
Electronic Journal of Statistics
Vol. 18 (2024) 1248–1292
ISSN: 1935-7524
https://doi.org/10.1214/24-EJS2229

Multiclass classification for
multidimensional functional data
through deep neural networks

Shuoyang Wang1 and Guanqun Cao2

For The Alzheimer’s Disease Neuroimaging Initiative
1Department of Bioinformatics and Biostatistics, University of Louisville, U.S.A.

e-mail: shuoyang.wang@louisville.edu
2Department of Statistics and Probability, Michigan State University, U.S.A.

e-mail: caoguanq@msu.edu

Abstract: The intrinsically infinite-dimensional features of the functional
observations over multidimensional domains render the standard classifica-
tion methods effectively inapplicable. To address this problem, we introduce
a novel multiclass functional deep neural network (mfDNN) classifier as an
innovative data mining and classification tool. The architecture incorpo-
rates a sparse deep neural network with Rectified Linear Unit (ReLU) acti-
vation function, minimizing cross-entropy loss in a multiclass classification
framework. This design enables the utilization of modern computational
tools. The convergence rates of the misclassification risk functions are also
derived for both fully observed and discretely observed multidimensional
functional data. The efficacy of mfDNN is demonstrated through simula-
tions and several benchmark datasets from different application domains.

MSC2020 subject classifications: Primary 62G05, 62G08; secondary
62G35.
Keywords and phrases: Functional data analysis, deep neural networks,
multiclass classification, rate of convergence, multidimensional functional
data.

Received October 2023.

Contents

1 Introduction . 1249
1.1 Related work . 1250
1.2 Contributions . 1251

2 Methodology . 1252
2.1 K-class functional data classification models 1252
2.2 Multiclass functional deep neural network classifier 1252

3 Theoretical properties . 1255
3.1 Function class for the conditional probability πk 1255
3.2 Approximation and boundary conditions for the conditional prob-

ability πk . 1256
3.3 Convergence of Kullback-Leibler divergence 1257

3.3.1 Kullback-Leibler divergence 1257
1248

https://imstat.org/journals-and-publications/electronic-journal-of-statistics/
https://doi.org/10.1214/24-EJS2229
mailto:shuoyang.wang@louisville.edu
mailto:caoguanq@msu.edu
https://mathscinet.ams.org/mathscinet/msc/msc2020.html

Multiclass classification for multidimensional functional data 1249

3.3.2 Convergence rate for fully observed functional data . . . 1258
3.3.3 Convergence rate for discretely observed functional data 1260

4 Examples . 1261
4.1 Independent exponential family 1261
4.2 Exponential family with in-block interaction 1262

5 Simulation studies . 1263
5.1 Alternative methods . 1263
5.2 2D functional data . 1264
5.3 3D functional data . 1267

6 Real data analysis . 1271
6.1 Handwritten digits . 1271
6.2 ADNI database . 1272

7 Summary . 1274
Appendix A: Proofs of Theorems 3.1 and 3.2 1275

7.1 Proof of Theorem 3.1 . 1285
7.2 Proof of Theorem 3.2 . 1285

Appendix B: Additional Figures . 1287
Acknowledgments . 1289
Funding . 1289
References . 1290

1. Introduction

Functional data classification has wide applications in many areas, such as ma-
chine learning and artificial intelligence [31, 19, 27, 7]. While the majority of
the work on functional data classification focuses on one-dimensional functional
data cases, for example, temperature data over a certain period [26], and speech
recognition data (log-periodogram data) [20, 37], there are few results obtained
for multidimensional functional data classification, such as 2D or 3D images
classification. In many applications, data are collected in the form of functions
such as curves or images. Such data are nowadays commonly referred to as
functional data. For instance, in the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) database, the training samples are PET images from multiple
status (e.g., normal, early mild cognitive impairment, Alzheimer’s Disease), and
the task is to predict the status of a new patient given his/her PET imaging.
Classic multivariate analysis techniques, such as logistic regression or discrimi-
nant analysis, are not directly applicable, since functional data are intrinsically
infinite-dimensional. A common strategy is to adapt the multivariate analysis to
functional settings, such as functional discriminant analysis and random forest,
among others. Despite their impressive performances, one is often interested in
knowing their statistical property, such as the upper bound of the misclassifi-
cation rate. Unfortunately, no literature can answer the above problem because
a multi-class classifier for multi-dimensional functional data has not been es-
tablished yet. This motivates us to first propose novel and optimal functional
classifiers, and then investigate the convergence rate of the proposed classifier.

1250 S. Wang and G. Cao

In this paper, we propose a novel approach, called multi-class functional
deep neural network (mfDNN, multiclass-functional+DNN), for multidimen-
sional functional data multiclass classification. We extract the functional prin-
cipal components scores (FPCs) of the data functions, and train a DNN based
classifier on these FPCs and their corresponding class memberships. Given these
FPCs as inputs and their corresponding class labels as outputs, we adopt sparse
deep ReLU network architecture and minimize the cross-entropy (CE) loss in
the multiclass classification setup. CE loss is a standard tool in machine learn-
ing classification, but the technique has not been utilized to its fullest potential
in the context of functional data classification, especially regarding the study
of theoretical properties of DNN classifiers. A recent work [4], has an example
of multiclassification by minimizing CE loss in sparse DNN for cross-sectional
data setting. While CE loss is a standard tool in machine learning classification,
its full potential in the context of functional data classification, particularly in
studying the theoretical properties of DNN classifiers, remains underexplored.
We apply the same loss function as in [4] but tailor it to the context of multi-
dimensional functional multiclassification. Furthermore, convergence rates and
the conditional class probabilities are developed under both fully observed and
discretely observed multi-dimensional functional data setting, respectively.

1.1. Related work

This work is related to a series of papers on high-dimensional data and functional
data classification. In recent years, many sparse discriminant analysis methods
have been proposed for i.i.d. high-dimensional data classification and variable
selection. Most of these proposals focus on binary classification and they are
not directly applicable to multiclass classification problems. A popular multi-
class sparse discriminant analysis proposal is the �1 penalized Fisher’s discrim-
inant [38]. However, [38] does not have theoretical justifications. It is generally
unknown how close their estimated discriminant directions are to the true direc-
tions, and whether the final classifier will work similarly as the Bayes rule. More
recently, [23] proposed a multiclass sparse discriminant analysis method that si-
multaneously estimates all discriminant directions with theoretical justification
for high-dimensional data setting. An efficient way to handle multi-dimensional
functional data, such as imaging data, is to incorporate the information that is
inherent in order and smoothness of processes over pixels or voxels. We com-
pare our method with both [38] and [23] in terms of numerical performance in
Sections 5 and 6.

In addition, a mainstream technique in functional data classification is based
on functional principal component analysis (FPCA) such as functional discrim-
inant analysis [29, 10, 9, 11, 13, 8, 3, 25, 1]. They only focus on binary classi-
fication for one-dimensional functional data. There is also a lack of literature
on multiclass classification for functional data. [20] investigated a Bayesian ap-
proach to estimate parameters in multiclass functional models. However, their
method is still only suitable for fully observed one-dimensional functional data

Multiclass classification for multidimensional functional data 1251

classification. To the best of our knowledge, there is only one recent work [36]
where binary classification for general non-Gaussian multidimensional functional
data was considered. However, their proposed classifier is designed for fully ob-
served functional data and only able to conduct binary classification. In contrast,
the target of our framework is both fully observed and sparsely sampled multi-
dimensional functional data cases. Comparing to most classic functional data
classification literature, our method offers more flexible applications.

Another related topic is the deep learning and computer vision areas, which
have rich references on contemporary DNN architectures commonly used for
image classification, for instances, AlexNet [18], GoogLeNet [32], VGG [30], In-
ception [33], and more modern ones, such as Vision Transformer [12]. These kind
of neural network architectures are computationally inefficient with extremely
large number of tuning parameters. Furthermore, to the best of our knowledge,
there are lacks of theoretical supports for these computer vision methods. In
other words, the asymptotic misclassification rates is not available and the in-
terpretability and reliability of these algorithm are still questionable. Last but
not least, these computer vision methods require high resolution inputs, i.e.,
the number of pixels and voxels per subject is relatively large. In contrast, our
classifier is designed to work with either sparsely or densely observed multi-
dimensional functional or imaging data.

1.2. Contributions

The contributions of the present paper are three-fold. First, to the best of
our knowledge, we are the first to propose a multi-class classifier for multi-
dimensional functional data within the framework of DNNs. In comparison to
much of the state-of-the-art machine learning literature, our classifier does not
demand high resolution. This flexible classifier can address a variety of prob-
lems with sparsely or densely observed 2D/3D imaging data. Meanwhile, the
sparse setting has more practical applications than the fully observed case in
certain existing functional data classification work [36]. Second, our work is
novel as it establishes the first convergence rate of multi-class classification for
multi-dimensional functional data. In comparison with most imaging classifi-
cation methods in the field of computer vision, our method not only provides
solid theoretical guarantees but has also demonstrated computational efficiency
in terms of costs. Last but not least, we do not assume the data function follows
Gaussian process, which has been required in most classic functional data classi-
fication literature [3, 13], even though it is often violated in practice. When data
distributions are general non-Gaussian, the resulting decision boundary is often
complicated which cannot be accurately recovered by most existing approaches.

The rest of this article is organized as follows. In Section 2, we introduce the
K-class functional data classification models and propose the multiclass func-
tional deep neural network classifiers. In Section 3, we establish theoretical prop-
erties of mfDNN under suitable technical assumptions. Section 4 provides two
progressive examples to demonstrate the validity of these technical assumptions.

1252 S. Wang and G. Cao

In Section 5, performances of mfDNN and its competitors are demonstrated
through simulation studies. The corresponding R programs for implementing
our method are provided on GitHub. In Section 6, we apply mfDNN to the zip
code dataset and Alzeheimer’s Disease data. Section 7 summarizes the conclu-
sions. Technical proofs and additional figures are provided in the Appendix.

2. Methodology

2.1. K-class functional data classification models

Suppose we observe n i.i.d. functional training samples {(Xi(s),Yi) : 1 ≤ i ≤
n, s ∈ [0, 1]d}, which are independent of X(s) to be classified, and class label
Yi = (Yi1, . . . , YiK)ᵀ, such that Yik = 1 if the sample is in the k-th group,
k = 1, 2, . . . ,K, and 0 otherwise. Throughout the entire paper, we consider
the number of class K is a universal constant not depending on sample size n.
In multiclass classification with K ≥ 2 classes, we are interested in grouping a
newly observed continuous curves X(s) to one of the K classes given the training
data.

If Yik = 1, Xi(s) presumably has some unknown mean function EXi(s) =
μk(s) and unknown covariance function Ωk(s, s′) = E[(Xi(s) − μk(s))
(Xi(s′) − μk(s′))], for s, s′ ∈ [0, 1]d and 1 ≤ k ≤ K. Suppose the covariance
function Ωk(·, ·) satisfies the Karhunen–Loève decomposition:

Ωk(s, s′) =
∞∑
j=1

λkjψkj(s)ψkj(s′), s, s′ ∈ [0, 1]d , (2.1)

where ψkj , j ≥ 1 is an orthonormal basis of L2([0, 1]d) with respect to the
usual L2 inner product, and λk1 ≥ λk2 ≥ · · · > 0 are nonincreasing positive
eigenvalues. For any X(s) ∈ L2([0, 1]d) under the k-th class, write X(s) =∑∞

j=1 ξjψkj(s), where ξj ’s are pairwise uncorrelated random coefficients. By
projecting the function space to the vector space, we define the conditional
probabilities

πk(x) = P(Y = ek|ξ = x), k ∈ {1, . . . ,K},

where ek = (0, . . . , 0, 1, 0, . . . , 0)ᵀ is a K-dimensional standard basis vector de-
noting the label of the k-th class is observed and ξ = (ξ1, ξ2, . . .)ᵀ is an infinite
dimension random vector. Notably,

∑K
k=1 πk(x) = 1 for any x ∈ R

∞.

2.2. Multiclass functional deep neural network classifier

For k ∈ {1, . . . ,K}, define sample covariance function

Ω̂k(s, s′) = 1
nk

∑
i∈Ik

(Xi(s) − X̄k(s))(Xi(s′) − X̄k(s′)), s, s′ ∈ [0, 1]d ,

Multiclass classification for multidimensional functional data 1253

where Ik is the collection of i such that Yik = 1, nk = |Ik| is the sample
size, and X̄k(s) = n−1

k

∑
i∈Ik

Xi(s) is the sample mean function of class k. The
Karhunen–Loéve decomposition for Ω̂k is

Ω̂k(s, s′) =
∞∑
j=1

λ̂kjψ̂kj(s)ψ̂kj(s′), s, s′ ∈ [0, 1]d .

The sample data function Xi(s), i = 1, . . . , n, under Yik = 1, can be expressed
as Xi(s) =

∑∞
j=1 ξ̂ijψ̂kj(s). In this representation, ψ̂kj(s) may either correspond

to a set of pre-selected basis functions or be determined by data-driven methods.
Pre-selected basis functions typically include Fourier or wavelet bases, whereas
data-driven approaches often utilize eigen-functions derived through FPCA. We
provide the examples of Fourier basis and FPCA approach in Remark 9 to elabo-
rate on how these varying basis functions influence the theoretical performance
of the classifier in Theorem 3.2. It’s noteworthy that while ψ̂kj(s) may differ
from ψkj(s), this dissimilarity does not impact the numerical performance of
the proposed classifier. Further details can be found in Section 5. Intuitively,
ξ̂(i) := (ξ̂i1, ξ̂i2, . . .) is an estimator of ξ(i) := (ξi1, ξi2, . . .), in which ξij ’s are un-
observable random coefficients of Xi with respect to the population basis ψkj .
Hence, it is natural to design classifiers based on ξ̂(i)’s.

Let ξ̂
(i)
J = (ξ̂i1, . . . , ξ̂iJ)ᵀ be the J-dimensional truncation of ξ̂(i) for i =

1, . . . , n. Denote hk(·) as the conditional probability densities of ξ given Y =
ek, such that πk(x) = hkP(Y =ek)∑K

�=1 h�P(Y =e�)
. When Xi’s are some random processes

with complex structures, such as non-Gaussian processes, one major challenge
is the underlying complicated form of {hk}Kk=1 so that estimation of {πk}Kk=1 is
typically difficult. In this section, inspired by the rich approximation power of
DNN, we propose a new classifier so-called mfDNN, which can still approach
Bayes classifiers closely even when hk’s are non-Gaussian and complicated.

Let σ(x) = (x)+ be the ReLU activation function, and K-dimensional soft-
max activation function σ∗(y) =

(
exp (y1)∑K

k=1 exp (yk) , . . . ,
exp (yK)∑K
k=1 exp (yk)

)
for

y = (y1, . . . , yK) ∈ R
K . For any real vectors V = (v1, . . . , vw)ᵀ and z =

(z1, . . . , zw)ᵀ, define the shift activation function σV (z) = (σ(z1−v1), . . . , σ(zw−
vw))ᵀ. For L ≥ 1, p = (p1, . . . , pL) ∈ N

L, let F(L, J,p) denote the class of fully
connected feedforward DNN with J inputs, L hidden layers and, for l = 1, . . . , L,
pl nodes on the l-th hidden layer. Equivalently, any f ∈ F(L, J,p) has an ex-
pression

f(x) = σ∗WLσVL
WL−1σVL−1 . . .W1σV1W0x, x ∈ R

J , (2.2)

where Wl ∈ R
pl+1×pl , for l = 0, . . . , L, are weight matrices, Vl ∈ R

pl , for
l = 1, . . . , L, are shift vectors. Here, we adopt the convention that p0 = J and
pL+1 = 1.

