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1. Introduction

Consider a binary classification setup with a vector of features X ∈ R
d and the

outcome class label Y |(X = x) ∼ B(1, p(x)), where p(x) = P (Y = 1|X = x).
The quality of a classifier η : Rd → {0, 1} is quantified by its misclassification
error R(η) = P (Y �= η(X)) and the optimal Bayes classifier is η∗(x) = I{p(x) ≥
1/2}. However, the conditional probability p(x) is typically unknown. One then
estimates it from the data D = (X1, Y1), . . . , (Xn, Yn) by some p̂(x) and designs
a plug-in classifier η̂ = I{p̂(x) ≥ 1/2} with the conditional risk R(η̂) = P (Y �=
η̂(X)|D). The goodness of η̂ is measured by the misclassification excess risk
E(η̂, η∗) = ER(η̂)−R(η∗), where the expectation is w.r.t. the distribution of D.

Probably the most commonly used model for p(x) is logistic regression, where
it is assumed that the log-odds (logit)

g(x) = ln p(x)
1 − p(x) = βTx (1.1)

and β ∈ R
d is a vector of (unknown) regression coefficients. The corresponding

Bayes (linear) classifier for the model (1.1) is η∗(x) = I{βTx ≥ 0}. Assuming
d < n and estimating β by the maximum likelihood estimator (MLE) β̂ yields
the plug-in classifier η̂L(x) = I{β̂

T
x ≥ 0}. Logistic regression classification

has been well-studied and is one of the main tools used by practitioners. In
particular, it is well-known known that E(η̂L, η∗) ∼

√
d/n which is rate-optimal

(in the minimax sense) over all linear classifiers (see, e.g. [1]).
Yet, a linear model for g(x) in (1.1) might be too restrictive and oversim-

plified in a variety of applications. Nonparametric models allow one more flexi-
bility by assuming much more general assumptions on g(x). One can use then
various nonparametric techniques (e.g., kernel estimators, local polynomial re-
gression, orthogonal series or nearest neighbours) to estimate the unknown p(x)
(or, equivalently, g(x)) and define a nonparametric plug-in classifier η̂N (x) =
I{p̂(x) ≥ 1/2}. [26] showed that with the properly chosen tuning parameters,
η̂N (x) achieves the minimax rates across various smoothness classes. Thus, as-
suming that the unknown p(x) has a smoothness s, E(η̂N , η∗) = O(n− s

2s+d ).
A general nonparametric classifier η̂N suffers, however, from a “curse of di-

mensionality” problem, where the convergence rates rapidly slow down as d
increases and the required sample size for consistent classification grows expo-
nentially with d. To handle it one needs some additional assumptions on the
model.

Note that classification is particularly challenging near the decision boundary
{x : p(x) = 1/2} or, equivalenlty, {x : g(x) = 0}, where it is especially hard to
predict the class label accurately, while at points far from the boundary, it is
easier. Thus, assume that for all 0 < h < h∗, P (|p(X) − 1/2| ≤ h) ≤ Chα for
some C > 0, α ≥ 0 and 0 < h∗ < 1/2 known as the margin or low-noise condition
[23]. The case α = 0 essentially corresponds to no assumption, while the second
extreme case α = ∞ implies the existence of a hard margin of size h∗ separating
between two classes. [3] showed that under the above margin assumption, the
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rates of misclassification excess risk of η̂N can be indeed improved. Assuming
again that p(x) has a smoothness s, under some mild conditions on the marginal
distribution PX of X, the rate for the misclassification excess risk becomes of
the order n− s(1+α)

(2+α)s+d approaching the parametric rate n−1 as α → ∞. It can
even be reduced further under stronger assumptions on PX ([3]).

Although the margin assumption improves the convergence rates, it provides
only a partial solution to the curse of dimensionality problem since computa-
tional burden for fitting a general nonparametric classifier remains prohibitive
even for relatively small and moderate d. In addition, it is difficult to interpret
such a model, to perform feature selection, etc.

To overcome these challenges one needs additional structural assumptions
on the model. A common approach is to consider (generalized) additive models
(GAM)([11]). In particular, for logistic regression, assume that

g(x) = μ +
d∑

j=1
gj(xj), (1.2)

where gj(·)’s are univariate “smooth” functions. To make the model (1.2) iden-
tifiable impose Egj(Xj) = 0 for all j = 1, . . . , d. The GAM (1.2) is a natural
nonparametric generalization of the linear logistic regression model (1.1). Ad-
ditive models have become a standard tool in high-dimensional nonparametric
regression and classification, and can be efficiently fitted by the backfitting al-
gorithm [11]. Additivity assumption drastically improves the convergence rates
of the resulting classifier η̂A. Thus, adapting the results of [26] and [19] one
can show that E(η̂A, η∗) = O(

√
d n− s

2s+1 ) if all univariate components gj are of

smoothness s, or, more generally, E(η̂A, η∗) = O

(√∑d
j=1 n

− 2sj
2sj+1

)
if gj are of

different smoothness.
Nevertheless, in the era of “Big Data”, the number of features d might be

very large and even larger that the sample size n (large d, small n setups).
The GAM (1.2) requires d 
 n and cannot cope with a curse of dimensionality
in this case. Reducing dimensionality of a feature space by selecting a sparse
subset of significant active features becomes essential. Thus, consider a sparse
generalized additive model (SpAM) assuming that

g(x) = μ +
∑
j∈J

gj(xj), (1.3)

where J ⊆ {1, . . . , d} is an (unknown) subset of active features of cardinality
|J | = d0 that have a “significant” impact on the outcome. We are mainly
interested in sparse setups, where d0 
 min(d, n).

SpAMs have been intensively studied in the context of nonparametric regres-
sion w.r.t. the quadratic risk, where a common approach is based on penalized
least squares estimation with different combinations of sparsity-induced and reg-
ularized smoothness convex penalties. See, e.g., [16, 17, 21, 13, 19, 2] for various
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SpAM regression estimators and their properties. Their comparison is discussed
in [2] and [10]. [13] and [10] extended this approach to more general convex losses
relevant, in particular, for the considered logistic regression model. However,
their estimators are not adaptive to the (usually unknown) smoothness of gj ’s.

