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A classification of asymptotic behaviors of Green
functions of random walks in the quadrant
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Abstract

This paper investigates the asymptotic behavior of Green functions associated to
partially homogeneous random walks in the quadrant Z2

+. There are four possible
distributions for the jumps of these processes, depending on the location of the
starting point: in the interior, on the two positive axes of the boundary, and at the
origin (0, 0).

With mild conditions on the positive jumps of the random walk, which can be
unbounded, a complete analysis of the asymptotic behavior of the Green function of
the random walk killed at (0, 0) is achieved. The main result is that eight regions of
the set of parameters determine completely the possible limiting behaviors of Green
functions of these Markov chains. These regions are defined by a set of relations for
several characteristics of the distributions of the jumps.

In the transient case, a description of the Martin boundary is obtained and in the
positive recurrent case, our results give the exact limiting behavior of the invariant
distribution of a state whose norm goes to infinity along some asymptotic direction
in the quadrant. These limit theorems extend results of the literature obtained, up
to now, essentially for random walks whose jump sizes are either 0 or 1 on each
coordinate.

Our approach relies on a combination of several methods: probabilistic repre-
sentations of solutions of analytical equations, Lyapounov functions, convex analysis,
methods of homogeneous random walks, and complex analysis arguments.
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Classification of asymptotic behaviors of Green functions

1 Introduction

For a transient Markov chain (Z(n)) on an infinite countable state space E determining
all possible limits of the associated Martin kernel, the Martin boundary, is an important
and difficult problem in general. By the Poisson-Martin representation theorem, it
gives the Martin compactification of the state space, an integral representation of all
non-negative harmonic functions. For an introduction to the theory of Martin boundary
for countable Markov chains, see the classical references Doob [5] and Dynkin [6].

The characterization of the Martin boundary for homogeneous random walks in Zd

has been obtained in Ney and Spitzer [27], via a set of technical estimates related to the
local central limit theorem. The Martin boundary has been also identified for random
walks on free groups, hyperbolic graphs and Cartesian products. See Woess [30] for a
thorough presentation of boundary theory of random walks.

There are few results for more general Markov chains. For random walks on non-
homogeneous trees, the Martin boundary has been obtained in Cartier [3]. Doney [4]
identified the Martin boundary of homogeneous random walks (Z(n)) on Z killed on
the negative half-line of Z. For space-time random walks (S(n))=(n,Z(n)) associated
to a homogeneous random walk Z(n) on Z killed on the negative half-line, the Martin
boundary is obtained in Alili and Doney [1]. The proof of these results relies on the
one-dimensional structure of these processes.

The Martin boundary for partially homogeneous random walks killed or reflected
on a half-space or a cone of Zd has been identified with large deviation techniques,
Choquet-Deny theory and ratio limit theorems of Markov-additive processes. See
Ignatiouk [15, 16, 17].

Random walks on Z2
+

In this paper we consider a partially homogeneous random walk (Z(n)) on Z2
+ with

the following characteristics: the distribution of its jumps is

a) µ in the interior of Z2
+; b) µ0 at 0=(0, 0);

c) µ1 in {0}×(Z+\{0}); d) µ2 in (Z+\{0})×{0};

The possible negative jumps are either 0 or −1 on each coordinate for µ, µ1 and µ2.
When it is transient, the Green function G of the Markov chain is, for j, k∈Z2

+,

G(j, k)
def.
=

+∞∑
n=0

Pj(Z(n)=k).

The strict hitting time of 0=(0, 0) is denoted as

τ0
def.
= inf{k>0 : Z(k)=(0, 0)}

and the Green function of the Markov chain killed at 0 is, for j∈Z2
+, k∈Z2

+\{0},

g(j, k)
def.
=
∑
n≥0

Pj(Z(n) = k, n<τ0).

Exact asymptotics of Green functions

The Martin Kernel being the ratio of two Green functions, its limiting behavior can
be obtained from the exact asymptotics of G(j, k) when k goes to infinity. Ney and
Spitzer [27] determines the Martin boundary of homogeneous random walks in Zd in
this way.

EJP 30 (2025), paper 4.
Page 2/103

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1252
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Classification of asymptotic behaviors of Green functions

It is easily seen that, for j, k∈Z2
+\{0},

G(j, k) = g(j, k) +G(j, 0)g(0, k) and G(0, k) = G(0, 0)g(0, k),

which gives a relation between the asymptotic behaviors of the Green functions k 7→G(j, k)

and k 7→g(j, k).
This type of asymptotic analysis can also be used to investigate positive recurrent

Markov chains. The invariant distribution π is represented with the Green function of
the Markov chain killed at 0, for k∈Z2

+,

π(k) = π(0)

+∞∑
n=0

P0 (Z(n)=k, n<τ0) = π(0)g(0, k), (1.1)

The limiting behavior of k 7→g(0, k) gives therefore the asymptotic behavior of the
invariant distribution of a state k going to infinity.

Convergence to infinity

For j∈Z2
+, we will investigate the asymptotic behavior of g(j, k) as k=(k1, k2)∈Z2

+ gets
large in several ways.

(1) With direction u∈S1+={x=(x1, x2)∈R2
+ : ‖x‖=x21+x22=1},

min(k1, k2) → +∞, and
k

‖k‖
→ u.

(2) Along the axes.

The quantity k2∈Z+ varies in a finite subset of Z+ and k1→+∞, and the
symmetrical case by exchanging the variables k1 and k2.

The case (1) is the classical set of asymptotic behaviors considered in general. As we will
see, the asymptotics of the Green function for the case (2) are different from the case (1),
they depend on k2 and exhibit interesting behaviors. They have also been considered
in Kobayashi and Miyazawa [20] for random walks with jumps of size 1. Note that there
is a slight abuse of terminology for (2) since, strictly speaking, the cases u=(1, 0) and
u=(0, 1) of (1) are also “along the axes”.

A functional equation

A functional equation for generating functions of the Green function of the Markov
chain killed at 0 plays a central role in our study. It is expressed as, for j∈Z2

+ and (x, y)

in a convenient subset of C2,(
1−P (x, y)

)
(Hj(x, y)−Hj(x, 0)−Hj(0, y))

= Lj(x, y) +
(
φ1(x, y)−1

)
Hj(x, 0) +

(
φ2(x, y)−1

)
Hj(0, y) (1.2)

holds, where the quantity (Lj(x, y)) is a known function (defined by (2.27)) and

(1) (Hj(x, y)) is the generating function of (g(j, k), k∈Z2
+);

(2) P (x, y) is the generating function of µ at (x, y), the distribution of the jumps in the
interior of Z2

+. The quantity Q(x, y)=xy(1−P (x, y)) is in general referred to as the
kernel;

(3) For i=1, 2, φi(x, y) is the generating function of µi at (x, y).

(See Theorem 2.1 and its proof in Section 6).
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Classification of asymptotic behaviors of Green functions

The Kernel method consists in finding a convenient root Y (x) of the equation
Q(x, y) = 0 in order to inject it to the functional equation (1.2). The left hand side
of the resulting equation will became then zero, and one can use its right hand side in
order to investigate the analytical properties of the function Hj(x, 0).

In most of studies on the asymptotic behavior of Green functions or invariant
measures of random walks in the quadrant, there is always an associated functional
equation similar to equation (1.2).

Literature

We now give a brief presentation of the existing asymptotic results for non-
homogeneous random walks in the quadrant.

(1) Nearest neighbor random walks: Jumps of size 0 or 1 on each coordinate.

In this case, the kernel Q(x, y) is a polynomial of degree at most 2 in each variable
and hence for any x ∈ C, the kernel equation Q(x, y) = 0 has exactly two roots
(counting their multiplicity) having an explicit form. In the positive recurrent case,
by using methods of complex analysis on elliptic curves, the asymptotic behavior
of the invariant distribution along lines of Z2

+ has been obtained in the early work
Malyshev [25] in 1973. Following these ideas, extensions of these results have been
established in Kurkova and Malyshev [22], Kurkova and Raschel [23], Raschel [28]
and Li and Zhao [24], but, as in the original paper [25], only when positive jumps
are of size 1. See Fayolle et al. [8] for a general presentation and additional
references therein.

In the positive recurrent case, Kobayashi and Miyazawa [20] determines the exact
domain of convergence of the generating function of stationary distribution and
obtains the asymptotic behavior of the stationary distribution.

In both cases, [20] and [25], the analysis relies in an essential way on the explicit
representation of the roots of the quadratic kernel equation Q(x, y) = 0. This is the
main limitation of this type of approach.

(2) Reflected Brownien motion. For reflected Brownien motion in R2
+, similar problems

and with an analogous approach to Malyshev [25] were investigated in a series of
papers Franceschi and Kourkova [12], Franceschi [11], Franceschi et al.[13]. In
this case, the kernel equation is also quadratic and its roots are explicit.

(3) For positive recurrent random walks with unbounded positive jumps, exact
asymptotics of the stationary measure have been investigated in Borovkov and
Mogulskii [2] with large deviation techniques. The asymptotics are considered for
interior directions of S1+. Some constants do not seem to be explicitly determined
in the limit results of this reference. In particular, it is not clear how the limiting
behavior of the invariant distribution of a state going to infinity depends on the
asymptotic direction u∈S1+.

(4) Positive recurrent random walks with unbounded positive jumps have also been
analyzed in Kobayashi and Miyazawa [21] from the point of view of tail asymptotics.
For these asymptotics, a line of Z2

+ associated to a fixed vector is going to infinity
in the sense that its distance to (0, 0) is going to infinity. The quantity considered
for the tail asymptotics is the invariant distribution of all states of Z2

+ above this
line. The exact domain of convergence of the generating function of the invariant
distribution is obtained and, with methods of Markov-additive processes, exact tail
asymptotics with explicit constants are derived.
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Classification of asymptotic behaviors of Green functions

(5) Ignatiouk et al. [19] has investigated transient random walks in the quadrant Z2
+

with unbounded positive jumps, the size of negative jumps is not necessarily 1 but
bounded. An additional assumption in [19] is that the random walk escapes to
the infinity along the horizontal axis and the vertical axis. With methods of local
Markov-additive processes and complex analysis arguments, the exact asymptotics
of the Green function are obtained. They are expressed in terms of asymptotics of
Green functions of random walks in half-plane, i.e. with one boundary removed.
Our present paper shows that such a result is wrong in general, both boundaries
play a role in fact in several of our convergence results.

(6) Additionally, in Viet Hung Hoang and al. [14], the authors have obtained exact
asymptotics of the Green function for a singular random walk by using specific
properties of their model. In Ignatiouk-Robert [18], exact asymptotics of the Green
function have been obtained for a homogeneous random walk in Zd killed outside
of an open cone by using methods of functional equations, integral representations
of the Green function and Woess’ approach for the case of homogeneous random
walks in Zd. The technical results of the last paper are used in the present paper
in order to get the asymptotic behavior of the Green function for the directions in
the interior of the quadrant.

A quick presentation

A significant part of our paper is devoted to the definition and the properties of the
classification in eight regions of the space of parameters, see Proposition 2.2 below. It is
defined as a set of relations for several characteristics associated to the distributions
of the jumps µ, µi, i∈{1, 2}. For each region of this classification, an investigation
of the analyticity properties of the generating functions functions Hj , j∈Z+

2 and the
study of the nature of their dominant singularities are achieved. With these results, the
exact asymptotics of the Green function (g(j, k), j, k∈N2) are derived. They are stated in
Theorems 2.4 and 2.6 of Section 2.

In the literature, asymptotic results for nearest neighbor random walks in the
quadrant are often formulated either under conditions of positive recurrence, see [8, 24,
25, 26], or under conditions of transience, see [22], and use in both cases an explicit form
of the roots of the quadratic equation Q(x, y) = 0. In [8, 24, 25, 22] results are obtained,
a kind of classification of asymptotic behaviors, separately for each configuration of the
mean drifts. In [26] the authors have considered only positive recurrent random walks
and the classification of asymptotic behaviors of stationary probabilities is given in terms
of the domain of convergence of the generating function of the stationary probabilities
of the process. If the classification of this last reference has some similarities with our
classification, it still use the conditions of positive recurrence, formulated in terms of the
mean drifts. In our paper, we give a commun classification in eight regions of the space
of parameters which is valid both for positive recurrent and transient random walks and
is not determined by the mean drifts but by the mutual disposition of the level sets of
the jump generating functions.

We now give a sketch of the general method used to obtain these convergence results.
Section 2 gives a much more detailed description of the contributions and also of the
methods used.

In the first step we study the solutions (x, y) of the equation Q(x, y)=xy(1−P (x, y))=0.
This is done by investigating the existence of a function Y (x) defined on a subset of C such
that (x, Y (x)) is a zero of Q. By canceling the left-hand side of (1.2), it gives a relation
between (Hj(x, 0)) and (Hj(0, Y (x))). An analogue study is done, by exchanging the
roles of x and y, with (X(y), y). After this step, an analytic continuation of (Hj(0, Y (x)))
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is achieved and, with relation (1.2) it gives an analytic continuation of (Hj(x, 0)). This is
a difficult point and this is where a convenient representation of (Y (x)) is crucial. In our
approach, the key argument in this step is a probabilistic representation of the function
(Y (x)). Under general conditions, an expression of the functions (Hj(0, y)) and (Hj(x, 0))

is derived, and therefore an expression of (Hj(x, y)), the generating function of (g(j, k)).
The last step uses this representation and, with complex analysis arguments, one can
derive the asymptotic behavior of (g(j, k)) when k goes to infinity.

2 Overview of the results

General notations

Throughout the paper, the following notations are used.

(1) For two points (x1, y2), (x2, y2)∈R2, the line segment in R2 with the end-points
(x1, y2) and (x2, y2) is denoted by [(x1, y2), (x2, y2)]. The unit circle of R2

+ is

S1+
def.
= {w=(u, v)∈R2

+ : ‖x‖ = u2+v2 = 1}. (2.1)

(2) For a∈C and r>0, we denote by B(a, r) the open disk in C with center a and radius
r. A poly-disc of C2 is the product of two open discs.

(3) For r2>r1>0, we let

C(r1, r2) = {x ∈ C : r1 < |x| < r2} and C(r1, r2) = {x ∈ C : r1 6 |x| 6 r2}.

(4) For a subset B of [0,+x∞[2, we denote

Ω(B)
def.
= {(x, y) ∈ C2 : (|x|, |y|) ∈ B}. (2.2)

A set B ⊂ [0,+∞[2 is logarithmically convex (resp. strictly logarithmically convex)

if, for any x, y∈B and λ∈[0, 1], xλy1−λ∈B, resp. xλy1−λ∈
◦
B when x 6=y. We denote

by LogCH(B) the logarithmic convex hull of B in [0,+∞[2, i.e. the smallest
logarithmically convex set of [0,+∞[2 containing B.

To simplify some expressions, we will also use the notations, for a C2-function f on C2,

∂xf(x, y) =
∂f

∂x
(x, y), ∂yf(x, y) =

∂f

∂y
(x, y),

∂2xxf(x, y) =
∂2f

∂x2
(x, y), ∂2xyf(x, y) =

∂2f

∂x∂y
(x, y), ∂2yyf(x, y) =

∂2f

∂y2
(x, y).

We now introduce the non-homogeneous random walks investigated in this paper.

2.1 Non-homogeneous random walks in Z2
+: definitions and assumptions

The process Z(n)=(Z1(n), Z2(n)) on Z2
+ is a Markov chain on Z2

+ with transition
probabilities given for j=(j1, j2)∈Z2

+ by

Pj(Z(1) = j+k)
def.
=


µ(k) if j1>0 and j2>0,

µ1(k) if j1>0 and j2=0,

µ2(k) if j2>0 and j1=0,

µ0(k) if (j1, j2)=(0, 0),

(2.3)
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where µ is a probability measure on Z2, and µ1, µ2 and µ0 are sub-probability measures
(positive measures with total mass less or equal than 1) on, respectively, Z×Z+, Z+×Z
and Z2

+.

Their generating functions, defined on their set of convergence in C2, are denoted by

P (x, y)
def.
=

∑
j=(j1,j2)∈Z2

µ(j)xj1yj2 , (2.4)

φ1(x, y)
def.
=

∑
j=(j1,j2)∈Z2

µ1(j)x
j1yj2 , φ2(x, y)

def.
=

∑
j=(j1,j2)∈Z2

µ2(j)x
j1yj2 , (2.5)

φ0(x, y)
def.
=

∑
j=(j1,j2)∈Z2

µ0(j)x
j1yj2 . (2.6)

The level sets D, D1 and D2 of these generating functions are defined as

D
def.
=
{
(x, y) ∈]0,+∞[2 : P (x, y) 6 1

}
and Di

def.
=
{
(x, y) ∈]0,+∞[2 : φi(x, y) 6 1

}
, i∈{1, 2}. (2.7)

There are three main assumptions used in our results.

Assumption (A1)

(i) The homogeneous random walk associated to the distribution µ is irreducible on
Z2;

(ii) The generating function P is finite in a neighborhood of the set D in R2;

(iii) The set D has a non-empty interior.

Assumption (A2)

(i) For j=(j1, j2)∈Z2, µ(j1, j2)=0 if j1<−1 or j2<−1.

Assumption (A3)

(i) The random walk Z(n)=(Z1(n), Z2(n)) is irreducible on Z2
+;

(ii) The generating functions φ1, φ2 and φ0 are finite in a neighborhood of the set D;

(iii) The sets D∩D1 and D∩D2 have a non-empty interior;

(iv) For j=(j1, j2)∈Z2,

– µ1(j1, j2)=0 if j1<−1;

– µ2(j1, j2)=0 if j2<−1;

(v) There exists j=(j1, j2)∈Z2 with j2>0 such that µ1(j1, j2)>0;

(vi) There exists j=(j1, j2)∈Z2 with j1>0 such that µ2(j1, j2)>0.

The Markov chain (Z(n)) killed at 0 and its Green function are now introduced.
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Definition 1 (Killed Markov Chain). The return time of the process (Z(n)) to the origin
0=(0, 0) is defined by

τ0
def.
= inf{n > 1 : Z(n) = (0, 0)}

and (Zτ0(n)) denotes a process with the distribution of the Markov chain (Z(n)) killed at
0. Its Green function is defined by, for j, k∈Z2

+,

g(j, k)
def.
=

∞∑
n=0

Pj(Zτ0(n) = k) =

∞∑
n=0

Pj(Z(n) = k, τ0 > n). (2.8)

A non-negative function κ : Z2
+→R+ is said to be harmonic for the Markov chain (Z(n))

killed at 0 if, for j∈Z2
+,

Ej(κ(Z(1)); τ0 > 1) = κ(j).

The next proposition introduces key quantities used to define the different regions
which determine the asymptotic behavior of the Green function (g(j, k)). Its proof follows
from Lemma 4.1 and Lemma 4.2 of Section 4. Figures 1, 2, 3 and 5 in Section C of the
appendix illustrate some of these definitions.

Proposition 2.1. Under the assumptions (A1)–(A3),

(1) the sets D1 and D2 are logarithmically convex and the set D is compact, strictly
logarithmically convex and does not intersect with the axes {(x, y)∈R2:x=0} and
{(x, y)∈R2:y=0};

(2) There exist x∗P , x
∗∗
P ∈]0,+∞[ and x∗, x∗∗ ∈]0,+∞[ such that x∗P<x

∗∗
P , x∗<x∗∗, and

[x∗P , x
∗∗
P ] = {x∈]0,+∞[: ∃y∈]0,+∞[, (x, y)∈D},

[x∗, x∗∗] = {x∈]0,+∞[: ∃y∈]0,+∞[, (x, y)∈D ∩D1}.

(3) There exist functions Y1, Y2 : [x∗P , x
∗∗
P ]→[y∗P , y

∗∗
P ], such that, for x∈[x∗P , x∗∗P ],

Y1(x)6Y2(x) and
[Y1(x), Y2(x)] = {y∈]0,+∞[ : (x, y)∈D}.

For x∈[x∗P , x∗∗P ], Y1(x), Y2(x) are the unique positive solutions of the equation
P (x, y)=1, and Y1(x)=Y2(x) holds if and only if x∈{x∗P , x∗∗P }.

(4) There exist y∗P , y
∗∗
P ∈]0,+∞[ and y∗, y∗∗∈]0,+∞[ such that y∗P<y

∗∗
P , y∗<y∗∗, and

[y∗P , y
∗∗
P ] = {y∈]0,+∞[: ∃x∈]0,+∞[, (x, y)∈D},

[y∗, y∗∗] = {x∈]0,+∞[: ∃x∈]0,+∞[, (x, y)∈D ∩D2}.

(5) There exist functions X1, X2:[y
∗
P , y

∗∗
P ]→[x∗P , x

∗∗
P ] such that, for y∈[y∗P , y∗∗P ],

X1(y)6X2(y) and

[X1(y), X2(y)] = {x∈]0,+∞[ : (x, y)∈D}.

For y∈[y∗P , y∗∗P ], X1(y), X2(y) are the unique positive solutions of the equation
P (x, y)=1, and X1(y)=X2(y) holds if and only if y∈{y∗P , y∗∗P }.

The relations D∩D1⊂D and D∩D2⊂D give the inequalities

x∗P 6 x∗ < x∗∗ 6 x∗∗P and y∗P 6 y∗ < y∗∗ 6 y∗∗P . (2.9)

Note that, since the point (1, 1) is an element of D∩D1 and D∩D2, one has also

x∗ 6 1 6 x∗∗, y∗ 6 1 6 y∗∗. (2.10)
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We now define four curves S11, S12, S21 and S22 on the boundary ∂D of the set D.
They are also used in the definition of our classification.

S11
def.
= {(x, y) ∈ ∂D : ∂xP (x, y) 6 0, ∂yP (x, y) 6 0} , (2.11)

S12
def.
= {(x, y) ∈ ∂D : ∂xP (x, y) 6 0, ∂yP (x, y) > 0} , (2.12)

S21
def.
= {(x, y) ∈ ∂D : ∂xP (x, y) > 0, ∂yP (x, y) 6 0} , (2.13)

S22
def.
= {(x, y) ∈ ∂D : ∂xP (x, y) > 0, ∂yP (x, y) > 0} . (2.14)

With Lemma 4.1 of Section 4, these curves can be expressed in terms of the functions
X1, X2 and Y1, Y2 of Proposition 2.1 as follows,

S11 = {(x, Y1(x)) : x ∈ [x∗P , X1(y
∗
P )]} = {(X1(y), y) : y ∈ [y∗P , Y1(x

∗
P )]}, (2.15)

S12 = {(x, Y2(x)) : x ∈ [x∗P , X1(y
∗∗
P )]} = {(X1(y), y) : y ∈ [Y1(x

∗
P ), y

∗∗
P ]}, (2.16)

S21 = {(x, Y1(x)) : x ∈ [X1(y
∗
P ), x

∗∗
P ]} = {(X2(y), y) : y ∈ [y∗P , Y1(x

∗∗
P )]}, (2.17)

S22 = {(x, Y2(x)) : x ∈ [X1(y
∗∗
P ), x∗∗P ]} = {(X2(y), y) : y ∈ [Y1(x

∗∗
P ), y∗∗P ]}, (2.18)

and the relationsX1(y
∗
P )=X2(y

∗
P ),X1(y

∗∗
P )=X2(y

∗∗
P ), Y1(x∗P )=Y2(x

∗
P ) and Y1(x

∗∗
P )=Y2(x

∗∗
P )

hold.

2.2 A partition of the space of parameters

The next proposition shows that there is a partition of eight regions (Ba), a∈{0, . . . , 7}
for the possible locations of the points x∗∗, Y1(x∗∗), Y2(x∗∗), y∗∗, X1(y

∗∗), X2(y
∗∗). Its

proof is given in Section 5. As it will be seen, the asymptotic behavior of the Green
functions of the Markov chain killed at 0 depends on the region associated to its
parameters. Figures 6, 7, 8 and 9 in Section C of the appendix give an illustration
of several situations.

Proposition 2.2 (Definition of the Classification). Under the assumptions (A1)–(A3), one
and only one of the following cases can occur,

(B0) X1(y
∗∗)<x∗∗<X2(y

∗∗) and Y1(x
∗∗)<y∗∗<Y2(x

∗∗);

(B1) X1(y
∗∗)<X2(y

∗∗) = x∗∗<x∗∗P , Y1(x
∗∗)<Y2(x

∗∗) = y∗∗<y∗∗P and (x∗∗, y∗∗) ∈ S22;

(B2) X2(y
∗∗)<x∗∗, Y2(x

∗∗)<y∗∗ and (x∗∗, Y2(x
∗∗)), (X2(y

∗∗), y∗∗) ∈ S22;

(B3) x∗∗ = X1(y
∗∗)<x∗∗P , Y1(x

∗∗)<Y2(x
∗∗) = y∗∗, y∗61<Y2(x

∗∗) and (x∗∗, y∗∗) ∈ S12;

(B4) x∗∗<X1(y
∗∗)<x∗∗P , Y1(x

∗∗)<Y2(x
∗∗)<y∗∗, y∗61<Y2(x

∗∗) and

(x∗∗, Y2(x
∗∗)), (X1(y

∗∗), y∗∗) ∈ S12;

(B5) y∗∗ = Y1(x
∗∗)<y∗∗P , X1(y

∗∗)<X2(y
∗∗) = x∗∗, x∗61<X2(y

∗∗) and (x∗∗, y∗∗) ∈ S21;

(B6) y∗∗<Y1(x
∗∗)<y∗∗P , X1(y

∗∗)<X2(y
∗∗)<x∗∗, x∗61<X2(y

∗∗) and

(X2(y
∗∗), y∗∗), (x∗∗, Y1(x

∗∗)) ∈ S21;

(B7) x∗∗ = X1(y
∗∗) = 1, y∗∗ = Y1(x

∗∗) = 1, ∂xP (1, 1)<0 and ∂yP (1, 1)<0.

The cases (B0)–(B7) have in fact a simple geometrical interpretation. They are
determined by the location of the line segments [(x∗∗, Y1(x

∗∗)), (x∗∗, Y2(x
∗∗))] and

[(X1(y
∗∗), y∗∗), (X2(y

∗∗), y∗∗)]. See Figures 5 of Section C of the appendix, where, see
Section 5,
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– the horizontal line segment represents [(X1(y
∗∗), y∗∗), (X2(y

∗∗), y∗∗)];

– the vertical " [(x∗∗, Y1(x
∗∗)), (x∗∗, Y2(x

∗∗))].

The case (B7) corresponds to the case when the Markov chain (Z(n)) is transient and
escapes to the infinity along the each of the axes {0}×N and N×{0}. See Section A. In
this case, the exact asymptotic of the Green function has been already obtained in the
paper [19] by using methods of Markov-Additive processes. For this reason we will not
consider this case.

Recall that in the literature, asymptotic results for nearest neighbor random walks
in the quadrant were formulated either under conditions of positive recurrence,
see [8, 24, 25, 26], or under conditions of transience, see [22], in terms of the
recurrence properties of the random walks, i.e. via conditions satisfied by the drift
vectors. It turns out, as we will see, that the drift vectors are not appropriate to
define properly such a classification in the general case we consider. As it will be
seen in Section A, the classification of Proposition 2.2 is not defined in such a way.
The recurrence/transience properties of (Z(n)) have in fact a marginal impact in our
investigation of the asymptotic behavior of the Green function (g(j, k)) of the killed
Markov chain. Transience and recurrence properties may hold in each of the regions
(Ba), a∈{3, 4, 5, 6}. See Proposition A.1.

2.3 Convergence domain and functional equation

For j∈Z2
+, the generating function of (g(j, k), k∈Z2

+), defined on its convergence
domain in C2, is denoted as

Hj(x, y)
def.
=

∑
k=(k1,k2)∈Z2

+\{0}

g(j, k)xk1yk2 . (2.19)

This is a central set of functions in our analysis. A significant part of our work is devoted
to the investigation of their convergence domain and also to determine the nature of
the dominant singularities of the functions x 7→Hj(x, 0) and y 7→Hj(0, y). Once it is done,
with Tauberian like theorems and complex analysis arguments, we will able to derive the
asymptotic behavior of the Green function (g(j, k), k∈Z2

+) when k goes to infinity.

Our first important result is that if

Γ
def.
= {(x, y) ∈ [0,+∞[2: x<x′ and y<y′ for some (x′, y′) ∈ D}, (2.20)

where D is defined by (2.7), and

xd
def.
=

{
x∗∗ if one of the conditions (B0)-(B4) holds,

X2(y
∗∗) if either (B5) or (B6) holds,

(2.21)

yd
def.
=

{
y∗∗ if one of the conditions (B0)-(B2), (B5) or (B6) holds,

Y2(x
∗∗) if either (B3) or (B4) holds.

(2.22)

then, for any j∈Z2
+, the generating function (x, y) 7→Hj(x, y) is analytic on

Ωd(Γ)
def.
= {(x, y) ∈ Ω(Γ) : |x|<xd, |y|<yd}, (2.23)

In our next result, we will see that the point xd (resp. yd) is the dominant singularity of
the functions x 7→Hj(x, 0) (resp. of the functions y 7→Hj(0, y)) and that the set Ωd(Γ) is the
maximal domain in C2 where all generating functions (x, y)7→Hj(x, y), j∈Z2

+, converge.
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For j∈Z2
+, to formulate a key relation for the generating functions (Hj(x, y)), we

define
Q(x, y)

def.
= xy(1− P (x, y)) = xy −

∑
k=(k1,k2)∈Z2

xk1+1yk2+1µ(k) (2.24)

and

ψ1(x, y)
def.
= x(1− φ1(x, y)) = x−

∑
k=(k1,k2)∈Z2

xk1+1yk2µ1(k), (2.25)

ψ2(x, y)
def.
= y(1− φ2(x, y)) = y −

∑
k=(k1,k2)∈Z2

xk1yk2+1µ2(k), (2.26)

Lj(x, y)
def.
=

{
xj1yj2 − Pj(τ0 < +∞) if (j1, j2)6=(0, 0),

φ0(x, y)− P(0,0)(τ0 < +∞) if (j1, j2)=(0, 0),
(2.27)

hj(x, y)
def.
=

∑
k=(k1,k2)∈Z2

+

g(j, (k1 + 1, k2 + 1))xk1yk2 , (2.28)

h1j(x)
def.
=

∞∑
k1=0

g(j, (k1 + 1, 0))xk1 , and h2j(y)
def.
=

∞∑
k2=0

g(j, (0, k2 + 1))yk2 . (2.29)

Under the assumptions (A1)–(A3), the functions (x, y) 7→Lj(x, y), j∈Z2
+ are clearly analytic

in a neighborhood of the set Ω(Γ), see relation (2.2), and the functions (x, y) 7→Q(x, y)

and (x, y)7→ψi(x, y), i=1, 2, can be analytically continued to a neighborhood of Ω(Γ).

Theorem 2.1 (Convergence Domain and Functional Equation). Under the assumptions
(A1)–(A4), for any j∈Z2

+, the following assertions hold

i) The function x7→h1j(x), resp. y 7→h2j(y), is analytic in B(0, xd), resp. in B(0, yd).

ii) On the set Ωd(Γ) the function (x, y) 7→hj(x, y) is analytic and the relation

Q(x, y)hj(x, y) = Lj(x, y) + ψ1(x, y)h1j(x) + ψ2(x, y)h2j(y) (2.30)

holds.

When the random walk (Z(n)) is positive recurrent, Theorem 2.1 has been established
in Kobayashi and Miyazawa [21]. With Proposition 2.2, the transience or recurrence
properties do not play a role in our proof of this result.

Section 6 is devoted to the proof of Theorem 2.1. We give a sketch of it.

(1) We first prove that the series (2.29) and (2.28) converge in Ω(Θ) for a
logarithmically convex set Θ⊂[0,+∞[2 whose boundary contains the line

segments [(xd, 0), (xd, Y1(xd))] and [(0, yd), (X1(yd), yd)] and such that
◦
Θ∩

◦
D 6=∅ and

Θ∪
◦
D={(x, y)∈Γ : x<xd, y<yd}. See Proposition 6.1 and Lemma 6.4. An important

ingredient of the proof of this step is the use of Lyapunov functions. See also
Figure 10 of Section C of the appendix.

(2) The functional equation (2.30) is established on the set Ω(Θ). From there, we get
that, for j∈Z2

+, the functions (x, y)7→Q(x, y)hj(x, y) can be analytically continued
to the set Ωd(Γ).

(3) Since the function (x, y)7→hj(x, y) is analytic in Ω(Θ) and the function

(x, y)7→1/Q(x, y) is analytic in Ω(
◦
D), from these results, we will be able to deduce

that the function (x, y)7→hj(x, y) can be continued as an analytic function to the set
Ωd(Γ).
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Remark.
Clearly, for j∈Z2

+ and x6=0, y 6=0,

Hj(x, 0) = xh1j(x), Hj(0, y) = yh2j(y), Hj(x, y)−Hj(x, 0)−Hj(0, y) = xyhj(x, y),

and the functional equation (1.2) of the introduction is equivalent to relation (2.30). The
technical advantage of the formulation (2.30) is that the functions ψ1, ψ2 and Q are
also defined when x=0 or y=0. In some cases, however, the expression (1.2) is more
convenient.

2.4 Singularity analysis of Hj

Since the set Ωd(Γ) can be represented as a union of the poly-discs centered at
the origin of C2, the above theorem proves that for any j∈Z2

+, the generating function
Hj(x, y) converge in Ωd(Γ). The results of this section establish that the set Ωd(Γ) defined
by (2.23) is the exact domain of convergence of the functions Hj , j∈Z2

+, i.e. the maximal
domain in C2 where the series (2.19) converge, and the dominant singularities of the
functions x7→Hj(x, 0) and y 7→Hj(0, y) and their nature are identified.

Before stating these results, in order to have straight assertions, we have to fix
a (small) technical problem related to irreducibility. It must be noted that, even
under the assumptions (A1)–(A3), the killed Markov chain (Zτ0(n)), see Definition 1, is
not necessarily irreducible on the space Z2

+\{0}. One may have g(j, k)=0 for some j,
k∈Z2

+\{0}. The following lemma solves this problem.

Lemma 2.2. Under the assumptions (A1)–(A3), there exist N0>0 and a finite subset E0

of Z2
+\{(0, 0)} such that for j, k∈Z2

+,

g(j, k) = 0 if j∈E0 and k 6∈E0, (2.31)

g(j, k) > 0 if j 6∈E0 and ‖k‖>N0. (2.32)

Consequently, to investigate the asymptotics of g(j, k) as k goes to infinity, it is
sufficient to consider a starting point j outside E0. The proof of this lemma is given in
Section B of the appendix. From now on, the integer N0>0 and the set E0 satisfying
(2.31) and (2.32) are fixed. When the killed Markov chain (Zτ0(n)) is irreducible on
Z2

+\{(0, 0)}, the set E0 is of course empty.

Proposition 2.2 and the definition of the points xd and yd show that the relations,
xd6x∗∗6x∗∗P and yd6y∗∗6y∗∗P hold. For j ∈ Z2

+\E0, we will prove that xd, resp. yd, is the
dominant singularity of the function x 7→Hj(x, 0), resp. y 7→ Hj(0, y). We will see that the
nature of the singularity xd, resp. yd, is determined by the cases (B0)–(B6) and also by
several relations between the quantities xd, x∗∗ and x∗∗P , resp. yd, y∗∗ and y∗∗P .

By relation (2.9), the points x∗∗ and y∗∗ are respectively in [x∗P , x
∗∗
P ] and [y∗P , y

∗∗
P ], and

from the definition of the functions Y2 : [x∗P , x
∗∗
P ]→[y∗P , y

∗∗
P ] and X2 : [y∗P , y

∗∗
P ]→[x∗P , x

∗∗
P ],

we have
Y2(x

∗∗) 6 y∗∗P and X2(y
∗∗) 6 x∗∗P .

Proposition 2.2 gives that y∗∗<y∗∗P if one of the cases (B0), (B1), (B5) or (B6) holds and,
similarly, x∗∗<x∗∗P if one of the cases (B0)–(B4) holds. This is summarized as follows.

xd=


x∗∗<x∗∗P if one of the cases (B0), (B1), (B3) or (B4) holds,

x∗∗6x∗∗P with a possible equality x∗∗=x∗∗P , if (B2) holds,

X2(y
∗∗)=x∗∗6x∗∗P ” x∗∗=x∗∗P , if (B5) holds,

X2(y
∗∗)<x∗∗6x∗∗P if (B6) holds,

(2.33)
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and

yd=


y∗∗ < y∗∗P if one of the cases (B0), (B1), (B5) or (B6) holds,

y∗∗6y∗∗P with a possible equality y∗∗=y∗∗P , if (B2) holds,

Y2(x
∗∗)=y∗∗6y∗∗P ” y∗∗=y∗∗P , if (B3) holds,

Y2(x
∗∗)<y∗∗6y∗∗P if (B4) holds.

(2.34)

We now introduce several functions on Z2
+ which will be used to describe the dependence

on the initial state j∈Z2
+ in the asymptotic behavior of g(j, k) when k goes to infinity.

Under convenient conditions, as we will see, these functions are harmonic for the killed
Markov chain at 0.

Definition 2 (Functions for the Dependence on the Initial State). For j ∈ Z2
+,

κ1(j)
def.
= Lj(xd, Y1(xd)) + (φ2(xd, Y1(xd))− 1)Hj(0, Y1(xd)), (2.35)

κ̃1(j)
def.
= ∂y

(
Lj(x, y) + (φ2(x, y)− 1)Hj(0, y)

1− φ1(x, y)

)∣∣∣∣
(x,y)=(x∗∗

P ,Y1(x∗∗
P ))

, (2.36)

κ2(j)
def.
= Lj(X1(yd), yd) + (φ1(X1(yd), yd)− 1)Hj(X1(yd), 0), (2.37)

κ̃2(j)
def.
= ∂x

(
Lj(x, y) + (φ1(x, y)− 1)Hj(x, 0)

1− φ2(x, y)

)∣∣∣∣
(x,y)=(X1(y∗∗

P ),y∗∗
P )

, (2.38)

κ(x,y)(j)
def.
= Lj(x, y) + (φ1(x, y)− 1)Hj(x, 0) + (φ2(x, y)− 1)Hj(0, x), (2.39)

By Theorem 2.1, and since the functions ψ1,ψ2, Q and Lj are analytic in a
neighborhood of the set Ω(Γ), we have

– κ1 is well defined on Z2
+ if Y1(xd)<xd, that is, if one of the cases (B0)–(B4) holds;

– κ̃1 " if (B2), xd=x∗∗=x∗∗P and φ1(x∗∗P , Y1(x
∗∗
P ))<1 hold;

– κ2 " if one the cases (B0)–(B2), (B5) or (B6) holds;

– κ̃2 " if (B2), yd=y∗∗=y∗∗P and φ2(X1(y
∗∗
P ), y∗∗P )<1 hold;

– κ(x,y) " for (x, y)∈Ω(Γ) such that |x|<xd and |y|<yd.

The following theorem gives a complete description of the nature of the singularity
xd for the function x 7→Hj(x, 0). Note that the case (B7) is not considered because, as
mentioned before, it has been already investigated in [19].