Due to the large capacity of the fully connected DNN class and to avoid
overparameterization, we consider the following sparse DNN class:

F(L, J,p, s) = (2.3)

1254 S. Wang and G. Cao{
f ∈ F(L, J,p) :

L∑
l=0

‖Wl‖0 + ‖Vl‖0 ≤ s, max
0≤l≤L

‖Wl‖∞ ∨ ‖Vl‖∞ ≤ 1
}
,

where ‖ · ‖∞ denotes the maximum-entry norm of a matrix or a vector, which
is controlled by 1, ‖ · ‖0 represents the number of non-zero elements of a matrix
or a vector, and s controls the total number of active neurons.

Given the training data (ξ(1)
J ,Y1), . . . , (ξ(n)

J ,Yn), let

f̂φ(·) =
(
f̂

(1)
φ , . . . , f̂

(K)
φ

)ᵀ
= arg min

f∈F(L,J,p,s)
− 1
n

n∑
i=1

φ(Yi,f(ξ̂(i)
J)), (2.4)

where φ(x1,x2) = xᵀ
1 log (x2) denotes the CE loss function.

Remark 1. In the optimization step, each element of the estimated probability
vector f̂φ should be within 0 and 1. This is ensured by the definition of our
neural network class, where f̂φ ∈ F , which is defined by Equation (2.2).

We then propose the following mfDNN classifier: for X ∈ L2([0, 1]d),

ĜmfDNN (X) = k, if f̂ (k)
φ (ξJ) ≥ f̂

(k′)
φ (ξJ), for all 1 ≤ k′ �= k ≤ K. (2.5)

The detailed implementation for the proposed mfDNN classifier is explained
in Algorithm 1. The tuning parameters include J, L,p, and s, which theoretically
contribute to the performance of classification. We discuss the related theories
in Section 3. In practice, we suggest the following data-splitting approach to
select (J, L,p, s). Note that the sparsity is not directly applicable by assigning
the number of active neurons. Instead, we use dropout technique to achieve
sparse network.

Algorithm 1: Training algorithm for mfDNN
Input: Collection of samples

{
{Xi(sj)}mj=1,Yi

}n
i=1

, training index set I1, testing
index set I2, |I1| = �0.7n�, |I2| = �0.3n�, candidates for number of projection
scores {J0, . . . , JN1}, candidates for depth {L0, . . . , LN2}, candidates for
width {p0, . . . , pN3}, candidates for dropout rates {s0, . . . , sN4}, number of
epochs, batch size, learning rate

Output:
{
ĜmfDNN (Xi)

}n
i=1

1 Calculate ξ̂
(i)
j =

∫
[0,1]d Xi(s)ψj(s)ds with pre-selected basis functions ψj(s) (e.g.,

Fourier basis functions), and ξ̂
(i)
J = (ξ̂i1, . . . , ξ̂iJ)ᵀ with J = max{J0, . . . , JN1}

2 For all candidates,
(i) Train f̂J�1 ,L�2 ,p�3 ,s�4

by Equation (2.4) with
(
{Xi(sj)}mj=1,Yi

)
i∈I1

.

(ii) Compute err(�1, �2, �3, �4) := 1
|I2|
∑

i∈I2
I(f̂J�1 ,L�2 ,p�3 ,s�4

�= Yi)

3 Obtain
(
J�∗1 , L�∗2

, p�∗3 , s�
∗
4

)
= arg min�1,�2,�3,�4 err(�1, �2, �3, �4)

4 Train f̂J�∗1
,L�∗2

,p�∗3
,s�∗4

by Equation (2.4) with
(
{Xi(sj)}mj=1,Yi

)n
i=1

Multiclass classification for multidimensional functional data 1255

3. Theoretical properties

3.1. Function class for the conditional probability πk

To obtain the approximation rates, we assume that the underlying true con-
ditional class probability function πk(·) belongs to the class of Hölder-smooth
functions defined as below. Without further notice, c, C, C1, C2, . . . , represent
some positive constants and can vary from line to line.

For t ≥ 1, a measurable subset D ⊂ R
t, and constants β > 0, C > 0, define

Cβ(D,C) =

⎧⎨⎩f : D 	→ R
∣∣ ∑
α:|α|<β

‖∂αf‖∞f

+
∑

α:|α|=�β�
sup

z,z′∈D,z 	=z′

|∂αf(z) − ∂αf(z′)|
‖z − z′‖β−�β�

∞
≤ C

⎫⎬⎭ ,

where ∂α = ∂α1 . . . ∂αt denotes the partial differential operator with multi-index
α = (α1, . . . , αt) ∈ N

t, |α| = α1 + · · · + αt. Equivalently, Cβ(D,C) is the ball
of β-Hölder smooth functions on D with radius R. A function f : Rt → R is
said to be locally β-Hölder smooth if for any a, b ∈ R, there exists a constant C
(possibly depending on a, b) such that f ∈ Cβ([a, b]t, C).

For q ≥ 0, J ≥ 1, let d0 = J and dq+1 = 1. For d = (d1, . . . , dq) ∈ N
q
+,

t = (t0, . . . , tq) ∈ N
q+1
+ with tu ≤ du for u = 0, . . . , q, β := (β0, . . . , βq) ∈ R

q+1
+ ,

let G(q, J,d, t,β) be the class of functions g satisfying a modular expression

g(z) = gq ◦ · · · ◦ g0(z) ∈ (0, 1) , ∀z ∈ R
d0 , (3.1)

where gu = (gu1, . . . , gudu+1) : R
du 	→ R

du+1 and guv : R
tu 	→ R are locally

βu-Hölder smooth. The du arguments of gu are locally connected in the sense
that each component guv only relies on tu(≤ du) arguments. Similar structures
have been considered by [28, 2, 22, 35, 4, 17, 16] in multivariate regression or
classification to overcome high-dimensionality. Generalized additive model [15]
and tensor product space ANOVA model [21] are special cases; see [22].

We define the class of h = {h1, . . . , hK} as

H ≡H
(
K, {q(k)}Kk=1, {d(k)}Kk=1, {t(k)}Kk=1, {β(k)}Kk=1, {αk}Kk=1, {πk(·)}Kk=1,

ζ(·),Γ(·), C, ρ, ε) ,

such that for any J ≥ 1, π
(J)
k ∈ G

(
q(k), J,d(k), t(k),β(k)), where d(k) =

(d(k)
1 , . . . , d

(k)
q(k)) ∈ N

q(k)

+ , t(k) = (t(k)
0 , . . . , t

(k)
q(k)) ∈ N

q(k)+1
+ with t

(k)
u ≤ d

(k)
u for

u = 0, . . . , q(k), β(k) := (β0, . . . , β
(k)
q(k)) ∈ R

q(k)+1
+ . Note that this density class

H includes many popular models studied in literature, both Gaussian and non-
Gaussian; see Section 4.

1256 S. Wang and G. Cao

Throughout the paper, we explore πk in some complicated G with group-
specific parameters q(k),d(k), t(k) and β(k). The selection range of the truncation
parameter J is based on the asymptotic order provided in Assumptions 3 and 4
in the next section. Although π

(J)
k has J arguments, it involves at most t(k)

0 d
(k)
1

effective arguments, implying that the two population densities differ by a small
number of variables. Relevant conditions are necessary for high-dimensional clas-
sification. For instance, in high-dimensional Gaussian data classification, [6, 5]
show that, to consistently estimate Bayes classifier, it is necessary that the mean
vectors differ at a small number of components. The modular structure holds
for arbitrary J , which may be viewed as a extension of [28] in the functional
data analysis setting.

3.2. Approximation and boundary conditions for the conditional
probability πk

One of the unique phenomenons of the functional data is the intrinsically infinite
dimension. Hence, the finite approximation condition for π is necessary. For
any positive integer J , define ξJ = (ξ1, . . . , ξJ)ᵀ and πJ(xJ) = (π(J)

1 (xJ), . . . ,
π

(J)
K (xJ))ᵀ, where π

(J)
k (xJ) = P(Yk = ek|ξJ = xJ), k = 1, . . . ,K.

Assumption 1. (Approximation error of π(J)
k) There exist a constant J0 ≥ 1

and decreasing functions ζ(·) : [1,∞) → R+ and Γ(·) : [0,∞) → R+, with
supJ≥1 J

ρζ(J) < ∞ for some ρ > 0 and
∫∞
0 Γ(x)dx < ∞, such that for any

J ≥ J0, k = 1 . . . ,K and x > 0,

P
(
|πk(ξ) − π

(J)
k (ξJ)| ≥ x

)
≤ ζ(J)Γ(x). (3.2)

Remark 2. Any finite number of projection scores ξJ can not recover the in-
formation of ξ totally. However, in practice, it is infeasible to utilize an infinity
number of project scores. Hence, Assumption 1 provides a uniform upper bound
on the probability of πk differing from π

(J)
k by at least x, which approaches zero

if either J or x goes to infinity, implying that when dimension is reduced, there
exists some large enough J , such that π

(J)
k is an accurate approximation of πk

with high probability. ρ controls the decay rate of function ζ(J), and larger ρ
implies a faster shrinkage of the desired probability.

Assumption 2. (Boundary condition)

(a) There exists a relatively small ε > 0, such that for all k = 1, . . . ,K, one
has P (πk(ξ) > ε) = 1;

(b) There exist an absolute constant C > 0 and some positive vector α =
(α1, . . . , αK)ᵀ such that

P (πk(ξ) ≤ x) ≤ Cxαk , ∀x ∈ (0, 1] ,∀k ∈ {1, . . . ,K}.

Remark 3. Assumption 2 (a) provides a uniform lower bound of πk, indicating
that πk is bounded away from zero with probability one. In another word, for

Multiclass classification for multidimensional functional data 1257

some k, πk ≡ 0 indicates there only exist K − 1 classes. Assumption 2 (b) de-
scribes the behaviour of πk around zero. Trivially, when αk = 0 for k = 1, . . . ,K,
the condition holds universally only if C ≥ 1. Specifically, Assumption 2 controls
the decay rate of the probability measure of {πk(ξ) : 0 ≤ πk(ξ) ≤ x}. Similar con-
ditions can be found for multi-class classification for multivariate data in [4] and
binary classification in [24] and [34]. It can be seen that Assumption 2 (a) and
(b) are closely related in certain circumstances. For example, given some ε > 0,
Assumption 2(a) implies Assumption 2(b) for arbitrary α and C = maxk ε

−αk .
However, they are not equivalent in most scenarios when C, {αk}Kk=1, and ε are
all universally positive constants.

Both Assumptions 1 and 2 can be verified by two concrete examples in Sec-
tion 4.

3.3. Convergence of Kullback-Leibler divergence

3.3.1. Kullback-Leibler divergence

For the true probability distribution π(x) = (π1(x), . . . , πK(x))ᵀ and any generic
estimation π̂(x) = (π̂1(x), . . . , π̂K(x))ᵀ, define the corresponding discrete ver-
sion Kullback-Leibler (KL) divergence

KL (π(x), π̂(x)) =
K∑

k=1

πk(x) log
(
πk(x)
π̂k(x)

)
.

For any π̂ trained with {(Xi(s),Yi)}ni=1, we evaluate its performance by the
log-likelihood ratio

E

[
K∑

k=1

Yk log
(
πk(ξ)
π̂k(ξ)

)]
= E [KL (π(ξ), π̂(ξ))] .

Note that the estimation risk is associate with the well-known CE loss in Sec-
tion 2.2.

To formulate our classification task, we first introduce two mild assumptions
for πk(·). Without further notice, c, C, C1, C2, . . . , represent some positive
constants and can vary from line to line.

Different from the popular least square loss, the CE loss is the expectation
with respect to the input distribution of the KL divergence of the conditional
class probabilities. If anyone of the conditional class probabilities has zero esti-
mation while the underlying conditional class probability is positive, the risk can
even become infinite. To avoid the infinite risk, we truncate the CE loss func-
tion and derive convergence rates without assuming either the true conditional
class probabilities or the estimators away from zero. Instead, our misclassifica-
tion risks depend on an index quantifying the behaviour of the conditional class
probabilities near zero.

1258 S. Wang and G. Cao

Given an absolute constant C0 ≥ 2, for any classifier π̂, define the truncated
KL risk for some density h as

Rh,C0 (π̂) = Eh

{
K∑

k=1

πk(ξ)
[
C0 ∧ log

(
πk(ξ)
π̂k(ξ)

)]}
. (3.3)

Remark 4. C0 is commonly introduced to avoid infinity value of the ordinary
KL risk. It is trivial to show that C0 can only be abandoned when π̂k is lower
bounded by exp (−C0) for all k. When π̂k has a large deviation from πk for some
k, the KL risk explodes to infinity, which makes it is infeasible to evaluate the
performance of π̂.

3.3.2. Convergence rate for fully observed functional data

In this section, we provide the non-asymptotic KL risk of mfDNN classifier. Let

(k̂, û) = arg max
(k,u),k=1...,K,

u=0,...,q(k)

t
(k)
u

β̃
(k)
u

, (3.4)

where β̃
(k)
u = β

(k)
u
∏q(k)

�=u+1 β
(k)
� ∧ 1, and

(l̂, v̂) = arg max
(k,u),k=1...,K,

u=0,...,q(k)

t
(k)
u

β̃
(k)
u (1 + αk)

.

Let θ = (1+α
l̂
)β̃(l̂)

v̂

(1+α
l̂
)β̃(l̂)

v̂ +t
(l̂)
v̂

and ν = θt
(k̂)
û

β̃
(k̂)
û (1+α̃)

, where α̃ = mink αk ∧ 1.
To facilitate a clearer understanding of the aforementioned notations, we offer

the following intuitive explanations.

Remark 5. Firstly, k̂ and û serve as indices for the most complex function
across all classes and each of their compositions. In consideration of the mar-
gin condition, l̂ denotes the class that is the most challenging to classify, and
v̂ represents the most intricate composition function within class l̂. The margin
parameter α̃ is specifically assigned to the most formidable class in the classi-
fication process, spanning all classes. The smoothness parameter β̃

(k)
u signifies

the smoothness order at the u-th layer for the k-th class, taking into account
information from all preceding layers. The parameter θ denotes a typical con-
vergence rate in nonparametric classification problems (see [34, 4]), tailored to
the composition functions in the multi-class classification setting.

Assumption 3. There exist some constants C1, C
′
2, C2, C3, only depending on

H and C0, such that the DNN class F(L, J,p, s) satisfies

(a) L ≤ C1 logn;
(b) C ′

2n
θ/ρ ≤ J ≤ C2n

ν ;

Multiclass classification for multidimensional functional data 1259

(c) max1≤�≤L p� ≤ C2n
ν ;

(d) s ≤ C3n
ν logn.

Remark 6. Assumption 3 provides exact orders on (L,p, s) for network, respec-
tively. Assumption 3(b) provides the precise range on J . It is worth mentioning
this condition implies ρ ≥ θν−1, meaning the function ζ(J) converges to zero in
a relatively fast rate when J → ∞. This is because the KL risk associate with
a classifier constructed using finite components through dimension reduction,
and the discrepancies between these finite components and their infinite coun-
terparts. We set a minimum threshold for ρ to prevent the discrepancies from
overshadowing the error bound, thereby highlighting the benefits of employing
DNN for the classification of complex multi-class relationships.

In the following, we provide the convergence rate in the ideal case when the
entire functional curve is fully observed.

Theorem 3.1. There exist a positive constant ω1, only depending on H and
C0, such that

sup
h∈H

Rh,C0

(
f̂φ

)
≤ ω1n

−θ log3 n,

where network classifier f̂φ belongs to F(L, J,p, s) in Assumption 3.

Remark 7. Theorem 3.1 provides the upper bound of the KL misclassifica-
tion risk of the proposed mfDNN. When K = 2, the multiclass classification
downgrades to the binary classification problem. Compared with the minimax
excess misclassification risk derived in [36] for the binary classification, the up-
per bound rate in Theorem 3.1 provides a slightly larger order, Specifically, the
leading term of the upper bound rate in Theorem 3.1 is n−θ with θ = (1+α)β

(1+α)β+t ,
while the leading terms in Theorem 1 in [36] is n−S0 with S0 = (α+1)β

(α+2)β+t . Hence,
when β’s, i.e. the degrees of Hölder smooth functions in the class H, are large
enough, the discrepancy between these two bounds are rarely negligible. Hence,
to reduce potential slightly larger risks, we recommend [36] for the binary clas-
sification problems and when the distribution functions are not smooth enough.
Meanwhile, we recommend the mfDNN classifier for multiclassification problems
regardless the smoothness of the conditional distribution functions.