Classification by sparse linear logistic regression was studied in [1]. They
showed that the corresponding minimax misclassification excess risk is of the
order

√
d0 ln(de/d0)/n and designed penalized MLE classifiers that achieve it.

In this paper we investigate (nonparametric) SpAM classifiers. We propose
a SpAM estimator of g in (1.3) defined in the Fourier/wavelet domain w.r.t.
the penalized logistic loss with sparse group Lasso or more general sparse group
Slope penalties on the Fourier/wavelet coefficients. The estimator and the re-
sulting plug-in classifier are inherently adaptive to the unknown sparsity and
smoothness classes. We establish the minimax rates for the misclassification
excess risk for SpAMs across analytic, Sobolev and Besov classes of functions
and show that there is a phase transition between sparse and dense SpAMs.
In particular, if gj , j ∈ J has a smoothness sj , the minimax misclassificitaion

excess risk is of the order max
(√

d0 ln(de/d0)
n ,

√∑
j∈J n

− 2sj
2sj+1

)
. We prove that

with a proper choice of tuning parameters and under certain restricted sparse
group eigenvalue condition, the sparse group Lasso/Slope SpAM classifiers η̂sgL
and η̂sgS are simultaneously nearly-minimax (up to log-factors) across the entire
range of those classes.

The rest of the paper is organized as follows. Section 2 presents the SpAM
model for classification and defines sparse group Lasso and Slope classifiers. In
Section 3 we establish the minimaxity of the proposed SpAM classifiers across
Sobolev, analytic and Besov classes. Their performance is illustrated on a simu-
lated and a real-data examples in Section 4. All the proofs are given in Appendix.

2. SpAM classifier

Consider a sparse additive logistic regression model:

Y |(X = x) ∼ B(1, p(x)), (2.1)

where X ∈ R
d is a vector of linearly independent features with a marginal

probability distribution PX on a bounded support X . Without loss of generality
assume that X ⊆ [0, 1]d. The logit function g(x) = ln p(x)

1−p(x) ∈ L2(X ) has a
sparse additive form (1.3), where gj lies in some class of functions Fj on the unit
interval (e.g., Sobolev Hsj [0, 1] or more general Besov B

sj
pj ,qj [0, 1]), Egj(Xj) = 0

and the subset of active features J is a priori unknown.
Expand the unknown univariate functions gj , j = 1, . . . , d in some orthonor-

mal basis {ψ�}∞l=0 in Fj as

gj(xj) =
∞∑
�=0

βj�ψ�(xj),
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where βj� =
∫
gj(xj)ψ�(xj)dxj . For simplicity of exposition we consider the

same basis for all gj ’s. Due to the identifiability conditions Egj(Xj) = 0, so we
consider βj0 = 0 for all j. By Parseval’s identity ||gj ||2L2[0,1] =

∑∞
l=1 |βj�|2 and

||g||2L2[0,1]d = μ2 +
∑d

j=1
∑∞

l=1 |βj�|2.
Estimate the unknown coefficients βj� from the data sample (Xi, Yi), i =

1, . . . , n. Obviously, for all j = 1, . . . , d, we set β̂j� = 0 for all � > n. To estimate
βj� for 1 ≤ � ≤ n consider additive truncated estimators of the form

g̃n(x) = μ̃ +
d∑

j=1

n∑
�=1

β̃j�ψ�(xj)

and the logistic loss

�(Y, g̃n(X)) = ln (1 + exp(g̃n(X))) − g̃n(X)Y

= ln
(
1 + exp

(
μ̃ + tr(Ψ(X)T B̃)

))
−
(
μ̃ + tr(Ψ(X)T B̃)

)
Y,

(2.2)

where B̃ ∈ R
d×n is the regression coefficients matrix and Ψ(X) ∈ R

d×n is the
matrix with entries Ψj�(X) = ψ�(Xj).

Let B ∈ R
d×n be the matrix with the true (unknown) regression coefficients

βj�, j = 1, . . . , d; � = 1, . . . n. Sparse representation of g and smoothness prop-
erties of gj ’s in (1.3) are directly expressed in terms of B. Evidently, B has
zero rows for all j /∈ J . In addition, if the chosen basis {ψ�}∞l=0 allows sparse
representation of gj , j ∈ J , such that they can be well-approximated by a small
number of basis functions, then the decreasingly ordered |β|j(�) tend rapidly to
zero as � increases for j ∈ J . These arguments induce a double row-wise spar-
sity structure of B: it has only d0 non-zero rows (global row-wise sparsity) and
even those are “approximately sparse” in the sense that they have only a few
“large” entries (local row-wise approximate sparsity). To capture such type of
sparsity we consider a logistic sparse group Lasso estimator of B. Sparse group
Lasso was proposed in [22] for linear regression. Its logistic version was used in
multiclass classification by multinomial linear logistic regression in [25] and [14].
Within the considered SpAM binary classification setup we define the logistic
sparse group Lasso estimator B̂sgL of B as follows:

(B̂sgL, μ̂sgL) = arg min
B̃,μ̃

⎧⎨⎩ 1
n

n∑
i=1

�(Yi, g̃n(Xi)) + λ

d∑
j=1

|B̃j·|2 + κ

d∑
j=1

|B̃j·|1

⎫⎬⎭
= arg min

B̃,μ̃

{
1
n

n∑
i=1

(
ln
(
1 + exp

(
μ̃ + tr(Ψ(Xi)T B̃)

))

−
(
μ̃ + tr(Ψ(Xi)T B̃)

)
Yi

)
+ λ

d∑
j=1

|B̃j·|2 + κ

d∑
j=1

|B̃j·|1

⎫⎬⎭ ,

(2.3)
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where |B̃j·|2 and |B̃j·|1 are respectively the l2 and l1-norms of a j-th row of B̃,
and λ > 0 and κ > 0 are tuning parameters.

