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Abstract: It is well known that while the independence of random vari-
ables implies zero correlation, the opposite is not true. Namely, uncorrelated
random variables are not necessarily independent. In this note we show that
the implication could be reversed if we consider the localised version of the
correlation coefficient. More specifically, we show that if random variables
are conditionally (locally) uncorrelated for any quantile conditioning sets,
then they are independent. For simplicity, we focus on the absolutely con-
tinuous case. Also, we illustrate potential usefulness of the stated result
using multiple examples.
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1. Introduction

The concept of linear correlation was first presented in [12], see [30] for a histori-
cal note on the correlation invention. While mathematically simple and elegant,
statistical analysis based on correlation measurement could be confusing and
lead to subtle errors if not treated with caution, see e.g. [3], [34], and references
therein. Since correlation aims to measure the linear dependence between ran-
dom variables, it often fails to properly capture non-linear structures. Although
the dependence could be fully described using the copula function, it is more
appealing, especially to practitioners, to use simpler (numeric) characteristics to
describe the degree of dependence, see [23] or [22]. Because of that, a lot of al-
ternative measures of dependence have been proposed in the literature and this
field is constantly evolving. Let us alone mention the concepts of concordance
measures, entropy correlations, projection correlations, tail correlations, par-
tial and conditional correlations, maximal correlations, time-varying dynamic
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correlations, local Gaussian correlations, and distance correlations based on en-
ergy statistics, see [28, 27, 36, 2, 4, 13, 21, 35, 1, 32, 31, 33], and references
therein.

Typically, it is expected that the zero value of a given dependence measure
should, in some sense, imply independence. What is interesting, at first, the
concept of null linear correlation was often mixed with independence and it
took some time for statisticians to distinguish between null correlation and
statistical independence, see [9]. Of course, it is currently well known that while
the independence of random variables implies zero correlation, the opposite is
not true, see e.g. [6] for a classroom example.

In this short paper we answer a simple question about how one can revert the
aforementioned implication, i.e. whether one can use linear correlation to study
(proper) independence. Allowing non-linear transforms of random variables, the
reverse implication is in fact trivially true as one of the alternative definition
of independence states that two random variables X and Y are independent,
if f(X) and g(X) are uncorrelated for any test functions f and g; in fact, it
is sufficient to consider set indicator functions to directly recover the definition
of independence. Still, this characterisation is not appealing from practical per-
spective since it is hard to pre-set the family of test functions that would work
for any arbitrary pair of random variables and lead to efficient statistical setup.
Another approach is to consider a localised version of correlation and study
its properties, see Section 6 in [22] for details. In this paper, following [18], we
propose to bind those two approaches together and consider a family of condi-
tional correlations, where the conditioning is based on the quantile set linked
to the values of X and Y , see Section 3 for details. In the main result of this
paper, Theorem 3.1, we show that null correlation on every quantile set implies
independence of random variables so that the aforementioned implication could
be reverted by looking locally into linear relation between random variables.
Namely, we show that random variables are independent if and only if they
are locally linearly independent. It is worth noting that a similar results is true
in the multivariate case, i.e. conditional correlation matrices could be used to
characterise mutual independence, see Theorem 3.2. Due to our best knowledge,
those results have not been directly analysed previously in the literature – this
is most likely due to the fact that localised correlations considered so far were
not bound directly to quantile sets allowing efficient local treatment. Also, note
that this paper effectively provides a solution to the Advanced Problem 6327 in
[7]; the problem is listed as open therein, see also [26].

We believe that our proposal could be appealing to practitioners and could
lead to development of new efficient statistical frameworks. In fact, the sam-
ple version of (local) quantile correlation could be easily computed using rank
statistics and exhibits statistical properties similar to the unconditional correla-
tion; this aspect is left to future research. In other words, the results presented
in this paper lay the theoretical ground to expansion of the statistical frame-
work based on quantile conditional moments which already proved to be useful,
see e.g. [16], [19], and [25]. As an example, one could define the conditional
version of the auto-correlation function that could be used to study time-series
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which exhibits heavy tails, see Example 3 for details, or study the tail-based
correlations to recover dependence conditioned on tail-events, see [17].

This paper is organised as follows. In Section 2, we introduce the basic no-
tation and define the concept of quantile conditional correlation. In Section 3,
we state and prove the main result, Theorem 3.1, together with its multidi-
mensional extensions. Next, in Section 4, we discuss potential applications and
provide examples that illustrate how our approach could be used to study de-
pendence between random variables. Finally, in Section 5 we provide concluding
remarks.

