
Electronic Journal of Statistics
Vol. 18 (2024) 848–894
ISSN: 1935-7524
https://doi.org/10.1214/24-EJS2218

Two-sample and change-point inference
for non-Euclidean valued time series

Feiyu Jiang
Department of Statistics and Data Science
School of Management, Fudan University

Shanghai, China
e-mail: jiangfy@fudan.edu.cn

Changbo Zhu
Department of Applied and Computational Mathematics and Statistics

University of Notre Dame
Notre Dame, IN 46556 USA

e-mail: czhu4@nd.edu

Xiaofeng Shao
Department of Statistics

University of Illinois at Urbana-Champaign
Champaign, IL 61820 USA
e-mail: xshao@illinois.edu

Abstract: Data objects taking value in a general metric space have be-
come increasingly common in modern data analysis. In this paper, we study
two important statistical inference problems, namely, two-sample testing
and change-point detection, for such non-Euclidean data under temporal
dependence. Typical examples of non-Euclidean valued time series include
yearly mortality distributions, time-varying networks, and covariance ma-
trix time series. To accommodate unknown temporal dependence, we ad-
vance the self-normalization (SN) technique [22] to the inference of non-
Euclidean time series, which is substantially different from the existing SN-
based inference for functional time series that reside in Hilbert space [33].
Theoretically, we propose new regularity conditions that could be easier to
check than those in the recent literature, and derive the limiting distribu-
tions of the proposed test statistics under both null and local alternatives.
For change-point detection problem, we also derive the consistency for the
change-point location estimator, and combine our proposed change-point
test with wild binary segmentation to perform multiple change-point esti-
mation. Numerical simulations demonstrate the effectiveness and robust-
ness of our proposed tests compared with existing methods in the literature.
Finally, we apply our tests to two-sample inference in mortality data and
change-point detection in cryptocurrency data.
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1. Introduction

Statistical analysis of non-Euclidean data that reside in a metric space is gradu-
ally emerging as an important branch of functional data analysis, motivated by
increasing encounter of such data in many modern applications. Examples in-
clude the analysis of sequences of age-at-death distributions over calendar years
[16, 21], covariance matrices in the analysis of diffusion tensors in medical imag-
ing [6], and graph Laplacians of networks [13]. One of the main challenges in
dealing with such data is that the usual vector/Hilbert space operation, such
as projection and inner product may not be well defined and only the distance
between two non-Euclidean data objects is available.

Despite the challenge, the list of papers that propose new statistical tech-
niques to analyze non-Euclidean data has been growing. Building on Fréchet
mean and variance [11], which are counterparts of mean and variance for metric
space valued random object, [7] proposed a test for comparing N(≥ 2) popula-
tions of metric space valued data. [8] developed a novel test to detect a change
point in the Fréchet mean and/or variance in a sequence of independent non-
Euclidean data. The classical linear and nonparametric regression has also been
extended to metric spaced valued data; see [19], [25], and [30], among others.
So far, the majority of the literature on non-Euclidean data has been limited to
independent data, and the only exceptions are [29] and [35, 36], which mainly
focused on the autoregressive modeling of non-Euclidean valued time series. To
the best of our knowledge, no inferential tools are available for non-Euclidean
valued time series in the literature.

In this paper, we address two important problems: two-sample testing and
change-point detection, in the analysis of non-Euclidean valued time series.
These two problems are also well motivated by the data we analyzed in the
paper, namely, the yearly age-at-death distributions for countries in Europe
and daily Pearson correlation matrices for five cryptocurrencies. For time series
data, serial dependence is the rule rather than the exception. This motivates
us to develop new tests for non-Euclidean time series that is robust to tempo-
ral dependence. Note that the two testing problems have been addressed by [7]
and [8], respectively for independent non-Euclidean data, but as expected, their
tests fail to control the size when there is temporal dependence in the series; see
Section 5 for simulation evidence.

To accommodate unknown temporal dependence, we develop test statistics
based on self-normalization [22, 24], which is a nascent inferential technique for
time series data. It has been mainly developed for vector time series and has
been extended to functional time series in Hilbert space [33, 32]. The functional
extension is however based on reducing the infinite dimensional functional data
to finite dimension via functional principal component analysis, and then ap-
plying SN to the finite-dimensional vector time series. Such SN-based inference
developed for time series in Hilbert space cannot be applied to non-Euclidean
valued time series, since the projection and inner product commonly used for
data in Hilbert space are not available for data objects that live in a general
metric space. The SN-based extension to non-Euclidean valued time series is
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therefore fairly different from that in [33] and [32], in terms of both methodol-
ogy and theory. For independent non-Euclidean valued data, [7, 8] build on the
empirical process theory [26] by regulating the complexity of the analyzed metric
space, which is in general abstract and may not be easy to verify. In our paper,
we take a different approach that is inspired by the M-estimation theory in [20]
and [14] for Euclidean data, and extend it to non-Euclidean setting. We assume
that the metric distance between data and the estimator of the Fréchet mean
admits certain decomposition, which includes a bias term, a leading stochastic
term, and a remainder term. Our technical assumptions are more intuitive and
could be easier to check in practice. Furthermore, we are able to obtain explicit
asymptotic distributions of our test statistics under the local alternatives of rate
n−1/2, where n is the sample size, under our assumptions, whereas they seem
difficult to derive under the entropy integral type conditions employed by [7, 8].

The remainder of the paper is organized as follows. Section 2 provides back-
ground of non-Euclidean metric space in which random objects of interest reside
in, and some basic assumptions that will be used throughout the paper. Sec-
tion 3 proposes SN-based two-sample tests for non-Euclidean time series. Sec-
tion 4 considers SN-based change-point tests. Numerical studies for the proposed
tests are presented in Section 5, and Section 6 demonstrates the applicability
of these tests through real data examples. Section 7 concludes. Proofs of all re-
sults are relegated to Appendix A. Appendix B summarizes the examples that
satisfy assumptions in Section 2, and Appendix C provides simulation results
for functional time series.

Some notations used throughout the paper are defined as follows. Let ‖·‖ de-
note the conventional Euclidean norm. Let D[0, 1] denote the space of functions
on [0, 1] which are right continuous with left limits, endowed with the Skorokhod
topology [4]. We use ⇒ to denote weak convergence in D[0, 1] or more generally
in R

m-valued function space Dm[0, 1], where m ∈ N; →d to denote convergence
in distribution; and →p to denote convergence in probability. A sequence of ran-
dom variables Xn is said to be Op(1) if it is bounded in probability. For x ∈ R,
define �x� as the largest integer that is smaller than or equal to x, and 	x
 as
the smallest integer that is greater than or equal to x.

2. Preliminaries and settings

In this paper, we consider a metric space (Ω, d) that is totally bounded, i.e. for
any ε > 0, there exist a finite number of open ε-balls whose union can cover
Ω. For a sequence of stationary random objects {Yt}t∈Z defined on (Ω, d), we
follow [11], and define their Fréchet mean and variance by

μ = arg min
ω∈Ω

Ed2(Yt, ω), V = Ed2(Yt, μ), (1)

respectively. Fréchet mean extends the traditional mean in linear spaces to more
general metric spaces by minimizing expected squared metric distance between
the random object Yt and the centroid akin to the conventional mean by mini-
mizing the expected sum of residual squares. It is particularly useful for objects
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that lie in abstract spaces without explicit algebraic structure. Fréchet variance,
defined by such expected squared metric distance, is then used for measuring
the dispersion in data.

Given finite samples {Yt}nt=1, we define their Fréchet subsample mean and
variance as

μ̂[a,b] = arg min
ω∈Ω

�nb�∑
t=1+�na�

d2(Yt, ω),

V̂[a,b] = 1
�nb� − �na�

�nb�∑
t=1+�na�

d2(Yt, μ̂[a,b]),

(2)

where (a, b) ∈ Iη, Iη = {(a, b) : 0 ≤ a < b ≤ 1, b − a ≥ η} for some trimming
parameter η ∈ (0, 1). The case corresponding to a = 0 and b ≥ η is further
denoted as

μ̂[0,b] = μ̂b, V̂[0,b] = V̂b,

with special case of b = 1 corresponding to Fréchet sample mean and variance
[19], respectively.

Note that both Fréchet (subsample) mean and variance depend on the space
Ω and metric distance d, which require further regulation for desired inferential
purposes. In this paper, we do not impose independence assumptions, and our
technical treatment differs substantially from those in the literature, c.f. [19, 7,
8, 9, 10].

Assumption 2.1. μ is unique, and for some δ > 0, there exists a constant
K > 0 such that,

inf
d(ω,μ)<δ

{
E
(
d2(Y0, ω)

)
− E

(
d2(Y0, μ)

)
−Kd2(ω, μ)

}
≥ 0.

Assumption 2.2. For any (a, b) ∈ Iη, μ̂[a,b] exists and is unique almost surely.

Assumption 2.3. For any ω ∈ Ω, and (a, b) ∈ Iη, as n → ∞,

1
�nb� − �na�

�nb�∑
t=�na�+1

[d2(Yt, ω) − Ed2(Yt, ω)] →p 0.

Assumption 2.4. For some constant σ > 0,

1√
n

�nr�∑
t=1

(
d2(Yt, μ) − V

)
⇒ σB(r), r ∈ (0, 1],

where B(·) is a standard Brownian motion.

Assumption 2.5. Let Bδ(μ) ⊂ Ω be a ball of radius δ centered at μ. For
ω ∈ Bδ(μ), i.e. d(ω, μ) ≤ δ, we assume the following expansion

d2(Yt, ω) − d2(Yt, μ) = Kdd
2(ω, μ) + g(Yt, ω, μ) + R(Yt, ω, μ), t ∈ Z,
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where Kd ∈ (0,∞) is a constant, and g(Yt, ω, μ) and R(Yt, ω, μ) satisfy that, as
n → ∞,

sup
(a,b)∈Iη

sup
ω∈Bδ(μ)

∣∣∣∣∣∣
n−1/2∑�nb�

t=�na�+1 g(Yt, ω, μ)
d(ω, μ)

∣∣∣∣∣∣ = Op(1),

and

sup
(a,b)∈Iη

sup
ω∈Bδ(μ)

∣∣∣∣∣∣
n−1/2∑�nb�

t=�na�+1 R(Yt, ω, μ)
d(ω, μ) + n1/2d2(ω, μ)

∣∣∣∣∣∣→p 0,

respectively.

Several remarks are given in order. Assumptions 2.1-2.3 are standard and
similar conditions can be found in [7, 8] and [19]. Assumptions 2.1 and 2.2 are
adapted from Assumption (A1) in [8], and are required for identification pur-
pose. In particular, Assumption 2.1 requires that the expected squared metric
distance Ed2(Yt, ω) can be well separated from the Fréchet variance, and the
separation is quadratic in terms of the distance d(ω, μ). Assumption 2.2 is use-
ful for obtaining the uniform convergence of the subsample estimate of Fréchet
mean, i.e., μ̂[a,b], which is a key ingredient in forming the self-normalizer in SN-
based inference. Assumption 2.3 is a pointwise weak law of large numbers, c.f.
Assumption (A2) in [8]. Assumption 2.4 requires the invariance principle to hold
to regularize the partial sum that appears in Fréchet subsample variances. Note
that d2(Yt, ω) takes value in R for any fixed ω ∈ Ω, thus both Assumption 2.3
and 2.4 could be implied by high-level weak temporal dependence conditions
(e.g., strong mixing) in conventional Euclidean space, see [22, 23] for discus-
sions.

Assumption 2.5 distinguishes our theoretical analysis from the existing liter-
ature. Its idea is inspired by [20] and [14] for M-estimators. In the conventional
Euclidean space, i.e. (Ω, d) = (Rm, ‖ · ‖) for m ≥ 1, it is easy to see that the
expansion in Assumption 2.5 holds with Kd = 1, g(Yt, ω, μ) = 2(μ−ω)�(Yt−μ)
and R(Yt, ω, μ) ≡ 0. In more general cases, Assumption 2.5 can be interpreted
as the expansion of d2(Yt, ω) around the target value d2(Yt, μ). In particular,
Kdd

2(ω, μ) can be viewed as the bias term, g(Yt, ω, μ) works as the asymptotic
leading term that is proportional to the distance d(ω, μ) while R(Yt, ω, μ) is
the asymptotically negligible remainder term. More specifically, after suitable
normalization, it reads as,

n−1/2
�nb�∑

t=�na�+1

[d2(Yt, ω) − d2(Yt, μ)]

=n1/2(b− a)Kdd
2(ω, μ)︸ ︷︷ ︸

bias term

+ d(ω, μ)
n−1/2∑�nb�

t=�na�+1 g(Yt, ω, μ)
d(ω, μ)︸ ︷︷ ︸

stochastic term
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+ n−1/2
�nb�∑

t=�na�+1

R(Yt, ω, μ)

︸ ︷︷ ︸
remainder term

.

And the verification of this assumption can be done by analyzing each term.
In comparison, existing literature, e.g. [19], [7, 8, 10], impose assumptions on
the complexity of (Ω, d). These assumptions typically involve the behaviors of
entropy integral and covering numbers rooted in the empirical process theory
[26], which are abstract and difficult to check in practice, see Propositions 1 and
2 in [19]. Assumption 2.5, on the contrary, regulates directly on the metric d
and could be easily checked for the examples below. Moreover, Assumption 2.5
is useful for deriving local powers of tests to be developed in this paper, see Sec-
tion 3.2 and 4.2 for more details. Examples that can satisfy Assumptions 2.1-2.5
include:

• L2 metric dL for Ω being the set of square integrable functions on [0, 1];
• 2-Wasserstein metric dW for Ω being the set of univariate probability

distributions on R;
• Frobenius metric dF for Ω being the set of square matrices, including the

special cases of covariance matrices and graph Laplacians;
• log-Euclidean metric dE for Ω being the set of covariance matrices.

We refer to Appendix B for more details of these examples and verifications of
above assumptions for them.

3. Two-sample testing

This section considers two-sample testing in metric space under temporal depen-
dence. For two sequences of temporally dependent random objects {Y (1)

t , Y
(2)
t }t∈Z

on (Ω, d), we denote Y
(i)
t ∼ P (i), where P (i) is the underlying marginal distribu-

tion of Y (i)
t with Fréchet mean and variance μ(i) and V (i), i = 1, 2. Given finite

sample observations {Y (1)
t }n1

t=1 and {Y (2)
t }n2

t=1, we are interested in the following
two-sample testing problem,

H0 : P (1) = P (2), v.s. Ha : P (1) �= P (2).