We assume the number of classes K is a constant. The decay order θ does
not depend on K and is instead determined by the class which presents the most
significant classification challenge. In another word, even with arising number
of classes, as long as the difficulty of classification remains the same, the asymp-
totic convergence rate does not change. Also, the constant ω1 indeed absorbs the
information of K, but it does not affect the asymptotic convergence rate for K.

In Appendix B, Figure 3 describes a numerical comparison between the theo-
retical KL misclassification risk and the empirical risk. It shows that the theo-
retical convergence rate is tight enough to bound the empirical risk.

1260 S. Wang and G. Cao

3.3.3. Convergence rate for discretely observed functional data

Practically, it is usually unrealistic to observe the full trajectory of each individ-
ual, thus the rate in Theorem 3.1 can only be reached if sampling frequency is
dense enough. Hence, it is interesting to discuss the upper bound of the risk of
mfDNN classifier when functional data are discretely observed at m occasions
for each subject. Let β̃ = maxk=1...,K

(
β̃

(k)
0 ∧ 1

)
, θ′ = τ β̃, and ν′ = θ′t(k̂)

û

β̃
(k̂)
û (1+α̃)

,

where k̂ is defined in (3.4) and τ is a positive universal constant.

Assumption 4. There exist some constants C1, C
′
2, C2, C3, C̃1, C̃

′
2, C̃2, and C̃3

only depending on H, C0 and τ , and a phase transition point m∗ ∈ N
+, such

that the DNN class F(L, J,p, s) satisfies

(a) L ≤ C1 lognI(m ≥ m∗) + C̃1 logmI(m < m∗);
(b) C ′

2n
θ/ρ

I(m ≥ m∗) + C̃ ′
2m

θ′/ρ
I(m < m∗) ≤ J ≤ C2n

ν
I(m ≥ m∗) +

C̃2m
ν′
I(m < m∗);

(c) max1≤�≤L p� ≤ C2n
ν
I(m ≥ m∗) + C̃2m

ν′
I(m < m∗);

(d) s ≤ C3n
ν lognI(m ≥ m∗) + C̃3m

ν′ logmI(m < m∗).

Similar to Assumption 3, Assumption 4 provides exact orders on L,p, s, and
range of J when sampling frequency m is involved. When m ≥ m∗, Assumption 4
coincides with Assumption 3 for dense functional data.

The following theorem provides the phase transition rate when functional
data are discretely observed on m locations at a certain rate with respect to τ .

Theorem 3.2. When E|ξj− ξ̂j | � m−τ for all j = 1, . . . , J , there exists positive
constants ω1, ω2 and ω3 only depending on H, C0 and τ , such that

sup
h∈H

Rh,C0

(
f̂φ

)
≤ ω1n

−θ log3 nI(m ≥ m∗) + ω2m
−θ′

I(m < m∗),

where m∗ = �
(
ω3n

θ/ log3 n
)1/θ′

�, and f̂φ ∈ F(L, J,p, s) defined in Assump-
tion 4.

Remark 8. Theorem 3.2 reveals that m∗ is a critical sampling frequency for
the rate of KL misclassification risk over the parameter space H at any fixed
sample size n. When m ≥ m∗, the KL risk is of rate ω1n

−θ log3 n which is free
of m and is consistent with the rate derived in Theorem 3.1. In other words,
when m ≥ m∗, the optimal classifier performs as well as the one based on
fully observed data. When m < m∗, the KL risk is of rate m−θ′ , which is solely
dependent on m. Note that m∗ is increasing with n, indicating that when sample
size is sufficient enough, a higher sampling frequency is required to achieve the
convergence rate of fully observed data.

Remark 9. When functional curves are discretely observed, Theorem 3.2 pro-
vides the convergence rate of truncated KL risk when the biases of projection
scores are uniformly bounded by m−τ . This assumption does not hold univer-
sally for all scenarios. Nevertheless, it can be satisfied in various examples.

Multiclass classification for multidimensional functional data 1261

For any empirical process on [0, 1], if we use Fourier basis with m terms to
decompose the curve, we can show that

E|ξj − ξ̂j | ≤ O

⎛⎝ max
k=1,...,K

√√√√ ∞∑
j=m+1

(
λkj + μ2

kj

)⎞⎠ ,

where μkj = E ξj in the k-th group. As {λkj}∞j=1 and
{
μ2
kj

}∞
j=1

are both conver-

gent, when λkj and μ2
kj are decreasing no faster than some polynomial order,

the assumption easily follows.
Another well-known example is the FPCA provided by [14]. According to The-

orem 1 in [14], for all j = 1, . . . , J , the estimators of projection scores satisfy

E |ξj−ξ̂j | ≤ maxk

(∫
[0,1]d×[0,1]d

(
Ωk − Ω̂k

)2
(s, s′)dsds′

)1/2

. Hence, E|ξj−ξ̂j | �

m−τ holds easily when maxk

(∫
[0,1]d×[0,1]d

(
Ωk − Ω̂k

)2
(s, s′)dsds′

)
is bounded

properly.

4. Examples

In this section, we provide two examples of exponential families to justify the
validation of our model assumptions, and emphasize the necessity of applying
DNN approach owing to the complicated structure of data population. For sim-
plicity, we assume the prior probability satisfies P(Y = ek) = k−1 for all k
throughout the section.

4.1. Independent exponential family

We first consider independent projection scores, which are from exponential
families. For some collection of unknown parameters {θkj}K,∞

k=1,j=1, and unknown
collections of functions {ηkj}K,∞

k=1,j=1, {Ukj}K,∞
k=1,j=1, and {Wkj}K,∞

k=1,j=1, we con-
sider the k-th class conditional density, such that

ξ| {θkj}∞j=1 ,Y = ek ∼ hk(x) = exp

⎛⎝ ∞∑
j=1

ηkj(θkj)Ukj(xj) + Wkj(xj)

⎞⎠ .

For all 1 ≤ k, k′ ≤ K, let Akk′ = {j : ηkj(θkj)Ukj(xj) �= ηk′j(θk′j)Uk′j(xj),
∀xj ∈ R} and Bkk′ = {j : Wkj �= Wk′j} be the two sets identifying the difference
between hk and hk′ . Therefore, we have the pairwise log likelihood

log (hk/hk′) =
∑

j∈(Akk′
⋃

Bkk′)

{[ηkj(θkj)Ukj(xj) − ηk′j(θk′j)Uk′j(xj)]

+ [Wkj(xj) −Wk′j(xj)]} .

1262 S. Wang and G. Cao

Given some universal constant Nkk′ , when |Akk′
⋃

Bkk′ | ≤ Nkk′ , there exists
a positive integer Jmax = max

⋃
k,k′ (Akk′

⋃
Bkk′), such that πk = π

(J)
k for all

J ≥ Jmax.
By definition, Assumption 2(a) holds for α = 1. Assumption 2(b) holds when

hk/hk′ is bounded for all pairs. Note that it is trivial when {hk}Kk=1 share the
same {Ukj}K,∞

k=1,j=1 and {Wkj}K,∞
k=1,j=1, such as Gaussian distribution, student’s t

distribution and exponential distribution, whose density ratio of their kind is al-
ways bounded. Assumption 1 holds for J0 = Jmax, and for arbitrary function e(·)
with exponential tails and density π(·). Since πk =

[
1 +
∑

k′ 	=k log(hk/hk′)
]−1

,

the smoothness is determined by {ηkj}K,∞
k=1,j=1, {Ukj}K,∞

k=1,j=1, and {Wkj}K,∞
k=1,j=1,

thus h is trivially in some H.

4.2. Exponential family with in-block interaction

In this example, we consider ξj are dependent with each other in a block, but
independent across blocks, which is an extension of the example in Section 4.1.
Given a sequence of positive integers {�p}∞j=1, such that 0 = �1 < �2 < . . ., we
define the p-th group index set Ep = {�p+1, . . . , �p+1}, such that the cardinality
|Ep| = �p+1− �p, therein grouping are based on adjacent members for simplicity.
For a collection of unknown parameters {θkp}K,∞

k=1,p=1, and unknown collections

of functions {η̃kp}K,∞
k=1,p=1,

{
Ũkp

}K,∞

k=1,p=1
, and

{
W̃kp

}K,∞

k=1,p=1
, where Ũkp and

W̃kp are functions from R
|Ep| to R.

Consider the joint conditional density

hk(x) = exp
(∞∑

p=1
ηkp(θkp)Ũkp(xp) + W̃kp(xp)

)

for class k, where xp = (xj)j=�p+1,...,�p+1
.

For any 1 ≤ k, k′ ≤ K, define the density difference sets

Ãkk′ =
{
p : η̃kp(θkp)Ũkp(xp) �= ηk′p(θk′p)Ũk′p(xp),∀xp ∈ R

|Ep|
}

and B̃kk′ =
{
p : W̃kp �= W̃k′p

}
, and the pairwise log likelihood is thus given by

log (hk/hk′)

=
∑

p∈Ãkk′
⋃

B̃kk′

{[
η̃kp(θkp)Ũkp(x)−η̃k′p(θk′p)Ũk′p(x)

]
+
[
W̃kp(x)−W̃k′p(x)

]}
.

Given some finite positive number Nkk′ , such that |Akk′
⋃

Bkk′ | ≤ Nkk′ , the
verification can be similarly derived from Section 4.1.

Multiclass classification for multidimensional functional data 1263

5. Simulation studies

In this section, we provide numerical evidences to demonstrate the superior
performance of mfDNN. In all simulations, we generated nk = 200, 350, 700
training samples for each class, and testing sample sizes 100, 150, and 300, re-
spectively. We denote m as the sampling frequency, meaning that we choose m
observations evenly on the domain of the functional data. For mfDNN, we use
tensor of Fourier basis to extract projection scores by integration. The structure
parameters (L, J,p, s) are selected by Algorithm 1, where the candidates are
given based on Theorem 3.2. To simplify the structure, each element of vector
p takes the same value. Particularly, the candidates of L = 2 or 3, J and p are
increasing with n and m, with three candidates. For example, when we consider
the scenario with nk = 200 and m = 8, the candidates for J are 3, 4 and 5
and the candidates for p are 30, 50 and 100. When the sample size grows to
nk = 700 with more observations m = 125, we increase the values of candidates
for J as 20, 30 and 40 and the values of candidates for p as 300, 500 and 800.
The sparsity parameter is s = 0.2, 0.5 or 0.8. We summarize R codes and ex-
amples for the proposed mfDNN algorithms on GitHub (https://github.com/
FDASTATAUBURN/mfdnn). To achieve the sparsity of the DNN, we use dropout
techniques. Alternatively, one can also apply the �1 regularizer to achieve sparse
neural networks.

The computation job of this paper is conducted at Yale University high per-
formance computing center, where each compute node containing multiple CPU
cores and substantial memory (RAM). The specific hardware configurations may
vary, but it always includes 1 CPU and 8 GB RAM as default for each replicates
of the parallel computing.

5.1. Alternative methods

Based on the fact that there is no existing multi-classification method specifically
designed for multidimensional functional data, for comparison, we first consider
two sparse discriminate analysis methods: �1 penalized Fisher’s discriminant
analysis (MSDA) approach introduced in [23] and penalized linear discriminant
analysis (PLDA) classifier in [38]. Both of them are efficient classifiers designed
for high-dimensional i.i.d. observations. To make these two methods directly
applicable to functional data, we first pre-processed 2D or 3D functional data
by vectorization. The realization is via the R packages msda and PenalizedLDA,
where the tuning parameter candidates for the penalty term are generated by
default. We use the default five-fold and six-fold cross-validation to tune MSDA
and PLDA, respectively.

We also consider two machine learning alternatives: random forest and con-
volutional neural network (CNN). Specifically, we apply random forest to the
extracted projection scores, referred to as mfRF, to test the efficiency of DNN
in analyzing multi-dimensional functional data. We set the default number of
trees as 500, and the number of features considered at each split in the decision

https://github.com/FDASTATAUBURN/mfdnn
https://github.com/FDASTATAUBURN/mfdnn

1264 S. Wang and G. Cao

trees as 3. The implementation of mfRF is via the R package randomForest. We
employ a promising approach in imaging processing, CNN method, to conduct
the 2D and 3D functional data classification. It is implemented by R packages
keras and tensorflow. Specifically, we first construct the CNN model with a
convolutional layer consisting of 32 filters of size 2 × 2. The ReLU activation
function is applied to introduce the non-linearity. Next, a max pooling layer with
a pool size of 2 × 2 is added to reduce the spatial dimensions of the data while
retaining crucial features. The model then proceeds with another convolutional
layer, this time with 64 filters of size 2× 2 and ReLU activation. Subsequently,
another max pooling layer with pool size 2 × 2 is included. To prevent overfit-
ting, a dropout layer with a dropout rate 0.25 is introduced. The data is then
flattened to convert it from a 2D or 3D tensor into a 1D vector. The flattened
data is passed through a dense layer with 128 units and ReLU activation, fol-
lowed by another dropout layer with a dropout rate of 0.5. In settings with fewer
sampling frequency, we adjust the size of filters and pool to accommodate the
data.

5.2. 2D functional data

For k = 1, 2, 3, we generated functional data X
(k)
i (s, s′) =

∑5
j=1 ξ

(k)
ij ψj(s, s′),

s, s′ ∈ [0, 1]. Let ψ1(s, s′) = s, ψ2(s, s′) = s′, ψ3(s, s′) = ss′, ψ4(s, s′) = s2s′,
ψ5(s, s′) = ss′2. Define 1k be a k×1 vector with all the elements one. We specify
the distribution of ξ(k)

ij ’s as following.
Model 1 (2D Gaussian): Let

(
ξ
(k)
i1 , . . . , ξ

(k)
i5

)ᵀ
∼ N(μk,Σk), where μ1 =

(4, 4, 3, 3, 3)ᵀ, Σ1/2
1 = diag (8, 7, 6, 5, 4), μ2 = −15, Σ1/2

2 = diag (5, 4, 3, 2, 1),
μ3 = 05, Σ1/2

3 = diag (2.5, 2, 1.5, 1, 0.5).
Model 2 (2D Mixed 1): Let

(
ξ
(k)
i1 , . . . , ξ

(k)
i5

)ᵀ
∼ N(μk,Σk) for k = 1, 2, and

ξ
(3)
ij ∼ t2j+1(νj), where μ1 = −15, Σ1/2

1 = diag (5, 4, 3, 2, 1), μ2 = 05, Σ1/2
2 =

diag
(5

2 , 2,
3
2 , 1,

1
2
)
, (ν1, . . . , ν5)ᵀ = 3 · 15.

Model 3 (2D Mixed 2): Let
(
ξ
(1)
i1 , . . . , ξ

(1)
i5

)ᵀ
∼ N(μk,Σk), ξ(2)

ij ∼ tj+1(ν2j),

ξ
(2)
ij ∼ t2j+1(ν3j), where μ1 = 05, Σ1/2

1 = diag
(5

2 , 2,
3
2 , 1,

1
2
)
, (ν21, . . . , ν25)ᵀ =

15, (ν31, . . . , ν35)ᵀ = 3 · 15.
Model 4 (2D Mixed 3): Let ξ

(1)
ij ∼ Exp(r1j), ξ

(2)
ij ∼ t2j+1(ν2j), and(

ξ
(3)
i1 , . . . , ξ

(3)
i5

)ᵀ
∼ N(μ3,Σ3), where (r11, . . . , r15)ᵀ = (0.1, 0.3, 0.5, 0.7, 0.9)ᵀ,

(ν21, . . . , ν25)ᵀ = 3 × 15, μ3 = 05, Σ1/2
3 = diag (2.5, 2, 1.5, 1, 0.5).

