions are well known in the nonparametric statistics
literature on order statistics. For instance, the first part of (a) can be found in
Ahsanullah, Nevzorov and Shakil [1, Remark 2.1], the second one in Scheffé and
Tukey [72, Section 4], (b) is given in David and Nagaraja [23, Example 2.3],
(c) is presented in Gupta and Nadarajah [42, Chapter 2, Section IV], (d) is a
direct consequence of Ahsanullah, Nevzorov and Shakil [1, Exercise 11.4], (e)
equals [73, Corollary A in Section 2.3.3], (f) and (g) correspond to Ahsanullah,
Nevzorov and Shakil [1, Example 4.6 respectively Example 5.1].

Lemma A.8. Under the assumptions of Theorem 2.6 it holds

− mn

m + n

(
L̃ST (P̂m, Q̂n) + L̃ST (Q̂n, P̂m) − 1

)
= 2mn

m + n

(
U(m

2
) − V(n

2
))2

+ oP (1) D−→ 1
2χ

2(1).

Proof. By (35) it holds under H0 with F denoting the distribution function of
X and Y

DT (X(i), P̂m) � DT (Yj , P̂m) ⇐⇒ X[i] � Yj � X [i]

a.s.⇐⇒ F (X[i]) � F (Yj) � F (X [i]). (40)

The last equivalence holds except on the set of mass zero where F (X(i)) = F (Yj)
but at the same time X[i] > Yj or F (Yj) = F (X [i]) at the same time as Yj > X [i].
Equivalent transformations also hold for DT (Y(j), Q̂n) � DT (Xi, Q̂n).
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With Ui, Vj as in (39) this implies

L̃ST (P̂m, Q̂n) + L̃ST (Q̂n, P̂m)

= 1
mn

m∑
i=1

n∑
j=1

(
1{DT (Xi,P̂m)�DT (Yj ,P̂m)} + 1{DT (Yj ,Q̂n)�DT (Xi,Q̂n)}

)
a.s.= 1

mn

m∑
i=1

n∑
j=1

1{U[i]�V(j)�U [i]} + 1
mn

m∑
i=1

n∑
j=1

1{V[j]�U(i)�V [j]}. (41)

By symmetry

1
mn

m∑
i=1

n∑
j=1

1{U[i]�V(j)�U [i]}

= 2
mn

∑
i�m

2

n∑
j=1

1{U[i]�V(j)�U [i]} + 1{m is odd}
1
mn

n∑
j=1

1{
V(j)=U(

m
2
)}

a.s.= 2
mn

∑
i�m

2

n∑
j=1

1{U[i]�V(j)�U [i]}. (42)

Furthermore,

2
mn

∑
i�m

2

n∑
j=1

1{U[i]�V(j)�U [i]}

= 2
mn

∑
i�m

2

∑
j�n

2

(
1{U[i]�V[j]�U [i]} + 1{U[i]�V [j]�U [i]}

)
+ 1{n is odd}

2
mn

∑
i�m

2

1{
U[i]�V(n

2
)�U [i]

}. (43)

Analogous assertions also hold for the second summand in (41), i.e.

2
mn

m∑
i=1

∑
j�n

2

1{V[j]�U(i)�V [j]}

= 2
mn

∑
i�m

2

∑
j�n

2

(
1{V[j]�U[i]�V [j]} + 1{V[j]�U [i]�V [j]}

)
+ 1{m is odd}

2
mn

∑
j�n

2

1{
V[j]�U(

m
2
)�V [j]

}. (44)

We will now show that 2
n

∑
j�n/2

(
1{V[j]�U(m/2)�V [j]} − 1

)
respectively

2
m

∑
i�m/2

(
1{U[i]�V(n/2)�U [i]}−1

)
are asymptotically negligible in a P-stochastic

sense for any m respectively n (where we will use the case for even integers later).
Observe that
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2
n

∑
j�n

2

(
1{

V[j]�U(
m
2
)�V [j]

} − 1
)

= − 2
n

∑
j�n

2

1{
U(

m
2
)<V(j)

} − 2
n

∑
j�n

2

1{
U(

m
2
)>V(n−j+1)

}, (45)

such that∣∣∣∣∣∣ 2n
∑
j�n

2

(
1{

V[j]�U(
m
2
)�V [j]

} − 1
)∣∣∣∣∣∣

= 2
n

∑
j�n

2

1{
U(

m
2
)<V(j)

} + 2
n

∑
j�n

2

1{
U(

m
2
)>V(n−j+1)

}. (46)

We will now prove the assertion for the first summand on the right hand side
of (46), the assertion for the second sum can be dealt with analogously. By
splitting the sum in summands with j � �n/2 − n7/8� and the complement we
get

E

⎛⎝ 2
n

∑
j�n

2

1{
U(

m
2
)<V[j]

}
⎞⎠ � P

(
U(m

2
) < V(n

2 −n7/8
))+ O(n−1/8)

� P

(
U(m

2
) < V(n

2 −n7/8
), U(m

2
) � 1

2 − n−1/4
)

+ P

(√
m

(
U(m

2
) − 1

2

)
� −m1/2

n1/4

)
+ o(1)

� P

(
V(n

2 −n7/8
) � 1

2 − n−1/4
)

+ o(1),

where we used Lemma A.7 (e) in the last line. We can now conclude with an
application of the Chebychev inequality

P

(
V(n

2 −n7/8
) � 1

2 − n−1/4
)

= P

⎛⎝ n∑
j=1

1{Vj<
1
2−n−1/4

} < n

2 − n7/8

⎞⎠
� P

⎛⎝∣∣∣∣∣∣
n∑

j=1

(
1{Vj<

1
2−n−1/4

} − 1
2 + n−1/4

)∣∣∣∣∣∣ � n7/8
(
1 − n−1/8

)⎞⎠ � O(n−3/4)

= o(1).

Thus, we have shown that

2
mn

∑
j�n

2

1{
U(

m
2
)<V(j)

} = oP

(
1
m

)
,

2
mn

∑
j�n

2

1{
U(

m
2
)>V(n−j+1)

} = oP

(
1
m

)
.

(47)
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Analogously, we get

2
mn

∑
i�m

2

1{
V(n

2
)<U(i)

} = oP

(
1
n

)
,

2
mn

∑
i�m

2

1{
V(n

2
)>U(m−i+1)

} = oP

(
1
n

)
.

(48)

Firstly, note that

1 = 2
mn

·(
2
⌊m

2

⌋ ⌊n
2

⌋
+ 1{m is odd}

⌊n
2

⌋
+ 1{n is odd}

⌊m
2

⌋
+

1{m,n are both odd}
2

)
as well as

1{U[i]�V[j]�U [i]} + 1{V[j]<U[i]�V [j]} − 1 = 1{V[j]�U [i]} + 1{U[i]�V [j]} − 2

= −1{V[j]>U [i]} − 1{U[i]>V [j]} (49)

and analogously

1{U[i]�V [j]�U [i]} + 1{V[j]�U [i]<V [j]} − 1 = −1{V [j]<U[i]} − 1{U [i]<V[j]}.

Consequently, we get by (41)–(46) as well as (47) and (48)

L̃ST (P̂m, Q̂n) + L̃ST (Q̂n, P̂m) − 1
a.s.= − 4

mn

∑
i�m

2

∑
j<n

2

1{V(j)>U(m−i+1)} −
4
mn

∑
i<m

2

∑
j�n

2

1{U(i)>V(n−j+1)}

+ oP

(
1
n

+ 1
m

)
, (50)

where another application of (47) and (48) permits the modification in the
indices of the sums for m respectively n even.

Analogous considerations noting that the term in (45) as well as (49) are
negative yield that

L̃ST (P̂m, Q̂n) + L̃ST (Q̂n, P̂m) − 1 � 0 a.s. (51)

We will now show that the main terms in (50) are dominated by functionals
of the sample medians

U(m
2
) = U(⌈m

2
⌉), V(n

2
) = V(⌈n

2
⌉).

We can conclude for the first two terms in (50)

P

⎛⎝ mn

m + n
· 4
mn

⎛⎝∑
i<m

2

∑
j�n

2

1{U(i)>V(n−j+1)} +
∑
i�m

2

∑
j<n

2

1{V(j)>U(m−i+1)}

⎞⎠ � z

⎞⎠
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= E

⎛⎝P

⎛⎝ mn

m + n
· 4
mn

⎛⎝∑
i<m

2

∑
j�n

2

1{U(i)>V(n−j+1)}

+
∑
i�m

2

∑
j<n

2

1{V(j)>U(m−i+1)}

⎞⎠ � z

∣∣∣∣∣∣U(m
2
), V(n

2
)
⎞⎠⎞⎠ .

Let (um)m∈N, (vn)n∈N be two real-valued sequences with

lim
m→∞

um = lim
n→∞

vn = 1
2 and |um − vn| = o

(
(m + n)−1/3

)
. (52)

From Lemma A.7 (g) (applied jointly to the independent sequences {Uj} as well
as {Vj}) we obtain with U ′

i ∼ U (0, um) independent of V ′′
j ∼ U (vn, 1) that for

um > vn (otherwise the term is a.s. equal to zero)

Var

⎛⎝ mn

m + n
· 4
mn

∑
i<m

2

∑
j�n

2

1{U(i)>V(n−j+1)}

∣∣∣∣∣∣U(m
2
) = um, V(n

2
) = vn

⎞⎠
= Var

⎛⎝ mn

m + n
· 4
mn

∑
i<m

2

∑
j�n

2

1{U ′
i>V ′′

j }

⎞⎠ . (53)

Straightforward calculation yields

E

(
1{U ′

i>V ′′
j }

)
=

(um − vn)2+
2um (1 − vn) = o

(
(m + n)−2/3

)
(54)

due to (52), where a+ = max(a, 0) and a2
+ = (max(a, 0))2. This implies

Var
(
1{U ′

i>V ′′
j }

)
� E

(
1{U ′

i>V ′′
j }

)
= o

(
(m + n)−2/3

)
. (55)

Moreover we obtain for i �= k and j �= l by independence

Cov
(
1{U ′

i>V ′′
j },1{U ′

k>V ′′
l }

)
= 0 (56)

and for i �= k and j = l by straightforward calculation

Cov
(
1{U ′

i>V ′′
j },1{U ′

k>V ′′
j }

)
= E

(
1{U ′

i>V ′′
j } 1{U ′

k>V ′′
j }

)
− E

(
1{U ′

i>V ′′
j }

)
E

(
1{U ′

k>V ′′
j }

)
=

(um − vn)3+
3u2

m (1 − vn) + o
(
(m + n)−4/3

)
= o

(
(m + n)−1

)
(57)

with (52). Analogously, for i = k and j �= l

Cov
(
1{U ′

i>V ′′
j },1{U ′

i>Y ′′
l }

)
= o

(
(m + n)−1

)
. (58)
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Transforming the expression in (53) into a sum of variance and covariance ex-
pressions and then plugging in the derived rates respectively identities (55)–(58)
delivers

Var

⎛⎝ mn

m + n
· 4
mn

∑
i<m

2

∑
j�n

2

1{U(i)>V(n−j+1)}

∣∣∣∣∣∣U(m
2
) = um, V(n

2
) = vn

⎞⎠ = o(1).