Theorem 2.3 (Singularity Analysis of (Hj)). Under the assumptions (A1)–(A3), the
following assertions hold.

i) If one of the cases (B0), (B1), (B3), (B4) holds or (B2) and xd<x∗∗P hold, then

– there exists ε>0 such that, for any j∈Z2
+, the function x 7→Hj(x, 0) can be

analytically continued to the set B(0, xd+ε)\{xd};
– the function κ1 of (2.35) is non-negative on Z2

+, harmonic for the Markov
chain (Z(n)) killed at 0 and positive on the set Z2

+\E0;

– for any j ∈ Z2
+,

lim
x→xd

(xd−x)Hj(x, 0) = a1 κ1(j), (2.40)

where

a1 =

(
d

dx
φ1(x, Y1(x))

∣∣∣∣
x=xd

)−1

> 0. (2.41)
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ii) If (B2) and xd=x∗∗P hold, then

– there exists ε>0 such that, for any j∈Z2
+, the function x 7→Hj(x, 0) can be

analytically continued to B(0, x∗∗P +ε)\[x∗∗P , x∗∗P +ε];

– if φ1(xd, Y1(xd))=1, then the function κ1 is non-negative Z2
+, harmonic for the

Markov chain (Z(n)) killed at 0, positive on the set Z2
+\E0 and for any j∈Z2

+,

lim
x→xd

√
xd−xHj(x, 0) = a2 κ1(j), (2.42)

where the limit is taken in the set B(0, x∗∗P +ε)\[x∗∗P , x∗∗P +ε] and

a2 =
(
∂yφ1(x, y)

√
∂xP (x, y)/∂2yyP (x, y)

)−1
∣∣∣∣
(x,y)=(xd,Y1(xd))

> 0; (2.43)

– if φ1(xd, Y1(xd))<1, then the function κ̃1 of (2.36) is non-negative on Z2
+,

harmonic for the Markov chain (Z(n)) killed at 0, positive on the set Z2
+\E0,

and for any j∈Z2
+,

lim
x→xd

√
xd−x

d

dx
Hj(x, 0) = a3 κ̃1(j), (2.44)

where the limit is taken in the set B(0, x∗∗P +ε)\[x∗∗P , x∗∗P +ε] and

a3 =
1

2

√
∂xP (x, y)/∂2yyP (x, y)

∣∣∣∣
(x,y)=(xd,Y1(xd))

> 0. (2.45)

iii) If (B5) and xd<x∗∗P hold, then

– there exists ε>0 such that, for any j∈Z2
+, the function x 7→Hj(x, 0) can be

analytically continued to the set B(0, xd+ε)\{xd};
– the function κ2 of (2.37) is non-negative on Z2

+, harmonic for the Markov
chain (Z(n)) killed at 0, positive on the set Z2

+\E0 and for any j∈Z2
+,

lim
x→xd

(xd−x)2Hj(x, 0) = a4 κ2(j), (2.46)

where

a4 = (φ2(x, y)−1)

(
d

dx
φ1(x, Y1(x))

d

dy
φ2(X1(y), y)

d

dx
Y1(x)

)−1
∣∣∣∣∣
(x,y)=(xd,yd)

> 0.

(2.47)

iv) If (B5) and xd=x∗∗P hold, then

– there exists ε>0 such that, for any j∈Z2
+, the function x 7→ Hj(x, 0) can be

continued as an analytic functions to the set B(0, x∗∗P +ε)\[x∗∗P , x∗∗P +ε];

– the function κ2 is non-negative on Z2
+, harmonic for the Markov chain (Z(n))

killed at 0 and positive on the set Z2
+\E0;

– if φ1(xd, Y1(xd))=1 then for any j∈Z2
+,

lim
x→xd

(xd − x)Hj(x, 0) = a5 κ2(j), (2.48)

where the limit is taken in the set B(0, x∗∗P +ε)\[x∗∗P , x∗∗P +ε] and

a5 = (φ2(x, y)−1)∂2yyP (x, y)

(
∂yφ1(x, y)∂xP (x, y)

dφ2
dy

(X1(y), y)

)−1
∣∣∣∣∣
(x,y)=(xd,yd)

> 0.

(2.49)
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– if φ1(xd, Y1(xd))<1 then for any j∈Z2
+,

lim
x→xd

√
xd − xHj(x, 0) = a6 κ2(j), (2.50)

where the limit is taken in the set B(0, x∗∗P +ε)\[x∗∗P , x∗∗P +ε] and

a6 = (φ2(x, y)−1)

√
∂2yyP (x, y)

∂xP (x, y)

(
(1−φ1(x, y))

d

dy
φ2(X1(y), y)

)−1
∣∣∣∣∣∣
(x,y)=(xd,yd)

> 0.

(2.51)

v) If (B6) holds, then

– there exists ε>0 such that, for any j∈Z2
+, the function x 7→Hj(x, 0) can be

analytically continued to the set B(0, xd+ε)\{xd};
– the function κ2 is non-negative on Z2

+, harmonic for the Markov chain (Z(n))

killed at 0, positive on the set Z2
+\E0 and for any j∈Z2

+,

lim
x→xd

(xd−x)Hj(x, 0) = a7 κ2(j), (2.52)

where

a7 = (φ2(x, y)−1)

(
(1−φ1(x, y))

d

dy
φ2(X1(y), y)

d

dx
Y1(x)

)−1
∣∣∣∣∣
(x,y)=(xd,yd)

> 0.

(2.53)

vi) If (B2) holds, then

– the set {(x, y)∈S22 : x<xd, y<yd} is non-empty;

– there exists a neighborhood V of the set S22 in R2
+ such that, for any j∈Z2

+,

the function x 7→(1−P (x, y))Hj(x, y) can be analytically continued to the set
{(x, y)∈Ω(V) : |x|<xd, |y|<yd};

– for any (x̂, ŷ)∈{(x, y)∈S22 : x<xd, y<yd}, the function κ(x̂,ŷ) is non-negative
on Z2

+, harmonic for the Markov chain (Z(n)) killed at 0, positive on the set
Z2

+\E0 and for any j∈Z2
+,

lim
(x,y)→(x̂,ŷ)

(x,y)∈
◦
D

(1−P (x, y))Hj(x, y) = κ(x̂,ŷ)(j). (2.54)

By symmetry (it is sufficient to to exchange the roles of x and y), the analogous results
for the assertions i)-v) of Theorem 2.3 hold for the functions y 7→Hj(0, y), j∈Z2

+\E0.
The last assertion of Theorem 2.3 is obtained as a consequence of Theorem 2.1. The

proofs of the first five assertions are more demanding as it will be seen.

Remark.
In the context of the functional equation (2.30), a classical approach of the literature
consists in finding a suitable analytic function x 7→Y (x) (resp. y 7→X(y)) satisfying the
equation Q(x, Y (x))=0 for any x, resp. Q(X(y), y)=0 for any y, in some domain large
enough, in order to inject y=Y (x) (resp x=X(y)) in (2.30).

For nearest neighbor random walks, see Malyshev [25], the equation Q(x, y)=0 is
quadratic in x and y, its solutions have therefore an explicit form. In the general case,
when the jumps of the random walk are unbounded, one clearly cannot find the functions
Y and X in such a way. See Remark 2.3 of Kobayashi and Miyazawa [21].
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Probabilistic representations of X1 and Y1

In our analysis, a part of the technicalities of the literature related to analytic
continuation of the functions (Y (x)) and (X(y)) mentioned above is avoided via a
probabilistic argument.

We show (see Section 7.2) that the functions Y1:[x
∗
P , x

∗∗
P ]→[y∗P , y

∗∗
P ] and

X1:[y
∗
P , y

∗∗
P ]→[x∗P , x

∗∗
P ], introduced in Proposition 2.1, have a probabilistic representation.

With this result, we are able to prove that there exists ε>0 such that the function X1,
resp Y1, can be analytically continued to the set

{x∈C:x∗P<|x|<x∗∗P +ε, x 6∈[x∗∗P , x∗∗P +ε[}, resp. {y∈C:y∗P<|y|<y∗∗P +ε, y 6∈[y∗∗P , y∗∗P +ε[}.

From there, several important properties of the analytic continuation of Y1 and X1 are
then derived. As a consequence one can inject y=Y1(x) or x=X1(y) in the equation
(2.30), and then to establish Theorem 2.3.

2.5 Asymptotics of the Green function along the axes

In this section, we investigate the asymptotics of the Green function g(j, k) when one
of coordinate of k=(k1, k2)∈Z2

+ is fixed, i.e. as k1→+∞ with k2 fixed or k2→+∞ and k1
fixed. By symmetry it is enough to consider only the first convergence.

We define ν1(0)=1 and, for n≥1,

ν1(n)
def.
=

1

(n−1)!

∂n−1

∂yn−1

(
ψ1(xd, y)

Q(xd, y)

)∣∣∣∣
y=0

, (2.55)

where Q and ψ1 are defined by (2.24) and (2.25) respectively. As the following theorem
shows, the quantity ν1(k2) expresses the dependence on k2 in the limiting behavior of
k1 7→g(j, (k1, k2))) when k1→+∞.

In Section 8, it is shown that ν1 is, up to a multiplicative constant, the invariant
distribution of a twisted version of a random walk on Z × Z+ obtained by removing
the boundary {0}×Z+. It will show in particular that the coefficients ν1(n), n∈Z+, are
positive.

The case (B7), already analyzed, excepted, the following result gives a complete
description of all possible cases for the asymptotic behavior of the Green function
g(j, (k1, k2)) as k1 → +∞ for a fixed k2∈Z+.

Theorem 2.4 (Asymptotics of Green Function with a Fixed Second Component). Under
the assumptions (A1)–(A3), the following assertions hold.

(1) If either one of the cases (B0), (B1), (B3), (B4) holds or (B2) and xd<x∗∗P hold, then
for any j∈Z2

+\E0, as k1→+∞ and k2 varies in a finite subset of Z+,

g(j, (k1, k2)) ∼ a1 ν1(k2)κ1(j)x
−k1−1
d . (2.56)

where κ1(j) > 0 and a1 > 0 are defined respectively by (2.35) and (2.41).

(2) If (B2) and xd=x∗∗P hold, then for any j∈Z2
+\E0, as k1→+∞ and k2 varies in a finite

subset of Z+

g(j, (k1, k2)) ∼ a2 ν1(k2)κ1(j)x
−k1

d

(√
πk1xd

)−1

if φ1(xd, Y1(xd))=1, (2.57)

g(j, (k1, k2)) ∼ a3 ν1(k2)κ̃1(j)x
−k1

d

(
k1
√
πk1xd

)−1

if φ1(xd, Y1(xd))<1, (2.58)

where κ1(j) > 0, κ̃1(j) > 0, a1 > 0 and a2 > 0 are defined respectively by (2.35),
(2.36), (2.43) and (2.45).
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(3) If (B5) holds and xd<x∗∗P , then for j∈Z2
+\E0, as k1→+∞ and k2 varies in a finite

subset of Z+,
g(j, (k1, k2)) ∼ a4ν1(k2)κ2(j)k1x

−k1−2
d , (2.59)

where κ2(j) > 0 and a4 > 0 are defined by (2.37) and (2.47).

(4) If (B5) holds and xd=x∗∗P , then for j∈Z2
+\E0, as k1→+∞ and k2 varies in a finite

subset of Z+,

g(j, (k1, k2)) ∼ a5 ν1(k2)κ2(j)x
−k1−1
d if φ1(xd, Y1(xd))=1, (2.60)

g(j, (k1, k2)) ∼ a6 ν1(k2)κ2(j)x
−k1

d

(√
πk1xd

)−1

if φ1(xd, Y1(xd))<1, (2.61)

where κ2(j) > 0, a5 > 0 and a6 > 0 are defined respectively by (2.37), (2.49)
and (2.51).

(5) If (B6) holds, then for j∈Z2
+\E0, as k1→+∞ and k2 varies in a finite subset of Z+,

g(j, (k1, k2)) ∼ a7ν1(k2)κ2(j)x
−k1−1
d , (2.62)

where κ2(j) > 0 and a7 > 0 are defined respectively by (2.37) and (2.53).

For k2 = 0, this result is obtained as a straightforward consequence of Theorem 2.3
by using the Tauberian-like theorem due to Flajolet and Odlyzko [9], see Corollary VI.1
of [10]). To get this result for k2 ∈ Z+ that varies in a finite subse of Z+, it is sufficient to
prove it for any given k2 ∈ Z+. For this we prove that for any j ∈ Z2

+ \ E0 and k2 ∈ Z+,

lim
n→+∞

g(j, (n, k2))/g(0, (n, k2)) = ν1(k2), k2 ∈ Z+,

by using a probabilistic representation of the coefficients ν1(k2), k2 ∈ Z+. The proof of
this result is given in Section 8.

2.6 Asymptotics of the Green function along directions of S1+

In this section, we present the asymptotics of the Green function g(j, (k1, k2))

as min{k1, k2} → ∞ and k/‖k‖→w where w, the direction, is an element of
S1+={(u1, u2)∈R2

+ : u21+u
2
2=1}.

For each of the cases (B0)–(B6), we will introduce subsets W0, W1 and W2 of S1+ used
to define the partition of the set of directions in S1+. This is achieved by the definitions 3,
4, 5 and 6 in Section 2.6.2. A critical direction wc=(uc, vc) in S1+ will play a role in several
cases. As it will be seen this partition will determine a structure of the asymptotics
behavior of the Green function k 7→g(j, k).

2.6.1 Diffeomorphism between S1+ and S22

The sets S1+ and S22 are defined by (2.1) and (2.14). Under Assumptions (A1), see for
instance Ney and Spitzer [27], the Laplace transform

(α, β) 7→ P̃ (α, β)
def.
= P (eα, eβ) =

∑
k=(k1,k2)∈Z2

µ(k)eαk1+βk2 . (2.63)

is strictly convex, the level set D̃
def.
= {(α, β)∈R2 : P̃ (α, β)61} is strictly convex and

compact, the gradient ∇α,βP̃ (α, β) does not vanishes on the boundary ∂D̃ of D̃, and the
function

(α, β) 7→ ∇α,βP̃ (α, β)/‖∇α,βP̃ (α, β)‖ (2.64)
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determines a diffeomorphism from ∂D̃ to the unit circle S1={(u1, u2)∈R2 : u21+u
2
2=1}.

Since for x=eα and y=eβ , one has

∂αP̃ (α, β) = x∂xP (x, y) and ∂βP̃ (α, β) = y∂yP (x, y), (2.65)

for the set D defined by (2.7), it follows that the function

(x, y) 7→ wD(x, y) = (uD(x, y), vD(x, y))

def.
=

1√
x2(∂xP (x, y))2 + y2(∂yP (x, y))2

(x∂xP (x, y), y∂yP (x, y)) (2.66)

is a diffeomorphism from ∂D to S1 and, by the definition of S22, from S22 to S1+. We
denote by w 7→(xD(w), yD(w)), resp. w 7→(αD(w), βD(w)), the inverse mapping of the
function (2.66), resp. of (2.64).

Remark that, for w1=(u1, v1) and w2=(u2, v2)∈S1+, the inequalities u1<u2 and v1>v2
are equivalent and, since the set D̃ is strictly convex, αD(u1, v1)<αD(u2, v2), resp.
βD(u1, v1)<βD(u2, v2), if and only if u1<u2, resp. v1>v2. Hence, using again (2.65) for
x=eα and y=eβ , one gets a similar property for the diffeomorphism w 7→(xD(w), yD(w)):

Lemma 2.5. Under Assumption (A1), for any w1=(u1, v1), w2=(u2, v2)∈S1+, then

xD(u1, v1) < xD(u2, v2) ⇔ u1 < u2 ⇔ v1 > v2 ⇔ yD(u1, v1) > yD(u2, v2).

This elementary property of the diffeomorphism w 7→(xD(w), yD(w)) will be useful in the
next section.

2.6.2 Regions of directions

Definition 3. If (B0) holds, we introduce the vector wc=(uc, vc) ∈ S1+ orthogonal to the
vector

(lnx∗∗− lnX2(y
∗∗), lnX2(y

∗∗)− ln y∗∗)

and we let

W1 = {w=(u, v) ∈ S1+ : u > uc} (2.67)

W2 = {w=(u, v) ∈ S1+ : u < uc} (2.68)

W0 = ∅. (2.69)

Since in the case (B0), we have X2(yd)>xd and Y2(xd)>yd, such a vector wc=(uc, vc) ∈
S1+ exists, is clearly unique and has positive coordinates. The sets W1 and W2 are
therefore both non-empty: W1 is a part of S1+ included in the half-plane

{w=(u, v)∈R2 : vcu>ucv} = {w=(u, v)∈R2 : (ln(X2(yd))− ln(xd))u > (ln(Y2(xd))− ln(yd))v}

and contains the vector (1, 0), and W2 is a part of S1+ included in the half-plane

{w=(u, v) ∈ R2 : vcu<ucv} = {w=(u, v) ∈ R2 : (ln(X2(yd))− ln(xd))u < (ln(Y2(xd))− ln(yd))v}

and contains the vector (0, 1).

Definition 4. If(B1) holds, we take wc=(uc, vc)=wD(xd, Y2(xd)) and define the regions
W0, W1 and W2 in the same way as in the case (B0).

In the case (B1), we have xd<x∗∗P , yd<y∗∗P and (xd, Y2(xd))=(X2(xd), yd)∈S22, hence,
similarly to the case (B0), both coordinates of the vector wc are positive and the sets
of the regions W1 and W2 are non-empty: W1 is a part of S1+ included in the half plane
{w=(u, v) ∈ R2 : ucu>vcv} containing the vector (1, 0), and W2 is a part of S1+ included
in the half-plane {w=(u, v) ∈ R2 : ucu<vcv} containing the vector (0, 1).
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Definition 5. If (B2) holds, we define

W0 = {w=(u, v)∈S1+ : uD(X2(yd), yd)<u<uD(xd, Y2(xd))}, (2.70)

W1 = {w=(u, v)∈S1+ : u>uD(xd, Y2(xd))}, (2.71)

W2 = {w=(u, v)∈S1+ : u<uD(X2(yd), yd)}. (2.72)

By Lemma 2.5, for w=(u, v)∈S1+, the inequalities uD(X2(yd), yd)<u<uD(xd, Y2(xd))

are equivalent to the inequalities xD(u, v)<xd and yD(u, v)<yd, and hence, the above
definition of the sets W0, W1 and W2 is equivalent to

W0 = {wD(x, y) : (x, y) ∈ S22, x<xd, y<yd},
W1 = {wD(x, y) : (x, y) ∈ S22, x>xd},
W0 = {wD(x, y) : (x, y) ∈ S22, y>yd}.

In the case (B2), we have X2(yd)<xd6x∗∗P and Y2(xd)<yd6y∗∗P , hence the set {(x, y)∈S22 :

x<xd, y<yd} is non-empty, and consequently, the set of directions W0 is also non-empty:
this a part of the set S1+ included in the intersection of the two half-planes {w =

(u, v)∈R2 : vD(X2(yd), yd)u > uD(X2(yd), yd)v} and {w=(u, v) ∈ R2 : vD(xd, Y2(xd))u <

uD(xd, Y2(xd))v}. Similar arguments show that in this case,

– the set of directions W1 is empty if and only if xd=x∗∗P ,

– " W2 " if and only if yd=y∗∗P .

Definition 6. If either (B3) or (B4) holds we let W2 = W0 = ∅ and we define W1 by

W1 =

{
S1+ \ {(0, 1)}, if (B3) holds

S1+ if (B4) holds.
(2.73)

Similarly, if either (B5) or (B6) holds we take W1=W0=∅ and we define W2 by

W2 =

{
S1+ \ {(1, 0)}, if (B5) holds

S1+ if (B6) holds.
(2.74)

We will see that for any j∈Z2
+\E0, the asymptotic of the Green function g(j, k) as

min{k1, k2}→+∞ with (k1, k2)/‖(k1, k2)‖→w∈S1+, is

– determined by the simple pole xd of the function x 7→Hj(x, 0) when w ∈ W1;

– " yd " y 7→Hj(0, y) when w ∈ W2;

– similar to the asymptotic of the Green function of the homogeneous random walk
on Z2 associated to the distribution µ when w∈W0.

Twisted homogeneous random walks

To formulate convergence results when min{k1, k2}→+∞ and (k1, k2)/‖(k1, k2)‖→w,
for w ∈ W0, some quantities, also used in the asymptotics of the Green function of
the homogeneous random walk, are now introduced. See Ney and Spitzer [27] or
Theorem 25.15 in Woess [30].

Definition 7. For w∈S1+, we denote by (Sw(n)) the homogeneous random walk on Z2

with transition probabilities, for m, k=(k1, k2)∈Z2,

Pm(Sw(1)=m+k) = (xD(w))k1(yD(w))k2µ(k).
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The vector of first moments and the matrix of second moments of (S(w)(n)) are denoted

respectively by m(w)=(m1(w),m2(w)) and Q(w)=
(
Qi,j(w)

)2
i,j=1

: for i, j∈{1, 2},

mi(w) =
∑
k∈Z2

ki (xD(w))k1(yD(w))k2µ(k),

Qi,j(w) =
∑
k∈Z2

ki kj (xD(w))k1(yD(w))k2µ(k).

The associated quadratic form at z∈R2 is denoted by z·Q(w)·z. For w=(u, v)∈S1, we
define w⊥=(−v, u).

We can now state our second set of asymptotic results. The proof of this theorem
is given in Section 9. Recall that here and throughout the paper, for k=(k1, k2)∈Z2, we
denote wk=k/‖k‖.
Theorem 2.6 (Asymptotics of Green Function along Directions of S1+). Under the
assumptions (A1)–(A3), for any j ∈ Z2

+\E0, the following assertions hold:

i) If min{k1, k2}→+∞, then, uniformly with respect to wk in any compact subset of
W1,

g(j, k) ∼ b1κ1(j)x
−k1−1
d (Y2(xd))

−k2−1, (2.75)

where

b1 = (φ1(xd, Y2(xd))−1)

(
∂yP (x, y)|(x,y)=(xd,Y2(xd))

d

dx
φ1(x, Y1(x))

∣∣∣∣
x=xd

)−1

> 0;

(2.76)

ii) If min{k1, k2}→+∞, then, uniformly with respect to wk in any compact subset of
W2,

g(j, k) ∼ b2κ2(j)(X2(yd))
−k1−1y−k2−1

d , (2.77)

where

b2 = (φ2(X2(yd), yd)−1)

(
∂xP (x, y)|(x,y)=(X2(yd),yd)

d

dy
φ2(X1(y), y)

∣∣∣∣
y=yd

)−1

> 0.

(2.78)

iii) If (B0) holds then, as min{k1, k2}→+∞ and wk→wc,

g(j, k) ∼ C1κ1(j)x
−k1−1
d (Y2(xd))

−k2−1 + C2κ2(j)(X2(yd))
−k1−1y−k2−1

d , (2.79)

where b1>0 and b2>0 are given respectively by (2.76) and (2.78).

iv) If (B3) and yd<y∗∗P hold, then as min{k1, k2}→+∞ and wk→(0, 1),

g(j, k) ∼ κ1(j)
(
b1x

−k1−1
d + b3(X2(yd))

−k1−1y−1
d k2

)
y−k2−1
d , (2.80)

where b1 > 0 is given by (2.76) and

b3 = xd(φ1(xd, yd)−1)

(
∂yP (x, y)

d

dy
φ2(X1(y), y)

d

dx
φ1(x, Y1(x))

d

dy
X1(y)

)−1
∣∣∣∣∣
(x,y)=(xd,yd)

> 0.

(2.81)
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v) If (B5) and xd<x∗∗P hold, then, as min{k1, k2}→+∞ and wk→(1, 0),

g(j, k) ∼ κ2(j)x
−k1−1
d

(
b4k1x

−1
d (Y2(xd))

−k2−2 + b2y
−k2−1
d

)
(2.82)

where b2 > 0 is given by (2.78) and

b4 = yd(φ2(xd, yd)−1)

(
∂xP (x, y)

d

dx
φ1(x, Y1(x))

d

dy
φ2(X1(y), y)

d

dx
Y1(x)

)−1
∣∣∣∣∣
(x,y)=(xd,yd)

> 0.

(2.83)

vi) if (B2) holds and min{k1, k2}→+∞, then, uniformly with respect to wk in any
compact subset of W0,

g(j, k) ∼ κ(xD(wk),yD(wk))(j)
‖m(wk)‖

√
w⊥

k ·Q(wk)·w⊥
k√

2π‖k‖ (xD(wk))k1(yD(wk))k2

. (2.84)

2.6.3 Missing asymptotics

With the definition of the regions of directions W0, W1 and W2, the above theorem
provides the asymptotics of the Green function g(j, k) asmin{k1, k2}→+∞ for all possible
directions w except the following singular cases:

– (B1) holds and w=wc=wD(x∗∗, Y2(x
∗∗));

– (B2) holds and either w=wD(x∗∗, Y2(x
∗∗)) or w=wD(X2(y

∗∗), y∗∗);

– (B3) and yd=y∗∗=y∗∗P hold and w=(0, 1);

– (B5) and xd=x∗∗=x∗∗P hold and w = (1, 0).

We believe that obtaining these missing asymptotics requires an additional significant,
non-trivial, technical effort. It should be noted that for random walks, the asymptotics
for these singular directions have not been derived, even in the case of nearest neighbor
jumps. In Kurkova and Malyshev [22] such asymptotic results are obtained but only along
lines of Z2

+ with a rational direction. For reflected Brownian motions in R2
+, Franceschi

et al. in their recent paper [13] proves such a result in the case analogous to (B2) for
the directions w=wD(x∗∗, Y2(x

∗∗)) and w=wD(X2(y
∗∗), y∗∗). Their results show that the

asymptotic behavior for these directions is expressed as the competition of two terms:
one determined by a simple pole and another given by a saddle point, the slowest of them
determines the exact asymptotics. We believe that in our setting a similar phenomenon
should also hold. However, contrary to the case of reflected Brownian motions in R2

+, the
roots of the kernel equation Q(x, y)=0 are not explicitly known in our case and hence,
proving an analogous result seems to be quite challenging.

Remarks on Asymptotic Expressions.
To the best of our knowledge, the asymptotic behaviors iv) and v) have not been
established in the literature, even in the case of nearest neighbor jumps. Note that the
asymptotics of the cases iii), iv) and v) of Theorem 2.6 are expressed as a sum of two
terms. We now discuss the implications of these asymptotic results.
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Case iii) The asymptotics (2.79) reflect in fact a competition between the geometric decay
determined by the simple pole xd=x∗∗ of the function x 7→Hj(x, 0) and the geometric
decay determined by the simple pole yd=y∗∗ of the function y 7→ Hj(0, y). In the
case when (B0) holds and if (kn)=(k1,n, k2,n) is a sequence of points of Z2

+ going to
infinity such that kn/‖kn‖→wc, since (xd/X2(yd))

uc=(yd/Y2(xd))
vc and X2(yd)>xd,

Theorem 2.6 shows in fact that for j∈Z2
+\E0,

g(j, kn) ∼ C1κ1(j)x
−k1,n−1
d (Y2(xd))

−k2,n−1 if lim
n

(
k1,n−k2,nuc/vc

)
= +∞

g(j, kn) ∼ C2κ2(j)(X2(yd))
−k1,n−1y

−k2,n−1
d if lim

n

(
k2,n−k2,nuc/vc

)
= −∞

g(j, kn) ∼
(
C1κ1(j)+C2

(
xd

X2(yd)

)σ

κ2(j)

)
x
−k1,n−1
d (Y2(xd))

−k2,n−1 (2.85)

if lim
n

(
k1,n−k2,nuc/vc

)
= σ ∈ R.

The convergence (2.85) exhibits an interesting phenomenon.

(1) If uc/vc∈R\Q, then for any σ∈R, there is a sequence (kn)=(k1,n, k2,n)∈Z2
+

going to infinity such that limn kn/‖kn‖→wc, for which σ= limn(k1,n−k2,nuc/vc)
and relation (2.85) holds.

(2) The rational case, i.e; when uc/vc=p/q∈Q for some p, q∈N∗, relation (2.85)
holds if and only if for n large enough, qk1,n−k2,np is constant and, therefore,
σ∈Q is of the form σ=p̃/q for some p̃∈Z. An analogous result has been
established in Ignatiouk et al. [19].

Case iv) The asymptotics (2.80) reflect a competition between the geometric decay
determined by the simple pole xd=x∗∗ of the function x 7→Hj(x, 0) and the geometric
decay multiplied by a factor k2 determined by the pole yd=Y2(xd)=y∗∗ of the second
order of the function y 7→Hj(0, y). If (B3) and yd<y∗∗P hold and (kn)=(k1,n, k2,n) is a
sequence of points of Z2

+ going to infinity such that ‖kn‖→+∞ and kn/‖kn‖→(0, 1),
Theorem 2.4 shows that for j∈Z2

+\E0,

g(j, k) ∼ κ1(j)C1x
−k1,n−1
d y

−k2,n−1
d if lim

n
k2,nx

k1,n

d /(X2(yd)))
k1,n=0;

g(j, k) ∼ κ1(j)C2(X2(yd))
−k1,n−1k2,ny

−k2,n−2
d if lim

n
k2,nx

k1,n

d /(X2(yd)))
k1,n=+∞;

g(j, k) ∼ κ1(j)
(
C1 + σC2y

−1
d

)
x
−k1,n−1
d y

−k2,n−1
d if lim

n
k2,nx

k1,n

d /(X2(yd)))
k1,n=σ>0.

Case v) The asymptotic (2.82) reflects a competition between the geometric decay
multiplied by a factor k1 determined by the pole xd=X2(yd)=x

∗∗ of the second
order of the function x 7→ Hj(x, 0) and the geometric decay determined by the
simple pole yd=y∗∗ of the function y 7→Hj(0, y).

Similar asymptotics hold, by exchanging the roles of x and y in this case when
xd<x

∗∗
P , ‖kn‖→+∞ and kn/‖kn‖→(1, 0).

Relations with Homogeneous Random Walks.
The asymptotic relation (2.84) is similar to the exact asymptotics of the Green function of
the homogeneous random walk (S(n)) in Z2, see Ney and Spitzer [27] and Theorem 25.15
of Woess [30]. The only difference in fact is that in the asymptotic obtained by Ney and
Spitzer [27], the function j=(j1, j1)7→(xD(wk))

j1(yD(wk))
j1=exp(αD(wk)j1 + βD(wk)j2),

which is harmonic for the homogeneous random walk, is replaced in our case by the
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function j 7→ κ(xD(wk),yD(wk))(j), which is harmonic for the killed random walk (Zτ0(n)).
Analogous results have been obtained in Ignatiouk [18] for the Green functions of a
homogeneous random walk in Zd killed outside of an open cone and for the asymptotics
along the interior directions of the cone.

Outline of the paper

Our paper is organized as follows:

– In Section 3, our results are used to investigate the Martin compactification of Z2
+

of the killed Markov chain (Zτ0(n)) and also of the original random walk (Z(n))

when it is transient.

– Section 4 contains the proof of preliminary results. It is shown that the points x∗P ,
x∗, x∗∗, x∗∗P , y∗P , y

∗, y∗∗, y∗∗P and the functions Y1, Y2 : [x∗P , x
∗∗
P ]→[y∗P , y

∗∗
P ] and X1,

X2 : [y∗P , y
∗∗
P ]→[x∗P , x

∗∗
P ] are well defined, and their firs properties are obtained.

– Proposition 2.2 is proved in Section 5.

– Sections 6–9 are respectively devoted to the proofs of Theorems 2.1 - 2.6.

– In Section A, the conditions (B0)–(B7) are compared with the conditions of positive
recurrence and transience for the random walk (Z(n));

3 Application to the Martin boundary

When the Markov chain (Z(n)) is transient, for j, k∈Z2
+, its Green function

G(j, k) =

∞∑
n=0

Pj(Z(n) = k),

is related to the Green function g(j, k) of the killed Markov chain at 0 in the following
way,

G(j, k) = g(j, k) +G(j, 0)g(0, k), for j 6=0,

and
G(0, k) = G(0, 0)g(0, k).

The Martin kernels have therefore a simple relation

G(j, k)

G(0, k)
=

1

G(0, 0)

g(j, k)

g(0, k)
+
G(j, 0)

G(0, 0)
= P0(τ0 = +∞)

g(j, k)

g(0, k)
+ Pj(τ0 < +∞), (3.1)

and the Martin compactification of Z2
+ for the killed Markov chain (Z(n)) at 0 is

homeomorphic to the Martin compactification of the original random walk (Z(n)).
In this section, our asymptotic results, Theorems 2.4 and 2.6, are used to obtain

the asymptotics of the Martin kernel of the killed Markov chain (Z(n)) at 0. We do not
assume that the original random walk (Z(n)) is positive recurrent or transient. The
Martin boundary of (g(j, k)) is in fact almost completely described, the four asymptotic
cases mentioned in Section 2.6.3 excepted. Throughout this section, we will assume that
the conditions (A1)–(A3) are satisfied.

Since by Lemma 2.2, g(j, k) = 0, for any j ∈ E0, and k ∈ Z2
+\E0, to investigate the

Martin boundary of the killed random walk, it is sufficient to consider j ∈ Z2
+\E0.

Proposition 3.1. Suppose that either (B0) or (B1) holds, and let the vector
wc=(uc, vc)∈S1+ be the critical direction defined in Section 2.6.2 and (kn)=(k1,n, k2,n)

be a sequence of Z2
+ whose norm goes to infinity. Then for any j∈Z2

+\E0, the following
assertions hold.
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(1) If lim infn k1,n/‖kn‖>uc then

lim
n→+∞

g(j, kn)

g(0, kn)
=

κ1(j)

κ1(0)
, (3.2)

where κ1 is the function defined by relation (2.35).

(2) If lim supn k1,n/‖kn‖<uc then

lim
n→+∞

g(j, kn)

g(0, kn)
=

κ2(j)

κ2(0)
, (3.3)

where κ2 is the function defined by relation (2.37).

(3) If (B0) holds and limn kn/‖kn‖=wc, then

lim
n→+∞

g(j, kn)

g(0, kn)
=
b1κ1(j)λ

−k1−1
1 +b2κ2(j)λ

−k2−1
2

b1κ1(0)λ
−k1−1
1 +b2κ2(0)λ

−k2−1
2

,

with λ1=xd/X2(yd) and λ2=yd/Y2(xd) and b1>0, resp. b2>0, is given by
relation (2.76), resp. relation (2.78).

When either (B0) or (B1) holds, Proposition 3.1 implies that the minimal Martin
boundary ∂mZ2

+, see Proposition 24.4 of [30], contains two points ξ1 and ξ2, and any

sequence of points (kn) converging to infinity and such that lim infn k
(n)
1 /‖k(n)‖>uc (resp.

lim supn k
(n)
1 /‖k(n)‖<uc) converges in the Martin compactification of Z2

+ to ξ1 (resp. to
ξ2).

When (B0) holds, with this result one gets that the minimal Martin boundary of
Z2

+ relative for the killed Markov chain at 0 contains exactly two points, and with the
same arguments as in Theorem 3 of [19], we obtain that the full Martin boundary is
homeomorphic to Z∪{±∞}, resp. R∪{±∞}, if uc/vc∈Q, resp. uc/vc 6∈Q. By the Poisson-
Martin representation theorem, in this case, any non-negative harmonic function for the
killed Markov chain is therefore of the form θ1κ1+θ2κ2 with for some θ1, θ2∈[0,+∞[.

Note that the full Martin boundary is not obtained in the case (B1) since the
asymptotics of the Green function g(j, k) along the direction wc are missing. See
Section 2.6.3.

For the region (B2) we have the following proposition.

Proposition 3.2. Suppose that (B2) holds, and let (kn)=(k1,n, k2,n) be a sequence of Z2
+

whose norm goes to infinity. Then for any j∈Z2
+\E0, the following assertions hold.

(1) If limn kn/‖kn‖ = w ∈ W0, then

lim
n→+∞

g(j, kn)

g(0, kn)
=

κ(xD(w),yD(w))(j)

κ(xD(w),yD(w))(0)
(3.4)

where κ(·,·) is the function defined by (2.39).

(2) If xd=x∗∗P and the sequence (k2,n) is bounded, then

lim
n→+∞

g(j, kn)

g(0, kn)
=

{
κ̃1(j)/κ̃1(0) if φ1(x∗∗P , Y1(x

∗∗
P )) < 1,

κ1(j)/κ1(0) if φ1(x∗∗P , Y1(x
∗∗
P )) = 1.

(3.5)

where κ̃1 is the function defined by (2.36).

(3) If x∗∗<x∗∗P and lim infn k1,n/‖kn‖>uD(xd, Y2(xd)), then

lim
n→+∞

g(j, kn)

g(0, kn)
=

κ1(j)

κ1(0)
.
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(4) if y∗∗=y∗∗P and the sequence (k1,n) is bounded, then

lim
n→+∞

g(j, kn)

g(0, kn)
=

{
κ̃2(j)/κ̃2(0) if φ2(X1(y

∗∗
P ), y∗∗P ) < 1,

κ2(j)/κ2(0) if φ2(X1(y
∗∗
P ), y∗∗P ) = 1

(3.6)

where κ̃2 is the function defined by (2.38).

(5) If y∗∗<y∗∗P and lim infn k2,n/‖kn‖>vD(xd, Y2(xd) then,

lim
n→+∞

g(j, kn)

g(0, kn)
=

κ2(j)

κ2(0)
.

When (B2) holds, this result proves that for any direction w∈S1+ in the closure W0

of W0 there is a point ξ(w) in the Martin boundary of the killed Markov chain, and that
if (kn) is a sequence of points of Z2

+ whose norm converges to infinity then, for the
convergence in the Martin compactification,

lim
n→+∞

kn =


ξ(w) for w∈W0 if kn/‖kn‖→w,

ξ(wD(xd, Y2(xd))) if lim infn k1,n/‖kn‖>uD(xd, Y2(xd)),

ξ(wD(X2(yd), yd)) if lim supn k1,n/‖kn‖<uD(X2(yd), yd).

As explained before, in the case (B2), also due to the missing asymptotics for the singular
directions wD(xd, Y2(xd)) and wD(X2(yd), yd), the full Martin boundary is not completely
determined. We conjecture that in this case it is homeomorphic to W0.

Proposition 3.3. Suppose that either (B3) and yd<y∗∗P hold or (B4) holds. Then for any
j∈Z2

+\E0,

lim
→+∞

g(j, k)

g(0, k)
=

κ1(j)

κ1(0)
,

If either (B3) and yd<y∗∗P hold or (B4) holds, the full Martin boundary of Z2
+ of the

killed Markov chain is therefore a single point, and, up to a multiplicative constant, the
function κ1 is the unique non-negative harmonic function.

When the original random walk (Z(n)) is transient and the measures µ0, µ1 and µ2

are stochastic, since the Martin compactification of Z2
+ of the Markov chain (Z(n)) is

homeomorphic to the Martin compactification of Z2
+ of the killed Markov chain, we have

the following corollary.

Corollary 3.4. If the measures µ0, µ1 and µ2 are stochastic and the Markov chain (Z(n))

is transient, then under the hypotheses of Proposition 3.3, for any j∈Z2
+,

lim
‖k‖→+∞

G(j, k)

G(0, k)
= 1. (3.7)

Proof. Indeed, in this case, using (3.1), Proposition 3.3 and Lemma 2.2, since the set E0

does not contain the origin, one gets

lim
‖k‖→+∞

G(j, k)

G(0, k)
= P0(τ0 = +∞)κ1(j) + Pj(τ0 < +∞), ∀j ∈ Z2

+,

and consequently, by the Poisson-Martin representation theorem, up to a multiplicative
constant, for any harmonic function κ for the Markov chain (Z(n)), one has

κ(j)/κ(0) = P0(τ0 = +∞)κ1(j) + Pj(τ0 < +∞), ∀j ∈ Z2
+.
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Since in the case when the measures µ0, µ1 and µ2 are stochastic, the constants functions
are harmonic for (Z(n)), from this it follows that

P0(τ0 = +∞)κ1(j) + Pj(τ0 < +∞) = 1, ∀j ∈ Z2
+, (3.8)

and (3.7) holds.

Remark that the identity (3.8) can also be obtained in a straightforward way by using
Proposition A.3 of Section A.

By symmetry, similar result can be obtained with κ2 instead of κ1 if either (B5) and
xd = x∗∗P hold or (B6) holds.

We conclude with the case when either (B3) holds with yd=y∗∗P or (B5) holds with
xd=x

∗∗
P .

Proposition 3.5. Suppose that (B3) holds with yd=y∗∗P and let (kn) be a sequence of
points of Z2

+ whose norm converges to infinity. Then for any j ∈ Z2
+\E0, the convergence

lim
n→+∞

g(j, kn)

g(0, kn)
=

κ1(j)

κ1(0)

holds in any of the two following cases:

– when lim infn k1,n/‖kn‖>0;

– when the sequence (k1,n) is bounded and limn k2,n = +∞.

When (B3) holds with yd=y∗∗P there is therefore a point ξ0 in the Martin boundary of
Z2

+ of the killed Markov chain, such that any sequence of points of Z2
+ satisfying the

conditions of Proposition 3.5 converges in the Martin compactification to ξ0.

Similar result with the function κ2 instead of κ1 can be obtained when (B5) holds
with xd=x∗∗P .

When (B3) holds with yd=y
∗∗
P , resp. (B5) holds with xd=x

∗∗
P , the asymptotics of

the Green function g(j, k) when ‖k‖→+∞ and k1/‖k‖→0, resp. when ‖k‖→+∞ and
k2/‖k‖→0 are not known. See Section 2.6.3. For this reason, the full Martin boundary is
not determined in this case. We conjecture it is a single point.