2. Preliminaries

Let (Ω,F ,P) be a probability space and let (X,Y ) be a random vector defined
on this space. By Sklar’s theorem, we know that the joint distribution of (X,Y )
can be represented as

P[X ≤ x, Y ≤ y] = C(FX(x), FY (y)), x, y ∈ R, (1)

where FX and FY denote the distributions of X and Y , respectively, and C is
the copula function of the vector (X,Y ), see e.g. Theorem 2.3.3 in [23]. For sim-
plicity, from now on we assume that the vector (X,Y ) is absolutely continuous
and use fX , fY , f , and c, to denote the density functions of X, Y , (X,Y ), and
C, respectively. Also, we assume that FX and FY are bijective, the vector (X,Y )
has a full (non-degenerate) support, and the copula density c is continuous. In
this case, the copula function C is unique and can be easily recovered from
the joint distribution using the formula C(u, v) = P[X ≤ QX(u), Y ≤ QY (v)],
u, v ∈ (0, 1), where QX := F−1

X and QY := F−1
Y are the quantile functions of X

and Y , respectively.
Now, let us introduce a notation associated with quantile conditional covari-

ances. Given a set A ∈ F , we define the conditional covariance of (X,Y ) on A
by setting

CovA[X,Y ] := E [XY |A] − E [X|A]E [Y |A] , (2)
provided that the expectations are well-defined. In this paper, we are interested
in quantile-based conditioning. Namely, given a vector (X,Y ) and quantile splits
0 < p1 < q1 < 1 and 0 < p2 < q2 < 1, we define the corresponding quantile set
as

A := {ω ∈ Ω: QX(p1) ≤ X(ω) ≤ QX(q1), QY (p2) ≤ Y (ω) ≤ QY (q2)}. (3)

Note that since we assumed a full support, we get P[A] > 0 for any quantile
split. Also, since both X and Y are bounded on A, we get that (2) is well-defined
and finite. Thus, we can also define the corresponding conditional correlation
by setting

CorA[X,Y ] := CovA[X,Y ]√
VarA[X] VarA[Y ]

, (4)

where VarA[X] := E[X2|A] − E
2[X|A] and VarA[Y ] := E[Y 2|A] − E

2[Y |A] are
conditional covariances of X and Y , respectively.
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From now on we assume that we are given specific quantile splits 0 < p1 <
q1 < 1 and 0 < p2 < q2 < 1, and use A to denote the corresponding quantile set
as defined in (3). For brevity, we also introduce the corresponding value projec-
tion set Ã := [QX(p1), QX(q1)] × [QY (p2), QY (q2)] ⊂ R

2. With this notation,
we get that (2) could be expressed as

CovA[X,Y ] = 1
P[A]

∫
Ã

xyf(x, y)dydx

− 1
P2[A]

∫
Ã

xf(x, y)dydx
∫
Ã

yf(x, y)dydx. (5)

We say that X and Y are conditionally uncorrelated on A, if CorA[X,Y ] = 0.

3. Main result

In this section we present the main result of this note, which shows that the inde-
pendence of random variables could be linked to their conditional uncorrelation
on any quantile set.

Theorem 3.1. Random variables X and Y are independent if and only if they
are conditionally uncorrelated on every quantile set, i.e. for any quantile splits
0 < p1 < q1 < 1 and 0 < p2 < q2 < 1 and the related set A, we get

CorA[X,Y ] = 0.

Proof. The fact that the independence of X and Y implies CorA[X,Y ] = 0 for
any A ∈ F follows from the standard argument which is omitted for brevity. Let
us now assume that for any quantile splits 0 < p1 < q1 < 1 and 0 < p2 < q2 < 1
and the related set A we get CorA[X,Y ] = 0 or equivalently

CovA[X,Y ] = 0. (6)

First, let us show that for any u1, v1, u2, v2 ∈ (0, 1) we have

c(u1, v1)c(u2, v2) − c(u1, v2)c(u2, v1) = 0. (7)

We start with deriving a useful representation of CovA[X,Y ] based on (5). First,
define Vc(u1, v1, u2, v2) := c(u1, v1)c(u2, v2) − c(u1, v2)c(u2, v1), u1, v1, u2, v2 ∈
(0, 1), and note that Vc is anti-symmetric in (u1, u2) and (v1, v2), i.e. we get
Vc(u2, v1, u1, v2) = −Vc(u1, v1, u2, v2) and Vc(u1, v2, u2, v1) = −Vc(u1, v1, u2, v2).
Next, for any set A defined in (3), using the fact that

f(x, y) = c(FX(x), FY (y))fX(x)fY (y), x, y ∈ R,

and substituting x = QX(u) and y = QY (v), we get

CovA[X,Y ] = 1
P[A]

∫ q1

p1

∫ q2

p2

QX(u)QY (v)c(u, v)dvdu
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− 1
P2[A]

∫ q1

p1

∫ q2

p2

QX(u)c(u, v)dvdu
∫ q1

p1

∫ q2

p2

QY (v)c(u, v)dvdu

= 1
P2[A]

∫ q1

p1

∫ q2

p2

∫ q1

p1

∫ q2

p2

QX(u1)QY (v1)×

× Vc(u1, v1, u2, v2)dv2du2dv1du1. (8)

For any u1, v1, u2, v2 ∈ (0, 1), let us define

H(u1, v1, u2, v2) := (QX(u1) −QX(u2))(QY (v1) −QY (v2))Vc(u1, v1, u2, v2).

Thus, using (6) and the anti-symmetry of Vc, we get that (8) implies

0 =
∫ q1

p1

∫ q2

p2

∫ q1

p1

∫ q2

p2

H(u1, v1, u2, v2)dv2du2dv1du1. (9)

Next, using the multi-variable chain rule to differentiate with respect to q1 and
changing the order of integration, we get

0 =
∫ q1

p1

∫ q2

p2

∫ q2

p2

H(q1, v1, u2, v2)dv2dv1du2

+
∫ q1

p1

∫ q2

p2

∫ q2

p2

H(u1, v1, q1, v2)dv2dv1du1,

and consequently, due to the symmetry of H (in (u1, u2)), we have

0 =
∫ q1

p1

∫ q2

p2

∫ q2

p2

H(q1, v1, u2, v2)dv2dv1du2. (10)

Thus, differentiating (10) with respect to p1 yields

0 =
∫ q2

p2

∫ q2

p2

H(q1, v1, p1, v2)dv2dv1.

