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Abstract: We prove deviation inequalities for sums of high-dimensional
random matrices and operators with dependence and heavy tails. Estima-
tion of high-dimensional matrices is a concern for numerous modern ap-
plications. However, most results are stated for independent observations.
Therefore, it is critical to derive results for dependent and heavy-tailed
matrices. In this paper, we derive a dimension-free upper bound on the
deviation of the sums. Thus, the bound does not depend explicitly on the
dimension of the matrices but rather on their effective rank. Our result
generalizes several existing studies on the deviation of sums of matrices. It
relies on two techniques: (i) a variational approximation of the dual of mo-
ment generating functions, and (ii) robustification through the truncation
of the eigenvalues of the matrices. We reveal that our results are applicable
to several problems, such as covariance matrix estimation, hidden Markov
models, and overparameterized linear regression.
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1. Introduction

We study non-asymptotic upper bounds on the deviations of the sums of multi-
ple random matrices (or operators) from its expectation. Assume that we observe
a sequence of n random, symmetric matrices M1, . . . ,Mn that are potentially
high-dimensional, dependent, and heavy-tailed, but have a common expectation
Σ := E[M�]. We are interested in evaluating the deviation of their empirical
mean from the expectation Σ, measured in terms of the operator norm ‖ · ‖ for
matrices. Specifically, we want to derive an upper bound of the following value
for each integer n: ∥∥∥∥∥ 1

n

n∑
�=1

M� − Σ

∥∥∥∥∥ .
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This problem is foundational and important; moreover, it has a variety of ap-
plications, the most typical example being the estimation of covariance matrices.
Let Y1, . . . , Yn be a sequence of random vectors; then, we can estimate its covari-
ance matrix Σ = E[Y1Y

�
1 ] using the empirical mean n−1∑n

�=1 M� by defining
M� = Y�Y

�
� . This setup can easily be applied for estimating Fisher informa-

tion matrices, for example. Other applications include estimation of adjacency
matrices of random graphs [26], signal recovery in compressed sensing [14], and
linear regression under overparameterization [6]. Considering the increasing va-
riety of data in modern data science, it is expedient to study the upper bound
in various settings, including dependent or heavy-tailed observations M�.

This problem has been actively investigated in various directions. The first
study [28] derived upper bounds on the operator norm of the deviation. In
the high-dimensional case, several studies [7, 25, 29, 21] derived upper bounds
that do not depend on the dimensionality of the matrices M�, referred to as
dimension-free bounds, using instead the effective rank of the matrices. Par-
ticularly, another study [16] investigated an infinite-dimensional version of the
problem. These results enable us to estimate high-dimensional matrices without
assuming sparsity [8] or specifying the distribution of the matrix [2, 17, 32]. The
exact asymptotic risk is also studied by [19]. A bootstrap method and dimension-
free bound are developed by [24] for high-dimensional operators in this setting.
In the case of heavy-tailed matrices M�, a study [23] derived a dimension-free
upper bound that clarifies how the tail property affects the bound. The tight-
ness of the bound is further improved by [31, 20] in the heavy-tailed setting.
In the case of dependent matrices, a study [18] derived a bound in expectation,
following the approach of [30].

1.1. Focus and result

We aim to derive a dimension-free upper bound on the deviations of the em-
pirical mean of random matrices that are dependent and heavy-tailed. This
setting is a generalization of the aforementioned studies. To handle the setup,
we first introduce notation and assumptions. Let H be a Hilbert space. The
first time, we only consider H = R

p. We then extend the results to an infinite-
dimensional H.

Let M be a symmetric linear operator from H to itself. In dimension-free
bounds, the dimension of H is replaced by the effective rank, as shown by [21].
It is defined as follows:

Definition 1 (Effective Rank). For a symmetric positive semi-definite trace-
class operator M : H → H, the effective rank is defined as

r (M) := Tr(M)
‖M‖ ,

where Tr(M) denotes the trace of M and ‖M‖ is its operator norm.
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It can be interpreted as measuring the effective dimension of the image of M ,
which can be smaller than the actual dimension of H.

To measure the dependence of a sequence of matrices M1, . . . ,Mn, we consider
a coefficient Γ�,n for � = 1, . . . , n that bounds the martingale increment

|E[g(M�+1, . . . ,Mn) | F�] − E[g(M�+1, . . . ,Mn)]| ≤ Γ�,n,

for any Lipschitz-continuous function g(.), where F� = σ(M1, . . . ,M�) is the σ-
algebra generated by M1, . . . ,M�. The formal definition of the coefficient from
[27, 12], which has been used in many papers on dependent variables, is pro-
vided below. This coefficient leads to a general notion of dependence that in-
cludes many dependent processes, such as causal Bernoulli shifts and chains
with infinite memory. We discuss this point below.

We introduce functions S� : R+ → R+ for � = 1, . . . , n to measure the tail of
the distribution of ‖M�‖ as S�(t) = P(‖M�‖ ≥ t). We also define

G(t) := max
1≤�≤n

∫ ∞

t

S�(u)du.

Our general bounds are given in terms of S�(·) and G(·). We can then study how
the tail probability of ‖M�‖ affects the order of magnitude of the upper bound.
Particularly, when ‖M�‖ is bounded, we obtain the rates proven in [21, 32] for
independent observations, but in a broader dependent framework. In the case
where S�(t) and G(t) decay exponentially fast in t, we recover the same rates
up to a logn factor. Our results also provide a rate of convergence in the case
where G(t) decays polynomially in t (in this case, the rate is slower).

Our main result takes the form of an upper bound in probability on the
deviation of the empirical mean of the matrices. Therefore, for any t, τ > 0, the
following inequality holds with probability at least 1 − exp(−t) −

∑n
�=1 S�(τ):∥∥∥∥∥ 1

n

n∑
�=1

M� − Σ

∥∥∥∥∥ ≤ 2
√

2 ‖Σ‖
(

2τ + max
�=1,...,n

Γ�,n

)√
4r (Σ) + t

n
+ G(τ).

The results suggest that (i) we can obtain a dimension-free upper bound under
quite general conditions of heavy-tail and dependence; (ii) the dependence prop-
erty affects the bound through a factor Γ�,n; and (iii) the heavy-tail property
appears to affect the bound via a factor 2τ and an additional term G(τ), where
τ is a free parameter that can be adjusted to balance both terms. Particularly,
even under a slow, polynomial decay of G(τ), we can still select τ = τn such
that

∑n
�=1 S�(τ) = o(1) and G(τ) = o(1) and then obtain an upper bound that

converges to 0, but at a rate slower than 1/
√
n.

From a technical perspective, this study makes two contributions. The first is
the evaluation of the moment-generating function using a variational inequality,
following [11]. We provide an upper bound the deviation of the sum of matrices
using its moment-generating function. This approach was employed by [32] and
others. We extend it to our setting with dependent random matrices using an
inequality due to [27]. The second is the truncation technique that addresses
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heavy tails. This technique is classical in addressing unbounded losses in ma-
chine learning and has been used in the context of time series by [4]. It is also
related to the influence function used in works on robust statistics [10, 11, 32, 1].
We apply this technique in our setting by truncating the eigenvalues of the de-
pendent random matrices. Specifically, we control the effect of the heavy tails by
decomposing the deviation of the empirical mean into two parts: the deviations
of the truncated mean and the deviations between the truncated and standard
means.

1.2. Organization

Section 2 introduces the setting of the problem and also provides assumptions
and examples of situations where they are satisfied. Section 3 presents the main
results. We begin with the case of dependent but bounded matrices in Theo-
rem 4. We then extend this result to the unbounded case in Corollary 5. Section 4
describes several applications in which we apply our bound. Section 5 contains
the proofs of the main results. Section 6 concludes the paper. The appendix
provides the rest of the proofs.

1.3. Notation

Let H be a Hilbert space equipped with the scalar product 〈·, ·〉 and ‖ · ‖
be the corresponding norm. Let S be the set of symmetric linear continu-
ous operators H → H, that is, for any (u, v) ∈ H

2, and for any M ∈ S,
〈Mu, v〉 = 〈u,Mv〉 < ∞. In the special case H = R

p, S is simply the set of
symmetric matrices. For any M ∈ S we let ‖M‖ denote its operator norm
‖M‖ = supu∈H,‖u‖=1 ‖Mu‖. Throughout this paper, M = (M�)�=1,...,n is a
finite random sequence of elements of S, whose expectation is constant with
Σ = E[M�]. Note that an expectation of a random operator M� is defined as a
linear operator Σ : H → H satisfying 〈u,Σv〉 = E[〈u,M�v〉] for any u, v ∈ H.
This paper aims to examine the estimation of Σ. For any � ∈ {0, . . . , n}, let
F� = σ(M1, . . . ,M�). For probability measures P, P ′, P � P ′ means that P is
absolutely continuous with respect to P ′, and KL(P‖P ′) =

∫
log(dP/dP ′)dP

denotes the Kullback–Leibler divergence. For a sequence of sets A1, A2, ..., we
define×∞

i=1 Ai := A1 ×A2 × · · · .