4 Preliminary results

In the following statement, we investigate the set D defined by (2.7): it is proved
that the line segments [x∗P , x

∗∗
P ], [y∗P , y

∗∗
P ] and the functions Y1, Y2 : [x∗P , x

∗∗
P ] → [y∗P , y

∗∗
P ]

and X1, X2 : [y∗P , y
∗∗
P ] → [x∗P , x

∗∗
P ] are well defined, and the first useful for our purpose

properties of these functions are obtained.

Lemma 4.1. Under the hypotheses (A1), the line segments [x∗P , x
∗∗
P ] and [y∗P , y

∗∗
P ] and the

functions Y1, Y2 : [x∗P , x
∗∗
P ] → [y∗P , y

∗∗
P ] and X1, X2 : [y∗P , y

∗∗
P ] → [x∗P , x

∗∗
P ] are well defined

and the following assertions hold:

1) For any x̂ ∈ [x∗P , x
∗∗
P ], Y1(x̂) and Y2(x̂) are the only real positive solutions of the

equation P (x̂, y) = 1,

Y1(x̂) < Y2(x̂), ∂yP (x̂, Y1(x̂)) < 0 and ∂yP (x̂, Y2(x̂)) < 0 if x∗P < x̂ < x∗∗P ,

and

Y1(x̂) = Y2(x̂) and ∂yP (x̂, Y1(x̂)) = 0 if x̂ ∈ {x∗P , x∗∗P }.
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2) For any ŷ ∈ [y∗P , y
∗∗
P ], X1(ŷ) and X2(ŷ) are the only real positive solutions of the

equation P (x, ŷ) = 1,

X1(ŷ) < X2(ŷ), ∂xP (X1(ŷ), ŷ) < 0 and ∂xP (X2(ŷ), ŷ) if y∗P < ŷ < y∗∗P ,

and
X1(ŷ) = X2(ŷ) and ∂xP (X1(ŷ), ŷ) = 0 if ŷ ∈ {y∗P , y∗∗P }.

3) The four points (x∗P , Y1(x
∗
P )), (x

∗∗
P , Y1(x

∗∗
P )), (X1(y

∗
P ), y

∗
P ) and (X1(y

∗∗
P ), y∗∗P ) are two

by two distinct and moreover Y1(x∗P ), Y1(x
∗∗
P ) ∈]y∗P , y∗∗P [ and X1(y

∗
P ), X1(y

∗∗
P ) ∈

]x∗P , x
∗∗
P [.

4) The function X1 : [y∗P , Y1(x
∗
P )]→[x∗P , X1(y

∗
P )] is strictly decreasing and its inverse is

Y1 : [x∗P , X1(y
∗
P )]→[y∗P , Y1(x

∗
P )].

5) The function X1 : [Y1(x
∗
P ), y

∗∗
P ]→[x∗P , X1(y

∗∗
P )] is strictly increasing and its inverse is

Y2 : [x∗P , X1(y
∗∗
P )]→[Y1(x

∗
P ), y

∗∗
P ].

6) The function X2 : [y∗P , Y1(x
∗∗
P ]→[X1(y

∗
P ), x

∗∗
P ] is strictly increasing and its inverse is

Y1 : [X1(y
∗
P ), x

∗∗
P ]→[y∗P , Y1(x

∗∗
P ].

7) The function X2 : [Y1(x
∗∗
P ), y∗∗P ]→[X1(y

∗∗
P ), x∗∗P ] strictly decreasing and its inverse is

Y2 : [X1(y
∗∗
P ), x∗∗P ]→[Y1(x

∗∗
P ), y∗∗P ].

Proof. To prove this lemma we notice that under the hypotheses (A1) the jump generating
function P̃ : R2 → R+ defined by (2.63) is strictly convex and finite in a neighborhood
of the set D̃ = {(α, β) ∈ R2 : P̃ (α, β) 6 1}. The set D̃ is therefore strictly convex
and compact (see for instance, Spitzer [29]) and because of the assumption (A1) (iii),
it has a non-empty interior. Since the mapping (α, β) 7→(x, y)=(eα, eβ) determines a
homeomorphism from R2 to ]0,+∞[2 and maps the set D̃ to the set D, one gets that
x∗P = eα

∗
P , x∗∗P = eα

∗∗
P , y∗P = eβ

∗
P and y∗∗P = eβ

∗∗
P where

[α∗
P , α

∗∗
P ] = {α ∈ R : inf

β∈R
P̃ (α, β) 6 1} [β∗

P , β
∗∗
P ] = {β ∈ R : inf

α∈R
P̃ (α, β) 6 1}.

Our lemma holds therefore with Y1(x̂) = eβ1(ln x̂), Y2(x̂) = eβ2(ln x̂), X1(ŷ) = eα1(ln ŷ) and
X2(ŷ) = eα2(ln ŷ) where for α̂ ∈ [α∗

P , α
∗∗
P ], β1(α̂) 6 β2(α̂) are the only real solutions of the

equation P̃ (α̂, β) = 1 and for β̂ ∈ [β∗
P , β

∗∗
P ] 6 α1(β̂) and α2(β̂) are the only real solutions

of the equation P̃ (α, β̂) = 1.

In the following lemma, we investigate the sets D ∩D1 and D ∩D2. It is proved that
the line segments [x∗, x∗∗] and [y∗, y∗∗] are well defined. With this result, we will be able
to get the first useful for our purpose properties of the functions x 7→ φ1(x, Y1(x)) and
y 7→ φ2(X1(y), y).

Lemma 4.2. Under the hypotheses (A1) and (A3), there exist x∗, x∗∗ ∈]0,+∞[ such that
x∗ < x∗∗ and

[x∗, x∗∗] = {x ∈]0,+∞[: (x, y) ∈ D1 ∩D for some y > 0}.

Moreover, for any x ∈ [x∗, x∗∗], there exists Ỹ2(x) > Y1(x) such that

{y > 0 : (x, y) ∈ D1 ∩D} = [Y1(x), Ỹ2(x)],

the points Y1(x) and Ỹ2(x) are the only real positive solutions of the equation

max{P (x, y), φ1(x, y)} = 1, (4.1)

and Y1(x) < Ỹ2(x) if and only if x∗ < x < x∗∗.

EJP 30 (2025), paper 4.
Page 27/103

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1252
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Classification of asymptotic behaviors of Green functions

Proof. To prove this lemma, we consider the jump generating function P̃ defined by
(2.63), the jump generating function φ̃1 : R2 → R+, defined for (α, β) ∈ R2, by

φ̃1(α, β) =
∑

k=(k1,k2)∈Z2

exp(αk1 + βk2)µ1(k)

and the sets D̃ = {(α, β) ∈ R2 : P̃ (α, β) 6 1} and D̃1 = {(α, β) ∈ R2 : φ̃1(α, β) 6 1}.
Recall that for x = eα and y = eβ ,

P̃ (α, β) = P (x, y), φ̃1(α, β) = φ1(x, y),

and that the mapping (α, β) 7→ (x, y) = (eα, eβ) determines a homeomorphism from R2 to
]0,+∞[2 and maps the set D̃ ∩ D̃1 to the set D ∩D1. Hence, to prove our lemma, it is
sufficient to show that under our assumptions, the following assertions hold

– there exist α∗, α∗∗ ∈ R such that α∗ < α∗∗ and

[α∗, α∗∗] = {α ∈ R : (α, β) ∈ D̃1 ∩ D̃ for some β ∈ R}.

– for any α ∈ [α∗, α∗∗], there exists β̃2(α) > lnY1(e
α) such that

{β ∈ R : (α, β) ∈ D̃1 ∩ D̃} = [lnY1(e
α), β̃2(α)],

the points β1(α) = lnY1(e
α) and β̃2(α) are the only real positive solutions of the

equation
max{P̃ (α, β), φ̃1(α, β)} = 1, (4.2)

and lnY1(e
α) < β̃2(α) if and only if α∗ < α < α∗∗.

For this we remark that the set D̃ ∩ D̃1 is compact convex and has a non empty interior
because

– the function φ̃1 is convex and consequently also the set D̃1 is also convex;

– the set D̃ is convex and compact (see the proof of Lemma 4.1);

– by Assumption (A3)(iii), the set D ∩D1 has a non-empty interior, and consequently,
since the mapping (α, β) 7→ (x, y) = (eα, eβ) determines a homeomorphism from R2

to ]0,+∞[2 and maps the set D̃1 ∩ D̃ to the set D1 ∩D, the set D̃1 ∩ D̃ has also a
non-empty interior.

From this, it follows that the following assertions hold:

– there exist α∗ > 0 and α∗∗ > α∗ such that

[α∗, α∗∗] = {α ∈ R : (α, β) ∈ D̃1 ∩ D̃ for some β ∈ R},

– for any α ∈ [α∗, α∗∗], there exists β̃1(α), β̃2(α) ∈]0,+∞[ such that β̃1(α) 6 β̃2(α),

[β̃1(α), β̃2(α)] = {β ∈ R : (α, β) ∈ D̃ ∩ D̃1},

and

max{φ̃1(α, β̃1(α)), P̃ (α, β̃1(α))} = max{φ̃1(α, β̃2(α)), P̃ (α, β̃2(α))} = 1,

– for any α ∈]α∗, α∗∗[

β̃1(α) < β̃2(α).
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Hence to complete our proof, it is sufficient to show that for any α ∈ [α∗, α∗∗], the
following relations hold:

β̃1(α) = lnY1(e
α), (4.3)

max{P̃ (α, β), φ̃1(α, β)} < 1 if β1(α) < β < β̃2(α), (4.4)

and
α∗ < α < α∗∗ if β̃1(α) < β̃2(α). (4.5)

Remark moreover that if (4.4) holds, then any β such that β̃1(α) < β < β̃2(α), the point
(α, β) belongs to the interior of the set D̃ ∩ D̃1 and consequently, (4.5) also holds. Hence,
to complete our proof, it is sufficient to prove that for any α ∈ [α∗, α∗∗], (4.3) and (4.4)
hold. To get these relations, we remark that by Lemma 4.1 and since D̃ ∩ D̃1 ⊂ D̃, one
has

[α∗, α∗∗] ⊂ {α ∈ R : (α, β) ∈ D̃ for some β ∈ R} = [lnx∗P , lnx
∗∗
P ]

and that for any α ∈ [α∗, α∗∗],

[β̃1(α), β̃2(α)] ⊂ {β ∈ R : (α, β) ∈ D̃} = [lnY1(e
α), lnY2(e

α)].

Since because of Assumption (A3), the function β 7→ φ̃1(α, β) is finite and strictly
increasing in a neighborhood of the line segment [0, lnY2(eα)], one gets therefore that
for any α ∈ [α∗, α∗∗] and β < β̃2(α),

φ̃1(α, β) < φ̃1(α, β̃2(α)) 6 1.

This implies that for any α ∈ [α∗, α∗∗], (4.3) holds. Moreover, since by Lemma 4.1,
P̃ (α, β) < 1 for any β ∈] lnY1(eα), lnY2(eα)[, from the last relation it follows that for any
β ∈] lnY1(eα), β̃2(α)[, (4.4) also holds.

As a consequence of Lemma 4.2 we obtain

Corollary 4.1. Under the assumptions (A1) and (A3), for any x ∈ [x∗P , x
∗∗
P ],

(i) x ∈ [x∗, x∗∗] if and only if φ1(x, Y1(x)) 6 1;

(ii) φ1(x, Y1(x)) < 1 if x∗ < x < x∗∗;

(iii) φ1(x∗∗, Y1(x∗∗)) = 1 if x∗∗ < x∗∗P ;

(iv) φ1(x∗, Y1(x∗)) = 1 if x∗ > x∗P .

Proof. Indeed, since P (x, Y1(x)) = 1 for any x ∈ [x∗P , x
∗∗
P ], the first assertion of this

corollary follows from Lemma 4.2.
To get (ii), we recall that by Lemma 4.2, for any x∗ < x < x∗∗ one has Y1(x) < Ỹ2(x)

and max{φ1(x, Ỹ2(x)), P (x, Ỹ2(x))} = 1. Since under the hypotheses (A3), for any
x ∈ [x∗, P, x∗∗P ], the function y 7→ φ1(x, y) is finite and strictly increasing n a neighborhood
of the line segment [0, lnY2(e

α)], from this it follows that φ1(x, Y1(x)) < 1 whenever
x∗ < x < x∗∗. The assertion (ii) is therefore also proved.

Suppose now that x∗∗ < x∗∗P . Then by the first assertion of our corollary,

φ1(x, Y1(x)) > 1 if x∗∗ < x 6 x∗∗P , (4.6)

and by the second assertion,

φ1(x, Y1(x)) < 1 if x∗ < x < x∗∗. (4.7)

Since the function φ1 is continuous in a neighborhood of the set D, the function
Y1 is continuous on [x∗P , x

∗∗
P ] and (x, Y1(x)) ∈ D for any x ∈ [x∗P , x

∗∗
P ], the function

x 7→ φ1(x, Y1(x)) is therefore continuous on [x∗P , x
∗∗
P ], and consequently, relations (4.6)

and (4.7) prove that φ1(x∗∗, Y1(x∗∗)) = 1. The assertion (iii) is therefore also proved. The
proof of the assertion (iv) is quite similar.
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5 The classification in eight regions

This section is devoted to the proof of Proposition 2.2 establishing our classification
into eight regions in the set of parameters of the random walk (Z(n)).

5.1 The main idea of the proof

Remark first of all that the cases (B0)–(B7) have a simple geometrical interpretation:
if we denote by [(x, y), (x̃, ỹ)] the line segment in R2 with the end-points at (x, y) and
(x̃, ỹ), then by Lemma 5.1 below, for any x ∈ [x∗P , x

∗∗
P ] and y ∈ [y∗P , y

∗∗
P ], one and only one

of the following assertions holds:

– the line segments [(x, Y1(x)), (x, Y2(x))] and [(X1(y), y), (X2(y), y)] have the
common point (x, y) ∈ D,

– these line segments are disjoint and (x, y) 6∈ D.

The case (B0) occurs when the line segments

[(x∗∗, Y1(x
∗∗)), (x∗∗, Y2(x

∗∗))] and [(X1(y
∗∗), y∗∗), (X2(y

∗∗), y∗∗)] (5.1)

have the common point (x∗∗, y∗∗) in the interior of the set D. The cases (B1), (B3),
(B5) and (B7) occur when these line segments have the common point (x∗∗, y∗∗) on the
boundary of the set D:

(x∗∗, y∗∗) ∈


S22 in the case (B1),

S12 in the case (B3),

S21 in the case (B5),

S11 in the case (B7).

The cases (B2), (B4) and (B6) occur when the line segments (5.1) are disjoint and
(x∗∗, y∗∗) 6∈ D. The nearest to (x∗∗, y∗∗) vertices of these line segments belong to S22 in
the case (B2), to S12 in the case (B4) and to S21 in the case (B6).

The main idea of our proof is the following:

First, we show that the point (x∗∗, y∗∗) either belongs to each of the line segments

[(x∗∗, Y1(x
∗∗), (x∗∗, Y2(x

∗∗)] and [(X1(y
∗∗), y∗∗), (X2(y

∗∗), y∗∗)] (5.2)

or does not belong to any of them. With this result we describe all possible cases:

(a) X1(y
∗∗) < x∗∗ < X2(y

∗∗) and Y1(x
∗∗) < y∗∗ < Y2(x

∗∗)

(b) X1(y
∗∗) < x∗∗ = X2(y

∗∗) and Y1(x
∗∗) < y∗∗ = Y2(x

∗∗)

(c) x∗∗ > X2(y
∗∗) and y∗∗ > Y2(x

∗∗)

(d) x∗∗ = X1(y
∗∗) and Y1(x

∗∗) < y∗∗ = Y2(x
∗∗)

(e) x∗∗ < X1(y
∗∗) and y∗∗ > Y2(x

∗∗)

(f) X1(y
∗∗) < x∗∗ = X2(y

∗∗) and y∗∗ = Y1(x
∗∗)

(g) x∗∗ > X2(y
∗∗) and y∗∗ < Y1(x

∗∗)

(h) x∗∗ = X1(y
∗∗) and y∗∗ = Y1(x

∗∗)

(i) x∗∗ < X1(y
∗∗) and y∗∗ < Y1(x

∗∗)

(5.3)

Next, using (2.10), we prove that the cases (B0)–(B7) correspond respectively to the
cases (a)–(h), and the case i) never holds.
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5.2 Preliminary results for the proof of Proposition 2.2

We begin our proof with the following preliminary results.

Lemma 5.1. Under the hypotheses (A1), for any x ∈ [x∗P , x
∗∗
P ] and y ∈ [y∗P , y

∗∗
P ], the line

segments [(x, Y1(x)), (x, Y2(x))] and [(X1(y), y), (X2(y), y)] are disjoint if and only if the
point (x, y) does not belong to the set D.

Proof. Indeed, by Lemma 4.1, for any x ∈ [x∗P , x
∗∗
P ] and y ∈ [y∗P , y

∗∗
P ], the line segment

[(x, Y1(x)), (x, Y2(x))] is the set of all points (x′, y′) ∈ D with x′ = x, and similarly the line
segment [(X1(y), y), (X2(y), y)] is the set of all points (x′, y′) ∈ D with y′ = y. Hence, if
(x, y) ∈ D then the both line segments [(x, Y1(x)), (x, Y2(x))] and [(X1(y), y), (X2(y), y)]

contain the point (x, y). Conversely, if these line segments are not disjoint, then the point
(x, y) belongs to each of them, and consequently (x, y) ∈ D.

Since for any x ∈ [x∗P , x
∗∗
P ] and y ∈ [y∗P , y

∗∗
P ], the point (x, y) is the only point that

could belong to the both line segments [(x, Y1(x)), (x, Y2(x))] and [(X1(y), y), (X2(y), y)],
the above lemma implies the following statement.

Corollary 5.1. Under the hypotheses (A1), for any x ∈ [x∗P , x
∗∗
P ] and y ∈ [y∗P , y

∗∗
P ], if

the point (x, y) does not belong to some of the line segments [(x, Y1(x)), (x, Y2(x))] or
[(X1(y), y), (X2(y), y)] then (x, y) neither belongs to any of them.

By lemma 4.1, for any x ∈ [x∗P , x
∗∗
P ], the points Y1(x) and (Y2(x) are the only

real and positive solutions of the equation P (x, y) = 1, and that P (x, y) < 1 for any
y ∈]Y1(x), Y2(x)[. Hence, for any x ∈ [x∗P , x

∗∗
P ], each of the points (x, Y1(x)) and (x, Y2(x))

belongs to the boundary of the setD, and for any y ∈]Y1(x), Y2(x)[, the point (x, y) belongs
to the interior

◦
D of D. Similarly, for any y ∈ [y∗P , y

∗∗
P ], each of the points (X1(y), y) and

(X2(y), y) belongs to the boundary of D and for any x ∈]X1(y), X2(y)[, the point (x, y)

belongs to
◦
D. Using Corollary 5.1 it follows the following useful for our purpose property

of the set D:

Corollary 5.2. Under the hypotheses (A1), for any (x, y) ∈ D, one and only one of the
following assertions holds

– the point (x, y) belongs to the interior of the set D and in this case, X1(y) < x <

X2(y) and Y1(x) < y < Y2(x);

– the point (x, y) belongs to the boundary of D and in this case, the point
(x, y) is an end point of each of the line segments [(x, Y1(x)), (x, Y2(x))] and
[(X1(y), y), (X2(y), y)].

By Lemma 4.1, for any x ∈ [x∗P , x
∗∗
P ], we have

Y1(x) = Y2(x) if and only if x ∈ {x∗P , x∗∗P }

and, for any y ∈ [y∗P , y
∗∗
P ],

X1(y) = X2(y) if and only if y ∈ {y∗P , y∗∗P },

and, the four points (x∗P , Y1(x
∗
P )), (x

∗∗
P , Y1(x

∗∗
P )), (X1(y

∗
P ), y

∗
P ) and (X2(y

∗∗
P ), y∗∗P ) are two

by two distinct. Hence, the case with x = X1(y) = X2(y) and y = Y1(x) = Y2(x) is not
possible, and as a straightforward consequence of Corollary 5.1 and Corollary 5.2 one
gets
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Corollary 5.3. Under the hypotheses (A1), for any x ∈ [x∗P , x
∗∗
P ] and y ∈ [y∗P , y

∗∗
P ], one

and only one of the following cases holds:

(a) X1(y) < x < X2(y) and Y1(x) < y < Y2(x)

(b) x = X2(y) > X1(y) and y = Y2(x) > Y2(x)

(c) x > X2(y) and y > Y2(x)

(d) x = X1(y) and Y1(x) < y = Y2(x)

(e) x < X1(y) and y > Y2(x)

(f) X1(y) < x = X2(y) and y = Y1(x)

(g) x > X2(y) and y < Y1(x)

(h) x = X1(y) and y = Y1(x)

(i) x < X1(y) and y < Y1(x)

(5.4)

In the case (a) of this statement, the point (x, y) belongs to the interior of the set D,
in each of the cases (b), (d), (f) and (h), the point (x, y) belongs to the boundary of D,
and in each of the cases (c), (e), (g) and (i), the point (x, y) does not belong to the set D.

When applied with x = x∗∗ and y = y∗∗, this statement proves that under the
hypotheses (A1), one of the assertions (a)–(i) of (5.3) holds.

The following statement will be used to investigate the position of the nearest to
(x∗∗, y∗∗) vertices of the line segments (5.2) when the point (x∗∗, y∗∗) does not belong to
the interior of D.

Lemma 5.2. Under the hypotheses (A1), for any x ∈ [x∗P , x
∗∗
P ] and y ∈ [y∗P , y

∗∗
P ], the

following assertions hold:
1) If x 6 X1(y) and Y2(x) 6 y, then (x, Y2(x)), (X1(y), y) ∈ S12.
2) If y 6 Y1(x) and X2(y) 6 x, then (X2(y), y), (x, Y1(x)) ∈ S21.
3) If x > X2(y) and y > X2(x) then (x, Y2(x)), (X2(y), y) ∈ S22.
4) If x 6 X1(y) and y 6 Y1(x) then (x, Y1(x)), (X1(y), y) ∈ S11.

Proof. Suppose that x ∈ [x∗P , x
∗∗
P ] and y ∈ [y∗P , y

∗∗
P ] and let x 6 X1(y) and Y2(x) 6 y. Then

by Corollary 5.3, either x < X1(y) and Y2(x) < y, or x = X1(y) and Y2(x) = y. In the
second case, i.e when x = X1(y) and Y2(x) = y, we have (x, Y2(x)) = (X1(y), y) and
consequently, by the definition of S12,

(x, Y2(x)) = (X1(y), y) ∈ S12.

Consider now the case when x < X1(y) and Y2(x) < y. By the definition of the curves
(2.11)–(2.14), we have

(x, Y2(x)) ∈ S12 ∪ S22 and (X1(y), y) ∈ S11 ∪ S12.

If we suppose that (x, Y2(x)) ∈ S22, then we will get Y2(x) ∈ [Y1(x
∗∗
P ), y∗∗P ] and

consequently, since Y2(x) < y 6 y∗∗P , we will have also y ∈ [Y1(x
∗∗
P ), y∗∗P ]. Since the

function Y2 is strictly decreasing on [Y1(x
∗∗
P ), y∗∗P ] and since y > Y2(x), it follows that

X2(x) < X2 ◦ Y2(x) = x (5.5)

where the last relation holds because by Lemma 4.1, the function X2 : [Y1(x
∗∗
P ), y∗∗P ] →

[X2(y
∗∗
P ), x∗∗P ] is inverse to the function Y2 : [X2(y

∗∗
P ), x∗∗P ] → [Y1(x

∗∗
P ), y∗∗P ]. Since

X1(y) 6 X2(y), (5.5) contradicts the inequality x < X1(y) and consequently, when
x < X1(y) and Y2(x) < y, the point (x, Y2(x)) belongs to S12. Similar arguments show
that in this case, the point (X1(y), y) also belongs to S12. The first assertion of Lemma5.2
is therefore proved. The proof of the assertions 2)-4) is quite similar.

To investigate the cases (d) and (e) we will need the following preliminary result.

EJP 30 (2025), paper 4.
Page 32/103

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1252
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Classification of asymptotic behaviors of Green functions

Lemma 5.3. If the conditions (A1)–(A3) are satisfied and (x∗∗, Y2(x
∗∗)) ∈ S12, then

Y1(x
∗∗) < Y2(x

∗∗) and 1 < Y2(x
∗∗). (5.6)

Proof. Indeed, under the hypotheses of this lemma, with the definition of S12 and using
(2.9), one gets

x∗P 6 x∗ < x∗∗ 6 X1(y
∗∗
P ) < x∗∗P . (5.7)

Hence, in this case, x∗∗ 6= x∗P and x∗∗ 6= x∗∗P , and consequently, by Lemma 4.1,
Y1(x

∗∗) < Y2(x
∗∗). The first relation of (5.6) is therefore proved. To get the second

relation of (5.6), we recall that by Lemma 4.1, the function Y2 is strictly increasing on the
line segment [x∗P , X1(y

∗∗
P )], and we remark that by(5.7) and (2.10) the following relations

hold:

x∗P 6 1 6 x∗∗ < X1(y
∗∗
P ).

Hence, Y2(1) 6 Y2(x
∗∗) and moreover,

Y2(1) < Y2(x
∗∗) whenever 1 < x∗∗. (5.8)

Remark now that, with the definition of Y1(1) and Y2(1) and since P (1, 1) = 1, we have

either Y1(1) = 1 6 Y2(1) or Y1(1) 6 1 = Y2(1). (5.9)

With these relations and using (5.8), one gets

1 < Y2(x
∗∗) whenever 1 < x∗∗.

Now, to complete the proof of our lemma it is sufficient to show that

1 < Y2(1) whenever 1 = x∗∗.

Suppose that x∗∗ = 1. Then from the first relation of (5.6) one gets

Y1(1) < Y2(1), (5.10)

and by Corollary 4.1 and using (5.7), we obtain

φ(1, Y1(1)) = 1.

Since the function y 7→ φ(1, y) is strictly increasing, from the last relation and (5.10) it
follows that φ1(1, Y2(1)) > 1, and since under our hypotheses, φ1(1, 1) 6 1, this proves
that Y2(1) 6= 1. Hence, using again (5.10), we conclude that

Y2(x
∗∗) = Y2(1) > Y1(1) = 1.

Lemma 5.3 is therefore proved.

To investigate the cases (h) and i) the following lemma will be used.

Lemma 5.4. Suppose that the condition (A1) is satisfied and let x ∈ [x∗P , x
∗∗
P ], y ∈ [y∗P , y

∗∗
P ]

and (x′, y′) ∈ D be such that

x′ 6 x 6 X1(y) and y′ 6 y 6 Y1(x). (5.11)

Then

x′ = x = X1(y) and y′ = y = Y1(x). (5.12)
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Proof. Indeed, suppose that the conditions of our lemma are satisfied and let (5.11)
holds. Then according to the definition of the line segments [x∗P , x

∗∗
P ] and [y∗P , y

∗∗
P ], we

have x∗P 6 x′ 6 x∗∗P and y∗P 6 y′ 6 y∗∗P , and by Lemma 5.2, the points (x, Y1(x)) and
(X1(y), y) belong to the set S11. Using the definition of S11, it follows that

x∗P 6 x′ 6 x < X1(y
∗
P ) and y∗P 6 y′ 6 y 6 Y1(x

∗
P ). (5.13)

Since by Lemma 4.1, the function Y1 is decreasing on the line segment [x∗P , X1(y
∗
P )] and

the function X1 is decreasing on the line segment [y∗P , Y1(x
∗
P )], relations (5.13) imply

that Y1(x′) > Y1(x) and X1(y
′) > X1(y), and consequently, using (5.11) one gets

y′ 6 y 6 Y1(x) 6 Y1(x
′) and x′ 6 x 6 X1(y) 6 X1(y

′). (5.14)

Under the hypotheses of our lemma, (x′, y′) ∈ D and by Corollary 5.1 and the definition
of the line segments [X1(y

′), X2(y
′)] and [Y1(x

′), Y2(x
′)], we have

X1(y
′) 6 x′ 6 X2(y

′) and Y1(x
′) 6 y′ 6 Y2(x

′).

When combined with (5.14) these relations prove (5.12).

5.3 Proof of Proposition 2.2

Now we are ready to complete the proof of Proposition 2.2. Under our hypotheses,
by Corollary 5.3 applied with x = x∗∗ and y = y∗∗, one and only one of the cases (a)- (i)
of (5.3) holds, and remark that the case (a) is equivalent to the case (B0).

Remark furthermore that the case (B1) implies (b), and conversely, if the case (b)
of (5.3) holds, then by Lemma 5.2 applied with x = x∗∗ and y = y∗∗, the point (x∗∗, y∗∗)
belongs to the set S22, and by Lemma 4.1,

x∗∗ < x∗∗P and y∗∗ < y∗∗P

because in this case, we have Y1(x∗∗) < Y2(x
∗∗) and X1(y

∗∗) < X2(y
∗∗), The case (B1) is

therefore equivalent to the case (b).
Similarly, the case (B2) implies the case (c) of (5.3) and conversely, in the case (c), by

Lemma 5.2 applied with x = x∗∗ and y = y∗∗, the points (x∗∗, Y2(x∗∗)) and (X2(y
∗∗), y∗∗)

belong to the set S22. The case (B2) is therefore equivalent to the case (c) of (5.3).
And similarly, the case (B3) (resp. (B4)) implies the case (d) (resp (e)), and conversely,

if (d) (resp. (e)) holds, then by Lemma 5.2 applied with x = x∗∗ and y = y∗∗ the
point (x∗∗, y∗∗) = (X1(y

∗∗), y∗∗) = (x∗∗, Y2(x
∗∗)) belongs to the set S12 (resp. the points

(x∗∗, Y2(x
∗∗)) and (X1(y

∗∗), y∗∗) belong to the set S12), and by Lemma 5.3 combined with
Lemma 4.1 and (2.10), one gets

Y1(x
∗∗) < Y2(x

∗∗), x∗∗ < x∗∗P and y∗ 6 1 < Y2(x
∗∗).

The case (d) is therefore equivalent to the case (B3), and the case (e) is equivalent to
(B4).
Similar arguments (it is sufficient to exchange the roles of x and y) show that the case
(f) is equivalent to (B5) and the case (g) is equivalent to (B6).
Now, to complete the proof of our proposition it is sufficient to show that the case (i)
of (5.3) never holds, and the case (h) is equivalent to (B7). To get this result we apply
Lemma 5.4 with (x′, y′) = (1, 1) and (x, y) = (x∗∗, y∗∗). By relations (2.9) and (2.10), we
have

x∗P 6 x∗ 6 1 6 x∗∗ 6 x∗∗P and y∗P 6 y∗ 6 1 6 y∗∗ 6 y∗∗P . (5.15)

Hence, when either (h) or (i) holds, i.e. if

X1(y
∗∗) > x∗∗ and Y1(x

∗∗) > y∗∗,
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using Lemma 5.4 with x = x∗∗, y = y∗∗ and (x′, y′) = (1, 1) we obtain

(x∗∗, y∗∗) = (1, 1) and X1(1) = Y1(1) = 1. (5.16)

The case (i) is therefore impossible and the case (h) is equivalent to (5.16). Remark
moreover that by Lemma 5.2 applied with x = x∗∗ = 1 and y = y∗∗ = 1, from (5.16) it
follows that the point (1, 1) belongs to the curve S11 and consequently, by Lemma 4.1,

∂xP (1, 1) 6 0 and ∂yP (1, 1) 6 0, (5.17)

and notice that by (5.16) and using (2.9) and (2.10),

x∗P 6 x∗ < x∗∗ = 1 and y∗P 6 y∗ < y∗∗ = 1.

Since the points (x, y) = (x∗P , Y1(x
∗
P )) and (x′, y′) = (X1(y

∗
P ), y

∗
P ) are the only points in

S11 for which ∂yP (x, y) = 0 and ∂xP (x′, y′) = 0, the last relations show that ∂xP (1, 1) 6= 0

and ∂yP (1, 1) 6= 0. Using (5.17) we conclude therefore that when (h) holds, we have also
∂xP (1, 1) < 0 and ∂yP (1, 1) < 0 and consequently the case (h) is equivalent to (B7).

6 The functional equation and the convergence domain

6.1 Sketch of the proof of Theorem 2.1

The main ideas of the proof of Theorem 2.1 are the following: By using the method of
Lyapunov functions, we first show that the series

Hj(x, y) =
∑

k=(k1,k2)∈Z2
+

g(j, k)xk1yk2 , j ∈ Z2
+ (6.1)

(and consequently, also the series (2.28) and (2.29)) converge on a suitable polycircular
set Ω(Θ) closed to the points (xd, 0) and (0, yd). This is a subject of Proposition 6.1 below.
With this preliminary result, we will be able to get the first assertion of Theorem 2.1
and to introduce on the set Ω(Θ), the functional equation (2.30) (see Proposition 6.3).
Next, we show that the functions at the right hand side of (2.30) are analytic in the
set {(x, y) ∈ Ω(Γ) : |x| < xd, |y| < yd}, and we extend in this way, first the function
(x, y) 7→ Rj(x, y) = Q(x, u)hj(x, y) and next the function (x, y) 7→ hj(x, y) as analytic
functions to the set {(x, y) ∈ Ω(Γ) : |x| < xd, |y| < yd}.
Definition 8. If one of the cases (B0)–(B2) holds, we define Θ as the logarithmically
convex hull of the union of the two rectangles [0, xd[×[0, Y1(xd)[ and [0, X1(yd)[×[0, yd[

(see Figure 10):

Θ = LogCH
{(

[0, xd[×[0, Y1(xd)[
)
∪
(
[0, X1(yd)[×[0, yd[

)}
. (6.2)

In the case when one of the assertions (B3)–(B6) holds, we let

Θ = [0, xd[×[0, yd[. (6.3)

Proposition 6.1. Under the hypotheses (A1)–(A4), the series (6.1) converges on the set

Ω(Θ) = {(x, y) ∈ C2 : (|x|, |y|) ∈ Θ}. (6.4)

In the case when the random walk (Z(n)) is positive recurrent, this statement follows
from the results of Miyazawa [26]. In Section 6.2, we give another proof of this statement
by using the method of Lyapunov functions. Our proof is valid both for positive recurrent
and for transient random walks.
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Since for any j ∈ Z2
+, and (x, y) ∈]0,+∞[2,

xyhj(x, y) 6 Hj(x, y), xh1j(x) = Hj(x, 0) 6 Hj(x, y) and yh2j(y) = Hj(0, y) 6 Hj(x, y),

as a straightforward consequence of Proposition 6.1, one gets

Corollary 6.2. Under the hypotheses (A1)–(A4), for any j ∈ Z2,
i) the series (2.29) converge (and consequently the functions h1j and h2j are analytic)

respectively in B(0, xd) and in B(0, yd), with xd and yd defined respectively by (2.21) and
(2.22);

ii) the series (2.28) converge on the set Ω(Θ) and consequently, the function hj is
analytic in Ω(Θ).

With this results, using classical arguments (see Section 6.3) we obtain

Proposition 6.3. Under the hypotheses (A1)–(A4), for any j ∈ Z2 and (x, y) ∈ Ω(Θ), the
functional equation (2.30) holds.

By the definition of the points xd and yd, see relations (2.21) and (2.22), and of the
sets Θ and Γ, when either (B3) or (B4) holds, we have the relations

xd = x∗∗, yd = Y2(xd) and Θ = [0, xd[×[0, Y2(xd)[= {(x, y) ∈ Γ : x < xd, y < yd},

and when either (B5) or (B6) holds,

yd = y∗∗, xd = X2(yd) and Θ = [0, X2(yd)[×[0, xd[= {(x, y) ∈ Γ : x < xd, y < yd}.

Hence, when one of the case (B3)–(B6) occurs, Theorem 2.1 follows from Corollary 6.2
and Proposition 6.3.

When one of the cases (B0)–(B2) occurs, the first assertion of Theorem 2.1 follows
from Corollary 6.2 as well, and to prove the second assertion of Theorem 2.1 the following
proposition will be used.

Proposition 6.4. If the conditions (A1)–(A3) are satisfied and one of the assertions
(B0)–(B2) holds, then

{(x, y) ∈ Γ : x < xd, y < yd} ⊂ Θ ∪ {(x, y) ∈
◦
D : x < xd, y < yd}. (6.5)

With this lemma and using our previous results we will be able to show first that the
function (x, y)7→hj(x, y) can be continued to the set Ωd(γ) as a meromorphic function,
and next to show that it is in fact analytic in this set.

The proof of Theorem 2.1 is organized as follows:

– Proposition 6.1 is proved in Section 6.2;

– Section 6.3 is devoted to the proof of Proposition 6.3;

– the proof of Proposition 6.4 is given in Section 6.4;

– the proof of Theorem 2.1 is completed in Section 6.5.

6.2 Proof of Proposition 6.1

6.2.1 The main idea of the proof

To main tool of our proof of this proposition is the method of Lyapunov functions. We

show that for any (x1, y1) ∈
◦
D ∩

◦
D1 and (x2, y2) ∈

◦
D ∩

◦
D2 such that

x1 > x2 and y1 < y2, (6.6)
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the function f : Z2
+ → [0,+∞[ defined by

f(k1, k2) = xk1
1 y

k2
1 + xk1

2 y
k2
2 , (k1, k2) ∈ Z2

+. (6.7)

satisfies
Ej

(
f(Z(1))

)
6 θf(j), ∀j ∈ Z2

+\E, (6.8)

with some 0 < θ < 1 and for some finite subset E ⊂ Z2
+. This is a subject of lemma 6.1

below. With this result we are able to prove that for any two points (x1, y1) ∈
◦
D ∩

◦
D1 and

(x2, y2) ∈
◦
D ∩

◦
D2 satisfying (6.6), the series∑

k=(k1,k2)∈Z2
+\{(0,0)}

g(j, k)(xk1
1 y

k2
1 + xk1

2 y
k2
2 ) (6.9)

converges, this is a subject of Lemma 6.2. Next, to prove that the series (6.1) converge

for any (x, y) ∈ Θ, we show that for any (x, y) ∈ Θ, there are two points (x1, y1) ∈
◦
D ∩

◦
D1

and (x2, y2) ∈
◦
D ∩

◦
D2 satisfying (6.6) and such that

xk1yk2 6 xk1
1 y

k2
1 + xk1

2 y
k2
2 , ∀k = (k1, k2) ∈ Z2

+. (6.10)

6.2.2 Preliminary results for the proof of Proposition 6.1

We begin our analysis with the following statements.

Lemma 6.1. Suppose that the conditions (A1)–(A3) are satisfied and let two points

(x1, y1) ∈
◦
D∩

◦
D1 and (x2, y2) ∈

◦
D∩

◦
D2 satisfy (6.6). Then for some finite set E ⊂ Z2

+, the
function f : Z2

+ →]0,+∞[ defined by (6.7) satisfies (6.8) with some 0 < θ < 1.

Proof. Consider two functions f1, f2 : Z2
+ → R defined by

f1(j1, j2) = xj11 y
j2
1 , and f2(j1, j2) = xj12 y

j2
2 , ∀(j1, j2) ∈ Z2

+,

and let
θ̃ = max{φ1(x1, y1), P (x1, y1), φ2(x2, y2), P (x2, y2)}.

Then 0 < θ̃ < 1 because (x1, y1) ∈
◦
D ∩

◦
D1 and (x2, y2) ∈

◦
D ∩

◦
D2, and moreover, for any

(j = (j1, j2) ∈ Z2
+\{0},

E(j1,j2)(f1(Z(1)) 6

{
θ̃f1(j1, j2), if j1 6= 0,

φ2(x1, y1)y
j2
1 , if j1 = 0,

and

E(j1,j2)(f2(Z(1)) 6

{
θ̃f2(j1, j2), if j2 6= 0,

φ1(x2, y2)x
j1
2 if j2 = 0.

For the function f = f1 + f2, we obtain therefore that for any j = (j1, j2) ∈ Z2
+\{0},

E(j1,j2)(f(Z(1)) 6


θ̃f(j1, j2) if j1 > 0 and j2 > 0

θ̃yj22 + φ2(x1, y1)y
j2
1 if j1 = 0

θ̃xj11 + φ1(x2, y2)x
j1
2 if j2 = 0.