Performing a similar operation again, i.e. differentiating with respect to q2 and
then p2, we finally get

H(q1, q2, p1, p2) = 0. (11)

Now, using the strict monotonicity of QX and QY , we get

(QX(q1) −QX(p1))(QY (q2) −QY (p2)) > 0.

Thus, directly from the definition of H, we get that (11) implies

c(q1, q2)c(p1, p2) − c(q1, p2)c(p1, q2) = 0, (12)

for 0 < p1 < q1 < 1 and 0 < p2 < q2 < 1. This concludes the proof of (7) since
for q1 = p1 or q2 = p2 the equality (12) is trivial, and the symmetry of H allows
us to easily extend (11) to the full parameter space q1, q2, p1, p2 ∈ (0, 1).
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Second, let us show that (7) implies the independence of X and Y . Using (7)
and recalling that C could be seen as a distribution function of a random vector
with marginals distributed uniformly on [0, 1], for any x, y ∈ [0, 1] we get

C(x, y) =
∫ x

0

∫ y

0
c(u, v)dvdu =

∫ x

0

∫ y

0

∫ 1

0

∫ 1

0
c(u1, v1)c(u2, v2)dv2du2dv1du1

=
∫ x

0

∫ y

0

∫ 1

0

∫ 1

0
c(u1, v2)c(u2, v1)dv2du2dv1du1

=
∫ x

0

∫ 1

0
c(u1, v2)dv2du1

∫ 1

0

∫ y

0
c(u2, v1)dv1du2

= C(x, 1)C(1, y)
= xy, (13)

which shows that the copula of (X,Y ) is the product copula. Recalling (1), we
get that X and Y are independent, which concludes the proof.

Remark 1 (Conditional Spearman’s ρ and independence). From Theorem 3.1
one can easily deduce that random variables X and Y are independent if and
only if conditional Spearman’s ρ coefficient on every quantile set is equal to
zero. To prove this it is enough to observe that Spearman’s ρ is in fact Pearson’s
correlation applied to the copula function.

Remark 2 (Local linear independence implies independence). By investigating
the proof of Theorem 3.1 one can see that proving Equality (12) is a key step in
establishing independence. While in Theorem 3.1 we did not set any restriction
on quantile split values 0 < p1 < q1 < 1 and 0 < p1 < q1 < 1, it is in
fact sufficient to require that for any quantile point (QX(p), QY (q)), p, q ∈
(0, 1), the quantile conditional correlations are null inside some neighbourhood
of (QX(p), QY (q)), e.g. for some ε > 0 and any p1, q1 ∈ (QX(p− ε), QX(p + ε))
and p2, q2 ∈ (QY (q− ε), QY (q + ε)). Indeed, this implies that (9) is satisfied for
any sufficiently small hypercubes [p1, q1] × [p1, q1] × [p2, q2] × [p2, q2] which can
be combined to recover (9) for any 0 < p1 < q1 < 1 and 0 < p1 < q1 < 1 and,
consequently, get Equality (12). This effectively shows than random variables
X and Y are independent if and only if they are locally linearly independent.

Remark 3 (Tail-event dependence and spatial contagion). From Theorem 3.1
we can see that to reject the (global) independence of X and Y , it is enough
to find a single quantile split 0 < p1 < q1 < 1 and 0 < p2 < q2 < 1 on which
the conditional quantile correlation is not equal to zero. In signal processing or
financial time-series modelling, it is natural to consider left tail events, e.g. when
one or both of the values q1 and q2 are small. Such events could be linked to
the presence of the so-called spatial contagion in which dependence increases in
the presence of system turbulence. This might be used to construct statistical
frameworks based on quantile tail-event analysis, see [10], [17], and references
therein.
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Remark 4 (Conditional independence). Theorem 3.1 statement could be also
transferred to the conditional independence setting. Intuitively speaking, ran-
dom vector (X,Y ) has conditionally independent margins given a third random
variable Z if and only if its Z-conditioned laws have independent margins, i.e.
if condition P[X ≤ x, Y ≤ y|Z = z] = P[X ≤ x|Z = z]P[Y ≤ y|Z = z] holds
for any x, y, z ∈ R. We can also measure the conditional independence of (X,Y)
given a specific value of Z and consider the respective conditional correlations
– Theorem 3.1 ensures that all conditioned quantile correlations are null if and
only if conditional independence holds.

As we show now, Theorem 3.1 could be extended to the multivariate case.
To get this extension, we use two alternative approaches. First, in Theorem 3.2,
we consider a conditional correlation matrix. Second, in Theorem 3.3 and The-
orem 3.4, we use linear combinations of margins.