2. Dependent matrices with heavy-tailed distributions

2.1. Setup

First, we introduce some assumptions on M = (M�)�=1,...,n. The first is the
dependence between the M�’s, which is quantified through a weak dependence
coefficient. The second is the tail probability of the distribution of ‖M�‖.
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2.1.1. Dependence

We introduce a coefficient to measure the dependence of the process of opera-
tors/matrices, which is essentially from [27]. It is also discussed in [12]. First, we
define the set of Lipschitz functions on � operators/matrices for � ∈ {1, . . . , n}.
Definition 2 (Lipschitz function on � elements). Let E be a space equipped
with the norm ‖ · ‖E . For any � ∈ N and L > 0, we let Lip�(E,L) denote the set
of all functions h : E� → R such that for any (a1, . . . , a�, b1, . . . , b�) ∈ E2�,

|h(a1, . . . , a�) − h(b1, . . . , b�)| ≤ L

�∑
i=1

‖ai − bi‖E .

Owing to this definition, we can introduce our weak dependence condition:

Assumption 1 (Weak dependence). For any � ∈ {1, ..., n−1} and function g ∈
Lipn−�(S, 1), E[g(M�+1, . . . ,Mn) | F�] and E[g(M�+1, . . . ,Mn)] exist. Further,
there exist real numbers (Γ�,n)1≤�≤n−1 such that for any � ∈ {1, . . . , n− 1} and
for any function g ∈ Lipn−�(S, 1), we have

|E[g(M�+1, . . . ,Mn) | F�] − E[g(M�+1, . . . ,Mn)]| ≤ Γ�,n, (1)

almost surely. We set Γn = max1≤�≤n−1 Γ�,n.

This assumption has several noteworthy points: (i) The coefficient used in
the assumption is a generalization of the uniform mixing coefficient for bounded
processes; (ii) the coefficient quantifies the dependence of the M�’s: the larger
it is, the more the matrices are dependent, while Γn = 0 for independent ma-
trices; and (iii) it is not comparable with the α/β-mixing property: examples
of non-mixing processes with small Γn are known. A classical real-valued ex-
ample from [5] is given by M�+1 = (M� + ε�)/2 where the (ε�) are i.i.d. from
a Bernoulli distribution with parameter 1/2. It is proven in Section 1.5 page 8
of [12] that this process is not strongly mixing. On the other hand, it is quite
direct to check that Γ�,n ≤ 1. Essentially, when Γn remains bounded for large
n, we recover the same rates of estimation as for independent matrices. This
includes linear auto-regressive moving-average (ARMA) processes and a causal
Bernoulli shifts (CBS), that are described below. For more details, we refer the
reader to [27, 13, 12, 4].

In previous studies such as [27], Assumption 1 is used for bounded processes;
that is, for any �, ‖M�‖ is bounded almost surely. As aforementioned, when work-
ing with unbounded processes, we begin by studying a truncated and bounded
version of the process. A fact that we often use in this paper is that when
M = (M1, . . . ,Mn) satisfies Assumption 1, then so does (f(M1), . . . , f(Mn))
where f : E → E is an adequate truncation function (that is, f is 1-Lipschitz).

Proposition 1. Assume that M = (M1, . . . ,Mn) satisfies Assumption 1 and
that f : S → S is 1-Lipschitz. Then (f(M1), . . . , f(Mn)) also satisfies Assump-
tion 1.
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2.1.2. Tail probability of the random matrices

We introduce an assumption on the tail probability of ‖M�‖ that includes heavy-
tailed matrices/operators.

Assumption 2 (Tail probability). We define, for any t ≥ 0, S�(t) = P(‖M�‖ >
t) the tail function of ‖M�‖. We assume that

∫∞
0 S�(t)dt < ∞, and we define

G(t) = max
1≤�≤n

∫ ∞

t

S�(u)du.

2.2. Examples

We provide examples in which Assumptions 1 and 2 are satisfied. A recurring
case of interest is the one of a stationary H-valued stochastic process (Y�)�∈Z,
with M� = Y�Y

�
� . The estimation of Σ = E[M�] corresponds to the estimation

of the covariance matrix of (Y�)�∈Z.

2.2.1. Independent matrices

Before diving into time dependence, we study the simple case where the matrices
M� are independent and identically distributed. Therefore, Assumption 1 is
trivially satisfied with Γn = 0. Moreover, in Assumption 2, we have S� = S1 for
any � and thus G(t) =

∫∞
t

S1(u)du.
We then consider the special case where M� = Y�Y

�
� and the Y� are i.i.d.

Then, S�(t) = P(‖M�‖ > t) = P(‖Y�‖2 > t) and thus Assumption 2 can be
checked by the study of the tails of ‖Y�‖2. We detail three cases of interest.

Bounded case: if ‖Y�‖ ≤ C almost surely, then S�(t) = 0 for any t ≥ C2,
and thus Assumption 2 is satisfied with G(t) = 0 for t ≥ C2.

Exponential tails: let us start with a specific example: Y� ∼ N (0,Σ) in
R

p. Then, by (the proof of) Lemma 1 of [22], for all s ∈ (0, 1/(2||Σ||)), we have
logE exp(s‖Y�‖2) ≤ s2Tr(Σ2)

1−2s‖Σ‖ , and thus it holds that

P(‖Y�‖2 > t) ≤ E[exp(s‖Y�‖2)]
exp(st) ≤ exp

(
s2Tr(Σ2)
1 − 2s‖Σ‖ − st

)
.

We then put s = t
2Tr(Σ2)+2‖Σ‖t and obtain:

S�(t) = P(‖Y�‖2 > t) ≤ exp
(
− t2

4(Tr(Σ2) + ‖Σ‖t)

)
.

Particularly, we set t ≥ Tr(Σ2)
‖Σ‖ and obtain

S�(t) ≤ exp
(
− t2

4(Tr(Σ2) + ‖Σ‖t)

)
≤ exp

(
− t

2‖Σ‖

)
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and thus G(t) ≤ 2‖Σ‖ exp(− t
2‖Σ‖ ) holds. More generally, we consider examples

where S�(t) ≤ exp(−at) and thus G(t) ≤ exp(−at)/a for some a > 0 for large
enough t > 0.

Polynomial tails: we consider a more general situation where Y� =
√
R�V�

where V� is distributed on the unit sphere in R
p, and R� is a non-negative

random variable. In this case,

S�(t) = P(‖Y�‖2 > t) = P(R� > t)

and thus Assumption 2 is satisfied if P(R� > t) = o(1/t) when t → ∞, and we
have:

G(t) =
∫ ∞

t

P(R� > u)du.

This includes exponential tails as above, where P(R� > u) ≤ exp(−at) for some
a > 0. This also includes heavier tail probabilities. For example, if R� is a
(shifted) Pareto random variable, P(R� > t) = 1

(t+1)a , Assumption 2 is satisfied
if a > 1 and we have G(t) ≤ a−1

(t+1)a−1 .

2.2.2. Causal Bernoulli shift

An important category of examples is the class of causal Bernoulli shifts (CBS),
which includes a large class of stochastic processes. We consider a bounded CBS
first, and then define a class of unbounded processes built on CBSs.

Example 1 (Causal Bernoulli shifts, CBS). Let Ξ = (ξ�)�∈Z be a sequence of
bounded i.i.d. H-valued random variables: ‖ξ�‖ ≤ Bξ almost surely. Let C :
×∞

i=1 H → H with C(0, 0, . . . ) = 0. Assume that, for any (a1, b1, a2, b2, . . . ) ∈
×∞

i=1 H we have

‖C(a1, a2, . . . ) − C(b1, b2, . . . )‖ ≤
∞∑
�=1

α�‖a� − b�‖ and A :=
∞∑
�=1

α� < ∞.

Then, we can define the stationary process (X�)�∈Z given by

X� = C(ξ�, ξ�−1, ξ�−2, . . . ).

This process (X�)�∈Z is called a CBS. Note that ‖X�‖ ≤ B := ABξ almost
surely.

CBSs include many well-known stationary and ergodic processes, such as
causal ARMA. We have the following result:

Proposition 2. Let (Y�)�∈Z be a CBS and let M� = Y�Y
�
� for any � ∈ Z

2. Then,
M = (M�)�=1,...,n satisfies Assumption 1 with Γ�,n = 4BBξ

∑∞
i=�+1 min(i, n)αi

and Assumption 2 with G(t) = 1{t≤4B2}.