Let n = n1 + n2, we assume two samples are balanced, i.e. n1/n → γ1 and
n2/n → γ2 with γ1, γ2 ∈ (0, 1) and γ1 + γ2 = 1 as min(n1, n2) → ∞. For
r ∈ (0, 1], we define their recursive Fréchet sample mean and variance by

μ̂(i)
r = arg min

ω∈Ω

�rni�∑
t=1

d2(Y (i)
t , ω), V̂ (i)

r = 1
�rni�

�rni�∑
t=1

d2(Y (i)
t , μ̂(i)

r ), i = 1, 2.

A natural candidate test of H0 is to compare their Fréchet sample mean and
variance by contrasting (μ̂(1)

1 , V̂
(1)
1 ) and (μ̂(2)

1 , V̂
(2)
1 ). For the mean part, it is
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tempting to use d(μ̂(1)
1 , μ̂

(2)
1 ) as the testing statistic. However, this is a non-trivial

task as the limiting behavior of d(μ̂(1)
1 , μ̂

(2)
1 ) depends heavily on the structure

of the metric space, which may not admit conventional algebraic operations.
Fortunately, both V̂

(1)
1 and V̂

(2)
1 take value in R, and it is thus intuitive to

compare their difference. In fact, [7] propose the test statistic of the form

Un = n1n2

nσ̂2
1 σ̂

2
2
(V̂ (1)

1 − V̂
(2)
1 )2,

where σ̂2
i is a consistent estimator of limni→∞ Var{√n(V̂ (i)

1 − V (i))}, i = 1, 2.
However, Un requires both within-group and between-group independence,

which is too stringent to be realistic for applications in this paper. When either of
such independence is violated, the test may fail to control size, see Section 5 for
numerical evidence. Furthermore, taking into account the temporal dependence
requires replacing the variance by long-run variance, whose consistent estimation
usually involves laborious tuning such as choices of kernels and bandwidths [17,
1]. To this end, we invoke self-normalization technique to bypass the foregoing
issues.

The core principle of self-normalization for the time series inference is to
use an inconsistent long-run variance estimator that is a function of recursive
estimates to yield an asymptotically pivotal statistic. The SN procedure does
not involve any tuning parameter or involves less number of tuning parameters
compared to traditional counterparts. See [23] for a comprehensive review of
recent developments for low dimensional time series. For recent extension to
inference for high-dimensional time series, we refer to [27] and [28].

3.1. Test statistics

Define the recursive subsample test statistic based on Fréchet variance as

Tn(r) = r(V̂ (1)
r − V̂ (2)

r ), r ∈ [η, 1],

and then construct the SN based test statistic as

Dn,1 = n [Tn(1)]2∑n
k=�nη�

[
Tn( k

n ) − k
nTn(1)

]2 , (3)

where η ∈ (0, 1) is a trimming parameter for controlling the estimation effect of
Tn(r) when r is close to 0, which is important for deriving the uniform conver-
gence of {√nTn(r), r ∈ [η, 1]}, see [34] and [15] for similar technical treatments.

The testing statistic (3) is composed of the numerator n[Tn(1)]2, which cap-
tures the difference in Fréchet variances, and the denominator

∑n
k=�nη�

[
Tn( k

n )−
k
nTn(1)

]2, which is called self-normalizer and mimics the behavior of the numer-
ator with suitable centering and trimming. For each r ∈ [η, 1], Tn(r) is expected
to be a consistent estimator for r(V (1) − V (2)). Therefore, under Ha, Tn(1) is
large when there is significant difference in Fréchet variance, whereas the key
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element Tn(r) − rTn(1) in self-normalizer remains to be small. This suggests
that we should reject H0 for large values of Dn,1.

Note that (3) only targets at difference in Fréchet variances. To detect the
difference in Fréchet means, we can use contaminated Fréchet variance [8]. Let

V̂ C,(1)
r = 1

�rn1�

�rn1�∑
t=1

d2(Y (1)
t , μ̂(2)

r ), and V̂ C,(2)
r = 1

�rn2�

�rn2�∑
t=1

d2(Y (2)
t , μ̂(1)

r ),

and
TC
n (r) = r(V̂ C,(1)

r + V̂ C,(2)
r − V̂ (1)

r − V̂ (2)
r ).

The contaminated Fréchet sample variances V̂
C,(1)
r and V̂

C,(2)
r switch the role

of μ̂(1)
r and μ̂

(2)
r in V̂

(1)
r and V̂

(2)
r , respectively, and could be viewed as proxies

for measuring Fréchet mean differences.
Intuitively, it is expected that V̂ C,(i)

r ≈ Ed2(Y (i)
t , μ(3−i)), and V̂

(i)
r ≈ Ed2(Y (i)

t ,
μ(i)), i = 1, 2. Under H0, both μ̂

(1)
r and μ̂

(2)
r are consistent estimators for μ(1) =

μ(2), thus V̂
C,(i)
r ≈ V̂

(i)
r , i = 1, 2, which indicates a small value for TC

n (r). On
the contrary, when d(μ(1), μ(2)) > 0, V̂ C,(i)

r could be much larger than V̂
(i)
r as

Ed2(Y (i)
t , μ(3−i)) > Ed2(Y (i)

t , μ(i)) = arg minω∈Ω Ed2(Y (i)
t , ω), i = 1, 2, resulting

in large value of TC
n (r).

The power-augmented test statistic is thus defined by

Dn,2 =
n
{

[Tn(1)]2 +
[
TC
n (1)

]2}
∑n

k=�nη�

{[
Tn( k

n ) − k
nTn(1)

]2 +
[
TC
n ( k

n ) − k
nT

C
n (1)

]2} , (4)

where the additional term
∑n

k=�nη�
[
TC
n ( k

n ) − k
nT

C
n (1)

]2 that appears in the
self-normalizer is used to stabilize finite sample performances.

Remark 3.1. Our proposed tests could be adapted to comparison of N -sample
populations [7], where N ≥ 2. An natural way of extension would be aggregat-
ing all the pairwise differences in Fréchet variance and contaminated variance.
Specifically, let the N groups of random data objects be {Y (i)

t }ni
t=1, i = 1, . . . , N .

The null hypothesis is given as

H0 : P (1) = · · · = P (N),

for some N ≥ 2.
Let μ̂

(i)
r and V̂

(i)
r , r ∈ [η, 1] be the Fréchet subsample mean and variance,

respectively, for the ith group, i = 1, . . . , N . For 1 ≤ i �= j ≤ N , define the
pairwise contaminated Fréchet subsample variance as

V̂ C,(i,j)
r = 1

�rni�

�rni�∑
t=1

d2(Y (i)
t , μ̂(j)

r ), r ∈ [η, 1],



856 F. Jiang et al.

and define the recursive statistics

T i,j
n (r) = r(V̂ (i)

r −V̂ (j)
r ), TC,i,j

n (r) = r(V̂ C,(i,j)
r +V̂ C,(j,i)

r −V̂ (i)
r −V̂ (j)

r ), r ∈ [η, 1].

In the same spirit of the test statistics Dn,1 and Dn,2, for n =
∑N

i=1 ni, we
may construct their counterparts for the N -sample testing problem as

D
(N)
n,1 =

n
∑

i<j

[
T i,j
n (1)

]2
∑n

k=�nη�
∑

i<j

[
T i,j
n ( k

n ) − k
nT

i,j
n (1)

]2 ,
and

D
(N)
n,2 =

n
∑

i<j

{[
T i,j
n (1)

]2 +
[
TC,i,j
n (1)

]2}
∑n

k=�nη�
∑

i<j

{[
T i,j
n ( k

n ) − k
nT

i,j
n (1)

]2
+
[
TC,i,j
n ( k

n ) − k
nT

C,i,j
n (1)

]2} .

Compared with classical N -sample testing problem in Euclidean spaces, e.g.
analysis of variance (ANOVA), the above modification does not require Gaus-
sianity, equal variance, or serial independence. Therefore, they could be work for
broader classes of distributions. We leave out the details for the sake of space.

3.2. Asymptotic theory

Before we present asymptotic results of the proposed tests, we need a slightly
stronger assumption than Assumption 2.4 to regulate the joint behavior of par-
tial sums for both samples.

Assumption 3.1. For some σ1 > 0 and σ2 > 0, we have

1√
n

�nr�∑
t=1

(
d2(Y (1)

t , μ(1)) − V (1)

d2(Y (2)
t , μ(2)) − V (2)

)
⇒
(
σ1B

(1)(r)
σ2B

(2)(r)

)
,

where B(1)(·) and B(2)(·) are two standard Brownian motions with unknown
correlation parameter ρ ∈ (−1, 1), and σ1, σ2 �= 0 are unknown parameters
characterizing the long-run variance.

Theorem 3.1. Suppose Assumptions 2.1-2.5 (with 2.4 replaced by 3.1) hold for
both {Y (1)

t }n1
t=1 and {Y (2)

t }n2
t=1. Then as n → ∞, under H0, for i = 1, 2,

Dn,i →d

ξ2
γ1,γ2

(1;σ1, σ2)∫ 1
η

[ξγ1,γ2(r;σ1, σ2) − rξγ1,γ2(1;σ1, σ2)]2 dr
:= Dη,

where
ξγ1,γ2(r;σ1, σ2) = γ−1

1 σ1B
(1)(γ1r) − γ−1

2 σ2B
(2)(γ2r). (5)
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Theorem 3.1 obtains the same limiting null distribution for Fréchet variance
based test Dn,1 and its power-augmented version Dn,2. Although Dn,2 contains
contaminated variance TC

n (1), its contribution is asymptotically vanishing as
n → ∞. This is an immediate consequence of the fact that

sup
r∈[η,1]

|
√
nTC

n (r)| →p 0,

see proof of Theorem 3.1 in Appendix A. Similar phenomenon has been docu-
mented in [7] under different assumptions.

We next consider the power behavior under the Pitman local alternative,

Han : V (1) − V (2) = n−κV ΔV , and d2(μ(1), μ(2)) = n−κM ΔM ,

with ΔV ∈ R, ΔM ∈ (0,∞), and κV , κM ∈ (0,∞).

Theorem 3.2. Suppose Assumptions 2.1-2.5 (with 2.4 replaced by 3.1) hold for
both {Y (1)

t }n1
t=1 and {Y (2)

t }n2
t=1. As n → ∞, under Han,

• if max{κV , κM} ∈ (0, 1/2), then for i = 1, 2, Dn,i →p ∞;
• if min{κV , κM} ∈ (1/2,∞), then for i = 1, 2, Dn,i →d Dη;
• if κV = 1/2 and κM ∈ (1/2,∞), then for i = 1, 2,

Dn,i →d
(ξγ1,γ2(1;σ1, σ2) + ΔV )2∫ 1

η
(ξγ1,γ2(r;σ1, σ2) − rξγ1,γ2(1;σ1, σ2))2 dr

;

• if κV ∈ (1/2,∞) and κM = 1/2, then Dn,1 →d Dη, and

Dn,2 →d
(ξγ1,γ2(1;σ1, σ2))2 + 4K2

dΔ2
M∫ 1

η
(ξγ1,γ2(r;σ1, σ2) − rξγ1,γ2(1;σ1, σ2))2 dr

;

• if κV = κM = 1/2, then

Dn,1 →d
(ξγ1,γ2(1;σ1, σ2) + ΔV )2∫ 1

η
(ξγ1,γ2(r;σ1, σ2) − rξγ1,γ2(1;σ1, σ2))2 dr

,

Dn,2 →d
(ξγ1,γ2(1;σ1, σ2) + ΔV )2 + 4K2

dΔ2
M∫ 1

η
(ξγ1,γ2(r;σ1, σ2) − rξγ1,γ2(1;σ1, σ2))2 dr

;

where Kd is defined in Assumption 2.5.

Theorem 3.2 presents the asymptotic behaviors for both test statistics under
local alternatives in various regimes. In particular, Dn,1 can detect differences in
Fréchet variance at local rate n−1/2, but possesses trivial power against Fréchet
mean difference regardless of the regime of κM . In comparison, Dn,2 is powerful
for differences in both Fréchet variance and Fréchet mean at local rate n−1/2,
which validates our claim that Dn,2 indeed augments power.

Our results merit additional remarks when compared with [7]. In [7], they
only obtain the consistency of their test under either n1/2|V (1) − V (2)| → ∞ or
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n1/2d2(μ(1), μ(2)) → ∞, while Theorem 3.2 explicitly characterizes the asymp-
totic distributions of our test statistics under local alternatives of order n−1/2,
which depend on κV and κM . Such theoretical improvement relies crucially on
our newly developed proof techniques based on Assumption 2.5, and it seems
difficult to derive such limiting distributions under empirical-process-based as-
sumptions in [7]. However, we do admit that self-normalization could result in
moderate power loss compared with t-type test statistics, see [24] for evidence
in Euclidean space.

Note that the limiting distributions derived in Theorem 3.1 and Theorem 3.2
contain a key quantity ξγ1,γ2(r;σ1, σ2) defined in (5), which depends on nuisance
parameters σ1, σ2 and ρ. This may hinder the practical use of the tests. The
following corollary, however, justifies the wide applicability of our tests.

Corollary 3.1. Under Assumption 3.1, if either γ1 = γ2 = 1/2 or ρ = 0, then
for any constants Ca, Cb ∈ R,

(ξγ1,γ2(1;σ1, σ2) + Ca)2 + C2
b∫ 1

η
(ξγ1,γ2(r;σ1, σ2) − rξγ1,γ2(1;σ1, σ2))2 dr

=d
(B(1) + Ca/Cξ)2 + (Cb/Cξ)2∫ 1

η
(B(r) − rB(1))2 dr

,

where

Cξ =
{√

2σ2
1 + 2σ2

2 − 4ρσ1σ2, if γ1 = γ2,√
σ2

1/γ1 + σ2
2/γ2, if ρ = 0.

Therefore, by choosing Ca = Cb = 0 in Corollary 3.1, we obtain the pivotal
limiting distribution

Dη =d
B2(1)∫ 1

η
(B(r) − rB(1))2 dr

.

The asymptotic distributions in Theorem 3.2 can be similarly derived by letting
either Ca = ΔV or Cb = 2KdΔM .