Before we state the result, let us introduce some notation. Consider an n-
dimensional random vector X = (X1, . . . , Xn) and assume that it satisfies the
assumptions analogous to the ones used in Theorem 3.1, i.e. bijectiveness of
the the marginal distribution functions, full support condition, absolute conti-
nuity of the joint distribution, and continuity of the copula density. Also, for
any quantile splits 0 < pi < qi < 1, i = 1, . . . , n, we define the quantile set
corresponding to (X1, . . . , Xn) by

A :=
n⋂

i=1
{Qi(pi) ≤ Xi ≤ Qi(qi)}, (14)

where Qi is the quantile function of Xi, i = 1, . . . , n. Finally, by ΣA we de-
note the associated conditional correlation matrix with the entries given by
ΣA[i, j] := [CorA(Xi, Xj)], i, j = 1, . . . , n; we also use In to denote the n × n
identity matrix.

Theorem 3.2. The n-dimensional random vector X has mutually independent
margins if and only if, for any quantile splits 0 < pi < qi < 1, i = 1, . . . , n, and
the related set A, its conditional correlation matrix ΣA is equal to the identity
matrix.

Proof. The argument is based on the proof of Theorem 3.1 and we provide only
an outline. Also, for simplicity, we consider only n = 3; the general case follows
the same logic. As before, it is straightforward to check that the independence
of margins imply diagonal conditional correlation matrix, so we focus on the
reverse implication.

For simplicity and with a slight abuse of notation, we use C and c to denote
the copula and the copula density corresponding to (X1, X2, X3), respectively.
Let us assume that for any quantile splits 0 < pi < qi < 1, i = 1, 2, 3, and the
related set A we get ΣA = I3 or equivalently

CovA[Xi, Yj ] = 0, i, j ∈ {1, 2, 3}, i �= j. (15)
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Next, as in (8), we get

CovA[X1, X2] = 1
2P2[A]

∫ q1

p1

∫ q2

p2

∫ q3

p3

∫ q1

p1

∫ q2

p2

∫ q3

p3

QX(u1)QY (v1)×

× Vc(u1, v1, w1, u2, v2, w2)dw2dv2du2dw1dv1du1, (16)

where, for any u1, v1, w1, u2, v2, w2 ∈ (0, 1), we define

Vc(u1, v1, w1, u2, v2, w2) := c(u1, v1, w1)c(u2, v2, w2) − c(u1, v2, w1)c(u2, v1, w2).

Also, setting Q(u1, v1, u2, v2) := (Q1(u1) −Q1(u2)) (Q2(v1) −Q2(v2)) for any
u1, u2, v1, v2 ∈ (0, 1), and repeating the argument leading to (11), we get

0 =
∫ q3

p3

∫ q3

p3

Q(q1, q2, p1, p2)Vc(q1, q2, w1, p1, p2, w2)dw2dw1.

Noting that Q(q1, q2, p1, p2) > 0 and differentiating the iterated integral with
respect to q3 and p3, for any 0 < pi < qi < 1, i = 1, 2, 3, we get

0 = Vc(q1, q2, q3, p1, p2, p3) + Vc(q1, q2, p3, p1, p2, q3)
= c(q1, q2, q3)c(p1, p2, p3) − c(q1, p2, q3)c(p1, q2, p3)

+ c(q1, q2, p3)c(p1, p2, q3) − c(q1, p2, p3)c(p1, q2, q3).

In fact, as in the proof of Theorem 3.1, we get that the formula is valid for any
pi, qi ∈ (0, 1), i = 1, 2, 3; see the discussion following (12) for details. Using this
observation, for any x, y, z ∈ [0, 1], as in (13), we get

C(x, y, z)

=
∫ x

0

∫ y

0

∫ z

0

∫ 1

0

∫ 1

0

∫ 1

0
c(u1, v1, w1)c(u2, v2, w2)dw2dv2du2dw1dv1du1

=
∫ x

0

∫ y

0

∫ z

0

∫ 1

0

∫ 1

0

∫ 1

0
c(u1, v2, w1)c(u2, v1, w2)dw2dv2du2dw1dv1du1

−
∫ x

0

∫ y

0

∫ z

0

∫ 1

0

∫ 1

0

∫ 1

0
c(u1, v1, w2)c(u2, v2, w1)dw2dv2du2dw1dv1du1

+
∫ x

0

∫ y

0

∫ z

0

∫ 1

0

∫ 1

0

∫ 1

0
c(u2, v1, w2)c(u1, v2, w1)dw2dv2du2dw1dv1du1

= C(x, 1, z)C(1, y, 1) − C(x, y, 1)C(1, 1, z) + C(1, y, z)C(x, 1, 1)
= C(x, 1, z)y − C(x, y, 1)z + C(1, y, z)x. (17)

In particular, setting z = 1, we get C(x, y, 1) = xy, x, z ∈ [0, 1]. Using the same
argument applied to CovA[X1, X3] and CovA[X2, X3], we also get C(x, 1, z) =
xz and C(1, y, z) = yz, x, y, z ∈ [0, 1]. Consequently, from (17), we get

C(x, y, z) = xyz, x, y, z ∈ [0, 1],

which concludes the proof.
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The next generalisation of Theorem 3.1 is based on linear combinations. For
simplicity, given an n-dimentional random vector X and an m-dimensional ran-
dom vector Y , we pre-assume that for any α ∈ R

n \ {0} and β ∈ R
m \ {0}, the

random vector (〈X,α〉, 〈Y, β〉), where 〈·, ·〉 denotes the standard Euclidean in-
ner product, satisfy our usual assumptions, i.e. bijectiveness of the the marginal
distribution functions, full support condition, absolute continuity of the joint
distribution, and continuity of the copula density.