(6.11)

Since under hypotheses of our lemma, x1 > x2 > 0 and 0 < y1 < y2, we have moreover

lim
j1

(x2/x1)
j1 = lim

j2→∞
(y1/y2)

j2 = 0,
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and consequently, for any ε > 0 there is Nε > 0 such that for any (j1, j2) ∈ Z2
+ with

j2 > Nε and j1 = 0,

θ̃yj22 + φ2(x1, y1)y
j2
1 6 (θ̃ + ε)yj22 = (θ̃ + ε)f2(j1, j2) 6 (θ̃ + ε)f(j1, j2)

and similarly, for any (j1, j2) ∈ Z2
+ with j1 > Nε and j2 = 0,

θ̃xj11 + φ1(x2, y2)x
j1
2 6 (θ̃ + ε)f(j1, j2).

Hence, for ε > 0 such that θ̃ + ε < 1, letting

E = {(j1, 0) ∈ Z2
+ : j1 6 Nε} ∪ {(0, j2) ∈ Z2

+ : j2 6 Nε}

one gets (6.8) with θ = θ̃ + ε < 1.

Lemma 6.2. Under the hypotheses of Lemma 6.1, for any j ∈ Z2
+, the series (6.9)

converges.

Proof. Indeed, consider two points (x1, y1) ∈
◦
D∩

◦
D1 and (x2, y2) ∈

◦
D∩

◦
D2 satisfying (6.6)

and let the function f : Z2
+ →]0,+∞[ be defined by (6.7). Then by Lemma 6.1, for some

finite set E ⊂ Z2
+ and some positive number θ < 1, (6.8) holds. Without any restriction

of generality, we will suppose that E contains the origin (0, 0). Denote by τE the first
time when the process (Z(n)) hits the set E:

τE = inf{n > 1 : Z(n) ∈ E},

and let

gE(j, k) =

∞∑
n=0

Pj(Z(n) = k, τE > n), j ∈ Z2
+\E, k ∈ Z2

+.

Then by (6.8), for any j ∈ Z2
+\E,

Ej(f(Z(n)); τE > n) 6 θnf(j), ∀n ∈ N,

and consequently,∑
k∈Z2

+

gE(j, k)
(
xk1
1 y

k2
1 + xk1

2 y
k2
2

)
=
∑
k∈Z2

+

gE(j, k)f(k) =

∞∑
n=1

Ej

(
f(Z(n)); τE > n

)
6 f(j)(1−θ)−1.

(6.12)
Using the identity

g(j, k) = gE(j, k) +
∑

`∈E\{0}

∑
m∈Z2

+\E

g(j, `)P`(Z(1) = m)gE(m, k)

from the above relation it follows that for any j ∈ Z2
+\E,∑

k=(k1,k2)∈Z2
+

g(j, k)
(
xk1
1 y

k2
1 + xk1

2 y
k2
2

)
6

1

1− θ

(
f(j) +

∑
`∈E\{0}

∑
m∈Z2

+\E

g(j, `)P`(Z(1) = m)f(m)
)

6
1

1− θ

(
f(j) +

∑
`∈E\{0}

g(j, `)E`(f(Z(1)))
)
.

Since the set E is finite and under the hypotheses (A1) and (A3), E`(f(Z(1))) < +∞ for
any ` ∈ E, this proves that the series (6.9) converges for any j ∈ Z2

+\E. To prove that
this series converges for j ∈ E, it is sufficient now to notice that for j ∈ E,

g(j, k) =
∑

`∈E\{0}

g(j, `)
∑

m∈Z2
+\E

P`(Z(1) = m)gE(m, k),
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and consequently,∑
k=(k1,k2)∈Z2

+

g(j, k)
(
xk1
1 y

k2
1 + xk1

2 y
k2
2

)
6

∑
`∈E\{0}

g(j, `)
∑

m∈Z2
+\E

P`(Z(1) = m)
∑

k=(k1,k2)∈Z2
+

gE(m, k)
(
xk1
1 y

k2
1 + xk1

2 y
k2
2

)
< +∞.

Lemma 6.3. Suppose that the conditions (A1)–(A3) are satisfied and let x̃ ∈]x∗, x∗∗[ and
ỹ ∈]y∗, y∗∗[ be such that

x̃ > X1(ỹ) and ỹ > Y1(x̃). (6.13)

Then for any y1 > Y1(x̃) closed enough to Y1(x̃) and any x2 > X1(ỹ) closed enough
to X1(ỹ), the points (x1, y1) = (x̃, y1) and (x2, y2) = (x2, ỹ) satisfy the conditions of
Lemma 6.1.

Proof. Indeed, by Lemma 4.2, for x̃ ∈]x∗, x∗∗[ and ỹ ∈]y∗, y∗∗[, each of the line segments
[Y1(x̃), Ỹ2(x̃)] = {y > 0 : (x̃, y) ∈ D ∩D1} and [X1(ỹ), X̃2(ỹ)] = {x > 0 : (x, ỹ) ∈ D ∩D2}
has a non-zero length, and for any y1 and x2 such that Y1(x̃) < y1 < Ỹ2(x̃) and
X1(ỹ) < x2 < X̃2(ỹ), one has

(x̃, y1) ∈
◦
D ∩

◦
D1, and (x2, ỹ) ∈

◦
D ∩

◦
D2.

Using (6.13), this proves that for any y1 and x2 such that Y1(x̃) < y1 < min{Ỹ2(x̃), ỹ} and
X1(ỹ) < x2 < min{x̃, X̃2(ỹ)}, the points (x1, y1) = (x̃, y1) and (x2, y2) = (x2, ỹ) satisfy the
conditions of Lemma 6.1.

Now we are ready to get

Lemma 6.4. Suppose that the conditions (A1)–(A4) are satisfied and let

Θ0 =


(
[0, xd[×[0, Y1(xd)[

)
∪
(
[0, X1(yd)[×[0, yd[

)
if either (B0), or (B1) or (B2) holds

[0, xd[×[0, Y2(xd)[ if either (B3) or (B4) holds

[0, X1(yd)[×[0, yd[ if either (B5) or (B6) holds.
(6.14)

Then for any (x, y) ∈ Θ0, there are two points (x1, y1) and (x2, y2) satisfying the conditions
of Lemma 6.1 and relations (6.10).

Proof. Suppose first that one of the cases (B0), (B1) or (B2) occurs and let (x, y) ∈
[0, xd[×[0, Y1(xd)[. The definitions of the cases (B0), (B1), (B2) and of the points xd and
yd (see Proposition 2.2 and relations (2.33), (2.34)), give

max{X1(yd), x} < xd = x∗∗ and y < Y1(xd) < yd = y∗∗,

and by (2.9),
x∗P 6 x∗ < x∗∗ = xd and y∗P 6 y∗ < y∗∗ = yd.

Since the functions X1 : [y∗P , y
∗∗
P ] → [x∗P , x

∗∗
P ] and Y1 : [x∗P , x

∗∗
P ] → [y∗P , y

∗∗
P ] are continuous,

it follows that for any x̃ ∈]max{x∗, x}, xd[ and ỹ ∈]y∗, yd[ closed enough respectively to
xd and yd one has

0 6 x < x̃, 0 6 y < Y1(x̃), (6.15)

X1(ỹ) < x̃ and Y1(x̃) < ỹ. (6.16)

By Lemma 6.3, from (6.16) it follows that for y1 > Y1(x̃) and x2 > X1(ỹ) closed enough
respectively to Y1(x̃) and X1(ỹ), the points (x1, y1) = (x̃, y1) and (x2, y2) = (x2, ỹ) satisfy
the conditions of Lemma 6.1, and using (6.15) one gets (6.10).
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When one of the cases (B0), (B1) or (B2) holds and (x, y) ∈ [0, xd[×[0, Y1(xd)[, our
lemma is therefore proved. For (x, y) ∈ [0, X1(yd)[×[0, yd[, the proof is quite similar.

Suppose now that either (B3) or (B4) holds. The definitions of the cases (B3) and
(B4) and of the points xd and yd (see Proposition 2.2 and relations (2.33), (2.34)), and by
(2.9), give

x∗P 6 x∗ < x∗∗ = xd 6 X1(y
∗∗), (6.17)

y∗ 6 1 < yd = Y2(xd) 6 y∗∗, (6.18)

(X1(y
∗∗), y∗∗), (x∗∗, Y2(x

∗∗)) = (xd, yd) ∈ S12, (6.19)

and

Y1(xd) < Y2(xd). (6.20)

From the definition of S12 and relation (6.19), it follows that X1(y
∗∗) 6 X1(y

∗∗
P ) and

consequently, by (6.17),

x∗P 6 x∗ < xd 6 X1(y
∗∗) 6 X1(y

∗∗
P ). (6.21)

Consider now a point (x, y) ∈ Θ0. Then by (6.14) and using (6.21), (6.18) and (6.20),

0 6 max{x∗, x} < xd 6 X1(y
∗∗
P ) and 0 6 max{Y1(xd), y∗, y} < yd = Y2(xd) 6 y∗∗

(6.22)
Since the function Y2 is strictly increasing on the line segment [x∗P , X1(y

∗∗
P )] and the

functions Y1 and Y2 are continuous on [x∗P , x
∗∗
P ], it follows that for any x̂ and x̃ closed

enough to xd and such that

max{x∗, x} < x̂ < x̃ < x∗∗ = xd, (6.23)

one has

max{Y1(x̃), y∗, y} < Y2(x̂) < Y2(x̃) < Y2(xd) = yd 6 y∗∗,

Remark that because of (6.21) and (6.23), the points x̂ and x̃ belong to the line
segment [x∗P , X1(y

∗∗
P )]. Since the functions X1 : [Y1(x

∗
P ), y

∗∗
P ] → [x∗P , X1(y

∗∗
P )] and

Y2 : [x∗P , X1(y
∗∗
P )] → [Y1(x

∗
P ), y

∗∗
P ] are inverse to each other, letting ỹ = Y2(x̂) we get

therefore X1(ỹ) = x̂ and using the above relations we obtain

y∗ < ỹ = Y2(x̂) < y∗∗, Y1(x̃) < Y2(x̂) = ỹ, X1(ỹ) = x̂ < x̃, (6.24)

x < x̂ = X1(ỹ) and y < Y2(x̂) = ỹ. (6.25)

By Lemma 6.3, from (6.23) and (6.24) it follows that for any y1 > Y1(x̃) closed enough
to Y1(x̃) and x2 > X1(ỹ) closed enough to X1(ỹ), the points (x1, y1) = (x̃, y1) and
(x2, y2) = (x2, ỹ) satisfy the conditions of Lemma 6.1, and using moreover (6.25), we get
that for any j = (j1, j2) ∈ Z2

+,

xj1yj2 6 (X1(ỹ))
j1 ỹj2 6 xj12 y

j2
2 6 xj11 y

j2
1 + xj12 y

j2
2 .

Hence, in the case when either (B3) or (B4) holds, Lemma 6.3 is also proved. To prove
this lemma the case when either (B5) or (B6) holds, it is sufficient to exchange the roles
of x and y.
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6.2.3 Proof of Proposition 6.1

This proposition is a consequence of Lemma 6.2 and Lemma 6.3: by Lemma 6.3, for
any (x, y) ∈ Θ0, there are two points (x1, y1) and (x2, y2) for which the conditions of
Lemma 6.1 are satisfied and relations (6.10) hold. By Lemma Lemma 6.2 and using
(6.10), this proves that∑

k=(k1,k2)∈Z2
+

g(j, k)xk1yk2 6
∑

k=(k1,k2)∈Z2
+

g(j, k)
(
xk1
1 y

k2
1 + xk1

2 y
k2
2

)
< +∞.

Hence, for any (x, y) ∈ Θ0, the series (6.1) converge. Since the setΘ is the logarithmically
convex hull of the set Θ0, and the domain of convergence of power series with center 0
is always logarithmically convex, this proves that the series (6.1) converge in Ω(Θ).

6.3 Proof of Proposition 6.3

Consider first the case when j = (j1, j2) 6= (0, 0). By Proposition 6.1, the series (6.1)
converge on the set Ω(Θ). Hence, for any (x, y) ∈ Ω(Θ) with non-zero x and y, by the
Fubini theorem and using the Markov property, one gets

Hj(x, y) = xj1yj2 +
∑

k=(k1,k2)∈Z2
+

∞∑
n=1

Pj(Z(n) = k, τ0 > n)xk1yk2

= xj1yj2 +
∑

`∈Z2
+\{(0,0)}

g(j, `)E`

(
xZ1(1)yZ2(1), τ0 > 1

)
(6.26)

Because of Assumptions (A1)–(A3), for (x, y) ∈ Ω(Θ) with x 6= 0 and y 6= 0, we have

E`

(
xZ1(1)yZ2(1), τ0 > 1

)
=


x`1y`2P (x, y)− µ(−1,−1)1{(1,1)}(`1, `2) if `1 > 0 and `2 > 0,

x`1 φ1(x, y)− µ1(−1, 0)1{(1,0)}(`1, `2) if `1 > 0 and `2 = 0,

y`2 φ2(x, y)− µ2(0,−1)1{(0,1)}(`1, `2) if `1 = 0 and `2 > 0.

Using these relations in (6.26), for (x, y) ∈ Ω(Θ) with non-zero x and y, one gets therefore

Hj(x, y) = xj1yj2 − µ(−1,−1)g(j, (1, 1))− µ1(−1, 0)g(j, (1, 0))− µ2(0,−1)g(j, (0, 1))

+ P (x, y)
∑

`=(`1,`2)∈Z2
+:

`1>0, `2>0

g(j, `)x`1y`2

+ φ1(x, y)

∞∑
`1=1

g(j, (`1, 0))x
`1

+ φ2(x, y)

∞∑
`2=1

g(j, (0, `2))y
`2

or equivalently,

Hj(x, y) = Lj(x, y) + xyP (x, y)hj(x, y) + xφ1(x, y)h1j(x) + yφ2(x, y)h2j(y)

with

Lj(x, y) = xj1yj2 − µ(−1,−1)g(j, (1, 1))− µ1(−1, 0)g(j, (1, 0))− µ2(0,−1)g(j, (0, 1))

= xj1yj2 − Pj(τ0 < +∞).
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Since clearly Hj(x, y) = xyhj(x, y) + xh1j(x) + yh2j(y), the last relation proves (2.30) for
any (x, y) ∈ Ω(Θ) and j = (j1, j2) ∈ Z2

+\{(0, 0)}. To get (2.30) for (j1, j2) = (0, 0), it is
sufficient now to notice that for any (x, y) ∈ Ω(Θ),

H(0,0)(x, y) =
∑

(j1,j2)∈Z2
+\{(0,0)}

P(0,0)

(
Z(1) = (j1, j2)

)
Hj(x, y)

and ∑
(j1,j2)∈Z2

+\{(0,0)}

P(0,0)

(
Z(1) = (j1, j2)

)
Lj(x, y) = E(0,0)

(
xZ1(1)yZ2(1); τ0 > 1

)
− P(0,0)(1 < τ0 < +∞)

= φ0(x, y)− P(0,0)(τ0 < +∞).

6.4 Proof of Proposition 6.4

Suppose that one of the cases (B0)-(B2) holds. Then by Proposition 2.2 and the
definition of the points xd, yd, the following relations hold

xd = x∗∗ > X1(yd), yd = y∗∗ > Y1(xd), (6.27)

and the set Θ is defined as a logarithmically convex hull of the set

([0, xd[×[0, Y1(xd)[) ∪ ([0, X1(yd)[×[0, yd[).

The points (x1, y2) = (xd, Y1(xd)) and (x2, y2) = (X1(yd), yd) are therefore on the boundary
of the set Θ and also on the boundary of the set D. Since the set Θ is logarithmically
convex and the set D is strictly logarithmically convex, it follows that for any 0 < θ < 1,

the point (xθ, yθ), with xθ = xθ1x
1−θ
2 and yθ = yθ1y

1−θ
2 , belongs to the set Θ ∩

◦
D, and

consequently,
Y1(xθ) < yθ < Y2(xθ).

By the definition of the set Θ, for any 0 < θ < 1 and y ∈ [0, yθ[, the point (xθ, y) is in

Θ, and for any y ∈]Y1(xθ), Y2(xθ)[ and the point (xθ, y) is in
◦
D. Consequently, for any

0 < θ < 1 and y ∈ [0, Y2(xθ)], the point (xθ, y) belongs to the set Θ ∪
◦
D, or equivalently,

that for any y > 0,

y > Y2(xθ) whenever (xθ, y) 6∈ Θ ∪
◦
D. (6.28)

Consider now a point (x̂, ŷ) ∈ [0,+∞[2 with x̂ < xd and ŷ < yd and such that

(x̂, ŷ) 6∈ (Θ ∪
◦
D). Then x̂ > X1(yd) (because otherwise (x̂, ŷ) ∈ [0, X1(yd)[×[0, yd)[⊂ Θ),

and consequently for some 0 < θ 6 1, x̂ = xθ = xθd(X1(yd))
1−θ. Hence, by (6.28), we get

ŷ > Y2(x̂), and with similar arguments (it is sufficient to exchange the roles of x and y) we
obtain x̂ > X2(ŷ). By Lemma 5.2, these inequalities show that (x̂, Y2(x̂)), (X2(ŷ), ŷ) ∈ S22.
Hence, if we suppose that for some (x′, y′) ∈ D, the inequalities x̂ 6 x′ and ŷ 6 y′ hold,
then using the similar arguments as in the proof of Lemma 5.4, we will obtain that
x̂ = x′ = X2(ŷ) and ŷ = y′ = Y2(x̂). With the definition of the set Γ, this proves that
(x̂, ŷ) 6∈ Γ.

6.5 Proof of Theorem 2.1

Now, we are ready to complete the proof of Theorem 2.1. In the cases (B3)–(B6),
Theorem 2.1 follows from Corollary 6.2 and Proposition 6.3, and in the cases (B0)–(B2),
the first assertion of Theorem 2.1 follows from Corollary 6.2 as well.To complete the proof
of Theorem 2.1 we have therefore to prove its second assertion in the cases (B0)–(B2).
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We know that, for any j ∈ Z2
+, the function (x, y) 7→ Lj(x, y) is analytic in Ω(Γ),

the functions (x, y) 7→ Q(x, y) = xy(1 − P (x, y), (x, y) 7→ ψ1(x, y) = x(φ1(x, y) − 1) and
(x, y) 7→ ψ2(x, y) = y(1− φ2(x, y)) can be analytically continued to the set Ω(Γ), and by
Corollary 6.2, the functions h1j and h2j are analytic respectively in the discs B(0, xd)

and B(0, yd). Hence for any j ∈ Z2
+, the function (x, y) 7→ Lj(x, y) + ψ1(x, y)h1j(x) +

ψ2(x, y)h2j(y) is analytic in the set {(x, y) ∈ Ω(Γ) : |x| < xd, |y| < yd}. Since by
Proposition 6.3, on the set Ω(Θ),

Q(x, y)hj(x, y) = Lj(x, y) + ψ1(x, y)h1j(x) + ψ2(x, y)h2j(y),

and since clearly Θ ⊂ {(x, y) ∈ Γ : x < xd, y < yd}, we conclude therefore that the
functions (x, y) 7→ Q(x, y)hj(x, y) can be analytically continued to the set

Ωd(Γ)
def.
= {(x, y) ∈ Ω(Γ) : |x| < xd, |y| < yd}

and the function (x, y) 7→ hj(x, y) can be continued as a meromorphic function

hj(x, y) =
Lj(x, y) + ψ1(x, y)h1j(x) + ψ2(x, y)h2j(y)

Q(x, y)
.

to the set Ωd(Γ). Since

– by Proposition 6.1, for any j ∈ Z2
+, the function hj is analytic in Ω(Θ);

– for any (x, y) ∈ Ω(
◦
D), by the definition of the set D, we have |P (x, y)| 6 P (|x|, |y|) <

1 and, consequently, Q(x, y) 6= 0;

– and by Proposition 6.4, the set Ωd(Γ) is included to the union of the open sets Ω(Θ)

and Ω(
◦
D),

we conclude therefore that the function hj can be analytically continued to the set Ωd(Γ).

7 Singularity analysis of generating functions

This section is devoted to the proof of Theorem 2.3. Recall that the case (B7) will not
be considered. See Section 2.2. Throughout this section we will assume therefore that

Assumption (A4) one of the cases (B0)–(B6) holds.

7.1 The main ideas and the sketch of the proof

The main steps of our proof are the following. First, we prove the light version of
the assertion (i)–(v) of this theorem, i.e. we get, in each of the corresponding cases,
relations (2.40), (2.44) (2.42), (2.46), (2.48), (2.50), (2.52), and (2.54) with positive
constants given by (2.41), (2.43), (2.45), (2.47), (2.49), (2.51), (2.53). This is a subject
of Propositions 7.10 and 7.12 and Lemma 7.6 below.

With these results we will be able to show that in each of the assertions (i)–(vi) of our
theorem, the corresponding function κi, κ̃i or κ(x̂,ŷ) is non-negative on Z2

+.
Second, in Proposition 7.13 below, we prove that in each of the assertions (i)–(vi),

the corresponding function κi, κ̃i or κ(x̂,ŷ) is harmonic for the random walk (Zτ0(n)) and
positive everywhere in the set Z2

+\E0. With this statement, the proof of our theorem will
be completed.

The first step of the proof of the last assertion of Theorem 2.3 is given by Lemma 7.6.
This result is obtained as a traightforward consequence of Theorem 2.1.
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The first step of the proof of the assertions (i)–(v) of Theorem 2.3 proof is the most
difficult. Its main idea is the following: we extend the function Y1 as an analytic function
to some domain of C large enough and we inject next y = Y1(x) to the functional equation
(2.30) in order to get the identity

Lj(x, Y1(x)) + ψ1(x, Y1(x))h1j(x) + ψ2(x, Y1(x))h2j(Y1(x)) = 0. (7.1)

Using this result we will be able to extend beyond the point xd first the function
x 7→ ψ1(x, Y1(x))h1j(x) = (φ1(x, Y1(x)− 1)Hj(x, 0) and next the function x 7→ Hj(x, 0).

Remark that in a difference with nearest neighbor random walks, we have no explicit
form of the function Y1. Moreover, by the implicit function theorem, this function
can be extended only to some neighborhood of the interval ]x∗P , x

∗∗
P [ in C which is

clearly not sufficient for our purpose. The first difficulty of our proof is therefore to
extend the function Y1 to some sufficient for our analysis domain of C. We perform
this first step of our proof by using the probabilistic representation of the function
Y1 : [x∗P , x

∗∗
P ] → [y∗P , y

∗∗
P ] obtained in [16]. This is a subject of Proposition 7.1 below. In

this statement, for some ε > 0, we extend the function Y1 as an analytic function to the
set

◦
Uε = C(x∗P , x

∗∗
P + ε)\[x∗∗P , x∗∗P + ε[,

and a continuous function on the set

Uε = C(x∗P , x
∗∗
P + ε)\]x∗∗P , x∗∗P + ε[ =

◦
Uε ∪ {x∗∗P }. (7.2)

It is proved moreover that the extended function Y1 satisfies the identity

Q(x, Y1(x)) = 0, (7.3)

on the set Uε, and that, on the closed annulus C(x∗P , x
∗∗
P ), the following relations holds

|Y1(x)| < Y1(|x|) whenever x 6= |x|. (7.4)

Another difficulty is that by Theorem 2.1, we know only that the function y 7→ h2j(y) is
analytic in B(0, yd), and the function (x, y) 7→ hj(x, y) is analytic in {(x, y) ∈ Ω(Γ) : |x| <
xd, |y| < yd}. Hence, we can inject y = Y1(x) to the functional equation (2.30) only
for those x ∈ B(0, xd) for which |Y1(x)| < yd. To overcome this difficulty, we use the
inequality (7.4). With this inequality, we are able to show that for some δ > 0, the
function x 7→ (x, Y1(x)) maps the annulus C(xd − δ, xd) = {x ∈ C : xd − δ < |x| < xd}
to the set {(x, y) ∈ Ω(Γ) : |x| < xD, |y| < yd} where the functions (x, y) 7→ Hj(x, y),
(x, y) 7→ Lj(x, y)+ψ2(x, y)h2j(y) and (x, y) 7→ ψ1(x, y)h1j(x) are analytic. This is a subject
of Proposition 7.4 below.

In this way, on the annulus C(xd−δ, xd), by letting in the functional equation (2.30) y =

Y1(x) and using (7.3) we obtain the identity (7.1) with analytic in C(xd − δ, xd) functions
x 7→ ψ1(x, Y1(x))h1j(x) and x 7→ Lj(x, Y1(x)) and x 7→ ψ2(x, Y1(x))h2j(Y1(x)). Moreover,
when one of the cases (B0)–(B4) holds, using again the inequality (7.4), we will be able
to show that for some δ > 0, the function (x, y) 7→ Lj(x, Y1(x)) + ψ2(x, Y1(x))h2j(Y1(x)) is

analytic in C(xd−δ, xd+δ)∩
◦
Uε and continuous on C(xd−δ, xd+δ)∩Uε. Using this result

together with the identity (7.1), we will extend the function x 7→ −ψ1(x, Y1(x))h1j(x) =

(1 − φ1(x, Y1(x))Hj(x, 0) as an analytic function to the set C(xd − δ, xd + δ) ∩
◦
Uε and a

continuous function to the set C(xd − δ, xd + δ) ∩ Uε. This is a subject of Corollary 7.6
below.

Next, in Proposition 7.7, we investigate the function x 7→ 1− φ1(x, Y1(x))), and finally,
in Proposition 7.10 and Proposition 7.11 below, when one of the cases (B0)–(B4) holds,
we extend the function x 7→ Hj(x, 0) beyond the point xd.

EJP 30 (2025), paper 4.
Page 44/103

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1252
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Classification of asymptotic behaviors of Green functions

In the case when either (B5) or (B6) holds, we begin our analysis by investigating
the function h2j . With the same arguments as in the previous cases (it is sufficient to
exchange the roles of x and y) we obtain that the function h2j can be extended as an
analytic function to the set B(0, yd + δ0)\{yd}. Next we show that for some δ > 0, the
function x 7→ h2j(Y1(x)) is analytic in the set C(xd − δ, xd + δ) ∩ Uε\{xd}. And finally,
using again the identity (7.1) we extend first the function x 7→ ψ1(x, Y1(x))h1j(x) and
next the function x 7→ h1j(x) beyond the point xd. This is a subject of Proposition 7.12
below.

7.2 Analytic continuation and properties of the function x 7→ Y1(x)

We begin our analysis with the following result.

Proposition 7.1. Analytic continuation of the function Y1. Suppose the conditions
(A1) are satisfied and let µ(j) = 0 for all j ∈ Z2 with j2 < −1 (remark that we do not
need the whole condition (A2) to be satisfied). Then

i) the function Y1 is strictly convex on the line segment [x∗P , x
∗∗
P ] and for some ε > 0, it

can be extended to the set Uε as an analytic function in the set
◦
Uε and a continuous

function on the set Uε satisfying there the identity (7.3).

ii) relation (7.4) holds on the set C(x∗P , x
∗∗
P );

iii) for any x̂ ∈]X1(y
∗
P ), x

∗∗
P [, the function x 7→ (Y1(x)− Y1(x̂) does not vanish in the set

C(x̂− δ, x̂+ δ)\{x̂} for some δ > 0, and has at the point x̂ a simple zero with

d

dx
Y1(x̂) = − ∂xP (x, y)/∂yP (x, y)|(x,y)=(x̂,Y1(x̂))

> 0; (7.5)

iv) the function x 7→ Y1(x) − Y1(x
∗∗
P ) does not vanish in the set C(x∗∗P − δ, x∗∗P +

δ)\[x∗∗P , x∗∗P + δ[ for some δ > 0, and as x→ x∗∗P ,

Y1(x)− Y1(x
∗∗
P ) ∼ −c

√
x∗∗P − x and

d

dx
Y1(x) ∼

c

2
√
x∗∗P − x

(7.6)

with

c =
√
∂xP (x, y)/∂2yyP (x, y)

∣∣∣
(x,y)=(x∗∗

P ,Y1(x∗∗
P ))

> 0.

7.2.1 The main ideas and the sketch of the proof of Proposition 7.1

To prove this result, we first get a probabilistic representation of the function Y1. As
a consequence, we obtain that the function Y1 is strictly convex on the line segment
[x∗P , x

∗∗
P ] and can be continued as an analytic function to the open annulus C(x∗P , x

∗∗
P ) and

as a continuous function to the closed annulus C(x∗P , x
∗∗
P ) satisfying there the inequality

(7.4) and the identity (7.3). This is a subject of the results of Subsection 7.2.2.

Next, in Subsection 7.2.3, we extend the functions Y1 and Y2 to a neighborhood of x∗∗P
as two branches of a two-valued analytic function having a branching point x∗∗P and we
get (7.6). This result is obtained by using the implicit function theorem and the Morse
lemma.

Finally, in Subsection 7.2.4, the proof of Proposition 7.1 is completed: by using the
implicit function theorem and relations (7.4) and (7.3) on the circle {x ∈ C : |x| = x∗∗P },
we extend the function Y1 and the identity (7.3) to the whole set Uε = C(x∗P , x

∗∗
P +

ε)\]x∗∗P , x∗∗P + ε[ for some ε > 0, and we prove the two last assertions of Proposition 7.1.
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7.2.2 Probabilistic representation of the functions Y1 its consequences

Consider the homogeneous random walk (S(n) = (S1(n), S2(n)) on Z2 with transition
probabilities

Pj(S(1) = k) = µ(k − j), ∀k, j ∈ Z2,

and the first time τ1 when the random walk (S(n)) hits the set Z× {0}:

τ1 = inf{n > 1 : S(n) ∈ Z× {0}},

By Lemma 2.2 of [16]

Lemma 7.1. Under the hypotheses of Proposition 7.1, for any j = (j1, j2) ∈ Z×N∗ and
x ∈ [x∗P , x

∗∗
P ],

Ej

(
xS1(τ1); τ1 < +∞

)
= xj1Y1(x)

j2 .

As a straightforward consequence of this statement one gets the following
probabilistic representation of the function Y1:

Corollary 7.2. Under the hypotheses (A1) and (A2), for any x ∈ [x∗P , x
∗∗
P ],

Y1(x) = E(0,1)

(
xS1(τ1); τ1 < +∞

)
(7.7)

With this result we get

Lemma 7.2. Under the hypotheses of Proposition 7.1, the function Y1 is strictly convex
on [x∗P , x

∗∗
P ] and can be extended to the set C(x∗P , x

∗∗
P ) as a function

Y1(x) =
∑
k1∈Z

P(0,1)(S(τ1) = (k1, 0), τ1 < +∞)xk1 (7.8)

which is continuous on C(x∗P , x
∗∗
P ), analytic in C(x∗P , x

∗∗
P ) and, on the set C(x∗P , x

∗∗
P ),

satisfies the inequality (7.4) and the identity (7.3).

Proof. Indeed, by Corollary 7.2, the series∑
k1∈Z

P0,1)(S(τ1) = (k1, 0), τ1 < +∞)xk1 = E(0,1)

(
xS1(τ1); τ1 < +∞

)
(7.9)

converges and the identity (7.8) holds for any real x ∈ [x∗P , x
∗∗
P ]. Since the coefficients of

the series (7.9) are real and non-negative, it follows that this series converges also on
C(x∗P , x

∗∗
P ). Hence, by letting (7.8) for x ∈ C(x∗P , x

∗∗
P ), the function Y1 can be extended

to the set C(x∗P , x
∗∗
P ) as a function which is continuous on C(x∗P , x

∗∗
P ) and analytic in

C(x∗P , x
∗∗
P ).

To get (7.4) and to show that the function Y1 is strictly convex on [x∗P , x
∗∗
P ], we show

that all coefficients of the series (7.9) are strictly positive. For this we recall that
under our hypotheses, the random walk (S(n)) is irreducible on Z2 and hence, for any
k1 ∈ Z, there are n ∈ N and a sequence of points `0, . . . , `n ∈ Z2 with `0 = (0, 1) and∑n

i=0 `i = (k1, 0) such that

µ(`i) > 0 for any i ∈ {1, . . . , n}.

Moreover, without any restriction of generality, one can assume that for some j ∈
{1, . . . , n}, the second coordinate of each of the points `1, . . . , `j is either zero or positive,
and the second coordinate of each of the points `j+1, . . . , `n strictly negative. Then for
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any j ∈ {0, . . . , n− 1}, the second coordinate of the point `0 + · · ·+ `n is strictly positive
and consequently,

P0,1(S(τ1) = (k1, 0), τ1 < +∞) >
n∏

i=1

µ(`i) > 0.

All coefficients of f the series (7.9) are therefore strictly positive.
Since for any k1 ∈ Z, the function x 7→ P(2,0)(S(τ1) = (k1, 0), τ1 < +∞)xk1 is convex

on [x∗P , x
∗∗
P ] and the function x 7→ P(2,0)(S(τ1) = (2, 0), τ1 < +∞)x2 is strictly convex

on [x∗P , x
∗∗
P ], this proves that the function Y1 is strictly convex on [x∗P , x

∗∗
P ]. And using

moreover Proposition P7.5 of [29] we get (7.4).
Remark finally that by relation (7.4), the function x 7→ (x, Y1(x)) maps the closed

annulus C(x∗P , x
∗∗
P ) to the set

Γ1 = {(x, y) ∈ C2 : x ∈ C(x∗P , x
∗∗
P ), |y| 6 Y1(|x|)}.

Since under the hypotheses of Proposition 7.1, the function

Q(x, y) = xy −
∑

k=(k1,k2)∈N2

µ(k1 − 1, k2 − 1)xk1yk2

is analytic in a neighborhood of the set Γ1, and the function Y1 is already extended
as an analytic function to the open annulus C(x∗P , x

∗∗
P ) and as a continuous function to

the closed annulus C(x∗P , x
∗∗
P ), it follows that the function x 7→ Q(x, Y1(x)) is analytic in

C(x∗P , x
∗∗
P ) and continuous on C(x∗P , x

∗∗
P ). Since moreover the identity (7.3) holds for any

real x ∈ [x∗P , x
∗∗
P ], by the uniqueness of the analytic continuation to the set C(x∗P , x

∗∗
P )

and by continuity of the function x 7→ Q(x, Y1(x)) on C(x∗P , x
∗∗
P ), this proves that the

identity (7.3) holds also on the whole set C(x∗P , x
∗∗
P ).

7.2.3 Analytic continuation of the functions Y1 and Y2 to a neighborhood of the
branching point x∗∗P

Now, we extend the functions Y1 and Y2 to a neighborhood of x∗∗P as two branches of a
two-valued analytic function having a branching point x∗∗P and we get (7.6).

Lemma 7.3. Under the hypotheses of Proposition 7.1, for some ε > 0 small enough, the
functions Y1 and Y2 can be continued to the disk B(x∗∗P , ε) as two branches of two-valued
analytic in B(x∗∗P , ε)\{x∗∗P } function such that for any x ∈ B(x∗∗P , ε)\[x∗∗P , x∗∗P + ε],

P (x, Y1(x)) = P (x, Y2(x)) = 1, (7.10)

and there is an analytic in B(0,
√
ε) function function FY such that

Y1(x) = FY (−
√
x∗∗P − x), Y2(x) = FY (

√
x∗∗P − x) (7.11)

and
d

du
FY (u)

∣∣∣∣
u=0

=

√
∂xP (x, y)

∂2yyP (x, y)

∣∣∣∣∣
(x,y)=(x∗∗

P ,Y1(x∗∗
P ))

> 0. (7.12)

Proof. By the definition of the point x∗∗P and the functions Y1, Y2, we have

Y1(x
∗∗
P )) = Y2(x

∗∗
P ), P (x∗∗P , Y1(x

∗∗
P )) = 1,

and by Lemma 4.1,

∂yP (x, y)|(x,y)=(x∗∗
P ,Y1(x∗∗

P )) = 0, and ∂xP (x, y)|(x,y)=(x∗∗
P ,Y1(x∗∗

P )) > 0. (7.13)
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Hence, by the implicit function theorem, there are a neighborhood V of the point x∗∗P
and an analytic in a neighborhood U of Y1(x∗∗P ) function y 7→ ψ(y) such that for any
(x, y) ∈ U × V ,

P (x, y) = 1 ⇔ x = ψ(y),

ψ(Y1(x
∗∗
P )) = x∗∗P ,

d

dy
ψ(y)

∣∣∣∣
y=Y1(x∗∗

P )

= 0 and

d2

dy2
ψ(y)

∣∣∣∣
y=Y1(x∗∗

P )

= −
∂2yyP (x, y)

∂xP (x, y)

∣∣∣∣∣
(x,y)=(x∗∗

P ,Y1(x∗∗
P ))

< 0,

where the last relation follows from the second relation of (7.13) because under
the hypotheses (A1), the real valued function y 7→ P (x∗∗P , y) is strictly convex in a
neighborhood of Y1(x∗∗P ). Using the Morse lemma we conclude therefore that for some
neighborhood Ũ ⊂ U of Y1(x∗∗P ), there is a C-diffeomorphism ω from Ũ to a neighborhood
Ṽ of 0, with

ω(Y1(x
∗∗
P )) = 0 and

d

dy
ω(y)

∣∣∣∣
y=Y1(x∗∗

P )

=

√
∂2

∂y2P (x, y)

∂xP (x, y)

∣∣∣∣∣∣
(x,y)=(x∗∗

P ,Y1(x∗∗
P ))

(7.14)

such that Ṽ + x∗∗P ⊂ V and for any (x, y) ∈ (Ṽ + x∗∗P )× Ũ ,

P (x, y) = 1 ⇔ x = x∗∗P − ω2(y).

Without any restriction of generality, one can assume that ω(Ũ) = Ṽ = B(0,
√
ε) with

ε > 0 small enough. Then for x ∈ B(x∗∗P , ε)\[x∗∗P , x∗∗P + ε], and y ∈ Ũ , from the above
relation it follows that

P (x, y) = 1 ⇔
(
ω(y) =

√
x∗∗P − x or ω(y) = −

√
x∗∗P − x

)
⇔

(
y = ω−1(

√
x∗∗P − x) or y = ω−1(−

√
x∗∗P − x)

)
with the square root function √ analytic in C\]−∞, 0]. Since the inverse to ω function

ω−1 is analytic in B(0,
√
ε), and since for real x ∈ [x∗P , x

∗∗
P ] and y > 0,

P (x, y) = 1 ⇔
(
y = Y1(x) or y = Y2(x)

)
we conclude therefore that the functions Y1 and Y2 can be extended to the set
B(x∗∗P , ε)\[x∗∗P , x∗∗P + ε] as analytic functions such that either

Y1(x) = ω−1(
√
x∗∗P − x) and Y2(x) = ω−1(−

√
x∗∗P − x), ∀x ∈ B(x∗∗P , ε)\[x∗∗P , x∗∗P + ε],

or

Y1(x) = ω−1(−
√
x∗∗P − x) and Y2(x) = ω−1(

√
x∗∗P − x), ∀x ∈ B(x∗∗P , ε)\[x∗∗P , x∗∗P + ε].

These relations show that the function ω−1 is real valued on the interval ] −
√
ε,
√
ε[,

and hence, by the second relation of (7.14), it is strictly increasing in a neighborhood
of 0. Since the function Y1 is increasing on the interval [X1(y

∗), x∗∗P ] and the function
Y2 is decreasing on the interval [X1(y

∗), x∗∗P ], it follows that (7.10) and (7.11) hold with
FY = ω−1. Relation (7.12) follows from (7.14).
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7.2.4 Analytic continuation of the function Y1 to the set C(x∗P , x
∗∗
P +ε)\[x∗∗P , x∗∗P +ε]

Now we extend the function Y1 and the identity (7.3) to the set C(x∗P , x
∗∗
P +ε)\[x∗∗P , x∗∗P +ε]

for some small ε > 0.

Lemma 7.4. Under the hypotheses of Proposition 7.1, for some ε > 0 small enough, the
function x 7→ Y1(x) can be analytically continued to the set C(x∗P , x

∗∗
P + ε)\[x∗∗P , x∗∗P + ε[,

and satisfies there the identity (7.3).

Proof. By Lemma 7.2, the function Y1 is already extended to the closed annulus C(x∗P , x
∗∗
P )

as an analytic function in C(x∗P , x
∗∗
P ) and a continuous function on C(x∗P , x

∗∗
P ) satisfying

there the identity (7.3), and by Lemma 7.3, for some ε > 0, the function Y1 is also already
analytically continued to the set B(x∗∗P , ε)\[x∗∗P , x∗∗ + ε]. Hence, to prove this lemma, it is
sufficient to show that the function Y1 can be analytically continued to a neighborhood
of the set {x ∈ C : |x| = x∗∗P , |x| 6= x∗∗P }. In order to get this result, we use the implicit
function theorem.