For each model, we observe the functional data on 3× 3, 5× 5, 10× 10, and
20× 20 grid points over [0, 1]2, respectively. As a result, the sampling frequency
m = 9, 25, 100, 400, which indicates that the functional observations are from
sparse to dense. Tables 1 to 4 demonstrate the results of 100 simulations. For
mfDNN, it can be seen that the misclassification risks decrease as the sample size
n increasing, as well as the increase of the sampling frequency m. This founding

Multiclass classification for multidimensional functional data 1265

Table 1

Averaged misclassification rates with standard errors in brackets for 2D simulations when
m = 9 over 100 replicates.

Model nk
m = 9

mfDNN MSDA PLDA mfRF CNN

2D Gaussian

200 0.259 0.246 0.323 0.253 0.458
(0.031) (0.027) (0.028) (0.028) (0.022)

350 0.232 0.243 0.325 0.238 0.453
(0.020) (0.022) (0.022) (0.023) (0.015)

700 0.227 0.241 0.323 0.224 0.442
(0.014) (0.014) (0.016) (0.013) (0.010)

2D Mixed 1

200 0.158 0.150 0.227 0.174 0.399
(0.020) (0.021) (0.026) (0.023) (0.014)

350 0.153 0.144 0.227 0.166 0.386
(0.015) (0.016) (0.020) (0.019) (0.011)

700 0.152 0.156 0.229 0.156 0.368
(0.011) (0.014) (0.014) (0.013) (0.007)

2D Mixed 2

200 0.166 0.152 0.198 0.181 0.499
(0.023) (0.022) (0.025) (0.023) (0.054)

350 0.165 0.152 0.200 0.176 0.451
(0.016) (0.016) (0.022) (0.020) (0.035)

700 0.163 0.148 0.197 0.170 0.331
(0.011) (0.012) (0.013) (0.014) (0.025)

2D Mixed 3

200 0.168 0.115 0.264 0.246 0.527
(0.030) (0.018) (0.023) (0.025) (0.053)

350 0.164 0.115 0.265 0.241 0.439
(0.024) (0.014) (0.021) (0.020) (0.039)

700 0.156 0.114 0.264 0.237 0.321
(0.014) (0.011) (0.016) (0.014) (0.024)

Table 2

Averaged misclassification rates with standard errors in brackets for 2D simulations when
m = 25 over 100 replicates.

Model nk
m = 25

mfDNN MSDA PLDA mfRF CNN

2D Gaussian

200 0.205 0.245 0.325 0.250 0.457
(0.026) (0.028) (0.028) (0.028) (0.020)

350 0.200 0.243 0.328 0.237 0.451
(0.020) (0.021) (0.022) (0.022) (0.014)

700 0.196 0.241 0.325 0.224 0.435
(0.014) (0.015) (0.016) (0.014) (0.012)

2D Mixed 1

200 0.100 0.150 0.229 0.171 0.391
(0.018) (0.022) (0.025) (0.022) (0.012)

350 0.085 0.144 0.229 0.164 0.374
(0.012) (0.016) (0.019) (0.018) (0.011)

700 0.081 0.123 0.231 0.155 0.354
(0.010) (0.014) (0.014) (0.013) (0.006)

2D Mixed 2

200 0.140 0.153 0.200 0.183 0.453
(0.020) (0.022) (0.025) (0.022) (0.024)

350 0.135 0.152 0.202 0.175 0.389
(0.016) (0.016) (0.022) (0.020) (0.030)

700 0.123 0.148 0.199 0.169 0.237
(0.010) (0.012) (0.013) (0.014) (0.022)

2D Mixed 3

200 0.136 0.116 0.264 0.245 0.421
(0.022) (0.018) (0.024) (0.026) (0.038)

350 0.132 0.115 0.265 0.242 0.344
(0.019) (0.014) (0.021) (0.022) (0.030)

700 0.123 0.114 0.264 0.236 0.269
(0.014) (0.011) (0.016) (0.015) (0.017)

1266 S. Wang and G. Cao

Table 3

Averaged misclassification rates with standard errors in brackets for 2D simulations when
m = 100 over 100 replicates.

Model nk
m = 100

mfDNN MSDA PLDA mfRF CNN

2D Gaussian

200 0.147 0.244 0.326 0.177 0.463
(0.024) (0.027) (0.029) (0.025) (0.021)

350 0.139 0.242 0.328 0.163 0.460
(0.017) (0.021) (0.023) (0.019) (0.014)

700 0.132 0.241 0.327 0.151 0.446
(0.011) (0.014) (0.016) (0.010) (0.011)

2D Mixed 1

200 0.090 0.150 0.229 0.122 0.405
(0.018) (0.021) (0.025) (0.020) (0.013)

350 0.076 0.144 0.229 0.111 0.391
(0.010) (0.016) (0.020) (0.017) (0.011)

700 0.070 0.142 0.232 0.101 0.372
(0.009) (0.011) (0.014) (0.011) (0.008)

2D Mixed 2

200 0.121 0.152 0.201 0.139 0.467
(0.019) (0.022) (0.025) (0.024) (0.020)

350 0.116 0.152 0.202 0.132 0.417
(0.014) (0.016) (0.021) (0.015) (0.023)

700 0.108 0.148 0.199 0.123 0.299
(0.009) (0.012) (0.012) (0.009) (0.027)

2D Mixed 3

200 0.107 0.116 0.264 0.208 0.344
(0.024) (0.018) (0.023) (0.022) (0.036)

350 0.098 0.116 0.265 0.200 0.280
(0.012) (0.014) (0.021) (0.018) (0.025)

700 0.097 0.114 0.265 0.192 0.250
(0.012) (0.011) (0.016) (0.013) (0.015)

Table 4

Averaged misclassification rates with standard errors in brackets for 2D simulations when
m = 400 over 100 replicates.

Model m = 400
mfDNN MSDA PLDA mfRF CNN

2D Gaussian

200 0.145 0.245 0.329 0.155 0.465
(0.025) (0.027) (0.029) (0.024) (0.022)

350 0.139 0.242 0.331 0.141 0.459
(0.017) (0.021) (0.022) (0.017) (0.015)

700 0.131 0.241 0.329 0.132 0.438
(0.011) (0.014) (0.016) (0.011) (0.011)

2D Mixed 1

200 0.089 0.150 0.232 0.105 0.399
(0.017) (0.022) (0.026) (0.018) (0.014)

350 0.075 0.144 0.232 0.098 0.382
(0.010) (0.016) (0.019) (0.014) (0.010)

700 0.069 0.142 0.235 0.089 0.359
(0.008) (0.011) (0.015) (0.011) (0.007)

2D Mixed 2

200 0.119 0.152 0.204 0.132 0.443
(0.018) (0.022) (0.025) (0.019) (0.023)

350 0.114 0.151 0.206 0.127 0.365
(0.013) (0.016) (0.021) (0.015) (0.030)

700 0.099 0.148 0.203 0.118 0.222
(0.009) (0.012) (0.013) (0.010) (0.019)

2D Mixed 3

200 0.099 0.116 0.264 0.199 0.281
(0.020) (0.019) (0.024) (0.022) (0.036)

350 0.090 0.115 0.267 0.191 0.250
(0.012) (0.014) (0.021) (0.017) (0.022)

700 0.085 0.114 0.265 0.186 0.235
(0.010) (0.011) (0.016) (0.013) (0.017)

Multiclass classification for multidimensional functional data 1267

further confirms Theorem 3.2. Given the relatively sparse sampling frequency,
i.e., m = 9, MSDA has slightly better performance than mfDNN does. However,
despite the increase of m in Tables 3 and 4, there is no improvement of both
MSDA and PLDA methods in terms of misclassification risks. This finding indi-
cates that MSDA and PLDA classifiers can not be improved with more gathered
information. The misclassification errror rates of the mfRF and CNN decrease
slightly as the sample size and increasing. The method mfRF outperforms CNN
and PLDA in most cases, showcasing that the proposed dimension reduction
strategy by mfDNN effectively collects the information of the functional data
observations. In addition, compared to MSDA and PLDA, mfRF and CNN have
better performance with larger sampling frequency. This is because the inherent
nature of both mfRF and CNN involves processing imaging data as a whole. In
contrast to traditional multivariate analysis methods, which treat the sampling
frequency (pixel or voxel number) as the data dimension, mfRF and CNN do
not face the curse of dimensionality. Instead, they benefit from higher sampling
frequencies, yielding better results as they capture more information from the
data. In summary, the simulation results illustrate that the proposed mfDNN
method dominates the existing penalized discriminant analysis and two modern
deep learning methods when classifying 2D dense functional data. Addition-
ally, in Appendix B, Figure 4 demonstrates the phase transition phenomenon
of mfDNN method for Models 1 to 4.

5.3. 3D functional data

For k = 1, 2, 3 and s1, s2, s3 ∈ [0, 1], we generate 3D functional data
X

(k)
i (s1, s2, s3)=

∑9
j=1 ξ

(k)
ij ψj(s1, s2, s3) where ψ1(s1, s2, s3)=s1, ψ2(s1, s2, s3) =

s2, ψ3(s1, s2, s3) = s3, ψ4(s1, s2, s3) = s1s2, ψ5(s1, s2, s3) = s1s3, ψ6(s1, s2, s3) =
s2s3, ψ7(s1, s2, s3) = s2

1, ψ8(s1, s2, s3) = s2
2, ψ9(s1, s2, s3) = s2

3, and the distri-
bution of ξ(k)

ij ’s are specified as below.

Model 5 (3D Gaussian): Let
(
ξ
(k)
i1 , . . . , ξ

(k)
i9

)ᵀ
∼ N(μk,Σk), where μ1 = 2 ×

19, Σ1/2
1 = Σ1/2

2 = diag (9, 8, 7, 6, 5, 4, 3, 2, 1), μ2 = μ3 = 09, Σ1/2
3 = 1/3×Σ1/2

1 .
Model 6 (3D Mixed 1): Let

(
ξ
(k)
i1 , . . . , ξ

(k)
i9

)ᵀ
∼ N(μk,Σk) for k = 1, 2, and

ξ
(3)
ij ∼ tj+1(νj), where (ν1, . . . , ν5)ᵀ = 3×15, μ1 = −19, Σ1/2

1 = diag(5.5, 5, 4.5, 4,
3.5, 3, 2.5, 2, 1.5), μ2 = 09, Σ1/2

2 = diag (4.5, 4, 3.5, 3, 2.5, 2, 1.5, 1, 0.5).
Model 7 (3D Mixed 2): Let

(
ξ
(1)
i1 , . . . , ξ

(1)
i9

)ᵀ
∼ N(μk,Σk), ξ(2)

ij ∼ tj+1(ν2j),

where μ1 = 09, Σ1/2
1 = diag (4.5, 4, 3.5, 3, 2.5, 2, 1.5, 1, 0.5), (ν21, . . . , ν29)ᵀ =

−19, (ν31, . . . , ν39)ᵀ = 0.5 × 19.
Model 8 (3D Mixed 3): Let ξ

(1)
ij ∼ Exp(r1j), ξ

(2)
ij ∼ tj+1(ν2j), and(

ξ
(3)
i1 , . . . , ξ

(3)
i9

)ᵀ
∼ N(μ3,Σ3), where (r11, . . . , r19)ᵀ = 0.1×(1, 3, 5, 7, 9, 11, 13, 15,

17)ᵀ, (ν21, . . . , ν29)ᵀ = 0.6 × 19, μ3 = 09, Σ1/2
3 = diag(4.5, 4, 3.5, 3, 2.5, 2, 1.5,

1, 0.5).

1268 S. Wang and G. Cao

Table 5

Averaged misclassification rates with standard errors in brackets for 3D simulations when
m = 8 over 100 replicates.

Model nk
m = 8

mfDNN MSDA PLDA mfRF CNN

3D Gaussian

200 0.374 0.465 0.485 0.380 –
(0.024) (0.037) (0.045) (0.028) –

350 0.373 0.474 0.495 0.383 –
(0.020) (0.029) (0.042) (0.022) –

700 0.363 0.472 0.488 0.374 –
(0.014) (0.025) (0.041) (0.017) –

3D Mixed 1

200 0.215 0.224 0.238 0.259 –
(0.022) (0.024) (0.022) (0.027) –

350 0.200 0.221 0.236 0.253 –
(0.018) (0.019) (0.020) (0.021) –

700 0.188 0.220 0.237 0.252 –
(0.011) (0.014) (0.012) (0.014) –

3D Mixed 2

200 0.311 0.325 0.346 0.308 –
(0.018) (0.025) (0.026) (0.025) –

350 0.307 0.328 0.345 0.300 –
(0.018) (0.021) (0.022) (0.021) –

700 0.253 0.326 0.347 0.295 –
(0.014) (0.015) (0.015) (0.015) –

3D Mixed 3

200 0.272 0.308 0.315 0.295 –
(0.026) (0.031) (0.030) (0.025) –

350 0.268 0.303 0.309 0.288 –
(0.019) (0.023) (0.024) (0.020) –

700 0.253 0.302 0.311 0.279 –
(0.014) (0.017) (0.017) (0.015) –

For the 3D functional data, we apply similar setups as 2D cases. We observe
the functional data on 2 × 2 × 2, 3 × 3 × 3, 4 × 4 × 4, and 5 × 5 × 5 grid points
over [0, 1]3, respectively, and the sampling frequency m = 8, 27, 64, 125. Tables 5
to 8 demonstrate the results of 100 simulations. The proposed mfDNN classi-
fier is superior to its counterparts for all 3D functional data cases. Meanwhile,
there also exists the phase transition patterns for mfDNN method. However,
the performance of MSDA and PLDA methods lacks of improvement with the
increase of m. It can be seen that when m = 125, the misclassification error
rates of mfDNN are almost one third of MSDA’s and one forth of PLDA’s
in Gaussian case, and almost a half of either MSDA’s or PLDA’s error rates
in Models 7 and 8. A plausible reason is that given the functional data frame-
work, our proposed mfDNN can properly accommodate the repeatedly observed
data over pixels or voxels, while other competitors only treat those information
as common high-dimensional covariates and ignore the underlining smoothing
structures. By efficiently extracting the projection scores of the continuum, the
proposed mfDNN has full potential to discover the underlying distributions of
the functional data clusters. Similar as 2D functional data cases, the method
mfRF has the second best performance in most cases. Note that in Table 5,
the CNN architecture is not suitable for the given design of 2 × 2 × 2 due to
its extreme sparsity. In order to effectively capture spatial information, a CNN
typically necessitates a filter dimension of at least 2 × 2 × 2, resulting in an

Multiclass classification for multidimensional functional data 1269

Table 6

Averaged misclassification rates with standard errors in brackets for 3D simulations when
m = 27 over 100 replicates.

Model m = 27
mfDNN MSDA PLDA mfRF CNN

3D Gaussian

200 0.234 0.367 0.491 0.335 0.540
(0.020) (0.030) (0.046) (0.029) (0.024)

350 0.233 0.369 0.500 0.334 0.537
(0.020) (0.023) (0.041) (0.020) (0.017)

700 0.232 0.374 0.493 0.319 0.513
(0.013) (0.018) (0.041) (0.015) (0.014)

3D Mixed 1

200 0.168 0.164 0.242 0.245 0.367
(0.021) (0.022) (0.022) (0.024) (0.011)

350 0.151 0.156 0.240 0.234 0.355
(0.017) (0.016) (0.020) (0.020) (0.008)

700 0.149 0.152 0.241 0.227 0.340
(0.010) (0.011) (0.013) (0.014) (0.006)

3D Mixed 2

200 0.277 0.294 0.348 0.276 0.349
(0.020) (0.022) (0.025) (0.026) (0.012)

350 0.268 0.289 0.348 0.267 0.337
(0.018) (0.018) (0.022) (0.020) (0.012)

700 0.234 0.286 0.350 0.258 0.312
(0.013) (0.014) (0.015) (0.014) (0.010)

3D Mixed 3

200 0.268 0.292 0.313 0.264 0.354
(0.026) (0.029) (0.030) (0.028) (0.036)

350 0.239 0.286 0.310 0.253 0.298
(0.018) (0.024) (0.023) (0.022) (0.024)

700 0.234 0.286 0.312 0.240 0.254
(0.013) (0.015) (0.017) (0.015) (0.015)

Table 7

Averaged misclassification rates with standard errors in brackets for 3D simulations when
m = 64 over 100 replicates.