The corresponding estimator

ĝsgL(x) = μ̂sgL +
d∑

j=1

n∑
l=1

β̂sgLψ�(xj) (2.4)

and the resulting logistic sparse group Lasso classifier

η̂sgL(x) = I{ĝsgL(x) ≥ 0}. (2.5)

A more flexible generalization of (2.3) is a logistic sparse group Slope estima-
tor that utilizes sorted norms in the penalty:

B̂sgS = arg min
B̃,μ̃

{
1
n

n∑
i=1

(
ln
(
1 + exp

(
μ̃ + tr(Ψ(Xi)T B̃)

))
−
(
μ̃ + tr(Ψ(Xi)T B̃)

)
Yi

)
+

d∑
j=1

λj |B|(j)2 +
d∑

j=1

n∑
�=1

κ�|B̃|j(�)

⎫⎬⎭ ,

(2.6)

where with some ambiguity of notations |B̃|(1)2 ≥ . . . ≥ |B̃|(d)2 are the descend-
ingly ordered l2-norms of the rows of B̃, |B̃|j(1) ≥ . . . ≥ |B̃|j(n) are the descend-
ingly ordered absolute values of entries of its j-row, and λ1 ≥ . . . ≥ λd > 0 and
κ1 ≥ . . . ≥ κn > 0 are sequences of tuning parameters. Evidently, B̂sgL is a
particular case of B̂sgS with equal λj ’s and κ�’s.

Similarly to sparse group Lasso classification, we consider

ĝsgS(x) = μ̂sgS +
d∑

j=1

n∑
l=1

β̂sgSψ�(xj)

and the corresponding sparse group Slope classifier

η̂sgS(x) = I{ĝsgS(x) ≥ 0}. (2.7)

3. Minimaxity across various function classes

We now show that with the proper choice of tuning parameters the proposed
logistic sparse group Lasso and Slope classifiers are adaptively nearly-minimax
(up to log-factors) across various classes of functions Fj for gj ’s in (1.3).

As usual with convex penalization, one needs some (mild) assumptions on
the design. Consider a truncated version gn of g:

gn(x) = μ +
d∑

j=1

n∑
�=1

βj�ψ�(xj).
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Let random vectors Ψ(Xj) = (ψ1(Xj), . . . , ψn(Xj))T , j = 1, . . . , d be the rows
of the matrix Ψ(X) and define the cross-covariance matrices

Vjk = EX(Ψ(Xj)Ψ(Xk)T ).

By simple algebra, ∫
gn(x)2dPX = μ2 +

d∑
j=1

d∑
k=1

Bj·VjkB
T
k·.

For a given 1 ≤ d0 ≤ d, denote a vector of integers m = (m1, . . . ,md0) ∈ R
d0

with mj ∈ {1, . . . , n}.
Assumption 3.1. (WRE(d0,m, c0)-condition). Given non-increasing sequences
{λj}dj=1 and {κ�}n�=1, consider the cone of matrices

S(d0,m, c0) =

⎧⎨⎩A ∈ R
d×n : ||A||λ,κ ≤ c0

⎛⎝
√√√√ d0∑

j=1
λ2
j +

√√√√ d0∑
j=1

mj∑
�=1

κ2
�

⎞⎠ ||A||F

⎫⎬⎭ ,

where ||A||λ,κ =
∑d

j=1 λj |A|(j)2+
∑d

j=1
∑n

�=1 κ�|A|j(�) is the sparse group Slope
norm of A and ||A||F is its Frobenius norm, and assume that

νgS(d0) = inf
A∈S(d0,m,c0)\{0n×d}

∑d
j=1

∑d
k=1 Aj·VjkA

T
k·

||A||2F
> 0.

The weighted restricted eigenvalue (WRE) condition 3.1 is an extension of the
WRE condition introduced for Slope in [4] to sparse group Slope and random
design. Such type of assumption is common for convex penalties (see [4] for
discussion). In particular, for isotropic X, due to orthogonality of the basis,
Vjj = In and Vjk = 0n×n for j �= k. Thus,

∑d
j=1

∑d
k=1 Aj·VjkA

T
k· = ||A||2F and

Assumption 3.1 is trivially satisfied.
Evidently, for sparse group Lasso with constant λ and κ

S(d0,m, c0) =
{
A ∈ R

d×n :λ
d∑

j=1
|Aj·|2 + κ

n∑
j=1

|Aj·|1 ≤

c0

⎛⎝λ
√

d0 + κ

√√√√ d0∑
j=1

mj

⎞⎠ ||A||F

⎫⎬⎭ .

3.1. Sobolev classes

Consider the orthonormal cosine series ψ0(xj) = 1, ψ�(xj) =
√

2 cos(π�xj), � =
1, 2, . . . and let βj� =

√
2
∫ 1
0 gj(t) cos(π�t)dt be the cosine Fourier coefficients of

gj .
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Suppose that gj belongs to a periodic Sobolev class
H̃sj [0, 1] =

{
gj :

∑∞
�=0 �

2sjβ2
j� ≤ Rj , sj >

1
2

}
. In particular, for an integer sj it

is equivalent to{
gj :

∫ 1

0

(
g
(sj)
j (t)

)2
dt ≤ Rj , g

(m)
j (0) = g

(m)
j (1) = 0, m = 1, . . . , sj − 1

}
(e.g., [24], Section 1.7.1).

Consider a set of sparse additive functions

G
H̃

(d0, s) =

⎧⎨⎩g(x) ∈ L2(X ) : g(x) = μ +
∑
j∈J

gj(xj), |J | ≤ d0,

gj ∈ H̃sj [0, 1], j ∈ J , Egj(Xj) = 0
}

and the corresponding set of logistic SpAM classifiers

C
H̃

(d0, s) =
{
η(x) = I{g(x) ≥ 0} : g(x) ∈ G

H̃
(d0, s)

}
.

The following theorem establishes the upper bounds for the misclassification
excess risk for logistic sparse group Lasso and Slope classifiers over periodic
Sobolev classes:

Theorem 3.2. Consider the SpAM (1.1)-(1.3), where g ∈ G
H̃

(d0, s), and as-
sume WRE(d0,m, c0)-condition 3.1 with mj = n

1
2sj+1 , j = 1, . . . , d0 and c0

that can be derived from the proof.