In this result, we do not consider heavy tails, because CBSs are bounded
processes. The proof of Proposition 2 is included in that of Proposition 3, which
is about a more general class of unbounded processes.
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2.2.3. Application to unbounded processes

Proposition 3. We assume that (X�)�∈Z is a CBS. Let E = (ε�)�∈Z be a se-
quence of centered i.i.d. H-valued random variables with Sε(t) := P(‖ε�‖2 ≥ t)
such that

∫∞
0 Sε(t)dt < ∞ holds, all independent from (X�)�∈Z. We define the

process (Y�)�∈Z as

Y� = X� + ε�,

and M� = Y�Y
�
� for any � ∈ Z. Then, M = (M�)�=1,...,n satisfies Assumption 1

with Γ�,n = 4BBξ

∑∞
i=�+1 min(i, n)αi and Assumption 2 with S�(t) ≤ 1{t≤4B2}+

Sε(t/4) [removed some words].
Furthermore, if Γ := 4BBξ

∑∞
i=2 iαi < ∞, then max1≤�≤n Γ�,n ≤ Γ holds.

2.2.4. Application to chains with infinite memory

We finally discuss chains with infinite memory, which turn out to be special
cases of CBSs.

Example 2 (Chain with Infinite Memory, CIM). Let Ξ = (ξ�)�∈Z be a sequence
of bounded i.i.d. H-valued random variables: ‖ξ�‖ ≤ Bξ almost surely. Let D :
×∞

i=1 H → H with D(0, 0, . . . ) = 0. Assume that, for any (a0, b0, a1, b1, a2, b2, . . . )
∈ H

∞ we have

‖D(a0, a1, a2, . . . ) −D(b0, b1, b2, . . . )‖ ≤
∞∑
�=0

β�‖a� − b�‖ and B :=
∞∑
�=1

β� < 1.

Then, there is a stationary solution (X�)�∈Z to the equation [15]:

X� = D(ξ�, X�−1, X�−2, X�−3, . . . ).

The process (X�)�∈Z is called a chain with infinite memory (CIM).

There is a simple connection between CBSs and CIMs. Using Proposition 4.1
of [4], a CIM can be rewritten as a CBS as

X� = C(ξ�, ξ�−1, ξ�−2, . . . ) with α� = β0B�−1.

Remark 1. Let us briefly discuss vector auto-regression (VAR) in this frame-
work: X� = AX�−1 + ξ�, with A ∈ R

p ⊗ R
p. A VAR with bounded noise terms

ξ� is obviously a CIM, and thus Assumptions 1 and 2 are satisfied by such a
process. They even remain satisfied by Y� = X� + ε� for heavy-tailed ε�’s, by
using Proposition 3. However, when the noise ξ� in the VAR is unbouded, we
need to apply another technique to handle it. Therefore, we have to approximate
the VAR by a finite-order moving-average (MA) process and show it satisfies
Assumptions 1 and 2. As the approximation error vanishes when the order k of
the MA grows, we can apply our result without difficulty.
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3. Main results

We introduce our main result in stages. First, we consider the case where M� is a
p×p matrix with the bounded property, and then we extend it to the unbounded
and heavy-tailed cases. Finally, we extend the result to the case where M� is an
operator between infinite-dimensional spaces.

3.1. Result on p-dimensional matrix

3.1.1. Bounded case

We first consider the case H = R
p, with p ∈ N, and the matrices ‖M�‖ are

bounded for all � = 1, . . . , n. Obviously, M� is not heavy-tailed in this case;
thus, the main contribution here is to handle the dependence in M.

The derivation of this result starts with the variational inequality: with a
probability measure μ on a parameter space Θ, and with a random parameter θ
in Θ and a random variable X, it holds that with probability at least 1−exp(−t),
for any probability measure ρ � μ and any measurable function h,

Eρ[h (X, θ)] ≤ Eρ [logEX [exp (h (X, θ))]] + KL (ρ‖μ) + t

where Eρ denotes the expectation with respect to θ under the distribution ρ ;
note that the left-hand side is still random. This result is taken from [11] and
[32]. In our setting, X = M and we control EX [exp (h (X, θ))] thanks to an
inequality by [27] for dependent matrices (these steps are detailed in the proofs
below). We obtain

E [exp (λh(M) − λE[h(M)])] ≤ exp
(
λ2L2∑n

�=1 (2κ + Γ�,n)2

8n2

)
.

An adequate choice of h leads to our main result: the concentration bound for
the estimation of Σ using the empirical mean of M.
Theorem 4. Assume that M is a sequence of positive semi-definite symmetric
random p×p matrices such that, for some κ > 0, for all � = 1, . . . , n, E [M�] = Σ
and ‖M�‖ ≤ κ2 almost surely. Under Assumption 1, for all t > 0, with probability
at least 1 − exp(−t), we have∥∥∥∥∥ 1

n

n∑
�=1

M� − Σ

∥∥∥∥∥ ≤ 4
√

2 ‖Σ‖
(
κ2 + Γn

)√4r (Σ) + t

n
.

Let us comment briefly on this result. First, this is a dimension-free bound
in which p does not appear. The statistical dimension is instead described by
the effective rank r (Σ). This is identical to the statistical dimension of the
independent case of [21] and others. Then, the effect of this dependence appears
as Γn in the factor (2κ2 +Γn) of the upper bound. If M is independent, we have
Γn = 0. More generally, we described above a large class of processes where Γn

is bounded from above by a constant Γ. In both cases, our upper bound matches
the one of [21] up to constants.
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3.1.2. Heavy-tailed case

We then extend Theorem 4 to unbounded, possibly heavy-tailed matrices M�.
The general idea is to apply Theorem 4 to a sequence of transformed ma-

trices {f(M1), . . . , f(Mn)} where f : S → S is a bounded function, such that
supM∈S ‖f(M)‖ ≤ τ . This application yields a bound on ‖ 1

n

∑n
�=1 f(M�) −

E[f(M�)]‖. Then, we handle the effect of f , that is, ‖ 1
n

∑n
�=1 f(M�)− 1

n

∑n
�=1 M�‖

and ‖E[f(M�)]−Σ‖, to obtain an upper bound on ‖ 1
n

∑n
�=1 M�−Σ‖. This results

in the introduction of an additional term depending on τ in the upper bound.
This technique leads to the following results.

Corollary 5. Assume that M is a sequence of p × p positive semi-definite,
symmetric, random matrices with E [M�] = Σ, which satisfies Assumptions 1
and 2. For any τ > 0 and for all t > 0, with probability at least 1 − exp(−t) −∑n

�=1 S�(τ) it holds that∥∥∥∥∥ 1
n

n∑
�=1

M� − Σ

∥∥∥∥∥ ≤ 4
√

2 ‖Σ‖ (τ + Γn)
√

4r (Σ) + t

n
+ G(τ).

First, note that the bound holds with probability 1−exp(−t)−
∑n

�=1 S�(τ). If
τ is constant and S�(τ) > 0, then

∑n
�=1 S�(τ) can grow to ∞ when n → ∞, and

the statement becomes vacuous for large n. However, by letting τ = τn → ∞,
and if the S�’s decrease fast enough, we are able to keep

∑n
�=1 S�(τ) small

enough (for example, smaller than 1/n).
The effect of the heavy-tailed G(τ) also appears additively in the second term

of the derived upper bound. Here again, by letting τ = τn → ∞, we can make
the term G(τ) small enough. The tightness of the bound, of course, depends
on how far we are from the boundedness assumption, that is, on how fast the
function G decreases. We provide the following examples:

Bounded Case: Assume that ‖Mi‖ ≤ κ almost surely for some κ > 0, then
Assumption 2 is satisfied with G(τ) = 0 for τ ≥ κ. Thus, we can take τ = κ
and recover exactly Theorem 4.

Exponential-Tail Case: Assume that S�(·) has an exponential decay, that
is, there is an a > 0 such that for any �, S�(t)≤ exp(−at). Notably, G(t) ≤
exp(−at)/a. Thus, Corollary 5 states that with probability at least 1−exp(−t)−
n exp(−aτ),∥∥∥∥∥ 1

n

n∑
�=1

M� − Σ

∥∥∥∥∥ ≤ 4
√

2 ‖Σ‖ (τ + Γn)
√

4r (Σ) + t

n
+ exp (−aτ)

a
.

For some α > 1, we put τ = τn = α logn
a which implies that n

∑n
�=1 S�(τn) ≤

1
nα−1 , and we set t = log(δ−1). Subsequently, for every δ ∈ (0, 1), with proba-
bility at least 1 − δ − 1

nα−1 , we have∥∥∥∥∥ 1
n

n∑
�=1

M� − Σ

∥∥∥∥∥ ≤ 4
√

2 ‖Σ‖
(
α logn

a
+ Γn

)√
4r (Σ) + log(δ−1)

n
+ 1

anα
.
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In this upper bound, the effect of the heavy-tail appears in the second term in
1/(anα), which is negligible with respect to the first term (because α is chosen
> 1). The main difference with the bounded case is the factor (α log(n)

a + Γn)
in the first term, which increases in log(n). Thus, the dependence in n and in
the statistical dimension are similar to the ones in [21, 32] up to an additional
log(n) factor.