By Lemma 7.2, Q(x̃, Y1(x̃)) = 0 for any point x̃ ∈ C with |x̃| = x∗∗P and under the
hypotheses of Proposition 7.1, the function Q is analytic in a neighborhood of (x̃, Y1(x̃)).
Hence, by the implicit function theorem, it is sufficient to show that for any such a point
x̃,

∂yQ(x̃, Y1(x̃)) 6= 0 whenever x̃ 6= x∗∗P . (7.15)

To get this relation, we let us remark that according to the definition (2.24) of the
function Q and using (7.4), for any point x̃ ∈ C with |x̃| = x∗∗P and such that x̃ 6= x∗∗P , one
has

|x̃− ∂yQ(x̃, Y1(x̃))| 6
∑
k1∈Z

∞∑
k2=0

(k2 + 1)µ(k1, k2)(x
∗∗
P )k1+1|Y1(x̃)|k2

<
∑
k1∈Z

∞∑
k2=0

(k2 + 1)µ(k1, k2)(x
∗∗
P )k1+1Y1(x

∗∗
P )k2 = x∗∗P − ∂yQ(x∗∗P , Y1(x

∗∗
P ))

where

∂yQ(x∗∗P , Y1(x
∗∗
P )) = x∗∗P − x∗∗P P (x

∗∗
P , Y1(x

∗∗
P ))− x∗∗P Y1(x

∗∗
P )∂yPx

∗∗
P , Y1(x

∗∗
P )) = 0

because P (x∗∗P , Y1(x
∗∗
P )) = 1 and by Lemma 4.1, ∂yP (x∗∗P , Y1(x

∗∗
P )) = 0. Hence, for any

x̃ ∈ C with |x̃| = x∗∗P and such that x̃ 6= x∗∗P ,

|∂yQ(x̃, Y1(x̃))| > |x̃| − |x̃− ∂yQ(x̃, Y1(x̃))| = x∗∗P − |x̃− ∂yQ(x̃, Y1(x̃))| > 0

and consequently, (7.15) holds.

7.2.5 Proof of Proposition 7.1

The first two assertions of Proposition 7.1 are proved by Lemma 7.2, Lemma 7.3 and
Lemma 7.4.

To prove the third assertion of Proposition 7.1, recall that by Lemma 7.2, the function
Y1 is analytic in the annulus C(x∗P , x

∗∗
P ) and satisfies there the inequality (7.4) and

remark that any point x̂ ∈]X1(y
∗
P ), x

∗∗
P [ belongs to the annulus C(x∗P , x

∗∗
P ) because

x∗P < X1(y
∗
P ) < x∗∗P . Hence, for any x̂ ∈]X1(y

∗
P ), x

∗∗
P [, the function x 7→ (Y1(x)− Y1(x̂) is

analytic in a neighborhood of the circle {x ∈ C : |x| = x̂, and by (7.4), the point x̂ is
an only zero of this function in the circle {x ∈ C : |x| = x̂. Since the zeros of analytic
functions are always isolated, this proves that for any x̂ ∈]X1(y

∗
P ), x

∗∗
P [, there is δ > 0 for

which the function x 7→ (Y1(x)− Y1(x̂) does not vanish in the set C(x̂− δ, x̂+ δ)\{x̂}.
Moreover, we have
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– by Lemma 4.1, the real valued function Y1 is strictly increasing on the interval
]X1(y

∗
P ), x

∗∗
P [,

– by Lemma 7.2, it is also strictly convex on ]X1(y
∗
P ), x

∗∗
P [,

– and by Lemma 4.1, P (x̂, Y1(x̂)) = 1 and ∂yP (x̂, Y1(x̂)) < 0.

Hence, for any x̂ ∈]X1(y
∗
P ), x

∗∗
P [, using the implicit function theorem, one gets (7.5). From

this relation, it follows moreover that for any x̂ ∈]X1(y
∗
P ), x

∗∗
P [, the point the point x̂ is a

simple zero of the function x 7→ Y1(x)− Y1(x̂). The third assertion of Proposition 7.1 is
therefore also proved.

To get the last assertion of Proposition 7.1, recall that by Lemma 7.3 and Lemma 7.4,
the function Y1 was already extended to the set Uε = C(x∗P , x

∗∗ + ε)\]x∗∗P , x∗∗P + ε[ as

an analytic function in
◦
Uε = C(x∗P , x

∗∗ + ε)\[x∗∗P , x∗∗P + ε[ and a continuous function on
Uε satisfying there the inequality (7.4). The function x 7→ Y1(x) − Y1(x

∗∗
P ) is therefore

analytic in
◦
Uε and continuous on Uε, and moreover by (7.4), the point x∗∗P is its only

zero in the circle {x ∈ C : |x| = x∗∗P }. To complete the proof of the fourth assertion of
Proposition 7.1, it is therefore sufficient to get (7.6) and to show that the point x∗∗P is an
isolated zero of the function x 7→ Y1(x)−Y1(x∗∗P ). For this, we remark that by Lemma 7.3,
as x→ x∗∗P ,

Y1(x)− Y1(x
∗∗
P ) = FY (−

√
x∗∗P − x)− FY (0) ∼ −c

√
x∗∗P − x (7.16)

and
d

dx
Y1(x) ∼

c

2
√
x∗∗P − x

with

c =
d

du
FY (0)

∣∣∣∣
u=0

=
√
∂xP (x, y)/∂2yyP (x, y)

∣∣∣
(x,y)=(x∗∗

P ,Y1(x∗∗
P ))

> 0.

Relations (7.6) are therefore proved, and since the constant c is strictly positive, from
(7.16) it follows that the point x∗∗P is an isolated zero of the function x 7→ Y1(x)− Y1(x

∗∗
P ).

7.3 The properties of the mapping x 7→ (x, Y1(x)) and their consequences

Remark that by (7.4), the function x 7→ (x, Y1(x)) maps the closed annulus to the
set {(x, y) ∈ C2 : x ∈ C(x∗P , x

∗∗
P ), |y| 6 Y1(|x|)}, and under the hypotheses (A1)–(A3),

for any j ∈ Z2
+, the functions (x, y) 7→ φ1(x, y), (x, y) 7→ ψ2(x, y) and (x, y) 7→ Lj(x, y)

are analytic in a neighborhood of this set. Hence, as a straightforward consequence of
Proposition 7.1 one gets

Corollary 7.3. Under the hypotheses (A1)–(A3), for some δ > 0, the functions x 7→
φ1(x, Y1(x)), x 7→ ψ2(x, Y1(x)) and x 7→ Lj(x, Y1(x)) for any j ∈ Z2

+, are analytic in the set
◦
Uδ and continuous on the set Uδ.

Another consequence of Proposition 7.1 is the following property of the mapping
x 7→(x, Y1(x)).

Proposition 7.4. Under the hypotheses (A1)–(A4), for some δ > 0, the function
x 7→ (x, Y1(x))maps the annulus C(xd−δ, xd) to the set {(x, y) ∈ Ω(Γ) : |x| < xd, |y| < yd}.
Moreover, for any neighborhood V of the set Ω(Γ) in C2 and ŷ > Y1(xd), there is δ > 0,
for which the function x 7→ (x, Y1(x)) maps the set C(xd − δ, xd + δ) ∩ Uε to the set
{(x, y) ∈ V : |y| < ŷ}.

Proof. Remark that by (7.4), for any x ∈]x∗P , x∗∗P [,

|Y1(x)| 6 Y1(|x|) < Y2(|x|).
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Hence, the function x 7→ (x, Y1(x)) maps the set C(x∗P , x
∗∗
P ) to the set

Γ1 = {(x, y) ∈ C2 : x ∈ C(x∗P , x
∗∗
P ), |y| < Y2(|x|)}.

For any x ∈]x∗P , x∗∗P [, Y1(x) and Y2(x) are the only real and positive solution of the equation
P (x, y) = 1, Y1(x) < Y2(x) and for any Y1(x) < y < Y2(x), the point (x, y) belongs to the
interior of the set D = {(x, y) ∈ [0,+∞[2: P (x, y) 6 1} (see Lemma 4.1 for more details).
Hence for any (x, y) ∈ Γ1), there is a point (x′, y′) ∈ D such that |x| < x′ and |x| < y′

and consequently, the set Γ1 is included to the set Γ. The mapping x 7→ (x, Y1(x)) maps
therefore the set C(x∗P , x

∗∗
P ) to the set Γ.

Consider now the case when one of the cases (B0)–(B4) holds. In this case, (see
Proposition 2.2 and relations (2.33), (2.34)), we have Y1(xd) < yd. Since the function
x 7→ (x, Y1(x)) maps the annulus C(x∗P , x

∗∗
P ) to the set Γ and by Proposition 7.1, the

function Y1 is continuous on Uε, it follows that for some δ > 0, the function x 7→ (x, Y1(x))

maps the annulus C(xd − δ, x) to the set {(x, y) ∈ Ω(Γ) : |x| < xd, |y| < yd}.
When one of the cases (B0)–(B4) holds, the first assertion of Proposition 7.4 is

therefore proved.
Consider now the case when (B5) or (B6) holds. In this case (see Proposition 2.2

and relations (2.33), (2.34)), the point (xd, yd) = (X2(y
∗∗), y∗∗) belongs to the curve

S21 = {(x, Y1(x)) : x ∈ [X1(y
∗
P ), x

∗∗
P ]} = {(X2(y), y) : y ∈ [y∗P , Y1(x

∗∗
P )]} and y∗P 6 y∗ <

yd = y∗∗ < y∗∗P . Since by lemma 4.1, the functions X2 : [y∗P , Y1(x
∗∗
P )] → [X1(y

∗
P ), x

∗∗
P ]

and Y1 : [X1(y
∗
P ), x

∗∗
P ] → [y∗P , Y1(x

∗∗
P )] are strictly increasing and inverse to each other, it

follows that in this case, we have x∗P < X2(yd) = xd. Hence, for any x ∈ C(x∗P , xd), using
(7.4) one gets

|Y1(x)| 6 Y1(|x|) < Y1(xd).

Since we have already proved that the function x 7→ (x, Y1(x)) maps the annulus
C(x∗P , x

∗∗
P ) to the set Γ, the last relations prove that for δ = xd − x∗P > 0, this function

maps the annulus C(xd − δ, xd) to the set {(x, y) ∈ Ω(Γ) : |x| < xd, |y| < yd}.
In the case when one of the cases (B5) or (B6) holds, the first assertion of

Proposition 7.4 is therefore also proved.
The second assertion of Proposition 7.4 holds because the function x 7→ (x, Y1(x)) is

continuous in the set Uε including the closed annulus C(x∗P , x
∗∗
P ) and maps C(x∗P , x

∗∗
P ) to

the closure of the set Γ.

Remark that under the hypotheses (A1)(ii), (A2) and (A3) (ii), (iv), the functions
(x, y) 7→ Q(x, y) = xy(1−P (x, y), (x, y) 7→ ψ1(x, y) = x(φ1(x, y)−1) and (x, y) 7→ ψ2(x, y) =

y(1− φ2(x, y)) can be continued as analytic functions to some neighborhood of the set
Ω(Γ). Hence, from Theorem 2.1 it follows

Corollary 7.5. Under the hypotheses (A1)–(A4), there is a neighborhood V ⊂ C2 of the
set Ω(Γ) such that for any j ∈ Z2,

– the function (x, y) 7→ ψ1(x, y)h1j(x) is analytic in the set {(x, y) ∈ V : |x| < xd};

– the function (x, y) 7→ ψ2(x, y)h2j(y) is analytic in the set {(x, y) ∈ V : |y| < yd}

– the function (x, y) 7→ Rj(x, y) = Q(x, y)hj(x, y) can be extended as an analytic
function to the set {(x, y) ∈ V : |x| < xd, |y| < yd} by letting

Rj(x, y) = Lj(x, y) + ψ1(x, y)h1j(x) + ψ2(x, y)h2j(y). (7.17)

When combined together, Proposition 7.4, Corollary 7.3 and Corollary 7.5 imply the
following statement.
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Corollary 7.6. Under the hypotheses (A1)–(A4) for some δ > 0, and any j ∈ Z2
+,

i) the functions x 7→ −ψ1(x, Y1(x))h1j(x) = (1 − φ1(x, Y1(x)))Hj(x, 0) and x 7→
ψ2(x, Y1(x))h2j(Y1(x)) are analytic in the annulus C(xd − δ, xd) and satisfy there the
identity

(1− φ1(x, Y1(x)))Hj(x, 0) = Lj(x, Y1(x)) + ψ2(x, Y1(x))h2j(Y1(x)); (7.18)

ii) moreover, if one of the cases (B0)–(B4) holds with xd < x∗∗P (i.e. if either one
of the cases (B0), (B1), (B3) or (B4) holds or (B2) and xd < x∗∗P hold), then for some
δ > 0, the function x 7→ Lj(x, Y1(x)) + ψ2(x, Y1(x))h2j(Y1(x)) is analytic in the annulus
C(xd − δ, xd + δ) and by (7.18), the function x 7→ ηj(x) = (1−φ1(x, Y1(x)))Hj(x, 0) can be
extended as an analytic function to C(xd − δ, xd + δ).

iii) if (B2) holds with xd = x∗∗P , then for some δ > 0, the function x 7→ Lj(x, Y1(x)) +

ψ(x, Y1(x))h2j(Y1(x)) is analytic in the set C(xd− δ, xd+ δ)∩
◦
Uε and continuous on the set

C(xd−δ, xd+δ)∩Uε, and by (7.18), the function x 7→ ηj(x) = (1−φ1(x, Y1(x)))Hj(x, 0) can

be extended to the set C(xd−δ, xd+δ)∩Uε as an analytic function in C(xd−δ, xd+δ)∩
◦
Uε

and a continuous function on C(xd − δ, xd + δ) ∩ Uε.

With this result, when one of the cases (B0)–(B4) holds, the function x 7→ (1 −
φ1(x, Y1(x)))Hj(x, 0) is therefore already extended beyond the point xd. To extend
the function x 7→ Hj(x, 0) beyond the point xd we need to investigate the function
x 7→ φ1(x, Y1(x)). This is a subject of the next section.

7.4 Analytic continuation and properties of the function x 7→ φ1(x, Y1(x))

By Corollary 7.3, for some δ > 0, the function x 7→ φ1(x, Y1(x)) is already extended to

the set Uδ as an analytic function in the set
◦
U δ and a continuous function on the set Uδ.

We will need moreover the following properties of the function x 7→ φ1(x, Y1(x)).

Proposition 7.7. Under the hypotheses (A1)- (A3), the following assertions hold:
i) the function x 7→ φ1(x, Y1(x)) is strictly convex on the line segment [x∗P , x

∗∗
P ].

ii) for any x ∈ C(x∗, x∗∗),

|φ1(x, Y1(x))| 6 φ(|x|, Y1(|x|)) < 1; (7.19)

iii) if x∗∗ < x∗∗P , then for some δ̂ > 0, the point x∗∗ is an only and simple zero of the
function x 7→ 1− φ1(x, Y1(x)) in the annulus C(x∗, x∗∗ + δ̂) and

d

dx
φ1(x, Y1(x))

∣∣∣∣
x=x∗∗

> 0; (7.20)

iv) if x∗∗ = x∗∗P , then φ1(x∗∗P , Y1(x
∗∗
P )) 6 1;

v) if x∗∗ = x∗∗P and φ1(x
∗∗
P , Y1(x

∗∗
P )) < 1, then for some δ̂ > 0, the function

x 7→ 1− φ1(x, Y1(x)) has no zeros in Uδ̂ = C(x∗, x∗∗P + δ̂)\]x∗∗P , x∗∗P + δ̂[;

vi) if x∗∗ = x∗∗P and φ1(x∗∗P , Y1(x
∗∗
P )) = 1, then for some δ̂ > 0, the point x∗∗P is an only

zero of the function x 7→ 1− φ1(x, Y1(x)) in Uδ̂ and as x→ x∗∗P ,

1− φ1(x, Y1(x)) ∼ c
√
x∗∗P − x with c = ∂yφ1(x, y)

√
∂xP (x, y)

∂2yyP (x, y)

∣∣∣∣∣
(x,y)=(x∗∗

P ,Y1(x∗∗
P ))

> 0.

(7.21)

7.4.1 Outline of the proof of Proposition 7.7

To prove this proposition, we first get a probabilistic representation of the function
x 7→ φ1(x, Y1(x)) similar to those of the function x 7→ Y1(x). This is a subject of
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Corollary 7.8. In Section 7.4.3, as a straightforward consequence of this result, we
get the first and the second assertion of Proposition 7.7. The proof of the third assertion
of this statement is given in Section 7.4.4 and the proofs of the last tree assertions are
completed in Section 7.4.5.

7.4.2 Probabilistic representation of the function x 7→ φ1(x, Y1(x))

The following probabilistic representation of the function x 7→ φ1(x, Y1(x)) is another
useful for our purpose consequence of Lemma 7.1:

Corollary 7.8. Let (Ŝ(n)) be a random walk on the half-plane Z × N with transition
probabilities

Pk(Ŝ(1) = j) =

{
µ(j − k) for all j, k = (k1, k2) ∈ Z×N with k2 > 0

µ1(j − k) for all j, k = (k1, k2) ∈ Z×N with k2 = 0
(7.22)

and let T1 be the first time when the random walk
(
Ŝ(n) = (Ŝ1(n), Ŝ2(n))

)
hits the

boundary Z× {0}:
T1 = inf{n > 0 : Ŝ(n) ∈ Z× {0}}.

Then under the hypotheses (A1)–(A3), for any x ∈ C(x∗P , x
∗∗
P )

φ1(x, Y1(x)) = E(0,0)

(
xŜ1(T1); T1 < +∞

)
. (7.23)

Proof. To get (7.23) from Lemma 7.1 it is sufficient to notice that by the Markov property,
and according to the definition of the random walks (S(n)) and (Ŝ(n)),

E(0,0)

(
xŜ1(τ1); τ1 < +∞

)
=

∑
k∈Z×{0}

µ1(k)x
k1 +

∑
k=(k1,k2)∈Z×N: k2 6=0

µ1(k)Ek(x
S1(T1), T1 < +∞)

=
∑

k∈Z×{0}

µ1(k)x
k1 +

∑
k=(k1,k2)∈Z×N: k2 6=0

µ1(k)x
j1Y1(x)

j2

= φ1(x, Y1(x)).

7.4.3 Proof of the first and the second assertions of Proposition 7.7

With Corollary 7.8, by using the same arguments as in the proof of Lemma 7.2 we get

Corollary 7.9. Under the hypotheses (A1)–(A3), the function x 7→ φ1(x, Y1(x)) is strictly
convex on [x∗P , x

∗∗
P ] and satisfies on the set C(x∗P , x

∗∗
P ) the following relation

|φ1(x, Y1(x))| < φ1(|x|, Y1(|x|)), ∀x 6= |x|. (7.24)

Remark that this statement proves the first assertion of Proposition 7.7. Moreover,
since by Corollary 4.1,

φ1(x, Y1(x)) < 1 for any x ∈]x∗, x∗∗[, (7.25)

using (7.24) one gets (7.19), and consequently, the second assertion of Proposition 7.7
also holds.

7.4.4 Proof of the third assertion of Proposition 7.7

Suppose now that x∗∗ < x∗∗P . In this case, by Corollary 4.1,

φ1(x
∗∗, Y1(x

∗∗)) = 1 and φ1(x, Y1(x)) > 1 for all x ∈]x∗∗, x∗∗P ]. (7.26)
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Using this relation together with (7.19) one get that the point x∗∗ is an only zero of the
function x 7→ φ1(x, Y1(x))− 1 in the set {x ∈ C : x∗ < |x| 6 x∗∗}, and since the function

x 7→ φ1(x, Y1(x)) − 1 is analytic in the neighborhood
◦
Uδ of this set, it follows that for

some δ̂ > 0, the point x∗∗ is an only zero of this function in the annulus C(x∗, x∗∗ + δ̂).
Moreover, since the function x 7→ φ1(x, Y1(x)) is strictly convex on the line segment
[x∗P , x

∗∗
P ] and by (2.9), in the case when x∗∗ < x∗∗P , the point x∗∗ belongs to the interior of

this line segment, from (7.25) and (7.26) it follows that

d

dx
φ1(x, Y1(x))

∣∣∣∣
x=x∗∗

> 0,

and consequently, the point x∗∗ is in this case a simple zero of the function x 7→
φ1(x, Y1(x))− 1. The third assertion of Proposition 7.7 is therefore also proved.

7.4.5 Proof of the last three assertions of Proposition 7.7

Suppose now that x∗∗ = x∗∗P . Then by Corollary 4.1, φ1(x∗∗P , Y1(x
∗∗
P )) 6 1, and

consequently, the fourth assertion of Proposition 7.7 holds. Moreover, if x∗∗ = x∗∗P
and φ1(x∗∗P , Y1(x

∗∗
P )) < 1, using (7.24) we get

|φ1(x, Y1(x))] 6 φ1(|x|, Y1(|x|)) < 1, for any x ∈ C with x∗ < |x| 6 x∗∗P ,

and consequently, the function x 7→ φ1(x, Y1(x)) − 1 has no zeros in {x ∈ C : x∗ <

|x| 6 x∗∗P }. Since the function x 7→ φ1(x, Y1(x)) is continuous on the set Uδ, we conclude
therefore that, for some δ̂ > 0, it has no zeros in Uδ̂.

Finally, if x∗∗ = x∗∗P and φ1(x∗∗P , Y1(x
∗∗
P )) = 1, using again (7.24) one gets that the point

x∗∗P is an only zero of the function x 7→ φ1(x, Y1(x))−1 in the set {x ∈ C : x∗ < |x| 6 x∗∗P }.
Moreover, since under our hypotheses, the function (x, y) 7→ φ1(x, y) is analytic in a
neighborhood of the point (x∗∗P , Y1(x

∗∗
P )) and since because of Assumption (A3)(iv),

∂yφ1(x
∗∗
P , Y1(x

∗∗
P )) > 0,

using (7.6) one gets that as x→ x∗∗P ,

φ1(x, Y1(x))− 1 ∼ (x− x∗∗P )∂xφ1(x
∗∗
P , Y1(x

∗∗
P ))− c

√
x∗∗P − x∂yφ1(x

∗∗
P , Y1(x

∗∗
P ))

∼ −c
√
x∗∗P − x∂yφ1(x

∗∗
P , Y1(x

∗∗
P ))

with

c =
√
∂xP (x, y)/∂2yyP (x, y)

∣∣∣
(x,y)=(x∗∗

P ,Y1(x∗∗
P ))

> 0.

This proves that the point x∗∗P is in this case an isolated zero of the function x 7→
φ1(x, Y1(x))− 1 in Uδ. Since this function is continuous in a neighborhood Uδ of the set
{x ∈ C : x∗ < |x| 6 x∗∗P }, and has no zeros in {x ∈ C : x∗ < |x| 6 x∗∗P , x 6= x∗∗P }, we
conclude therefore that for some δ̂ > 0, the point x∗∗P is an only zero of the function
x 7→ φ1(x, Y1(x))− 1 in Uδ̂. The last assertion of Proposition 7.7 is therefore also proved.

7.5 Analytic continuation of the function x 7→Hj(x, 0), cases (B0)–(B4)

In this section, we extend the function x 7→ Hj(x, 0) beyond the point xd in the
cases (B0)–(B4). The cases (B0), (B1), (B3), (B4), and the case (B2) with x∗∗ < x∗∗P
are considered in Proposition 7.10. The case (B2) with xd = x∗∗P is considered in
Proposition 7.11 below.
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Proposition 7.10. Suppose that the conditions (A1)–(A3) are satisfied and let either one
of the cases (B0), (B1), (B3), (B4) holds or (B2) and x∗∗ < x∗∗P hold. Then for some δ > 0

and any j ∈ Z2
+, the function x 7→ Hj(x, 0) can be extended as an analytic function to the

set B(0, xd + δ)\{xd}, and (2.40) holds with κ1(j) defined by (2.35) and a1 > 0 defined
by (2.41).

Proof. Under the hypotheses of this proposition, by Corollary 7.6, for some δ1 >

0, the function x 7→ Lj(x, Y1(x)) + ψ2(x, Y1(x))h2j(Y1(x)) is analytic in the annulus
C(xd − δ1, xd + δ1), and using the identities

(1− φ1(x, Y1(x)))Hj(x, 0) = −ψ1(x, Y1(x))h1j(x) (7.27)

= Lj(x, Y1(x)) + ψ2(x, Y1(x))h2j(Y1(x)) (7.28)

the function x 7→ (1 − φ1(x, Y1(x)))Hj(x, 0) can be analytically continued to the open
annulus C(xd − δ1, xd + δ1). Since by Proposition 7.7, for some δ2 > 0, the function
x 7→ (1−φ1(x, Y1(x)))−1 is analytic in the set C(xd− δ2, xd+ δ2)\{xd} and has at the point
xd a simple pole with

lim
x→xd

xd − x

1− φ1(x, Y1(x))
=

(
d

dx
φ1(x, Y1(x))

)−1
∣∣∣∣∣
x=xd

> 0,

we conclude therefore that the function x 7→ Hj(x, 0) can be extended as an analytic
function to the set B(0, xd + δ)\{xd}, and that (2.40) holds with κ1(j) given by (2.35),
and a1 > 0 given by (2.41).

Proposition 7.11. Suppose that the conditions (A1)–(A3) are satisfied and let (B2) and
xd = x∗∗P hold. Then the following assertions holds.

– If φ1(x∗∗P , Y1(x
∗∗
P )) = 1, then for some δ > 0, the function x 7→ Hj(x, 0) can be

extended as an analytic function to the set B(0, x∗∗P + δ)\[x∗∗, x∗∗P + δ[ satisfying
(2.42) with κ1(j) defined by (2.35) with xd = x∗∗P and a2 > 0 defined by (2.43).

– If φ1(x∗∗P , Y1(x
∗∗
P )) < 1, then for some δ > 0, the function x 7→ Hj(x, 0) can

be extended to the set B(0, x∗∗P + δ)\]x∗∗P , x∗∗P + δ[ as an analytic function in
B(0, x∗∗P + δ)\[x∗∗P , x∗∗P + δ[ and a continuous function on B(0, x∗∗P + δ)\]x∗∗P , x∗∗P + δ[,
satisfying (2.44) with κ̃1(j) defined by (2.36) and ã2 > 0 defined by (2.45).

Proof. Indeed, in this case, by Corollary 7.6, for some 0 < δ1 6 ε, the function

x 7→ Lj(x, Y1(x)) + ψ(x, Y1(x))h2j(Y1(x)) is analytic in C(xd − δ1, xd + δ1) ∩
◦
Uε and

continuous on C(xd − δ1, xd + δ1) ∩ Uε, and using the identities (7.27) end (7.28),
the function x 7→ ηj(x) = (1 − φ1(x, Y1(x)))Hj(x, 0) can be extended to the set

C(xd− δ1, xd+ δ1)∩Uε as an analytic function in C(xd− δ1, xd+ δ1)∩
◦
Uε and a continuous

function on C(xd − δ1, xd + δ1) ∩ Uε. Since by Proposition 7.7, for some 0 < δ 6 δ1, the

function x 7→ 1/(1 − φ1(x, Y1(x))) is analytic in the set C(xd − δ, xd + δ) ∩
◦
Uε, we get

therefore that the function x 7→ Hj(x, 0) can be extended as an analytic function to the

set C(xd − δ, xd + δ) ∩
◦
Uε by letting

Hj(x, 0) = ηj(x)
(
1− φ1(x, Y1(x))

)−1

= (Lj(x, Y1(x)) + ψ2(x, Y1(x))h2j(Y1(x)))
(
1− φ1(x, Y1(x))

)−1
. (7.29)
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Recall moreover that by Proposition 7.7, when φ1(x∗∗P , Y1(x
∗∗
P )) < 1, the function x 7→

1/(1−φ1(x, Y1(x))) is continuous on C(xd − δ, xd + δ)∩Uε, and when φ1(x∗∗P , Y1(x
∗∗
P )) = 1,

lim
x→x∗∗

P

√
x∗∗P − x

1− φ1(x, Y1(x))
=
(
∂yφ1(x, y)

√
∂xP (x, y)/∂2yyP (x, y)

)−1
∣∣∣∣
(x,y)=(x∗∗

P ,Y1(x∗∗
P ))

> 0.

(7.30)
Hence, in the case when φ1(x∗∗P , Y1(x

∗∗
P )) < 1, the function x 7→ Hj(x, 0) can be extended

as a continuous function to the set C(xd − δ, xd + δ) ∩ Uε, and in the case when
φ1(x

∗∗
P , Y1(x

∗∗
P )) = 1, using (7.29) (7.30), one gets (2.42) with κ1(j) defined by (2.35),

and a2 > 0 given by (2.43).
Remark finally that when φ1(x∗∗P , Y1(x

∗∗
P )) < 1, using (7.29), for x ∈ B(0, x∗∗P ) closed

enough to x∗∗P , one gets

d

dx
Hj(x, 0) =

d

dx

(
rj(x, Y1(x))(1− φ1(x, Y1(x)))

−1
)

=
d

dx

(
(Lj(x, Y1(x)) + (φ2(x, Y1(x))− 1)Hj(0, Y1(x)))(1− φ1(x, Y1(x)))

−1
)

= ∂x
(
(Lj(x, y) + (φ2(x, y)− 1)Hj(0, y))(1− φ1(x, y))

−1
)∣∣

y=Y1(x)

+ ∂y
(
(Lj(x, Y1(x)) + (φ2(x, Y1(x))− 1)Hj(0, Y1(x)))(1− φ1(x, Y1(x)))

−1
)∣∣

y=Y1(x)

× d

dx
Y1(x)

where by (7.6), as x→ x∗∗P ,

d

dx
Y1(x) ∼

c

2
√
x∗∗P − x

with c =
1

2

√
∂xP (x, y)/∂2yyP (x, y)

∣∣∣∣
(x,y)=(x∗∗

P ,Y1(x∗∗
P ))

> 0.

Since in the case when φ1(x∗∗P , Y1(x
∗∗
P )) < 1, the function

(x, y) 7→ (Lj(x, y) + (φ2(x, y)− 1)Hj(0, y))(1− φ1(x, y))
−1

is analytic in a neighborhood of the point (x∗∗P , Y1(x
∗∗
P )), it follows (2.44) with ã2 > 0

given by (2.45).

7.6 Analytic continuation of the function x 7→Hj(x, 0), cases (B5) and (B6)

Now we are ready to extend the function x 7→ Hj(x, 0) beyond the point xd when
either (B5) or (B6) holds. This is a subject of Proposition 7.12 below.

Proposition 7.12. Under the hypotheses (A1)–(A3), there is δ > 0 such that for any
j ∈ Z2

+, the following assertions hold
i) If (B6) holds, then the function x 7→ Hj(x, 0) can be extended as an analytic function

to the set B(0, xd + δ)\{xd} and (2.52) holds with a5 > 0 given by (2.53).
ii) If (B5) holds and xd = x∗∗ < x∗∗P , then the function x 7→ Hj(x, 0) can be extended

as an analytic function to the set B(0, xd + δ)\{xd} and (2.46) holds with a3 > 0 given by
(2.47).

iii) If (B5), xd = x∗∗ = x∗∗P and φ1(x∗∗P , Y1(x
∗∗
P )) = 1 hold, the function x 7→ Hj(x, 0) can

be extended as an analytic function to the set B(0, xd + δ)\[xd, xd + δ[ and (2.48) holds
with a4 > 0 given by (2.49).

iv) If (B5), xd = x∗∗ = x∗∗P and φ1(x∗∗P , Y1(x
∗∗
P )) < 1 hold, the function x 7→ Hj(x, 0) can

be extended as an analytic function to the set B(0, xd + δ̃)\[xd, xd + δ̃[ and (2.50) holds
with ã4 given by (2.51).

Recall that under our hypotheses, all functions (x, y)7→Lj(x, y), (x, y) 7→ψ1(x, y) and
(x, y)7→ψ2(x, y) are analytic in some neighborhood V of the set Ω(Γ). Throughout this
section, the set V will be given.
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7.6.1 Preliminary result

We begin the proof of this proposition with the following lemma.

Lemma 7.5. Under the hypotheses (A1)–(A3) and if one of the cases (B5) or (B6) holds,
there is δ > 0 such that for any j ∈ Z2

+, the function x 7→ (1 − φ1(x, Y1(x)))Hj(0, Y1(x))

can be analytically continued to the set C(xd − δ, xd + δ) ∩ Uε \ {xd}.

Proof. Suppose that either (B5) or (B6) holds. Then by Proposition 2.2 and using
relations (2.33), (2.34)), one gets

X1(yd) < xd = X2(yd) 6 x∗∗, y∗ < yd = y∗∗ = Y1(xd) < y∗∗P and (xd, yd) ∈ S21,

(7.31)
with xd = x∗∗ in the case (B5), and xd < x∗∗ in the case (B6). Hence, with the same
arguments as in the proof of proposition 7.10, (it is sufficient to exchange the roles of x
and y), one gets that there exists δ0 > 0 such that for any j ∈ Z2

+, the functions h1j and
y 7→ yh2j(y) = Hj(0, y) and can be analytically continued to the set B(0, yd + δ0)\{yd},
and

lim
y→yd

(yd − y)yh2j(y) = lim
y→yd

(yd − y)Hj(0, y)

= c1

(
Lj(X1(yd), yd) + (φ1(X1(yd), yd))− 1)Hj(X1(yd), 0)

)
(7.32)

with

c1 =

(
d

dy
φ2(X1(y), y)

)−1
∣∣∣∣∣
y=yd

> 0. (7.33)

Since by (7.31), yd < y∗∗P , without any restriction of generality, we will suppose
throughout our proof that

yd + δ0 < y∗∗P . (7.34)

Moreover, by using Proposition 7.1 and the first assertion of Corollary 7.6 we can inject
y = Y1(x) to the functional equation (2.30):

– by Proposition 7.1, for some ε > 0, the function Y1 is already analytically continued

to
◦
Uε and extended as a continuous function to the set Uε,

– by Corollary 7.6, there is δ1∈]0, ε[, such that any j ∈ Z2
+, the functions

x 7→ Lj(x, Y1(x)) + ψ2(x, Y1(x))h2j(Y1(x)) and x 7→ −ψ1(x, Y1(x))h1j(x) = (1 −
φ1(x, Y1(x)))Hj(x, 0) are analytic in the set C(xd − δ1, xd) and for any x ∈ C(xd −
δ1, xd) the following relation holds

(1− φ1(x, Y1(x)))Hj(x, 0) = Lj(x, Y1(x)) + ψ2(x, Y1(x))h2j(Y1(x)). (7.35)

To complete the proof of Lemma 7.5, the following steps will be performed:

step 1: First we will show that for some δ2 ∈]0, δ1[, the function x 7→ Lj(x, Y1(x)) +

ψ2(x, Y1(x))h2j(Y1(x)) is analytic in the set

{x ∈ C(xd − δ2, xd + δ2) ∩ Uε : Y1(x) 6= Y1(xd)}. (7.36)

step 2: Next we will prove that for some δ3 ∈]0, δ2[, the point xd is an only zero of the
function x 7→ Y1(x) − Y1(xd) in C(xd − δ3, xd + δ3) ∩ Uε, and we will deduce from
our previous result that the function x 7→ Lj(x, Y1(x)) + ψ2(x, Y1(x))h2j(Y1(x)) is
analytic in the set

C(xd − δ3, xd + δ3) ∩ Uε \ {xd}. (7.37)

With this result and using the identity (7.35) we will be able to complete our proof.
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Step 1: Since because of (7.31), Y1(xd) = yd < yd + δ0, by Proposition 7.4 applied
with ŷ = yd + δ0, we obtain that for some 0 < δ2 < δ1, the function x 7→ (x, Y1(x))

maps the set C(xd − δ2, xd + δ2) ∩ Uε to the set {(x, y) ∈ V : |y| < yd + δ0}. Since the
function y 7→ Hj(0, y) is already analytically continued to the set B(0, yd + δ0) \ {yd} and
the functions (x, y) 7→ψ2(x, y) and (x, y) 7→ Lj(x, y) are analytic in V, it follows that the
function x 7→ Lj(x, Y1(x)) + ψ2(x, Y1(x))h2j(Y1(x)) is analytic in the set (7.36).
Step 2: by (7.31) and (2.9), we have

y∗P 6 y∗ < yd = y∗∗ = Y1(xd),

and consequently, (xd, yd) 6= (X1(y
∗
P ), y

∗
P ). Since by (7.31), (xd, yd) ∈ S21, using the

definition of the curve S21 (see (2.17)) one gets therefore

X1(y
∗
P ) < xd 6 x∗∗P ,

and consequently, using the assertions (ii) and (iv) of Proposition 7.1, we conclude that
for some 0 < δ3 < δ2, the point xd is an only zero of the function x 7→ Y1(x)− Y1(xd) in
C(xd − δ3, xd + δ3) ∩ Uε. Since with our previous result, we have already proved that
the function x 7→ Lj(x, Y1(x)) + ψ2(x, Y1(x))h2j(Y1(x)) is analytic in the set (7.36), this
proves that the function x 7→ Lj(x, Y1(x)) + ψ2(x, Y1(x))h2j(Y1(x)) is analytic in the set
(7.37). Finally, since on the annulus C(xd − δ1, xd), the identity (7.35) holds, this proves
that the function x 7→ − ψ1(x, Y1(x))h1j(x) = (1− φ1(x, Y1(x)))Hj(x, 0) can be analytically
continued to the set (C(xd − δ3, xd + δ3) ∩ Uε)\{xd}.

7.6.2 Proof of Proposition 7.12

To complete the proof of Proposition 7.12, we consider separately all possible cases:

– when (B6) holds;

– when (B5) holds with xd = x∗∗ < x∗∗P ;

– when (B5) holds with xd = x∗∗ = x∗∗P and φ1(x∗∗P , Y1(x
∗∗
P )) < 1;

– when (B5) holds with xd = x∗∗ = x∗∗P and φ1(x∗∗P , Y1(x
∗∗
P )) = 1.

Suppose first that (B6) holds. Then by Proposition 2.2 and the definition of xd (see
(2.33)), the following relations hold

x∗P 6 x∗ < X1(x
∗∗) < xd = X2(y

∗∗) < x∗∗ 6 x∗∗P . (7.38)

Hence, by Lemma 7.5 and according to the definition of the set Uε (see (7.2)), for
some δ̂ > 0, the function x 7→ −ψ1(x, Y1(x))h1j(x) = (1− φ1(x, Y1(x)))Hj(x, 0) is already
analytically continued to the set C(xd − δ̂, xd + δ̂)\{xd}. By Proposition 7.7, for any
x ∈ C(x∗, x∗∗),

|φ1(x, Y1(x))| 6 φ1(|x|, Y1(|x|)) < 1.

Since by (7.38), x∗ < xd < x∗∗, it follows that for 0 < δ′ < min{x∗∗ − xd, xd − x∗}, the
function x 7→ 1/(1− φ1(x, Y1(x)) is analytic in C(xd − δ′, xd + δ′) and

1− φ1(xd, Y1(xd)) > 0. (7.39)

Since the function x 7→ ηj(x) = −ψ1(x, Y1(x))h1j(x) = (1−φ1(x, Y1(x)))Hj(x, 0) is already
extended as an analytic function to the set C(xd − δ̂, xd + δ̂)\{xd}, it follows that for
δ = min{δ′, δ̂}, the function the function x 7→ Hj(x, 0) can be analytically continued to
C(xd − δ, xd + δ)\{xd} by letting

Hj(x, 0) = (1− φ1(x, Y1(x)))
−1
(
Lj(x, Y1(x)) + ψ2(x, Y1(x))h2j(Y1(x))

)
. (7.40)
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Remark finally that by (7.31), yd = y∗∗ < y∗∗P . Hence, using exactly the same arguments
as in the proof of Proposition 7.7 (it is sufficient to exchange the roles of x and y), one
gets φ2(X1(yd), yd) = φ2(X1(y

∗∗), y∗∗) = 1. Since by (7.31), X1(yd) < X2(yd) = xd and
Y1(xd) = yd, and since under our hypotheses (see Assumption (A3)(vi)) the real valued
function x 7→ φ2(x, yd) is strictly increasing, it follows that

φ2(xd, Y1(xd)) = φ2(xd, yd) = φ2(X2(yd), yd) > φ2(X1(yd), yd) = 1. (7.41)

Using these relations together with (7.40), (7.39), (7.32) and (7.5), we obtain

lim
x→xd

(xd − x)Hj(x, 0) = lim
x→xd

(xd − x)(1− φ1(x, Y1(x)))
−1ψ2(x, Y1(x))h2j(Y1(x))

= lim
x→xd

(xd − x)(1− φ1(x, Y1(x)))
−1(φ2(x, Y1(x))− 1)Hj(0, Y1(x))

= a5

(
Lj(X1(yd), yd) + (φ1(X1(yd), yd)− 1)Hj(X1(yd), 0)

)
= a5κ2(j)

with

a5 = (φ2(x, y)− 1)

(
(1− φ1(x, y))

d

dy
φ2(X1(y), y)

d

dx
Y1(x)

)−1
∣∣∣∣∣
(x,y)=(xd,yd)

> 0.