Model nk
m = 64

mfDNN MSDA PLDA mfRF CNN

3D Gaussian

200 0.135 0.369 0.493 0.245 0.533
(0.018) (0.029) (0.048) (0.024) (0.021)

350 0.123 0.369 0.502 0.231 0.528
(0.015) (0.022) (0.042) (0.019) (0.018)

700 0.114 0.374 0.495 0.207 0.486
(0.010) (0.019) (0.04) (0.014) (0.015)

3D Mixed 1

200 0.130 0.163 0.243 0.190 0.356
(0.021) (0.022) (0.022) (0.026) (0.011)

350 0.109 0.156 0.241 0.171 0.343
(0.014) (0.016) (0.020) (0.018) (0.009)

700 0.098 0.153 0.243 0.155 0.325
(0.010) (0.011) (0.013) (0.014) (0.009)

3D Mixed 2

200 0.166 0.294 0.350 0.202 0.324
(0.020) (0.022) (0.025) (0.022) (0.015)

350 0.147 0.289 0.349 0.187 0.308
(0.015) (0.018) (0.023) (0.018) (0.016)

700 0.141 0.286 0.351 0.175 0.271
(0.012) (0.015) (0.014) (0.013) (0.014)

3D Mixed 3

200 0.184 0.292 0.312 0.205 0.308
(0.022) (0.029) (0.030) (0.024) (0.031)

350 0.171 0.287 0.310 0.190 0.269
(0.016) (0.023) (0.024) (0.017) (0.023)

700 0.160 0.286 0.312 0.172 0.239
(0.011) (0.015) (0.017) (0.013) (0.015)

1270 S. Wang and G. Cao

Table 8

Averaged misclassification rates with standard errors in brackets for 3D simulations when
m = 125 over 100 replicates.

Model m = 125
mfDNN MSDA PLDA mfRF CNN

3D Gaussian

200 0.134 0.369 0.494 0.228 0.526
(0.017) (0.029) (0.048) (0.026) (0.022)

350 0.118 0.370 0.501 0.215 0.517
(0.012) (0.022) (0.042) (0.019) (0.018)

700 0.108 0.374 0.495 0.193 0.457
(0.009) (0.019) (0.042) (0.015) (0.019)

3D Mixed 1

200 0.127 0.162 0.244 0.185 0.345
(0.020) (0.022) (0.023) (0.025) (0.013)

350 0.106 0.155 0.241 0.169 0.331
(0.014) (0.016) (0.020) (0.018) (0.010)

700 0.098 0.152 0.242 0.151 0.307
(0.009) (0.011) (0.013) (0.013) (0.012)

3D Mixed 2

200 0.154 0.295 0.348 0.174 0.301
(0.019) (0.024) (0.026) (0.024) (0.019)

350 0.135 0.289 0.349 0.165 0.283
(0.013) (0.018) (0.023) (0.019) (0.017)

700 0.126 0.286 0.351 0.154 0.239
(0.011) (0.014) (0.014) (0.013) (0.015)

3D Mixed 3

200 0.176 0.292 0.312 0.187 0.282
(0.021) (0.028) (0.030) (0.022) (0.029)

350 0.162 0.286 0.310 0.170 0.251
(0.016) (0.024) (0.023) (0.017) (0.021)

700 0.151 0.285 0.312 0.151 0.224
(0.012) (0.015) (0.017) (0.013) (0.015)

output of 1 × 1 × 1. Consequently, the dimension of max pooling needs to be
1×1×1, rendering the pooling step unnecessary. As a result, the CNN does not
adequately extract meaningful features, and its applicability in this context is
questionable. This finding indicates that the popular CNN algorithms can not
be adaptive the sparsely observed functional data automatically. Meanwhile,
the proposal mfDNN is more flexible for both sparse and densely observed data.
This again demonstrates our proposed classifier has a distinct advantage over
these competitors in complex imaging data classification problems.

We also compare the computational time for each method in Tables 9 and 10
in both 2D and 3D cases under the Gaussian setting (Models 1 and 5). Both
mfDNN and CNN are relatively time-consuming compared with other algo-
rithms. Notably, CNN exhibits increasing computation time as the sampling
frequency m grows. In contrast, our proposed method mfDNN remains con-
stant across different data sizes m. This consistency is achieved by employing
the extracted projection scores as inputs, which are relatively stable and do not
significantly vary with the sampling frequency. Additionally, in Appendix B,
Figure 5 demonstrates the phase transition phenomenon of mfDNN method for
Models 5 to 8.

Multiclass classification for multidimensional functional data 1271

Table 9

Averaged computational time (in minitues) for 2D simulations over 100 replicates.

nk
m = 9 m = 25

mfDNN MSDA PLDA mfRF CNN mfDNN MSDA PLDA mfRF CNN
200 2.075 0.061 0.001 0.035 1.893 1.904 0.063 0.019 0.046 2.463
350 6.812 0.067 0.017 0.076 2.871 6.250 0.068 0.025 0.098 3.557
700 13.061 0.081 0.022 0.237 4.786 12.998 0.083 0.029 0.314 6.015

nk
m = 100 m = 400

mfDNN MSDA PLDA mfRF CNN mfDNN MSDA PLDA mfRF CNN
200 2.042 0.083 0.035 0.088 5.470 1.956 0.181 0.084 0.114 21.246
350 6.874 0.087 0.052 0.187 6.708 6.537 0.205 0.101 0.234 26.703
700 13.245 0.115 0.068 0.529 13.153 13.331 0.262 0.143 0.664 46.376

Table 10

Averaged computational time (in minitues) for 3D simulations over 100 replicates.

nk
m = 8 m = 27

mfDNN MSDA PLDA mfRF CNN mfDNN MSDA PLDA mfRF CNN
200 2.145 0.053 0.006 0.042 – 2.174 0.065 0.018 0.052 3.507
350 5.867 0.059 0.006 0.085 – 6.473 0.072 0.028 0.109 5.016
700 12.904 0.084 0.024 0.250 – 13.514 0.100 0.039 0.323 9.074

nk
m = 64 m = 125

mfDNN MSDA PLDA mfRF CNN mfDNN MSDA PLDA mfRF CNN
200 2.224 0.069 0.031 0.108 3.665 2.251 0.141 0.045 0.135 5.070
350 7.083 0.080 0.040 0.223 6.196 6.938 0.152 0.055 0.276 8.389
700 13.742 0.109 0.056 0.597 10.947 14.246 0.182 0.080 0.740 15.320

6. Real data analysis

6.1. Handwritten digits

The first benchmark data example was extracted from the MNIST database
(http://yann.lecun.com/exdb/mnist/). This classical MNIST database con-
tains 60,000 training images and 10,000 testing images of handwritten digits
(0, 1, . . . , 9), and the black and white images were normalized to fit into a
28 × 28 pixel bounding box and anti-aliased. We used tensor of Fourier basis
for data processing. According to our numerical experience, we choose candi-
dates for (L, J,p, s), such that L = (2, 3, 4)ᵀ, J = (300, 500, 800)ᵀ, ‖p‖∞ =
(500, 1000, 2000)ᵀ, and s = (0.01, 0.1, 0.5) for dropout rate. Here we abuse the
notation of s, as the dropout is the technique we choose to sparsify the neural
network. With the optimal parameters Lopt = 3, Jopt = 500, ‖popt‖∞ = 1000,
sopt = 0.01 through validation, we demonstrate the misclassification risk in Ta-
ble 11. We estimate the rules given by MSDA, PLDA, mfRF, CNN and our
proposal on the training set. As most observations for each subject are zeros,
PenalizedLDA reports errors and does not work any more. It can be seen that
our proposal achieves the second best training accuracy compared with mfRF,
and also second best performance on testing accuracy. However, when consid-
ering both training and testing accuracy and computational cost as a whole
aspect, our method is relatively competitive and efficient.

http://yann.lecun.com/exdb/mnist/

1272 S. Wang and G. Cao

Fig 1. Samples from MNIST data.

Table 11

Classification accuracy for MNIST data.

methods training accuracy testing accuracy
mfDNN 0.998 0.983
MSDA 0.869 0.875
PLDA – –
mfRF 1.000 0.838
CNN 0.997 0.994

6.2. ADNI database

The dataset used in the preparation of this article were obtained from the ADNI
database (http://adni.loni.usc.edu). The ADNI is a longitudinal multi-
center study designed to develop clinical, imaging, genetic, and biochemical
biomarkers for the early detection and tracking of Alzheimer’s Disease (AD).
From this database, we collect PET data from 79 patients in AD group, 45
patients in Early Mild Cognitive Impairment (EMCI) group, and 101 people
in Control (CN) group. This PET dataset has been spatially normalized and
post-processed. These AD patients have three to six times doctor visits and we
select the PET scans obtained in the third visits. People in EMCI group only
have the second visit, and we select the PET scans obtained in the second visits.
For AD group, patients’ age ranges from 59 to 88 and average age is 76.49, and
there are 33 females and 46 males among these 79 subjects. For EMCI group,
patients’ age ranges from 57 to 89 and average age is 72.33, and there are 26
females and 19 males among these 45 subjects. For CN group, patients’ age
ranges from 62 to 87 and average age is 75.98, and there are 40 females and
61 males among these 101 subjects. All scans were reoriented into 79 × 95 × 68
voxels, which means each patient has 68 sliced 2D images with 79 × 95 pixels.
For 2D case, it means each subject has N = 79×95 = 7, 505 observed pixels for
each selected image slice. For 3D case, the observed number of voxels for each
patient’s brain image observation is N = 79× 95× 68 = 510, 340. We randomly
split the datasets with a 7 : 3 ratio in a balanced manner to form the training
set and the testing set, with 100 repetitions.

We choose candidates for (L, J,p, s), such that L = (2, 3)ᵀ, J = (50, 100, 200)ᵀ,
‖p‖∞ = (200, 500, 800)ᵀ, and s = (0.01, 0.1, 0.5) for dropout rate. We still

http://adni.loni.usc.edu

Multiclass classification for multidimensional functional data 1273

Fig 2. Averaged images of the the 20-th, the 40-th and the 60-th slices of AD group (left
column), EMCI group (middle column), and CN group (right column).

compare our method with MSDA. For 2D case, it means each subject has
N = 79 × 95 = 7, 505 observed pixels for each selected image slice. Table 12
displays the miclassification rates for 2D brain imaging data of AD, EMCI and
CN. The proposed mfDNN has the smallest risk for most cases, while mfRF
and CNN have fairly similar performance. For 3D case, the observed number of
voxels for each patient’s brain sample is N = 79 × 95 × 68 = 510, 340. Regret-
tably, the MSDA method encountered a critical failure when confronted with
over half a million covariates. The collapse ensued due to the colossal size of
the covariance matrix, reaching nearly a million by a million dimensions, de-
manding an impractical 2TB RAM for storage. This magnitude surpasses the
memory constraints of the typical supercomputer, leading to operational limita-
tions. Hence, MSDA for 3D data results are unavailable. Meanwhile, as PLDA
recasts Fisher’s discriminant problem as a biconvex problem that can be opti-
mized using a simple iterative algorithm, PLDA avoids the heavy computation
burden of the covariance matrix and it still works for this 3D case. We also note
that the computational cost and time for CNN in 3D data setting is extremely
heavy due to the voxel size of the image. It takes more than hundreds of hours
for a single replicate even with simple network structure, where the CNN struc-
ture has two convolutional layers, each comprising 32 and 64 filters, respectively.
Table 13 presents the empirical misclassification risk for mfDNN and PLDA.

There are several interesting findings in Tables 12 and 13. First, our proposed
classifier has better performance than other competitors in any 2D slice data or

1274 S. Wang and G. Cao

Table 12

Averaged misclassification rates with standard errors in brackets for ADNI 2D brain images.

methods 10-th 20-th 30-th 40-th 50-th 60-th
mfDNN 0.341 0.325 0.409 0.359 0.365 0.452

(0.057) (0.049) (0.049) (0.050) (0.041) (0.055)
MSDA 0.347 0.374 0.444 0.366 0.385 0.453

(0.038) (0.034) (0.035) (0.034) (0.039) (0.040)
PLDA 0.354 0.339 0.440 0.376 0.424 0.474

(0.057) (0.059) (0.067) (0.060) (0.068) (0.064)
mfRF 0.353 0.366 0.428 0.328 0.396 0.435

(0.045) (0.048) (0.045) (0.034) (0.048) (0.049)
CNN 0.304 0.341 0.376 0.371 0.395 0.503

(0.050) (0.052) (0.059) (0.068) (0.062) (0.058)

Table 13

Averaged misclassification rates with standard errors in brackets for ADNI 3D brain images.

methods Misclassification rates
mfDNN 0.274 (0.044)
MSDA – (–)
PLDA 0.295 (0.056)
mfRF 0.358 (0.041)
CNN – (–)

3D data cases. Second, from Table 13, we can conclude that given a single slice
of 2D imaging data, the misclassification rates are consistently larger than using
the 3D data. It indicates that 3D data contains more helpful information to label
the brain images among three stages of the disease. Third, the 10-th and the
20-th slices provide the lowest misclassification error rates among all 2D data.
As a matter of fact, it is well known that Alzheimer’s disease destroys neurons
and their connections in hippocampus, the entorhinal cortex, and the cerebral
cortex. The related regions are corresponding to the first 25 slices. This is a
promising finding for neurologists, as this smallest risk indicates this particular
slice presents useful information to distinguish the CN, EMCI and AD groups.
Further medical checkups are meaningful for this special location in the brain.

7. Summary

In this paper, we propose a new formulation to derive multiclass classifiers for
multidimensional functional data. We show that our proposal has a solid theoret-
ical foundation and can be solved by a very efficient computational algorithm.
Our proposal actually gives a unified treatment of both one-dimensional and
multidimensional classification problems. In light of this evidence, our proposal
is regarded as an efficient multiclass and generalization of the multiclassification
methods from i.i.d. data to multidimensional functional data cases. To the best
of our knowledge, the present work is the first work on multiclassification for
multidimensional functional data with theoretical justification.

Multiclass classification for multidimensional functional data 1275

Appendix A: Proofs of Theorems 3.1 and 3.2

Throughout the section for any two vectors a=(a1, . . . , aK)ᵀ and b=(b1, . . . , bK)ᵀ
with length K, denote

aᵀ log
(a
b

)
=

K∑
k=1

ak log
(
ak
bk

)
.

Let Fid be the network class with identity activation function as the last-
layer activation function. We have the following lemma for approximation of
the exponential output.

Lemma 7.1. (Theorem 4.1 in [4]) For all M ≥ 2 and β > 0, there exists a
G ∈ Fid(L, 1,p, s), with L = �40(β+2)2 log2(M)�, p = (1, �48�β�32βM1/β�, . . .,
�48�β�32βM1/β�, 1), and s ≤ 4284(β + 5)22βM1/β log2(M), such that ∀x ∈
[0, 1], |eG(x) − x| ≤ 4M−1 and G(x) ≥ log2(4M−1).