Polynomial-Tail Case: Assume that S� has a polynomial decay S�(t)≤at−b

with a > 0 and b > 2. Then, G(t) ≤ a
b−1 t

1−b. Thus, with τ = τn, the bound is,
with probability at least 1 − exp(−t) − naτ−b

n ,∥∥∥∥∥ 1
n

n∑
�=1

M� − Σ

∥∥∥∥∥ ≤ 4
√

2 ‖Σ‖ (τn + Γn)
√

4r (Σ) + t

n
+ a

b− 1τ
1−b
n .

Here, for some α > 1, we take τn = a1/b(n)α/b, and also set t = log δ−1. Then,
for any δ ∈ (0, 1), we obtain that with probability at least 1 − δ − 1/nα−1,∥∥∥∥∥ 1

n

n∑
�=1

M� − Σ

∥∥∥∥∥
≤ 4

√
2 ‖Σ‖

(
a1/bnα/b + Γn

)√4r (Σ) + log(2δ−1)
n

+ 1
(b− 1)nα−1 .

The rate in the first term is more seriously deteriorated. However, we still have
convergence as soon as 1 < α < b/2, which is possible only in the case b > 2.
Our rate is not as sharp as the one in [29] for heavy-tailed matrices in the inde-
pendent case. We are not aware of how to extend the work of [29] to dependent
matrices, and claim that our result is the first rate obtained on matrices that
are simultaneously heavy-tailed and dependent.

Remark 2 (Comparison). We discuss the comparison between Corollary 5 and
the analysis of the case with independent matrices by [32, 1]. Corollary 5 does
not always recover the rates that are known in the i.i.d setting; however, the
techniques used [32, 1] strongly rely on the independence assumption. Under
specific assumptions, we make the following findings: (i) In the bounded case,
we recover the same rates as the previous studies, extending them from i.i.d to
the non-i.i.d setting for free. (ii) In the exponential tail case, we recover these
rates up to a log(n) factor, which we interpret as a cost of extending them to
the dependent setting. (iii) In the polynomial tail case, we admit that we have
a slower rate than the one above. However, we are not aware of any work that
tackles simultaneously heavy tails and time dependence. The fact that we obtain
a rate of convergence here, even if it is slow, is already a contribution.

3.2. Result on infinite-dimensional operator

Here, we consider the case of an infinite-dimensional separable Hilbert space H,
which has also been studied in [21, 16]. Following [16], we extend our result for
the p-dimensional setting to the infinite-dimensional case.
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The idea is to find a finite-dimensional approximation of the spectral norm
of operators using an orthonormal basis. Let (ej)j∈N be an orthonormal basis
of H and Hk := span {e1, . . . , ek}. For an H ⊗ H-valued random operator M�,
let (M (j1,j2)

� )kj1,j2=1 be a sequence of real-valued random variables such that
M

(j1,j2)
� := 〈M�ej1 , ej2〉. We see that

sup
uk∈Hk:‖uk‖=1

∣∣∣∣∣
〈(

1
n

n∑
�=1

M� − Σ
)
uk, uk

〉∣∣∣∣∣
= sup

u
(j)
k ∈R,j=1,...,k∑k
j=1(u

(j)
k )2=1

∣∣∣∣∣ 1n
n∑

i=1

k∑
j1=1

k∑
j2=1

u
(j1)
k u

(j2)
k

(
M

(j1,j2)
� − E

[
M

(j1,j2)
�

])∣∣∣∣∣.
Then, the right-hand side is a spectral norm of the difference between the sam-
pled matrix and the population one, to which Theorem 4 and Corollary 5 are
applicable. Based on this approach, and considering the limit k → ∞, we obtain
the following result:

Theorem 6. Assume that M is a sequence of positive, semi-definite, symmet-
ric, H ⊗ H-valued random operators with E [M�] = Σ, and also satisfies As-
sumptions 1 and 2. For any τ > 0 and for all t > 0, with probability at least
1 − exp(−t) −

∑n
�=1 S�(τ), it holds that∥∥∥∥∥ 1

n

n∑
�=1

M� − Σ

∥∥∥∥∥ ≤ 4
√

2 ‖Σ‖ (τ + Γn)
√

4r (Σ) + t

n
+ G(τ).

The obtained upper bound remains the same, even for infinite dimensions.
Our approach in the finite-dimensional case cannot be applied directly in the
infinite-dimensional case. This is because our proof using variational equalities
depends on a density function of p-dimensional Gaussian vector. Thus, we can-
not avoid first considering Hk and subsequently letting k → ∞.

4. Applications

4.1. Covariance operator estimation

We consider the problem of covariance operator estimation using dependent
samples with heavy tails under the setting and assumptions of Proposition 3.
Let (X�)�∈N be a CBS in H and consider the strongly stationary process (Y�)�∈Z,
given by

Y� = X� + ε�,

as in Proposition 3. Additionally, assume that E[X1] = 0 and its covariance
operator is Σ ∈ S; that is, Σ is defined as Σu = E[〈Y1, u〉Y1] for any u ∈ H.
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Assume that we have n observations Y = (Y�)�=1,...,n from the process
(Y�)�∈Z. Then, we define the empirical covariance operator:

M�u := 〈Y�, u〉Y�,

for any u ∈ H. Using this notion, we obtain n operators M from Y and then
obtain the empirical covariance operator as

Σ̂ := 1
n

n∑
�=1

M�. (2)

By a direct application of Corollary 5, we obtain the following result, stated
without proof.

Proposition 7. Assume that the sequence M satisfies the setting of Propo-
sition 3. Consider the empirical covariance operator defined in (2). Then, for
any τ > 0 and t > 0, the following inequality holds with probability at least
1 − exp(−t) −

∑n
�=1 S�(τ):

‖Σ̂ − Σ‖ ≤ 4
√

2 ‖Σ‖ (τ + Γn)
√

4r (Σ) + t

n
+ G(τ),

where S�(τ) = 1{τ≤4B2} + Sε(τ/4), and G(τ) =
∫∞
τ

S�(t)dt.

4.2. Lagged covariance matrix estimation

We consider the estimation of a lagged covariance matrix, which is also called
a cross-covariance matrix. Consider the same process (Y�)�∈Z as in Section 4.1.
Here, we aim to estimate

Σ1 := E[Y�Y
�
�+1],

from n observations Y = (Y�)�=1,...,n. This problem and the solution discussed
below can obviously be extended to Σh := E[Y�Y

�
�+h] for h ≥ 2. Note that Σ1

is not symmetric; hence, our main results cannot be directly applied to a naive
estimator, Σ̂1 := (n−1)−1∑n−1

�=1 Y�Y
�
�+1. We still denote Σ = E[Y�Y

�
� ], which is

shown as Σh for h = 0, and its empirical estimator Σ̂ := (n− 1)−1∑n−1
�=1 Y�Y

�
� .

To estimate Σ1, we define an augmented process and estimator for the covari-
ance matrix of the process. We define the Hilbert space H

2 equipped with the
scalar product 〈(y1, y2), (y′1, y′2)〉 = 〈y1, y

′
1〉 + 〈y1, y

′
2〉 for (y1, y2), (y′1, y′2) ∈ H

2.
Let Ỹ� = (Y�, Y�+1)� be the H

2-valued augmented process, whose covariance is

Σ0:1 := E

[
Ỹ�Ỹ

�
�

]
=
(

E[Y�Y
�
� ] E[Y�Y

�
�+1]

E[Y�+1Y
�
� ] E[Y�+1Y

�
�+1]

)
=
(

Σ0 Σ1
Σ�

1 Σ0

)
. (3)

The main idea is to estimate Σ0:1, which directly leads to an estimator of Σ1.
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Using observations Y, we build Ỹ1, . . . , Ỹn−1 and their sample-wise product
matrices M1, . . . ,Mn−1 as

M� := Ỹ�Ỹ
�
� =

(
Y�Y

�
� Y�Y

�
�+1

Y�+1Y
�
� Y�+1Y

�
�+1

)
.

We then construct an estimator

Σ̂0:1 := 1
n− 1

n−1∑
�=1

M� =
(

Σ̂ Σ̂1
Σ̂�

1 Σ̂

)
. (4)

We show a concentration inequality for Σ̂0:1 and additionally show the conver-
gence of Σ̂ and Σ̂1.

Proposition 8. Assume that Y is as in Proposition 3. Consider the matrices
in (3) and the estimator in (4). Then, for any τ > 0 and t > 0, the following
inequality holds with probability at least 1 − exp(−t) −

∑n−1
�=1 S�(τ):

‖Σ̂0:1 − Σ0:1‖ ≤ 4
√

2 (‖Σ0:1‖) (τ + Γn)
√

4r (Σ0:1) + t

n− 1 + G(τ),

where S�(τ) = 1{τ≤4B2} + Sε(τ/4), and G(τ) =
∫∞
τ

S�(t)dt. Furthermore, with
the same probability, we obtain

max{‖Σ̂ − Σ‖, ‖Σ̂1 − Σ1‖}

≤ 4
√

2 (‖Σ1‖ + ‖Σ‖) (τ + Γn)
√

4r (Σ0:1) + t

n− 1 + G(τ).