Therefore, when either two samples are of the same length (γ1 = γ2) or two
samples are asymptotically independent (ρ = 0), the limiting distribution Dη

is pivotal. In practice, we reject H0 if Dn,i > QDη(1 − α) where QDη(1 − α)
denotes the 1 − α quantile of (the pivotal) Dη.

In Table 1, we tabulate commonly used critical values under various choices
of η by simulating 50,000 i.i.d. N (0,1) random variables 10,000 times and ap-
proximating a standard Brownian motion by standardized partial sum of i.i.d.
N (0, 1) random variables.

Table 1

Simulated critical values QDη (1 − α).

α
η 0.02 0.05 0.1 0.15

10% 28.51 28.88 30.02 31.87
5% 46.10 46.72 48.80 51.87
1% 101.58 103.70 108.93 116.72

0.5% 131.55 134.00 142.34 151.93
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4. Change-point test

Inspired by the two-sample tests developed in Section 3, this section considers
the change-point detection problem for a sequence of random objects {Yt}nt=1,
i.e.

H0 : Y1, Y2, . . . , Yn ∼ P (1)

against the single change-point alternative,

Ha : there exists 0 < τ < 1 such that Yt =
{
Y

(1)
t ∼ P (1), 1 ≤ t ≤ �nτ�

Y
(2)
t ∼ P (2), �nτ� + 1 ≤ t ≤ n.

The single change-point testing problem can be roughly viewed as two-sample
testing without knowing where the two samples split, and they share certain
similarities in terms of statistical methods and theory.

Recall the Fréchet subsample mean μ̂[a,b] and variance V̂[a,b] in (2), we further
define the pooled contaminated variance separated by r ∈ (a, b) as

V̂ C
[r;a,b]=

1
�nr� − �na�

�nr�∑
i=�na�+1

d2 (Yi, μ̂[r,b]
)
+ 1
�nb� − �nr�

�nb�∑
i=�nr�+1

d2 (Yi, μ̂[a,r]
)
.

Define the subsample test statistics

Tn(r; a, b) = (r − a)(b− r)
b− a

(
V̂[a,r] − V̂[r,b]

)
,

and
TC
n (r; a, b) = (r − a)(b− r)

b− a

(
V̂ C

[r;a,b] − V̂[a,r] − V̂[r,b]

)
.

Note that Tn(r; a, b) and TC
n (r; a, b) are natural extensions of Tn(r) and TC

n (r)
from two-sample testing problem to change-point detection problem by viewing
{Yt}�nr�t=�na�+1 and {Yt}�nb�t=�nr�+1 as two separated samples. Intuitively, the con-
trast statistics Tn(r; a, b) and TC

n (r; a, b) are expected to attain their maxima
(in absolute value) when r is set at or close to the true change-point location τ .

4.1. Test statistics

For some trimming parameters η1 and η2 such that η1 > 2η2, and η1 ∈ (0, 1/2),
in the same spirit of Dn,1 and Dn,2, and with a bit abuse of notation, we define
the testing statistics

SNi = max
�nη1�≤k≤n−�nη1�

Dn,i(k), i = 1, 2,

where

Dn,1(k) =
n
[
Tn

(
k
n ; 0, 1

)]2∑k−�nη2�
l=�nη2�

[
Tn

(
l
n ; 0, k

n

)]2 +
∑n−�nη2�

l=k+�nη2�
[
Tn

(
l
n ; k

n , 1
)]2 ,
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Dn,2(k) =
n
{[

Tn

(
k
n ; 0, 1

)]2 +
[
TC
n

(
k
n ; 0, 1

)]2}
Ln(k) + Rn(k) ,

with

Ln(k) =
k−�nη2�∑
l=�nη2�

{[
Tn

(
l

n
; 0, k

n

)]2
+
[
TC
n

(
l

n
; 0, k

n

)]2}
,

Rn(k) =
n−�nη2�∑

l=k+�nη2�

{[
Tn

(
l

n
; k
n
, 1
)]2

+
[
TC
n

(
l

n
; k
n
, 1
)]2}

.

The trimming parameter η1 plays a similar role as η in two-sample testing
problem for stabilizing the estimation effect for relatively small sample sizes,
while the additional trimming η2 is introduced to ensure that the subsample
estimates in the self-normalizers are constructed with the subsample size pro-
portional to n. Furthermore, we note that the self-normalizers here are modified
to accommodate for the unknown change-point location, see [24], [31] for more
discussion.

4.2. Asymptotic theory

Theorem 4.1. Suppose Assumptions 2.1-2.5 hold. Then, under H0, we have
for i = 1, 2,

SNi = max
�nη1�≤k≤n−�nη1�

Dn,i(k) ⇒ sup
r∈[η1,1−η1]

[B(r) − rB(1)]2

V (r, η) := Sη,

where V (r, η) =
∫ r−η2
η2

[B(u)− u/rB(r)]2du+
∫ 1−η2
r+η2

[B(1)−B(u)− (1− u)/(1−
r){B(1) −B(r)}]2du.

Similar to Theorem 3.1, Theorem 4.1 states that both change-point test
statistics have the same pivotal limiting null distribution Sη. The test is thus
rejected when SNi > QSη (1 − α), i = 1, 2, where QSη(1 − α) denotes the 1 − α
quantile of Sη. In Table 2, we tabulate commonly used critical values under
various choices of (η1, η2) by simulations.

Table 2

Simulated critical values QSη (1 − α).

α
(η1, η2) (0.02,0.05) (0.04,0.1) (0.05,0.15)

10% 30.29 32.09 33.36
5% 41.31 44.36 46.50
1% 72.66 79.24 82.13

0.5% 91.31 96.90 101.48

Recall in Theorem 3.2, we have obtained the local power of two-sample tests
Dn,1 and Dn,2 at rate n−1/2. To this end, consider the local alternative

Han : V (1) − V (2) = n−1/2ΔV , and d2(μ(1), μ(2)) = n−1/2ΔM ,
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where ΔV ∈ R and ΔM ∈ (0,∞). The following theorem states the asymptotic
power behaviors of SN1 and SN2.

Theorem 4.2. Suppose Assumptions 2.1-2.5 (with 2.4 replaced by 3.1) hold.
If ΔV �= 0 and ΔM �= 0 are fixed, then under Han, if τ ∈ (η1, 1 − η1), then as
n → ∞, we have

lim
|ΔV |→∞

lim
n→∞

{
max

�nη1�≤k≤n−�nη1�
Dn,1(k)

}
→p ∞,

lim
max{|ΔV |,ΔM}→∞

lim
n→∞

{
max

�nη1�≤k≤n−�nη1�
Dn,2(k)

}
→p ∞.

We note that Theorem 4.2 deals with the alternative involving two different
sequences before and after the change-point, while Theorem 4.1 only involves
one stationary sequence. Therefore, we need to replace Assumption 2.4 by As-
sumption 3.1.

Theorem 4.2 demonstrates that our tests are capable of detecting local al-
ternatives at rate n−1/2. In addition, it is seen from Theorem 4.2 that SN1 is
consistent under the local alternative of Fréchet variance change as |ΔV | → ∞,
while SN2 is consistent not only under |ΔV | → ∞ but also under the local
alternative of Fréchet mean change as ΔM → ∞. Hence SN2 is expected to
capture a wider class of alternatives than SN1, and these results are consistent
with findings for two-sample problems in Theorem 3.2.

When H0 is rejected, it is natural to estimate the change-point location by

τ̂i = n−1k̂i, k̂i = arg max
�nη1�≤k≤n−�nη1�

Dn,i(k), for i = 1, 2. (6)

We will show that the estimators are consistent under the fixed alternative, i.e.
Ha : V (1)−V (2) = ΔV . Before that, we need to regulate the behaviour of Fréchet
mean and variance under Ha.

Let

μ(α) = arg min
ω∈Ω

{
αE(d2(Y (1)

t , ω)) + (1 − α)E(d2(Y (2)
t , ω))

}
,

V (α) = αE(d2(Y (1)
t , μ(α))) + (1 − α)E(d2(Y (2)

t , μ(α))),

be the limiting Fréchet mean and variance of two mixture distributions indexed
by α ∈ [0, 1].

Assumption 4.1. μ(α) is unique for all α ∈ [0, 1], and

|V (2) − V (α)| ≥ ϕ(α), |V (1) − V (α)| ≥ ϕ(1 − α),

such that ϕ(α) ≥ 0 is a continuous, strictly increasing function of α ∈ [0, 1]
satisfying ϕ(0) = 0 and ϕ(1) ≤ |ΔV |.

The uniqueness of Fréchet mean and variance for mixture distribution is
also imposed in [8], see Assumption (A2) therein. Furthermore, Assumption 4.1
imposes a bi-Lipschitz type condition on V (α), and is used to distinguish the
Fréchet variance V (α) under mixture distribution from V (1) and V (2).
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Theorem 4.3. Suppose Assumptions 2.1-2.5 (with 2.4 replaced by 3.1), and
Assumption 4.1 hold. Under Ha, for i = 1, 2, we have τ̂i →p τ , where τ̂i is
defined in (6).

Theorem 4.3 obtains the consistency of τ̂i, i = 1, 2 when Fréchet variance
changes. We note that it is very challenging to derive the consistency result
when Ha is caused by Fréchet mean change alone, which is partly due to the
lack of explicit algebraic structure on (Ω, d) that we can exploit, and the use of
self-normalization. We leave this problem for future investigation.

4.3. Wild binary segmentation

To detect multiple change-points and identify the their locations given the time
series {Yt}nt=1, we can combine our change-point test with the so-called wild
binary segmentation (WBS) [12]. The testing procedure in conjunction with
WBS can be described as follows.

Let IM = {(sm, em)}m=1,2,...,M , where sm, em are drawn uniformly from
{0, 1/n, 1/(n− 1), . . . , 1/2, 1} such that 	nem
− �nsm� ≥ 20. Then we simulate
J i.i.d samples, each sample is of size n, from multivariate Gaussian distribution
with mean 0 and identity covariance matrix, i.e., for j = 1, 2, . . . , J , {Zj

i }ni=1
i.i.d.∼

N (0, 1). For the jth sample {Zj
i }ni=1, let D̃(k; sm, em; {Zj

i }ni=1) be the statistic
D�nem�−	nsm
+1,2(k) that is computed based on sample {Zj

	nsm
, Z
j
	nsm
+1, . . . ,

Zj
�nem�} and

ξj = max
1≤m≤M

max
�ñmη1�≤k≤ñm−�ñmη1�

D̃(k; sm, em; {Zj
i }ni=1),

where ñm = 	nem
 − �nsm�+ 1. Setting ξ as the 95% quantile of ξ1, ξ2, . . . , ξJ ,
we can apply our test in combination with WBS algorithm to the data sequence
{Y1, Y2, . . . Yn} by running Algorithm 1 as WBS(0, 1, ξ). The main rational be-
hind this algorithm is that we exploit the asymptotic pivotality of our SN test
statistic, and the limiting null distribution of our test statistic applied to random
objects is identical to that applied to i.i.d N (0, 1) random variables. Thus this
threshold is expected to well approximate the 95% quantile of the finite sample
distribution of the maximum SN test statistic on the M random intervals under
the null.

5. Simulation

In this section, we examine the size and power performance of our proposed
tests in two-sample testing (Section 5.1), change-point detection (Section 5.2)
problems, and provide simulation results of WBS based change-point estima-
tion (Section 5.3). We refer to Appendix C with additional simulation results
regarding comparison with FPCA approach for two-sample tests in functional
time series.
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Algorithm 1: WBS
1 Function WBS(s, e, ξ):
2 if �ns� − �ne� < 20 then
3 STOP;
4 else
5 Ms,e ← set of those 1 ≤ m ≤ M for which s ≤ sm, em ≤ e;
6 m0 ← arg maxm∈Ms,e max�ñmη1�≤k≤ñm−�ñmη1� D̃(k; sm, em; {Yi}ni=1),

where ñm = �nem� − �nsm� + 1;
7 k0 ← max�ñ0η1�≤k≤ñ0−�ñ0η1� D̃(k; sm0 , em0 ; {Yi}ni=1), where

ñ0 = �nem0� − �nsm0� + 1;
8 if D̃(k0; sm0 , em0 ; {Yi}ni=1) > ξ then
9 add k0 to the set of estimated change points;

10 WBS(s, k0/n, ξ);
11 WBS(k0/n, e, ξ);
12 else
13 STOP
14 end
15 end

The time series random objects considered in this section include (i). univari-
ate Gaussian probability distributions equipped with 2-Wasserstein metric dW ;
(ii). graph Laplacians of weighted graphs equipped with Frobenius metric dF ;
(iii). covariance matrices [6] equipped with log-Euclidean metric dE . Numerical
experiments are conducted according to the following data generating processes
(DGPs):

(i) Gaussian univariate probability distribution: we consider

Y
(1)
t = N (arctan(Ut,1), [arctan(U2

t,1) + 1]2),

Y
(2)
t = N (arctan(Ut,2) + δ1, δ

2
2 [arctan(U2

t,2) + 1]2).

(ii) graph Laplacians: each graph has N nodes (N = 10 for two-sample test
and N = 5 for change-point test) that are categorized into two communi-
ties with 0.4N and 0.6N nodes respectively, and the edge weight for the
first community, the second community and between community are set
as 0.4 + arctan(U2

t,1), 0.2 + arctan(U ′ 2
t,1), 0.1 for the first sample Y

(1)
t , and

δ2[0.4+arctan(U2
t,2)], δ2[0.2+arctan(U ′ 2

t,2)], 0.1+ δ1 for the second sample
Y

(2)
t , respectively;

(iii) covariance matrix: Y (i)
t = (2I3 + Zt,i)(2I3 + Zt,i)�, i = 1, 2, such that all

the entries of Zt,1 (resp. Zt,2) are independent copies of arctan(Ut,1) (resp.
δ1 + δ2 arctan(Ut,2)).

For DGP (i)-(iii), (Ut,1, Ut,2)� (with independent copies (U ′
t,1, U

′
t,2)�) are gen-

erated according to the following VAR(1) process,(
Ut,1
Ut,2

)
= ρ

(
Ut−1,1
Ut−1,2

)
+ εt, εt

i.i.d.∼ N
(

0,
(

1 a
a 1

))
; (7)
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where a ∈ {0, 0.5} measures the cross-dependence, and ρ ∈ {−0.4, 0, 0.4, 0.7}
measures the temporal dependence within each sample (or each segment in
change-point testing). For size evaluation in change-point tests, only {Y (1)

t } is
used.