1. Apply the sparse group Lasso classifier (2.5) with λ = C1

√
ln d
n and κ =

C2

√
lnn
n for some C1, C2 > 0 that can be derived from the proof. Then,

sup
η∗∈C

H̃
(d0,s)

E(η̂sgL, η∗) ≤ C

√√√√√ 1
νsg(d0)

⎛⎝d0 ln d

n
+ lnn

∑
j∈J

n
− 2sj

2sj+1

⎞⎠
for some C > 0.

2. Apply the sparse group Slope classifier (2.7) with λj = C1

√
ln(de/j)

n , j =

1, . . . , d and κ� = C2

√
ln(ne/�)

n , � = 1, . . . , n. Then,

sup
η∗∈C

H̃
(d0,s)

E(η̂sgS , η∗) ≤ C

√√√√√ 1
νsg(d0)

⎛⎝d0 ln
(

de
d0

)
n

+ lnn
∑
j∈J

n
− 2sj

2sj+1

⎞⎠.

The proposed SpAM classifiers are inherently adaptive to a sparsity parame-
ter d0, a set of active features J and smoothness parameters sj ’s. Theorem 3.2
implies that a more flexible Slope-type penalty allows one to reduce the log-
factor in the first term of the upper bounds. We now show that the upper
bounds in Theorem 3.2 are nearly-minimax (up to log-factors) over C

H̃
(d0, s):
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Theorem 3.3. Consider the SpAM (1.1)-(1.3), where d0 ln(ded0
) ≤ n and g ∈

G
H̃

(d0, s). Then,

inf
η̃

sup
η∗∈C

H̃
(d0,s),PX

E(η̃, η∗) ≥ C̃

√√√√√d0 ln
(

de
d0

)
n

+
∑
j∈J

n
− 2sj

2sj+1

for some C̃ > 0, where the infimum is taken over all classifiers η̃ based on the
data (X1, Y1), . . . , (Xn, Yn).

The obtained misclassification excess risk bounds contain two terms and
indicate on a phase transition between sparse and dense SpAMs. The term
d0 ln(de/d0)

n ∼ 1
n ln

(
d
d0

)
corresponds to the error of selecting d0 nonzero univari-

ate components gj ’s out of d and is common for model selection. The term∑
j∈J n

− 2sj
2sj+1 is due to simultaneous nonparametric estimating d0 functions

gj ∈ H̃sj ([0, 1]). Assume for simplicity that sj = s for all j ∈ J , so that the
second term becomes d0n

− 2s
2s+1 . One then immediately realizes that the model

selection error is dominating for sparse cases, where d0
d � e−n

1
2s+1 , while for less

sparse cases nonparametric estimation is the main error source. A similar phase
transition phenomenon for sparse linear classification was shown in [1].

It can be shown that the exact minimax risk (without the extra lnn-factor)
can be achieved by the penalized SpAM estimator of [10] applied to the classi-
fication setup. However, it is not adaptive to smoothness, as both penalties and
optimal values of the smoothing parameters depend on sj ’s. For a particular
case of design on a regular lattice, [2] proposed an adaptive SpAM estimator
based on a certain complexity penalty on the number of nonzero rows of B and
the numbers of their nonzero entries, with the exact minimax risk within the
Gaussian additive models framework. In fact, sparse group Lasso/Slope can be
viewed as a convex surrogate of their complexity penalty. We conjecture that
under certain conditions the results of [2] can be extended to a general design
and the logistic loss, but the use of a complexity penalty will make it computa-
tionally infeasible in this case.

3.2. Analytic functions

Assume now that gj ’s are very smooth, where gj belongs to a class of analytic
functions Aαj [0, 1] =

{
gj :

∑∞
�=0 e

2αj�β2
j� ≤ Rj , αj > 0

}
. Such functions admit

analytic continuation into a band of width αj of the complex plane (e.g., [9])
and, in particular, are infinitely differentiable.

Define a set of functions

GA(d0,α) =

⎧⎨⎩g(x) ∈ L2(X ) : g(x) = μ +
∑
j∈J

gj(xj), |J | ≤ d0,

gj ∈ Aαj [0, 1], j ∈ J , Egj(Xj) = 0}
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and the corresponding set of SpAM classifiers

CA(d0,α) = {η(x) = I{g(x) ≥ 0} : g(x) ∈ GA(d0,α)} .

We now show that the logistic sparse group Lasso classifier η̂sgL in (2.5)
applied to the Fourier cosine coefficients βj�’s with the same choice for tuning
parameters as in Theorem 3.2 for Sobolev classes is also nearly-minimax over
CA(d0,α), while the logistic sparse group Slope classifier η̂sgS in (2.7) achieves
the exact minimax rate for these classes.

Theorem 3.4. Consider the SpAM (1.1)-(1.3), where g ∈ GA(d0,α), and as-
sume WRE(d0,m, c0)-condition 3.1 with mj = 1

2αj
ln
(

n
lnn

)
, j = 1, . . . , d0 and

c0 that can be derived from the proof.

1. Apply the sparse group Lasso classifier (2.5) with λ = C1

√
ln d
n and κ =

C2

√
lnn
n for some C1, C2 > 0 that can be derived from the proof. Then,

sup
η∗∈CA(d0,α)

E(η̂sgL, η∗) ≤ C

√√√√√ 1
νsg(d0)

⎛⎝d0 ln d

n
+
∑
j∈J

1
αj

lnn

n

⎞⎠
for some C > 0.

2. Apply the sparse group Slope classifier (2.7) with λj = C1

√
ln(de/j)

n , j =

1, . . . , d and κ� = C2

√
ln(ne/�)

n , � = 1, . . . , n. Then,

sup
η∗∈CA(d0,α)

E(η̂sgS , η∗) ≤ C

√√√√√ 1
νsg(d0)

⎛⎝d0 ln
(

de
d0

)
n

+
∑
j∈J

1
αj

lnn

n

⎞⎠.