Then, by Lemma A.7 (g), (54) and the Chebychev inequality it holds for any
ε > 0

P

⎛⎝∣∣∣∣∣∣ mn

m + n
· 4
mn

∑
i<m

2

∑
j�n

2

[
1{U(i)>V(n−j+1)}

−
(um − vn)2+
2um (1 − vn)

⎤⎦∣∣∣∣∣∣ > ε

∣∣∣∣∣∣U(m
2
) = um, V(n

2
) = vn

⎞⎠ = o(1).

By Lemma A.7 (e) the sequences um = U(m
2
) and vn = V(n

2
) fulfill (52) in a

P-stochastic sense. So, an application of the subsequence principle yields

P

⎛⎜⎝
∣∣∣∣∣∣∣

mn

m + n
· 4
mn

∑
i<m

2

∑
j�n

2

⎡⎢⎣1{U(i)>V(n−j+1)}

−

(
U(m

2
) − V(n

2
))2

+

2U(m
2
) (1 − V(n

2
))
⎤⎥⎦
∣∣∣∣∣∣∣ > ε

∣∣∣∣∣∣∣U(m
2
), V(n

2
)
⎞⎟⎠ = oP (1).

Since the expression on the left hand side is bounded from above by 1, we
get by an application of the dominated convergence theorem (after taking the
expectation of that expression)

mn

m + n
· 4
mn

∑
i<m

2

∑
j�n

2

⎡⎢⎣1{U(i)>V(n−j+1)} −

(
U(m

2
) − V(n

2
))2

+

2 · U(m
2
) · (1 − V(n

2
))
⎤⎥⎦ = oP (1).

By Lemma A.7 (e) it holds mn
m+n

(
U(m

2
) − V(n

2
))2

+
= OP (1), U(m/2)

P−→ 1/2 as

well as V(n/2)
P−→ 1/2. So, it follows

mn

m + n
· 4
mn

∑
i<m

2

∑
j�n

2

1{U(i)>V(n−j+1)} = 2mn

m + n

(
U(m

2
) − V(n

2
))2

+
+ oP (1).

Analogous arguments can be used to derive for the second sum of indicators
in (50)

mn

m + n
· 4
mn

∑
i�m

2

∑
j<n

2

1{V(j)>U(m−i+1)} = 2mn

m + n

(
V(n

2
) − U(m

2
))2

+
+ oP (1).
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The assertion now follows by(
U(m

2
) − V(n

2
))2

+
+
(
V(n

2
) − U(m

2
))2

+
=
(
U(m

2
) − V(n

2
))2

and Lemma A.7 (assertion (e)).

Lemma A.9. Under the assumptions of Theorem 2.6 it holds

mn

m + n
· 1
2 · 1

mn
·

m∑
i=1

n∑
j=1

(
1{

DT (Xi,P̂m)=DT (Yj ,P̂m)
} + 1{

DT (Yj ,Q̂n)=DT (Xi,Q̂n)
}) P−→ 1.

Proof. Firstly, note that with the same notation as above for 2i �= m + 1 (if m
odd)

DT (X(i), P̂m) = DT (Yj , P̂m)

⇐⇒ X(min(i,m−i+1)) � Yj < X(min(i,m−i+1)+1)

or X(max(i,m−i+1)−1) < Yj � X(max(i,m−i+1))
a.s.⇐⇒ U(min(i,m−i+1)) � Vj < U(min(i,m−i+1)+1)

or U(max(i,m−i+1)−1) � Vj < U(max(i,m−i+1)).

For 2i �= m + 1 (if m odd) DT (X(m+1)/2, P̂m) �= DT (Yj , P̂m) almost surely.
Consequently,

m∑
i=1

1{
DT (Xi,P̂m)=DT (Yj ,P̂m)

} a.s.= 2
m−1∑
i=1

1{U(i)�Vj<U(i+1)
} = 21{U(1)�Vj<U(m)

}.
Furthermore,

E

⎡⎢⎣
⎛⎝ 1
n

n∑
j=1

(
1{U(1)�Vj<U(m)

} − (U(m) − U(1))
)⎞⎠2

⎤⎥⎦
= E

⎛⎝Var

⎛⎝ 1
n

n∑
j=1

1{U(1)�Vj<U(m)
} ∣∣∣U(1), U(m)

⎞⎠⎞⎠ � 1
n

= o(1).

Since U(m)
P−→ 1 and U(1)

P−→ 0, cf. Lemma A.7 (d), it yields

mn

m + n
· 1
2 · 1

mn

m∑
i=1

n∑
j=1

1{
DT (Xi,P̂m)=DT (Yj ,P̂m)

}
a.s.= m

m + n

1
n

n∑
j=1

1{U(1)�Vj<U(m)
} P−→ 1 − τ. (59)



3068 F. Gnettner et al.

Analogously we get

mn

m + n
· 1
2 · 1

mn

m∑
i=1

n∑
j=1

1{
DT (Yj ,Q̂n)=DT (Xi,Q̂n)

} P−→ τ, (60)

such that the assertion follows.

Lemma A.10. It holds

√
n + 1 ·

( 1
n+1

∑n
j=1

(
min(Vj , 1 − Vj) − 1

4
)

V(n
2
) − 1

2

)
D−→ N(0,Σ),

where Σ denotes a non-singular diagonal-matrix.

Proof. We make use of the methods outlined in [33].∑
j�n+1

2

j

n + 1 +
∑

j>n+1
2

n + 1 − j

n + 1 = n

4 + O(1). (61)

Decompose

min
(
V(j), 1 − V(j)

)
=

⎧⎪⎨⎪⎩
V(j) −Rj for j � n + 1

2 ,

1 − V(j) −Rj for j >
n + 1

2 ,

where Rj � 0 by construction. Because E(V(j)) = j/(n+ 1), cf. Lemma A.7 (a)
and (c), as well as E(min(Vj , 1 − Vj)) = 1/4 (as min(Vj , 1 − Vj) ∼ U(0, 1/2)),
we obtain by (61) that E|

∑n
j=1 Rj | = O(1). Thus, 1√

n

∑n
j=1 Rj = oP (1) and

consequently

1√
n + 1

n∑
j=1

(
min (Vj , 1 − Vj) −

1
4

)

= 1√
n + 1

·

⎛⎝ ∑
j�n+1

2

V(j) +
∑

j>n+1
2

(
1 − V(j)

)
− n + 1

4

⎞⎠+ oP (1).

Let Z1, ..., Zn+1 ∼ Exp(1) independent. Denoting

St = 1√
n + 1


(n+1)t�∑
j=1

(Zj − 1)

we get by Lemma A.7 (f), 1
n+1

∑n+1
j=1 Zj

P−→ 1 and another application of (61)
(showing that the centering step cancels)

1√
n + 1

n∑
j=1

(
min (Vj , 1 − Vj) −

1
4

)
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D= (1 + oP (1)) · 1
n + 1 ·

⎛⎝ ∑
j�n+1

2

Sj/(n+1) +
∑

j>n+1
2

(
S1 − Sj/(n+1)

)
− n + 1

4 S1

⎞⎠
+ oP (1)

= (1 + oP (1)) ·
(∫ 1

2

0
St dt +

∫ 1

1
2

(S1 − St) dt− 1
4S1

)
+ oP (1)

= (1 + oP (1)) ·
(∫ 1

2

0
(St − tS1) dt−

∫ 1

1
2

(St − tS1) dt
)

+ oP (1),

where we used 1
4 =

∫ 1
2

0 t dt+
∫ 1

1
2
(1− t) dt in the last line. For the sample median

we obtain in a similar fashion

√
n + 1 ·

(
V(n

2
) − 1

2

)
D= (1 + oP (1)) ·

(
S 1

2
− 1

2S1 + oP (1)
)
.

Thus, by an application of the functional central limit theorem in combination
with the continuous mapping theorem the joint limit distribution is given by(∫ 1

2

0
Bt dt−

∫ 1

1
2

Bt dt , B(1/2)
)
,

where {B(·)} is a Brownian bridge with E(B(t)B(s)) = Cov(B(t), B(s)) =
min(s, t) − st. The assertion follows by an application of Fubini’s theorem as

Cov
(
B

(
1
2

)
,

∫ 1
2

0
B(t) dt−

∫ 1

1
2

B(t) dt
)

=
∫ 1

2

0
E (B(1/2)B(t)) dt−

∫ 1

1
2

E (B(1/2)B(t)) dt

=
∫ 1

2

0

(
t− 1

2 · t
)

dt−
∫ 1

1
2

(
1
2 − 1

2 · t
)

dt = 0.

Proof of Theorem 2.6. The proof of (a) for both LS and L̃S follows immediately
from Lemmas A.8 and A.9. The almost sure negativity follows from (51).

By (21) and (22) it holds√
3 ·mn

m + n
·
(
LST (P̂m, Q̂n) − LST (Q̂n, P̂m)

)
=
√

3 ·mn

m + n
· 2 ·A1,2(P̂m, Q̂n) + oP (1).
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Furthermore, for X ∼ P independent of Yi (and Vi as in (39)), by (29)∫
I(x, Yi, P ) dP (x)

= P(DT (X,P ) < DT (Yi, P )) + 1
2P(DT (X,P ) = DT (Yi, P ))

= 2 · min(Vi, 1 − Vi).

Analogously, with Y ∼ P = Q independent of Xj (and Uj as in (39))∫
I(Xj , y, P ) dQ(y) = 1 − 2 · min(Uj , 1 − Uj).

This shows that the asymptotic distribution of the LS-difference statistic is
determined by sums over min(Vi, 1 − Vi) resp. over min(Uj , 1 − Uj). Lem-
mas A.8–A.9, on the other hand, show that the LS-sum statistic is determined
by the medians. Thus an application of Lemma A.10 in combination with the
independence of the two samples yields the result.

Proof of Theorem 2.7. By Lemma A.8 it holds

L̃ST (Q̂m, P̂n) + L̃ST (P̂n, Q̂m) − 1 = oP (log(m + n)/(m + n)).

So, it is sufficient to show

L̃ST (P̂m, Q̂n) − L̃SS(P̂m, Q̂n) = OP

(
log(m + n)

m + n

)
, (62)

from which we get, by relabelling the two samples, L̃ST (Q̂n, P̂m)−L̃SS(Q̂n, P̂m)
= OP (log(m+n)/(m+n)) and thus the assertion. Firstly, for the here considered
sample version of simplicial depth with respect to closed simplices it holds for
i = 1, ...,m

DS(X(i), P̂m) = m− 1 + (m− i) · (i− 1)(
m
2
) , (63)

since there exist (m − i) · (i − 1) intervals [X(j), X(k)] containing X(i) with
j < k and both j, k �= i and m − 1 intervals that can be represented as
conv{X(i), X(j)}, j �= i. By using a similar combinatorial argument, we obtain
for x ∈ (X(i), X(i+1)), i = 1, ...,m− 1,

DS(x, P̂m) = i · (m− i)(
m
2
) .

Denote M = m/2 and fm(i) =
⌈
M −

√
(M − i)2 − (i− 1)

⌉
. Making use of the

notation as in (39), for Yj with continuous distribution P and
i � M −

√
M − 3/4 + 1/2, it holds that

DS(X(i), P̂m) � DS(Yj , P̂m)
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a.s.⇐⇒ X(k) < Y < X(k+1) for some k with
m− 1 + (m− i)(i− 1) � k(m− k)

a.s.⇐⇒ X(fm(i)) < Yj < X(m−fm(i)+1)
a.s.⇐⇒ U(fm(i)) < Vj < U(m−fm(i)+1).