Theorem 3.3. Let X and Y be n-dimensional and m-dimensional random
vectors, respectively. Then, X and Y are independent if and only if for any
α ∈ R

n \ {0} and β ∈ R
m \ {0}, the random variables 〈X,α〉 and 〈Y, β〉 are

conditionally uncorrelated, i.e. for any quantile splits 0 < p1 < q1 < 1 and
0 < p2 < q2 < 1 and the related set A, defined for (〈X,α〉, 〈Y, β〉), we get

CorA [〈X,α〉, 〈Y, β〉] = 0. (18)

Proof. As in the proof of Theorem 3.1, we focus on the argument that (18)
implies independence; the reverse implication is standard. Note that (18) com-
bined with Theorem 3.1 implies that the random variables 〈X,α〉 and 〈Y, β〉 are
independent for any α ∈ R

n and β ∈ R
m. In particular, we get

φ(X,Y )(α, β) = φX(α)φY (β), α ∈ R
n, β ∈ R

m, (19)

where φZ(t) := E[exp (i〈Z, t〉)], t ∈ R
d, denotes the characteristic function of

an arbitrary d-dimensional random vector Z. Combining (19) with Theorem 4,
Section II.12, in [29] we conclude the proof.

Theorem 3.3 can be used to get another characterisation of random vector
margins independence based on a recursive scheme. For an n-dimensional vec-
tor a := (a1, . . . , an) and k = 1, . . . , n, let a1:k denote its subvector a1:k :=
(a1, . . . , ak). Again, for simplicity, for n-dimensional random vector X, we as-
sume that for any k = 1, . . . , n − 1 and αk ∈ R

k \ {0}, the random variables
Xk+1 and 〈X1:k, αk〉 satisfy our standard assumptions.

Theorem 3.4. Let X be an n-dimensional random vector. Assume that for any
k = 1, . . . , n−1 and αk ∈ R

k\{0}, the random variables Xk+1 and 〈X1:k, αk〉 are
conditionally uncorrelated. Then, the margins of X are mutually independent.

Proof. Using Theorem 3.3, we get that, for any αn−1 ∈ R
n−1 \ {0}, the random

variables Xn and 〈X1:(n−1), αn−1〉 are independent. Hence, the characteristic
function of the random vector X satisfies φX(α) = φXn(αn)φX1:(n−1)(α1:(n−1)),
α ∈ R

n. In fact, inductively, we get that the characteristic funcion of X factorises
into the product of the characteristic functions of the margins, i.e.

φX(α) =
n∏

k=1
φXi(αi), α ∈ R

n.

Using Theorem 4, Section II.12, in [29] we conclude the proof.
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Remark 5 (Mutual independence for infinite series of random variables). It
should be noted that Theorem 3.4 could be used to get a characterisation of
infinite series of random variables, e.g. (Xt)t∈N. Indeed, it is enough to recall
that the mutual independence of the family (Xt)t∈N means mutual independence
of any finite subfamily of random variables.

4. Discussion on potential applications and examples

In this section we present five examples which show how conditional correlation
analysis could be applied to study independence in various mathematical and
statistical contexts. In particular, while the development of rigorous statistical
frameworks is out of scope of this paper, we want to explain how the indepen-
dence characterisation presented in Theorem 3.1 could be used to refine existing
methods or to develop new ones. Before we present the examples, let us provide
some generic remarks linked to potential statistical applications of conditional
correlations.

First, it should be emphasized that statistical independence is an important
aspect of many models and there are numerous tools designed to study it. In the
following examples we focus on five distinct applications linked to: (1) identifi-
cation of non-linear dependence structures; (2) generic statistical independence
tests; (3) serial dependence tests; (4) verification of independence assumptions
in regression models; (5) conditional and partial independence characterisation.
That saying, we want to emphasize that this does not exhaust all possible ap-
plications – due to generic nature of Theorem 3.1 and Theorem 3.2, the analysis
based on conditional correlations could be applied in almost any framework
in which statistical independence is being evaluated. To name a few further
examples, this could correspond to copula goodness-of-fit tests based on Rosen-
blatt transform, GARCH time-series assumption checks or the extension of the
measure of association normative approach to local (conditional) coefficients.

Second, in all examples we estimate local correlation using a simple em-
pirical estimator following the logic from [19]. Namely, given quantile splits
0 < p1 < q1 < 1 and 0 < p2 < q2 < 1, the corresponding set A, and a sample
{(xi, yi)}ni=1 of size n ∈ N, we compute conditional correlation using a simple
two-step procedure. In the first step we determine the conditioned subsample
by picking only observations which satisfy (empirical) rank constraints on each
margin, see Figure 5 for an illustration. In the second step we compute the
empirical correlation for the selected (conditioned) observation. It is relatively
easy to show that the resulting empirical conditional correlation estimators will
be consistent and will have CLT-type law, i.e. their asymptotic distribution will
be normal. We refer to [19] for more details.