Theorem 3.5. Consider the SpAM (1.1)-(1.3), where d0 ln(ded0
) ≤ n and g ∈

A(d0,α). Then,

inf
η̃

sup
η∗∈C

H̃
(d0,α),PX

E(η̃, η∗) ≥ C̃

√√√√√d0 ln
(

de
d0

)
n

+
∑
j∈J

1
αj

lnn

n

for some C̃ > 0.

Similar to Sobolev classes there is the phase transition phenomenon for the
misclassification excess risk. Assuming for simplicity equal αj = α, the model
selection error term d0 ln(de/d0)

n dominates for sparse cases where d0
d � n− 1

α .

3.3. Besov classes

Consider now more general Besov classes Bs
p,q of functions. The precise formal

definition of Besov spaces can be found, e.g. in [18]. On the intuitive level, (not
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necessarily integer) s measures the number of function’s derivatives, where their
existence is required in the Lp-sense, while q provides a further finer gradation.
The Besov spaces include, in particular, the traditional Sobolev Hs and Hölder
Cs classes of smooth functions (Bs

2,2 and Bs
∞,∞ respectively) but also various

classes of spatially inhomogeneous functions like functions of bounded variation,
sandwiched between B1

1,1 and B1
1,∞ ([18, 8]).

Besov classes can be equivalently characterized by coefficients of function’s
expansion in orthonormal wavelet series. Given a compactly supported scaling
function φ of regularity r and the corresponding mother wavelet ψ, one generates
an orthonormal wavelet basis on the unit interval with ψhk(t) = 2h/2ψ(2ht −
k), h ≥ 0, k = 0, . . . , 2h − 1 (see [6]). Assume that gj ∈ B

sj
pj ,qj [0, 1], 1 ≤

pj , qj ≤ ∞, ( 1
pj

− 1
2 )+ < sj < r and let βj,hk =

∫ 1
0 gj(t)ψhk(t)dt be its wavelet

coefficients. Then,

∞∑
h=0

⎛⎜⎝2h(sj+1/2−1/pj)

⎛⎝2h−1∑
k=0

|βj,hj |pj

⎞⎠1/pj
⎞⎟⎠

qj

≤ Rj (3.1)

with lpj and/or lqj norms in (3.1) being replaced by the corresponding l∞-norms
for pj = ∞ and/or qj = ∞ (e.g., [18, 8]).

Moreover, let � = 2h+k, h ≥ 0, 0 ≤ k ≤ 2h−1 and re-write the triple-indexed
wavelet coefficients βj,hk in terms of double-indexed βj�. Then,

|β|j(�) ≤ C�−(sj+1/2) (3.2)
([7], Lemma 2).

Define the set of sparse additive functions

GB(d0, s,p,q) =

⎧⎨⎩g(x) ∈ L2(X ) : g(x) = μ +
∑
j∈J

gj(xj) ≥ 0}, |J | ≤ d0,

gj ∈ Bsj
pj ,qj [0, 1], j ∈ J , Egj(Xj) = 0

}
,

where 1 ≤ pj , qj ≤ ∞, ( 1
pj

− 1
2 )+ < sj < r for all j ∈ J , and the corresponding

set of SpAM classifiers
CB(d0, s,p,q) = {η(x) = I{g(x) ≥ 0} : g(x) ∈ GB(d0, s,p,q)} .

Theorem 3.6. Consider the SpAM (1.1)-(1.3), where g ∈ GB(d0, s,p,q), and
assume WRE(d0,m, c0)-condition 3.1 with mj = n

1
2sj+1 , j = 1, . . . , d0 and c0

that can be derived from the proof.

1. Apply the sparse group Lasso classifier (2.5) with λ = C1

√
ln d
n and κ =

C2

√
lnn
n for some C1, C2 > 0 that can be derived from the proof. Then,

sup
η∗∈CB(d0,s,p,q)

E(η̂sgL, η∗) ≤ C

√√√√√ 1
νsg(d0)

⎛⎝d0 ln d

n
+ lnn

∑
j∈J

n
− 2sj

2sj+1

⎞⎠
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for some C > 0.
2. Apply the sparse group Slope classifier (2.7) with λj = C1

√
ln(de/j)

n , j =

1, . . . , d and κ� = C2

√
ln(ne/�)

n , � = 1, . . . , n. Then,

sup
η∗∈CB(d0,s,p,q)

E(η̂sgS , η∗) ≤ C

√√√√√ 1
νsg(d0)

⎛⎝d0 ln
(

de
d0

)
n

+ lnn
∑
j∈J

n
− 2sj

2sj+1

⎞⎠.

Theorem 3.7. Consider the SpAM (1.1)-(1.3), where d0 ln(ded0
) ≤ n and g ∈

GB(d0, s). Then,

inf
η̃

sup
η∗∈CB(d0,s,p,q),PX

E(η̃, η∗) ≥ C̃

√√√√√d0 ln
(

de
d0

)
n

+
∑
j∈J

n
− 2sj

2sj+1

for some C̃ > 0.

Thus, sparse group Lasso and Slope wavelet-based SpAM classifiers with the
tuning parameters from Theorem 3.6 are simultaneously nearly-optimal (up to
log-factors) across the entire range of Besov classes including smooth and non-
smooth functions.

4. Examples

In this section we present experimental results for the developed SpAM classi-
fiers applied to both simulated and real data. Solving numerically (2.3) and (2.6)
implies convex programming and various methods can be used. We could not
find an available software for fitting logistic sparse group Slope and therefore
tested Lasso-type classifiers. In particular, we adapted the R package sparsegl
from CRAN based on the group-wise majorization-minimization algorithm (see
[15] for details)1. Vanilla Lasso and group Lasso were fitted as particular cases
corresponding respectively to λ = 0 and κ = 0 in (2.3).