The first statement is simply an application of Theorem 4 to the estimator
Σ̂0:1. The second simply follows from the first statement together with the facts
‖Σ0:1‖ ≤ ‖Σ1‖+ ‖Σ‖. By using the relation Tr(Σ0:1) = 2Tr(Σ) = 2‖Σ‖r (Σ), we
obtain the result.

4.3. Linear hidden Markov model

We consider a linear hidden Markov model (HMM) and study estimation in
this model. Specifically, we consider a HMM model with a lag order 1 and set
H = R

p. Assume that we observe a sequence of p-dimensional random vectors
Y = (Y�)n�=0 which follows the following equations for � ∈ Z:

Y� = X� + ε�, (5)
X� = AX�−1 + ξ� (6)

where A ∈ Rp×p is an unknown parameter matrix such that ‖A‖ ∈ (0, 1), and
(X�)�∈Z is a latent process such that ‖X�‖ ≤ B almost surely. Here, (ε�)�∈Z is a
sequence of i.i.d. p-dimensional noise variable with zero mean and finite variance,
and ξ� is a sequence of i.i.d. p-dimensional bounded noise variable with zero
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mean such that ‖ξ�‖ ≤ Bξ almost surely. Under the condition ‖A‖ ∈ (0, 1) and
the boundedness of the ξ�’s, the upper bound B is guaranteed to be finite. For
brevity, we assume that E[ε�ε�� ] = E[ξ�ξ�� ] = I. We also define the covariance
matrix Σ := E[Y�Y

�
� ] and the lagged covariance matrix Σ1 := E[Y�+1Y

�
� ]. Here,

we aim to estimate the unknown parameter matrix A.
We study a convenient form of the HMM model. We define noise matrices E =

(ε0, . . . , εn−1) ∈ R
p×n, E+ = (ε1, . . . , εn) ∈ R

p×n, and Z = (ξ1, . . . , ξn) ∈ R
p×n

and also define matrices Y = (Y0, . . . , Yn−1) ∈ R
p×n and Y+ = (Y1, . . . , Yn) ∈

R
p×n. Then, we rewrite (5) and (6) as

(Y+ − E+) = A(Y − E) + Z.

Multiplying (Y − E)� on both sides from the right and taking an expectation
yields

A = (E[(Y+ − E+)(Y − E)�] − E[Z(Y − E)�])E[(Y − E)(Y − E)�]−1

= Σ1(Σ + I)−1.

Here, we utilize the independent properties of the noise, and E[ε�ε�� ] = I.
We then define an estimator of A. Using the estimators Σ̂ := YY�/n =

n−1∑n−1
�=0 Y�Y

�
� and Σ̂1 := Y+Y�/n = n−1∑n−1

�=0 Y�+1Y
�
� , we define the fol-

lowing estimator:

Â := Σ̂1(Σ̂ + I)−1. (7)

Then, we obtain the following result:

Proposition 9. Consider the HMM model (5)-(6) and the estimator in (7) for
the parameters in the model. Then, for any t > 0 and τ > 0, with probability at
least 1 − exp(−t) −

∑n−1
�=1 S�(τ), the following inequality holds:

‖Â−A‖

≤ 4
√

2 (‖Σ1‖ + ‖Σ‖) (1 + ‖Σ1‖) (τ + Γn)
√

4r (Σ0:1) + t

n− 1 + (1 + ‖Σ1‖)G(τ),

where Σ0:1 is defined in (3), S�(τ) = 1{τ≤4B2}+Sε(τ/4), and G(τ) =
∫∞
τ

S�(t)dt.

It is obtained by bounding the estimation error ‖Â−A‖ with the estimation
errors of the covariance matrix Σ and the lagged covariance matrix Σ1, as de-
scribed in Proposition 4.2. Note that it is possible to extend the number of lags
in this HMM model to more than 1.

4.4. Overparameterized linear regression

Here, we study a linear regression problem with dependent and heavy-tail co-
variates in the overparameterization framework developed by [6].
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Let (X�)�∈Z be a CBS as a H-valued latent process and (Y�)�∈Z be a generated
process as a H-valued covariate such that

Y� = X� + ε�, (8)

where ε� is an i.i.d. H-valued noise variable with a mean value of zero. Addition-
ally, we define θ∗ ∈ H as a true unknown parameter and a covariance operator
Σ = E[Y�Y

�
� ]. For � ∈ Z, we consider an R-valued random variable Z� called

the response variable, given by:

Z� = 〈θ∗, Y�〉 + U�, (9)

where U� is an R-valued independent random variable with mean zero and a
variance σ2 > 0.

The goal of the regression problem is to estimate θ∗ from the observations
{(Zi, Yi) : i = 1, . . . , n}. We introduce a design matrix and operator as Z =
(Z1, . . . , Zn)� ∈ Rn and Y : H → Rn such that Yθ = (〈Y1, θ〉, . . . , 〈Yn, θ〉)� ∈ Rn

holds for θ ∈ H. Similarly, with E = (e1, ..., en)� ∈ R
n, we define an operator

Y� : R
n → H such that Y�E =

∑n
i=1 eiYi. Further, we define an empirical

covariance operator Σ̂ : H → H as Σ̂ = Y�Y/n and a projection operator
ΠY : H → H as ΠY := Y�(YY�)−1Y.

To estimate θ∗, we define the minimum norm estimator as:

θ̂ = argmin
θ∈H

{‖θ‖2 : Y�Yθ = Y�Z} = Y�(YY�)†Z, (10)

where † denotes the pseudo-inverse of operators. The excess risk of θ̂ is measured
using

R(θ̂) := E(Z∗,Y∗)[(Z∗ − 〈Y∗, θ̂〉)2 − (Z∗ − 〈Y∗, θ
∗〉)2], (11)

where (Z∗, Y∗) is an i.i.d. copy of (Z1, Y1) from the regression model (9) and
E(Z∗,Y∗)[·] is the expectation with respect to (Z∗, Y∗).

We present a technical assumption that specializes in the overparameteriza-
tion setting. Let Π⊥

Σ be a projection operator onto a linear space spanned by
vectors orthogonal to any eigenvector of Σ.

Assumption 3. dim(Π⊥
Σ(Y)) > n holds almost surely.

This assumption is identical to Assumption 1 in [6] and is intended to address
cases where no degeneracies exist, such as the perfect collinearity between the
variables.

With this setting, we bound the risk of the estimator for the overparameter-
ized linear regression model.

Proposition 10. Consider the linear regression model (9) with the process
(X�)�∈Z in (8) being a CBS. Assume that Assumption 3 holds. Consider the
estimator (10) and its excess risk (11). Assume, for any t, τ > 0, with probability
at least 1 − exp(−t) −

∑n
�=1 S�(τ), we have

R(θ̂) ≤ 4
√

2c‖θ∗‖2 ‖Σ‖ (τ + Γn)
√

4r (Σ) + t

n
+ G(τ) + ctσ2Tr(C),
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where C = (YY�)−1YΣY�(YY�)−1, S�(τ) = 1{τ≤4B2} + Sε(τ/4), and G(τ) =∫∞
τ

S�(t)dt.

This result indicates that we can bound the bias term of the risk of the overpa-
rameterized linear regression estimator, even in the dependent and heavy-tailed
setting. The last term ctσ2Tr(C) represents the variance of the risk, which con-
verges to zero by removing correlations and controlling for them using different
techniques. This goes beyond the scope of this paper, see Lemma 11 in [6] for
further details.

5. Proofs for main results in Section 3

5.1. Outline

We first state two lemmas at the core of our proofs in Section 5.2. Lemma 11
appears in many forms in the proofs of the PAC-Bayes bounds [9, 3]. For con-
venience, we use the version stated in [11, 32]. Lemma 12 is Rio’s version of
Hoeffding’s inequality [27] for weakly dependent random variables, that we ap-
plied to matrices.

Then, we prove Theorem 4 in Section 5.3. We essentially follow the techniques
developed in [11, 32]. However, both these studies rely on exponential inequali-
ties for independent random variables. Therefore, we use Rio’s inequality, which
requires the boundedness assumption.

In Section 5.4, we introduce a truncation function that transforms unbounded
matrices into bounded ones. We thus apply Theorem 4 to the truncated matrices.
We then control the effect of the truncation function to prove Corollary 5.

We mention that we have developed the proof to deal with dependent ma-
trices. For the case with independent matrices, the tools developed in [11, 32]
can be used. However, their proofs rely strongly on the independence property,
which is why we needed to introduce new arguments for dependent matrices.

5.2. Preliminary results

Lemma 11 ([11]). Assume that X is a random variable defined in a measurable
space (X ,A), and (Θ,F) is a measurable parameter space. Let μ be a probability
measure on (Θ,F) and h : X ×Θ → R be a real-valued A⊗F/B (R)-measurable
function such that EX [exp (h (X, θ))] < ∞ for μ-almost all θ. It holds that with
probability at least 1 − exp(−t), for all probability measures ρ � μ simultane-
ously,

Eρ[h (X, θ)] ≤ Eρ [logEX [exp (h (X, θ))]] + KL (ρ‖μ) + t.