Furthermore, δ1 ∈ [0, 0.3] and δ2 ∈ [0.7, 1] are used to characterize the change
in the underlying distributions. In particular, δ1 can only capture the location
shift, while δ2 measures the scale change, and the case (δ1, δ2) = (0, 1) corre-
sponds to H0. For DGP (i) and (ii), i.e. Gaussian distribution with 2-Wasserstein
metric dW and graph Laplacians with Euclidean metric dF , the location param-
eter δ1 directly shifts Fréchet mean while keeping Fréchet variance constant; and
the scale parameter δ2 works on Fréchet variance only while holding the Fréchet
mean fixed. For DGP (iii), i.e. covariance matrices, the log-Euclidean metric dE
operates nonlinearly, and thus changes in either δ1 or δ2 will be reflected on
changes in both Fréchet mean and variance.

The comparisons of our proposed methods with [7] for two-sample testing
and [8] for change-point testing are also reported, which are generally referred
to as DM.

5.1. Two-sample test

For the two-sample testing problems, we set the sample size as n1 = n2 ∈
{50, 100, 200, 400}, and trimming parameter as η = 0.15. Table 3 presents the
sizes of our tests and DM test for three DGPs based on 1000 Monte Carlo
replications at nominal significance level α = 5%.

In all three subtables, we see that: (a) both D1 and D2 can deliver reasonable
size under all settings; (b) DM suffers from severe size distortion when depen-
dence magnitude among data is strong; (c) when two samples are dependent,
i.e. a = 0.5, DM is a bit undersized even when data is temporally independent.
These findings suggest that our SN-based tests provide more accurate size rel-
ative to DM when either within-group temporal dependence or between-group
dependence is exhibited.

Table 3

Size Performance (×100%) at α = 5% for all three DGPs.
Gaussian Distribution based on dW Graph Laplacian based on dF Covariance Matrix based on dE

ρ ni D1 D2 DM D1 D2 DM D1 D2 DM
a 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5

−0.4 50 6.1 7.1 6.2 7.1 10.1 7.0 5.6 7.2 4.4 5.5 9.4 6.7 6.4 6.0 6.1 6.4 11.4 5.5
100 4.6 5.2 4.6 5.2 7.4 6.7 5.8 5.3 5.1 4.8 8.0 5.4 5.8 6.0 5.7 6.0 9.2 6.0
200 5.0 5.1 5.1 5.2 8.9 6.4 5.7 4.8 5.3 4.1 6.7 4.7 5.7 5.7 5.8 5.8 8.3 5.8
400 4.1 5.1 4.2 5.1 8.2 6.0 4.4 4.2 4.2 4.2 6.5 5.3 5.0 5.8 4.9 5.9 9.4 5.5

0

50 4.5 5.5 4.8 4.9 5.0 4.2 4.6 5.9 3.9 4.9 5.3 5.6 5.9 5.8 5.3 5.7 5.9 4.0
100 3.9 4.9 3.8 4.8 4.4 3.2 5.8 4.6 4.7 4.4 4.8 3.3 5.0 5.8 4.8 5.6 5.0 3.6
200 5.9 6.0 6.0 5.9 5.9 2.4 5.1 6.1 5.0 5.8 4.8 2.8 6.2 4.9 6.2 4.6 5.0 2.4
400 5.5 4.8 5.3 4.8 4.5 2.8 4.6 4.0 4.6 3.7 4.8 3.5 5.7 4.9 5.7 4.8 4.8 2.7

0.4

50 5.0 5.2 5.1 4.4 9.7 6.8 4.6 4.6 4.3 3.9 7.6 6.2 7.0 6.3 7.0 5.3 12.8 7.1
100 6.5 4.7 5.7 5.0 9.8 5.1 5.8 5.8 5.2 5.1 8.2 5.8 5.9 6.4 5.8 6.3 9.4 6.5
200 4.8 4.4 4.7 4.2 10.7 4.8 6.2 5.0 5.3 4.7 6.2 5.7 6.5 5.8 6.3 5.2 10.0 6.7
400 5.3 5.6 4.8 5.5 9.3 6.0 6.2 4.9 5.7 4.7 8.5 5.3 5.8 4.6 5.6 4.1 10.2 6.6

0.7

50 6.4 8.1 7.1 7.1 30.1 21.1 4.8 5.9 6.1 6.2 12.1 9.7 6.3 7.8 8.3 7.4 33.3 20.9
100 7.8 6.2 7.1 5.1 27.9 18.4 5.0 4.6 5.3 5.3 12.0 8.2 6.5 7.5 5.8 6.7 26.7 18.5
200 6.3 4.2 5.3 3.9 23.9 17.1 4.9 5.4 5.3 4.6 10.0 7.0 5.8 6.2 5.5 5.3 24.5 21.7
400 4.6 5.7 3.7 4.8 23.6 18.7 4.9 5.4 4.2 4.8 10.3 7.3 4.5 5.5 4.3 4.5 24.2 19.3
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In Figure 1, we further compare size-adjusted power of our SN-based tests
and DM test, in view of the size-distortion of DM. That is, the critical values
are set as the empirical 95% quantiles of the test statistics obtained in the size
evaluation, so that all curves start from the nominal level at 5%. For all settings,
we note that D2 is more powerful than (or equal to) D1. In particular, D1 has
trivial power in DGP (i) and (ii) when only Fréchet mean difference is present.
In addition, D2 is more powerful in detecting Fréchet mean differences than DM
for DGP (i) and (ii), and beats DM in DGP (i) for detecting Fréchet variance
differences, although it is slightly worse than DM in detecting Fréchet variance
differences for DGP (ii) and (iii). Due to robust size and power performance,
we thus recommend D2 for practical purposes.

Fig 1. Size-Adjusted Power (×100%) at α = 5%, Two-Sample Test for all three DGPs,
ni = 400 and ρ = 0.4

5.2. Change-point test

For the change-point testing problems, we set the sample size n ∈ {200, 400, 800},
and trimming parameter as (η1, η2) = (0.15, 0.05). Table 4 outlines the size per-
formance of our tests and DM test for three DGPs based on 1000 Monte Carlo
replications at nominal significance level α = 5%. DM tests based asymptotic
critical value and bootstraps (with 500 replications) are denoted as DMa and
DMb, respectively.

From Table 4, we find that SN1 always exhibits accurate size while SN2 is a
bit conservative. As a comparison, the tests based on DMa and DMb suffer from
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Table 4

Size Performance (×100%) at α = 5%.
Gaussian Distribution based on dW Graph Laplacian based on dF Covariance Matrix based on dE

ρ n SN1 SN2 DMa DMb SN1 SN2 DMa DMb SN1 SN2 DMa DMb

-0.4
200 5.5 3.9 15.0 1.9 5.8 3.4 28.9 3.4 6.0 4.6 3.5 5.0
400 5.5 4.5 13.1 6.7 4.6 1.8 18.9 4.5 5.6 5.1 3.6 5.8
800 4.4 3.9 13.5 10.3 5.1 3.4 12.3 7.2 4.8 4.4 3.7 5.3

0
200 4.9 2.2 9.2 1.0 5.1 1.6 13.1 1.0 6.2 3.5 3.1 4.1
400 5.4 2.3 5.7 2.3 5.6 1.7 9.4 2.3 5.3 3.7 4.2 5.8
800 5.4 3.6 6.1 4.6 5.0 2.6 6.5 3.6 4.7 3.9 3.4 5.7

0.4
200 4.3 3.9 44.7 17.1 5.9 2.4 27.7 3.6 5.4 1.1 7.9 10.1
400 4.6 2.2 29.8 17.1 6.3 1.9 17.9 4.0 5.2 1.7 6.1 9.2
800 6.6 2.1 20.4 17.3 5.5 2.1 13.4 6.0 5.3 3.7 6.8 8.3

0.7
200 5.9 10.6 91.4 66.0 5.4 5.8 68.9 20.2 7.9 0.3 29.5 35.3
400 4.1 5.8 84.5 69.7 5.3 4.0 53.5 22.5 5.9 0.7 22.7 28.9
800 5.6 3.9 77.8 70.4 4.4 2.3 40.8 25.8 5.5 1.4 20.4 26.1

severe distortion when strong temporal dependence is present, although DMb is
slightly better than DMa in DGP (i) and (ii).

In Figure 2, we plot the size-adjusted power of our tests and DM test based
on bootstrap calibration. Here, the size-adjusted power of DMb is implemented
following [5]. Similar to the findings in change-point tests, we find that SN1
has trivial power in DGP (i) and (ii) when there is only Fréchet mean change
and is worst among all three tests. Furthermore, SN2 is slightly less powerful
compared to DM and the power loss is moderate. Considering its better size
control, SN2 is preferred.

Fig 2. Size-Adjusted Power (×100%) at α = 5%, Change-Point Test for all three DGPs,
n = 400, τ = 0.5, and ρ = 0.4

We further provide numerical evidence for the estimation accuracy by con-
sidering the alternative hypothesis of δ1 = 1 − δ2 = 0.3 with true change-point
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location at τ = 0.5 for DGP (i)-(iii) in the main context. When varying sample
size n ∈ {400, 800, 1600}, we find that for all DGPs, the histograms of τ̂ (based
on SN2) plotted in Figure 3 get more concentrated around the truth τ = 0.5,
when sample size increases, which is consistent with our theoretical consistency
of τ̂ .

Fig 3. Histogram of Estimated Change-Point Locations for all three DGPs with δ1 = 0.3, δ2 =
0.7, τ = 0.5, ρ = 0.4. Upper: n = 400. Middle: n = 800. Lower: n = 1600.

5.3. Multiple change point detection

For simulations of multiple change point estimation, we consider non-Euclidean
time series of length n = 500 generated from the following two models. These
models are the same as before, but reformulated for better presentation pur-
pose.
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• Gaussian univariate probability distribution: Yt = N (arctan(Ut) + δt,1,
δ2
t,2[arctan(U2

t ) + 1]2).
• covariance matrix: Yt = (2I3+Zt)(2I3+Zt)� with Zt = δt,1+δt,2 arctan(Ut).

Here, Ut are generated according to the AR(1) process Ut = ρUt−1 + εt, εt
i.i.d.∼

N (0, 1). There are 3 change points at t = 110, 250 and 370. The changes point
locations are reflected in the definitions of {δt,1} and {δt,2}, where

δt,1 = a1I{n≤110} + a2I{110<n≤250} + a3I{250<n≤370} + a4I{370<n≤500},

δt,2 = b1I{n≤110} + b2I{110<n≤250} + b3I{250<n≤370} + b4I{370<n≤500}.

For each model, we consider 3 cases that are differentiated by the magnitudes
of ai, bi, i = 1, 2, 3, 4. For the data generating model of Gaussian distributions,
we set

• [Case 1] (a1, a2, a3, a4) = (0, 0.7, 0, 0.8), (b1, b2, b3, b4) = (1, 1.5, 0.7, 1.4);
• [Case 2] (a1, a2, a3, a4) = (0, 0.2, 0, 0.3), (b1, b2, b3, b4) = (0.5, 1.5, 0.4, 1.4);
• [Case 3] (a1, a2, a3, a4) = (0, 0.5, 1.5, 3.3), (b1, b2, b3, b4) = (0.2, 1.5, 3.8, 6.5).

As for the data generating model of covariance matrices, we set

• [Case 1] (a1, a2, a3, a4) = (0, 1.2, 0, 1.3), (b1, b2, b3, b4) = (0.8, 1.5, 0.7, 1.6);
• [Case 2] (a1, a2, a3, a4) = (0, 1, 0, 1), (b1, b2, b3, b4) = (0.5, 2, 0.4, 1.9);
• [Case 3] (a1, a2, a3, a4) = (0, 2, 3.9, 5.7), (b1, b2, b3, b4) = (0.2, 0.7, 1.3, 2).

Cases 1 and 2 correspond to non-monotone changes and Case 3 considers the
monotone change. Here, our method described in Section 4.3 is denoted as
WBS-SN2 (that is, a combination of WBS and our SN2 test statistic). The
method DM in conjunction with binary segmentation, referred as BS-DM, is
proposed in [7] and included in this simulation for comparison purpose. In ad-
dition, our statistic SN2 in combination with binary segmentation, denoted as
BS-SN2, is implemented and included as well. The critical values for BS-DM
and BS-SN2 are obtained from their asymptotic distributions respectively.

The simulation results are shown in Table 5, where we present the ARI (ad-
justed rand index) and number of detected change points for two dependence
levels ρ = 0.3, 0.6. Note that ARI ∈ [0, 1] measures the accuracy of change point
estimation and larger ARI corresponds to more accurate estimation. We sum-
marize the main findings as follows. (a) WBS-SN2 is the best method in general
as it can accommodate both monotonic and non-monotoic changes, and appears
quite robust to temporal dependence. For Cases 1 and 2, we see that BS-SN2
does not work for non-monotone changes, due to the use of binary segmentation
procedure. (b) BS-DM tends to have more false discoveries comparing to the
other methods. This is expected, as method DM is primarily proposed for i.i.d
data sequence and exhibit serious oversize when there is temporal dependence
in Section 5.2. (c) When we increase ρ = 0.3 to ρ = 0.6, the performance of
WBS-SN2 appears quite stable for both distributional time series and covari-
ance matrix time series.
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Table 5

Simulation results for multiple change point for sequential Gaussian distributions and
covariance matrices based on 200 Monte Carlo repetitions.