Lemma 7.2. (Lemma 3 in [28]) Let huv be the function defined as follows:

h0 = g0

2R0
+ 1

2 , hi = gi(2Ri−1x−Ri−1)
2Ri

+ 1
2 , hq = gq(2Rq−1x−Rq−1),

where for any x ∈ [0, 1]du , u ∈ 0, . . . , q, 2Ru−1x − Ru−1 is equivalent to the
transform of 2Ru−1xu − Ru−1 for every u = 1, . . . , du. Then for any functions
h̃u =

(
h̃uv

)ᵀ
with h̃uv : [0, 1]tu → [0, 1],

‖hq ◦ . . . ◦ h0 − h̃q ◦ . . . ◦ h̃0‖∞ ≤ Rq

q−1∏
�0

(2R�)β�+1

q∑
u=0

‖|hu − h̃u|∞‖
∏q

�=u+1 min{β�,1}
∞ .

Lemma 7.3. (Theorem 5 in [28]) For ant function f ∈ Cβ([0, 1]r , R) and any
integers m0 ≥ 1 and N ≥ max{(β + 1)r, (R + 1)er}, there exists a network

f̃ ∈ F(L, r, (r, 6(r + �β�)N, . . . , 6(r + �β�)N, 1), s,∞)

with depth
L = 8 + (m0 + 5)(1 + �log2(max{r, β})�)

and number of parameters

s ≤ 141(r + β + 1)3+rN(m0 + 6),

such that

‖f̃ − f‖∞ ≤ (2R + 1)(1 + r2 + β2)6rN2−m0 + K3βN−β/r.

Lemma 7.4. (Network approximation of p(k)
J) For any sufficiently large M > 0,

there exists a constant ck > 0 and a H(k) ∈ F(L(k), J,p(k), s(k)), with

L(k) = 3(q(k) − 1) +
q(k)∑
u=0

[
8 +
(

max
u

(
1

β
(k)
u

∗∗ log2

(
A

(k)
u C(t(k)

u)
B

(k)
u

)

1276 S. Wang and G. Cao

+
(

1 + β
(k)
u

t
(k)
u

)(
max

u

t
(k)
u

β̃
(k)
u

)
log2 M

)
+ 5
)

(1 + �log2(t(k)
u ∨ β(k)

u)�)
]
,

p(k) =(J, 6 max
u

d
(k)
u+1(t(k)

u + �β(k)
u �)M

maxu
t
(k)
u

β̃
(k)
u , . . . ,

6 max
u

d
(k)
u+1(t(k)

u + �β(k)
u �)M

maxu
t
(k)
u

β̃
(k)
u , 1),

s(k) =
q(k)∑
u=0

d
(k)
u+1

[
141(t(k)

u + β(k)
u + 1)3+t(k)

u M
maxu

t
(k)
u

β̃
(k)
u

×
{

max
u

(
1

β
(k)
u

∗∗ log2

(
A

(k)
u C(t(k)

u)
B

(k)
u

)
+
(

1+β
(k)
u

t
(k)
u

)(
max

u

t
(k)
u

β̃
(k)
u

)
log2 M

)
+6} + 4] ,

where β
(k)
u

∗∗
=
∏q(k)

�=u+1 β
(k)
� ∧ 1, A(k)

u =
{
Rq(k)

∏q(k)−1
�=0 (2R�)β

(k)
�+1

}
(2Q(k)

u + 1),

B
(k)
u =

{
Rq(k)

∏q(k)−1
�=0 (2R�)β

(k)
�+1

}
(Q(k)

u 3β(k)
u)β(k)

u

∗∗
, C(t(k)

u) = 2(t(k)
u)26t(k)

u β(k)
u

∗∗
,

Q
(k)
u are some absolute constants only depending on β

(k)
u , R(k)

u , such that

‖H(k) − π
(J)
k ‖∞ ≤ ckM

−1.

Proof. Let mk be the depth parameter, and Nk be the width parameter. Fol-
lowing Lemmas 7.2 and 7.3, we have

inf
H̃(k)∈F(L,J,p,s)

‖H̃(k) − π
(J)
k ‖∞ ≤ ‖hq(k) ◦ . . . ◦ h0 − h̃q(k) ◦ . . . ◦ h̃0‖∞

≤
q(k)∑
u=0

A(k)
u C(t(k)

u)(Nk2−mk)β
(k)
u

∗∗

+
q(k)∑
u=0

B(k)
u N

−β̃(k)
u /t(k)

u

k .

The corresponding network structure under the specific approximation error is
given by

L(k) = 3(q(k) − 1) +
q(k)∑
u=0

[
8 + (mk + 5)(1 + �log2(t(k)

u ∨ β(k)
u)�)

]
,

p(k) = (J, 6rkNk, . . . , 6rkNk, 1),

s(k) =
q(k)∑
u=0

d
(k)
u+1

[
141(t(k)

u + β(k)
u + 1)3+t(k)

u Nk(mk + 6) + 4
]
,

where rk = maxu d
(k)
u+1(t

(k)
u + �β(k)

u �).

Multiclass classification for multidimensional functional data 1277

Let mk = maxu

{
1

β
(k)
u

∗∗ log2

(
A(k)

u C(t(k)
u)

B
(k)
u

)
+
(
1 + β(k)

u

t
(k)
u

)
log2 Nk

}
and N

minu
β̃
(k)
u

t
(k)
u

k

= M , the proof is complete with ck = 2(q(k) + 1)maxu B
(k)
u .

Define absolute constants

D
(k)
1 = 3(q(k) − 1) +

q(k)∑
u=0

{
8 + max

u

[(
1

β
(k)
u

∗∗ log2

(
A

(k)
u C(t(k)

u)
B

(k)
u

)
+5) (1 + �log2(t(k)

u ∨ β(k)
u)�)

]}
,

D
(k)
2 =

q(k)∑
u=0

(1 + �log2(t(k)
u ∨ β(k)

u)�)max
u

(
1 + β

(k)
u

t
(k)
u

)(
max

u

t
(k)
u

β̃
(k)
u

)
,

D
(k)
3 = 6 max

u
d
(k)
u+1(t(k)

u + �β(k)
u �), D

(k)
4 = 4

q(k)∑
u=0

d
(k)
u+1,

D
(k)
5 =

q(k)∑
u=0

d
(k)
u+1

[
141(t(k)

u + β(k)
u + 1)3+t(k)

u

]
,

D
(k)
6 = max

u

{
1

β
(k)
u

∗∗ log2

(
A

(k)
u C(t(k)

u)
B

(k)
u

)}
+ 6,

D
(k)
7 = max

u

(
1 + β

(k)
u

t
(k)
u

)(
max

u

t
(k)
u

β̃
(k)
u

)
,

D8 = 2 max
k

D
(k)
2 , D9 = max

k
D

(k)
3 , D10 = 4 max

k
D

(k)
5 D

(k)
7 .

We can simplify the aforementioned network structure as

L(k) = D
(k)
1 + D

(k)
2 log2 M,

p(k) = (J,D(k)
3 M

maxu
t
(k)
u

β̃
(k)
u , . . . , D

(k)
3 M

maxu
t
(k)
u

β̃
(k)
u , 1),

s(k) = D
(k)
4 + D

(k)
5 M

maxu
t
(k)
u

β̃
(k)
u

(
D

(k)
6 + D

(k)
7 log2 M

)
.

In the following, we consider relatively large M ≥ M0, such that

M0 = max

⎧⎨⎩2maxk D
(k)
1 /D

(k)
2 , 2maxk D

(k)
6 /D

(k)
7 ,max

k

(
D

(k)
4

D
(k)
5

)minu β̃(k)
u /t(k)

u

⎫⎬⎭ .

Define

D11 = D8 + 40
(
β̃

(k̂)
û + 2

)2
+ 1,

D12 = K

(
D9 + 48�β̃(k̂)

û �32β̃
(k̂)
û

)
,

1278 S. Wang and G. Cao

D13 = K

{
D10 + 4284

(
β̃

(k̂)
û + 5

)2
2β̃

(k̂)
û

}
.

We have the following lemma for approximating πJ .

Lemma 7.5. For any M ≥ M0, a, b ∈ R, there exists π̃J ∈ F(L, J,p, s) and
an absolute constant C4, with

L = D11 log2 M, (7.1)

p =
(
J,D12M

t
(k̂)
û /β̃

(k̂)
û , . . . , D12M

t
(k̂)
û /β̃

(k̂)
û ,K

)
, (7.2)

and
s ≤ D13M

t
(k̂)
û /β̃

(k̂)
û log2(M), (7.3)

such that
‖π̃(k)

J − π
(J)
k ‖∞ ≤ 2K(4 + C4)

M
,

and π̃
(k)
J (xJ) ≥ M−1 for all k ∈ {1, . . . ,K} and xJ ∈ [a, b]J .

Proof. According to Lemma 7.4, for all sufficiently large M , there exists a
constant C4 = maxk ck and a H(k) ∈ F(L′, J,p′, s′), with L′ = maxk L

(k),
p′ = maxk p

(k), s′ = maxk s
(k), such that

‖H(k) − π
(J)
k ‖∞ ≤ C4M

−1, ∀k ∈ 1, . . . ,K.

Let G be the function defined in Lemma 7.1, with the corresponding network

class, denoted as F(L′′, J,p′′, s′′), and π̃
(k)
J (xJ) =

exp
(
G(H(k))

)
∑K

�=1 exp
(
G(H(�))

) . Directly
following the technical constructions in Lemma 4.3 in [4] and Lemma 7.1, we
have ‖π̃(k)

J − π
(J)
k ‖∞ ≤ 2K(4 + C4)M−1 and π̃

(k)
J (xJ) ≥ M−1 for all k ∈

1, . . . ,K and xJ ∈ [a, b]J .
Applying the composition rule, we have

G ◦ σ0(H(k)) ∈ F
(
L′ + L′′ + 1, J, (p′0, . . . , p′L′+1, p

′′
0 , . . . , p

′′
L′′+1), s′ + s′′

)
.

Together with the parallelization rule, the network G =
(
G(H(1)), . . . , G(H(K))

)
with softmax output belongs to

F (L′ + L′′ + 2, J, (J,Kp, . . . ,Kp),K(s′ + s′′)) ,

where p = (max�=1,...,L′+1 p
′
�) ∨ ‖p′′‖∞. Since we have

L′ ≤ D8 log2 M, max
�=1,...,L′+1

p′� ≤ D9M
t
(k̂)
û /β̃

(k̂)
û , s′ ≤ D10M

t
(k̂)
û /β̃

(k̂)
û log2 M,

let β in Lemma 7.1 be β = β̃
(k̂)
û , and

L′ + L′′ ≤
(
D8 + 40

(
β̃

(k̂)
û + 2

)2)
log2 M,

Multiclass classification for multidimensional functional data 1279

p ≤
(
D9 + 48�β̃(k̂)

û �32β̃
(k̂)
û

)
M t

(k̂)
û /β̃

(k̂)
û ,

s′ + s′′ ≤
{
D10 + 4284

(
β̃

(k̂)
û + 5

)2
2β̃

(k̂)
û

}
M t

(k̂)
û /β̃

(k̂)
û log2(M),

thus proof is complete.

Lemma 7.6. There exists some constants C1, C2, C3 only depending on H and
C0, C∗

3 depending on H, C0, a, and b, and a network π̂ ∈ F(L, J,p, s), where

• L ≤ C1 logn,
• ‖p‖∞ ≤ max{J,K,C2n

ν},
• s ≤ C3n

ν logn,

such that

Eh

{
πᵀ
J(ξJ)

[(
C0ε

−1) ∧ log
(
πJ(ξJ)
π̂(ξJ)

)]}
≤ C∗

3n
−θ log3 n

for π̂ taking values on [a, b], a < b ∈ R.

Proof. According to Equations (7.1), (7.2), (7.3), and proof of Theorem 3.3
in [4], let M = �cKnμ̄� for some small constant cK depending on K, where

μ̄ = 1+α
l̂

1+α̃ · β
(l̂)∗
v̂

(1+α
l̂
)β(l̂)∗

v̂ +t
(l̂)
v̂

, the conclusion follows for L ≤ C1 logn, ‖p‖∞ ≤
max{J,K,C2n

ν}, s ≤ C3n
ν logn, where C1, C2, C3 depend on D11, D12 and

D13 respectively along with cK .

Lemma 7.7. Assumption 1 implies that there exists a constant C5, such that∣∣∣E (πk(ξ) − π
(J)
k (ξJ)

)∣∣∣ ≤ C5ζ(J)

for all k = 1, . . . ,K.

Proof. Without loss of generality, suppose
∫∞
0 π(x)dx = 1, otherwise we scale

it by C5 =
∫∞
0 π(x)dx.∣∣∣E (πk − π

(J)
k

)∣∣∣ ≤ E|πk − π
(J)
k | =

∫ ∞

0
P(|πk − π

(J)
k | > x)dx

≤
∫ ∞

0
ζ(J)Γ(x)dx = C5ζ(J).

Lemma 7.8. Assumptions 1 and 2 imply that there exists a constant C6, such
that

P
(
π

(J)
k (ξJ) ≤ x

)
≤ C6 (xαk + ζ(J)) , ∀x ∈ (0, 1] , k = 1, . . . ,K, ∀J ≥ J0.

1280 S. Wang and G. Cao

Proof. According to Assumption 1 and Assumption 2, for any k = 1, . . . ,K, we
have

P
(
π

(J)
k (ξJ) ≤ x

)
= P

(
πk ≤ x + πk − π

(J)
k

)
≤ P

(
πk ≤ x + |πk − π

(J)
k |
)

= P
(
πk ≤ x + |πk − π

(J)
k |, |πk − π

(J)
k | ≤ x

)
+P
(
πk ≤ x + |πk − π

(J)
k |, |πk − π

(J)
k | > x

)
≤ P (πk ≤ 2x) + P

(
|πk − π

(J)
k | > x

)
≤ C(2x)αk + ζ(J)Γ(x) ≤ ((C2αk) ∨ Γ(x)) (xαk + ζ(J)) .

Let C6 = max{C2α1 , . . . , C2αK , supx∈(0,1) Γ(x)}, and the proof is complete.

Lemma 7.9. Assumption 1 and Assumption 2 imply that given the ε, for any
x ∈ (0, ε),

P
(
π

(J)
k (ξJ) > x

)
≥ 1 − Γ(ε− x)ζ(J)

for all k = 1, . . . ,K and J ≥ J0.

Proof. According to Assumption 1 and Assumption 2, for any k = 1, . . . ,K, we
have

P
(
π

(J)
k ≥ x

)
= P

(
πk ≥ x + πk − π

(J)
k

)
≥ P

(
πk ≥ x + |πk − π

(J)
k |
)

≥ P
(
πk ≥ x + |πk − π

(J)
k |, |πk − π

(J)
k | ≤ ε− x

)
= P

(
πk ≥ x + |πk − π

(J)
k |
∣∣∣|πk − π

(J)
k | ≤ ε− x

)
P
(
|πk − π

(J)
k | ≤ ε− x

)
≥ P (πk ≥ ε) P

(
|πk − π

(J)
k | ≤ ε− x

)
≥ 1 − Γ(ε− x)ζ(J).

The proof is complete.

Lemma 7.10. Assumption 1 and Assumption 2 implies that there exists con-

stants C7 and C8, such that E
(

1
πk

)
≤ C7, and E

(
1

π
(J)
k

)
≤ C8 for all k =

1, . . . ,K and J ≥ J0.

Proof. Since P (πk > ε) = 1, we have P
(

1
πk

≥ x
)

= 0 for all x > 1/ε. Therefore

E
(

1
πk

)
=
∫ ∞

0
P
(

1
πk

≥ x

)
dx =

∫ ε−1

0
P
(

1
πk

≥ x

)
dx

Multiclass classification for multidimensional functional data 1281

=
∫ 1

0
P
(

1
πk

≥ x

)
dx +

∫ ε−1

1
P
(

1
πk

≥ x

)
dx

=
∫ 1

0
P
(
πk ≤ 1

x

)
dx +

∫ ε−1

1
P
(

1
πk

≥ x

)
dx

≤ 1 +
∫ ε−1

1
Cx−αkdx = Cεαk−1 + 1 − C,

where the inequality is owing to the derivation of Assumption 2, such that

P
(

1
πk

≥ x

)
≤ Cx−αk , ∀x ∈ [1,∞) .