Proof. The proof is merely a consequence of the duality relationship:

EX

[
exp
{

sup
ρ
μ

(Eρ [h (X, θ) − logEX [exp(h (X, θ))]] − KL (ρ‖μ))
}]
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= EXEμ [exp (h (X, θ) − logEX [exp(h (X, θ))])]

= EXEμ

[
exp(h (X, θ))

EX [exp(h (X, θ))]

]
= EμEX

[
exp(h (X, θ))

EX [exp(h (X, θ))]

]
= 1.

We use Tonelli’s theorem to exchange the order of expectations. Then Markov’s
inequality leads to the inequality that holds with probability at least 1−exp(−t);

sup
ρ
μ

(Eρ [h (X, θ) − logEX [exp(h (X, θ))]] − KL (ρ‖μ)) < t.

This completes the proof.

Lemma 12 (Rio’s version of Hoeffding’s inequality [27], applied to matrices).
Let {M1, . . . ,Mn} be a sequence of positive semi-definite symmetric random
matrices with max�=1,..,n ‖M�‖ ≤ κ2 almost surely for some κ > 0. Let us
assume that Assumption 1 is satisfied. Then, for any function h ∈ Lipn(E,L)
and for any λ > 0 we have

E [exp (λh(M1, . . . ,Mn) − λE[h(M1, . . . ,Mn)])]

≤ exp
(
λ2L2∑n

�=1 (2κ + Γ�,n)2

8

)
.

5.3. Bounded case (Theorem 4)

Proof of Theorem 4. The proof consists of truncation of ρ = ρu,v given by [32]
and the lemma above obtained using duality.

(Step 1) Let us assume that Σ is invertible. Otherwise, we only need to con-
sider a lower-dimensional subspace, and the proof is similar to the case with in-
vertible Σ. Let μ denote a 2p-dimensional product measure of two p-dimensional
Gaussian measures with a zero mean and covariance (2r (Σ))−1 Σ. We define
Sp−1 as the unit ball in Rp. Let us set u, v ∈ Σ1/2Sp−1 and define fu, fv as
probability density functions with respect to the Lebesgue measure such that

fu (x) =
exp
(
−r (Σ) (x− u)� Σ−1 (x− u)

)
1{‖x− u‖ ≤

√
‖Σ‖}∫

exp
(
−r (Σ) (x′ − u)� Σ−1 (x′ − u)

)
1{‖x′ − u‖ ≤

√
‖Σ‖}dx′

,

fv (x) =
exp
(
−r (Σ) (x− u)� Σ−1 (x− v)

)
1{‖x− v‖ ≤

√
‖Σ‖}∫

exp
(
−r (Σ) (x′ − v)� Σ−1 (x′ − v)

)
1{‖x′ − v‖ ≤

√
‖Σ‖}dx′

.

Here, 1{E} is an indicator function which is 1 if an event E is true and 0
otherwise. Assume that the independent random vectors θ, η have densities
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fu and fv. Note that E[(θ, η)] = (u, v) by the symmetricity of fu, fv, and
max {‖θ‖ , ‖η‖} ≤ 2

√
‖Σ‖ almost surely. Let ρu,v be a probability measure of

θ, η given by ρu,v(dx,dy) = fu (x) fv (y) dxdy, x, y ∈ Rd. In the proof of Theo-
rem 1 of [32], it is shown that

KL (ρu,v‖μ) ≤ 2 log 2 + 2r (Σ) .

(Step 2) Let f (A, θ, η) := θ�Aη for any A ∈ R
p⊗R

p and θ, η ∈ R
p. Lemma 12

with h(M1, . . . ,Mn) =
∑n

�=1 f(M�, θ, η) gives that for any λ > 0,

EM

[
exp
(
λ

n∑
�=1

f (M�, θ, η)
)]

= EM

[
exp
(
λ

n∑
�=1

θ�M�η

)]

≤ exp
(
nλθ�Ση +

λ2 ‖θ‖2 ‖η‖2
n
(
2κ2 + 2Γn

)2
8

)
,

because for any A1, . . . , An, B1, . . . , Bn ∈ R
p ⊗ R

p,

|h (A1, . . . , An) − h (B1, . . . , Bn)| =

∣∣∣∣∣θ�
(

n∑
�=1

(A� −B�)
)
η

∣∣∣∣∣
≤ ‖θ‖ ‖η‖

n∑
�=1

‖A� −B�‖ .

It holds that

1
n
Eρu,v

[
logEM

[
exp
(
λ

n∑
�=1

f (M�, θ, η)
)]]

≤ 1
n
Eρu,v

[
nλθ�Ση +

λ2 ‖θ‖2 ‖η‖2
n
(
κ2 + Γn

)2
2

]

= Eρu,v

[
λθ�Ση +

λ2 ‖θ‖2 ‖η‖2 (
κ2 + Γn

)2
2

]

≤ λu�Σv +
λ2
(
2
√
‖Σ‖
)4 (

κ2 + Γn

)2
2

= λu�Σv + 8λ2 ‖Σ‖2 (
κ2 + Γn

)2
.

The last inequality comes from the fact that max {‖θ‖ , ‖η‖} ≤ 2
√
‖Σ‖. There-

fore, from Lemma 11 with h (M1, . . . ,Mn, θ, η) = λ
∑n

�=1 f (M�, θ, η) and the
fact that log 2 ≤ r (Σ) for any Σ, we obtain

1
n

n∑
�=1

λu�M�v ≤ λu�Σv + 8λ2 ‖Σ‖2 (
κ2 + Γn

)2 + 4r (Σ) + t

n
,
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simultaneously for all u, v with probability at least 1 − exp(−t). By choosing

λ =
√

4r (Σ) + t

8n ‖Σ‖2 (κ2 + Γn)2
,

we obtain ∥∥∥∥∥ 1
n

n∑
�=1

M� − Σ

∥∥∥∥∥ ≤ 4
√

2 ‖Σ‖
(
κ2 + Γn

)√4r (Σ) + t

n
.

This is our claim.

5.4. Heavy-tailed case (Corollary 5)

We first present a truncation function, which is necessary to our robustification
strategy for heavy-tailed random matrices.

Definition 3. For any τ > 0, we define the truncation function ψτ : R → R as
follows:

ψτ (x) =

⎧⎨⎩
−τ if x < τ,
x if |x| ≤ τ,
τ if x > τ.

There is a standard method for extending a real function R → R to a function
of symmetric matrices S → S, by applying the function to the eigenvalues of
the matrix. Specifically, given A ∈ S, A can be written as

A = Q

⎛⎜⎝ λ1 . . . 0
...

. . .
...

0 . . . λp

⎞⎟⎠QT ,

for some matrix Q such that QQT = I, where (λ1, . . . , λp) are the eigenvalues
of A. We then define ψτ (A) by

ψτ (A) = Q

⎛⎜⎝ ψτ (λ1) . . . 0
...

. . .
...

0 . . . ψτ (λp)

⎞⎟⎠QT .

We can now state the first corollary of Theorem 4.

Corollary 13. Assume that {M1, . . . ,Mn} satisfies Assumption 1. Fix τ > 0.
Then for all t > 0, with probability at least 1 − exp(−t) it holds that∥∥∥∥∥ 1

n

n∑
�=1

(ψτ (M�) − E[ψτ (M�)])

∥∥∥∥∥ ≤ 4
√

2 ‖Σ‖ (τ + Γn)
√

4r (Σ) + t

n
.
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Proof of Corollary 13. Because x �→ ψτ (x) is 1-Lipschitz, the sequence of ma-
trices {ψτ (M1)−E[ψτ (M1)], . . . , ψτ (Mn)−E[ψτ (Mn)]} satisfies Assumption 1.
As they are bounded by τ and all have the same expectation (zero), therefore,
we can apply Theorem 4 to yield the result.

As stated in the outline of the proof, we now have to understand the difference
between the expectation of the truncated matrices and the expectations of the
(non-truncated) matrices themselves.

Proposition 14. Fix τ > 0. Under Assumption 2, we have

max
1≤�≤n

‖E[ψτ (M�)] − E[M�]‖ ≤ G(τ).

Proof of Proposition 14. For any � = 1, . . . , n, we have

‖E[ψτ (M�)] − E[M�]‖ ≤ E[‖ψτ (M�) −M�‖]
= E[(‖M�‖ − τ)1{‖M�‖−τ>0}]

≤
∫ ∞

0
(u− τ)1{u−τ>0}dP(‖M�‖ − τ ≤ u)

= −
∫ ∞

τ

(u− τ)dP(‖M�‖ − τ > u)

= [−(u− τ)P(‖M�‖ − τ > u)]∞τ

+
∫ ∞

τ

P(‖M�‖ − τ > u)du.