Model Case ρ Method # of change points detected ARI0 1 2 3 4 ≥ 5

Gaussian
Distribution

1

0.3
WBS-SN2 0 0 0 178 22 0 0.971
BS-SN2 200 0 0 0 0 0 0
BS-DM 0 0 0 23 15 162 0.836

0.6
WBS-SN2 0 0 7 116 54 23 0.907
BS-SN2 200 0 0 0 0 0 0
BS-DM 0 0 0 2 0 198 0.516

2

0.3
WBS-SN2 0 0 0 169 28 3 0.980
BS-SN2 200 0 0 0 0 0 0
BS-DM 0 0 0 20 14 166 0.834

0.6
WBS-SN2 0 0 0 101 60 39 0.943
BS-SN2 200 0 0 0 0 0 0
BS-DM 0 0 0 1 1 198 0.526

3

0.3
WBS-SN2 0 0 0 172 27 1 0.981
BS-SN2 0 0 59 82 18 41 0.808
BS-DM 0 0 0 39 25 136 0.893

0.6
WBS-SN2 0 0 0 112 65 23 0.955
BS-SN2 0 0 45 64 41 50 0.828
BS-DM 0 0 0 2 4 194 0.666

Covariance
Matrix

1

0.3
WBS-SN2 0 0 0 200 0 0 0.991
BS-SN2 200 0 0 0 0 0 0
BS-DM 0 0 0 10 9 181 0.807

0.6
WBS-SN2 0 0 8 192 0 0 0.974
BS-SN2 199 1 0 0 0 0 0.002
BS-DM 0 0 0 0 0 200 0.392

2

0.3
WBS-SN2 0 0 21 178 1 0 0.954
BS-SN2 200 0 0 0 0 0 0
BS-DM 6 3 1 4 12 174 0.722

0.6
WBS-SN2 0 20 82 97 1 0 0.800
BS-SN2 200 0 0 0 0 0 0
BS-DM 5 0 0 0 0 195 0.510

3

0.3
WBS-SN2 0 0 131 69 0 0 0.806
BS-SN2 24 0 124 3 46 3 0.468
BS-DM 0 0 1 5 10 184 0.781

0.6
WBS-SN2 0 2 181 16 1 0 0.728
BS-SN2 93 1 71 18 17 0 0.310
BS-DM 0 0 0 0 0 200 0.437

6. Applications

In this section, we present two real data illustrations, one for two sample test-
ing and the other for change-point detection. Both datasets are in the form
of non-Euclidean time series and neither seems to be analyzed before by using
techniques that take into account unknown temporal dependence.

6.1. Two sample tests

Mortality data. Here we are interested in comparing the longevity of people
living in different countries of Europe. From the Human Mortality Database
(https://www.mortality.org/Home/Index), we can obtain a time series that
consists of yearly age-at-death distributions for each country. We shall focus

https://www.mortality.org/Home/Index
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on distributions for female from year 1960 to 2015 and there are 26 coun-
tries included in the analysis after exclusion of countries with missing data.
Pair-wise two sample tests between the included countries are performed using
our statistic D2 to understand the similarity of age-at-death distributions be-
tween different countries. The resulting p-value matrix is plotted in Figure 4
(left).

To better present the testing results and gain more insights, we define the
dissimilarity between two given countries by subtracting each p-value from 1.
Treating these dissimilarities as “distances”, we apply multidimensional scaling
to “project” each country onto two dimensional plane for visualization. See
Figure 4 (right) for the plot of “projected” countries. It appears that several west
European countries, including UK, Belgium, Luxembourg, Ireland, and Austria,
and Denmark, form a cluster; whereas several central and eastern European
countries, including Poland, Latvia, Russian, Bulgaria, Lithuania and Czechia
share similar distributions. We suspect the similarity in Mortality distribution
is much related to the similarity in their economic development and healthcare
system, less dependent on the geographical locations.

Fig 4. Application to Mortality data. The left figure is the plot of p-value matrix, where
the 26 countries, Austria, Belarus, Belgium, Bulgaria, Czechia, Denmark, Estonia, Finland,
France, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Netherlands, Nor-
way, Poland, Portugal, Russia, Slovakia, Spain, Sweden, Switzerland, UK, are labeled by
1, 2, . . . , 26 respectively. The right figure is the plot of points from multidimensional scal-
ing with dissimilarity between any countries defined as subtracting the corresponding p-value
from 1.

6.2. Change point detection

Cryptocurrency data. Detecting change points in the Pearson correlation
matrices for a set of interested cryptocurrencies can uncover structural breaks
in the correlation of these cryptocurrencies and can play an important role in the
investors’ investment decisions. Here, we construct the daily Pearson correlation
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Fig 5. Plot of time series of pairwise correlations. Red vertical line indicates detected change
point by WBS-SN2.

matrices from minute prices of Bitcoin, Doge coin, Cardano, Monero and Chain-
link for year 2021. The cryptocurrency data can be downloaded at https://
www.cryptodatadownload.com/analytics/correlation-heatmap/. See
Figure 5 for the plot of time series of pairwise correlations. Three methods,
namely, our SN2 test combined with WBS (WBS-SN2), SN2 test combined
with binary segmentation (BS-SN2), and DM test of [7] in conjunction with
binary segmentation (BS-DM), are applied to detect potential change points for
this time series,

Method WBS-SN2 detects an abrupt change on day 2021-05-17 and method
BS-SN2 detects a change point on day 2021-04-29. By comparison, more than
10 change points are detected by BS-DM and we suspect that many of them
are false discoveries (see Section 5.3 for simulation evidence of BS-DM’s ten-
dency of over-detection). The change point in mid-May 2021 is well expected
and corresponds to a major crush in crypto market that wiped out 1 trillion
dollars. The major causes of this crush are the withdrawal of Tesla’s com-
mitment to accept Bitcoin as payment and warnings regarding cryptocurrency
sent by Chinese central bank to the financial institutes and business in China.
Since this major crush, the market has been dominated by negative senti-
ments and fear for a recession. We refer the following CNN article for some
discussions about this crush https://www.cnn.com/2021/05/22/investing/
crypto-crash-bitcoin-regulation/index.html.

https://www.cryptodatadownload.com/analytics/correlation-heatmap/
https://www.cryptodatadownload.com/analytics/correlation-heatmap/
https://www.cnn.com/2021/05/22/investing/crypto-crash-bitcoin-regulation/index.html
https://www.cnn.com/2021/05/22/investing/crypto-crash-bitcoin-regulation/index.html
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7. Conclusion

Motivated by increasing availability of non-Euclidean time series data, this pa-
per considers two-sample testing and change-point detection for temporally de-
pendent random objects. Our inferential framework builds upon the nascent SN
technique, which has been mainly developed for conventional Euclidean time
series or functional time series in Hilbert space, and the extension of SN to
the time series of objects residing in metric spaces is the first in the literature.
The proposed tests are robust to weak temporal dependence, enjoy effortless
tuning and are broadly applicable to many non-Euclidean data types with eas-
ily verified technical conditions. On the theory front, we derive the asymptotic
distributions of our two sample and change-point tests under both null and
local alternatives of order n−1/2. Furthermore, for change-point problem, the
consistency of the change-point estimator is established under mild conditions.
Both simulation and real data illustrations demonstrate the robustness of our
test with respect to temporal dependence and the effectiveness in testing and
estimation problems.

To conclude, we mention several interesting but unsolved problems for analyz-
ing non-Euclidean time series. For example, although powerful against Fréchet
mean differences/changes, the testing statistics developed in this paper rely
on the asymptotic behaviors of Fréchet (sub)sample variances. It is impera-
tive to construct formal tests that can target directly at Fréchet mean differ-
ences/changes. For the change-point detection problem in non-Euclidean data,
the existing literature, including this paper, only derives the consistency of the
change-point estimator. It would be very useful to derive explicit convergence
rate and the asymptotic distribution of the change-point estimator, which is
needed for confidence interval construction. Also it would be interesting to study
how to detect structural changes when the underlying distributions of random
objects change smoothly. We leave these topics for future investigation.

Appendix A: Technical proofs

A.1. Auxiliary lemmas

We first introduce some notations. We denote oup(·) as the uniform op(·) w.r.t.
the partial sum index (a, b) ∈ Iη. Let Mn(ω, [a, b]) = n−1∑�nb�

t=�na�+1 fω(Yt),
where fω(Y ) = d2(Y, ω) − d2(Y, μ), then it is clear that

μ̂[a,b] = arg min
ω∈Ω

Mn(ω, [a, b]).

Let Ṽ[a,b] = 1
�nb�−�na�

∑�nb�
t=�na�+1 d

2 (Yt, μ).
The following three main lemmas are verified under Assumption 2.1-2.5, and

they are used repeatedly throughout the proof for main theorems.

Lemma A.1. sup(a,b)∈Iη

√
nd(μ̂[a,b], μ) = Op(1).
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Proof. (1). We first show the uniform convergence, i.e. sup(a,b)∈Iη
d(μ̂[a,b], μ) =

oup(1).
For any ε > 0, define

ψ(ε) := inf
d(ω,μ)>ε

Efω(Y ), (8)

and we know by that ψ(ε) > 0 by the uniqueness of μ in Assumption 2.1.
Hence, let M(ω, [a, b]) = (b− a)Efω(Y ), we have

P

(
sup

(a,b)∈Iη

d(μ̂[a,b], μ) > ε

)

=P

( ⋃
(a,b)∈Iη

{
d(μ̂[a,b], μ) > ε

})

≤P

( ⋃
(a,b)∈Iη

{
M(μ̂[a,b], [a, b]) − inf

d(ω,μ)>ε
M(ω, [a, b]) ≥ 0

})

≤P

( ⋃
(a,b)∈Iη

{
M(μ̂[a,b], [a, b]) ≥ ηψ(ε)/2

})

≤P

( ⋃
(a,b)∈Iη

{
M(μ̂[a,b], [a, b]) −Mn(μ̂[a,b], [a, b])

+ Mn(μ, [a, b]) −M(μ, [a, b]) ≥ ηψ(ε)/2
})

≤P

(
sup

(a,b)∈Iη

sup
ω∈Ω

|Mn(ω, [a, b]) −M(ω, [a, b])| ≥ ηψ(ε)/4
)

where the first inequality holds because the event {d(μ̂[a,b], μ) > ε} implies that
μ̂[a,b] ∈ {ω ∈ Ω : d(ω, μ) > ε}, and thus M(μ̂[a,b], [a, b]) ≥ infd(ω,μ)>ε M(ω, [a, b]);
the second inequality holds by b−a ≥ η (hence (�nb� − �na�)/n > η/2 for large
n) and the definition of (8) such that infd(ω,μ)>ε M(ω, [a, b]) = (b − a)ψ(ε) >
ηψ(ε)/2; and the third holds by that M(μ, [a, b]) = 0 and Mn(μ, [a, b]) ≥
Mn(μ̂[a,b], [a, b]).

Note Mn(ω, [a, b])−M(ω, [a, b]) = Mn(ω, [0, b])−M(ω, [0, b])−Mn(ω, [0, a])+
M(ω, [0, a]). Therefore, it suffices to show the weak convergence of the process
{Mn(ω, [0, u]) −M(ω, [0, u]), u ∈ [0, 1], ω ∈ Ω} to zero. Note the pointwise con-
vergence holds easily by the boundedness of fω and Assumption 2.3, so we only
need to show the stochastic equicontinuity, i.e.

lim sup
n→∞

P

(
sup

|u−v|<δ1,d(ω1,ω2)<δ2

|Mn(ω1, [0, u]) −M(ω1, [0, u])

−Mn(ω2, [0, v]) + M(ω2, [0, v])| > ε

)
→ 0
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as max(δ1, δ2) → 0.
Then, by triangle inequality, we have

|Mn(ω1, [0, u]) −M(ω1, [0, u]) −Mn(ω2, [0, v]) + M(ω2, [0, v])|
≤|Mn(ω1, [0, u]) −Mn(ω1, [0, v])| + |Mn(ω1, [0, v]) −Mn(ω2, [0, v])|

+ |M(ω1, [0, u]) −M(ω1, [0, v])| + |M(ω1, [0, v]) −M(ω2, [0, v])|

:=
4∑

i=1
Rn,i.

Without loss of generality, we assume v > u, and by the boundedness of the
metric, we have for some K > 0,

Rn,1 ≤ n−1
�nv�∑

t=�nu�+1

d2(Yt, ω1) ≤ K|u− v| ≤ Kδ1.

Similarly, Rn,3≤K. Furthermore, we can see that Rn,2, Rn,4≤2diam(Ω)d(ω1, ω2)
≤Kδ2. Hence, the result follows by letting δ1 and δ2 sufficiently small.

Thus, the uniform convergence holds.
(2). We then derive the convergence rate based on Assumption 2.5.
By the consistency, we have for any δ > 0, P (sup(a,b)∈Iη

d(μ̂[a,b], μ) ≤ δ) → 1.
Hence, on the event that sup(a,b)∈Iη

d(μ̂a,b, μ) ≤ δ, and note that Mn(μ, [a, b]) =
n−1∑�nb�

t=�na�+1[d
2(Yt, μ) − d2(Yt, μ)] = 0, we have

0 =Mn(μ, [a, b])
≥Mn(μ̂[a,b], [a, b])

=Kd
�nb� − �na�

n
d2(μ̂[a,b], μ) + n−1

�nb�∑
t=�na�+1

[
g(Yt, μ̂[a,b], μ) + R(Yt, μ̂[a,b], μ)

]
≥Kdη

2 d2(μ̂[a,b], μ)

+ d(μ̂[a,b], μ)

⎡⎣n−1∑�nb�
t=�na�+1 g(Yt, μ̂[a,b], μ)

d(μ̂[a,b], μ) +oup(n−1/2 + d(μ̂[a,b], μ))

⎤⎦ ,

where the last inequality holds by Assumption 2.5 and the fact (�nb� − �na�)/n >
η/2 for large n.

Note the above analysis holds uniformly for (a, b) ∈ Iη, this implies that

sup
(a,b)∈Iη

[
Kdη

2 d(μ̂[a,b], μ) − oup(d(μ̂[a,b], μ))
]

≤n−1/2 sup
(a,b)∈Iη

∣∣∣∣∣∣
n−1/2∑�nb�

t=�na�+1 g(Yt, μ̂[a,b], μ)
d(μ̂[a,b], μ)

∣∣∣∣∣∣+ oup(n−1/2) = Op(n−1/2),

and hence sup(a,b)∈Iη
d(μ̂[a,b], μ) = Op(n−1/2).
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Lemma A.2. sup(a,b)∈Iη

√
n|V̂[a,b] − Ṽ[a,b]| = op(1).

Proof. By Lemma A.1, and Assumption 2.5, we have

sup
(a,b)∈Iη

√
nMn(μ̂[a,b], [a, b])

≤Kd sup
(a,b)∈Iη

d(μ̂[a,b], μ) sup
(a,b)∈Iη

∣∣∣∣∣√nd(μ̂[a,b], μ)

+
n−1/2∑�nb�

t=�na�+1 g(Yt, μ̂[a,b], μ)
d(μ̂[a,b], μ) + oup(1 +

√
nd(μ̂[a,b], μ))

∣∣∣∣∣
=Op(n−1/2).