The restriction i � M −
√
M − 3/4 + 1/2 is required to guarantee that the

integrand is positive. An analogous assertion holds for i � M+
√
M − 3/4+1/2

by the symmetry of the simplicial depth (looking forward or backward). In all
other cases the depth of Yj cannot be greater or equal than that of X(i). Together
with (40) this yields, as fm(i) − i � 0,

L̃ST (P̂m, Q̂n) − L̃SS(P̂m, Q̂n) � 0.

Furthermore, E
(
1{Vj∈[U(a),U(b)]}

∣∣∣U1, ..., Um

)
= U(b) − U(a) entails in combina-

tion with A.7 (b) and (c)

E

(
1{Yj∈[X(a),X(b)]}

)
= b− a

m + 1 .

For i � 1 it holds (M − i)−
√

(M − i)2 − (i− 1) �
√
i by an application of the

inverse triangular inequality for the square-root. Consequently,

E

∣∣∣L̃ST (P̂m, Q̂n) − L̃SS(P̂m, Q̂n)
∣∣∣

= 4
m

∑
i�M−

√
M−3/4+1/2

fm(i) − i

m + 1 + 4
m

M∑
i>M−

√
M−3/4+1/2

M − i + 1
2

m + 1

� 1
M2

∑
i�M−2

√
M

(
(M − i) −

√
(M − i)2 − (i− 1)

)
+ o

(
log(m + n)

m + n

)

� 1
M2

∑
i�M−2

√
M

(
(M − i) −

√
(M − i)2 − i

)
+ o

(
log(m + n)

m + n

)
.

Now, by splitting the sum into the two summands and noting that for positive
monotone functions g it holds

∑b
j=a+1 g(j) =

∫ b

a
g(t) dt + O(max(g(a), g(a +

1), g(b), g(b + 1))), we have

1
M2

∑
i�M−2

√
M

(
(M − i) −

√
(M − i)2 − i

)

= 1
M2

∫ M−2
√
M

0

(
(M − t) −

√
(M − t)2 − t

)
dt + o

(
log(m + n)

m + n

)
=
∫ 1

2/
√
M

(
s−

√
s2 − 1 − s

M

)
ds + o

(
log(m + n)

m + n

)
= O

(
log(m + n)

m + n

)
.
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The last line follows by a Taylor expansion with some s2− 1−s
M � ξs � s2. Thus,

fulfilling ξs � 3s2/4, it holds∫ 1

2/
√
M

(
√
s2 −

√
s2 − 1 − s

M

)
ds

= 1
2M

∫ 1

2/
√
M

1 − s

s
ds + O

(
1

M2

)∫ 1

2/
√
M

1
ξ
3/2
s

ds

= O

(
log(M)

M

)
+ O

(
1

M2

)∫ 1

2/
√
M

1
(3s2/4)3/2

ds = O

(
log(m + n)

m + n

)
.

This proves (62) and implies in combination with Lemma A.8 that

L̃SS(P̂m, Q̂n) + L̃SS(Q̂n, P̂m) − 1 = OP

(
log(m + n)

m + n

)
.

Next, we show that this rate also holds true when L̃SS is replaced by LSS in
the above expression: First note, that for Yj �∈ [X(1), X(m)] it holds

m∑
i=1

1{
DS(Xi,P̂m)=DS(Yj ,P̂m)

} = 0 =
m∑
i=1

1{
DT (Xi,P̂m)=DT (Yj ,P̂m)

}.
Now consider Yj ∈ [X(1), X(m)] in addition to Yj �= X(i), i = 1, ...,m, where the
latter occurs with probability 1. Then, the above sum with respect to the Tukey
depth equals 2. The same sum with respect to the simplicial depths equals at
most 2 because the formula in (63) is a parabola in i and, as such, can take each
value at most twice. Consequently,

m∑
i=1

1{
DS(Xi,P̂m)=DS(Yj ,P̂m)

} �
m∑
i=1

1{
DT (Xi,P̂m)=DT (Yj ,P̂m)

} a.s.

Thus, (59) and (60) imply that

L̃SS(P̂m, Q̂n) − LSS(P̂m, Q̂n) = OP

(
m + n

mn

)
(64)

and analogous assertions for L̃SS(Q̂n, P̂m) − LSS(Q̂n, P̂m) as well as the LS-
statistics with respect to the univariate Tukey depth. By Proposition 3.3 the
Tukey depth fulfills the assumptions of Theorem 2.3. So, (10) also holds for LSS

and L̃SS by applications of (62) and (64).

Appendix B: Proofs of Section 3

Proof of Theorem 3.1. Asm3 is trivial because the h-depth can be regarded as a
U-statistic with bounded kernel and Asm2 follows by an inequality in Wynne and
Nagy [88, Proof of Theorem 5] in combination with the layer cake representation
of moments and Hölder’s inequality.
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Proof of Theorem 3.2. Following the reasoning in the proofs of Nagy et al. [60,
Theorems 4.15 and 5.2 part II], we have that

sup
x∈Cd[0,1]

|ID(x, P1) − ID(x, P2)| �
∫ 1

0
sup
u∈Rd

|Dd(u, P1(t)) −Dd(u, P2(t))| dt

(65)

for any two probability measures P1, P2 ∈ PCd[0,1]. Asm3 follows directly from
this and Dd satisfying this assumption.

For the proof of Asm2 we make use of (65), with distributions P̂m and P ,
and Jensen’s inequality with β > 1/2, obtaining

sup
x∈Cd[0,1]

|ID(x, P̂m) − ID(x, P )|2β �
∫ 1

0
sup
u∈Rd

|Dd(u, P̂m(t)) −Dd(u, P (t))|2β dt,

(66)

which results in

Em := E

(
sup

x∈Cd[0,1]
|ID(x, P̂m) − ID(x, P )|2β

)

� E

(∫ 1

0
sup
u∈Rd

|Dd(u, P̂m(t)) −Dd(u, P (t))|2β dt
)

< ∞

by taking into account that the multivariate depths, considered here, take values
in [0, 1] [94]. Note, that Nagy et al. [60, Theorem 3.1] entails the measurability
of the integrands. Then, by making use of the Fubini-Tonelli Theorem and (66),
we obtain Em �

∫ 1
0 E(supu∈Rd |Dd(u, P̂m(t)) −Dd(u, P (t))|2β) dt. Applying to

this that Asm2 holds uniformly for Dd with respect to the probability measure,
we have that there exists a constant C such that Em �

∫ 1
0 (C/mβ) dt = C/mβ ,

and, consequently Em = O(m−β).

In what follows, for any x, u ∈ R
d, d ∈ N, Hu(x) := {w ∈ R

d : 〈u,w〉 � 〈u, x〉}
denotes a halfspace determined by u and x.

Lemma B.1. Let P1, P2 be probability measures on R
d, d ∈ N. Then, for any

x ∈ R
d,

|DT (x, P1) −DT (x, P2)| � sup
‖u‖2=1

|P1(Hu(x)) − P2(Hu(x))|

� sup
H∈H

|P1(H) − P2(H)|.

Proof. It follows directly from the definitions of the Tukey depth and of halfs-
paces.

Proof of Proposition 3.3. Proof for Asm1. For any continuous P on R, we have
that DT (x, P ) = min(P ((−∞, x]), 1 − P ((−∞, x])) and P ((−∞, X]) ∼ U(0, 1),
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for any X ∼ P , by the probability integral transform. Thus, DT (X,P ) ∼
U(0, 0.5), which satisfies Asm1.

Proof for Asm2. It follows from Lemma B.1 by combining the layer cake
representation of moments and the univariate Dvoretzky-Kiefer-Wolfowitz in-
equality [57, Corollary 1].

Proof for Asm3. We refer to the proof of Proposition 3.5, which contains the
univariate case.

Proof for Asm4. Note that

P

(
|DT (X1, P̂

−{1}
m ) −DT (X, P̂−{1}

m )| � 2C
m

∣∣∣∣X2, ..., Xm

)
D= P

(
|DT (Xm, P̂−{m}

m ) −DT (X, P̂−{m}
m )| � 2C

m

∣∣∣∣X1, ..., Xm−1

)
(67)

as X1, ..., Xm are iid. Due to conditional independence and because of P̂−{m}
m =

P̂m−1, we obtain

P

(
|DT (Xm, P̂−{m}

m ) −DT (X, P̂−{m}
m )| � 2C

m

∣∣∣∣X1, ..., Xm−1

)
a.s.
� P

(
|DT (Xm, P̂−{m}

m ) −DT (X, P̂−{m}
m )| � 2C

m− 1

∣∣∣∣X1, ..., Xm−1

)
a.s.=


m−1
2 �∑

i=0
P

(
DT (Xm, P̂m−1) = i

m− 1 ,

DT (X, P̂m−1) ∈
[
i− 2C
m− 1 ,

i + 2C
m− 1

]∣∣∣∣X1, ..., Xm−1

)

=

m−1

2 �∑
i=0

P

(
DT (Xm, P̂m−1) = i

m− 1

∣∣∣∣X1, ..., Xm−1

)
· P
(
DT (X, P̂m−1) ∈

[
i− 2C
m− 1 ,

i + 2C
m− 1

]∣∣∣∣X1, ..., Xm−1

)

=

m−1

2 �∑
i=0

2C∑
j=−2C

P

(
DT (Xm, P̂m−1) = i

m− 1

∣∣∣∣X1, ..., Xm−1

)

· P
(
DT (X, P̂m−1) = i + j

m− 1

∣∣∣∣X1, ..., Xm−1

)
. (68)

Let F be the cumulative distribution function associated to P , following Zuo
and He [93, Example 2], we denote Di := F (X(i+1)) − F (X(i)), i ∈ {0, ...,m},
with F (X(0)) = 0 and F (X(m+1)) = 1, by convention, which results in

P

(
DT (X, P̂m) = i

m

∣∣∣∣X1, ..., Xm

)
a.s.= Di + Dm−i for i ∈ {0, ..., �m/2� − 1}

(69)
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and

P

(
DT (X, P̂m) = i

m

∣∣∣∣X1, ..., Xm

)
a.s.= 1{mod(m,2)=0} ·Di for i = �m/2� . (70)

As X1, ..., Xm are continuously distributed, Lemma A.7 (a)–(b) entails that
Di follows a Beta(1,m)-distribution for i ∈ {0, ...,m}. Then, by means of
Hölder’s inequality, we have that

E

⎛⎝ 4∏
j=1

D
sj
ij

⎞⎠ � E
(
D4

i1

)
= 24

(m + 1)(m + 2)(m + 3)(m + 4) ,

for any combination of s1, ..., s4 such that
∑4

j=1 sj = 4 with s1 ∈ {1, ..., 4},
s2 ∈ {0, ..., 2} and s3, s4 ∈ {0, 1}. Hence all of the mixed moments we have
to consider are uniformly O(m−4). In particular, replacing m by m − 1 in the
above expressions has no impact on the rate so that we can use the representa-
tion (69)-(70) for both factors in (68). Consequently, we get with (67)

E

([
P

(
|DT (X1, P̂

−{1}
m ) −DT (X, P̂−{1}

m )| � 2C
m

∣∣∣∣X2, ..., Xm

)]2
)

= O(m2) ·O(m−4) = O(m−2).