Third, we note that the statistical test of (full) independence is by design a
very hard task. Indeed, one can imagine a situation of random variables that are
dependent only on some set that has a very small probability. In such instance,
one would need (statistically meaningful) information from this set which re-
quire methods that are sensitive to any local deviations from independence.
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While this task could be achieved using conditional correlations and adaptive
quantile split grids with grid decreasing diameter depending on the sample size,
cf. Remark 2, we decided to focus on tests which detect dependence by ex-
tracting specific features from the sample. In this context, the flexibility coming
from the freedom of quantile split choice allows us to propose test statistics that
extract different features from the sample. Indeed, Theorem 3.1 states that if
conditional correlation is different from zero even for only one quantile split,
then the random variables are not independent. For example, if one wants to
check the increase of dependence in the tails, then extreme tail splits might be
considered, see Remark 3. We refer to [19] for a discussion on quantile split
choices in the univariate setting and construction of test statistics based on
sums/ratios of conditional coefficients.

Finally, we note that for simplicity we decided to focus on a bivariate setting
but similar examples could be constructed for the multivariate setting using
the characterisation presented in Theorem 3.2. Also, note that the main goal
of the following examples is to show potential applications of the characterisa-
tion stated in Theorem 3.1. Consequently, for brevity, we decided to focus on
intuitive illustrations rather than formal statistical methodology introduction.
More systematic analysis of the listed application and development of the linked
statistical frameworks is left for the future research.

Example 1 (Detecting non-linear dependence with conditional correlations).
We show an exemplary situation in which the conditional covariance (and corre-
lations) coefficients could be explicitly computed and used to detect dependence
structures even though the unconditional correlation is equal to zero. Let X be
a standard normal random variable and let Y := WX, where W is independent
of X and distributed uniformly on {−1, 1}. Then, (X,Y ) is a vector with stan-
dard normal margins such that X and Y are uncorrelated but not independent
(see [6]). In particular, the independence of X and Y cannot be (theoretically)
rejected with the help of the classical Pearson correlation coefficient. However,
Theorem 3.1 shows that the conditional corellations (or covariances) can be used
to formally show the lack of independence. To illustrate this, let us provide an
explicit formula for the quantile conditional covariances of X and Y . Fix the
set A corresponding to the quantile splits 0 < p1 < q1 < 1 and 0 < p2 < q2 < 1,
and define

l := max(Φ−1(p1),Φ−1(p2))1{q1>p2}1{q2>p1},

r := min(Φ−1(q1),Φ−1(q2))1{q1>p2}1{q2>p1},

l̂ := max(Φ−1(p1),Φ−1(1 − q2))1{q1>1−q2}1{1−p2>p1},

r̂ := min(Φ−1(q1),Φ−1(1 − p2))1{q1>1−q2}1{1−p2>p1};

where Φ and φ denote cumulative distribution function and probability density
function of standard normal random variable, respectively. Note that l and r are
simply the left-most and the right-most points of the set [Φ−1(p1),Φ−1(q1)] ∩
[Φ−1(p2),Φ−1(q2)], respectively, provided that the intersection is non-empty; a
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Fig 1: Contour plots of CorA[X,Y ] for various choices of quantile splits based
on Example 1 setting. Note that conditional covariance structure could be non-
trivial even if Cor[X,Y ] = 0.

similar interpretation holds for l̂ and r̂. Then, we get

CovA[X,Y ] = lφ(l) − rφ(r) + Φ(r) − Φ(l)
Φ(r) − Φ(l) + Φ(r̂) − Φ(l̂)

− l̂φ(l̂) − r̂φ(r̂) + Φ(r̂) − Φ(l̂)
Φ(r) − Φ(l) + Φ(r̂) − Φ(l̂)

− (φ(l) − φ(r))2 − (φ(l̂) − φ(r̂))2

(Φ(r) − Φ(l) + Φ(r̂) − Φ(l̂))2
,

VarA[X] = lφ(l) − rφ(r) + Φ(r) − Φ(l) + l̂φ(l̂) − r̂φ(r̂) + Φ(r̂) − Φ(l̂)
Φ(r) − Φ(l) + Φ(r̂) − Φ(l̂)

− (φ(l) − φ(r) + φ(l̂) − φ(r̂))2

(Φ(r) − Φ(l) + Φ(r̂) − Φ(l̂))2
,

VarA[Y ] = lφ(l) − rφ(r) + Φ(r) − Φ(l) + l̂φ(l̂) − r̂φ(r̂) + Φ(r̂) − Φ(l̂)
Φ(r) − Φ(l) + Φ(r̂) − Φ(l̂)

− (φ(l) − φ(r) − φ(l̂) + φ(r̂))2

(Φ(r) − Φ(l) + Φ(r̂) − Φ(l̂))2
. (20)

In particular, for p1 = p2 = 0.5 and q1 = q2 = 0.8, we have CovA[X,Y ] ≈ 0.0573
and CorA[X,Y ] = 1.0, which directly proves that X and Y are not indepen-
dent. For completeness, in Figure 1 we also present the values of CorA[X,Y ]
for exemplary quantile splits based on (20). From the figure we can see that
the quantile conditional covariances may detect dependence between random
variables, as described in Theorem 3.1.