The first term is null as xS�(x) =
∫∞
0 1{u≤x}S�(x)du ≤

∫∞
0 S�(u)du and the

dominated convergence theorem gives xS�(x) → 0 as x → ∞, and thus

‖E[ψτ (M�)] − E[M�]‖ ≤
∫ ∞

τ

P(‖M�‖ − τ > u)du

≤
∫ ∞

τ

P(‖M�‖ > u)du

=
∫ ∞

τ

S�(u)du,

which ends the proof.

Corollary 15. Assume that {M1, . . . ,Mn} satisfies Assumptions 1 and 2, and
E[M�] = Σ. Fix τ > 0. For all t > 0, with probability at least 1 − exp(−t) it
holds that∥∥∥∥∥ 1

n

n∑
�=1

ψτ (M�) − Σ

∥∥∥∥∥ ≤ 4
√

2 ‖Σ‖ (τ + Γn)
√

4r (Σ) + t

n
+ G(τ).

Proof of Corollary 15. First, we decompose the norm as∥∥∥∥∥ 1
n

n∑
�=1

ψτ (M�) − Σ

∥∥∥∥∥
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≤
∥∥∥∥∥ 1
n

n∑
�=1

(ψτ (M�) − E[ψτ (M�)])

∥∥∥∥∥+

∥∥∥∥∥ 1
n

n∑
�=1

(E[ψτ (M�)] − E[M�])

∥∥∥∥∥
≤
∥∥∥∥∥ 1
n

n∑
�=1

[ψτ (M�) − E[ψτ (M�)]]

∥∥∥∥∥+ 1
n

n∑
�=1

‖E[ψτ (M�)] − Σ‖ ,

where we use the triangle inequality in the first line, and Jensen’s inequality
and E[M�] = Σ in the second line. As Assumption 1 is satisfied, we can upper
bound the first term with probability 1−exp(−t) by Corollary 13 together with
Proposition 1. Because Assumption 2 is also satisfied, we can bound the second
term using Proposition 14.

Note that Corollary 15 already provides an estimation result for Σ when
matrices M� are unbounded. However, in contrast to Corollary 5, not only does
the bound depend on τ but the estimator 1

n

∑n
�=1 ψτ (M�) does as well. A mistake

in the choice of τ can lead to poor estimation in practice.
To control the distance between this estimator 1

n

∑n
�=1 ψτ (M�) and the stan-

dard estimator 1
n

∑n
�=1 M�, we prove the following proposition.

Proposition 16. Under Assumption 2, we have

P

(∥∥∥∥∥ 1
n

n∑
�=1

ψτ (M�) −
1
n

n∑
�=1

M�

∥∥∥∥∥ �= 0
)

≤
n∑

�=1
S�(t).

Proof of Proposition 16. We have

P

(∥∥∥∥∥ 1
n

n∑
�=1

ψτ (M�) −
1
n

n∑
�=1

M�

∥∥∥∥∥ �= 0
)

≤ P

(
1
n

n∑
�=1

‖ψτ (M�) −M�‖ > 0
)

= P (∃� : ‖ψτ (M�) −M�‖ > 0)

≤
n∑

�=1

S�(t).

We can now prove Corollary 5.

Proof of Corollary 5. Using the triangle inequality,∥∥∥∥∥ 1
n

n∑
�=1

M� − Σ

∥∥∥∥∥ ≤
∥∥∥∥∥ 1
n

n∑
�=1

M� −
1
n

n∑
�=1

ψτ (M�)

∥∥∥∥∥+

∥∥∥∥∥ 1
n

n∑
�=1

ψτ (M�) − Σ

∥∥∥∥∥ .
The assumptions of Corollary 5 include: {M1, . . . ,Mn} satisfy Assumptions 1
and 2, and E[M�] = Σ, which enables us to use Corollary 15 to upper bound
the second term with probability 1 − exp(−t). This also allows for the use of
Proposition 16 to prove that the first term will be null with probability at least
1 −
∑n

�=1 S�(τ).
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5.5. Infinite-dimensional case (Theorem 6)

Proof of Theorem 6. For a sequence of H⊗H-valued positive semi-definite sym-
metric random operators {M1, . . . ,Mn} with E [M�] = Σ and max1≤�≤n ‖M�‖ ≤
κ2 almost surely for some κ > 0 satisfying Assumption 1,

P

⎛⎜⎝ sup
uk∈Hk
‖uk‖=1

∣∣∣∣∣
〈(

1
n

n∑
�=1

M� − Σ
)
uk, uk

〉∣∣∣∣∣ ≥ 4
√

2 ‖Σ‖
(
κ2 + Γn

)√4r (Σ) + t

n

⎞⎟⎠
≤ exp(−t),

because for Σk such that Σ(j1,j2)
k := E[M (j1,j2)

� ] and Σ := E[M�], ‖Σk‖ ≤ ‖Σ‖
and Tr (Σk) ≤ Tr (Σ), and Γn is also uniform for each, as evident from the proof.
Note that for any c ≥ 0 and k ∈ N,⎧⎪⎨⎪⎩ sup

uk∈Hk
‖uk‖=1

∣∣∣∣∣
〈(

1
n

n∑
�=1

M� − Σ
)
uk, uk

〉∣∣∣∣∣ ≥ c

⎫⎪⎬⎪⎭
⊂

⎧⎪⎨⎪⎩ sup
uk+1∈Hk+1
‖uk+1‖=1

∣∣∣∣∣
〈(

1
n

n∑
�=1

M� − Σ
)
uk+1, uk+1

〉∣∣∣∣∣ ≥ c

⎫⎪⎬⎪⎭ ,

and

lim
k→∞

⎧⎪⎨⎪⎩ sup
uk∈Hk
‖uk‖=1

∣∣∣∣∣
〈(

1
n

n∑
�=1

M� − Σ
)
uk, uk

〉∣∣∣∣∣ ≥ c

⎫⎪⎬⎪⎭ =
{∥∥∥∥∥ 1

n

n∑
�=1

M� − Σ

∥∥∥∥∥ ≥ c

}
.

The continuity of P leads to

P

(∥∥∥∥∥ 1
n

n∑
�=1

M� − Σ

∥∥∥∥∥ ≥ 4
√

2 ‖Σ‖
(
κ2 + Γn

)√4r (Σ) + t

n

)
≤ exp(−t).

Then, using the same approach to extend Theorem 4 to Corollary 5, we obtain
the statement.

6. Conclusion

We studied the deviations of the empirical mean of random matrices from its
expected value in the dependent, heavy-tailed case. The upper bound derived
here is independent of the dimension of the matrices but depends on the trace of
the expectation and the tail of the distribution. Additionally, the upper bound
increases with the strength of the dependence between the matrices. The proof
here is based on a variational inequality and robustification by truncation. Our
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result is applied to the estimation problem of covariance operators/matrices,
parameter estimation in linear hidden Markov models, and linear regression
under overparameterization.

A limitation of our result is the tightness of the obtained upper bound. It
is difficult to achieve lower bounds when random matrices are dependent and
heavy-tailed, while some lower bounds are known when they are independent
and each element is Gaussian. Therefore, deriving lower bounds in this case is
an interesting subject for future research.

Appendix A: Proof for Examples

Proof of Proposition 1. Let f : E → E be a 1-Lipschitz function and define
G� = σ(f(M1), . . . , f(M�)). We aim to prove that, for any g ∈ Lipn−�(S, 1), we
have

|E[g(f(M�+1), . . . , f(Mn)) | G�] − E[g(f(M�+1, . . . , f(Mn))]| ≤ Γ�,n. (12)

Let h be defined by h(a1, . . . , a�) = g(f(a1), . . . , f(a�)). Then h ∈ Lipn−�(S, 1).
Indeed,

|h(a1, . . . , a�) − h(b1, . . . , b�)|
= |g(f(a1), . . . , f(a�)) − g(f(b1), . . . , f(b�))|

≤ L

�∑
i=1

‖f(ai) − f(bi)‖E

≤ L

�∑
i=1

‖ai − bi‖E ,

where we used respectively the definition of h, the fact that g ∈ Lipn−�(S, 1) and
the fact that f is 1-Lipschitz. Thus, because (M1, . . . ,Mn) satisfies Assumption 1
and h ∈ Lipn−�(S, 1), then

|E[h(M�+1, . . . ,Mn) | F�] − E[h(M�+1, . . . ,Mn)]| ≤ Γ�,n

that we can rewrite as

|E[g(f(M�+1), . . . , f(Mn)) | F�] − E[g(f(M�+1, . . . , f(Mn))]| ≤ Γ�,n. (13)