Proof of Theorem 3.4. Let us prove the statement for Asm3. Applying the def-
inition of U-statistics with bounded kernel Kx(·) of order k > 1,

|D(x, P̂m) −D(x, P̂−{m}
m )|

=

∣∣∣∣∣∣
((

m

k

)−1

−
(
m− 1

k

)−1
)

·
∑

1�i1<...<ik�m−1
Kx(Xi1 , ..., Xik)

+
(
m

k

)−1

·O

⎛⎝(m
k

)
−
(
m− 1

k

)⎞⎠∣∣∣∣∣∣ .
Taking into account that

∑
1�i1<...<ik�m−1 Kx(Xi1 , ..., Xik) = O

((
m−1
k

))
and

that
((

m
k

)−1−
(
m−1
k

)−1) =
(
m−1
k

)−1 ·O(m−1), the first summand is O(m−1). Af-
ter applying some algebra on the second summand, we also obtain it is O(m−1).
Thus, the triangle inequality and the exchangeability-argument give us

sup
x∈Rd

|D(x, P̂m) −D(x, P̂−{1}
m )| = O(m−1).

Let us prove the statement for Asm2. With the kernel Kx(·) = 1{x∈L(·)} of or-
der k > 1 it holds D(x, P̂m) =

∑
1�i1<...<ik�m 1{x∈L(Xi1 ,...,Xik

)}. Consider the
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corresponding V-statistic Dmod(x, P̂m) =
∫
1{x∈L(y1,...,yk)} dP̂ k

m(y1, ..., yk). Sim-
ilar to Dümbgen [27, Section 1],

Dmod(x, P̂m) −D(x, P )

=
∫

(P̂m − P )A(x, y1, ..., yk−1) d

⎛⎝k−1∑
j=0

P̂ j
mP d−j(y1, ..., yk−1)

⎞⎠ ,

where A(x, y1, ..., yk−1) := {y ∈ R
d : x ∈ L(y1, ..., yk−1, y)}. Then,

|Dmod(x, P̂m) −D(x, P )| � k · sup
I∈I

|P̂m(I) − P (I)|,

for the class of sets I := {A(x, y1, ..., yk−1) : x, y1, ..., yk−1 ∈ R
d}. Consequently,

P

(√
m · sup

x∈Rd

|Dmod(x, P̂m) −D(x, P )| > M

)
� P

(√
m · sup

I∈I
|P̂m(I) − P (I)| > M

k

)
.

Moreover, the class of sets I has finite VC-dimension V (I) (respectively belongs
to a larger class of sets J with finite VC-dimension V (J )). Then, as we are under
assumption (M), by the Dvoretzky-Kiefer-Wolfowitz inequality [2, Theorem 3.1],
we have that for any fixed υ � V (J ) and ε ∈ (0, 1], there exist constants
m0(υ, ε),M0(υ, ε) and K(υ) such that

P

(√
m sup

J∈J
|P̂m(J) − P (J)| > M

k

)
� 1{M

k <M0}+1{M
k �M0}K(υ)·e−(2−2ε)

(
M
k

)2

for all m � m0(υ, ε) and M � M0(υ, ε). Then, by means of the layer cake
representation we obtain

E

(
sup
x∈Rd

|Dmod(x, P̂m) −D(x, P )|2
)

= O(m−1). (71)

On the other hand,

sup
x∈Rd

|D(x, P̂m) −Dmod(x, P̂m)|2 � Cdet

m2 (72)

as, by Serfling [73, Section 5.7.3], the kernels of both the U-statistic D(x, P̂m)
and the V-statistic Dmod(x, P̂m) are identical and bounded. Then, making use
of (71) and (72), we obtain

E

(
sup
x∈Rd

|D(x, P̂m) −D(x, P )|2
)

� 2
[
E

(
sup
x∈Rd

|D(x, P̂m) −Dmod(x, P̂m)|2
)
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+E

(
sup
x∈Rd

|Dmod(x, P̂m) −D(x, P )|2
)]

= O(m−1).

Now, applying Hölder’s inequality delivers for β ∈ (1/2, 1]

E

(
sup
x∈Rd

|D(x, P̂m) −D(x, P )|2β
)

= O
(
m−β

)
.

Proof of Proposition 3.5.
Tukey depth. Let us first prove the statement for Asm2. From Wainwright [86,
Propositions 4.19 and 4.20], we have that H is a system of sets with finite
VC-dimension V (H). Thus, as we are under assumption (M), the multivariate
Dvoretzky-Kiefer-Wolfowitz inequaltiy holds. Denoting

Mm :=
√
m sup

H∈H
|P̂m(H) − P (H)|,

this inequality states that for any fixed υ � V (H) and ε ∈ (0, 1], there exist
constants m0(υ, ε),M0(υ, ε) and K(υ) such that

P(Mm > M) � K(υ)e−(2−2ε)M2

for each m � m0(υ, ε) and M � M0(υ, ε). The layer cake representation of the
expected value delivers for m large enough (m � m0(υ, ε))

E
(
M2

m

)
=
∫ ∞

0
2·M ·P (Mm > M) dM � 2·

∫ ∞

0
M ·K(υ)e−(2−2ε)M2

dM < ∞.

Consequently, E
(
M2

m

)
= O (1) and so,

E

(
sup
H∈H

|P̂m(H) − P (H)|2
)

= O
(
m−1) . (73)

By Lemma B.1, we have that

E

(
sup
x∈Rd

|DT (x, P̂m) −DT (x, P )|2
)

� E

(
sup
H∈H

|P̂m(H) − P (H)|2
)

which together with (73) implies that

E

(
sup
x∈Rd

|DT (x, P̂m) −DT (x, P )|2
)

= O
(
m−1) .

For β ∈ (1/2, 1] Hölder’s inequality finally gives Asm2, i.e.

E

(
sup
x∈Rd

|DT (x, P̂m) −DT (x, P )|2β
)

= O
(
m−β

)
.
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Let us prove the statement for Asm3. Making use of the empirical distribu-
tion, we have that

|P̂m(Hu(x)) − P̂−{1}
m (Hu(x))|

=

∣∣∣∣∣− 1
m(m− 1)

m∑
i=2

1{Xi∈Hu(x)} + 1
m

1{X1∈Hu(x)}

∣∣∣∣∣ ,
which results in |P̂m(Hu(x)) − P̂

−{1}
m (Hu(x))| = O(m−1). By Lemma B.1, this

leads to Asm3, i.e.

sup
x∈Rd

|DT (x, P̂m) −DT (x, P̂−{1}
m )| = O

(
m−1) .

For Asm3 we just observe that the following empirical depth functions can be
represented as U-statistics. For Asm2 we prove for the particular depths that the
class of sets A(x, y1, ..., yn−1) has finite VC-dimension.

Simplicial depth. The U-statistic-estimator for the simplicial depth can be
defined by using the kernel Kx(Xi1 , ..., Xid+1) = 1{x∈conv{Xi1 ,...,Xid+1}}. Con-
sequently, A(x, y1, ..., yd) := {y ∈ Rd : x ∈ conv{y1, ..., yd, y}}. According to
Dümbgen [27, Section 1], I := {A(x, y1, ..., yd) : x, y1, ..., yd ∈ R

d} belongs to
a class of sets J with finite VC-index V (J ). Thus, Asm2 and Asm3 follow
immediately by Theorem 3.4.

Spherical depth. The U-statistic-estimator for the spherical depth can be de-
fined by using the kernel Kx(Xi1 , Xi2) = 1{(Xi1−x)T (Xi2−x)�0}. Consequently,
A(x, y1) = {y ∈ R

d : (y − x)T (y1 − x) � 0}. All of these sets A(x, y1) are con-
tained in a subgraph class with finite VC-dimension according to Wainwright
[86, Proposition 4.20]. Hence, Asm2 and Asm3 directly arise from Theorem 3.4
for the spherical depth.

Lens depth. The U-statistic-estimator for the lens depth with respect to the
Euclidean norm can be defined by using the kernel

Kx(Xi1 , Xi2) = 1{‖Xi1−Xi2‖�max(‖x−Xi1‖,‖x−Xi2‖)}.

Consequently,

A(x, y1) = {y ∈ R
d : ‖y − y1‖ � max(‖x− y‖, ‖x− y1‖)}

= {y ∈ R
d : ‖y − y1‖ � ‖x− y‖} ∩ {y ∈ R

d : ‖y − y1‖ � ‖x− y1‖}.

All of these sets A(x, y1) can be generated by intersecting sets from two subgraph
classes with finite VC-dimension according to [86, Proposition 4.19 and 4.20].
Thus, Theorem 3.4 entails Asm2 and Asm3 for the lens depth.
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Band depth. The U-statistic-estimator for the band depth based on k ele-
ments can be defined by using the kernel

Kx(Xi1 , ..., Xik) =
d∏

j=1
1{min�∈{1,...,k} X

(j)
i�

�x(j)�max�∈{1,...,k} X
(j)
i�

}.

Consequently,

A(x, y1, ..., yk−1)

=
d⋂

j=1
{y0 ∈ R

d : min
�∈{0,...,k−1}

y
(j)
� � x(j) � max

�∈{0,...,k−1}
y
(j)
� }

=
d⋂

j=1

(
{y0 ∈ R

d : min
�∈{0,...,k−1}

y
(j)
� � x(j)}

∩{y0 ∈ R
d : x(j) � max

�∈{0,...,k−1}
y
(j)
� }

)
=

d⋂
j=1

((
∪k−1
�=0 {y0 ∈ R

d : y(j)
� � x(j)}

)
∩
(
∪k−1
�=0 {y0 ∈ R

d : x(j) � y
(j)
� }

))
.

Each set {y0 ∈ R
d : y

(j)
� � x(j)}, respectively {y0 ∈ R

d : x(j) � y
(j)
� },

in the expression on the right hand side of the above equality belongs to a
certain subgraph class with finite VC-dimension according to Wainwright [86,
Proposition 4.19 and 4.20]. Since taking the union respectively the intersection
of a finite amount of set classes always generates a set class with finite VC-
dimension, we can conclude by Theorem 3.4 that Asm2 holds for the band
depth (Asm3 holds trivially).

Appendix C: Simulation results

In Section 4 of the main paper we summarised the findings from the simulation
study. In this section, we report the corresponding full simulation study.

Section C.1 is dedicated to compare the performance of different tests based
on the LS-tuple on functional and multivariate data, to confirm the intuition
obtained in Section 2.4 when analysing univariate data. Real world functional
data typically consist on non-smoothed observations given on a grid. Historically,
this raw data are pre-processed into smooth curves [69]. Although preprocessing
(including such based on statistical data depths) is very common nowadays,
we do know that it influences the data analysis outcome but not necessarily
in a good way; see e.g. [10, 75]. To mimic the raw nature of real functional
data, we compare the different LS-based tests making use of Brownian motions.
In addition, we make use of the integrated Tukey depth that has well-known
properties.

Due to the results of Section C.1, the properties of the Joint-TP test for
different functional depths are compared in Section C.2. There, in addition to
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the Brownian motion, we use smooth, simulated, functional data. This is of
particular importance as the user may wish to apply the proposed test to smooth
functional data. Additionally, the behaviour of some functional depths under raw
data is not optimal as it was defined with smooth data in mind.

Then, Section C.5 compares the proposed test with existing functional two-
sample tests in the literature.

The simulations in Sections C.1–C.4 were run in MATLAB R2019b (or newer)
with our own implementation of the different depth functions used. For the the
simulations in Section C.5, R (version 4.2.2) was used, as most implementations
of other functional two-sample tests are available in this programming language.
Our simulation results are based on 1000 trials and the level of the tests is given
by α = 0.05. All simulation results are based on 1000 trials and the level of the
tests is given by α = 0.05. The functional observations are evaluated at 1001
equidistant discretisation points on the interval [0, 1]. For generating the plots
we made use of [9] and [45].