The first assertion of Proposition 7.12 is therefore proved.

Suppose now that (B5) holds and let xd = x∗∗ < x∗∗P . Then by Proposition 2.2 and the
definition of xd and yd (see (2.33) and (2.34)), one has

yd = y∗∗ = Y1(x
∗∗) = Y1(xd) and x∗ < X1(yd) < xd = X2(yd) = x∗∗ < x∗∗P .

and by Proposition 7.7, for some δ > 0, the function x 7→ 1/(1 − φ1(x, Y1(x))) is
meromorphic in the annulus C(x∗, xd + δ), and has there a unique and simple pole
at the point xd = x∗∗ with

lim
x→xd

xd − x

1− φ1(x, Y1(x))
=

(
d

dx
φ1(x, Y1(x))

)−1
∣∣∣∣∣
x=xd

> 0; (7.42)

Here, the only difference with the previous case is that the function x 7→ 1/(1−φ1(x, Y1(x))
has a simple pole at xd = x∗∗. Using therefore exactly the same arguments as in the
previous case we obtain that for some δ > 0, the function x 7→ Hj(x, 0) can be extended
as an analytic function to the set C(xd − δ, xd + δ)\{xd}. And using finally (7.40) together
with (7.32), (7.41), (7.5) and (7.42) we get

lim
x→xd

(xd − x)2Hj(x, 0) = a3

(
Lj(X1(yd), yd) + (φ1(X1(yd), yd)− 1)Hj(X1(yd), 0)

)
= a3κ2(j)

with

a3 = (φ2(x, Y1(x))− 1)

(
d

dx
φ1(x, Y1(x))

d

dy
φ2(X1(y), y)

d

dx
Y1(x)

)−1
∣∣∣∣∣
x=xd,y=yd

= (φ2(x, y)− 1)

(
d

dx
φ1(x, Y1(x))

d

dy
φ2(X1(y), y)

d

dx
Y1(x)

)−1
∣∣∣∣∣
x=xd,y=yd

> 0.

The second assertion of Proposition 7.12 is therefore also proved.

Suppose now that (B5), xd = x∗∗ = x∗∗P and φ1(x
∗∗
P , Y1(x

∗∗
P )) < 1 hold. Then by

Lemma 7.5 and according to the definition of the set Uε (see (7.2)), by using the identity
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(7.35), the function x 7→ −ψ1(x, Y1(x))h1j(x) was already analytically continued to the
set C(x∗∗P − δ̂, x∗∗P + δ̂)\[x∗∗P , x∗∗P + δ̂[, and by Proposition 7.7, for some 0 < δ < δ̂, the
function x 7→ (1− φ1(x, Y1(x))

−1 is analytic in C(x∗∗P − δ, x∗∗P + δ)\[x∗∗P , x∗∗P + δ[ and

Hj(x, 0) = xh1j(x) = xηj(x)(ψ1(x, Y1(x)))
−1 = ηj(x)(1−φ1(x, Y1(x))−1, ∀x ∈ C(x∗∗P −δ, x∗∗P ).

Hence, by using the identity (7.40), the function x 7→ Hj(x, 0) can be analytically
continued to the set C(x∗∗P − δ, x∗∗P + δ)\[x∗∗P , x∗∗P [, and using finally (7.40) together with
(7.32), (7.6) and (7.31) one gets

lim
x 7→x∗∗

P

√
x∗∗P − xHj(x, 0)

= lim
x→x∗∗

P

√
x∗∗P − x(1− φ1(x, Y1(x))

−1
(
Lj(x, Y1(x)) + ψ2(x, Y1(x))h2j(Y1(x))

)
= lim

x→x∗∗
P

√
x∗∗P − x(1− φ1(x, Y1(x))

−1ψ2(x, Y1(x))h2j(Y1(x))

= lim
x→x∗∗

P

√
x∗∗P − x(1− φ1(x, Y1(x))

−1(φ2(x, Y1(x))− 1)Hj(0, Y1(x))

= ã4

(
Lj(X1(yd), yd) + (φ1(X1(yd), yd)− 1)Hj(X1(yd), 0)

)
= ã4κ2(j)

with

ã4 = (φ2(xd, yd)−1)
√
∂2yyP (xd, yd)/∂xP (xd, yd)

(
(1− φ1(xd, yd))

d

dy
φ2(X1(yd), yd)

)−1

> 0,

Consider now the case when (B5), xd = x∗∗ = x∗∗P and φ1(x
∗∗
P , Y1(x

∗∗
P )) = 1 hold.

In this case, with exactly the same arguments as above one gets that for some
δ > 0, the function x 7→ Hj(x, 0) can be continued as an analytic function to the set
C(x∗∗P − δ, x∗∗P + δ)\[x∗∗P , x∗∗P [ by using the identity (7.40). The only difference is here that
now, by Proposition 7.7,

1

1− φ1(x, Y1(x))
∼ c1√

x∗∗P − x

with

c1 =
(
∂yφ1(x, y))

√
∂xP (x, y)/∂2yyP (x, y)

)−1
∣∣∣∣
(x,y)=(x∗∗

P ,Y1(x∗∗
P ))

> 0

and consequently, since in this case xd = x∗∗P and yd = Y1(x
∗∗
P ), using (7.40) together

with (7.32) and (7.31), one gets

lim
x→xd

(xd − x)Hj(x, 0) = a4

(
Lj(X1(yd), yd) + (φ1(X1(yd), yd)− 1)Hj(X1(yd), 0)

)
with

a4 = (φ2(x, y)− 1)∂2yyP (x, y)

(
∂yφ1(x, y)∂xP (x, y)

d

dy
φ2(X1(y), y)

)−1
∣∣∣∣∣
(x,y)=(xd,yd)

> 0.

Proposition 7.12 is therefore proved.

7.7 Analytic continuation of the function (x, y) 7→ (1− P (x, y))Hj(x, y)

The following Lemma is the first step in the proof of the last assertion of Theorem 2.3.

Lemma 7.6. If the conditions (A1)–(A3) are satisfied and (B2) holds, then

– the set {(x, y) ∈ S22 : x < xd, y < yd} is non-empty;
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– there exists a neighborhood V of the set S22 in R2
+ such that, for any j∈Z2

+,

the function x 7→(1−P (x, y))Hj(x, y) can be analytically continued to the set
{(x, y)∈Ω(V) : |x|<xd, |y|<yd};

– for any (x̂, ŷ)∈{(x, y)∈S22 : x<xd, y<yd}, the function κ(x̂,ŷ) is non-negative on Z2
+

and for any j ∈ Z2
+\E0,

lim
(x,y)→(x̂,ŷ)

(x,y)∈
◦
D

(1− P (x, y))(Hj(x, y)−Hj(x, 0)−Hj(0, y)) = κ(x̂,ŷ) (7.43)

Proof. Indeed, by Theorem 2.1, for any j ∈ Z2
+ and (x̂, ŷ) ∈ S22 with x̂ < xd and ŷ < yd,

there is a neighborhood V (x̂, ŷ) of the point (x̂, ŷ) in R2, such that for any j ∈ Z2
+, the

function

(x, y) 7→ Lj(x, y) + (φ1(x, y)− 1)Hj(x, 0) + (φ2(x, y)− 1)Hj(0, y)

= Lj(x, y) + ψ1(x, y)h1j(x) + ψ2(x, y)h2j(y)

is analytic in the polycircular set {(x, y) ∈ C2 : (|x|, |y|) ∈ V (x̂, ŷ)}, and the function
(x, y) 7→ (1−P (x, y))(Hj(x, y)−Hj(x, 0)−Hj(0, y)) = Q(x, y)hj(x, y) can be continued as
an analytic function to {(x, y) ∈ C2 : (|x|, |y|) ∈ V (x̂, ŷ)} by letting

(1− P (x, y))(Hj(x, y)−Hj(x, 0)−Hj(0, y)) = Lj(x, y) + (φ1(x, y)− 1)Hj(x, 0)

+ (φ2(x, y)− 1)Hj(0, y).

Hence, for any j ∈ Z2
+ the quantity

κ(x̂,ŷ) = Lj(x̂, ŷ) + (φ1(x̂, ŷ)− 1)Hj(x̂, 0) + (φ2(x̂, ŷ)− 1)Hj(0, ŷ)

is well defined and as (x, y) → (x̂, ŷ) for (x, y) ∈
◦
D, (7.43) holds. Moreover, since by

Theorem 2.1, the function (x, y) 7→ Hj(x, y) is analytic in the set Ωd(Γ) = {(x, y) ∈ C2 :

(|x|, |y|) ∈ Γ, |x| < xd, |y| < yd}, and since the set Ωd(Γ) is a union of the poly-discs
centered at the origin in C2, the power series

Hj(x, y)−Hj(x, 0)−Hj(0, y) =

∞∑
k1=1

∞∑
k2=1

g(j, k)xk1yk2

converge on the set Ωd(Γ), and consequently, for (x, y) ∈ Γ such that x < xd and y < yd,

Hj(x, y)−Hj(x, 0)−Hj(0, y) > 0.

Since for (x, y) ∈
◦
D, P (x, y) < 1, it follows that for any j ∈ Z2

+, the left hand side of
(7.43) is non-negative and consequently, the function κ(x̂,ŷ) is non-negative on Z2

+.

7.8 Harmonic functions κi, κ̃i and κ(x,y) and their properties

In this section, the second step of the proof of Theorem 2.3 is performed (see
Section 7.1). This is a subject of the following statement.

Proposition 7.13. Under the hypotheses (A1)–(A3), the following assertions hold:
i) The function κ1 defined by (2.35) is non-negative on Z2

+, positive on Z2
+\E0 and

harmonic for (Zτ0(n)) in each of the following cases:

– if one of the assertions (B0), (B1), (B3) or (B4) is valid;
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– if (B2) holds and x∗ < x∗∗P ;

– if (B2) holds, x∗∗ = x∗∗P and φ1(x∗∗P , Y1(x
∗∗
P )) = 1.

ii) The function κ2 defined by (2.37) is non-negative on Z2
+, positive on Z2

+\E0 and
harmonic for (Zτ0(n)) in each of the following cases:

– if one of the assertions (B0), (B1), (B5) or (B6) is valid;

– if (B2) holds and y∗∗ < y∗∗P ;

– if (B2) holds, y∗∗ = y∗∗P and φ1(X1(y
∗∗
P ), y∗∗P ) = 1.

iii) If (B2) is valid with x∗∗ = x∗∗P and φ1(x∗∗P , Y1(x
∗∗
P )) < 1, then the function κ̃1 defined

by (2.36) is non-negative on Z2
+, positive on Z2

+\E0 and harmonic for (Zτ0(n)).
iv) If (B2) is valid, then for any (x̂, ŷ) ∈ S22 with x̃ < xd and ŷ < yd, the function κ(x̂,ŷ)

defined by (2.39) is non-negative on Z2
+, positive on Z2

+\E0 and harmonic for (Zτ0(n)).

To get this result, we first show there that the left hand sides of (2.40), (2.42),
(2.44), (2.46), (2.48), (2.50), (2.52) and (2.54) are non-negative. With these arguments
we conclude that each of the functions defined by (2.35), (2.36), (2.37), (2.39) is non-
negative on Z2

+. Next we show that each of these functions (in the corresponding cases i)-
iv). of our proposition) is harmonic for (Zτ0(n)), and by using suitable Lyapunov functions,
we prove that each of them is not identically zero on the set {j ∈ Z2

+; ‖j‖ > N0}. With this
results and using Lemma 2.2 we will be able to show that each of the functions defined
by (2.35), (2.36), (2.37), (2.39) (in the corresponding cases i)-iv). of our proposition) is
positive throughout the set Z2

+\E0.

7.8.1 Preliminary estimates

We begin the proof of this proposition with the following preliminary result

Lemma 7.7. Suppose that the conditions (A1)–(A3) are satisfied and let two points

(x1, y1) ∈
◦
D ∩

◦
D1 and (x2, y2) ∈

◦
D ∩

◦
D2 satisfy (6.6). Then for some constant C > 0

(depending on the points (x1, y1) ∈
◦
D ∩

◦
D1 and (x2, y2) ∈

◦
D ∩

◦
D2 but do not depending

on j ∈ Z2
+),

Pj(τ0 < +∞) 6 C
(
xj11 y

j2
1 + xj12 y

j2
2

)
, ∀j ∈ Z2

+ (7.44)

and ∑
k∈Z2

+

g(j, k)
(
xk1
1 y

k2
1 + xk1

2 y
k2
2

)
6 C

(
xj11 y

j2
1 + xj12 y

j2
2

)
, ∀j ∈ Z2

+. (7.45)

Proof. Indeed, if two points (x1, y1) ∈
◦
D ∩

◦
D1 and (x2, y2) ∈

◦
D ∩

◦
D2 satisfy (6.6), then by

Lemma 6.1, for some 0 < θ < 1 and some finite subset E of Z2
+ such that (0, 0) ∈ E and

the function f : Z2
+ → R+ defined by f(j1, j2)=x

j1
1 y

j2
1 +xj12 y

j2
2 , for all (j1, j2)∈Z2

+ satisfies
the inequality

Ej(f(Z(1)); τE > 1) 6 θf(j), ∀j = (j1, j2) ∈ Z2
+,

with τE = inf{n > 0 : Z(n) ∈ E}. By Lemma 6.2, it follows that for any j ∈ Z2
+, the

series ∑
k∈Z2

g(j, k)f(k) =
∑
k∈Z2

g(j, k)
(
xk1
1 y

k2
1 + xk1

2 y
k2
2

)
(7.46)

converges, and moreover, (see (6.12) in the proof of Lemma 6.2), for

gE(j, k) =

∞∑
n=0

Pj(Z(n) = k; τE > n), j ∈ Z2
+\E, k ∈ Z2

+,
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the following relation holds:

∑
k∈Z2

+

gE(j, k)f(k) 6
f(j)

1− θ
=
xj11 y

j2
1 + xj12 y

j2
2

1− θ
. (7.47)

Since (0, 0) ∈ E, from the last relation it follows in particular that for any j ∈ Z2
+\E,

Pj(τ0 < +∞) 6 Pj(τE < +∞) 6

(
min
`∈E

f(`)

)−1 ∑
k∈Z2

+

gE(j, k)f(k)

6

(
min
`∈E

f(`)

)−1
1

1− θ

(
xj11 y

j2
1 + xj12 y

j2
2

)
(7.48)

and consequently (7.44) is proved.
Remark finally that for any j = (j1, 0) ∈ Z2

+\E,∑
k∈Z2

+

g(j, k)f(k) =
∑
k∈Z2

+

gE(j, k)f(k) +
∑

`∈E\{(0,0)}

gE(j, `)
∑
k∈Z2

+

g(`, k)f(k),

6
∑
k∈Z2

+

gE(j, k)f(k) + Pj(τE < +∞) max
`∈E

∑
k∈Z2

+

g(`, k)f(k).

Since the set E is finite and for any j ∈ Z2
+, the series (7.46) converge, this last relation

combined with (7.47) and (7.48) prove (7.45).

Lemma 7.8. Under the hypotheses (A1)–(A3), for any 0 < y < yd there are two points

(x1, y1) ∈
◦
D ∩

◦
D1 and (x2, y2) ∈

◦
D ∩

◦
D2 satisfying (6.6) and such that for some C > 0,

Hj(0, y) 6 C
(
xk1
1 y

k2
1 + xk1

2 y
k2
2

)
, ∀j ∈ Z2

+. (7.49)

Proof. Indeed, if 0 < y < yd, then, by the definition of the set Θ, the point (0, Y1(x∗∗)) is

in Θ and, consequently, by Lemma 6.4 there are two points (x1, y1) ∈
◦
D ∩

◦
D1 and

(x2, y2) ∈
◦
D ∩

◦
D2 satisfying relations (6.6) and (6.9) with (x, y) = (0, Y1(x

∗∗)). By
Lemma 7.7, for these two points (x1, y1) and (x2, y2), one gets (7.45) with (x, y) = (0, y),
and consequently (7.49) holds.

7.8.2 Proof of the first two assertions of Proposition 7.13

Consider first the case when one of the following assertions holds:

– one of the cases (B0), (B1), (B3), (B4) holds;

– (B2) and xd<x∗∗P hold;

– (B2), xd=x∗∗P and φ1(x∗∗P , Y1(x
∗∗
P ))=1 hold.

By Proposition 7.7 and the definition of xd, we have always xd = x∗∗ and

φ1(xd, Y1(xd)) = 1. (7.50)

To prove Proposition 7.13 in each of the above cases, we first show that the function κ1

is non-negative and harmonic for (Zτ0(n)). Next we will prove that κ1(j1, 0) > 0 for all
j1 > 0 large enough, and using finally Lemma 2.2, we will conclude that the function κ1

is strictly positive on the set Z2
+\E0.
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Suppose first that either, one of the cases (B0), (B1), (B3), (B4) holds, or (B2) and
xd < x∗∗P hold. Then, by Proposition 7.10, for any j ∈ Z2

+,

lim
x→xd

(xd − x)Hj(x, 0) = cκ1(j)

with c > 0. Since (xd − x)Hj(x, 0) > 0 for any real x ∈]0, x∗∗[, it follows that κ1(j) > 0

for any j ∈ Z2
+. When either one of the cases (B0), (B1), (B3), (B4) occurs or (B2) and

x∗∗ < x∗∗P hold, the function κ1 is therefore non-negative on Z2
+.

Suppose now that (B2), x∗∗ = x∗∗P and φ1(x
∗∗
P , Y1(x

∗∗
P )) = 1 hold. In this case, by

Proposition 7.11, for any j ∈ Z2
+,

lim
x→xd

√
xd − xHj(x, 0) = cκ1(j)

with c > 0. Since
√
xd − xHj(x, 0) > 0 for any real x ∈]0, xd[, it follows that κ1(j) > 0 for

any j ∈ Z2
+. Hence, in this case, the function κ1 is therefore also non-negative on Z2

+.
Harmonicity property of the function κ1 for the killed random walk. See Definition 1.

For j = (j1, j2) ∈ Z2
+, by the definition of the functions (x, y) 7→ Lj(x, y) and

κ1 : Z2
+ → R+, we have

κ1(j) =


xj1d (Y1(xd))

j2 − Pj(τ < +∞) + (φ2(xd, Y1(xd))− 1)Hj(0, Y1(xd))

if j 6= (0, 0),

φ0(xd, Y1(xd))− P(0,0)(τ < +∞) + (φ2(xd, Y1(xd))− 1)H(0,0)(0, Y1(xd))

if j = (0, 0).

Remark that for any j = (j1, j2) ∈ Z2
+,

Ej

(
PZ(1)(τ < +∞); τ > 1

)
=Pj(τ < +∞)− µ1(−1, 0)1{(0,1)}(j1, j2)− µ2(0,−1)1{(1,0)}(j1, j2)

− µ(−1,−1)1{(1,1)}(j1, j2)− µ0(0, 0)1{(0,0)}(j1, j2)

and since the function j 7→ Hj(0, Y1(xd)) is potential for (Zτ0(n)) (see the properties of
potential for the Markov chains functions in [30]),

Ej(HZ(1)(0, Y1(xd)), τ > 1) = Hj(0, Y1(xd))− (Y1(xd))
j21{j1=0,j2>0}(j1, j2),

where for j, k ∈ Z2 we denote

1{k}(j) =

{
1 if j = k,

0 otherwise,

By the definition of the function Y1, we have P (xd, Y1(xd)) = 1, and because of (7.50),
φ1(xd, Y1(xd)) = 1. Hence, for any j ∈ Z2

+,

Ej

(
x
Z1(1)
d (Y1(xd))

Z2(1); τ > 1
)

=


φ0(xd, Y1(xd))− µ0(0, 0)1{(0,0)}(j1, j2) if j = (0, 0),

xj1d φ1(xd, Y1(xd))− µ1(−1, 0)1{(0,1)}(j1, j2) if j1 > 0 and j2 = 0,

(Y1(xd))
j2φ2(xd, Y1(xd))− µ2(0,−1)1{(1,0)}(j1, j2) if j1 = 0 and j2 > 0,

xj1d (Y1(xd))
j2P (xd, Y1(xd))− µ(−1,−1)1{(1,1)}(j1, j2) if j1 > 0, j2 > 0,

=


φ0(xd, Y1(xd))− µ0(0, 0)1{(0,0)}(j1, j2) if j = (0, 0),

xj1d − µ1(−1, 0)1{(0,1)}(j1, j2) if j1 > 0 and j2 = 0,

(Y1(xd))
j2φ2(xd, Y1(xd))− µ2(0,−1)1{(1,0)}(j1, j2) if j1 = 0 and j2 > 0,

xj1d (Y1(xd))
j2 − µ(−1,−1)1{(1,1)}(j1, j2) if j1 > 0, j2 > 0,
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With these relations, for any j = (j1, j2) ∈ Z2
+ with j1 > 0, we get

Ej(κ1(Z(1)), τ > 1) = xj1d (Y1(xd))
j2 − Pj(τ < +∞) + (φ2(xd, Y1(xd))− 1)Hj(0, Y1(xd)),

= κ1(j), (7.51)

for any j = (j1, j2) ∈ Z2
+ with j1 = 0 and j2 > 0, we get

Ej(κ1(Z(1)) = xj1d (Y1(xd))
j2φ2(xd, Y1(xd))− Pj(τ < +∞)

+ (φ2(xd, Y1(xd))− 1)
(
−xj1d (Y1(xd))

j2 +Hj(0, Y1(xd))
)

= κ1(j). (7.52)

and for j = (0, 0), we obtain

Ej(κ1(Z(1)) = φ0(xd, Y1(xd))− P(0,0)(τ < +∞) + (φ2(xd, Y1(xd))− 1)H(0,0)(0, Y1(xd))

= κ1(0, 0). (7.53)

Relations (7.51), (7.52) and (7.53) prove that function κ1 is harmonic for (Zτ0(n)).
To show that the function κ1 is strictly positive at some point j = (j1, j2) ∈ Z2

+,
we investigate an asymptotic behavior of this function as j2 = 0 and j1 → +∞. By
Proposition 2.2, in each of the cases (B0)–(B4), we have 0 < Y1(xd) < yd. Hence, by

Lemma 7.8, there are two points (x1, y1) ∈
◦
D ∩

◦
D1 and (x2, y2) ∈

◦
D ∩

◦
D2 satisfying (6.6)

for which (7.49) holds for y = Y1(xd) and consequently, by Lemma 7.7 we obtain (7.44).
Using these relations for j = (j1, j2) ∈ Z2

+ with j2 = 0 one gets∣∣∣κ1(j1, 0)− xj1d

∣∣∣ 6 C1

(
xj11 + xj12

)
, ∀j = (j1, 0) ∈ Z2

+, (7.54)

with some do not depending on j constant C1 > 0. Remark that 0 < x2 < x1 because

the points (x1, y1) and (x2, y2) satisfy (6.6), and that x1 < xd because (x1, y1) ∈
◦
D ∩

◦
D1.

Hence, from the last relation it follows that

κ1(j1, 0) ∼ xj1d as j1 → ∞,

and consequently, there is N1 > 0 such that

κ1(j1, 0) > 0 for any j = (j1, 0) ∈ Z2
+ with j1 > N1. (7.55)

Now we are ready to complete the proof of the first assertion of Proposition 7.13: By
Lemma 2.2, there are N0 > 0 and a finite subset E0 of Z2

+ such that (0, 0) 6∈ E0 and for
any j ∈ Z2

+\E0 and k ∈ Z2
+ with ‖k‖ > N0,

g(j, k) =

∞∑
n=0

Pj(Z(n) = k, τ0 > n) > 0.

Hence, for any j ∈ Z2
+\E0 and k ∈ Z2

+ with ‖k‖ > N0, there is nj,k ∈ N such that

Pj(Z(nj,k) = k, τ0 > nj,k) > 0.

For any j ∈ Z2
+, k ∈ Z2

+ and n ∈ N, since the function κ1 is non-negative and harmonic
for the killed random walk, one has

κ1(j) = Ej(κ1(Z(n)), τ0 > n) > Pj(Z(n) = k, τ0 > n)κ1(k).
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Using this relation together with (7.55), for k = (k1, 0) ∈ Z2
+ with k1 > max{N0, N1}, one

gets that for any j ∈ Z2
+\E0

κ(j) > Pj(Z(nj,k) = k, τ0 > nj,k)κ1(k) > 0,

and consequently, the function κ1 is positive on Z2
+\E0.

The first assertion of Proposition 7.13 is therefore proved. To get the second assertion
of this proposition, it is sufficient to exchange the roles of x and y.

7.8.3 Proof of the third assertion of Proposition 7.13

Suppose that (B2) holds and let x∗∗ = x∗∗P and φ1(x∗∗P , Y1(x
∗∗
P )) < 1. By the definition of

the point xd, we have here
xd = x∗∗ = x∗∗P ,

and remark that in this case,

κ̃1(j) = ∂y

(
Lj(x, y) + (φ2(x, y)− 1)Hj(0, y)

1− φ1(x, y)

)∣∣∣∣
(x,y)=(x∗∗

P ,Y1(x∗∗
P ))

, j ∈ Z2
+.

To show that the function κ̃1 is non-negative on Z2
+, we recall that in this cases, by

Proposition 7.11,

lim
x→xd

√
xd − x

d

dx
Hj(x, 0) = c κ̃1(j)

with c > 0. Since for real x ∈]0, x∗∗P [, the function x 7→ Hj(0, x) is increasing on ]0, x∗∗P [, it
follows that κ̃1(j) > 0 for any j ∈ Z2

+.
Harmonicity property of the function κ̃1 for the killed random walk. For j = (j1, j2) ∈

Z2
+, we have

κ̃1(j) =
∂yφ1((x

∗∗
P , Y1(x

∗∗
P )))

(1− φ1(x∗∗P , Y1(x
∗∗
P )))2

κ1(j) +
1

1− φ1((x∗∗P , Y1(x
∗∗
P )))

κ̂1(j) (7.56)

with κ1(j) defined by (2.35) and

κ̂1(j) = ∂yLj(x
∗∗
P , Y1(x

∗∗
P ))+(φ2(x

∗∗
P , Y1(x

∗∗
P ))− 1)∂yHj(0, Y1(x

∗∗
P )) (7.57)

+ ∂yφ2((x
∗∗
P , Y1(x

∗∗
P )))Hj(0, Y1(x

∗∗
P )),

where

∂yLj(x
∗∗
P , Y1(x

∗∗
P )) =

{
j2 × (x∗∗P )j1(Y1(x

∗∗
P ))j2−1 if j = (j1, j2) ∈ Z2

+\{(0, 0)},
∂yφ0(x

∗∗
P , Y1(x

∗∗
P )) if j = (j1, j2) = (0, 0).

Remark now that for any j = (j1, j2) ∈ Z2
+, with the same arguments as in the proof of

the first assertion of our proposition, one gets

Ej(κ1(Z(1)), τ0 > 1) = κ1(j) + (φ1(x
∗∗
P , Y1(x

∗∗
P ))− 1)(x∗∗P )j11{j1>0,j2=0}(j1, j2) (7.58)

(here, an only difference with the proof of the first assertion of our proposition is
that φ1(x∗∗P , Y1(x

∗∗
P )) < 1). Moreover, since the functions j 7→ Hj(0, Y1(x

∗∗
P )) and

j 7→ ∂yHj(0, Y1(x
∗∗
P )) are potential for (Zτ0(n)) (see the properties of potential functions

for Markov chains in Woess [30]), then for any j = (j1, j2) ∈ Z2
+, one has

Ej(HZ(1)(0, Y1(x
∗∗
P )), τ0 > 1) = Hj(0, Y1(x

∗∗
P ))− (Y1(x

∗∗
P ))j21{j1=0,j2>0}(j1, j2) (7.59)

and

Ej(∂yHZ(1)(0, Y1(x
∗∗
P )), τ0 > 1) = ∂Hj(0, Y1(x

∗∗
P ))− j2× (Y1(x

∗∗
P ))j2−11{j1=0,j2>0}. (7.60)
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Finally, straightforward calculation shows that

Ej(∂yLZ(1)(x
∗∗
P , Y1(x

∗∗
P )), τ0 > 1) = Ej

(
Z2(1)(x

∗∗
P )Z1(1)(Y1(x

∗∗
P ))Z2(1)−1, τ0 > 1

)
= ∂yφ1(x

∗∗
P , Y1(x

∗∗
P ))(x∗∗P )j11{j1>0,j2=0}(j1, j2)

+ (Y1(x
∗∗
P )∂yP (x

∗∗
P , Y1(x

∗∗
P )) + j2P (x

∗∗
P , Y1(x

∗∗
P ))) j2(x

∗∗
P )j1(Y1(x

∗∗
P ))j2−1

+ j2(Y1(x
∗∗
P ))j2−1

(
Y1(x

∗∗
P )∂yφ2(x

∗∗
P , Y1(x

∗∗
P )) + j2φ2(x

∗∗
P , Y1(x

∗∗
P ))

)
1{j1=0,j1>0}(j1, j2).

Since ∂yP (x∗∗P , Y1(x
∗∗)) = 0 and P (x∗∗P , Y1(x

∗∗)) = 1, from the last relation it follows that

Ej(∂yLZ(1)(x
∗∗
P , Y1(x

∗∗
P )), τ0 > 1) (7.61)

= ∂yφ1(x
∗∗
P , Y1(x

∗∗
P ))(x∗∗P )j11{j1>0,j2=0}(j1, j2) + j2(x

∗∗
P )j1(Y1(x

∗∗
P ))j2−1

+ j2(Y1(x
∗∗
P ))j2−1

(
Y1(x

∗∗
P )∂yφ2(x

∗∗
P , Y1(x

∗∗
P )) + j2φ2(x

∗∗
P , Y1(x

∗∗
P ))

)
1{j1=0,j1>0}(j1, j2).

When combined together, relations (7.56) - (7.60) imply that Ej(κ̃1(Z(1), τ0 > 1) = κ̃1(j)

for any j ∈ Z2
+, and hence, the function κ̃1 is harmonic for (Zτ0(n)).

To show that the function κ̃1 is strictly positive on Z2
+\{(0, 0)}, we investigate an

asymptotical behavior of this function as j2 = 0 and j1 → +∞. Remark that for any
j = (j1, j2) ∈ Z2

+\{(0, 0)} with j2 = 0,

κ̃1(j) = C1(x
∗∗
P )j1 + C2Pj(τ0 < +∞) + C3Hj(0, Y1(x

∗∗
P )) + C4∂yHj(0, Y1(x

∗∗
P ))

with

C1 =
∂yφ1((x

∗∗
P , Y1(x

∗∗
P )))

(1− φ1(x∗∗P , Y1(x
∗∗
P )))2

(7.62)

and some C2, C3, C4 ∈ R do not depending on j1. When (B2) and x∗∗ = x∗∗P hold, we have

xd = x∗∗ = x∗∗P , and Y1(x
∗∗
P ) < yd = y∗∗ 6 y∗∗P ,

Hence by Lemma 7.8, for ε > 0 such that Y1(x∗∗) + ε < yd, there are two points

(x1, y1) ∈
◦
D ∩

◦
D1 and (x2, y2) ∈

◦
D ∩

◦
D2 satisfying (6.6) for which (7.49) holds

with y = Y1(x
∗∗) + ε, and by Lemma 7.7 we get (7.44). Using these relations for

j = (j1, j2) ∈ Z2
+ with j2 = 0 we obtain

P(j1,0)(τ0 < +∞) 6 C5
xj11 + xj12
1− θ

, ∀j = (j1, 0) ∈ Z2
+, (7.63)

and
H(j1,0)(0, Y1(x

∗∗
P ) + ε) 6 C6(x

j1
1 + xj12 ) (7.64)

with some C5 > 0 and C6 > 0 do not depending on j1. Since the function y 7→ Hj(0, y)

is equal on the disk of its analyticity B(0, yd) to its power series with the positive
coefficients, we have moreover

∂yHj(0, Y1(x
∗∗
P )) 6 C7Hj(0, Y1(x

∗∗
P ) + ε2)

with some do not depending on j1 constant C7 > 0, and consequently, using (7.62), (7.63)
and (7.64), we obtain∣∣κ̃1(j1, 0)− C1(x

∗∗
P )j1

∣∣ 6 C9(x
j1
1 + xj12 ), ∀j1 > 0,

with some do not depending on j1 constant C8 > 0. Remark finally that the constant C1

defined by (7.62) is strictly positive because the function y 7→ φ1(x
∗∗
P , y) is convex and

strictly increasing on ]0,+∞[. Hence, with the same argument as in the proof of the first
assertion of Proposition 7.13 we obtain

κ̃1(j1, 0) ∼ C1(x
∗∗
P )j1 as j1 → +∞,
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and consequently, κ̃1(j) > 0 for all j1 > 0 large enough.
The function κ̃1 is therefore non-negative, harmonic for (Zτ0(n)) and non zero at the

points (j1, 0) for all j1 > 0 large enough. With this results and using exactly the same
arguments as in the proof of the first assertion of our proposition, we conclude that the
function κ̃1 is positive everywhere in Z2

+\E0.

7.8.4 Proof of the last assertions of Proposition 7.13

Suppose now that (B2) holds, and let a point (x̂, ŷ) ∈ S22 be such that x̂ < xd and ŷ < yd.
For such a point (x̂, ŷ), by Lemma 7.6, the function κ(x̂,ŷ) is non-negative on Z2

+.

The proof of the identity

Ej(κ(x̂,ŷ)(Z(1)), τ0 > 1) = κ(x̂,ŷ)(j), ∀j ∈ Z2
+,

is straightforward, it uses the arguments quite similar to those of the proofs of (7.51),
(7.52) and (7.53). The function κ(x̂,ŷ) is therefore harmonic for the killed random walk
(Zτ0(n)).

To prove that κ(x̂,ŷ)(j) > 0 for some j ∈ Z2
+ we consider the point ŵ = wD(x̂, ŷ) =

(uD(x̂, ŷ), vD(x̂, ŷ)) on the unit circle S1 defined by (2.66) with x = x̂ and y = ŷ, and we
investigate an asymptotical behavior of κ(x̂,ŷ)(j) as ‖j‖ → +∞ and j/‖j‖ → ŵ.

By the definitions of the functions Lj and κ(x̂,ŷ), for j = (j1, j2) ∈ Z2
+\{(0, 0)},

κ(x̂,ŷ)(j) = x̂j1 ŷj2 − Pj(τ0 < +∞) + (φ1(x̂, ŷ)− 1)Hj(x̂, 0) + (φ2(x̂, ŷ)− 1)Hj(0, ŷ)

Since we assume that ŷ < yd, by Lemma 7.8, there are two points (x1, y1) ∈
◦
D ∩

◦
D1 and

(x2, y2) ∈
◦
D ∩

◦
D2 satisfying (6.6) for which (7.49) holds with y = ŷ, and by Lemma 7.7

we get (7.44). With the same arguments (it is sufficient to exchange the roles of x and y,

we get that there are two (x3, y3) ∈
◦
D ∩

◦
D1 and (x4, y4) ∈

◦
D ∩

◦
D2 for which

Hj(x̂, 0) 6 C ′
(
xk1
3 y

k2
3 + xk1

4 y
k2
4

)
, ∀j ∈ Z2

+,

with some do not depending on j ∈ Z2
+ constant C ′ > 0. Using the last relation together

with (7.44) and (7.49), one gets

∣∣κ(x̂,ŷ)(j)− x̂j1 ŷj2
∣∣ 6 C1

4∑
i=1

xj1i y
j2
i . (7.65)

with some do not depending on j constant C1 > 0. For ŵ = wD(x̂, ŷ) = (uD(x̂, ŷ), vD(x̂, ŷ))

defined by relation (2.66) with x = x̂ and y = ŷ, the point (x̂, ŷ) is an only point in the
set D where the function (x, y) 7→ xû1yû2 achieves its maximum over D. Since non of
the points (x1, y1), . . . , (x4, y4) is equal to (x̂, ŷ) (recall that the points (x1, y1), . . . , (x4, y4)
belong to the interior of the set D and the point (x̂, ŷ) belongs to the boundary of D), it
follows that

1

x̂j1 ŷj2

4∑
i=1

xj1i y
j2
i → 0 as ‖j‖ → +∞ and j/‖j‖ → û

and consequently, using (7.65), we get

κ(x̂,ŷ)(j) ∼ x̂j1 ŷj2 as ‖j‖ → +∞ and j/‖j‖ → û.

This proves that κ(x̂,ŷ)(j) > 0 for any j ∈ Z2
+ with ‖j‖ large enough and j‖j‖ closed

enough to û.
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The function κ(x̂,ŷ) is therefore non-negative, harmonic for (Zτ0(n)), and non zero at
some points j = (j1, j2) ∈ Z2

+ with ‖j‖ > N0. Hence, the similar arguments as in the
proof of the first assertion of our proposition, we conclude that the function κ̃1 is positive
everywhere on Z2

+\E0.

7.9 Proof of Theorem 2.3

Now we summarize the above results in orther to get Theorem 2.3:

– The first assertion of Theorem 2.3 follows from Proposition 7.10 and the first
assertion of Proposition 7.13.

– The second assertion of Theorem 2.3 is a consequence of Proposition 7.11 and the
third assertion of Proposition 7.13.

– Proposition 7.12, Proposition 7.13 and the second assertion of Proposition 7.13
prove the assertions iii)- v) of Theorem 2.3.

– The last assertion of our theorem is proved by Lemma 7.6 and the last assertion of
Proposition 7.13.

8 Asymptotics along the axes

This section is devoted to the proof of Theorem 2.4.
For k2=0, the asymptotics (2.56)-(2.62) follows from Theorem 2.3 and the Tauberian-

like theorem (see Corollary VI.1 of Flajolet and Sedgevick [10]) in a straightforward way.
Hence, to complete the proof of our theorem, i.e. to get the asymptotics (2.56)-(2.62) for
k2 > 0, it is sufficient to show that for any j ∈ Z2

+\E0,

lim
n→+∞

g(j, (n, k2))

g(j, (n, 0))
= ν1(k2) > 0, ∀k2 ∈ Z2. (8.1)

Before getting this result, let us notice that under the hypotheses (A1)–(A3), the function
y 7→ ψ1(xd, y)/Q(xd, y) is analytic at the origin y = 0 because the functions y 7→ ψ1(xd, y)

and y 7→ Q(xd, y), see definitions (2.25) and (2.24), are analytic in a neighborhood of the
closed disk B(0, Y2(xd)) and with the definition of the function Q (see (2.24))

Q(xd, 0) = −
∑

k=(k1,k2)∈Z2:
k2=−1

xk1

d µ(k) < 0.

For any given n ∈ N∗, the quantity (2.55) is therefore well defined and equal to the
(n− 1)-th coefficient of the Taylor expansion of the function y 7→ ψ1(xd, y)/Q(xd, y) in a
neighborhood of the origin y = 0:

ψ1(xd, y)/Q(xd, y) =

∞∑
n=1

ν1(n)y
n−1.