Hence, we have that

sup
(a,b)∈Iη

√
n|V̂[a,b] − Ṽ[a,b]| ≤ η−1 sup

(a,b)∈Iη

√
nMn(μ̂[a,b], [a, b]),

the result follows.

Lemma A.3. Let V̂ C
[a,b](ω̃) = 1

�nb�−�na�
∑�nb�

t=�na�+1 d
2(Yi, ω̃), where ω̃ ∈ Ω is a

random object such that
√
n sup

(a,b)∈Iη

d(ω̃, μ̂[a,b]) = Op(1).

Then, √
n sup

(a,b)∈Iη

|V̂ C
[a,b](ω̃) − Ṽ[a,b]| = op(1).

Proof. By triangle inequality and Lemma A.2,
√
n sup

(a,b)∈Iη

|V̂ C
[a,b](ω̃) − Ṽ[a,b]|

= sup
(a,b)∈Iη

∣∣∣∣∣∣
√
n

�nb� − �na�

�nb�∑
t=�na�+1

d2 (Yt, ω̃) − d2(Yi, μ)

∣∣∣∣∣∣
≤(η/2)−1 sup

(a,b)∈Iη

√
nMn(ω̃, [a, b]).

Note by triangle inequality for the metric, d(ω̃, μ) ≤ d(μ̂[a,b], μ) + d(ω̃, μ̂[a,b]) =
Op(n−1/2), and we know that d(ω̃, μ) < δ with probability tending to 1, and on
this event, by Assumption 2.5,

√
nMn(ω̃, [a, b]) ≤Kdd

2(ω̃, μ) + n−1

∣∣∣∣∣∣
�nb�∑

t=�na�+1

g(Yt, ω̃, μ)

∣∣∣∣∣∣
+ n−1

∣∣∣∣∣∣
�nb�∑

t=�na�+1

R(Yt, ω̃, μ)

∣∣∣∣∣∣ .
Similar to the proof of Lemma A.2, we get the result.
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A.2. Proof of theorems in Section 3

Let Ṽ
(1)
r = 1

�rn1�
∑�rn1�

t=1 d2(Y (1)
t , μ(1)), and Ṽ

(2)
r = 1

�rn2�
∑�rn2�

t=1 d2(Y (2)
t , μ(2)).

For each r ∈ [η, 1], we consider the decomposition,
√
nTn(r) =

√
nr(V̂ (1)

r − V̂ (2)
r )

=
√
nr(V̂ (1)

r − Ṽ (1)
r + Ṽ (1)

r − V (1))
−

√
nr(V̂ (2)

r − Ṽ (2)
r + Ṽ (2)

r − V (2))
+

√
nr(V (1) − V (2))

:=Rn,1(r) + Rn,2(r) + Rn,3(r).

(9)

and
√
nTC

n (r) =
√
nr(V̂ C,(1)

r − Ṽ (1)
r ) −

√
nr(V̂ (1)

r − Ṽ (1)
r )

+
√
nr(V̂ C,(2)

r − Ṽ (2)
r ) −

√
nr(V̂ (2)

r − Ṽ (2)
r )

:=RC
n,1(r) + RC

n,2(r) + RC
n,3(r) + RC

n,4(r).
(10)

By Lemma A.2,

sup
r∈[η,1]

√
nr(V̂ (1)

r − Ṽ (1)
r ) = op(1), sup

r∈[η,1]

√
nr(V̂ (2)

r − Ṽ (2)
r ) = op(1), (11)

i.e. {
RC

n,2(r) + RC
n,4(r)

}
r∈[η,1] ⇒ 0. (12)

Furthermore, by Assumption 3.1,
√
nr(V̂ (1)

r − V (1)) ⇒ γ−1
1 σ1B

(1)(γ1r),
√
nr(V̂ (2)

r − V (2)) ⇒ γ−1
2 σ2B

(2)(γ2r).

This implies that

{Rn,1(r) + Rn,2(r)}r∈[η,1] ⇒ {ξγ1,γ2(r;σ1, σ2)}r∈[η,1]. (13)

Proof of Theorem 3.1

Under H0, Rn,3(r) ≡ 0, and μ(1) = μ(2) = μ. Hence, by (9) and (13), we obtain
that

{
√
nTn(r)}r∈[η,1] ⇒ {ξγ1,γ2(r;σ1, σ2)}r∈[η,1].

Next, by Lemma A.1, can obtain that
√
n sup

r∈[η,1]
d(μ̂(1)

r , μ) = op(1),
√
n sup

r∈[η,1]
d(μ̂(2)

r , μ) = op(1).

Hence, by Lemma A.3, we have{
RC

n,1(r) + RC
n,3(r)

}
r∈[η,1] ⇒ 0.
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Together with (12), we have

{
√
nTC

n (r)}r∈[η,1] ⇒ 0.

Hence, by continuous mapping theorem, for both i = 1, 2,

Dn,i →d

ξ2
γ1,γ2

(1;σ1, σ2)∫ 1
η

[ξγ1,γ2(r;σ1, σ2) − rξγ1,γ2(1;σ1, σ2)]2 dr
.

Proof of Theorem 3.2

In view of (9) and (13),

{√
nTn(r)

}
r∈[η,1] ⇒

{
ξγ1,γ2(r;σ1, σ2) + rn−κV +1/2ΔV

}
r∈[η,1]

.

Hence

• For κV ∈ (1/2,∞), {√nTn(r)} ⇒ {ξγ1,γ2(r;σ1, σ2)}r∈[η,1].
• For κV = 1/2, {√nTn(r)}r∈[η,1] ⇒ {ξγ1,γ2(r;σ1, σ2) + rΔV }r∈[η,1].
• For κV ∈ (0, 1/2),

√
nTn(1) →p ∞, and {√nTn(r) −√

nrTn(1)}r∈[η,1] ⇒
{ξγ1,γ2(r;σ1, σ2) − rξγ1,γ2(1;σ1, σ2)}r∈[η,1].

Next, we focus on
√
nTC

n (r). When κM ∈ (0,∞), it holds that d(μ(1), μ(2)) =
O(n−κM/2) = o(1), and by triangle inequality, for any r ∈ [η, 1],

|d(μ(1), μ(2))− d(μ̂(2)
r , μ(2))| ≤ d(μ̂(2)

r , μ(1)) ≤ |d(μ(1), μ(2))+ d(μ̂(2)
r , μ(2))|. (14)

By Lemma A.1, we have supr∈[η,1] d(μ̂
(2)
r , μ(2)) = Op(n−1/2). This and (14)

imply that

• when κM ∈ (1/2,∞), d2(μ̂(2)
r , μ(1)) = oup(n−1/2);

• when κM ∈ (0, 1/2], d2(μ̂(2)
r , μ(1)) = d2(μ(1), μ(2))+oup(n−1/2) = n−κM ΔM

+ oup(n−1/2).

Similarly,

• when κM ∈ (1/2,∞), d2(μ̂(1)
r , μ(2)) = oup(n−1/2);

• when κM ∈ (0, 1/2], d2(μ̂(1)
r , μ(2)) = n−κM ΔM + oup(n−1/2).
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Furthermore, by Assumption 2.5, equations (10) and (12), we obtain
√
nTC

n (r) = RC
n,1(r) + RC

n,3(r) + oup(1)

=
√
nKdrd

2(μ̂(2)
r , μ(1)) + rd(μ̂(2)

r , μ(1))
[
n−1/2∑�γ1nr�

t=1 g(Y (1)
t , μ̂

(2)
r , μ(1))

d(μ̂(2)
r , μ(1))

]
+ oup(d(μ̂(2)

r , μ(1)) +
√
nd2(μ̂(2)

r , μ(1)))

+
√
nKdrd

2(μ̂(1)
r , μ(2)) + rd(μ̂(1)

r , μ(2))
[
n−1/2∑�γ2nr�

t=1 g(Y (2)
t , μ̂

(1)
r , μ(2))

d(μ̂(1)
r , μ(2))

]
+ oup(d(μ̂(1)

r , μ(2)) +
√
nd2(μ̂(1)

r , μ(2)))
+ oup(1).

(15)

• For κM ∈ (1/2,∞), d2(μ̂(2)
r , μ(1)) = oup(n−1/2), and d2(μ̂(1)

r , μ(2)) =
oup(n−1/2). Hence, {√nTC

n (r)}r∈[η,1] ⇒ 0.
• For κM = 1/2, we note that d2(μ̂(2)

r , μ(1)) = n−1/2ΔM + oup(1), and
d2(μ̂(1)

n , μ(2)) = n−1/2ΔM + oup(1). Hence, {√nTC
n (r)}r∈[η,1] ⇒

{2rKdΔM}r∈[η,1], and {√n[TC
n (r) − rTC

n (1)]}r∈[η,1] ⇒ 0.
• For κM ∈ (0, 1/2), we multiply n2κM−1 on both denominator and numer-

ator of Dn,2, and obtain

Dn,2 =
n2κM

{
[Tn(1)]2 +

[
TC
n (1)

]2}
n−1∑n

k=�nη� n
2κM

{[
Tn( k

n ) − k
nTn(1)

]2 +
[
TC
n ( k

n ) − k
nT

C
n (1)

]2} .
(16)

Note that nκM−1/2 → 0, as n → ∞, we obtain that

{nκM [Tn(r) − rTn(1)]}r∈[η,1] ⇒ 0. (17)

Furthermore, in view of (15), we obtain

nκMTC
n (r) = nκM r(Kd + oup(1))

[
d2(μ̂(2)

r , μ(1)) + d2(μ̂(1)
r , μ(2))

]
+ oup(1),

By arguments below (14), we know that nκMd2(μ̂(2)
r , μ(1))

= ΔM +oup(nκM−1/2) = ΔM +oup(1). And similarly, nκMd2(μ̂(1)
r , μ(2)) =

ΔM + oup(1). We thus obtain that{
nκMTC

n (r) − rTC
n (1)

}
r∈[η,1] ⇒ 0, (18)

and
nκMTC

n (1) →p 2KdΔM . (19)
Therefore, (17) and (18) implies that the denominator of (16) converges
to 0 in probability, while (19) implies the numerator of (16) is larger than
a positive constant in probability, we thus obtain Dn,2 →p ∞.

Summarizing the cases of κV and κM , and by continuous mapping theorem, we
get the result.
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Proof of Corollary 3.1

When γ1 = γ2 = 1/2, it can be shown that

ξγ1,γ2(r;σ1, σ2) = 2σ1B
(1)(r/2) − 2σ2B

(1)(r/2) =d

√
2σ2

1 + 2σ2
2 − 4ρσ1σ2B(r);

and when ρ = 0.

ξγ1,γ2(r;σ1, σ2) =d

√
σ2

1
γ1

+ σ2
2

γ2
B(r).

The result follows by the continuous mapping theorem.

A.3. Proof of theorems in Section 4

With a bit abuse of notation, we define Iη = {(a, b) : 0 ≤ a < b ≤ 1, b− a ≥ η2}
and Jη = {(r; a, b) : 0 ≤ a < r < b ≤ 1, b− r ≥ η2, r − a ≥ η2}.

Proof of Theorem 4.1

For (r; a, b) ∈ Jη, we note that
√
nTn(r; a, b)

=
√
n

{
(r − a)(b− r)

(b− a)

(
V̂[a,r] − Ṽ[a,r] + Ṽ[a,r] − V

)}
−

√
n

{
(r − a)(b− r)

(b− a)

(
V̂[r,b] − Ṽ[r,b] + Ṽ[r,b] − V

)}
.

By Lemma A.2 we know that sup(a,r)∈Iη

√
n|V̂[a,r] − Ṽ[a,r]| = op(1),

sup(r,b)∈Iη

√
n|V̂[r,b] − Ṽ[r,b]| = op(1), and by Assumption 3.1,{√
n(r − a)(Ṽ[a,r] − V )

}
(a,r)∈Iη

⇒ {σ[B(r) −B(a)]}(a,r)∈Iη
,{√

n(b− r)(Ṽ[r,b] − V )
}

(r,b)∈Iη
⇒ {σ[B(b) −B(r)]}(r,b)∈Iη

.

Hence, {√
nTn(r; a, b)

}
(r;a,b)∈Jη

⇒σ

{
(b− r)
(b− a) [B(r) −B(a)] − (r − a)

(b− a) [B(b) −B(r)]
}

(r;a,b)∈Jη

.

Furthermore, we note that
√
nTC

n (r; a, b)

=(b− r)
(b− a)n

−1/2

{ �nr�∑
i=�na�+1

[
d2 (Yi, μ̂[r,b]

)
− d2 (Yi, μ)

]
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−
�nr�∑

i=�na�+1

[
d2 (Yi, μ̂[a,r]

)
− d2 (Yi, μ)

]}

+ (r − a)
(b− a)n

−1/2
�nb�∑

i=�nr�+1

{[
d2 (Yi, μ̂[a,r]

)
− d2 (Yi, μ)

]

−
�nb�∑

i=�nr�+1

[
d2 (Yi, μ̂[r,b]

)
− d2 (Yi, μ)

]}
+ oup(1)

where oup(1) is the rounding error due to [n(r−a)]−1−[�nr�−�na�]−1 and [n(b−
r)]−1−[�nb�−�nr�]−1. Note by Lemma A.1, we know that sup(a,r)∈Iη

d(μ̂[a,r], μ)
= Op(n−1/2) and sup(r,b)∈Iη

d(μ̂[r,b], μ) = Op(n−1/2), hence by Lemma A.2
and A.3, we obtain

sup
(r;a,b)∈Jη

|
√
nTC

n (r; a, b)| = op(1).

The result follows by continuous mapping theorem.

Proof of Theorem 4.2

Note for any k = �nη1�, . . . , n− �nη1�, and i = 1, 2,

max
�nη1�≤k≤n−�nη1�

Dn,i(k) ≥ Dn,i(�nτ�).