4.1. Simulations

We generated n random samples of feature vectors Xi = (Xi1, . . . , Xid)T ∈ R
d

according to
Xij = Wij + Ui

2 , j = 1, . . . , d; i = 1, . . . , n,

where Wij and Ui are i.i.d. U [0, 1]. Such a design results in correlations 0.5
between all features. We considered a SpAM with a logit function

g(X) = g1(X1) + g2(X2) + g3(X3),
1Note that the tuning parameters λ and κ of sprase group Lasso are defined slightly

different in sparsegl.
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where

g1(x1) = |x1 − 0.6|, g2(x2) = (2x2 − 1)2, g3(x3) = sin(2πx3)
2 − sin(2πx3)

while other additive components are identically zero. The resulting vectors
g1(X1), g2(X2), g3(X3) ∈ R

n were centred and scaled to have unit Euclidean
norm. For a generated Xi, the class label Yi was sampled from a Bernoulli
distribution B(1, p(Xi)), i = 1, . . . , n with p(Xi) = eg(Xi)

1+eg(Xi)
. We tried all com-

binations of d = 10, 30, 100 and n = 30, 100, 300, 1000 including, in particular,
cases with d � n.

We used cosine series basis, and applied Lasso, group Lasso and sparse group
Lasso (2.3) to find ĝsgL in (2.4). The tuning parameters were chosen by 10-
fold cross-validation. The performance of the resulting SpAM classifiers (2.5)
was measured by misclassification excess risk to compare the misclassification
errors of the considered classifiers w.r.t. those of the Bayes (oracle) classifier
η∗(X) = I{g(X) ≥ 0} on the independently generated test sets of size 100. The
procedure was replicated 10 times for each combination of d and n.

Table 1 presents the misclassification excess risks on the test sets, the numbers
of selected features (nonzero rows of the regression coefficient matrix B) and
the overall numbers of selected coefficients (nonzero entries in B) averaged over
10 replications.

Table 1 demonstrates that a more flexible sparse group Lasso consistently
outperforms vanilla Lasso and group Lasso. Misclassification excess risks for all
methods converge to zero as n increases for all d. Group Lasso converges more
slowly and results in a larger number of selected coefficients, often leading to
zero training errors. This behavior can be explained by the method keeping all
coefficients of nonzero rows.

It should be mentioned that while Lasso-type methods perform well for pre-
diction, they may not be as successful in feature selection (support recovery)
for strongly correlated features which are common for high-dimensional data
(see, e.g., [5], Section 7.2). Thus, although in the vast majority of cases, all the
procedures correctly selected X1, X2 and X3, they often also included spuri-
ous features and coefficients especially for large d. Sparse group Lasso typically
selected less features.

4.2. Real-data example

To illustrate the performance of various Lasso-type classifiers on real data we
considered the well-known benchmark email spam example from Example 1 of
[12]. The data consists of 4601 real and spam email messages, where for each
email the outcome (mail or spam) and d = 57 numeric attributes including
relative frequencies of the most commonly occurring words and other email
characters are available. The goal is to design a classifier for automatic spam
detection based on this data.
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Table 1

Average misclassification excess risks for various Lasso-type SpAM classifiers. The average
numbers of selected features and of nonzero coefficients are given in parentheses.

n group Lasso Lasso sparse group Lasso
d=10

30 0.223 0.266 0.209
(3.7; 111) (2.4; 4.3) (3.6; 75.4)

100 0.213 0.200 0.187
(7.6; 760) (6.2; 16) (6; 213.4)

300 0.221 0.086 0.085
(8.9; 2670) (9.7; 45.1) (9.1; 108.9)

1000 0.154 0.079 0.049
(9.8; 9800) (9.8; 49.3) (9.3; 94.6)

d=30
30 0.258 0.319 0.251

(6.7; 201) (1.9; 2.3) (4.6; 96.3)
100 0.232 0.178 0.177

(10.4; 1040) (14.9; 26) (10.6;3 3.9)
300 0.192 0.067 0.070

(17.2; 5160) (16.3; 33.1) (14.5; 40.6)
1000 0.154 0.032 0.028

(9.8; 9800) (24.2; 77.6) (15.6; 106.2)

d=100
30 0.244 0.278 0.280

(6; 180) (9; 10.4) (4.9; 73.1)
100 0.257 0.207 0.192

(19.7; 1370) (6.5; 7.5) (5.4; 7.7)
300 0.203 0.101 0.092

(25.8; 7740) (37.5; 53.2) (38; 90.5)
1000 0.174 0.052 0.043

(43.1; 43100) (62.2; 142.0) (37.8; 127.8)

Following [20] we used only n = 300 randomly selected samples for the train-
ing set to study the performance for relatively small n (w.r.t. d) case. We used
cosine series basis, and applied Lasso, group Lasso and sparse group Lasso (2.3)
to find ĝsgL in (2.4). The features were scaled first to have unit Euclidean norms
and the test set was used as the hold-out set for choosing the tuning parame-
ters. The performance of the resulting SpAM classifiers (2.5) was measured by
misclassification errors on the remaining 4301 observations from the test set.
For comparison, we also present the results reported in [20] for their SpAM
classifier, which is based on a certain additive smoothing procedure.

Table 2 provides misclassification errors for the test test, the subsets of se-
lected features and the overall numbers of selected coefficients for the considered
classifiers. Lasso-type classifiers resulted in smaller misclassification errors than
SpAM of [20]. One realizes that sparse group Lasso classifier yielded the small-
est misclassification error and both group-based classifiers outperformed vanilla
Lasso. The latter disregarded the global row-wise sparsity of the matrix B and
identified 32 active features (nonzero rows), although it resulted in the small-
est overall number of nonzero coefficients. Grouping coefficients from the same
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Table 2

Misclassification errors and feature selection for various SpAM classifiers.
Method Error # Selected features # Nonzero coeff.
Lasso 0.0879 32 1703

{1 − 3, 5 − 13, 16 − 19, 21, 24, 25, 27,
33, 37, 42, 44 − 46, 50, 52, 53, 55 − 57}

group Lasso 0.0844 22 6600
{3, 5, 7, 12, 13, 16, 17, 19, 21, 24, 25,

27, 37, 44 − 46, 50, 52 − 55, 57}
sparse group Lasso 0.0842 22 6389

{3, 5, 7, 12, 13, 16, 17, 19, 21, 24, 25,
27, 37, 44 − 46, 50, 52 − 55, 57}

SpAM ([20]) 0.1083 24
{4, 6 − 10, 14 − 22, 26, 27, 38, 53 − 58}

features allowed one to reduce the number of active features to 22, where both
sparse group Lasso and group Lasso selected the same sets of features. While all
entries of nonzero rows for group Lasso are nonzeroes (hence, 22× 300 = 6600),
sparse group Lasso, in addition, thresholded part of them as well.