To show that all coefficients ν1(n), n ∈ N are positive, and to get (8.1) for k2 > 0, we
will need a probabilistic representation of the quantities ν1(n), n ∈ N∗, in terms of the
invariant measure of the following Markov chain on Z+: Define the twisted positive
measures µ̃ on Z2 and µ̃1 on Z×Z+ by letting

µ̃(k1, k2) = xk1

d (Y1(xd))
k2µ(k1, k2), ∀(k1, k2) ∈ Z2,

µ̃1(k1, k2) = xk1

d (Y1(xd))
k2µ1(k1, k2), ∀(k1, k2) ∈ Z×Z+.
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With the definitions of the point xd and the function Y1, we have

µ̃(Z2) = P (xd, Y1(xd)) = 1 and µ̃1(Z×Z+) = φ1(xd, Y1(xd)) 6 1,

and consequently, the twisted measure µ̃ is stochastic on Z2
+ and the twisted measure

µ̃1 is sub-stochastic on Z × Z+. Consider now a twisted random walk (Z̃1(n) =

(Z̃
(1)
1 (n), Z̃

(1)
2 (n))) on Z×Z+ with transition probabilities

P(j1,j2)

(
Z̃(1)(1) = (k1, k2)

)
=

{
µ̃(k − j) if j2 > 0,

µ̃1(k − j) if j2 = 0.

Since the transition probabilities of the twisted random walk (Z̃1(n) = (Z̃
(1)
1 (n), Z̃

(1)
2 (n)))

are invariant with respect to the shifts on (`, 0) for any ` ∈ Z, its second component

(Z̃
(1)
2 (n)) is a Markov chain on Z+ (stochastic if φ1(xd, Y1(xd)) = 1 and sub-stochastic if

φ1(xd, Y1(xd)) < 1) with transition probabilities

Pj2

(
Z̃

(1)
2 (1) = k2

)
=


∑∞

k1=−1 µ̃(k1, k2 − j2) if j2 > 0,∑∞
k1=−1 µ̃1(k1, k2) if j2 = 0.

Recall that a non-negative measure π1 on Z+ is invariant for (Z̃(1)
2 (n)) if, for any `∈Z+,

the relation
π1(`) =

∑
`′∈Z+

π1(`
′)P`′(Z̃

(1)
2 (n) = `) (8.2)

holds. The following lemma relates the vector ν1 = (ν1(k2), k2 ∈ Z+) with the unique (up

to a multiplicative constant) invariant measure for (Z̃(1)
2 (n)).

Lemma 8.1. Under the hypotheses (A1)–(A3), π1 = (π1(n) = ν1(n)(Y1(xd))
n, n ∈ N) is

a unique up to the multiplication by constants invariant measure of the Markov chain
(Z̃

(1)
2 (n)).

Proof. We prove this lemma in two steps: First we will show that the Markov chain
(Z̃

(1)
2 (n)) has an invariant measure π1 = (π1(n), n ∈ N) with π1(0) = 1, and next we

will prove that the generating function f(y) =
∑∞

n=0 π1(n)(y/Y1(xd))
n satisfies in a

neighborhood of the point y = 0 in C the identity

f(y) = φ1(xd, y) + P (xd, y)(f(y)− 1)

and we will deduce from this identity that π1(n) = ν1(n)(Y1(xd))
n for any n ∈ N.

To perform the first step of our proof, let us notice that under our hypotheses, the
jumps of the Markov chain (Z̃

(1)
2 (n)) are integrable and moreover, for any non-zero

` ∈ Z+,

E`(Z̃
(1)
2 (1)) = `+

∞∑
k2=−1

k2

∞∑
k1=−1

xk1

d (Y1(xd))
k2µ(k1, k2) = `+ Y1(xd)∂yP (xd, Y1(xd))

with ∂yP (xd, Y1(xd)) 6 0. The Markov chain (Z̃
(1)
2 (n)) is therefore recurrent if the

measure µ̃1 is stochastic, i.e. if φ1(xd, Y1(xd)) = 1, and it is transient if φ1(xd, Y1(xd)) < 1.

In the case when the Markov chain (Z̃
(1)
2 (n)) is recurrent, it has a unique invariant

measure (π1(`), ` ∈ Z+) with π1(0) = 1 and

π1(`) =

∞∑
n=1

P0(Z̃
(1)
2 (n) = `, Z̃

(1)
2 (k) 6= 0, ∀k < n), ∀` > 0.
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Suppose now that the Markov chain (Z̃
(1)
2 (n)) is transient, and let

π
(k)
1 (`) =

∞∑
n=0

Pk(Z̃
(1)
2 (n) = `), k, ` ∈ Z+.

Then for any k, ` ∈ Z+ such that k > `, with a straightforward calculation one gets∑
`′∈Z+

π
(k)
1 (`′)P`′(Z̃

(1)
2 (1) = `) = π

(k)
1 (`). (8.3)

Remark moreover that because of Assumption (A2), by the strong Markov property,

π
(k)
1 (`)/π

(k)
1 (0) = π

(`)
1 (`)/π

(`)
1 (0), ∀k > `,

and P`′(Z̃
(1)
2 (1) = `) = 0 for all `′ > ` + 1. Using (8.3), it follows that the measure

π1 = (π1(`), ` ∈ Z+) with π1(0) = 1 and

π1(`) = π
(`)
1 (`)/π

(`)
1 (0), ∀` ∈ N∗,

is invariant for (Z̃(1)
2 (n)). The first step of our proof is therefore completed.

Remark now that for any n ∈ Z+, using the identity

`+n∑
`′=0

π1(`
′)P`′(Z̃

(1)
2 (n) = `) = π1(`) (8.4)

with ` = 0, one gets

π1(n) 6 π1(0)
(
Pn(Z̃

(1)
2 (n) = 0)

)−1

6 π1(0)

( ∞∑
k1=−1

µ̃(k1,−1)

)−n

with
∞∑

k1=−1

µ̃(k1,−1) =

∞∑
k1=−1

xk1

d (Y1(xd))
−1µ(k1,−1) = −Q(xd, 0) > 0.

Hence, the generating function f(y) =
∑∞

n=0 π1(n)(y/Y1(xd))
n is analytic in a

neighborhood of the origin y = 0 in C, and by (8.2), for any non zero y, satisfies
there the identity

f(y) = f(0)
( ∑
(k1,k2)∈Z×Z+

µ̃1(k1, k2)(y/Y1(xd))
k2

)
+ (f(y)− f(0))

( ∑
(k1,k2)∈Z×Z

µ̃(k1, k2)(y/Y1(xd))
k2

)
.

Since f(0) = π1(0) = 1 and with the definition of the twisted measures µ̃ and µ̃1, for
non-zero y, we have

∑
(k1,k2)∈Z×Z

µ̃(k1, k2)
yk2

(Y1(xd))k2
= P (xd, y)

and ∑
(k1,k2)∈Z×Z+

µ̃1(k1, k2)
yk2

(Y1(xd))k2
= φ1(xd, y),
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this implies that for any non-zero y ∈ C with |y| small enough,

(f(y)− 1)(1− P (xd, y)) = φ1(xd, y)− 1.

By the definition of the functions (x, y) 7→ ψ1(x, y) and (x, y) 7→ Q(x, y), from the last
relation it follows that for any y ∈ C with |y| small enough,

(f(y)− 1)Q(xd, y) = yψ1(xd, y)

and consequently, since Q(xd, 0) 6= 0, for any y ∈ C with |y| small enough, we have also

f(y) = 1 +
yψ1(xd, y)

Q(xd, y)
.

From the last relation, by the uniqueness of the coefficients of the Taylor expansion at
the point y = 0, it follows that

π1(n)(Y1(xd))
−n = ν1(n), ∀n ∈ Z+,

and consequently, the measure π1 = (ν1(n)Y1(xd))
n, n ∈ Z+) is the unique invariant

measure of the Markov chain (Z̃
(1)
2 (n)) with π1(0) = 1.

As a straightforward consequence of Lemma 8.1 one gets the following property of
the coefficients ν1(n), n ∈ N:
Corollary 8.1. Under the hypotheses (A1)–(A3), all coefficients ν1(n), n ∈ Z+, are
positive and (ν1(n), n ∈ Z+) is an only positive solution of the system

∞∑
`1=1

µ1(`1, n) +

n+1∑
`2=1

ν1(`2)

∞∑
`1=1

µ(`1, n− `2) = ν1(n), k2 ∈ Z+. (8.5)

Proof. Indeed, since by Lemma 8.1, ν1(n) = π1(n)(Y1(xd))
−n for any n ∈ Z+, the

system (8.5) is equivalent to (8.2). Under our hypotheses, the Markov chain (Z̃
(1)
2 (n))

is irreducible on Z+ and π1(0) = 1 6= 0. It follows that π1(n) > 0 for any n ∈ Z+, and
consequently also ν1(n) = π1(n)(Y1(xd))

−n > 0 for any n ∈ Z+.

From this result it follows that to get (8.1), it is sufficient to show that for any
j ∈ Z2

+\E0 and k2 ∈ N∗, the sequence
(
g(j, (n, k2))/g(j, (n, 0))

)
converges and the limits

limn→∞ g(j, (n, k2))/g(j, (n, 0))
)
, k2 ∈ N, satisfy the system of the equations (8.5). To

prove the convergence of these sequences, the following preliminary results will be
needed.

Corollary 8.2. Under the hypotheses (A1)–(A3), if one of the conditions (B0)–(B6) holds,
then for any j ∈ Z2

+

lim
n
g(j, (k1 + n, 0))/g(j, (n, 0)) = 1, ∀k1 ∈ Z+, (8.6)

and there are constants cj > 0 and c′j > 0 such that for any k1 > 0,

cjk
γ
1x

−k1

d 6 g(j, (k1, 0)) 6 c′jk
γ
1x

−k1

d , (8.7)

where

γ =



−1/2 if xd = x∗∗P and either (B2) holds with φ1(xd, Y1(xd)) = 1,

or (B5) holds with φ1(xd, Y1(xd)) < 1,,

−3/2 if (B2) holds with xd = x∗∗P and φ1(xd, Y1(xd)) < 1,

1 if (B5) holds with xd < x∗∗P ,

0 otherwise.
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Proof. This result is a straightforward consequence of the asymptotics (2.56)-(2.62) with
k2 = 0. These asymptotics follow from Theorem 2.3 and a Tauberian-like theorem (see
Corollary VI.1 of Flajolet and Sedgevick [10]) in a straightforward way.

Lemma 8.2. Under the hypotheses (A1)–(A3), for any j ∈ Z2
+ and k2 ∈ Z+ there are

three constants c1 > 0, c2 > 0 and N(k2) > 0, such that

c1 g(j, (k1, 0)) 6 g(j, (k1, k2)) 6 c2 g(j, (k1, 0)), (8.8)

for any k1 ∈ Z+ such that k1 > N(k2).

Proof. Remark that for any j, k = (k1, k2) ∈ Z2
+ and N ∈ N, by using the Markov property

one gets

g(j, (k1, k2)) >
∞∑

n=N

Pj(Z(n) = (k1, k2), Z(N) = (k1, 0), τ0 > n)

> g(j, (k1, 0))P(k1,0)(Z(N) = (k1, k2), τ0 > 0). (8.9)

Moreover, similar arguments as in the proof of Lemma 7.2 shows that for any k2 ∈ Z+,

there is N ∈ N∗ and a sequence
(
`
(0)
1 , `

(0)
2

)
, . . . ,

(
`
(N)
1 , `

(N)
2

)
∈ Z2 such that

`(0) + . . .+ `(n) ∈ Z×Z+, ∀n ∈ {0, . . . , N},
N∑

n=0

`(n) = (0, k2) and µ1

(
`(0)
) N∏
n=1

µ
(
`(n)

)
> 0.

Hence, using Assumption (A2) we conclude that for any (k1, k2) ∈ Z2
+ with k1 > N ,

P(k1,0)

(
Z(n(k2)) = (k1, k2), τ0 > 0

)
> µ1(`

(0))

N∏
n=1

µ(`(n)) > 0.

When combined with (8.9) the last relation proves the first inequality of (8.8) with

c1 = µ1(`
(0))

N∏
n=1

µ(`(n)).

The proof of the second inequality of (8.8) is quite similar.

Now we are ready to complete proof of Theorem 2.4. Throughout our proof, the starting
point j∈Z2

+\E0 will be given.
Since by Lemma 8.2 for any k2 ∈ Z+, the sequence (g(j, (n, k2))/g(j, (n, 0)), n > Nn)

is bounded below and above by some positive constants, to get (8.1) it is sufficient to
show that for any subsequence (Nn) of the sequence of non-zero natural numbers (n),
for which the sequence of functions

k2 7→ fn(k2) = g(j, (Nn, k2))/g(j, (Nn, 0)) (8.10)

converges point-wise in Z+, one has

lim
n
fn(k2) = ν1(k2), ∀k2 ∈ Z+. (8.11)

Suppose now that for a subsequence (Nn), the sequence of functions (fn) defined by
(8.10) converges point-wise in Z+ and let f∞ = limn fn. By Corollary 8.1, to get (8.11) it
is sufficient to show that the limit function f∞ satisfies the system of equations

∞∑
`1=1

µ1(`1, k2) +

n+1∑
`2=1

f∞(`2)

∞∑
`1=1

µ(`1, k2 − `2) = f∞(k2), k2 ∈ Z+. (8.12)
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To get this result, we consider the sequence of functions Fn : Z×Z+ → R+ defined for
any (k1, k2) ∈ Z×Z+ by

Fn(k1, k2) =

{
g(j, (k1 +Nn, k2))/g(j, (Nn, 0)) if k1 +Nn > 0,

0 otherwise.

Remark that by (8.6), the sequence of functions (Fn) also converges point-wise in Z×Z+,
and for any (k1, k2) ∈ Z×Z+,

lim
n
Fn(k1, k2) = lim

n
fn(k2) = f∞(k2). (8.13)

Remark moreover that for any k = (k1, k2) ∈ Z2
+\{j},

g(j, (k1, k2)) =
∑

(`1,`2)∈Z2
+

g(j, (`1, `2))P(`1,`2)(Z(1) = (k1, k2), τ0 > 1)

=

k2+1∑
`2=1

g(j, (0, `2))µ2(k1, k2 − `2) +

k1+1∑
`1=1

g(j, (`1, 0))µ1(k1 − `1, k2)

+

k1+1∑
`1=1

k2+1∑
`2=1

g(j, (`1, `2))µ(k1 − `1, k2 − `2).

Using this relation with k1 = Nn, for any n ∈ N such that Nn > j1, one gets

Fn(0, k2) =

k2+1∑
`2=1

Fn(−Nn, `2)µ2(Nn, k2 − `2) +

Nn∑
`1=−1

Fn(−`1, 0))µ1(`1, k2)

+

Nn∑
`1=−1

k2+1∑
`2=1

Fn(−`1, `2)µ(`1, k2 − `2) ∀k2 ∈ Z+,

and consequently, using (8.13) we will obtain (8.12) if we prove that for any k2 ∈ Z+ and
`2 ∈ {1, . . . , k2 + 1}, the following relations hold

lim
n
Fn(−Nn, `2)µ2(Nn, k2 − `2) = 0, (8.14)

lim
n

Nn∑
`1=−1

Fn(−`1, 0))µ1(`1, k2) =

∞∑
`1=−1

lim
n
Fn(−`1, 0))µ1(`1, k2) (8.15)

and

lim
n

Nn∑
`1=−1

Fn(−`1, `2)µ(`1, k2 − `2) =

∞∑
`1=−1

lim
n
Fn(−`1, `2)µ(`1, k2 − `2). (8.16)

To get (8.14) we remark that by Corollary 8.2, there is a constant C > 0 such that for
any Nn large enough,

Fn(−Nn, `2) = g(j, (0, `2))/g(j, (Nn, 0)) 6 g(j, (0, `2))C(Nn)
γxNn

d

and consequently, for any ε > 0, there is a constant Cε > 0 such that for any Nn large
enough,

Fn(−Nn, `2) 6 g(j, (0, `2))Cε(1 + ε)NnxNn

d .

Since by Assumption (A3)(ii), the generating function φ1 is finite in a neighborhood of
the point (xd, Y1(xd)), there is ε > 0 such that for any k2 ∈ Z+,

lim
n→∞

µ1(n, k2)(1 + ε)nxnd = 0.
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and consequently, for any k2 ∈ Z+ and `2 ∈ {1, . . . , k2 + 1}, (8.14) holds.
To get (8.15) we use the implicit function theorem and Corollary 8.2. By Corollary 8.2,

there is a constant Cj > 0 such that for any Nn > 0 and `1 ∈ Z such that −1 6 `1 6 Nn,

Fn(−`1, 0) =
g(j, (Nn − `1, 0))

g(j, (Nn, 0))
6 C1

(Nn − `1)
γ

Nγ
n

x`1d . (8.17)

In the case when γ > 0, it follows that for any Nn > 0 and `1 ∈ Z such that −1 6 `1 6 Nn,

Fn(−`1, 0) 6 C1x
`1
d ,

and consequently, since Fn(−`1, 0) = 0 for all `1 > Nn, and since under our hypotheses,

∞∑
`1=−1

x`1d µ1(`1, k2) 6 (Y1(xd))
−k2

∞∑
`=(`1,`2)∈Z×Z+

x`1d (Y1(xd))
`2µ1(`1, `2) = φ1(xd, Y1(xd)) < +∞,

by the implicit function theorem one gets (8.15). In the case when γ > 0, (8.15) is
therefore proved.

Suppose now that γ < 0. In this case, using (8.17), one gets that for any Nn > 0 and
`1 ∈ Z such that −1 6 `1 < Nn,

Fn(−`1, 0) 6 C1
N

|γ|
n

(Nn − `1)|γ|
x`1d 6

{
C1N

|γ|
n x`1d 6 C1(2`1)

|γ|x`1d if `1 > Nn/2

C12
|γ|x`1d if `1 6 Nn/2

and consequently, for any ε > 0 there is a constant Cε > 0 such that Nn > 0 and
`1 ∈ {−1, . . . , Nn − 1}, one has

Fn(−`1, 0) 6 Cε(1 + ε)`1x`1d . (8.18)

Since Fn(−`1, 0) = 0 for all `1 > Nn, and since under our hypotheses, for some ε > 0

small enough,

∞∑
`1=−1

(1 + ε)`1x`1d µ1(`1, k2) 6 (Y1(xd))
−k2

∞∑
`=(`1,`2)∈Z×Z+

(1 + ε)`1x`1d (Y1(xd))
`2µ1(`1, `2)

6 (Y1(xd))
−k2φ1((1 + ε)xd, Y1(xd)) < +∞, (8.19)

by the implicit function theorem, it follows (8.15). Relation (8.15) is therefore proved.
To get (8.16) we use first Lemma 8.2. By Lemma 8.2, there are two constants N(`2)

and C1 > 0 such that for any Nn > 0 and `1 ∈ {−1, . . . , Nn −N(`2)},

Fn(−`1, `2) =
g(j, (Nn − `1, `2))

g(j, (Nn, 0))
6 C1

g(j, (Nn − `1, 0))

g(j, (Nn, 0))

and for `1 ∈ {Nn −N(`2) + 1, . . . , Nn − 1},

Fn(−`1, `2) =
g(j, (Nn − `1, `2))

g(j, (Nn, 0))

C2

g(j, (Nn, 0))

with C2 = max{g(j, (1, 0)), . . . , g(j, (N(`2), 0)}. Hence with the similar arguments as
above one gets that for any ε > 0 there is a constant Cε > 0 such that Nn > 0 and
`1 ∈ {−1, . . . , Nn − 1}, (8.18) holds, and consequently, using (8.19) we conclude that
(8.16) holds.

Theorem 2.4 is therefore proved.
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9 Asymptotics along directions of S1+

This section is devoted to the proof of Theorem 2.6.

9.1 Main ideas and the sketch of the proof

The main ideas of the proof of Theorem 2.6 are the following:
By using Theorem 2.1, we first get an integral representation

g(j, k) =∫
|x|=x̂

∫
|y|=ŷ

Lj(x, y) + (φ1(x, y)−P (x, y))Hj(x, 0)+(φ2(x, y)−P (x, y))Hj(0, y)

(2πi)2 xk1+1yk2+1(1−P (x, y))
dxdy (9.1)

for any (x̂, ŷ) ∈ Γ with x̂ < xd and ŷ < yd. Next we show that the set {(x, y) ∈
◦
D : x <

xd, y < yd} is non empty. By the definition of the set Γ, the set
◦
D is included to the set Γ,

with this result we will be able to consider the integral representation (9.1) with x̂ < xd,

ŷ < yd such that (x̂, ŷ) ∈
◦
D.

To prove the first tree assertions of Theorem 2.6, the integral representation
(9.1) is next modified in the following way: since the functions (x, y) 7→ Lj(x, y) and

(x, y) 7→ (1− P (x, y))−1 are analytic in the polycircular set Ω(
◦
D), and, by Theorem 2.1,

– the function (x, y)7→(φ1(x, y)−P (x, y))Hj(x, 0) is analytic in the polycircular set

{(x, y)∈Ω(
◦
D):|x|<xd},

– the function (x, y)7→(φ2(x, y)−P (x, y))Hj(0, y) is analytic in the polycircular set

{(x, y)∈Ω(
◦
D):|y|<yd},

and since the set Ω(
◦
D) does not contain zeros of the function (x, y)7→xk1+1yk2+1(1−P (x, y)),

we can write
g(j, k) = I0(j, k) + I1(j, k) + I2(j, k) (9.2)

with

I0(j, k) =
1

(2πi)2

∫
|x|=x̂0

∫
|y|=ŷ0

Lj(x, y)

xk1+1yk2+1(1− P (x, y))
dx dy, (9.3)

I1(j, k) =
1

(2πi)2

∫
|x|=x̂1

∫
|y|=ŷ1

(φ1(x, y)− P (x, y))Hj(x, 0)

xk1+1yk2+1(1− P (x, y))
dx dy (9.4)

and

I2(j, k) =
1

(2πi)2

∫
|x|=x̂2

∫
|y|=ŷ2

(φ2(x, y)− P (x, y))Hj(0, y)

xk1+1yk2+1(1− P (x, y))
dx dy (9.5)

for any (x̂0, ŷ0) ∈
◦
D, (x̂1, ŷ1) ∈ {(x, y) ∈

◦
D : x < xd}, and (x̂2, ŷ2) ∈ {(x, y) ∈

◦
D : y < yd}.

To prove the first assertion of Theorem 2.6, it is sufficient to get the asymptotic
behavior (2.75) when min{k1, k2} → +∞ and wk = k/‖k‖ → w for any w ∈ W1. In order
to get this result, we identify the asymptotic behavior of I1(j, k) by using the residue
theorem (applied first for the integral with respect to x and next for the integral with
respect to y), and using next large deviation estimates of I0(j, k) and I2(j, k) we prove
that the terms I0(j, k) and I3(j, k) are negligible with respect to I1(j, k).

The proof of the second assertion of Theorem 2.6 is exactly the same as the proof
of the first assertion, it is sufficient to exchange the roles of the first and the second
coordinates of the points j, k ∈ Z2

+.
To prove the assertions (iii)–(v) of our theorem, we show that the term I0(j, k) is

negligible with respect to I1(j, k) + I2(j, k) and we identify (in the same way as in the
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proof of the first assertion of our theorem) the asymptotic behavior of each term I1(j, k)

and I2(j, k).
Finally, the last assertion of Theorem 2.6, is obtained as a consequence of

Proposition 1 of the paper [18].
The proof of Theorem 2.6 is organized as follows:
The integral representations (9.1) and (9.2) of the Green function g(j, k) are obtained

respectively in Lemma 9.1 and Corollary 9.1 of Section 9.2.
Section 9.3 is devoted to the upper large deviation estimates for the integrals I0(j, k),

I1(j, k) and I2(j, k). These large deviation estimates will be used in order to identify the
dominant terms of the sum I0(j, k)+I0(j, k)+I0(j, k) of the right-hand side of (9.2).

In Section 9.4 we obtain exact asymptotics of I1(j, k) (resp I2(j, k)) as min{k1, k2} →
+∞ and k/‖k‖ → w for those w = (u, v) ∈ S1+ for which u > uD(xd, Y2(xd)) (resp. for
which v > vD(X2(yd), yd)). This is a subject of Lemma 9.6 and Lemma 9.5 below.
Remark that we do not need the exact asymptotics of I1(j, k) (resp I2(j, k)) when
k/‖k‖ → w = (u, v) ∈ S1+ and u 6 uD(xd, Y2(xd)) (resp. v 6 vD(X2(yd), yd)): the large
deviation asymptotics obtained in Section 9.3 will be in this case sufficient.

In Section 9.5 the proof of the first assertion of our theorem is completed. It will
be proved there that for any w ∈ W1, the inequality u > uD(xd, Y2(xd)) holds, and
consequently that the results of Section 9.4 provide the exact asymptotic for I1(j, k) as
min{k1, k2} → +∞ and k/‖k‖ → w ∈ W1. A comparison of the exact asymptotics for
I1(j, k) as min{k1, k2} → +∞ and k/‖k‖ → w ∈ W1 with the asymptotics of I2(j, k) and
I0(j, k) will show that the terms I0(j, k) and I2(j, k) are negligible with respect to I1(j, k).

The second assertion of Theorem 2.6 is obtained by using the arguments of the
symmetry: to get this statement, the same arguments as in the proof of the first assertion
can be applied if one exchanges the roles of x and y.

In Section 9.6 and 9.7, we complete the proof of the assertions (iii)–(v) of Theorem 2.6.
It will be shown in these cases, the exact asymptotics of I1(j, k) and I2(j, k) are given by
the results of Section 9.4 and that the term I0(j, k) is negligible with respect to the terms
I1(j, k) and I2(j, k). The exact asymptotic of the Green function g(j, k) will be obtained
by comparing the exact asymptotics of I1(j, k) and I2(j, k).

9.2 Integral representation of the coefficients g(j, k)

Lemma 9.1. Under the assumptions (A1)–(A4), the set {(x, y) ∈
◦
D : x < xd, y < yd} is

non empty and for any (x̂, ŷ) ∈
◦
D such that x̂ < xd and ŷ < yd, (9.1) holds.

Proof. By the first assertion of Theorem 2.1, the series (2.28) (and consequently also the
series (6.1)) converge on the polycircular set {(x, y)∈Ω(Γ) : |x|<xd, |y|<yd}. The function
(x, y)7→Hj(x, y) is therefore analytic in {(x, y)∈Ω(Γ) : |x|<xd, |y|<yd} and for any (x̂, ŷ)∈Γ
with x̂<xd and ŷ<yd, one has

g(j, k) =
1

(2πi)2

∫
|x|=x̂

∫
|y|=ŷ

Hj(x, y)

xk1+1yk2+1
dx dy, ∀j, k∈Z2

+ (9.6)

Remark now that under our assumptions, the set {(x, y) ∈
◦
D : x < xd, y < yd} is non

empty:

– when one of the assertions (B0)–(B2) is valid, this is a consequence of the first
assertion of Lemma 6.4

– when one of the assertions (B3) or (B4) holds, the set {(x, y) ∈
◦
D : x < xd, y < yd}

is non empty because in this case and x∗P < xd = x∗∗ < x∗∗P , yd > Y1(xd) and by
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Lemma 4.1, any point of the line segment [(xd, Y1(xd)), (xd, Y2(xd))], aside of the

ends points (xd, Y1(xd)) and (xd, Y2(xd)) belongs to the interior
◦
D of the set D;

– similarly, when one of the assertions (B5) or (B6) holds, the set {(x, y)∈
◦
D :

x<xd, y<yd} is non empty because y∗P<yd=y
∗∗<y∗∗P , xd > X1(yd) and by Lemma 4.1,

any point of line segment [(X1(yd), yd), (X2(yd), yd)], aside of the end points
(X1(yd), yd) and (X2(yd), yd) belongs to the interior of the set D.

By the definition of the set Γ, the set
◦
D is included to Γ, it follows that (9.6) holds also

for any (x̂, ŷ) ∈
◦
D with x̂ < xd and ŷ < yd.

Furthermore, by the second assertion of Theorem 2.1, for any j ∈ Z2
+, on the set

{(x, y)∈Ω(Γ) : |x|<xd, |y|<yd}, the function hj satisfies the identity (2.30). Since

the set {(x, y) ∈ Ω(
◦
D) : x < xd, y < yd} has an empty intersection with the sets

{(x, y) ∈ C2 : x = 0} and {(x, y) ∈ C2 : y = 0}, it follows that on the set

{(x, y)∈Ω(
◦
D) : x<xd, y<yd}, for any j ∈ Z2

+, the relation

(1− P (x, y))(Hj(x, y)−Hj(x, 0)−Hj(0, y)) = Q(x, y)hj(x, y)

= Lj(x, y) + ψ1(x, y)h1j(x) + ψ2(x, y)h2j(y)

= Lj(x, y) + (φ1(x, y)− 1)Hj(x, 0) + (φ2(x, y)− 1)Hj(0, y),

holds, or equivalently,

(1−P (x, y))Hj(x, y) = Lj(x, y)+(φ1(x, y)−P (x, y))Hj(x, 0)+(φ2(x, y)−P (x, y))Hj(0, y).

Since the function (x, y) 7→ 1/(1− P (x, y)) is analytic in the set {(x, y) ∈ C2 : (|x|, |y|) ∈
◦
D}, this implies that, on the set {(x, y) ∈ C2 : (|x|, |y|) ∈

◦
D, |x| < xd, |y| < yd}, we have

also the identity

Hj(x, y) =
Lj(x, y) + (φ1(x, y)− P (x, y))Hj(x, 0) + (φ2(x, y)− P (x, y))Hj(0, y)

1− P (x, y)
.

The last identity combined with (9.6) proves (9.1).

Since the functions (x, y) 7→ Lj(x, y) and (x, y) 7→ x−k1−1yk2−1(1 − P (x, y))−1

are analytic in the polycircular set Ω(
◦
D), and by Theorem 2.1, the functions

(x, y) 7→ (φ1(x, y)− P (x, y))Hj(x, 0) and (x, y) 7→ (φ2(x, y)− P (x, y))Hj(0, y) are analytic

respectively on {(x, y)∈Ω(
◦
D) : |x|<xd} and {(x, y) ∈ Ω(

◦
D) : |y| < yd}, as a

straightforward consequence of Lemma 9.1 we obtain

Corollary 9.1. Under the assumptions (A1)–(A4), for any j∈Z2
+ and k=(k1, k2)∈Z2

+\{(0, 0)},
relation (9.2) holds with I0(j, k), I1(j, k) and I2(j, k) defined respectively by (9.3), (9.4)

and (9.5), for any (x̂0, ŷ0)∈
◦
D, (x̂1, ŷ1)∈{(x, y)∈

◦
D : x<xd}, and (x̂2, ŷ2)∈{(x, y) ∈

◦
D :

y<yd}.

9.3 Large deviation estimates of the quantities I0(j, k), I1(j, k) and I2(j, k)

Lemma 9.2. Under the assumptions (A1)–(A4), for any w = (u, v) ∈ S1+, and j, k ∈ Z2
+,

as ‖k‖ → ∞ and k/‖k‖ → w,

lim sup
k

‖k‖−1 log |I0(j, k)| 6 − max
(x̂,ŷ)∈D

(
u ln(x̂) + v ln(ŷ)

)
, (9.7)

lim sup
k

‖k‖−1 log |I1(j, k)| 6 − max
(x̂,ŷ)∈D, x̂6xd

(
u ln(x̂) + v ln(ŷ)

)
. (9.8)
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and
lim sup

k
‖k‖−1 log |I2(j, k)| 6 − max

(x̂,ŷ)∈D, ŷ6yd

(
u ln(x̂) + v ln(ŷ)

)
. (9.9)

Proof. Indeed, the definition of I2(j, k) and Cauchy’s inequality give, for any j, k =

(k1, k2) ∈ Z2
+ and (x̂, ŷ) ∈

◦
D with ŷ < yd,

|I2(j, k)| 6M(x̂, ŷ)x̂−k1 ŷ−k2 ,

with

M(x̂, ŷ) = max{|(φ2(x, y)− P (x, y))Hj(0, y)(1− P (x, y))−1| : (x, y) ∈ C2, |x| = x̂, |y| = ŷ}.

This proves that as ‖k‖ → +∞ and k/‖k‖ → w = (u, v),

lim sup
k

‖k‖−1 log |I2(j, k)| 6 − sup

(x̂,ŷ)∈
◦
D:ŷ<yg

(
u log(x̂) + v log(ŷ)

)
= − max

(x̂,ŷ)∈D, ŷ6yd

(
u log(x̂) + v log(ŷ)

)
where the second relation holds because the function (x, y) 7→ u lnx+ v ln y is continuous
on D. Relation (9.9) is therefore proved. The proof of (9.7) and (9.8) is quite similar.

9.4 Exact asymptotic behavior of I1(jk) as min{k1, k2} → ∞
To get the exact asymptotic of I1(jk) as min{k1, k2} → ∞ we consider first the

following preliminary results.

Lemma 9.3. Under the assumption (A1), for any w = (u, v) ∈ S1+, the function
x 7→ u ln(x) + v ln(Y2(x)) is strictly increasing in the line segment [x∗P , xD(w)] and strictly
decreasing in the line segment [xD(w), x∗∗P ].

Proof. Indeed, recall that under our assumptions, the function (α, β) 7→ P̃ (α, β) =

P (eα, eβ) is strictly convex and finite in a neighborhood of the set D̃ = {(α, β) ∈
R2 : P (eα, eβ) 6 1}, and that for any w = (u, v) ∈ S1, the point (αD(w), βD(w) =

(ln(xD(w)), ln(yD(w))) (see Definition 2.6.1) is an only point on the boundary of the set
D̃, where the function (α, β) 7→ uα+ vβ achieves its maximum over D̃.

Consider the line segment [α∗
P , α

∗∗
P ] = {α ∈ R : infβ∈R P̃ (α, β) 6 1}. We have, see

the proof of Lemma 4.1, α∗
P=x ln(x

∗
P ), α

∗∗
P = ln(x∗∗P ), and that for any α ∈]α∗

P , α
∗∗
P [ and

β2(α) = ln(Y2(e
α)), we have

P̃ (α, β2(α)) = 1 and ∂βP̃ (α, β2(α)) > 0.

Since the function P̃ is strictly convex, by the implicit function theorem, it follows that
the function β2 is also strictly convex on the line segment [α∗

P , α
∗∗
P ].

Under our assumptions, the definition 2.6.1 of the mapping
w 7→(αD(w), βD(w))=(ln(xD(w)), ln(yD(w))) gives that, if w = (u, v) ∈ S1+,

∂βP̃ (αD(w), βD(w)) > 0.

By the definition of the function α 7→ β2(α) = ln(Y2(e
α)), see the proof of Lemma 4.1, it

follows that,
βD(w) = β2(αD(w)),

and that αD(w) is an only point in the line segment [α∗
P , α

∗∗
P ] where the function

α 7→ uα+ vβ2(α) = uα+ v ln(Y2(e
α)) (9.10)
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achieves its maximum over [α∗
P , α

∗∗
P ]. Since the function β2 is strictly convex on [α∗

P , α
∗∗
P ],

the function (9.10) is also strictly convex on [α∗
P , α

∗∗
P ], and consequently, it is strictly

increasing on the segment [α∗
P , αD(w)] and strictly decreasing on the line segment

[αD(w), α∗∗
P ]. Since the function x 7→ ln(x) is strictly increasing on ]0,+∞[, this proves

that the function x 7→ u ln(x) + v ln(Y2(x)) is strictly increasing on the line segment
[x∗P , xD(w)] and strictly decreasing on the line segment [xD(w), x∗∗P ].

Lemma 9.4. If condition (A1) is satisfied and let, for some x0 ∈]x∗P , x∗∗P [, ε1 > 0 and
ε2 > 0, a function (x, y) 7→ F (x, y) be analytic in the polycircular set

{(x, y) ∈ C2 : |x0−|x|| < ε1, |Y2(x0)−|y|| < ε2}

and do not vanish at the point (x0, Y2(x0)). Then for any w = (u, v) ∈ S1+ such that

xD(w) > x0 and (x̂, ŷ) ∈
◦
D such that x0 − ε1 < x̂ < x0 and |Y2(x0) − ŷ| < ε2, as

min{k1, k2} → +∞ and k/‖k‖ → w,

1

(2πi)2

∫
|x|=x̂

∫
‖y‖=ŷ

F (x, y)

xk1yk2(x0 − x)(1− P (x, y))
dx dy ∼ C1

xk1
0 (Y2(x0))k2

(9.11)

with

C1 =
F (x, y)

∂yP (x, y)

∣∣∣∣
(x,y)=(x0,Y2(x0))

6= 0 (9.12)

and

1

(2πi)2

∫
|x|=x̂

∫
‖y‖=ŷ

F (x, y)

xk1yk2(x0 − x)2(1− P (x, y))
dx dy

∼ k1C1

xk1+1
0 (Y2(x0))k2

− k2C2

xk1
0 (Y2(x0))k2+1

(9.13)

with C1 given by (9.12) and

C2 =
F (x, y)∂xP (x, y)

(∂yP (x, y))
2

∣∣∣∣∣
(x,y)=(x0,Y2(x0))

. (9.14)

Proof. Before proving this lemma, remark that under our assumptions, by Lemma 4.1,
Y2(x0) > Y1(x0) and consequently, without any restriction of generality, we can assume
throughout our proof that

ε2 < Y2(x0)− Y1(x0).

Because of Assumption (A1), the function (x, y) 7→ 1−P (x, y) is analytic in a neighborhood

V of the set Ω(D) and does not vanishes in its interior Ω(
◦
D). Hence, for any m ∈ N∗, the

function
(x, y) 7→ F (x, y)(x0 − x)−mx−k1y−k2(1− P (x, y))−1

is analytic in the polycircular sets {(x, y) ∈ Ω(
◦
D), x0 − ε1 < |x| < x0, |Y2(x0) − y| < ε2}

and {(x, y) ∈ Ω(
◦
D), x0 < |x| < x0 + ε1, |Y2(x0)− y| < ε2}, and consequently, the function

(x̂, ŷ) 7→ Jm,k(x̂, ŷ) =
1

(2πi)2

∫
|x|=x̂

∫
‖y‖=ŷ

F (x, y) dx dy

xk1yk2(x0 − x)m(1− P (x, y))

is constant on the set A− = {(x, y) ∈
◦
D : x0 − ε1 < x < x0, |Y2(x0)− y| < ε2} and on the

set A+ = {(x, y) ∈
◦
D : x0 < x < x0 + ε1, |Y2(x0)− y| < ε2}. We denote

Jm(k) = Jm,k(x̂, ŷ) for (x̂, ŷ) ∈ A−,

Ĵm(k) = Jm,k(x̂, ŷ) for (x̂, ŷ) ∈ A+.
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Remark now that for any ŷ ∈]Y2(x0) − ε2, Y2(x0)[ and δ > 0 small enough, the point
(x0 − δ, ŷ) belongs to the set A−, the point (x0 + δ, ŷ) belongs to the set A+ and by the
residue theorem, for any y ∈ C with |y| = ŷ,∫
|x|=x0+δ

F (x, y) dx

xk1(x0 − x)(1− P (x, y))
=

∫
|x|=x0−δ

F (x, y) dx

xk1(x0 − x)(1− P (x, y))
−2πi

F (x0, y)

xk1
0 (1− P (x0, y))

and∫
|x|=x0+δ

F (x, y) dx

xk1(x0 − x)2(1− P (x, y))
=

∫
|x|=x0−δ

F (x, y) dx

xk1(x0 − x)2(1− P (x, y))

+ 2πi

(
∂xF (x0, y)

xk1
0 (1− P (x0, y))

− k1F (x0, y)

xk1+1
0 (1− P (x0, y))

+
F (x0, y)∂xP (x0, y)

xk1
0 (1− P (x0, y))2

)
Hence, for any ŷ ∈]Y2(x0)− ε2, Y2(x0)[,

J1(k) = Ĵ1(k) +
1

2πi xk1
0

∫
‖y‖=ŷ

F (x0, y)

yk2(1− P (x0, y))
dy (9.15)

and

J2(k) = Ĵ2(k)−
1

2πixk1
0

∫
‖y‖=ŷ

∂xF (x0, y)

yk2(1− P (x0, y))
dy

+
k1

(2πi)xk1+1
0

∫
‖y‖=ŷ

F (x0, y)

yk2(1− P (x0, y))
dy − 1

2πixk1
0

∫
‖y‖=ŷ

F (x0, y)∂xP (x0, y)

yk2(1− P (x0, y))2
dy. (9.16)

Due to Assumption (A1)(ii), the function y 7→ P (x0, y) is analytic in a neighborhood of
the closed annulus {y ∈ C : Y1(x0) 6 |y| 6 Y2(x0)}, satisfies the inequality

|P (x0, y)| 6 P (x0, |y|) < 1

on the annulus {y ∈ C : Y1(x0) < |y| < Y2(x0)}, and because of Assumption (A1) i) (we
use here Proposition P7.5 of [29]), for any y ∈ C with |y| = Y2(x0),

|P (x0, y)| < P (x0, Y2(x0)) = 1 whenever y 6= Y2(x0).