C.1. Tests based on the joint LS-tuple for the functional integrated
Tukey depth and the multivariate Tukey depth

In this section we show that the findings exibited in Sections 2.2 and 2.4 carry
over to functional data. For that, we make use of the LS-tests based on the
functional integrated Tukey depth. We concentrate on an alternative falling into
one of the blind spots with a huge asymmetry in the two projection statistics.
Thus, under H0, both samples consist of standard Brownian motions (Bt)t∈[0,1]
(which we will regard as Model 1) while under the alternative we scale and
shift the data in one sample (the one drawn from distribution Q), considering
samples from (0.8 ·Bt + 0.15)t∈[0,1]. We take m = n = 100 observations in each
sample. For an illustration, the left panel in Figure 5 displays in grey colour
a sample of 10 functional elements drawn from (Bt)t∈[0,1]. There, we have also
plotted 10 dark blue functional elements drawn from (0.8 ·Bt + 0.15)t∈[0,1].

The simulation results are in Table 3, which displays the empirical size (re-
jection rate under the null hypothesis), power (rejection rate under the alter-
native hypothesis) and size-corrected power. The size corrected power is com-
puted by replacing the theoretically obtained critical value from the asymptotic
result by an empirical quantile of simulated observations under the null hy-
pothesis. Further simulations are displayed in Tables 4 and 5. Table 4 contains
the results of contrasting (Bt)t∈[0,1] against the alternative (Bt + a)t∈[0,1] for
a ∈ {0.1 + 0.025i : i ∈ N ∪ {0} with i � 10} and Table 5 against the alternative
(b ·Bt +0.15)t∈[0,1] for b ∈ {0.85, 0.9, 0.95, 0.99}. We also include Tables 6 and 7
with results for multivariate data, which further confirm our observations; with
the results in Table 6 corresponding to those in Table 4 and the ones in Table 7
to those in Table 5.

As in Figure 2 for the univariate case, we observe from the first row of Table 3
that in the functional case the two LS-projection tests (first and second columns)
and even more so the LS-maximum test (fourth column) do not hold the sig-
nificance level, with empirical sizes that are far too liberal. Indeed, they are,
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Fig 5. Left panel: 10 realizations of (Bt)t∈[0,1] in grey and 10 of (0.8 ·Bt+0.15)t∈[0,1] in dark
blue. In the horizontal axis t is displayed. In the vertical axis X(t) is displayed, representing
either a realization of Bt or a realization 0.8 · Bt + 0.15. Each of the 20 realizations are
drawn independently. Right panel: The circles represent 1000 independent realizations of the
LS-tuple (LS(P̂m, Q̂n) in the horizontal axis and LS(Q̂n, P̂m) in the vertical axis) under
(Bt)t∈[0,1] (distribution P ) against (0.8 · Bt + 0.15)t∈[0,1] (distribution Q). The functional
integrated Tukey depth is used and m = n = 100 observations in each sample. The red
circles (unlike the green ones) result in rejections made by the Joint-TP statistic and the
shaded orange region is its rejection region. For both panels: the functional observations are
evaluated at 1001 equidistant discretisation points.

Table 3

Size (first row) and power comparison (second row) under (Bt)t∈[0,1] (distribution P )
against (0.8 ·Bt + 0.15)t∈[0,1] (distribution Q) of the statistics LS(P̂m, Q̂n) (first column),
LS(Q̂n, P̂m) (second column), LS-difference (third column), LS-maximum (fourth column),
Joint-CC (fifth column) and Joint-TP (sixth column). The third column displays the size
corrected power for the statistics with size above the significance level. The statistics are
based on the functional integrated Tukey depth and m = n = 100 observations in each

sample.

LS(P̂m, Q̂n) LS(Q̂n, P̂m) LS-difference LS-maximum Joint-CC Joint-TP

Size 7.4% 8.2% 4.5% 14.9% 4.6% 4.6%
Power 20.3% 97.1% 69.7% 97.2% 73.6% 73.1%
Corrected Power 16.4% 94.2% – 91.6% – –

respectively, 2.4, 3.2 and 9.9 points above the 5% level under the null hypothe-
sis. In contraposition, the LS-difference test (third column), the Joint-CC (fifth
column) and Joint-TP test (sixth column) exhibit very good size behaviour.

Moreover, the second row of Table 3 shows that the LS-difference test (third
column), the Joint-CC (fifth column) and Joint-TP test (sixth column) exhibit
an acceptable power behaviour, under the alternative. The power is not as good
as for the LS-maximum test (fourth column) and one of the two projection
tests (LS(Q̂n, P̂m), second column), even after size-correcting them. This is due
to the specific location of the LS-tuple under this alternative, which we have
depicted in the right panel of Figure 5. In fact, this is also what makes the power
between the two projection tests (first and second columns) differ greatly in the
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Table 4

Rejection rates of (Bt)t∈[0,1] (distribution P ) against (Bt + a)t∈[0,1] (distribution Q) for the
different a ∈ {0.1 + 0.025 · i : i ∈ N0 with i � 10} ∪ {0} and the statistics LS(P̂m, Q̂n) (rows
(a)), LS(Q̂n, P̂m) (rows (b)), LS-difference (rows (c)), LS-maximum (rows (d)), Joint-CC
(rows (e)) and Joint-TP (rows (f)). In rows (a), (b) and (d) the size corrected power for the

corresponding statistic is also included (the respective rejection rate under the null
hypothesis is that given in the first column, under a = 0). The statistics are based on the

functional integrated Tukey depth and m = n = 100 observations in each sample.

a
0 0.1 0.125 0.15 0.175 0.2

(a) LS(P̂m, Q̂n) 7.4% 13.5% 19.0% 25.1% 28.0% 35.0%
(a) Corrected 5.0% 9.9% 15.3% 20.3% 23.5% 29.8%
(b) LS(Q̂n, P̂m) 8.2% 18.3% 20.4% 23.4% 32.6% 40.0%
(b) Corrected 5.0% 9.6% 12.4% 14.9% 20.7% 26.4%
(c) LS-difference 4.5% 3.5% 3.3% 3.5% 3.6% 3.0%
(d) LS-maximum 14.9% 31.5% 38.7% 47.2% 56.5% 68.4%
(d) Corrected 5.0% 11.8% 17.6% 21.5% 29.5% 38.9%
(e) Joint-CC 4.6% 5.0% 6.4% 9.3% 19.2% 29.9%
(f) Joint-TP 4.6% 4.7% 5.5% 7.5% 15.5% 24.2%

a
0.225 0.25 0.275 0.3 0.325 0.35

(a) LS(P̂m, Q̂n) 44.2% 55.6% 62.3% 70.5% 79.2% 84.1%
(a) Corrected 39.5% 48.3% 56.1% 65.0% 75.0% 80.4%
(b) LS(Q̂n, P̂m) 46.0% 53.7% 63.8% 73.8% 79.1% 86.6%
(b) Corrected 34.8% 41.9% 51.4% 61.8% 68.3% 77.3%
(c) LS-difference 4.0% 2.1% 1.3% 1.4% 1.1% 1.3%
(d) LS-maximum 77.6% 86.9% 92.8% 96.5% 98.9% 99.7%
(d) Corrected 51.5% 61.1% 71.9% 81.0% 90.5% 95.7%
(e) Joint-CC 44.5% 63.5% 78.0% 89.7% 95.5% 98.8%
(f) Joint-TP 38.5% 58.0% 71.8% 84.6% 92.2% 97.4%

functional case. The same effect has been observed in Figure 1 for the univariate
case.

Furthermore, while the power of the LS-difference statistic is satisfactory in
this example, the power against a mere location shift (Bt + 0.15)t∈[0,1] breaks
down with the empirical power below 5% (falling again into the blind spot of
the statistic), see Table 4. Also, from Table 4, we can observe that the Joint-CC
and the Joint-TP tests exhibit a high power for large location shifts, being even
higher than the LS-maximum size corrected test.

Consequently, the two joint tests are the preferable ones, due to their size and
power behaviour; and the huge blind spots the two projection statistics exhibit.
In fact, the Joint-TP and Joint-CC test have similar size and power behaviour
with a slightly higher power of the Joint-CC test which is due to the larger
rejection region, as it has a faster contraction. In the rest of the simulation
study, we restrict our attention to the Joint-TP test due to its conservative
contraction rate.
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Table 5

Rejection rates for (Bt)t∈[0,1] (distribution P ) against (b ·Bt + 0.15)t∈[0,1] (distribution Q)
for b ∈ {0.85, 0.9, 0.95, 0.99} and the statistics LS(P̂m, Q̂n) (rows (a)), LS(Q̂n, P̂m) (rows
(b)), LS-difference (row (c)), LS-maximum (rows (d)), Joint-CC (row (e)) and Joint-TP

(row (f)). In rows (a), (b) and (d) the size corrected power for the corresponding statistic is
also included (the respective rejection rate under the null hypothesis is that given in the first
column of Table 4, under a = 0). The statistics are based on the functional integrated Tukey

depth and m = n = 100 observations in each sample.

b
0.99 0.95 0.9 0.85

(a) LS(P̂m, Q̂n) 19.5% 10.8% 6.1% 8.6%
(a) Corrected 15.5% 8.4% 4.2% 6.8%
(b) LS(Q̂n, P̂m) 32.5% 46.8% 67.8% 89.1%
(b) Corrected 20.4% 32.7% 55.3% 82.1%
(c) LS-difference 3.6% 6.7% 17.7% 41.6%
(d) LS-maximum 50.0% 55.9% 71.2% 89.7%
(d) Corrected 22.9% 31.1% 50.0% 76.6%
(e) Joint-CC 10.5% 15.4% 24.6% 48.5%
(f) Joint-TP 9.2% 13.3% 22.4% 46.6%

Table 6

Rejection rates for N((0,0)T, I2) (distribution P ) against N((c, c)T, I2) (distribution Q)
for c ∈ {0, 0.2, 0.4, 0.6, 0.8} and the statistics LS(P̂m, Q̂n) (rows (a)), LS(Q̂n, P̂m) (rows

(b)), LS-difference (row (c)), LS-maximum (rows (d)), Joint-CC (row (e)) and Joint-TP
(row (f)). In rows (a), (b) and (d) the size corrected power for the corresponding statistic is
also included (the respective rejection rate under the null hypothesis is that given in the first

column, under c = 0). All statistics are computed with the Tukey depth in R2 and
m = n = 100 observations in each sample.

c
0 0.2 0.4 0.6 0.8

(a) LS(P̂m, Q̂n) 10.2% 16.1% 41.7% 78.3% 96.7%
(a) Corrected 5.0% 9.1% 27.7% 64.8% 94.0%
(b) LS(Q̂n, P̂m) 14.0% 20.1% 41.0% 76.2% 96.8%
(b) Corrected 5.0% 8.7% 24.5% 60.9% 90.9%
(c) LS-difference 4.8% 4.9% 3.2% 2.7% 2.5%
(d) LS-maximum 23.7% 35.7% 74.6% 98.2% 100.0%
(d) Corrected 5.0% 9.4% 31.6% 83.2% 99.3%
(e) Joint-CC 4.8% 6.0% 37.4% 93.2% 99.9%
(f) Joint-TP 4.8% 5.6% 31.0% 89.7% 99.8%