Summarizing, the results of this section indicate that Lasso-type classifiers
demonstrate good performance across various types of data sets, and confirm
the established theoretical findings. A more flexible sparse group Lasso overall
outperforms vanilla Lasso which overlooks a grouped structure of coefficients,
and group Lasso, which fails to account for within-row sparsity and retains the
entire nonzero rows.

Appendix

Throughout the proofs we use various generic positive constants, not necessarily
the same each time they are used even within a single equation.

A.1. Proofs of the upper bounds

We start from a proof for a general upper bound and then apply it to corre-
spondingly Sobolev, analytic and Besov classes of functions.

Consider a general logistic SpAM model (2.1)-(1.3), where gj ∈ Fj [0, 1], and
let {ψ�}∞l=0 be an orthonormal basis in Fj . Then,

g(x) = μ +
d∑

j=1

∞∑
�=1

βj�ψ�(xj).

Recall that gn is a truncated version of g:

gn(x) = μ +
d∑

j=1

n∑
�=1

βj�ψ�(xj)
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and consider the corresponding truncated Bayes classifier η∗n = I{gn(x) ≥ 0}.
Let ĝ and η̂ = I{ĝ ≥ 0} be respectively the logistic sparse group Lasso

or Slope estimator of g and the corresponding classifier. The misclassification
excess risk E(η̂, η∗) can be decomposed as

E(η̂, η∗) = ER(η̂)−R(η∗n) +R(η∗n)−R(η∗) = E(η̂, η∗n) +R(η∗n)−R(η∗). (A.1)

The logistic loss �(y, gn(x)) in (2.2) is Lipschitz. In addition, one can show
that for the bounded support X , E (�(Y, g1n(X) − �(Y, g2n(X))) ≥ C||g1n(x) −
g2n(x)||2L2(PX) for some C > 0 and any pair (g1n, g2n). Furthermore, assume
that it is possible to approximate d0 “approximately sparse” nonzero rows
Bj·, j ∈ J of the regression coefficients matrix B by truly sparse vectors B′

j·
with the properly chosen numbers of nonzero entries mj ’s such that κ|Bj· −
B′

j·|1 = κ
∑n

�=1 |βj� − β′
j�| ≤ lnn mjn

−1 for Lasso and
∑n

�=1 κj |B − B′|j(l) ≤
ln(ne/mj)mjn

−1 for Slope for κ’s given in the theorems. Similar to B, complete
the matrix B′ with zero rows for j /∈ J . One can then exploit the results of [14]
(Section 3.2 and Remark 8) for sparse group Lasso and Slope to get under the
WRE(d0,m, c0)-condition 3.12

E(η̂sgL, η∗n) ≤ C

√
1

νsg(d0)
d0 ln d + lnn

∑
j∈J mj

n
(A.2)

and

E(η̂sgS , η∗n) ≤ C

√√√√ 1
νsg(d0)

d0 ln
(
de
d

)
+
∑

j∈J mj ln
(

ne
mj

)
n

. (A.3)

To bound the second term in the RHS of (A.1) note that

R(η∗n) −R(η∗) ≤ 2||gn − g||L2(PX) ≤ C

√∑
j∈J

∑
�≥n

|βj�|2 (A.4)

([27]). We will show that this term is negligible w.r.t. E(η̂, η∗n).
We now adapt the presented general scheme for Sobolev, analytic and Besov

classes by finding the corresponding matrices B′.

A.1.1. Proof of Theorem 3.2

For gj ∈ H̃sj [0, 1], sj > 1
2 construct the corresponding sparse approximations

B′
j· for nonzero rows Bj· of B as follows. Take mj = n

1
2sj+1 and set β′

j� = βj� for
the first mj entries of Bj· and zeroes for others. Note that for gj ∈ H̃sj [0, 1], sj >

2Although the original assumption required in [14] is somewhat stronger, it can be relaxed
to the WRE condition 3.1.



Classification by SpAM 2037

1/2 the cosine series coefficients satisfy |β|j� ≤ C�−(sj+ 1
2 ). For Lasso with κ =

C2

√
lnn
n we then have

κ|Bj· −B′
j·|1 = κ

n∑
�=mj+1

|β|j� ≤ Cκ m
−sj+ 1

2
j ≤ C

√
lnn n

− 2sj
2sj+1 ≤ C

lnn

n
mj .

Similarly, for Slope with κj = C2

√
ln(ne/j)

n ,

n∑
�=1

κ�|B −B′|j(�) =
n∑

�=mj+1

κl|β|j� ≤ Cκmj m
−sj+ 1

2
j ≤ C

√
ln
(
ne

mj

)
n
− 2sj

2sj+1

≤ C
ln
(

ne
mj

)
n

mj .

Hence, applying the results of [14] (Section 3.2 and Remark 8) with λ’s and
κ’s in Theorem 3.2 and constants C1, C2 given in their proofs, (A.2) implies

E(η̂sgL, η∗n) ≤ C

√
1

νsg(d0)
d0 ln d + lnn

∑
j∈J mj

n

≤ C

√√√√√ 1
νsg(d0)

⎛⎝d0 ln d

n
+ lnn

∑
j∈J

n
− 2sj

2sj+1

⎞⎠.

Similarly, by (A.3)

E(η̂sgS , η∗n) ≤ C

√√√√ 1
νsg(d0)

d0 ln
(

de
d0

)
+
∑

j∈J mj ln
(

ne
mj

)
n

≤ C

√√√√√ 1
νsg(d0)

⎛⎝d0 ln
(

de
d0

)
n

+ lnn
∑
j∈J

n
− 2sj

2sj+1

⎞⎠.