We focus on k∗ = �nτ�. In this case, the left and right part of the self-
normalizer are both from stationary segments, hence by similar arguments as
in H0,

{
√
nTn (r; 0, τ)}r∈[η2,τ−η2] ⇒ {σ1G1(r; 0, τ)}r∈[η2,τ−η2],

{
√
nTC

n (r; 0, τ)}r∈[η2,τ−η2] ⇒ 0;
(20)

and
{
√
nTn (r; τ, 1)}r∈[τ+η2,1−η2] ⇒ {σ2G2(r; τ, 1)}r∈[τ+η2,1−η2],

{
√
nTC

n (r; τ, 1)}r∈[η2,τ−η2] ⇒ 0,
(21)

where Gi(r; a, b) = (b−r)
(b−a) [B

(i)(r)−B(i)(a)]− (r−a)
(b−a) [B

(i)(b)−B(i)(r)] for i = 1, 2.
Hence, we only need to consider the numerator, where

√
nTn(τ ; 0, 1) =

√
nτ(1 − τ)

(
V̂[0,τ ] − V̂[τ,1]

)
,

√
nTC

n (τ ; 0, 1) =
√
nτ(1 − τ)

(
V̂ C

[τ ;0,1] − V̂[0,τ ] − V̂[τ,1]

)
.

(22)

For
√
nTn(τ ; 0, 1), we have
√
nTn(τ ; 0, 1) =

√
n
{
τ(1 − τ)

(
V̂[0,τ ] − Ṽ[0,τ ] + Ṽ[0,τ ] − V (1)

)}
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−
√
n
{
τ(1 − τ)

(
V̂[τ,1] − Ṽ[τ,1] + Ṽ[τ,1] − V (2)

)}
+

√
nτ(1 − τ)(V (1) − V (2))

=T11 + T12 + T13.

By Lemma A.2, we know that
√
n(V̂[0,τ ]−Ṽ[0,τ ]) = op(1), and by Assumption 3.1,

we have
√
nτ(Ṽ[0,τ ] − V (1)) →d σ1B

(1)(τ). This implies that

T11 →d (1 − τ)σ1B
(1)(τ).

Similarly, we can obtain

T12 →d −τσ2[B(2)(1) −B(2)(τ)].

Hence, using the fact that
√
n(V (1) − V (2)) = ΔV , we obtain

√
nTn(τ ; 0, 1) →d (1−τ)σ1B

(1)(τ)−τσ2[B(2)(1)−B(2)(τ)]+τ(1−τ)ΔV . (23)

For
√
nTC

n (τ ; 0, 1) we have
√
nTC

n (τ ; 0, 1)

=(1 − τ)n−1/2

{ �nτ�∑
i=1

[
d2 (Yi, μ̂[τ,1]

)
− d2

(
Yi, μ

(1)
)]

−
�nτ�∑
i=1

[
d2 (Yi, μ̂[0,τ ]

)
− d2

(
Yi, μ

(1)
)]}

+ τn−1/2

{
n∑

i=�nτ�+1

[
d2 (Yi, μ̂[0,τ ]

)
− d2

(
Yi, μ

(2)
)]

−
n∑

i=�nτ�+1

[
d2 (Yi, μ̂[τ,1]

)
− d2

(
Yi, μ

(2)
)]}

+ op(1)

:=T21 + T22 + T23 + T24 + op(1),

where op(1) is the rounding error due to (nτ)−1 − �nτ�−1 and [n(1 − τ)]−1 −
(n− �nτ�)−1.

Note by Lemma A.1, we have d(μ̂[0,τ ], μ
(1)) = Op(n−1/2), and by triangle

inequality, we know that

d(μ̂[τ,1], μ
(1)) ≤ d(μ̂[τ,1], μ

(2)) + d(μ(1), μ(2)) = Op(n−1/4).

Then, by Assumption 2.5, we know

T21 =
√
n(1 − τ)τKdd

2(μ̂[τ,1], μ
(1))

+ (1 − τ)d(μ̂[τ,1], μ
(1))

[
n−1/2∑�nτ�

i=1 g(Yi, μ̂[τ,1], μ
(1))

d(μ̂[τ,1], μ(1))

]
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+ op(d(μ̂[τ,1], μ
(1)) +

√
nd2(μ̂[τ,1], μ

(1)))
=
√
n(1 − τ)τKdd

2(μ̂[τ,1], μ
(1)) + Op(n−1/4) + op(1).

Now, by triangle inequality, we know
√
n[d(μ̂[τ,1], μ

(2)) − d(μ(1), μ(2))]2 ≤
√
nd2(μ̂[τ,1], μ

(1))
≤

√
n[d(μ̂[τ,1], μ

(2)) + d(μ(1), μ(2))]2,

and note d(μ̂[τ,1], μ
(2)) = Op(n−1/2) by Lemma A.1, we obtain

√
nd2(μ̂[τ,1], μ

(1))
= ΔM + op(1), and

T21 = (1 − τ)τKdΔM + op(1).

By Lemma A.2, T22 = op(1). Hence T21+T22 = (1−τ)τKdΔM +op(1). Similarly,
we obtain that T23 + T24 = (1 − τ)τKdΔM + op(1). Therefore,

√
nTC

n (τ ; 0, 1) = 2τ(1 − τ)KdΔM + op(1). (24)

Hence, combining results of (20)–(24), we have

Dn,1(�nτ�) →d
[(1 − τ)σ1B

(1)(τ) − τσ2[B(2)(1) −B(2)(τ)] + τ(1 − τ)ΔV ]2

[
∫ r−η2
η2

σ2
1G2

1(u; 0, r)du +
∫ 1−η2
r+η2

σ2
2G2

2(u; r, 1)du]

:= Sη,1(τ ; Δ),

and,

Dn,2(�nτ�)

→d
[(1−τ)σ1B

(1)(τ)−τσ2[B(2)(1)−B(2)(τ)] + τ(1−τ)ΔV ]2 + 4[τ(1−τ)ΔM ]2

[
∫ r−η2
η2

σ2
1G2

1(u; 0, r)du +
∫ 1−η2
r+η2

σ2
2G2

2(u; r, 1)du]

:=Sη,2(τ ; Δ).

Therefore, we know that for the 1 − α quantile of Sη, denoted by Q1−α(Sη),
for i = 1, 2,

lim
n→∞

P

(
max

�nη1�≤k≤n−�nη1�
Dn,i(k) ≥ Q1−α(Sη)

)
≥ lim

n→∞
P (Dn,i(�nτ�) ≥ Q1−α(Sη))

=P (Sη,i(τ ; Δ) ≥ Q1−α(Sη)) .

In particular,

lim
|ΔV |→∞

P
(
Sη,1(τ ; Δ) ≥ Q1−α(Sη)

)
= 1,

lim
max{|ΔV |,ΔM}→∞

P
(
Sη,2(τ ; Δ) ≥ Q1−α(Sη)

)
= 1.
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Proof of Theorem 4.3

Define the pointwise limit of μ̂[a,b] under Ha as

μ[a,b] =

⎧⎪⎪⎨⎪⎪⎩
μ(1), b ≤ τ

arg minω∈Ω

{
(τ − a)Ed2(Y (1)

t , ω) + (b− τ)Ed2(Y (2)
t , ω)

}
, a < τ < b

μ(2), τ ≤ a

Define the Fréchet variance and pooled contaminated variance under Ha as

V[a,b] =

⎧⎪⎨⎪⎩
V (1) b ≤ τ
τ−a
b−aE(d2(Y (1)

t , μ[a,b])) + b−τ
b−aE(d2(Y (2)

t , μ[a,b])), a < τ < b

V (2), τ ≤ a,

and

V C
[r;a,b] =⎧⎪⎪⎪⎨⎪⎪⎪⎩
V (1) b ≤ τ
τ−a
r−aE(d2(Y (1)

t , μ[r,b])) + r−τ
r−aE(d2(Y (2)

t , μ[r,b])) + E(d2(Y (2)
t , μ[a,r])), a<τ≤r

E(d2(Y (1)
t , μ[r,b])) + τ−r

b−rE(d2(Y (1)
t , μ[a,r])) + b−τ

b−rE(d2(Y (2)
t , μ[a,r])), r<τ<b

V (2), τ ≤ a.

We want to show that

{Tn(r; a, b)}(r;a,b)∈Jη
⇒ {T (r; a, b)}(r;a,b)∈Jη

,{
TC
n (r; a, b)

}
(r;a,b)∈Jη

⇒
{
TC(r; a, b)

}
(r;a,b)∈Jη

,

where

T (r; a, b) = (r − a)(b− r)
b− a

(
V[a,r] − V[r,b]

)
,

TC(r; a, b) = (r − a)(b− r)
b− a

(
V C

[r;a,b] − V[a,r] − V[r,b]

)
.

To achieve this, we need to show (1). sup(a,b)∈Iη
d(μ̂[a,b], μ[a,b]) = op(1); (2).

sup(a,b)∈Iη
|V̂[a,b]−V[a,b]| = op(1); and (3). sup(r;a,b)∈Jη

|V̂ C
[r;a,b]−V C

[r;a,b]| = op(1).
(1). The cases when b ≤ τ and a ≥ τ follow by Lemma A.1. For the case

when τ ∈ (a, b), recall

μ̂[a,b] = arg min
ω∈Ω

1
�nb� − �na�

�nb�∑
t=�na�+1

d2 (Yt, ω)

= arg min
ω∈Ω

{
n

�nb� − �na�
1
n

�nτ�∑
t=�na�+1

d2
(
Y

(1)
t , ω

)
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+ n

�nb� − �na�
1
n

�nb�∑
t=�nτ�+1

d2
(
Y

(2)
t , ω

)}
.

By the proof of (1) in Lemma A.1, for i = 1, 2, we have⎧⎨⎩ 1
n

�nu�∑
t=1

d2
(
Y

(i)
t , ω

)
− uEd2

(
Y

(i)
t , ω

)⎫⎬⎭
ω∈Ω,u∈[0,1]

⇒ 0,

which implies that{
n

�nb� − �na�
1
n

�nτ�∑
t=�na�+1

d2
(
Y

(1)
t , ω

)

+ n

�nb� − �na�
1
n

�nb�∑
t=�nτ�+1

d2
(
Y

(2)
t , ω

)}
ω∈Ω,(a,b)∈Iη

⇒
{
τ − a

b− a
E(d2(Y (1)

t , ω) + b− τ

b− a
E(d2(Y (2)

t , ω))
}

ω∈Ω,(a,b)∈Iη

.

(25)

By Assumption 2.2, and the argmax continuous mapping theorem (Theorem
3.2.2 in [26]), the result follows.

(2). The cases when b ≤ τ and a ≥ τ follows by Lemma A.2. For the case
when τ ∈ (a, b), we have for some constant K > 0

sup
(a,b)∈Iη

|V̂[a,b] − V[a,b]|

≤ sup
(a,b)∈Iη

⎛⎝ 1
�nb� − �na�

�nb�∑
t=�na�+1

∣∣d2 (Yt, μ̂[a,b]
)
− d2 (Yt, μ[a,b]

)∣∣⎞⎠
+ sup

(a,b)∈Iη

∣∣∣∣∣∣ 1
�nb� − �na�

�nb�∑
t=�na�+1

d2 (Yt, μ[a,b]
)
− V[a,b]

∣∣∣∣∣∣
≤ sup

(a,b)∈Iη

⎛⎝ 1
�nb� − �na�

�nb�∑
t=�na�+1

K
∣∣d (Yt, μ̂[a,b]

)
− d

(
Yt, μ[a,b]

)∣∣⎞⎠+ op(1)

≤ sup
(a,b)∈Iη

Kd(μ̂[a,b], μ[a,b]) + op(1) = op(1)

where the second inequality holds by the boundedness of the metric and (25),
and the third inequality holds by the triangle inequality of the metric.

(3). The proof is similar to (2).
By continuous mapping theorem, we obtain that for i = 1, 2,

{Dn,i(�nr�)}r∈[η1,1−η1] ⇒ {Di(r)}r∈[η1,1−η1] ,
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where

D1(r) = [T (r; 0, 1)]2∫ r−η2
η2

[T (u; 0, r)]2du +
∫ 1−η2
r+η2

[T (u; r, 1)]2du
,

D2(r)

= [T (r; 0, 1)]2 + [TC(r; 0, 1)]2∫ r−η2
η2

[T (u; 0, r)]2 + [TC(u; 0, r)]2du +
∫ 1−η2
r+η2

[T (u; r, 1)]2 + [TC(u; r, 1)]2du
.

In particular, at r = τ , we obtain Di(τ) = ∞. Hence, to show the consistency
of τ̂ , it suffices to show that for any small ε > 0, if |r − τ | > ε,

Di(r) < ∞.

By symmetry, we consider the case of r − τ > ε.
For r − τ > ε, we note that for both i = 1, 2,

sup
r−τ>ε

Di(r) ≤
supr

{
[T (r; 0, 1)]2 + [TC(r; 0, 1)]2

}
infr−τ>ε

∫ r−η2
η2

[T (u; 0, r)]2du
.

By proof of Proposition 1 in [8], we obtain that for some universal constant
K > 0,

sup
r

{
[T (r; 0, 1)]2 + [TC(r; 0, 1)]2

}
≤ K(Δ2

M + Δ2
V ) < ∞.

Therefore, it suffices to show that there exists a function ζ(ε) > 0, such that for
any r − τ > ε, ∫ τ−η2

η2

[T (u; 0, r)]2du > ζ(ε).

For r > τ , and for any u ∈ [η2, τ − η2],

T (u; 0, r)

=u(r − u)
r

(V (1) − V[u,r])

=u(r − u)
r

[
V (1) − τ − u

r − u
E(d2(Y (1)

t , μ[u,r])) −
r − τ

r − u
E(d2(Y (2)

t , μ[u,r]))
]

=u(r − u)
r

[V (1) − V (τ − u

r − u
)].

By Assumption 4.1, we can obtain that

|T (u; 0, r)| > u(r − u)
r

ϕ( ε

r − u
) ≥ η2

2ϕ(ε).

Hence, we can choose ζ(ε) = η6
2ϕ

2(ε).
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Appendix B: Examples

As we have mentioned in the main context, since d2(Yt, ω) takes value in R

for any fixed ω ∈ Ω, both Assumption 2.3 and 2.4 could be implied by high-
level weak temporal dependence conditions in conventional Euclidean space.
Therefore, we only discuss the verification of Assumption 2.1, 2.2 and 2.5 in
what follows.