C.2. Joint-TP test for different functional depths

In order to further investigate the small sample behaviour of the Joint-TP test,
we consider two different models for generating functional data: Model 2 repre-
sents smooth functional data and Model 3 smooth fluctuating functional data.
This is in addition to Model 1 (standard Brownian motion), which represents a
way to generate noisy non-smooth functional data. For the smooth models, let
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Table 7

Rejection rates for N((0,0)T, I2) (distribution P ) against N((0.2,0.2)T, c̃ · I2)
(distribution Q) for c̃ ∈ {1.01} ∪ {1 + 0.05i : i ∈ N0 with i � 8} and the statistics

LS(P̂m, Q̂n) (rows (a)), LS(Q̂n, P̂m) (rows (b)), LS-difference (row (c)), LS-maximum
(rows (d)), Joint-CC (row (e)) and Joint-TP (row (f)). In rows (a), (b) and (d) the size

corrected power for the corresponding statistic is also included (the respective rejection rate
under the null hypothesis is that given in the first column of Table 6, under c = 0). All

statistics are computed with the Tukey depth in R2 and m = n = 100 observations in each
sample.

c̃
1 1.01 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

(a) LS(P̂m, Q̂n) 17.1% 17.7% 28.4% 36.6% 45.5% 58.5% 61.7% 71.9% 78.2% 82.2%
(a) Corrected 9.1% 8.2% 13.5% 23.1% 28.8% 40.7% 46.1% 55.2% 65.6% 68.4%
(b) LS(Q̂n, P̂m) 20.0% 19.1% 12.1% 9.6% 6.8% 6.1% 7.3% 10.7% 15.4% 18.6%
(b) Corrected 8.7% 8.1% 5.4% 2.6% 1.3% 1.6% 1.8% 3.6% 5.6% 6.7%
(c) LS-difference 5.0% 4.8% 4.8% 9.8% 12.2% 19.5% 26.3% 33.9% 44.1% 51.1%
(d) LS-maximum 36.6% 36.3% 39.7% 44.7% 49.6% 60.6% 62.9% 73.2% 78.6% 82.3%
(d) Corrected 9.4% 8.7% 9.5% 15.1% 18.2% 26.6% 32.1% 40.9% 51.7% 57.0%
(e) Joint-CC 6.4% 6.0% 5.6% 10.9% 12.5% 20.0% 27.3% 35.6% 44.6% 51.5%
(f) Joint-TP 6.1% 5.5% 5.5% 10.5% 12.4% 20.0% 27.1% 34.6% 44.6% 51.4%

us consider the Fourier basis functions

ej(t) =
{

sin(jπt), j odd,
cos(jπt), j even

of L2[0, 1], where the constant function is excluded in order to achieve a better
comparability of the models. Model 2 is (Ct)t∈[0,1] with

Ct =
20∑
l=1

Wl · el(t), Wl
ind.∼ N

(
0, 3−l

)
.

Model 3 is (Dt)t∈[0,1] with

Dt =
20∑
l=1

Zl · el(t), Zl
ind.∼ N

(
0, J

l

)
with J =

20∑
j=1

1
j

= 55835135
15519504 ≈ 3.6.

Here, we follow [6], who use the variance 3−l to mimic a fast decay of the
eigenvalues of the covariance operator and the variance J/l for a slow decay.

Figure 6 shows some realizations to illustrate Model 2 (central panels) and
Model 3 (right panels), in addition to Model 1 (left panels). In each of the panels
we have represented 10 functional observations of the respective null distribution
in grey: In each of the three columns corresponding to the three models, only
the coloured sample (under the alternative) varies while the grey observations
(corresponding to the null distribution) are the same in each panel. The plots
clearly show that only Model 2 and 3 result in smooth curves, with the curves
from Model 2 being smoother.
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Fig 6. 10+10 functional observations generated with Models 1 (left panels), 2 (central panels)
and 3 (right panels). Each row of panels corresponds to a class of alternatives: the grey curves
are generated from the first distribution in each panel caption – the coloured curves from
the second one. The first row depicts a simple location shift. In the second row there is a
more advanced location shift by adding a scaled sine curve to the data. For the third row, a
constant multiplicative scaling factor was added. The last row contains a simultaneous (more
complex) location-scale difference, where B̃t (respectively C̃t, D̃t) is an independent copy of
Bt (respectively Ct, Dt).
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In this section, we investigate the impact of the selection of depth function
on the size and power of our proposed testing procedure. We consider the inte-
grated depth, the h-depth, the spatial depth [11], the lens metric depth [39], the
random Tukey depth [20] and the random projection depth [22]. As it can be
observed from (14), the integrated depth requires of a multivariate depth for its
computation. We make use of two popular options: Tukey and simplicial depths
which are here reduced to univariate depths as in this section we simulate uni-
variate functional data. Nevertheless, the Tukey and the simplicial depth with
respect to the same finite probability measure in R do not necessarily lead to
the same ordering as illustrated by the following example.

Example C.1. Let {x1, ..., x10} be a set of real numbers with xi < xi+1 for
i = 1, ..., 9 and P the discrete uniform distribution on the set. The Tukey depth
leads to an inside-out ordering, i.e. DT (x, P ) � DT (y, P ) for any x, y ∈ R with
|x− (x5 + x6)/2| � |y − (x5 + x6)/2|. In contrast, for the simplicial depth (16)
we have DS(x3, P ) = 24/45 > DS(y, P ) = 21/45 for any y ∈ (x3, x4). So, the
simplicial depth with respect to finite probability measures does not necessarily
entail an inside-out ordering.

The simplicial depth does have a very good behaviour when computed with
respect to continuous distributions [48]. To benefit from it, we also apply the
integrated depth on a modified version of the simplicial depth, where we add
some noise on each vertex of the simplices. In particular, we add a zero mean
normal distribution with variance 10−16.

The h-depth has been extensively studied from a theoretical point for a fix h
[21, 88], and it has very good properties [61, 62]. However, it has been seen that
its behaviour is better when h depends on the distribution [22, 59, 63]. Thus,
in our simulations we make use of h = 1 and h equal to the 0.15-quantile of the
L2-distance among the curves of the underlying sample. Moreover, for the lens
metric depth we make use of the L2([0, 1])-metric. Also, we consider the random
Tukey depth based on 2 projections and the random projection depth based on
10 projections.

The rejection rates under the null hypothesis for different sample sizes are
displayed in Table 8 for Model 1, 2 and 3. The size behaviour displayed in the
tables seems appropriate, since our proposed procedure is based on asymptotics;
with the exception of the integrated simplicial depth in Model 3, which has an
obvious size problem in small sample sizes. This size problem is related to the
simplicial depth ordering explained in Example C.1. Table 8 clearly indicates
that the proposed modification of the simplicial depth solves the problem re-
sulting in a reasonable size behaviour.

To study the power of the test, we consider the following alternatives:

a simple location shift

(Mt + a)t∈[0,1], (74)

a more complex location difference

(Mt + a · sin(2πt))t∈[0,1], (75)
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Table 8

Rejection rates for Model 1-3 under H0 for different pairs of sample sizes with several depth
functions: the integrated Tukey depth (IntegrTukey), the integrated simplicial depth

(IntegrSimplicial), the integrated modified simplicial depth (IntegrSimplicialMod), the
h-depth with h = 1 (h-const), the h-depth with data-adaptively chosen h (h-adaptive), the
spatial depth (Spatial), the lens metric depth (LensMetric), the random Tukey depth based
on two random projections (RandomTukey) and the random projection depth based on ten
random projections (RandomProjection). For smaller samples the deviation from 5% is
slightly larger because of the decision rule based on asymptotics. Unbalanced and small

sample sizes can lead to rejection rates above 5%, e.g. with the lens metric depth.

Model 1

m/n
50/50 75/75 100/100 75/150 500/500 1000/1000

IntegrTukey 4.6% 4.3% 4.6% 4.1% 5.2% 4.4%
IntegrSimplicial 4.7% 3.4% 4.2% 4.4% 4.4% 4.8%
IntegrSimplicialMod 4.4% 4.8% 4.8% 4.4% 4.6% 4.8%
h-const 4.2% 4.3% 4.6% 4.1% 5.0% 4.2%
h-adaptive 3.5% 3.7% 3.9% 3.9% 4.6% 4.7%
Spatial 4.7% 4.0% 4.5% 5.0% 4.8% 4.5%
LensMetric 5.9% 5.3% 5.1% 5.6% 5.2% 4.2%
RandomTukey 4.7% 5.0% 4.6% 4.4% 5.3% 4.4%
RandomProjection 3.5% 4.3% 4.4% 4.1% 4.9% 4.2%
Model 2

m/n
50/50 75/75 100/100 75/150 500/500 1000/1000

IntegrTukey 4.1% 5.4% 4.3% 4.8% 4.9% 5.0%
IntegrSimplicial 4.3% 5.0% 4.4% 5.3% 4.7% 5.0%
IntegrSimplicialMod 4.2% 5.7% 4.7% 3.8% 4.7% 5.1%
h-const 4.3% 4.9% 4.4% 3.8% 4.3% 4.7%
h-adaptive 4.6% 4.6% 4.3% 4.7% 4.4% 4.7%
Spatial 4.5% 4.9% 4.3% 4.5% 4.6% 4.9%
LensMetric 4.7% 5.2% 4.6% 4.7% 4.4% 4.8%
RandomTukey 5.1% 5.6% 5.2% 4.1% 4.5% 5.0%
RandomProjection 5.0% 4.1% 3.9% 4.5% 4.1% 5.0%
Model 3

m/n
50/50 75/75 100/100 75/150 500/500 1000/1000

IntegrTukey 6.3% 5.4% 5.2% 6.9% 4.4% 4.3%
IntegrSimplicial 84.1% 24.2% 6.5% 10.5% 4.0% 4.5%
IntegrSimplicialMod 5.1% 5.3% 5.0% 5.7% 4.0% 4.6%
h-const 5.0% 5.0% 5.5% 5.1% 4.6% 5.0%
h-adaptive 4.7% 4.6% 5.3% 5.2% 4.3% 4.8%
Spatial 5.0% 5.3% 5.7% 5.5% 4.5% 4.8%
LensMetric 5.0% 5.7% 5.7% 5.4% 5.0% 4.9%
RandomTukey 5.8% 7.6% 4.9% 6.1% 4.1% 5.2%
RandomProjection 4.4% 4.9% 5.6% 4.0% 4.9% 6.1%

a scale difference

(a ·Mt)t∈[0,1] (76)

and a simultaneous difference in the location as well as in the second order
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structure (
Mt +

√
1 − 2aM̃t +

√
32at(t− 1)√

2

)
t∈[0,1]

, (77)

with M̃t an independent copy of Mt. M stands for B when making use of
Model 1, for C when making use of Model 2 and D when using Model 3.
These alternatives depend on a constant a ∈ R\{0} for (74), (75) and (77) and
a ∈ R\{1} for (76). To illustrate them, each panel of Figure 6 displays 10 func-
tional observations in colour that were generated under an alternative hypothe-
sis. The first row panels display in red the alternative in (74), the second (75) in
green, the third (76) in blue and the fourth (77) in orange. For the illustration
we have used a = 0.3 in (74), (75) and (77) and a = 1.1 in (76).

Figure 7 shows the power curves for the studied alternatives: (74) in the first
row (plots (a)–(c)), (75) in the second (plots (d)–(f)), (76) in the third (plots
(g)–(i)) and (77) in the fourth (plots (j)–(l)). The plots in the i-th column regard
Model i, for i = 1, 2, 3.