This is almost (12); however, the conditional expectation does not hold with
respect to the correct σ-algebra. This is easily fixed because G� ⊆ F�. Thus,

|E[g(f(M�+1), . . . , f(Mn)) | G�] − E[g(f(M�+1, . . . , f(Mn))]|
= |E[E[g(f(M�+1), . . . , f(Mn)) | F�] | G�] − E[g(f(M�+1, . . . , f(Mn))]|
≤ E [|E[g(f(M�+1), . . . , f(Mn)) | F�] − E[g(f(M�+1, . . . , f(Mn))]| | G�]
≤ Γ�,n,

by using (13).
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Proof of Proposition 3. We define (ξ̄�)�∈Z as an independent copy Ξ. We fix
� ∈ {1, . . . , n}; we verify (1). To do so, we define, for m > �,

X̄m = C(ξm, ξm−1, . . . , ξ�+1, ξ̄�, ξ̄�−1, ξ̄�−2, . . . ),

and Ȳm = X̄m + εm. We put G� = σ(ξ�, ξ�−1, ξ�−2, . . . ; ε�, ε�−1, . . . ). Then, for
g ∈ Lipn−�(S, 1), we have

E[g(M�+1, . . . ,Mn) | F�] − E[g(M�+1, . . . ,Mn)]
= E[E[g(M�+1, . . . ,Mn) | G�] − E[g(M�+1, . . . ,Mn)] | F�],

and we prove an upper bound on E[g(M�+1, . . . ,Mn) | G�]−E[g(M�+1, . . . ,Mn)].
Hence, we have

E[g(M�+1, . . . ,Mn) | G�] − E[g(M�+1, . . . ,Mn)]
= E[g(Ȳ�+1Ȳ

�
�+1, . . . , ȲnȲ

�
n ) − g(Y�+1Y

�
�+1, . . . , YnY

�
n ) | G�]

≤
n∑

m=�+1

∥∥E [ȲmȲ �
m − YmY �

m | G�

]∥∥
=

n∑
m=�+1

∥∥E [(X̄m + εm)(X̄m + εm)� − (Xm + εm)(Xm + εm)� | G�

]∥∥
=

n∑
m=�+1

∥∥E [X̄mX̄�
m −XmX�

m | G�

]∥∥
=

n∑
m=�+1

∥∥E [X̄mX̄�
m − X̄mX�

m + X̄mX�
m −XmX�

m | G�

]∥∥
≤

n∑
m=�+1

(∥∥E [X̄mX̄�
m − X̄mX�

m | G�

]∥∥+
∥∥E [X̄mX�

m −XmX�
m | G�

]∥∥)

≤
n∑

m=�+1

B

(∥∥E [X̄�
m −X�

m | G�

]∥∥+
∥∥E [X̄m −Xm | G�

]∥∥).
Then, we obtain∥∥E [X̄m −Xm | G�

]∥∥
=
∥∥E [C(ξm, . . . , ξ�+1, ξ̄�, ξ̄�−1, . . . ) − C(ξm, . . . , ξ�+1, ξ�, ξ�−1, . . . ) | G�

]∥∥
≤

∞∑
i=m−�

αiE
[
‖ξ̄m−i − ξm−i‖ | G�

]
≤ 2

∞∑
i=m−�

αiBξ,

and thus,

E[g(M�+1, . . . ,Mn) | G�] − E[g(M�+1, . . . ,Mn)] ≤
n∑

m=�+1

[
4B

∞∑
i=m−�

αiBξ

]

≤ 4B
∞∑

i=�+1

min(i, n)αiBξ.
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Thus, (1) is satisfied with Γ�,n = 4BBξ

∑∞
i=�+1 min(i, n)αi. Let us now verify

Assumption 2. We have

P(‖M�‖ ≥ t) = P(‖(X� + ε�)(X� + ε�)�‖ ≥ t)
= P(‖X� + ε�‖2 ≥ t)
= P(‖X� + ε�‖ ≥

√
t)

≤ P(‖X�‖ ≥
√
t/2) + P(‖ε�‖ ≥

√
t/2)

≤ 1{t≤4B2} + P(‖ε�‖ ≥
√
t/2),

which ends the proof.

Proof of Proposition 8. Since (X�)�∈N is a CBS, X� = C(ξ�, ξ�−1, ξ�−2, . . . ) with

‖C(a1, a2, . . . ) − C(b1, b2, . . . )‖ ≤
∞∑
�=1

α�‖a� − b�‖ and A :=
∞∑
�=1

α� < ∞.

Using the form, we show that (X̃�)�∈N := ((X�, X�+1)�)�∈N is also a CBS, since
we have

X̃� = (C(ξt, ξt−1, ξt−2, . . . ), C(ξt−1, ξt−2, ξt−3, . . . )) = D(ξt, ξt−1, ξt−2, . . . )

with some function D which satisfies

‖D(a1, a2, . . . ) −D(b1, b2, . . . )‖ ≤
∞∑
�=1

(α� + α�+1)‖a� − b�‖.

Since (X̃�)�∈N is a CBS, (M1, . . . ,M�−1) satisfies Assumption 1 with Γ�,n =
8BBξ

∑n
i=�+1 min(i, n)αi and Γn := 8BBξ

∑n
i=2 min(i, n)αi by Proposition 3.

For Assumption 2, we utilize the fact that the largest eigenvalue of a matrix
is no more than a sum of the largest eigenvalues of its submatrices and obtain

P(‖M�‖ ≥ t)
≤ P(‖(X� + ε�)(X� + ε�)�‖ ≥ t/4)

+ P(‖(X� + ε�)(X�+1 + ε�+1)�‖ ≥ t/2)
+ P(‖(X�+1 + ε�+1)(X�+1 + ε�+1)�‖ ≥ t/4)

= 2P(‖X� + ε�‖2 ≥ t/4) + P(‖(X� + ε�)(X�+1 + ε�+1)�‖ ≥ t/2)
≤ 2P(‖X� + ε�‖ ≥

√
t/2) + P(‖X� + ε�‖‖X�+1 + ε�+1‖ ≥ t/2)

≤ 2P(‖X� + ε�‖ ≥
√
t/2) + 2P(‖X� + ε�‖ ≥

√
t/2)

≤ 4P(‖X�‖ ≥
√
t/2) + 4P(‖ε�‖ ≥

√
t/2)

≤ 41{t≤4B2} + 4P(‖ε�‖ ≥
√

t/2).

Hence, Assumption 2 holds G(τ) = 41{t≤2B2} +4P(‖ε�‖ ≥
√

t/2). Thus, Corol-
lary 5 shows the first statement.

Finally, the fact ‖Σ0:1‖ ≤ ‖Σ1‖ + ‖Σ‖ yields the second statement.
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Proof of Proposition 9. First, we confirm that (X�)�∈Z is a CBS in Example 1
by its definition. Hence, by Proposition 2, a sequence of matrices generated by
Y�Y

�
� satisfies Assumption 1 and 2.

We show that the estimation error ‖Â − A‖ is bounded by the estimation
error of Σ̂ and Σ̂1. We bound the error as

‖Â−A‖ = ‖(Σ̂1 − Σ1)(Σ̂ + I)−1 + ΣY,1((Σ̂ + I)−1 − (Σ + I)−1)‖
≤ ‖Σ̂1 − Σ1‖‖(Σ̂ + I)−1‖ + ‖Σ1(Σ + I)−1(Σ − Σ̂)(Σ̂ + I)−1‖
≤ ‖Σ̂1 − Σ1‖ + ‖Σ − Σ̂‖‖Σ1‖. (14)

Here, we use the facts ‖(Σ̂ + I)−1‖ ≤ 1 and ‖(Σ + I)−1‖ ≤ 1.
We combine the above results. Using the same discussion for Proposition 8

in Section 4.2, we have

max{‖Σ̂ − Σ‖, ‖Σ̂1 − Σ1‖}

≤ 4
√

2 (‖Σ1‖ + ‖Σ‖) (τ + Γn)
√

4r (Σ0:1) + t

n
+ G(τ),

where the definition of Σ0:1 follows Section 4.2. We combine this inequality with
the result (14), and we obtain the statement.

Proof of Proposition 10. By Lemma 7 in [6], the risk R(θ̂) is evaluated as

R(θ̂) ≤ 2(θ∗)�(I − ΠY)Σ(I − ΠY)θ∗ + σ2Tr((YY�)−1YΣY�(YY�)−1)
= 2(θ∗)�Bθ∗ + ctσ2Tr(C),

where B = (I − ΠY)Σ(I − ΠY). We bound the first term as

(θ∗)�Bθ∗ = (θ∗)�(I − ΠY)Σ(I − ΠY)θ∗

= (θ∗)�(I − ΠY)(Σ − n−1Y�Y)(I − ΠY)θ∗

≤ ‖θ∗‖2‖I − ΠY‖‖Σ − n−1Y�Y‖
≤ ‖θ∗‖2‖Σ − n−1Y�Y‖,

where the second equality follows (I −ΠY)Y� = (I −Y�(YY�)−1Y)Y� = Y�−
Y�(YY�)−1(YY�) = 0, and the second inequality follows ‖I−ΠY‖ ≤ 1 from the
non-expansive property of projection operators. Recalling that n−1Y�Y = Σ̂ as
in (2), Proposition 7 yields the statement.
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