Example 2 (Tests of statistical independence). We present an exemplary sta-
tistical independence testing framework based on conditional correlations in a
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controlled environment. Let (X,Y ) be a random vector with standard normal
margins. Assume that under the null hypothesis X and Y are independent but
under the alternative hypothesis the dependence structure is different. For test-
ing purposes, we consider a test statistic (denoted by CondCor) that is given
as the sample conditional correlation coefficient for the fixed quantile splits
p1 = q1 = 0.5 and p2 = q2 = 1.0. We compare this test statistic with two alter-
native benchmarks. The first benchmark is the classical Pearson’s correlation
test statistic (denoted by Cor) given by the unconditional correlation coefficient.
The second benchmark is the Hoeffding’s independence test statistic (denoted
by Hoeff) which checks if the empirical joint distribution function is a product
of the marginal empirical distribution functions. For illustration, using Monte
Carlo simulations, we check the test power for all three test statistics and var-
ious alternative hypotheses. Namely, let (N1, N2,W ) be a random vector with
mutually independent margins, where N1, N2 ∼ N(0, 1) and W is distributed
uniformly on {−1, 1}. Given a ∈ [0, 1], let

X := N1, and Y :=
√

1 − aN2 +
√
aWN1. (21)

We consider a null hypothesis a = 0 and alternative hypotheses a = 0.25,
a = 0.5, a = 0.75, and a = 1. Note that the bigger the value of a ∈ [0, 1],
the stronger the (non-linear) dependence between X and Y , but we always get
Cov[X,Y ] = 0.

To confront exemplary test powers for all test statistics we consider sample
size n ∈ {50, 100} and the confidence level α = 0.05. We perform Monte Carlo
simulations of size 100 000 to simulate the null hypothesis distributions as well as
to estimate the test power under different alternative hypotheses. More specif-
ically, first, we simulate the null distribution of the respective test statistics
based on the samples from independent standard normal random variables X
and Y . Then, we compute the rejection thresholds and use them to estimate
the power of the test by checking the proportion of the samples following the
distribution of the random vector (X,Y ) given by (21), for which we reject the
null hypothesis. The results are given in Table 2. The presented results suggest a
very good performance of the proposed methodology, especially when a is close
to 1. To better illustrate these results, in Figure 2 we also present an exemplary
dataset when only the CondCor test rejected the null independence hypothesis.
As seen in the figure, the conditional correlation approach should be effective
for regions in which some form of dependence is visible.

Example 3 (Detecting serial dependence). In this example, we show how to
use conditional correlations to detect serial dependence in time series. Note that
the analysis of (unconditional) auto-correlation is a standard technique used in
time series analysis and signal processing to detect serial dependence, see e.g.
[14, 5] and references therein. In particular, it is often used to verify the lack of
trend or volatility clustering in financial data, see e.g. [11, 8, 20]. Given a time-
series sample (xt)nt=1, the empirical auto-correlation of lag k is typically com-
puted by estimating the (unconditional) correlation between the sub-samples
(xt)nt=k+1 and (xt)n−k

t=1 . In this simple example, we use market data to show how
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Fig 2: The table (a) presents test powers for various choices of a ∈ [0, 1] under
the settings described in Example 2. The best performance is marked in bold
– one can see that in all cases CondCor outperforms other frameworks. The
plot (b) presents exemplary sample for n = 100 and a = 0.75 on which only
CondCor test statistic rejected the null hypothesis. The red region indicates the
subsample on which empirical conditional correlation is computed.

the information about conditional correlation could be used to refine standard
auto-correlation function (ACF) analysis. For simplicity, we decided to take one
exemplary stock market data. Namely, we consider weekly (adjusted) log-returns
of AAPL stock prices in the period 01/08/2016 – 01/08/2022, which we denote
by (rt)nt=1, n = 312, the data is illustrated in Figure 3. In Figure 4, we present
the classical auto-correlation function (ACF) plots for log-returns, absolute val-
ues of log-returns, as well as squared log-returns. While, the first plot is often
used for generic independence check (lack of trend), the last two might be used
to investigate the so-called volatility clustering effect, see [8]. Although from
Figure 3 one can deduce that the data is not i.i.d. (for lag k = 3 the 1% i.i.d.
confidence threshold level is breached), the ACF functions do not detect any
major problem for lag k = 1, suggesting no obvious dependence between con-
sequent observations. Let us now focus on lag k = 1 and check if we can refine
the ACF analysis using conditional equivalent of auto-correlation. Namely, let
us consider the quantile split p1 = p2 = 0.01 and q1 = q2 = 0.7, and compute
the conditional correlation on the corresponding set A given by (3), for the sam-
ples (rt)nt=2 and (rt)n−1

t=1 , see Figure 5 for illustration. Note that this particular
quantile split could be linked to a potential dependence structure visible in the
scatter plot – this is an exemplary region, where data seems to be positively
correlated.

The estimated value of the conditional correlation is equal to 0.31, which in-
dicates that the time-series observations are not independent. To sanity check if
this claim is statistically significant, we performed a simple normal distribution-
based Monte Carlo exercise. Namely, we picked M = 100 000 strong Monte Carlo
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Fig 3: AAPL stock price daily quotes (a) and weekly log-returns (b) in the
period 01/08/2016 – 01/08/202 used in Example 3.

Fig 4: AAPL stock price weekly log-returns in the period 01/08/2016 –
01/08/2022. Auto-correlation function (ACF) plots for (a) log-returns, (b) ab-
solute values of log-returns, (c) squared log-returns.

samples of size n = 312, i.e. size equal to the size of the original sample, from
independent normal distributions. For each run, we computed the conditional
correlation for the same lag and the same sample quantile set. The 0.1% up-
per quantile of the obtained MC density is equal to 0.25, which shows that
the initial sample empirical conditional correlation 0.31 is (statistically) signif-
icantly different from zero which proved serial dependence between consequent
observations.
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Fig 5: Lag plot (k = 1) for weekly APPL log-returns. The red region indicates
the conditional set A on which we computed (empirical) conditional correla-
tion which is equal to 0.31. This value is statistically different from zero which
indicates serial dependence of consequent observations.