When making use of a simple location shift in Models 1 (plot (a)) and 3
(plot (c)), the curves showing most power are those of the integrated simplicial
depth (orange) followed by the integrated Tukey depth (navy blue). These two
models are related in that there are multiple crossings among each two curves
in a sample. They are different in that Model 3 results in smooth curves while
Model 1 does not. However, the smoothness of the data does not affect the
integrated depths as, in practice, the sample curves are observed over a grid
of equally spaced points and the integrated depths are computed over the sum
of the corresponding univariate depth at each grid point. For Model 1, these
power curves are also just followed by the integrated modified simplicial depth
power curve (red). Thus, the integrated depths are the ones resulting in most
power for simple location shifts of the Brownian motion. We can argue that the
location of the image of the curves corresponding to the alternative sample gets
higher with higher values of a. Thus, for each fixed grid point, as a increases, the
depth value of a point corresponding to one of the samples has low univariate
depth when computed with respect to the other sample. For Model 3 (plot (c)),
the results of the integrated simplicial depth (orange) are affected by the high
rejection rates under the null hypothesis, which are observable from Table 8. In
this case we can consider the integrated Tukey depth (navy blue) a preferable
choice, as the integrated modified simplicial depth (red) results in a power curve
that is much lower than that of other depth functions.

The high rejection rates of the integrated simplicial depth (orange) under the
null hypothesis in Model 3 are also observable in the plots of the other three
alternatives (plots (f), (i) and (l)). The behaviour under the complex location
difference (plot (f)) is very similar to that of the simple location shift (plot (c))
analysed above, resulting in the integrated Tukey depth (navy blue) being a
preferable choice. For a simultaneous difference in the location as well as in the
second order structure (plot (l)), the integrated simplicial depth power curve
(orange) is only just above those of the adaptive h-depth (green), the spatial
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depth (cyan), the h-depth (yellow) and the lens metric depth (pink). These four
power curves are indeed the ones that are higher for the scale difference (plot
(i)). It is worth saying that the tests based on these depth functions are the
ones that make use of the distance between the curves. Thus, in these two last
cases we recommend the use of any of the four distance based depth functions
– in particular, the adaptive h-depth.

For Model 2, the adaptive h-depth power curve (green) is generally higher
irrespective of the studied alternative (plots (b), (e), (h) and (k)). The main
difference between Model 2 and the other two models is that in Model 2 there
are typically just two crossings between each two curves. This, results in that
the norm between each two curves is a relevant measure, which for the adaptive
h-depth is used both in the computation of the h as well as in the depth itself,
being amplified by the Gaussian kernel used.

The adaptive h-depth (green) is also a good choice for Model 1 for the al-
ternatives given in (75), (76) and (77) (plots (d), (g) and (j)). In fact, it is the
highest power curve for (76) and (77) (plots (g) and (j)) and just below the
integrated simplicial depth power curve (orange) for (75) (plot (d)).

Summarizing, the best results are obtained by the distance based depth func-
tions and the integrated depth functions. Among the distance based depth func-
tions, the clear winner is the adaptive h-depth (green), which makes a double
use of the distance between curves. For the integrated depth functions, the best
results are obtained by the integrated simplicial depth (orange), despite the high
rejection rates under the null hypothesis in Model 3. Some more conservative
results are given by the integrated Tukey depth (navy blue). Furthermore, the
random depth functions, random projection depth and random Tukey depth,
provide non-relevant results.

C.2.1. Special alternative: fixed location and second order structure, but
different shape

We investigate the ability of the Joint-TP test to detect differences in the shape
of the data, i.e. finding differences in the third- or higher order structures. There-
fore, we consider the models

St = U, where U ∼ U(0, 1), t ∈ [0, 1] and
Tt = 5 · (t + V ) − �5 · (t + V )� , where V ∼ U(0, 1), t ∈ [0, 1].

An illustration is given in Figure 8, where 10 curves of each sample are depicted.
The rejection rates in Table 9 indicate that the tests using integrated depths
have less power than tests using depths from other families. The reason for this
phenomenon is that integrated depths are computed by averaging pointwise
computed values over the time axis, but the shape difference does not occur
pointwise.
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Fig 7. Power-plots (sample sizes: m = n = 100) for several alternatives depending on the
parameter a (on the horizontal axis). Each curve represents the behaviour of the Joint-TP
test with a particular depth function: the integrated Tukey depth (IntegrTukey), the inte-
grated simplicial depth (IntegrSimplicial), the integrated modified simplicial depth (Integr-
SimplicialMod), the h-depth with h = 1 (h-const), the h-depth with data-adaptively chosen
h (h-adaptive), the spatial depth (Spatial), the lens metric depth (LensMetric), the random
Tukey depth based on two random projections (RandomTukey) and the random projection
depth based on ten random projections (RandomProjection).
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Fig 8. Shape difference alternative: 10 horizontal curves following the distribution of St (grey)
and 10 dotted zigzag curves following the distribution of Tt (coloured).

Table 9

Rejection rates for the shape difference alternative with sample sizes m = n = 100 and
several depth functions: the integrated Tukey depth (IntegrTukey), the integrated simplicial
depth (IntegrSimplicial), the integrated modified simplicial depth (IntegrSimplicialMod), the
h-depth with h = 1 (h-const), the h-depth with data-adaptively chosen h (h-adaptive), the
spatial depth (Spatial), the lens metric depth (LensMetric), the random Tukey depth based
on two random projections (RandomTukey) and the random projection depth based on ten

random projections (RandomProjection).

Model: (St)t∈[0,1] against (Tt)t∈[0,1], m = n = 100

IntegrTukey 2.9%
IntegrSimplicial 46.2%
IntegrSimplicialMod 46.4%
h-const 56.8%
h-adaptive 100.0%
Spatial 100.0%
LensMetric 99.6%
RandomTukey 94.4%
RandomProjection 100.0%

C.3. LS-ellipsoidal statistic

Shi, Zhang and Fu [79] consider the following LS-ellipsoidal test

12 ·m · n
m + n

·
(
w

(
LS(P̂m, Q̂n) − 1

2

)2

+ (1 − w) ·
(
LS(Q̂n, P̂m) − 1

2

)2
)

(78)

with nonnegative weight 0 < w < 1. The null asymptotic of this class of test
statistic also follows immediately from Theorem 2.3. Figure 9 shows that the
corresponding non-rejection regions are ellipsoidal and reports the empirical size
in the situation as of Figure 2.

Clearly, the LS-ellipsoidal tests eliminate some of the blind spots of the asym-
metric LS-statistics given by the projections. The best elimination is obtained
for w = 1/2. In the other cases, the LS-ellipsoidal test has unnecessary blind
spots and a size problem due to its rejection region (see in particular (c) in
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Fig 9. The circles are 1000 realisations of the LS-tuple obtained with the univariate Tukey
depth and U(0, 1)-distributed observations, 100 in each sample, where the red dots (unlike the
green ones) are rejected by the respective variation of (78), where w1, w2 denote the chosen
weights. The numbers in the plots give the empirical rejection rates to both sides of the red
dashed main diagonal, while the shaded orange region shows the corresponding rejection region
of the corresponding variation of the LS-statistic.

Figure 2). For w = 1/2 the non-rejection region is the inscribed circle of the
non-rejection region of the Joint-TP test, eliminating some of the blind spots
closer to the triangle point but at the cost of a possibly too large rejection re-
gion closer to the dark blue dash-dotted secondary diagonal. While this is not
a problem for the example in Figure 2, in terms of the empirical size, in the sit-
uation of Model 3 (integrated Tukey depth, m = n = 100 observations in each
sample) this leads to an enlarged empirical size of 8.8% as opposed to 5.2% for
the Joint-TP test (see Table 8).

Shi, Zhang and Fu [79] give extensive simulation studies concerned with the
empirical power of the LS-maximum test and the LS-ellipsoidal tests but do
not take the empirical size into account. As such it is not surprising that they
come to the conclusion that the LS-maximum test is preferable over the other
tests despite the fact that it does not hold the size to such an extend that it
should not be used in practice.

C.4. On the location of the LS-tuple

Under the null hypothesis, it holds LS(P̂m, P̂m) = 1/2, and thus, we expect the
LS-tuple to take its values close to the mid point of the unit square. Indeed,
Theorem 2.3 entails that the LS-tuple contracts asymptotically to the mid point
of the unit square under the null hypothesis. With most depth functions, our
simulations entailed that the LS-tuple takes only values below the secondary
diagonal of the unit square, but this is not always the case under both the null
and the alternative hypothesis.

Under the null hypothesis this is illustrated using the lens metric depth in
Figure 10. As the decision rule of the Joint-TP test holds for points outside
the lower triangle (the lighter coloured areas are part of the rejection region),
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Fig 10. For 1000 trials, it is plotted for m,n = 100 the LS-tuple (LS(P̂m, Q̂n),LS(Q̂n, P̂m))
with the lens metric depth. Green circles: P = Q = (Bt)t∈[0,1].

Fig 11. For 1000 trials, it is plotted for m,n = 100 the LS-tuple (LS(P̂m, Q̂n),LS(Q̂n, P̂m))
with the integrated Tukey depth. Green circles: P = Q = (Bt)t∈[0,1]. Blue triangles: P =
(Bt)t∈[0,1], Q = (Bt + 0.5)t∈[0,1]. Orange crosses: P = (Bt)t∈[0,1], Q = (Bt + 0.5)t∈[0,1].
Purple stars: P = (Bt)t∈[0,1], Q = (2 ·Bt + 1)t∈[0,1].

this effect does not affect the size of the Joint-TP test. In fact, Corollary 2.5
also allows to cut off the non-rejection region of the Joint-TP test above the
secondary diagonal in the same way as proposed below the secondary diagonal.
Under the alternative hypothesis, a similar effect occurs in Figure 11 (orange
crosses) with the integrated Tukey depth. Nevertheless, in our extensive simula-
tions we could not observe that the LS-tuple takes any values in the unit square
above the secondary diagonal that are far from this secondary diagonal. It is
worth mentioning that there exist special cases, for which the LS-tuple is guar-
anteed to take values below the secondary diagonal under the null hypothesis,
see Theorem 2.6.

Moreover, we want to point out that the value of the LS-tuple may help
to draw conclusions on the type of detected difference between the underlying
probability distributions P and Q without applying further testing procedures,
as illustrated in Figure 11: A location difference (blue triangles) leads to a shift
of the points alongside the red dashed main diagonal. A scale decrease (orange
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crosses) causes a shift downwards the dark blue dash-dotted secondary diago-
nal, while a scale increase causes a shift upwards this diagonal. A simultaneous
difference in location and scale (purple stars) leads to a shift alongside both di-
agonals. Moreover, the exact value of the LS-tuple gives a hint on which sample
lies deeper within the other one. Liu and Singh [52] originally proposed to make
use of their version of the test for scale increases (under simultaneous location
shifts). In future work, the above observations could also be used to construct
unbiased one-sided tests for scale differences (under simultaneous location shifts)
with better size behaviour by adapting the rejection regions correspondingly.

C.5. Comparison with the state-of-the-art in functional two-sample
tests

We compare three LS-tests based on the adaptive h-depth, the integrated sim-
plicial depth and the integrated Tukey depth with some other methods available
in the literature, namely:

(a) Two bootstrap-free ANOVA tests for detecting differences in the mean
of functional data. One of them is an F-type test based on a naive and
bias-reduced method of estimation [78, 89] and the other one is a glob-
alised version of the pointwise F-test [90]. Both are implemented in the
R-package ‘fdANOVA’ [40] and denoted as ‘FB’ respectively ‘GPF’ within
the function fanova.tests.