Finally, for the tail sums in (A.4) we have√∑
j∈J

∑
�>n

β2
j� ≤ C

√∑
j∈J

n−2sj = o(E(η̂, η∗n)).

A.1.2. Proof of Theorem 3.4

For an analytic gj ∈ Aαj [0, 1], the cosine coefficients |β|j� ≤ Ce−αj�. Define the
nonzero rows of B′ by truncating nonzero rows of the regression matrix B at
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mj = 1
2αj

ln n
lnn , j ∈ J . We then have

κ|Bj· −B′
j·|1 = κ

n∑
�=mj+1

|β|j� ≤ Cκe−αjmj ≤ C
lnn

n
mj

for Lasso and

n∑
�=1

κ�|B −B′|j(�) =
n∑

�=mj+1

κ�|β|j� ≤ Cκmje
−αjmj ≤ C

ln
(

ne
mj

)
n

mj

for Slope.
Going along the lines of the proof for Sobolev classes, (A.2) and (A.3) yield

E(η̂sgL, η∗n) ≤ C

√
1

νsg(d0)
d0 ln d + lnn

∑
j∈J mj

n

≤ C

√√√√√ 1
νsg(d0)

⎛⎝d0 ln d

n
+
∑
j∈J

1
αj

lnn

n

⎞⎠
and

E(η̂sgS , η∗n) ≤ C

√√√√ 1
νsg(d0)

d0 ln
(

de
d0

)
+
∑

j∈J mj ln
(

ne
mj

)
n

≤ C

√√√√√ 1
νsg(d0)

⎛⎝d0 ln
(

de
d0

)
n

+
∑
j∈J

1
αj

lnn

n

⎞⎠.

Evidently,
√∑

j∈J
∑

�>n β
2
j� = o (E(η̂sgS , η∗n)).

A.1.3. Proof of Theorem 3.6

Recall that for gj ∈ B
sj
pj ,qj [0, 1] we consider orthonormal wavelet series {ψ�}∞l=0

of regularity r > sj , where � = 2h + k, h ≥ 0, 0 ≤ k ≤ 2h − 1, and
|β|j(�) ≤ C�−(sj+ 1

2 ) (see (3.2)). For a given nonzero row of B design its sparse
approximation B′

j· as follows: keep mj = n
1

2sj+1 coefficients of Bj· with the
largest absolute values and zero others.

Hence,

κ|Bj· −B′
j·|1 = κ

n∑
�=mj+1

|β|j(�) ≤ Cκ m
−sj+ 1

2
j ≤ C

√
lnn n

− 2sj
2sj+1 ≤ C

lnn

n
mj
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for Lasso and

n∑
�=1

κ�|B −B′|j(�) =
n∑

�=mj+1

κl|β|j(�) ≤ Cκmj m
−sj+ 1

2
j ≤ C

√
ln
(
ne

mj

)
n
− 2sj

2sj+1

≤ C
ln
(

ne
mj

)
n

mj

for Slope. To complete the proof one repeats the arguments from the proof for
Sobolev classes.

A.2. Proofs of the lower bounds (Theorems 3.3, 3.5 and 3.7)

To prove the lower bounds for the minimax misclassification excess risk we
utilize the general approach developed in [26].

Assume that the unknown logit function g(x) belongs to some class of func-
tions G with a metric entropy M(G, ε) – the logarithm of the ε-packing num-
ber of G w.r.t. L2(PX)-norm. Consider the corresponding class P for p(x):
P = {p : p = eg

1+eg , g ∈ G}. Let ε∗ satisfy

nε∗2 � M(P, ε∗). (A.5)

Then if the class P is rich enough in terms of M(P, ε) to satisfy the assumptions
given in [26], the minimax misclassification excess risk

inf
η̃

sup
p∈P,PX

E(η̃, η∗) � ε∗, (A.6)

where recall that the Bayes classifier η∗(x) = I{p(x) ≥ 1/2}.
By Taylor expansion, one immediately verifies that for any probability func-

tions p1(x) and p2(x) and their logit functions g1(x), g2(x),

||p2 − p1||L2(PX) ≤
1
4 ||g2 − g1||L2(PX).

Hence, M(P, ε) ≤ M(G, 4ε).
For the considered general SpAM setup with d0 < d/4 by Lemma 4 of

Raskutti et al. (2012),

M(G, 4ε) ≤ C

⎛⎝d0 ln de

d0
+
∑
j∈J

M
(
Gj ,

4ε√
d0

)⎞⎠ , (A.7)

where for the considered Sobolev, analytic and Besov classes Gj ’s we have
M(H̃sj [0, 1], ε)  M(Bsj

pj ,qj [0, 1], ε) 
( 1
ε

) 1
sj and M(Aαj [0, 1], ε)  1

αj
ln
( 1
ε

)
(e.g., [26, 19]). Moreover, [26] showed that the required conditions on metric
entropies to apply (A.6) are satisfied for these classes.
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Solving (A.5) and (A.7) after some algebra implies that the suitable solutions

are ε∗2 = C

(
d0 ln de

d0
n +

∑
j∈J n

− 2sj
2sj+1

)
and ε∗2 = C

(
d0 ln de

d0
n +

∑
j∈J

1
αj

lnn
n

)
respectively.

For the dense case d/4 ≤ d0 ≤ d (hence, d0 ∼ d), the model selection
error is negligible w.r.t. nonparametric estimation term. Evidently, no classi-
fier can perform better than an oracle who knows the subset of truly active
features J . Therefore, for Sobolev and Besov classes in this case d0 ln de

d0
∼

d0 �
∑

j∈J n
1

2sj+1 and ε∗2 = C
∑

j∈J n
− 2sj

2sj+1 . Similarly, for analytic functions,
d0 ln de

d0
� lnn

∑
j∈J

1
αj

and ε∗2 = C lnn
n

∑
j∈J

1
αj

.
Applying (A.6) completes the proof.
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