Example 4 (Testing independence in regression models). The results from
this paper could be used to develop statistical tests for residual dependence
structure checks in the regression models. For example, in the linear regression,
one often has to check if the explanatory variables are independent of errors
which values are proxied by residuals. The usage of conditional correlations
facilitates detection and formal testing dependence structures that are non-
linear. To illustrate this, let us take the Nerlove’s 1955 dataset with cost function
for electricity producers as the output variable, see [24]. Our goal is to check the
dependence between the residuals and the output for the Cobb-Douglas model
fitted to this dataset, see pages 76–84 in [15] for exact model construction and
details. We consider the quantile split p1 = p2 = 0.1 and q1 = q2 = 0.9,
which should provide a good balance between the sample size loss and the
possible outliers exclusion. Then, we compute the conditional correlation on the
corresponding set A for the vector of residuals and logged output, see Figure 6
for data illustration. While the unconditional correlation for this data is equal
to zero (by model construction), the empirical conditional correlation is equal to
0.45 which indicates non-linear dependence between the output and residuals as
pointed out in [15], where this conclusion was reached through visual inspection.
Statistical significance of non-zero correlation could be checked using a similar
logic as in Example 3.

Example 5 (Conditional and partial independence). As already noted in Re-
mark 4, conditional correlations could be used to characterise conditional in-
dependence as well as partial independence; see e.g [4] for further discussion
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Fig 6: The plot presents the residuals plotted against the log output for the
Cobb-Douglas model applied to Marlov’s dataset, see Figure 1.7 in [15] for
reference. While the unconditional empirical correlation is equal to zero, the
conditional empirical correlation in the red region is equal to 0.45 which shows
that residuals are not independent from the model output.

on these concepts. In this example, we provide a toy example in which partial
correlation is equal to zero but non-linear dependence is visible. Following a
logic similar to the one presented in Example 2 let us consider a random vector
(X,Y, Z) given by

X := N1 + N2, Y := WN1 + N2, and Z := N2,

where (N1, N2,W ) is a random vector with mutually independent margins,
N1, N2 ∼ N(0, 1) and W is distributed uniformly on {−1, 1}. We treat Z as
the control variable. It is easy to check that Cor(X,Y ) = 0.5 due to the effect
of Z on X and Y . On the other hand, the analysis of partial correlation of X
and Y , given Z, shows partial linear independence. Indeed, we have

ρXY ·Z = Cor[X,Y ] − Cor[X,Z] Cor[Y,Z]√
1 − Cor[X,Z]2

√
1 − Cor[Y,Z]2

= 0.5 −
√

0.5
√

0.5√
0.5

√
0.5

= 0,

but clearly X and Y are non-linearly dependent even when taking into account
information from Z. To understand this, it is enough to recall that ρXY ·Z mea-
sures the correlation of residual errors from two linear regressions models, with
X and Y as response and Z as regressor. Noting that those errors form a bi-
variate vector (N1,WN1), we see that one can detect non-linear dependence
between those residuals using conditional correlation analysis as done in Exam-
ple 1. To illustrate this we picked a random sample from (X,Y, Z) of size n = 50.
The sample empirical correlation between X and Y is equal to 0.47, while the
empirical partial correlation is equal to −0.08 which is consistent with theo-
retical values, see Figure 7 for data illustration. We also estimated conditional
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Fig 7: Exemplary sample from (X,Y ) of size n = 50 under the setting from
Example 5 is presented in (a). The empirical correlation between X and Y is
equal to 0.47 since both X and Y depend on control variable Z. The residuals
from regresing the margins on Z are presented in (b). While the empirical partial
correlation is equal to -0.08 as X and Y and partially linearly independent, the
conditional partial correlation on the red set is equal to 0.89.

(partial) correlation for splits p1 = p2 = 0.1 and q1 = q2 = 0.5 and obtained the
value 0.89. As expected, this indicates a strong non-linear (local) dependence
between X and Y , even when the effect of Z is removed.

5. Concluding remarks

In this paper we provided an alternative characterisation of statistical inde-
pendence based on conditional correlations in both bivariate and multivariate
setting, see Theorem 3.1 and Theorem 3.2. We showed that any form of de-
pendence between random variables could be described using a family of lo-
calised Pearson’s correlations, i.e. non-linear dependence could be described by
local linear dependence via conditional correlations. It is worth noting that
the idea of localised correlation is relatively simple, e.g. when confronted with
higher-order moments based measures of association or advanced copula-based
tools, so that this characterisation could be appealing to engineers which are
used to linear dependence measurement. We also showed that the character-
isation based on conditional correlations could be potentially used to refine
multiple existing statistical frameworks in which independence is analysed. Our
claim was illustrated using numerous toy examples, see Section 4. We want
to emphasize that this work is a first step towards developing formal statis-
tical methodologies for evaluating independence based on local correlations.
As such, it has potential to open new theoretical and practical research ar-
eas.
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