(b) A nonparametric two-sample test for functional data for detecting differ-
ences in the covariance operator based on PCA [36] and implemented in
the R-package ‘fChange’ [84] which not maintained on CRAN at the mo-
ment (name of the function: Cov_test). For our purposes, we consider this
test with five respectively ten principal components.

(c) A nonparametric two-sample test based on the energy distance for multi-
variate data [83] from the R-package ‘energy’ [70] (name of the function:
eqdist.etest). Note, that discretised functional data can be regarded as
multivariate data.

(d) A nonparametric ball divergence two-sample test for functional data [65]
implemented in the R-package ‘Ball’ [92]. The decision rule of this test is
based on the asymptotic behaviour of the test statistic. The name of the
function in the R-package is bd.test and the there included method ‘limit’
is used.

The R-code for the integrated depths is our own implementation in order to
unify the versions used for the simulations in this paper (for example, the R-
package ‘fda.usc’ makes use of other estimators for these depths and this has an
impact on the performance of the LS-test). For computing the depth functions,
we used own implementations that correspond to the definitions given in this
paper, as there exist different estimators for most depth functions with respect
to empirical probability measures which have an impact on the performance
of the Joint-TP test. The h-depth coincedes with the implementation from the
R-package ‘fda.usc’ [32].
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We run a simulation study with the set of alternatives provided in Section C.2.
The results are displayed in Figure 12. Obviously, the ANOVA-procedures (a)
– in particular the global one – that are designed for detecting differences in
the location generally have higher power than the other tests for this kind of
alternative (Figure 12, (a)–(f)), but they completely fail to detect scale differ-
ences (Figure 12, (g)–(i)). Even in the case of a simultaneous location-scale
difference, they are a good choice as long as the location difference dominates
(Figure 12, (j)–(l)). The PCA-based tests for differences in the covariance opera-
tor (b) cannot detect any location differences (Figure 12, (a)–(f)). For pure scale
differences, the LS-test with the data-adaptive h-depth shows similar or even
better performance than all the other tests. This is remarkable, as the PCA-
tests are particularly designed for detecting these kind of alternatives (Figure 12,
(g)–(i)). The nonparametric two-sample test for multivariate data (c) has high
power against differences in the location (Figure 12, (a)–(f)), but difficulties to
discriminate between alternatives in which only the scaling is different (Fig-
ure 12, (g)–(i)). The ball divergence statistic (d) has less power than the three
versions of the Joint-TP test when it comes to pure second order differences in
non-smooth or smooth data with less fluctuation (Figure 12, (g)–(i)).

In presence of location differences, it seems to perform better than the Joint-
TP tests with smooth data (Figure 12, (b)–(c) and (e)–(f)), but in contrast, with
non-smooth data the Joint-TP test with the integrated simplicial depth is more
sensitive (Figure 12, (a) and (d)). All in all, there exist alternatives in which
some of these test classes dominate all the other tests, in particular, if they were
designed for that particular type of alternatives. Overall, the Joint-TP test has
a competitive performance in particular with non-smooth raw data or for shifts
that are dominated by a difference in the second order structure.

C.6. Performance in the presence of an additive outlier

Depth functions are known for being robust and, indeed, the notion of functional
depth [61] does imply qualitative robustness. Functional data may contain dif-
ferent types of outlying trajectories, including magnitude and/or shape outliers
[3]. While, generally, lower depth values correspond to potential outliers, not
all types of outliers will get low depth values and which types these are de-
pends on the depth function. As the LS-test is based on depth functions it
is of interest to investigate its performance in the presence of outliers. We do
this in comparison to the two ANOVA-methods that were also considered in
the previous section. Here, we concentrate on magnitude outliers generated by
adding a constant function of value +50 to a given curve; and refer them as
additive outliers. These additive outliers can be expected to have a low depth
value with respect to all considered depth functions and will also be outlying
for the ANOVA procedures.

More precisely, we consider the following scenarios with 100 observations in
each of the two samples in each case.

(a) Null hypothesis without outliers: (Bt)t∈[0,1] against (Bt)t∈[0,1].
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Fig 12. Power-plots (sample sizes: m = n = 100) for several alternatives depending on the
parameter a (on the horizontal axis). Each curve represents the behaviour of a particular
test. LS-IntegrTukey, LS-IntegrSimplicial and LS-h-adaptive stand for the Joint-TP test
with the integrated Tukey, the integrated simplicial and the data-adaptively h-depth. Ball-
Divergence is a functional nonparametric two-sample test, EnergyMultivariate a multivariate
nonparametric two-sample test (that can be also applied to functional data on a time grid),
ANOVAGeneric as well as ANOVAGlobal are ANOVA-tests for functional data, and Fremdt-
PCA5 respectively FremdtPCA10 are two versions of a PCA-based test (with 5 respectively
10 principal components) for detecting scale differences.
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(b) Null hypothesis with additive outlier in both samples:
(Bt)t∈[0,1] against (Bt)t∈[0,1], where the first observation in each of the
samples was shifted by +50.

(c) Null hypothesis with additive outlier in one sample:
(Bt)t∈[0,1] against (Bt)t∈[0,1], where the first observation in the first sample
was shifted by +50.

(d) Alternative hypothesis without outliers: (Bt)t∈[0,1] against (Bt+0.25)t∈[0,1].
(e) Alternative hypothesis with additive outlier in both samples:

(Bt)t∈[0,1] against (Bt + 0.25)t∈[0,1], where the first observation in each of
the samples was shifted by +50.

(f) Alternative hypothesis with additive outlier in the sample with lower mean:
(Bt)t∈[0,1] against (Bt +0.25)t∈[0,1], where the first observation in the first
sample was shifted by +50.

(g) Alternative hypothesis with additive outlier in the sample with higher mean:
(Bt)t∈[0,1] against (Bt + 0.25)t∈[0,1], where the first observation in the
second sample was shifted by +50.

Table 10

Empirical rejection rates for the scenarios (a)–(g), where (a) and (d) do not contain any
outliers.

Null hypotheses Alternative hypotheses
(a) (b) (c) (d) (e) (f) (g)

LS-IntegrTukey 4.9% 4.1% 4.4% 55.3% 51.9% 48.6% 56.9%
LS-IntegrSimplicial 4.3% 3.5% 3.7% 95.6% 95.1% 93.9% 95.9%
LS-h-adaptive 4.5% 3.4% 3.6% 18.3% 16.6% 17.7% 17.8%
ANOVAGeneric 4.8% 0.0% 0.0% 84.9% 0.0% 0.0% 100.0%
ANOVAGlobal 5.2% 0.0% 0.0% 100.0% 0.0% 0.0% 100.0%

The empirical rejection rates at nominal level α = 0.05 based on 1000 repe-
titions of each scenario are given in Table 10. The empirical size of the ANOVA
procedures breaks down to 0, if either both or only one of the samples contain
such an outlier, while the LS-tests become only slightly more conservative. Sim-
ilarly, under the alternatives, the ANOVA procedures are not robust towards
outliers, in the sense that their empirical power breaks down to 0, unless the
additive outlier works in the same direction as the level shift of the alternative
(Scenario (g)). On the other hand, the LS-tests have a comparable empirical
power through all alternatives.

If not only one but five outliers are added to both samples in an analogous
fashion, the LS-tests become more conservative with rejection rates of 2.4% for
LS-Tukey, 2.0% for LS-Simplicial, 2.1% for LS-h-adaptive and – as before –
0 for both of the ANOVA-procedures. The picture changes if only one of the
two samples contains five outliers of this type. In that case, the ANOVA-based
tests reject in 100% of the cases, while the LS-tests become unbiased with re-
jection rates of 6.7% for LS-Simplicial, 7.2% for LS-h-adaptive and 8.1% for
LS-Tukey. This effect is not surprising given that all tests search for distribu-
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Fig 13. Five temperature curves from the dataset of the year 2021.

tional differences in the two samples: If only one of the two samples contains
several additive outliers, the distributions of both samples do indeed differ. Nev-
ertheless, the LS-tests are much less affected by this than the ANOVA-based
tests.

C.7. Analysis of ocean drifter temperature data containing curves
not observed over the whole grid domain

Commonly, functional data are not observed over an equally spaced dense grid.
For instance, a curve can be observed over a grid domain with sparse and dense
regions or it could be observed only on a few grid points, which may or may not
be concentrated on certain regions of the domain.

As a proof of concept, we apply our methodology again to the ocean drifter
data as in Section 4.2 of the main paper but extended by additional curves that
are not observed over the whole grid domain. Following Elías et al. [31], we
make use of empirical integrated depth functions that restrict the integration to
the observed domains. However, we do not check whether such empirical depth
functions fulfil our assumptions.

More precisely, in addition to all fully observed curves used in Section 4.2
of the main paper, we include all data from drifters that were in the relevant
region at January 1st of the respective year and label all data from time points
where the drifter was not in the relevant region as missing. Typically, these
curves are densely observed for certain periods of the year with other periods
where the observations are missing. In a few instances, there are only isolated
observations at certain times. Figure 13 plots five of these types of curves to
give an impression of the type of missingness.

The applied smoothing is as in Section 4.2 of the main paper, which results
in assigning NA to a whole day within the smoothed curve when the raw data
have a NA value that day. Smoothed curves that only contain NA-values are
removed. Depending on the year, incorporating the curves with missing obser-
vations significantly increases the number of included drifters by a factor of at
least two but sometimes even more than four.
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Table 11

p-values of the Joint-TP statistic with the integrated Tukey depth (IT) and the integrated
simplicial depth (IS). 2015 is considered as very strong El Niño year, 2018 is considered a

weak El Niño period and 2020–2021 is considered a moderate La Niña period.

Sample 1 Sample 2
2018 2020 2021
(470 curves) (389 curves) (309 curves)

2015 (470 curves) 0.227 · 10−4 (IT) 0.332 · 10−3 (IT) 0.446 · 10−8 (IT)
0.205 · 10−4 (IS) 0.297 · 10−3 (IS) 0.416 · 10−8 (IS)

2018 (470 curves) 0.880 (IT) 0.030 (IT)
0.787 (IS) 0.039 (IS)

2020 (389 curves) 0.063 (IT)
0.087 (IS)

Table 12

p-values of the Joint-TP statistic with the integrated Tukey depth (IT) and the integrated
simplicial depth (IS): 2011–2012 as well as 2020–2021 are considered as moderate La Niña

periods. In 2002 a moderate El Niño occured.

Sample 1 Sample 2
2002 (325 curves) Pooled 2011–2012 (640 curves)

Pooled 2020–2021 (698 curves) 0.015 (IT) 0.085 (IT)
0.011 (IS) 0.047 (IS)

Table 11 is the analogue to Table 1 in the main paper, while Table 12 is
the analogue to Table 2. All previously significant tests are still significant with
decreased p-value, sometimes by magnitudes of order which we believe to be due
to the largely increased sample size despite the fact that the additional data are
only partially observed. Additionally, it appears, that the weak El Niño year of
2018 may be closer to the moderate La Niña period of 2020 than that of 2021,
which was not indicated by the analysis with only the curves observed over the
whole grid domain. This is consistent with the fact that 2020 was still relatively
warm at the beginning of the year where most of the partial curves are observed,
compare with the Oceanic Niño index as given in [64].
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