According to Lemma 7.9, since P
(
π

(J)
k > x

)
≥ 1 − Γ(ε − x)ζ(J) for all x ∈

(0, ε), we have P
(

1
π

(J)
k

≥ x

)
≤ Γ(ε − 1/x)ζ(J) for all x > 1/ε. Together with

Lemma 7.8, we have

E
(

1
π

(J)
k

)

=
∫ 1

0
P
(

1
π

(J)
k

≥ x

)
dx +

∫ ε−1

1
P
(

1
π

(J)
k

≥ x

)
dx +

∫ ∞

ε−1
P
(

1
π

(J)
k

≥ x

)
dx

≤
∫ 1

0
P
(
π

(J)
k ≤ 1

x

)
dx +

∫ ε−1

1
P
(

1
π

(J)
k

≥ x

)
dx +

∫ ∞

ε−1
Γ(ε− 1/x)ζ(J)dx

≤ 1 +
∫ ε−1

1
C6
(
x−αk + ζ(J)

)
dx + Δ.

Let C7 = max{Cεα1−1 +1−C, . . . , CεαK−1 +1−C} and C8 = maxk{C6ε
α1−1 +

1 − C6 + (ε−1 − 1)e(J0) + Δ, . . . , C6ε
αK−1 + 1 − C6 + (ε−1 − 1)e(J0) + Δ}, the

proof is complete.

Lemma 7.11. When E|ξj − ξ̂j | ≤ m−τ for all j = 1, . . . , J , where J is some
relatively large constant, Assumption 1 and Assumption 2 imply that there exists
a constant C9, such that

P
(
π

(J)
k (ξ̂J) ≤ x

)
≤ C9

(
xαk + ζ(J) + xm−τβ̃

)
, ∀x ∈ (0, 1] ,∀k ∈ {1, . . . ,K}.

Proof. We first give the expected distance between πk(ξJ) and π
(J)
k (ξ̂J). By the

definition of π(J)
k , we have

∣∣∣π(J)
k (ξJ) − π

(J)
k (ξ̂J)

∣∣∣ ≤ Rq(k)+1‖ξJ − ξ̂J‖β̃
(k)
0 ∧1

∞ , and
thus

E
∣∣∣π(J)

k (ξJ) − π
(J)
k (ξ̂J)

∣∣∣ ≤ CRm
−τβ̃ ,∀k = 1, . . . ,K,

where CR = maxk=1,...,K Rq(k)+1. Together with Lemma 7.7, we have∣∣∣E (πk(ξ) − π
(J)
k (ξ̂J)

)∣∣∣ ≤ C5ζ(J) + CRm
−τβ̃ ,∀k = 1, . . . ,K.

1282 S. Wang and G. Cao

According to Assumption 1 and Assumption 2, for any k = 1, . . . ,K, we have

P
(
π

(J)
k (ξ̂J) ≤ x

)
= P

(
π

(J)
k (ξJ) ≤ x + π

(J)
k (ξJ) − π

(J)
k (ξ̂J)

)
≤ P

(
π

(J)
k (ξJ) ≤ x +

∣∣∣π(J)
k (ξJ) − π

(J)
k (ξ̂J)

∣∣∣)
≤ P

(
π

(J)
k (ξJ) ≤ x +

∣∣∣π(J)
k (ξJ) − π

(J)
k (ξ̂J)

∣∣∣ , ∣∣∣π(J)
k (ξJ) − π

(J)
k (ξ̂J)

∣∣∣ ≤ x
)

+P
(
π

(J)
k (ξJ) ≤ x +

∣∣∣π(J)
k (ξJ) − π

(J)
k (ξ̂J)

∣∣∣ , ∣∣∣π(J)
k (ξJ) − π

(J)
k (ξ̂J)

∣∣∣ > x
)

≤ P
(
π

(J)
k (ξJ) ≤ 2x

)
+ P
(∣∣∣π(J)

k (ξJ) − π
(J)
k (ξ̂J)

∣∣∣ > x
)

≤ C6(xαk + ζ(J)) + xE
∣∣∣π(J)

k (ξJ) − π
(J)
k (ξ̂J)

∣∣∣
≤ C6(xαk + ζ(J)) + xC5ζ(J) + xCRm

−τβ̃

≤ C9

(
xαk + ζ(J) + xm−τβ̃

)
,

where C9 = (C5 + C6) ∨ CR, the proof is complete.

Define the set of the effective inputs of the k-th group by

Ak =
{
j : ξj is effective for g

(k)
0v for all v = 1, . . . , d(k)

1

}
,

such that |Ak| ≤ t
(k)
0 d

(k)
1 < ∞. Let A =

⋃K
k=1 Ak be the effective inputs among

all groups, where |A| ≤
∑K

k=1 t
(k)
0 d

(k)
1 < ∞. Given an integer M0, let BM0 =

{|ξj | ≤ M0 for all j ∈ A} be the concentration set for all effective inputs.

Lemma 7.12. Under Assumptions 1 and 2, for any h ∈ H and C0 > 0, there
exists some constants M0,M

∗
0 , such that the functional deep neural network

classifier π̂ in network space F(L, J,p, s) which is derived in Lemma 7.6 satisfies

Rh,C0 (π̂) ≤ 4C0K
2 {(C5 + 1)2+maxk αk∧1C6ε

−1 + (4 + C4)C5M
∗
0
}
ζ(J)

+Eh

{
πᵀ
J(ξJ)

[(
C0ε

−1) ∧ log
(
πJ(ξJ)
π̂(ξJ)

)]}
,

where π̂ takes value on (−M0,M0).

Proof. For any a, b, c ≥ 0, we have a simple fact that

a ∧ (b + c) ≤ (a + c) ∧ (b + c) = (a ∧ b) + c.

Let 1K = (1, . . . , 1)ᵀ with length K, we have

Eh

[
π(ξ)ᵀ

{
C01K ∧ log

(
π(ξ)
π̂(ξJ)

)}]
= Eh

[
(π(ξ)ᵀC0) ∧

{
π(ξ)ᵀ log

(
π(ξ)
π̂(ξJ)

)}]

Multiclass classification for multidimensional functional data 1283

≤ Eh

{
C0 ∧

[
(π(ξ) − πJ(ξJ) + πJ(ξJ))ᵀ log

(
π(ξ)

πJ(ξJ) · πJ(ξJ)
π̂(ξJ)

)]}
≤ Eh

[
π(ξ)ᵀ log

(
π(ξ)

πJ(ξJ)

)]
+ Eh

[
C0 ∧

∣∣∣∣(π(ξ) − πJ(ξJ))ᵀ log
(
πJ(ξJ)
π̂(ξJ)

)∣∣∣∣]
+Eh

{
C0 ∧

[
πᵀ
J(ξJ) log

(
πJ(ξJ)
π̂(ξJ)

)]}

≤
K∑

k=1

Eh

⎡⎢⎣
(
πk(ξ) − π

(J)
k (ξJ)

)2
π

(J)
k (ξJ)

⎤⎥⎦
+

K∑
k=1

Eh

[
C0 ∧

∣∣∣∣∣(πk(ξ)−π
(J)
k (ξJ)

)
log
(

1+
π

(J)
k (ξJ) − π̂(k)(ξJ)

π̂(k)(ξJ)

)∣∣∣∣∣ I (BM0)
]

+Eh

{
C0 ∧

[
πᵀ
J(ξJ) log

(
πJ(ξJ)
π̂(ξJ)

)
I (BM0)

]}
+ 2C0KP

(
Bc
M0

)
,

where the first inequality is because of πk ≤ 1, the second inequality is owing to
the aforementioned simple fact, and the last inequality holds for the first term
since KL-divergence is upper bounded by χ2-divergence.

For the first term, when J is relatively large, we have

K∑
k=1

Eh

⎡⎢⎣
(
πk(ξ) − π

(J)
k (ξJ)

)2
π

(J)
k (ξJ)

⎤⎥⎦
=

K∑
k=1

Eh

⎡⎢⎣
(
πk(ξ) − π

(J)
k (ξJ)

)2
π

(J)
k (ξJ)

I

(
π

(J)
k (ξJ) > ε

)⎤⎥⎦
+

K∑
k=1

Eh

⎡⎢⎣
(
πk(ξ) − π

(J)
k (ξJ)

)2
π

(J)
k (ξJ)

I

(
π

(J)
k (ξJ) ≤ ε

)⎤⎥⎦
<

K∑
k=1

Eh

⎡⎢⎣
(
πk(ξ) − π

(J)
k (ξJ)

)2
ε

⎤⎥⎦
+

K∑
k=1

Eh

⎡⎢⎣
(
πk(ξ) − π

(J)
k (ξJ)

)2
π

(J)
k (ξJ)

⎤⎥⎦P
(
π

(J)
k (ξJ) ≤ ε

)
≤ Kε−1C5ζ(J) + 2C0K(C5 + 1)2+maxk αk∧1C6ε

maxk αkζ(J)
≤ 4C0K(C5 + 1)2+maxk αk∧1C6ε

−1ζ(J),

where the second last inequality is derived by Lemmas 7.7 and 7.8, and Theorem
3.2 in [4].

1284 S. Wang and G. Cao

For any x, y ∈ R, there exists C ′
0, such that

|x log(1 + y)| ∧ C0 ≤ |x log(1 + y)|I(|y| ≤ C ′
0).

Therefore, combining the fact that given M0, within the concentrated set
BM0 , there exists an M∗

0 , such that
[
π̂(k)(ξJ)

]−1
I (BM0) ≤ M∗

0 for ∀ξJ , the
second term can be upper bounded as

K∑
k=1

Eh

[
C0 ∧

∣∣∣∣∣(πk(ξ) − π
(J)
k (ξJ)

)
log
(

1+
π

(J)
k (ξJ) − π̂(k)(ξJ)

π̂(k)(ξJ)

)∣∣∣∣∣ I (BM0)
]

≤
K∑

k=1

Eh

⎡⎣∣∣∣πk(ξ) − π
(J)
k (ξJ)

∣∣∣ log

⎛⎝1+

∣∣∣π(J)
k (ξJ) − π̂(k)(ξJ)

∣∣∣ ∧ C ′
0

π̂(k)(ξJ)

⎞⎠ I (BM0)

⎤⎦
≤

K∑
k=1

Eh

⎡⎣∣∣∣πk(ξ) − π
(J)
k (ξJ)

∣∣∣
∣∣∣π(J)

k (ξJ) − π̂(k)(ξJ)
∣∣∣ ∧ C ′

0

π̂(k)(ξJ)
I (BM0)

⎤⎦
≤ 2K(4 + C4)

K∑
k=1

Eh

(∣∣∣πk(ξ) − π
(J)
k (ξJ)

∣∣∣M∗
0

)
≤ 2K2(4 + C4)C5M

∗
0 ζ(J),

where the second last inequality is based on Lemma 7.5 and the choice of M in
Lemma 7.6 is greater than 1.

It is trivial to see that, for any δ > 0, there exists an M0 > 0, such that

P(BM0) = P (|ξj | ≤ M0 for all j ∈ A) ≥ 1 − δ,

for all j ∈ A. Therefore, for any J ≥ J0, when δ is relatively small, there exists
a corresponding M0, such that

K(4 + C4)C5M
∗
0 ζ(J) ≥ C0δ.

Consequently, under Assumption 2, we have

Eh

[
π(ξ)ᵀ

(
C0 ∧ log

(
π(ξ)
π̂(ξJ)

))]
≤ 4C0K(C5 + 1)2+maxk αk∧1C6ε

−1ζ(J) + 4K2(4 + C4)C5M
∗
0 ζ(J)

+Eh

{
C0 ∧

[
πᵀ
J(ξJ) log

(
πJ(ξJ)
π̂(ξJ)

)
I (BM0)

]}
≤ 4C0K

2 {(C5 + 1)2+maxk αk∧1C6ε
−1 + (4 + C4)C5M

∗
0
}
ζ(J)

+Eh

{
πᵀ
J(ξJ)

[(
C0ε

−1) ∧ log
(
πJ(ξJ)
π̂(ξJ)

)]
I (BM0)

}
.

Multiclass classification for multidimensional functional data 1285

7.1. Proof of Theorem 3.1

Proof. According to Lemma 7.6 and Lemma 7.12, there exists a constant C∗
4

adjusted only by M0 and C∗
3 , such that for any J0 ≥ J ≤ C2n

ν , the optimal
rate is achieved as

sup
h∈H

Eh

[
π(ξ)ᵀ

{
C0 ∧ log

(
π(ξ)
π̂(ξJ)

)}]
≤ 4C0K

2 ((C5 + 1)2+maxk αk∧1C6ε
−1 + (4 + C4)C5M

∗
0
)
ζ(J) + C∗

4n
−θ log3 n.

By Assumption 1, there exists constants C ′
2 and ω1, such that ∀J ≥ C ′

2n
θ/ρ, we

have ζ(J) � n−θ, and suph∈H Eh

[
π(ξ)ᵀ

(
C0 ∧ log

(
π(ξ)
π̂(ξJ)

))]
≤ ω1n

−θ log3 n.
The range of optimal J is obtained as J ∈

[
C ′

2n
θ/ρ, C2n

ν
]
.

7.2. Proof of Theorem 3.2

Proof. We follow the proof of Lemma 7.12 to decompose the truncated KL risk
in terms of π̂(ξ̂J), such that

Eh

[
π(ξ)ᵀ

(
C01K ∧ log

(
π(ξ)
π̂(ξ̂J)

))]

= Eh

[
(π(ξ)ᵀC0) ∧

(
π(ξ)ᵀ log

(
π(ξ)
π̂(ξ̂J)

))]

≤ Eh

{
C0 ∧

[
π(ξ)ᵀ log

(
π(ξ)

πJ(ξ̂J)

)
+
(
π(ξ) − πJ(ξ̂J)

)ᵀ
log
(
πJ(ξ̂J)
π̂(ξ̂J)

)

+πᵀ
J(ξ̂J) log

(
πJ(ξ̂J)
π̂(ξ̂J)

)]}

≤ Eh

[
π(ξ)ᵀ log

(
π(ξ)

πJ(ξ̂J)

)]

+Eh

[
C0 ∧

∣∣∣∣∣(π(ξ) − πJ(ξ̂J)
)ᵀ

log
(
πJ(ξ̂J)
π̂(ξ̂J)

)∣∣∣∣∣
]

+Eh

{
C0 ∧

[
πᵀ
J(ξ̂J) log

(
πJ(ξ̂J)
π̂(ξ̂J)

)]}

≤
K∑

k=1

Eh

⎡⎢⎣
(
πk(ξ) − π

(J)
k (ξJ)

)2
π

(J)
k (ξ̂J)

⎤⎥⎦
+

K∑
k=1

Eh

[
C0 ∧

∣∣∣∣∣(πk(ξ)−π
(J)
k (ξ̂J)

)
log
(

1+
π

(J)
k (ξ̂J) − π̂(k)(ξ̂J)

π̂(k)(ξ̂J)

)∣∣∣∣∣ I (BM0)
]

1286 S. Wang and G. Cao

+Eh

{
C0 ∧

[
πᵀ
J(ξ̂J) log

(
πJ(ξ̂J)
π̂(ξ̂J)

)
I (BM0)

]}
+ 2C0KP

(
Bc
M0

)
For the first term, when J is relatively large, we have

K∑
k=1

Eh

⎡⎢⎣
(
πk(ξ) − π

(J)
k (ξ̂J)

)2
π

(J)
k (ξ̂J)

⎤⎥⎦
=

K∑
k=1

Eh

⎡⎢⎣
(
πk(ξ) − π

(J)
k (ξ̂J)

)2
π

(J)
k (ξ̂J)

I

(
π

(J)
k (ξ̂J) > ε

)⎤⎥⎦
+

K∑
k=1

Eh

⎡⎢⎣
(
πk(ξ) − π

(J)
k (ξ̂J)

)2
π

(J)
k (ξ̂J)

I

(
π

(J)
k (ξ̂J) ≤ ε

)⎤⎥⎦
<

K∑
k=1

Eh

⎡⎢⎣
(
πk(ξ) − π

(J)
k (ξ̂J)

)2
ε

⎤⎥⎦
+

K∑
k=1

Eh

⎡⎢⎣
(
πk(ξ) − π

(J)
k (ξ̂J)

)2
π

(J)
k (ξ̂J)

⎤⎥⎦P
(
π

(J)
k (ξ̂J) ≤ ε

)
≤ Kε−1

(
C5ζ(J) + CRm

−τβ̃
)

+C0K(C5 + 1)2+maxk αk∧1C9

(
2ζ(J) + εm−τβ̃

)
≤
(
Kε−1C5 + 2C0K(C5 + 1)2+maxk αk∧1C9

)
ζ(J)

+
(
Kε−1CR + C0K(C5 + 1)2+maxk αk∧1C9ε

)
m−τβ̃ ,

where the second last inequality is derived by Lemma 7.11 and Theorem 3.2 in
[4].