B.1. Example 1: L2 metric dL for square integrable functions
defined on [0, 1]

Let Ω be the Hilbert space of all square integrable functions defined on I = [0, 1]
with inner product 〈f, g〉 =

∫
I
f(t)g(t)dt for two functions f, g ∈ Ω. Then, for

the corresponding norm ‖f‖ = 〈f, f〉1/2, L2 metric is defined by

d2
L(f, g) =

∫
I

[f(t) − g(t)]2dt.

Assumptions 2.1 and 2.2 follows easily by the Riesz representation theorem
and convexity of Ω. We only consider Assumption 2.5.

Note that

d2
L(Y, ω) − d2

L(Y, μ) =
∫ 1

0
[ω(t) − μ(t)][ω(t) + μ(t) − 2Y (t)]dt

=d2
L(ω, μ) + 2

∫ 1

0
[ω(t) − μ(t)][μ(t) − Y (t)]dt

:=d2
L(ω, μ) + g(Y, ω, μ),

and R(Y, ω, μ) ≡ 0. Furthermore,∣∣∣∣∣∣n−1/2
�nb�∑

i=�na�+1

g(Yi, ω, μ)

∣∣∣∣∣∣
=

∣∣∣∣∣∣2
∫ 1

0
[ω(t) − μ(t)]n−1/2

�nb�∑
i=�na�+1

[Yi(t) − μ(t)]dt

∣∣∣∣∣∣
≤2dL(ω, μ)

⎧⎪⎨⎪⎩
∫ 1

0

∣∣∣∣∣∣n−1/2
�nb�∑

i=�na�+1

[Yi(t) − μ(t)]

∣∣∣∣∣∣
2

dt

⎫⎪⎬⎪⎭
1/2

,

where the inequality holds by Cauchy-Schwarz inequality.
By the boundedness of dL(ω, μ), Assumption 2.5 then follows if

sup
t∈[0,1]

sup
(a,b)∈Iη

∣∣∣∣∣∣n−1/2
�nb�∑

i=�na�+1

[Yi(t) − μ(t)]

∣∣∣∣∣∣ = Op(1),

which holds under general weak temporal dependence for functional observa-
tions, see, e.g. [3].
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B.2. Example 2: 2-Wasserstein metric dW of univariate CDFs

Let Ω be the set of univariate CDF function on R, consider the 2-Wasserstein
metric defined by

d2
W (G1, G2) =

∫ 1

0
(G1(t) −G2(t))2dt,

where G1 and G2 are two inverse CDFs or quantile functions.
The verification of Assumption 2.1 and 2.2 can be found in Proposition C.1

in [8]. Furthermore, by similar arguments as Example 1, Assumption 2.5 holds
under weak temporal dependence conditions, see [3].

B.3. Example 3: Frobenius metric dF for graph Laplacians or
covariance matrices

Let Ω be the set of graph Laplacians or covariance matrices of a fixed dimension
r, with uniformly bounded diagonals, and equipped with the Frobenius metric
dF , i.e.

d2
F (Σ1,Σ2) = tr[(Σ1 − Σ2)�(Σ1 − Σ2)].

for two r × r matrices Σ1 and Σ2.
The verification of Assumption 2.1 and 2.2 can be found in Proposition C.2

in [8]. We only consider Assumption 2.5.
Note that

d2
F (Y, ω) − d2

F (Y, μ) =tr(ω − μ)�(ω + μ− 2Y )
=d2

F (ω, μ) + 2tr(ω − μ)�(μ− Y )
:=d2

F (ω, μ) + g(Y, ω, μ),

and R(Y, ω, μ) ≡ 0. Furthermore, by Cauchy-Schwarz inequality,∣∣∣∣∣∣n−1/2
�nb�∑

i=�na�+1

g(Yi, ω, μ)

∣∣∣∣∣∣ =2

∣∣∣∣∣∣tr[(ω − μ)�n−1/2
�nb�∑

i=�na�+1

(Yi − μ)]

∣∣∣∣∣∣
≤2dF (ω, μ)dF

⎛⎝n−1/2
�nb�∑

i=�na�+1

[Yi − μ], 0

⎞⎠ .

By the boundedness of dF (ω, μ), Assumption 2.5 then follows if

sup
(a,b)∈Iη

∥∥∥∥∥∥n−1/2
�nb�∑

i=�na�+1

vec(Yi − μ)

∥∥∥∥∥∥ = Op(1),

which holds under common weak dependence conditions in conventional Eu-
clidean space.
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B.4. Example 4: Log-Euclidean metric dE for covariance matrices

Let Ω be the set of all positive-definite covariance matrices of dimension r,
with uniformly both upper and lower bounded eigenvalues, i.e. for any Σ ∈ Ω,
c ≤ λmin(Σ) ≤ λmax(Σ) ≤ C for some constant 0 < c < C < ∞. The log-
Euclidean metric is defined by d2

E(Σ1,Σ2) = d2
F (logm Σ1, logm Σ2), where logm

is the matrix-log function.
Note that logm Σ has the same dimension as Σ, hence the verification of

Assumptions 2.1, 2.2 and 2.5 follows directly from Example 3.

Appendix C: Functional data in Hilbert space

Our proposed tests and DM test are also applicable to the inference of functional
data in Hilbert space, such as L2[0, 1], since the norm in Hilbert space naturally
corresponds to the distance metric d. In a sense, our methods can be regarded
as fully functional [2] since no dimension reduction procedure is required. In this
section, we further compare them with SN-based testing procedure by [32] for
comparing two sequences of temporally dependent functional data, i.e. {Y (i)

t }ni
t=1

i = 1, 2, defined on [0, 1]. The general idea is to first apply FPCA, and then
compare score functions (for mean) or covariance operators (for covariance)
between two samples in the space spanned by leading K eigenfunctions. SN
technique is also invoked to account for unknown temporal dependence.

Although the test statistic in [32] targets at the difference in covariance oper-
ators of {Y (1)

t } and {Y (2)
t }, their test can be readily modified to testing the mean

difference. To be specific, denote μ(i) as the mean function of Y (i)
t , t = 1, . . . , ni,

i = 1, 2, we are interested in testing

H0 : μ(1)(x) = μ(2)(x), ∀x ∈ [0, 1].

We assume the covariance operator is common for both samples, which is de-
noted by Cp.

By Mercer’s Lemma, we have

Cp =
∞∑
j=1

λj
pφ

j
p ⊗ φj

p,

where {λj
p}∞j=1 and {φj

p}∞j=1 are the eigenvalues and eigenfunctions respectively.
By the Karhunen-Loève expansion,

Y
(i)
t = μ(i) +

∞∑
j=1

η
(i)
t,jφ

j
p, t = 1, . . . , ni; i = 1, 2,

where {η(i)
t,j} are the principal components (scores) defined by η

(i)
t,j =

∫
[0,1]{Y

(i)
t −

μ(i)}φj
p(x)dx =

∫
[0,1]{Y

(i)
t − μp + μp − μ(i)}φj

p(x)dx with μp = γ1μ
(1) + γ2μ

(2).
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Under H0, μ(1) = μ(2) = μp, and η
(i)
t,j should have mean zero. We thus build

the SN based test by comparing empirical estimates of score functions. Specif-
ically, define the empirical covariance operator based on the pooled samples
as

Ĉp = 1
n1 + n2

( n1∑
t=1

Y(1)
t +

n2∑
t=1

Y(2)
t

)
,

where Y(i)
t = Y

(i)
t ⊗ Y

(i)
t , i = 1, 2. Denote by {λ̂j

p}∞j=1 and {φ̂j
p}∞j=1 the corre-

sponding eigenvalues and eigenfunctions. We define the empirical scores (pro-
jected onto the eigenfunctions of pooled covariance operator) for each functional
observation as

η̂
(i)
t,j =

∫
[0,1]

{Y (i)
t (x) − μ̂p(x)}φ̂j

p(x)dx, t = 1, . . . , ni; i = 1, 2; j = 1, . . . ,K,

where μ̂p = (
∑n1

t=1 Y
(1)
t +

∑n2
t=1 Y

(2)
t )/n is the pooled sample mean function.

Let η̂
(i,K)
t,(K) = (η̂(i)

t,1, . . . , η̂
(i)
t,K)�, and α̂(K)(r) = (�rn1�)−1∑�rn1�

t=1 η̂
(1,K)
t −

(�rn2�)−1∑�rn2�
t=1 η̂

(2,K)
t as the difference of recursive subsample mean of em-

pirical scores, we consider the test statistic as

ZSM =

n[α̂(K)(1)]�
{

n∑
k=1

k2

n2 [α̂(K)(k/n) − α̂(K)(1)][α̂(K)(k/n) − α̂(K)(1)]�
}−1

[α̂(K)(1)],

and under H0 with suitable conditions, it is expected that

ZSM →d BK(1)�
{∫ 1

0
(BK(r) − rBK(1)) (BK(r) − rBK(1))� dr

}−1

BK(1),

where BK(·) is a K-dimensional vector of independent Brownian motions.
Consider the following model taken from [18],

Yt(x) =
3∑

j=1

{
ξj,1t

√
2 sin(2πjx) + ξj,2t

√
2 cos(2πjx)

}
, t = 1, 2, . . . , n1

where the coefficients ξt =
(
ξ1,1
t , ξ2,1

t , ξ3,1
t , ξ1,2

t , ξ2,2
t , ξ3,2

t

)′
are generated from a

VAR process,

ξt =ρξt−1 +
√

1 − ρ2et, et
i.i.d.∼ N

(
0, 1

2 diag(v) + 1
216

)
∈ R

6

with v = (12, 7, 0.5, 9, 5, 0.3)�.
To compare the size and power performance, we generate independent func-

tional time series {Y (1)
t } and {Y (2)

t } from the above model, and modify {Y (2)
t }

according to the following settings:
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• [Case 1m] Y (2)
t (x) = Yt(x) + 20δ1 sin(2πx), x ∈ [0, 1];

• [Case 1v] Y (2)
t (x) = Yt(x) + 20δ2ηt sin(2πx), x ∈ [0, 1];

• [Case 2m] Y (2)
t (x) = Yt(x) + 20δ1x, x ∈ [0, 1];

• [Case 2v] Y (2)
t (x) = Yt(x) + 20δ2ηtx, x ∈ [0, 1];

• [Case 3m] Y (2)
t (x) = Yt(x) + 20δ11(x ∈ [0, 1]);

• [Case 3v] Y (2)
t (x) = Yt(x) + 20δ2ηt1(x ∈ [0, 1]);

where ηt
i.i.d.∼ N (0, 1) and δ1, δ2 ∈ [0, 0.3].

The size performance of all tests are evaluated by setting δ1 = δ2 = 0. As for
the power performance, Cases 1m-3m with δ1 ∈ (0, 0.3] correspond to alterna-
tives caused by mean differences and Cases 1v-3v with δ2 ∈ (0, 0.3] correspond
to covariance operator differences. In particular, we note the alternative of Cases
1m and 1v depends on the signal function f(x) = sin(2πx), x ∈ [0, 1], which is
in the space spanned by the eigenfunctions of Yt(x), while for Cases 3m and 3v,
the signal function f(x) = 1(x ∈ [0, 1]) is orthogonal to these eigenfunctions.

We denote the two-sample mean test and covariance operator test based on
[32] as ZSM and ZSV respectively. The empirical size of all tests are outlined
in Table 6 at nominal level α = 5%. From this table, we see that (a) D1 has
accurate size across all model settings and D2 is generally reliable for moderate
dependence level, albeit oversize phenomenon for small n when ρ = 0.7; (b)
DM suffers from severe size distortion when temporal dependence is exhibited
even for large n; (c) although both ZSM and ZSV utilize SN to robustify the
tests due to temporal dependence, we find their performances depend on the
user-chosen parameter K a lot, and still suffer from size distortion when n is
small. In particular, the size distortion when K = 4 is considerably larger than
that for K = 2 in the presence of temporal dependence.

Table 6

Size Performance (100%) at α = 5%.

Functional Data based on dL

ρ ni D1 D2 DM ZSM ZSV
K = 2 K = 4 K = 2 K = 4

-0.4

50 5.4 5.6 11.5 3.7 2.3 5.8 10.1
100 5.3 5.3 9.5 3.1 2.5 4.4 7.6
200 6.7 6.6 11.5 3.3 4.2 5.8 5.7
400 5.6 5.6 8.7 4.4 4.2 4.2 7.3

0

50 4.9 5.6 5.7 6.3 6.3 5.3 5.1
100 3.8 3.8 4.3 5.0 4.4 4.0 5.0
200 5.8 6.0 5.5 3.8 5.7 5.4 5.7
400 4.3 4.6 4.1 5.4 4.7 4.5 6.1

0.4

50 5.9 8.9 10.6 8.3 13.6 5.3 10.9
100 4.9 4.7 9.5 6.7 8.4 5.4 7.1
200 5.5 5.8 8.9 4.7 7.4 5.8 6.9
400 5.3 4.9 9.6 5.9 5.8 6.0 5.3

0.7

50 7.2 20.4 36.9 17.1 31.4 7.3 34.8
100 6.5 12.1 29.5 10.1 16.4 5.7 18.9
200 6.5 8.2 29.6 6.8 11.7 5.9 10.3
400 4.9 5.8 25.0 7.0 8.4 6.1 6.8
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Fig 6. Size-Adjusted Power (×100%) at α = 5%, ni = 400 and ρ = 0.4. Upper panel: mean
difference; bottom panel: covariance operator difference.

Figure 6 further compares their size-adjusted powers when n1 = n2 = 400
and ρ = 0.4. As can be seen, D1 possesses trivial power against mean differences
while D2 is rather stable in all settings with evident advantages in Cases 2m and
3m. In contrast, the power performances of DM, ZSM and ZSV vary among dif-
ferent settings. For example, when the alternative signal function is in the span
of leading eigenfunctions, i.e. Cases 1m and 1v, ZSM and ZSV with K = 2 can
deliver (second) best power performances as expected, while they are dominated
by other tests when the alternative signal function is orthogonal to eigenfunc-
tions in Cases 3m and 3v. As for DM, it is largely dominated by D2 in terms of
mean differences, although it exhibits moderate advantage over D2 for covari-
ance operator differences.

In general, whether the difference in mean/covariance operator is orthogonal
to the leading eigenfunctions, or lack thereof, is unknown to the user. Our test
D2 is robust to unknown temporal dependence, exhibits quite accurate size
and delivers comparable powers in all settings, and thus should be preferred in
practice.
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