Given M0, within the concentrated set BM0 , there exists an M̃∗
0 , such that[

π̂(k)(ξ̂J)
]−1

I (BM0) ≤ M∗
0 for ∀ξJ , thus the second term can be upper bounded

as
K∑

k=1

Eh

[
C0 ∧

∣∣∣∣∣(πk(ξ)−π
(J)
k (ξ̂J)

)
log
(

1+
π

(J)
k (ξ̂J) − π̂(k)(ξ̂J)

π̂(k)(ξ̂J)

)∣∣∣∣∣ I (BM0)
]

≤
K∑

k=1

Eh

⎡⎣∣∣∣πk(ξ) − π
(J)
k (ξJ)

∣∣∣
∣∣∣π(J)

k (ξ̂J) − π̂(k)(ξ̂J)
∣∣∣ ∧ C ′

0

π̂(k)(ξ̂J)
I (BM0)

⎤⎦
≤ 2K(4 + C4)

K∑
k=1

Eh

(∣∣∣πk(ξ) − π
(J)
k (ξ̂J)

∣∣∣ M̃∗
0

)

Multiclass classification for multidimensional functional data 1287

≤ 2K2(4 + C4)M̃∗
0

(
C5ζ(J) + CRm

−τβ̃
)
,

where the second last inequality is based on Lemma 7.5 and the choice of M in
Lemma 7.6 is greater than 1. The last inequality is from the proof of Lemma 7.11.

Consequently, similar in proof of Theorem 3.1, we have

Eh

[
π(ξ)ᵀ

(
C01K ∧ log

(
π(ξ)
π̂(ξ̂J)

))]
≤ 2

(
Kε−1C5 + 2C0K(C5 + 1)2+maxk αk∧1C9 + 2K2(4 + C4)M̃∗

0C5

)
ζ(J)

+2
(
Kε−1CR + C0K(C5 + 1)2+maxk αk∧1C9ε+2K2(4 + C4)M̃∗

0CR

)
m−τβ̃

+Eh

{
C0 ∧

[
πᵀ
J(ξ̂J) log

(
πJ(ξ̂J)
π̂(ξ̂J)

)
I (BM0)

]}
= c̃1ζ(J) + c̃2m

−τβ̃ + C∗
4n

−θ log3 n.

When c̃2m
−τβ̃ ≤ C∗

4n
−θ log3 n, the result follows by Theorem 3.1, where we

define the corresponding constants by C1, C2, C ′
2, and C3.

When c̃2m
−τβ̃ < C∗

4n
−θ log3 n, according to Equations (7.1), (7.2), (7.3), and

proof of Lemma 7.6, let M = �c̃Knμ̃� for some small constant c̃K depending
on K, where μ̃ = 1

1+α̃ θ̃, the conclusion follows for L ≤ C̃1 logm, ‖p‖∞ ≤
max{J,K, C̃2m

ν′}, s ≤ C̃3m
ν′ logn, where C̃1, C̃2, C̃3 depend on D11, D12, D13

respectively along with c̃K . By Assumption 1, there exists constants C̃ ′
2 and ω2,

such that ∀J ≥ C̃ ′
2m

θ′/ρ, we have ζ(J) � m−θ′ , and

sup
h∈H

Eh

[
π(ξ)ᵀ

(
C0 ∧ log

(
π(ξ)
π̂(ξJ)

))]
≤ ω2m

−θ′
.

The range of optimal J is obtained as J ∈
[
C̃ ′

2m
θ′/ρ, C̃2m

ν′
]
. The phase tran-

sition happens at m∗ = �(C∗
4/c̃2)

(
nθ/ log3 n

)1/θ′

�. Let ω3 = C∗
4/c̃2, the proof is

complete.

Appendix B: Additional Figures

Figure 3 depicts empirical KL risk versus theoretical rate obtained in Theo-
rem 3.1 in Model 2D Gaussian setting. The computation is based on sampling
rate m = 400, which indicates the data are fully observed. Since the Gaussian
density functions (quadratic function and exponential function) are infinitely
smooth in any composition layer, the decay rate parameter in Theorem 3.1 is
θ = 1. We compare the empirical KL risk with theoretical KL risk, i.e., Rh,C0 (π̂)
(with constant ω1 = 12). Figure 3 shows that the theoretical convergence rate
is tight enough to bound the empirical risk.

1288 S. Wang and G. Cao

Fig 3. Empirical KL risk versus theoretical rate obtained in Theorem 3.1 in Model 2D Gaus-
sian

Figures 4 and 5 illustrate the phase transition phenomenon of the proposed
mfDNN method for all eight models in Sections 5.2 and 5.3. For three distinct
sample sizes, it is observed that the misclassification rates remain constant when

Fig 4. Phase transition phenomenon for 2D simulation in three different sample sizes

Multiclass classification for multidimensional functional data 1289

Fig 5. Phase transition phenomenon for 3D simulation in three different sample sizes

the sampling frequency exceeds 100 or 200. As the sample size increases, a larger
sampling frequency is required for the risk to stabilize.

Acknowledgments

ADNI data used in preparation of this article were obtained from the Alzheimers
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such,
the investigators within the ADNI contributed to the design and implementa-
tion of ADNI and/or provided data but did not participate in analysis or writing
of this report. A complete listing of ADNI investigators can be found at: http://
adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_
List.pdf.

Funding

Cao’s research was also partially supported by the Simons Foundation under
Grant #849413 and National Science Foundation under Grants CNS-2319342
and CNS-2319343.

http://adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

1290 S. Wang and G. Cao

References

[1] Jorge Adrover, Matias Salibian-Barrera, and Ruben Zamar. Globally robust
inference for the location and simple linear regression models. Journal of
Statistical Planning and Inference, 119(2):353–375, 2004. MR2019646

[2] B. Bauer and M. Kohler. On deep learning as a remedy for the curse
of dimensionality in nonparametric regression. The Annals of Statistics,
47:2261–2285, 2019. MR3953451

[3] J. R. Berrendero, A. Cuevas, and J. L. Torrecilla. On the use of reproducing
kernel hilbert spaces in functional classification. Journal of the American
Statistical Association, 113(523):1210–1218, 2018. MR3862351

[4] Thijs Bos and Johannes Schmidt-Hieber. Convergence rates of deep relu
networks for multiclass classification. Electronic Journal of Statistics,
16:2724–2773, 2022. MR4406243

[5] T. Tony Cai and Linjun Zhang. A convex optimization approach to
high-dimensional sparse quadratic discriminant analysis. arXiv:1912.02872,
2019. MR4298872

[6] T. Tony Cai and Linjun Zhang. High dimensional linear discriminant anal-
ysis: optimality, adaptive algorithm and missing data. Journal of the Royal
Statistical Society. Series B. Statistical Methodology, 81(4):675–705, 2019.
MR3997097

[7] F. Chamroukhi and H. Glotin. Mixture model-based functional discrimi-
nant analysis for curve classification. Proceedings of the International Joint
Conference on Neural Networks (IJCNN), pages 1–8, 2012.

[8] Xiongtao Dai, Hans-Georg Müller, and Fang Yao. Optimal Bayes classifiers
for functional data and density ratios. Biometrika, 104(3):545–560, 2017.
MR3694582

[9] A. Delaigle and P. Hall. Achieving near-perfect classification for functional
data. Journal of the Royal Statistical Society, Series B, 74:267–286, 2012.
MR2899863

[10] A. Delaigle, P. Hall, and N. Bathia. Componentwise classification and clus-
tering of functional data. Biometrika, 99(2):299–313, 2012. MR2931255

[11] Aurore Delaigle and Peter Hall. Classification using censored functional
data. Journal of the American Statistical Association, 108(504):1269–1283,
2013. MR3174707

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image
is worth 16x16 words: Transformers for image recognition at scale. In 9th
International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[13] Pedro Galeano, Esdras Joseph, and Rosa E. Lillo. The Mahalanobis dis-
tance for functional data with applications to classification. Technometrics,
57(2):281–291, 2015. MR3369683

[14] Peter Hall and Hosseini-Nasab Mohammad. On properties of functional
principal components analysis. Journal of the Royal Statistical Society, Se-

https://mathscinet.ams.org/mathscinet-getitem?mr=2019646
https://mathscinet.ams.org/mathscinet-getitem?mr=3953451
https://mathscinet.ams.org/mathscinet-getitem?mr=3862351
https://mathscinet.ams.org/mathscinet-getitem?mr=4406243
https://arxiv.org/abs/1912.02872
https://mathscinet.ams.org/mathscinet-getitem?mr=4298872
https://mathscinet.ams.org/mathscinet-getitem?mr=3997097
https://mathscinet.ams.org/mathscinet-getitem?mr=3694582
https://mathscinet.ams.org/mathscinet-getitem?mr=2899863
https://mathscinet.ams.org/mathscinet-getitem?mr=2931255
https://mathscinet.ams.org/mathscinet-getitem?mr=3174707
https://mathscinet.ams.org/mathscinet-getitem?mr=3369683

Multiclass classification for multidimensional functional data 1291

ries B, 68:109–126, 2006. MR2212577
[15] Travor J. Hastie and Robert J. Tibshirani. Generalized Additive Models.

Chapman & Hall/CRC, 1990. MR1082147
[16] Tianyang Hu, Zuofeng Shang, and Guang Cheng. Sharp rate of convergence

for deep neural network classifiers under the teacher-student setting. arXiv:
2001.06892, 2020.

[17] Yongdai Kim, Ilsang Ohn, and Dongha Kim. Fast convergence rates of deep
neural networks for classification. Neural Networks, 138:179–197, 2021.

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet
classification with deep convolutional neural networks. Commun. ACM,
60(6):84–90, may 2017.

[19] X. Leng and H.G. Müller. Classification using functional data analysis for
temporal gene expression data. Bioinformatics, 22:68–76, 2006.

[20] Xiuqi Li and Subhashis Ghosal. Bayesian classification of multiclass
functional data. Electronic Journal of Statistics, 12(2):4669–4696, 2018.
MR3894067

[21] Yi Lin. Tensor product space anova models. The Annals of Statistics, 28:734
– 755, 2000. MR1792785

[22] Ruiqi Liu, Zuofeng Shang, and Guang Cheng. On deep instrumental vari-
ables estimate. arXiv:2004.14954, 2021.

[23] Qing Mai, Yi Yang, and Hui Zou. Multiclass sparse discriminant analysis.
Statistica Sinica, 29:97–111, 2019. MR3889359

[24] Enno Mammen and Alexandre B. Tsybakov. Smooth discrimination anal-
ysis. The Annals of Statistics, 27:1808–1829, 1999. MR1765618

[25] Juhyun Park, Jeongyoun Ahn, and Yongho Jeon. Sparse functional linear
discriminant analysis. arXiv:2012.06488, 2020. MR4374650

[26] J. O. Ramsay and B. W. Silverman. Functional Data Analysis, Second
Edition. Springer Series in Statistics, New York, 2005. MR2168993

[27] Fabric Rossi, Delannay Nicolas, Brieuc Conan-Guez, and Michel Verley-
sen. Representation of functional data in neural networks. Neurocomputing,
64:183–210, 2005.

[28] J. Schmidt-Hieber. Nonparametric regression using deep neural networks
with relu activation function. The Annals of Statistics, 48(4):1875–1897,
2020. MR4134774

[29] H. Shin. An extension of fisher’s discriminant analysis for stochastic pro-
cesses. Journal of Multivariate Analysis, 99:1191—-1216, 2008. MR2419344

[30] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. 2015.

[31] J. Song, W. Deng, H. Lee, and D. Kwon. Optimal classification for time-
course gene expression data using functional data analysis. Biometrika,
103(1):147–159, 2016.

[32] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolu-
tions. pages 1–9, 2015.

[33] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking
the inception architecture for computer vision. In 2016 IEEE Conference

https://mathscinet.ams.org/mathscinet-getitem?mr=2212577
https://mathscinet.ams.org/mathscinet-getitem?mr=1082147
https://arxiv.org/abs/2001.06892
https://arxiv.org/abs/2001.06892
https://mathscinet.ams.org/mathscinet-getitem?mr=3894067
https://mathscinet.ams.org/mathscinet-getitem?mr=1792785
https://arxiv.org/abs/2004.14954
https://mathscinet.ams.org/mathscinet-getitem?mr=3889359
https://mathscinet.ams.org/mathscinet-getitem?mr=1765618
https://arxiv.org/abs/2012.06488
https://mathscinet.ams.org/mathscinet-getitem?mr=4374650
https://mathscinet.ams.org/mathscinet-getitem?mr=2168993
https://mathscinet.ams.org/mathscinet-getitem?mr=4134774
https://mathscinet.ams.org/mathscinet-getitem?mr=2419344

1292 S. Wang and G. Cao

on Computer Vision and Pattern Recognition (CVPR), pages 2818–2826,
Los Alamitos, CA, USA, 2016. IEEE Computer Society.

[34] Alexandre B. Tsybakov. Optimal aggregation of classifiers in statistical
learning. The Annals of Statistics, 32:135–166, 2004. MR2051002

[35] Shuoyang Wang, Guanqun Cao, and Zuofeng Shang. Estimation of the
mean function of functional data via deep neural networks. Stat, e393, 2021.
MR4319004

[36] Shuoyang Wang, Zuofeng Shang, and Guanqun Cao. Deep neural network
classifier for multi-dimensional functional data. arXiv:2205.08592, 2022.
MR4522373

[37] Shuoyang Wang, Zuofeng Shang, Guanqun Cao, and S. Jun Liu. Optimal
classification for functional data. Statistica Sinica, 34, 2023.

[38] Daniela M. Witten and Robert Tibshirani. Penalized classification us-
ing Fisher’s linear discriminant. J. R. Stat. Soc. Ser. B Stat. Methodol.,
73(5):753–772, 2011. MR2867457

https://mathscinet.ams.org/mathscinet-getitem?mr=2051002
https://mathscinet.ams.org/mathscinet-getitem?mr=4319004
https://arxiv.org/abs/2205.08592
https://mathscinet.ams.org/mathscinet-getitem?mr=4522373
https://mathscinet.ams.org/mathscinet-getitem?mr=2867457

	Introduction
	Related work
	Contributions

	Methodology
	K-class functional data classification models
	Multiclass functional deep neural network classifier

	Theoretical properties
	Function class for the conditional probability k
	Approximation and boundary conditions for the conditional probability k
	Convergence of Kullback-Leibler divergence
	Kullback-Leibler divergence
	Convergence rate for fully observed functional data
	Convergence rate for discretely observed functional data

	Examples
	Independent exponential family
	Exponential family with in-block interaction

	Simulation studies
	Alternative methods
	2D functional data
	3D functional data

	Real data analysis
	Handwritten digits
	ADNI database

	Summary
	Appendix A: Proofs of Theorems 3.1 and 3.2
	Proof of Theorem 3.1
	Proof of Theorem 3.2

	Appendix B: Additional Figures
	Acknowledgments
	Funding
	References