Since by Lemma 4.1,
∂yP (x, y)|(x,y)=(x0,Y2(x0))

> 0,

this proves that for some δ > 0, the point Y2(x0) is an only and simple zero of the function
y 7→ P (x0, y) in the annulus {y ∈ C : Y1(x0) < |y| < Y2(x0) + δ). Since we assumed that
Y2(x0)− ε2 < Y1(x0), and the functions y 7→ F (x0, y), y 7→ ∂xF (x0, y), y 7→ F (x0, y) are
analytic in the annulus {y ∈ C : Y2(x0) − ε2 < |y| < Y2(x0) + ε2}, this implies that for
δ > 0 small enough, the functions

y 7→ F (x0, y)

yk2(1− P (x0, y))
and y 7→ ∂xF (x0, y)

yk2(1− P (x0, y))

are analytic in the set {y ∈ C : Y2(x0) − ε2 < |y| < Y2(x0) + δ, y 6= Y2(x0)} and have at
the point Y2(x0), a simple pole with the residue equal respectively to

−C1

(Y2(x0))k2
and

−C̃1

(Y2(x0))k2
.

with C1 given by (9.12) and

C̃1 =
∂xF (x, y)

∂yP (x, y)

∣∣∣∣
(x,y)=(x0,Y2(x0))

.
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Similarly, the function

y 7→ F (x0, y)∂xP (x0, y)

yk2(1− P (x0, y))2

is analytic in the set {y ∈ C : Y2(x0)− ε2 < |y| < Y2(x0) + δ, y 6= Y2(x0)} and has at the
point Y2(x0), a pole of the second order with the residue equal to

C

(Y2(x0))k2
− k2C2

(Y2(x0))k2+1

with C2 given by (9.14) and some constant C ∈ C does not depending on k2. By the
residue theorem, it follows that for any Y2(x0) − ε2 < ŷ < Y2(x0) and Y2(x0) < yδ <

Y2(x0) + δ)∫
‖y‖=ŷ

F (x0, y)

yk2(1− P (x0, y))
dy =

2πiC1

(Y2(x0))k2
+

∫
‖y‖=yδ

F (x0, y)

yk2(1− P (x0, y))
dy,

∫
‖y‖=ŷ

∂xF (x0, y)

yk2(1− P (x0, y))
dy =

2πiC̃1

(Y2(x0))k2
+

∫
‖y‖=yδ

∂xF (x0, y)

yk2(1− P (x0, y))
dy

and ∫
‖y‖=ŷ

F (x0, y)∂xP (x0, y)

yk2(1− P (x0, y))2
dy = −2πi

(
C

(Y2(x0))k2
− k2C2

(Y2(x0))k2+1

)
+

∫
‖y‖=yδ

F (x0, y)∂xP (x0, y)

yk2(1− P (x0, y))2
dy

Using these relations at the right hand side of (9.15) and (9.16) we obtain

J1(k) =
C1

xk1
0 (Y2(x0))k2

+
1

(2πi)

∫
‖y‖=yδ

F (x0, y)

xk1
0 y

k2(1− P (x0, y))
dy + Ĵ1(k) (9.17)

and

J2(k) =
k1C1

xk1+1
0 (Y2(x0))k2

− k2C2

xk1
0 (Y2(x0))k2+1

+
C̃

xk1
0 (Y2(x0))k2

(9.18)

− 1

2πixk1
0

∫
‖y‖=yδ

∂xF (x0, y)

yk2(1− P (x0, y))
dy +

k1

(2πi)xk1+1
0

∫
‖y‖=yδ

F (x0, y)

yk2(1− P (x0, y))
dy

− 1

2πixk1
0

∫
‖y‖=yδ

F (x0, y)∂xP (x0, y)

yk2(1− P (x0, y))2
dy + Ĵ2(k)

with some constant C̃ does not depending on k. Remark now that by the Cauchy
inequality, for k = (k1, k2) ∈ Z2

+, as min{k1, k2} → ∞ and k/‖k‖ → w = (u, v),

lim sup
k

‖k‖−1 log

∣∣∣∣∣ 1

(2πi)

∫
‖y‖=yδ

F (x0, y)

xk1
0 y

k2(1− P (x0, y))
dy

∣∣∣∣∣ 6 −
(
u log(x0) + v log(yδ)

)
< −(u ln(x0) + v ln(Y2(x0))),

and with the same argument as in the proof of Lemma 9.2,

lim sup
k

‖k‖−1 log
∣∣Ĵ1(k)∣∣ 6 − sup

x06x̂6x0+ε1

(
u ln x̂+ v ln(Y2(x̂))

)
< −(u ln(x0) + v ln(Y2(x0)))

where the last relation holds because under our assumptions, x∗P < x0 < xD(w) and
by Lemma 9.3, the function x 7→ u lnx+ v ln(Y2(x)) is strictly increasing on [x∗P , xD(w)].
Since for k = (k1, k2) ∈ Z2

+, as ‖k‖ → ∞ and k/‖k‖ → w,

lim ‖k‖−1 log

∣∣∣∣∣ F (x0, Y2(x0))

xk1
0 (Y2(x0))k2∂yP (x0, Y2(x0))

∣∣∣∣∣ = −
(
u log(x0) + v log(Y2(x0))

)
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this proves that as min{k1, k2} → +∞ and k/‖k‖ → w, the second and the third terms in
the right hand side of (9.17) are negligible with respect to the first one. Hence (9.11) is
verified, and with the same arguments, from (9.18) one gets (9.13).

As a consequence of Lemma 9.4 and Theorem 2.3, we obtain the following result.

Lemma 9.5. Under the assumptions (A1)–(A3), for any j ∈ Z2
+\E0 and w = (u, v) ∈ S1+

with u > uD(xd, Y2(xd)), the following assertions hold
i) If either one of the assertions (B0), (B1), (B3), (B4) holds or (B2) holds with

xd < x∗∗P , then for any k = (k1, k2) ∈ Z2
+, as min{k1, k2} → ∞ and k/‖k‖ → w,

I1(j, k) ∼ c1 a1 κ1(j)x
−k1−1
d (Y2(xd))

−k2−1 (9.19)

where

c1 =
φ1(x, y)− 1

∂yP (x, y))

∣∣∣∣
(x,y)=(xd,Y2(xd))

> 0 (9.20)

and a1 > 0 is given by (2.41).
ii) If (B5) holds with xd < x∗∗P , then for k = (k1, k2) ∈ Z2

+, as min{k1, k2} → ∞ and
k/‖k‖ → w,

I1(j, k) ∼ c1 a3κ2(j)k1

xk1+2
d (Y2(xd))k2+1

+
c̃1 a3κ2(j)k2

xk1+1
d (Y2(xd))k2+2

(9.21)

where c1 > 0 is given by (9.20),

c̃1 =
∂xP (xd, Y2(xd))

(∂yP (xd, Y2(xd)))
2

∣∣∣∣∣
(x,y)=(xd,Y2(xd))

and a3 > 0 is given by (2.47).
iii) If (B6) holds, then for k = (k1, k2) ∈ Z2

+, as min{k1, k2} → ∞ and k/‖k‖ → w,

I1(j, k) ∼ c1 a5 κ2(j)x
−k1−1
d (Y2(xd))

−k2−1 (9.22)

where c1 > 0 is given by (9.20) and a5 > 0 is given by (2.53).

Proof. Indeed, when either, one of the conditions (B0), (B1), (B3) or (B4) is satisfied, or
(B2) holds with xd < x∗∗P , by the first assertion of Theorem 2.3 and using Proposition 7.13,
one gets that for some ε > 0, the function x 7→ Hj(x, 0) can be extended as an analytic
function to the set B(0, xd+ε)\{xd} and has a simple pole at the point xd with the residue

−a1κ1(j) = −κ1(j)

(
d

dx
φ1(xd, Y1(xd))

)−1

< 0.

Since the function (x, y) 7→ φ1(x, y)−P (x, y) is analytic in a neighborhood of the set Ω(D),
this implies that the function (x, y) 7→ F (x, y) = (xd−x)(φ1(x, y)−P (x, y))Hj(x, 0) can be
extended as an analytic function to a neighborhood of the set {(x, y) ∈ Ω(D) : |x| < xd+ε}
by letting

F (xd, y) = (φ(xd, y)− P (xd, y))a1κ1(j).

When either, one of the conditions (B0), (B1), (B3) or (B4) is satisfied, or (B2) holds
with xd < x∗∗P , one has always x∗p < xd = x∗∗ < x∗∗P , and consequently, by Lemma 4.1,
Y2(xd) > Y1(xd) and by Lemma 4.1, φ1(xd, Y1(xd)) = 1. Since the function y 7→ φ1(xd, y)

is strictly increasing, it follows that φ1(xd, Y2(xd)) > 1. Since by Theorem 2.3, a1 > 0, we
obtain therefore

F (xd, Y2(xd)) = (φ1(xd, Y2(x))− P (xd, Y2(xd))a1κ1(j) = (φ1(xd, Y2(x))− 1)a1κ1(j) > 0.
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By Lemma 9.4, it follows that for any w = (u, v) ∈ S1+ such that xD(u) > xd, and as
min{k1, k2} → +∞, (9.19) holds with c1 > 0 given by (9.20). Since for w = (u, v) ∈ S2+
the inequality xD(u) > xd is equivalent to the inequality u > uD(xd, Y2(xd)), the first
assertion of our lemma is therefore proved.

Suppose now that (B5) holds with xd < x∗∗P . Then, by Theorem 2.3 and using
Proposition 7.13, one gets that for some ε > 0, the function x 7→ Hj(x, 0) can be extended
as an analytic function to the set B(0, xd + ε)\{xd} and has a pole of the second order at
the point xd with

lim
x→x0

(xd − x)2Hj(x, 0) = a3κ2(j) > 0

where a3 > 0 is given by (2.47). With the same arguments as above, it follows that the
function (x, y) 7→ F (x, y) = (xd − x)2(φ1(x, y)− 1)Hj(x, 0) can be extended as an analytic
function to a neighborhood of the set {(x, y) ∈ Ω(D) : |x| < xd + ε} by letting F (xd, y) =
(φ1(xd, y) − 1)a3κ2(j) and that the extended function F satisfies the assumptions of
Lemma 9.4 with x0 = xd and F (x0, Y2(x0)) = a3κ2(j)(φ1(xd, Y2(xd)) − 1) > 0. Hence,
using (9.13) we obtain (9.21) with c1 > 0 given by (9.20). The second assertion of our
lemma is therefore also proved.

The proof of the third assertion of our lemma is exactly the same as the proof the
first assertion, with an only difference that now, one should use the fifth assertion of
Theorem 2.3 instead of the first one.

Remark finally that if we exchange the roles of x and y, then with the same arguments
as above we obtain the following result.

Lemma 9.6. Under the assumptions (A1)–(A3), for any j ∈ Z2
+\E0 and w = (u, v) ∈ S1+

with v > vD(X2(yd), yd), the following assertions hold

i) If either one of the assertions (B0), (B1), (B5), (B6) holds or (B2) holds with
yd < y∗∗P , then for any k = (k1, k2) ∈ Z2

+, as min{k1, k2} → ∞ and k/‖k‖ → w,

I2(j, k) ∼ c2 b2κ2(j)(X2(yd))
−k1−1(yd)

−k2−1 (9.23)

where
c2 = (φ2(x, y)− 1) (∂xP (x, y))

−1
∣∣∣
(x,y)=(X2(yd),yd)

> 0 (9.24)

and

a2 =

(
d

dy
φ2(X1(y), y)

)−1
∣∣∣∣∣
y=yd

(9.25)

ii) If (B3) holds with yd < y∗∗P , then for k = (k1, k2) ∈ Z2
+, as min{k1, k2} → ∞ and

k/‖k‖ → w,

I2(j, k) ∼ c2 b3κ1(j)k2

(X2(yd))k1+1yk2+2
d

+
c̃2 b3κ1(j)k1

(X2(yd))k1+2ydk2+1
(9.26)

with c2 > 0 given by (9.24),

a′3 = (φ1(x, y)− 1)

(
d

dy
φ2(X1(y), y)

d

dx
φ1(x, Y1(x))

d

dy
X1(y)

)−1
∣∣∣∣∣
(x,y)=(X2(yd),yd)

> 0

(9.27)
and some c̃2 ∈ R do not depending on j ∈ Z2

+\E0.

iii) If (B4) holds, then for k = (k1, k2) ∈ Z2
+, as min{k1, k2} → ∞ and k/‖k‖ → w,

I2(j, k) ∼ c2 a
′
5κ1(j)(X2(yd))

−k1−1(yd)
−k2−1 (9.28)
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with c2 given by (9.24) and

a′5 = (φ1(x, y)− 1)

(
(1− φ2(x, y))

d

dx
φ1(x, Y1(x))

d

dy
X1(y)

)−1
∣∣∣∣∣
(x,y)=(X2(yd),yd)

> 0

(9.29)

9.5 Proof of the assertions i) and ii) of Theorem 2.6

For I1(j, k) the exact asymptotics as min{k1, k2} → +∞ and k/‖k‖ → w = (u, v) ∈ S1+
were obtained only in the case where u>uD(xd, Y2(xd)). In the following lemma, we show
that this inequality always holds when w ∈ W1. The definitions 3–6 give that the set W1

is empty if either, one of the cases (B5), or (B6) occurs or, (B2) and xd=x∗∗P hold, we can
assume that either one of cases (B0), (B1), (B3) or (B4) occurs or (B2) and xd < x∗∗P hold.

Lemma 9.7. If conditions (A1)–(A3) hold and if either, one of cases (B0), (B1), (B3) or
(B4) holds, or (B2) and xd<x∗∗P hold, then for any w ∈ W1,

u > uD(xd, Y2(xd)). (9.30)

Proof. Suppose first that (B0) holds. Then by Proposition 2.2 and the definition of the
points xd and yd (see (2.33) and (2.34)),

X1(yd) < xd = x∗∗ < X2(yd), Y1(xd) < yd = y∗∗ < Y2(xd). (9.31)

In this case W1 = {w = (u, v) ∈ S1+ : u > uc} where wc = (uc, vc) is the only point in S1+
such that

uc ln(xd) + vc ln(Y2(xd)) = uc ln(X2(yd)) + vc ln(yd), (9.32)

or equivalently, such that

(ln(X2(yd))− ln(xd))uc = (ln(Y2(xd))− ln(yd))vc. (9.33)

Since by (9.31), X2(yd) > xd and Y2(xd) > yd, the last relation implies that uc > 0 and
vc > 0, and consequently, if uD(xd, Y2(xd)) 6 0, one gets

uD(xd, Y2(xd)) 6 uc < u, ∀ w = (u, v) ∈ W1.

When (B0) holds and uD(xd, Y2(xd)) 6 0, our lemma is therefore proved.
Consider now the case when (B0) holds and uD(xd, Y2(xd)) > 0. For ŵ = (û, v̂) =

(uD(xd, Y2(xd)), vD(xd, Y2(xd))), by the definition of the mapping w 7→ (xD(w), yd(w)), the
point (xd, Y2(xd)) is the only point in the setD where the function (x, y) 7→ û ln(x)+ v̂ ln(y)

achieves its maximum over the set D. Since in the case (B0), (xd, Y2(xd)) 6= (X2(yd), yd),
it follows that for ŵ = (û, v̂) = (uD(xd, Y2(xd)), vD(xd, Y2(xd))),

û ln(xd) + v̂ ln(Y2(xd)) > û ln(X2(yd)) + v̂ ln(yd)

or equivalently that

(ln(X2(yd))− ln(xd))û < (ln(Y2(xd))− ln(yd))v̂.

Since X2(yd) > xd and Y2(xd) > yd, and since we assumed that û = uD(xd, Y2(xd)) > 0,
the last inequality shows that v̂ = vD(xd, Y2(xd)) > 0 and consequently, v̂ =

√
1− û2 and

(ln(X2(yd))− ln(xd))û < (ln(Y2(xd))− ln(yd))
√
1− û2.

Finally, we have already proved that uc > 0 and vc > 0, and in this case, relation (9.33) is
equivalent to

(ln(X2(yd))− ln(xd))uc = (ln(Y2(xd))− ln(yd))
√
1− u2c .
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Since the function u 7→ (ln(X2(yd)) − ln(xd))u is strictly increasing and the function
u 7→ (ln(Y2(xd))−ln(yd))

√
1− u2c is decreasing on the segment [0, 1], the last two relations

show that uc > û = uD(xd, Y2(xd)), and consequently using the definition of W1 one gets
u > uc > uD(xd, Y2(xd)) for all u ∈ W1. If (B0) holds, Lemma 9.7 is therefore proved.

When either, (B1) holds, or (B2) and xd<x∗∗P hold, relation (9.30) follows directly from
the definition of the set W1 (see Definition 4 and Definition 5).

Consider now the case when (B3) holds. With definition 6, W1 = {w = (u, v) ∈
S1+ : u > 0} and by Proposition 2.2 and the definition of the points xd and yd (see (2.33)
and (2.34)), one has (xd, Y2(xd)) ∈ S12. By Lemma 4.1 and the definition of the mapping
(x, y) 7→ wD(x, y), it follows that

uD(xd, Y2(xd)) =
xd∂xP (xd, yd)√

(xd∂xP (xd, yd))2 + (yd∂yP (xd, yd))2
6 0.

and consequently, for any w = (u, v) ∈ W1, (9.30) holds.
Suppose now that (B4) holds. Then, with the Definition 6, W1 = S1+ and by

Proposition 2.2 and the definition of the points xd and yd (see (2.33) and (2.34)) and
using (2.9) one gets

X1(yd) = xd = x∗∗ < x∗∗P , y∗P < y∗ 6 1 < yd = Y2(xd) < y∗∗ 6 y∗∗P , (xd, yd) ∈ S12.

(9.34)
By Lemma 4.1 and the definition of the mapping (x, y) 7→ wD(x, y), it follows that for any
w = (u, v) ∈ W1,

uD(xd, Y2(xd) = uD(xd, yd) = uD(X1(xd), yd) =
xd∂xP (xd, yd)√

(xd∂xP (xd, yd))2 + (yd∂yP (xd, yd))2

< 0 6 u,

and consequently, (9.30) holds.

As a straightforward consequence of Lemma 9.5 and Lemma 9.7, one gets

Corollary 9.2. Under the assumptions of Theorem 2.6, for any j ∈ Z2
+\E0 and w ∈ W,

as min{k1, k2} → +∞ and k/‖k‖ → w, (9.19) holds.

Now we will show that for any w = (u, v) ∈ W, as min{k1, k2} → +∞ and k/‖k‖ → w,
the terms I0(j, k) and I2(j, k) are negligible with respect to I1(j, k). For this we will use
the large deviation estimates for I0(k, j), and

– the large deviation estimates of I2(j, k) when

lim sup
k

1

‖k‖
ln I2(j, k) < lim

1

‖k‖
ln I1(j, k),

– the exact asymptotic of I2(j, k) when

lim sup
k

1

‖k‖
ln I2(j, k) = lim

1

‖k‖
ln I1(j, k).

To compare the limit limk ln I1(j, k)/‖k‖ with the large deviation estimates for
lim supk ln I0(j, k)/‖k‖ and lim supk ln I2(j, k)/‖k‖, the following lemma will be useful.

Lemma 9.8. If conditions (A1)–(A3) hold and let w=(u, v)∈W1, if one of the assertions
holds,

– one of the conditions (B0), (B1) or (B3) holds,
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– (B2) and x∗∗<x∗∗P hold,

– (B4) holds and u > 0,

then
max

(x,y)∈D, y6yd

(
u ln(x) + v ln(y)

)
> u ln(xd) + v ln(Y2(xd)). (9.35)

Proof. Consider first the case when (B0) holds. We have, see the proof of Lemma 9.8,
X2(yd) > xd and Y2(xd) > yd, the point (wc = (uc, vc) ∈ S2+ satisfies (9.33) and
W1 = {w = (u, v) ∈ S1+ : u > uc}. For w = (u, v) ∈ S1+ with u > uc (and consequently also
with v < vc), it follows that

(ln(X2(yd))− ln(xd))u > (ln(Y2(xd))− ln(yd))v

or equivalently,
u ln(X2(yd)) + v ln(yd) > u ln(xd) + v ln(Y2(xd)). (9.36)

Since the point (X2(yd), yd) belongs to the set {(x, y) ∈ D : y 6 yd}, this proves that for
any w = (u, v) ∈ S1+ with u > uc,

max
(x,y)∈D, y6yd

(
u ln(x) + v ln(y)

)
> u ln(X2(yd)) + v ln(yd) > u ln(xd) + v ln(Y2(xd)), (9.37)

and consequently, (9.35) holds.

Consider now the case when (B1) holds, we have the relation

W1 = {w = (u, v) ∈ S1+ : u > uD(xd, Y2(xd))},

and, by Proposition 2.2 and the definition of the points xd and yd (see (2.33) and (2.34)),

X1(yd) < xd = x∗∗ = X2(yd), Y1(xd) < yd = y∗∗ = Y2(xd) (9.38)

and (xd, Y2(xd)) = (X2(yd), yd) ∈ S22. Hence, for any w = (u, v) ∈ W1,

xD(w) > xd = X2(yd) and yD(w) < yd = Y2(xd). (9.39)

The last relations show that the point (xD(w), yD(w)) belongs to the set {(x, y) ∈ D : y 6
yd} and is not equal to (xd, Y2(xd)). Since the point (xD(w), yD(w)) is an only point in D
where the function (x, y) 7→ u ln(x) + x ln(y) achieves its maximum over D, it follows that

max
(x̂,ŷ)∈D, ŷ6yd

(
u ln(x̂)+v ln(ŷ)

)
= u ln(xD(w))+v ln(yD(w)) > u ln(xd)+v ln(Y2(xd)), (9.40)

and consequently, when the assertion (B1) holds, relation (9.35) is also proved.
Consider now the case when (B2) and xd < x∗∗P hold. By Proposition 2.2 and the

definition of the points xd and yd (see (2.33) and (2.34)),

xd = x∗∗ > X2(yd), yd = y∗∗ > Y2(xd), (xd, Y2(xd)), (X2(yd), yd) ∈ S22, (9.41)

and with the definition of W1,

W1 = {w = (u, v) ∈ S1+ : u > uD(xd, Y2(xd))}.

Hence, in this case, for any w = (u, v) ∈ W1,

xD(w) > xd > X2(yd) and yD(w) < Y2(xd) < yd.
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These relations show that the point (xD(w), yD(w)) belongs to the set {(x, y) ∈ D : y 6
yd} and is not equal to (xd, Y2(xd)), and consequently, using exactly the same arguments
as in the previous case, one gets (9.35).

Suppose now that (B3) and yd < y∗∗P hold. By Proposition 2.2 and the definition of the
points xd and yd (see (2.33) and (2.34)), we have

X1(yd) = xd = x∗∗ < x∗∗P , yd = y∗∗ = Y2(xd), (xd, yd) = (xd, Y2(xd)) ∈ S12 (9.42)

and

W1 = {w = (u, v) ∈ S1+ : u > 0}.

Since we assume that yd < y∗∗P and by (2.9), y∗∗ > y∗ > y∗P , by Lemma 4.1 and the
definition of the mapping (x, y) 7→ wD(x, y) = (uD(x, y), vD(x, y)), from (9.42) it follows
that

xd = X1(yd) < X2(yd) and uD(xd, Y2(xd)) = uD(xd, yd) < 0. (9.43)

Hence, in this case, for any w = (u, v) ∈ W1,

u ln(xd) + x ln(Y2(xd)) = u ln(xd) + v ln(yd) < u ln(X2(yd)) + v ln(yd)

6 max
(x,y)∈D, y6yd

(
u ln(x) + v ln(y)

)
(9.44)

and consequently, (9.35) holds.
Suppose now that (B3) holds and yd = y∗∗P . Then W1 = {w = (u, v) ∈ S1+ : u > 0} and

(9.42) holds, but now, instead of (9.43) one has

xd = X1(yd) = X2(yd), yd = y∗∗ = y∗∗P and wD(xd, yd) = (0, 1).

Hence, in this case, for any w = (u, v) ∈ W1,

xD(w) > xd and yD(w) < yd. (9.45)

These relations show that the point (xD(w), yD(w)) belongs to the set {(x, y) ∈ D : y 6
yd} and is not equal to (xd, Y2(xd)) and consequently, using exactly the same arguments
as in the case (B2), one gets (9.35).

Consider finally the case when (B4) holds. In this case, W1 = S1+ and by
Proposition 2.2 and the definition of the points xd and yd (see (2.33) and (2.34))

X1(yd) = xd = x∗∗ < x∗∗P , y∗ 6 1 < yd = Y2(xd) < y∗∗ 6 y∗∗P , (xd, yd) ∈ S12. (9.46)

Hence, in this case, (9.43) holds and consequently, using exactly the same arguments as
above, one gets (9.35) for any w = (u, v) ∈ W1 with u > 0.

Now we are ready to complete the proof of the first assertion of Theorem 2.6: Since
the right hand side of (2.75) does not depend on w ∈ W1, it is sufficient to show that for
any j ∈ Z2

+\E0 and w = (u, v) ∈ W1, (2.75) holds as min{k1, k2} → +∞ and k/‖k‖ → w.
Consider first the case when one of the following assertion holds

– one of the conditions (B0), (B1) or (B3) holds

– (B2) and x∗∗ < x∗∗P hold,

– (B4) holds and u > 0.
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By using Lemma 9.2 and Lemma 9.8, as ‖k‖ → +∞ and k/‖k‖ → w, one gets

lim sup
k

‖k‖−1 log |I0(j, k) + I2(j, k)| 6 − max
(x̂,ŷ)∈D, ŷ6yd

(
u ln(x̂) + v ln(ŷ)

)
< −u ln(xd) + v ln(Y2(xd)). (9.47)

By Corollary 9.2, for any w = (u, v) ∈ W1 and j ∈ Z2
+\E0, as min{k1, k2} → +∞ and

k/‖k‖ → w,
I1(j, k) ∼ c1 a1 κ1(j)x

−k1−1
d (Y2(xd))

−k2−1 (9.48)

where c1 > 0 is given by (9.20) and a1 > 0 is given by (2.41).
Comparison of (9.48) with (9.47) shows that the terms I0(j, k) and I2(j, k) in (9.2) are

negligible with respect to I1(j, k), and consequently, from the integral representation
(9.2) and using (9.48) one gets (2.75).

The set of directions W1 is empty in each of the following cases:

– (B2) and xd=x∗∗P hold;

– (B5) or (B6) holds.

Hence, to complete the proof of the first assertion of Theorem 2.6 it is sufficient now to
prove (2.75) when (B4) holds and w=(0, 1). By Proposition 2.2 and the definition of the
points xd and yd (see (2.33) and (2.34)) one has

X1(yd) = xd = x∗∗ < x∗∗P , y∗ 6 1 < yd = Y2(xd) < y∗∗ 6 y∗∗P , (xd, yd) ∈ S12. (9.49)

and the definition of the point y∗∗P and the mapping w 7→ (xD(w), yD(w)) give, for
w = (0, 1),

(xD(0, 1), yD(0, 1)) = (X1(y
∗∗
P ), y∗∗P ). (9.50)

Hence, in this case, yD(0, 1) = y∗∗P > yd, and consequently, also 1 > vD(X2(yd), yd). By
Lemma 9.6 applied with w = (0, 1), it follows that there is C > 0 such that for any
j ∈ Z2

+\E0 and k = (k1, k2) ∈ Z2
+, and as min{k1, k2} → +∞, k/‖k‖ → (0, 1)

I2(j, k) ∼ C κ1(j)(X2(yd))
−k1−1(yd)

−k2−1. (9.51)

With Lemma 9.2 applied with w = (0, 1), the definition of the point y∗∗P , and using
relation (9.49),

lim sup
k

‖k‖−1 ln
∣∣I0(j, k)∣∣ 6 − max

(x,y)∈D
ln(y) = − ln(y∗∗P ) < − ln(yd). (9.52)

Remark that by relation (9.49) and Corollary 9.2 applied with w = (0, 1) ∈ W1, for any
j ∈ Z2

+\E0, as min{k1, k2} → +∞ and k/‖k‖ → (0, 1),

I1(j, k) ∼ c1 a1 κ1(j)x
−k1−1
d (Y2(xd))

−k2−1 = c1 a1 κ1(j)x
−k1−1
d y−k2−1

d (9.53)

where c1 > 0 is given by (9.20) and a1 > 0 is given by (2.41).
A comparison of relation (9.52) with relations (9.51) and (9.53) shows that for any

j ∈ Z2
+\E0 and k = (k1, k2) ∈ Z2

+, and as min{k1, k2} → +∞, k/‖k‖ → (0, 1), the
term I0(j, k) is negligible with respect to I1(j, k) + I2(j, k) in (9.2), and consequently,
using (9.51) and (9.53) one gets

g(j, k) ∼ I1(j, k) + I2(j, k) ∼ c1 a1 κ1(j)x
−k1−1
d y−k2−1

d +C κ1(j)(X2(yd))
−k1−1(yd)

−k2−1.

Since by (9.49), xd = X1(yd) < X2(yd), this proves (2.75) with b1 = c1a1.
The first assertion of Theorem 2.6 is therefore proved. The proof of the second

assertion is the same by exchanging the roles of x and y.
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9.6 Proof of the assertion iii) of Theorem 2.6

Suppose first that (B0) holds. In this case, see the proof of Lemma 9.7,

uc > uD(xd, Y2(xd)) and vc > vD(X2(yd), yd). (9.54)

Consider j ∈ Z2
+\E0 and let min{k1, k2} → +∞ and k/‖k‖ → wc. Then using the first

relation of (9.54), by Lemma 9.5 applied for w = wc = (uc, vc), we get

I1(j, k) ∼ c1 a1κ1(j)x
−k1−1
d (Y2(xd))

−k2−1, (9.55)

where c1 > 0 and a1 > 0 given respectively by (9.20) and (2.41), and using the second
relation of (9.54), by Lemma 9.6 applied for w = wc = (uc, vc), we obtain

I2(j, k) ∼ c2 a2κ2(j)(X2(yd))
−k1−1y−k2−1

d (9.56)

where c2 > 0 and a2 > 0 are defined respectively by (9.24) and (9.25). Comparison of
(9.55) and (9.56) with (9.7) shows that the term I0(j, k) in (9.2) is negligible with respect
to I1(j, k) + I1(j, k), and consequently, using (9.2) together with (9.55) and (9.56) one
gets (2.79) with b1 = c1a1 and b2 = c2a2..

9.7 Proof of the assertions iv) and v) of Theorem 2.6

Suppose that (B3) holds, yd < y∗∗P and let w = (0, 1). By Proposition 2.2 and the
definition of the points xd and yd, one has x∗P < xd = x∗∗ < x∗∗P , (xd, yd) = (xd, Y2(xd)) =

(X1(yd), yd) ∈ S12 and y∗P < yd = y∗∗ < y∗∗P . By Lemma 4.1 and the definition of the
mapping (x, y) 7→ wD(x, y) = (uD(x, y), vD(x, y)), it follows that

xd = X1(yd) < X2(yd), (9.57)

uD(xd, Y2(xd)) < 0 and vD(X2(yd), yd) < 1. (9.58)

Consider now j ∈ Z2
+\E0 and let k ∈ Z2

+, min{k1, k2} → +∞ and k/‖k‖ → w = (1, 0).
Then by by Lemma 9.2 and since yd < y∗∗P , one gets

lim sup
k

‖k‖−1 ln
∣∣I0(j, k)∣∣ 6 − max

(x,y)∈D
ln(y) = − ln(y∗∗P ) < − ln(yd), (9.59)

by Lemma 9.5, from the first relation of (9.58) it follows

I1(j, k) ∼ c1 a1κ1(j)x
−k1−1
d (Y2(xd))

−k2−1 = c1 a1κ1(j)x
−k1−1
d y−k2−1

d , (9.60)

where c1 > 0 and a1 > 0 are given respectively by (9.20) and (2.41), and by the second
assertion of Lemma 9.6, from the second relation of (9.58) it follows that there exists
c̃2 ∈ R do not depending on j ∈ Z2

+\E0 such that

I2(j, k) ∼ c2 a
′
3κ1(j)k2

(X2(yd))k1+1yk2+2
d

+
c̃2 a

′
3κ1(j)k1

(X2(yd))k1+2ydk2+1
(9.61)

where c2 > 0 and a′3 > 0 are given respectively by (9.24) and (9.27).
Comparison of (9.59) with (9.60) shows that the term I0(j, k) is negligible with respect

to I1(j, k) + I2(j, k) in (9.2). Using therefore (9.2) together with (9.60) and (9.61) we
obtain

g(j, k) ∼ I1(j, k) + I2(j, k)

∼ c1 a1κ1(j)

xk1+1
d yk2+1

d

+
c2 a

′
3κ1(j)k2

(X2(yd))k1+1yk2+2
d

+
c̃2 b3κ1(j)k1

(X2(yd))k1+2ydk2+1
(9.62)
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Finally, by relation (9.57) we have xd<X2(yd), hence, in relation (9.62), the last term
is negligible with respect to the first one and consequently, relation (2.80) holds with
b1 = c1a1 and b3 = c2 a

′
3.

The assertion iv) of Theorem 2.6 is therefore also proved. The proof of the assertion
v) is exactly the same (it is sufficient to exchange the roles of the first and the second
coordinates of the random walk (Z(n))).

9.8 Proof of the assertion vi) of Theorem 2.6

To prove the last assertion of Theorem 2.6 it is sufficient to show that for any w ∈ W0,
(2.84) holds uniformly with respect to wm = m/‖m‖ in some neighborhood of w. For this
we use Proposition 1 of [18]. In our setting, this result gives the following lemma.

Lemma 9.9. Suppose that the Assumption (A1) is satisfied and let w = (u, v)∈S1+ and
ε>0 and a function (x, y)7→F (x, y) be analytic in the polycircular set

{(x, y) ∈ C2 :
∣∣|x| − xD(w)

∣∣ < ε,
∣∣|y| − yD(w)

∣∣ < ε}, (9.63)

and not vanishing at the point (xD(w), yD(w)). Then the integrals

I(m) =
1

(2πi)2

∫
|x|=x̂

∫
|y|=ŷ

F (x, y)

xm1+1ym2+1(1− P (x, y))
dxdy, m = (m1,m2) ∈ Z2

+, (9.64)

are well defined and does not depend on the point (x̂, ŷ) on the set

{(x̂, ŷ) ∈
◦
D : |x̂− xD(w)| < ε, |ŷ − yD(w)| < ε}, (9.65)

and as ‖m‖ → +∞, uniformly with respect to wm = m/‖m‖ in some neighborhood of w,

I(m) ∼
F (xD(wk), yD(wk))

√
w⊥

k · Q(wk)w⊥
k(

2π‖k‖)1/2‖m(wk)‖−1(xD(wk))k1(yD(wk))k2
(9.66)

By Corollary 9.1, for any (x̂, ŷ) ∈
◦
D, with x̂ < xd and ŷ < yd, we have

g(j, k) =
1

(2πi)2

∫
|x|=x̂

∫
|y|=ŷ

Fj(x, y)

xk1+1yk2+1(1− P (x, y))
dxdy. (9.67)

with

Fj(x, y) = Lj(x, y) + (φ1(x, y)− P (x, y))Hj(x, 0) + (φ2(x, y)− P (x, y))Hj(0, y).

Remark moreover that the set of directions W0 is non-empty if and only if (B2) holds,
and that in this case, for any w = (u, v) ∈ W0, one has

xD(w) < xd, yD(w) < yd. (9.68)

By Theorem 2.1, it follows that for some neighborhood V (xD(w), yD(w)) of the point
(xD(w), yD(w)) in R2, the function (x, y) 7→ Fj(x, y) = Lj(x, y) + (φ1(x, y) − 1)Hj(x, 0) +

(φ2(x, y) − 1)Hj(0, y) is analytic in the polycircular set {(x, y) ∈ C2 : (|x|, |y|) ∈
V (xD(w), yD(w))}, and by Proposition 7.13,

Fj(xD(w), yD(w)) = κ(xD(w),yD(w))(j) > 0, ∀j ∈ Z2
+\E0.

For any w∈W0 and j∈Z2
+\E0, the conditions of Lemma 9.9 are therefore satisfied with

F=Fj , and consequently relation (2.84) holds uniformly with respect to wk=k/‖k‖ in
some neighborhood of w.
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A Relations with positive recurrence and transience conditions

This section discusses the conditions (B0)–(B7) defining our classification with
transience and positive recurrence conditions of of these random walks. As we will see,
the regions of our classification are in fact not defined in terms of positive recurrence or
transience. Transience and positive recurrence are possible in several regions.

Throughout this section, µ0, µ1 or µ2 are assumed to be stochastic, i.e. probability
distributions. Before getting these results, note that Assumption (A1)‘(ii) is equivalent to
the usual Cramer’s condition for the distribution of the jumps of (S(n)). It is satisfied if
and only if the function

(α, β) 7→ P̃ (α, β)
def.
= P (eα, eβ) =

∑
k=(k1,k2)

µ(k)eαk1+βk2 .

is finite in a neighborhood of the set D̃
def.
= {(α, β)∈R2 : P (eα, eβ)61}. Similarly,

Assumption (A3) (ii) is satisfied if and only if the generating functions

φ̃i(α, β)
def.
= φ1(e

α, eβ) =
∑

k=(k1,k2)

µi(k)e
αk1+βk2 , i∈{0, 1, 2},

are finite in a neighborhood of D̃. Since (0, 0)∈D̃, all jumps of the random walk (Z(n))

are in particular integrable.
Remark furthermore that because of Assumptions (A1) (ii) and (A3) (iv), the mean jumps

(M1,M2) =
∑
j∈Z2

jµ(j), (M1
1 ,M

1
2 ) =

∑
j∈Z2

jµ1(j) and (M2
1 ,M

2
2 ) =

∑
j∈Z2

jµ1(j)

are non zero,M1
2>0 andM

2
1>0. Moreover, since with Assumption (A1) (iii), the setsD∩D1

and D∩D2 have a non-empty interior, one has alsoM1M
1
2 6=M2M

1
1 andM2M

2
1 6=M1M

2
2 .

Under our assumptions, the necessary and sufficient conditions of positive recurrence
and transience for the Markov chain (Z(n)), are given in the next proposition. See
Theorem 3.3.1 of [7] for example.

Proposition A.1. Under the assumptions (A1)–(A3) then, the following assertions hold
for the Markov chain (Z(n)) on Z2

+.

(1) Positive recurrence. If and only if one of the following conditions is satisfied:

(R0) M1<0,M2<0,M1M
1
2<M2M

1
1 andM2M

2
1<M1M

2
2 ;

(R1) M2<0,M1>0 andM1M
1
2<M2M

1
1 ;

(R2) M1<0,M2>0 andM2M
2
1<M1M

2
2 .

(2) Transience. If one of the following conditions is satisfied:

(T0) M1>0 andM2>0;

(T1) M2<0 andM1M
1
2>M2M

1
1 ;

(T2) M1<0 andM2M
2
1>M1M

2
2 ;

The proposition below studies the relation between conditions of transience and
positive recurrence for the Markov chain (Z(n)) and the location of the points defining
the regions (B0)–(B7). We formulate the conditions (R0)–(R2) and (T0)–(T3) in terms
of the location of the points (x∗, Yi(x

∗)), (Xi(y
∗), y∗), and (x∗∗, Yi(x

∗∗)), (Xi(y
∗∗), y∗∗),

i∈{1, 2}. In Proposition A.4, the relation with the location of the dominant singularities
xd and yd is analyzed.

We first establish a technical lemma.
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Lemma A.1. Under the assumptions (A1)–(A3), then

(i) M2<0 if and only if (1, 1)∈S11∪S21 and x∗P<1<x
∗∗
P .

In this case, Y1(1)=1 and

1 =

{
x∗ ifM1M

1
2 < M2M

1
1 ,

x∗∗ ifM1M
1
2 > M2M

1
1 .

(A.1)

(ii) M1<0 if and only if (1, 1)∈S11∪S12 and y∗P<1<y
∗∗
P .

In this case, X1(1)=1 and

1 =

{
y∗ ifM2M

2
1 < M1M

2
2 ,

y∗∗ ifM2M
2
1 > M1M

2
2 .

(A.2)

Proof. To prove (i), it is sufficient to remark that M2=∂yP (1, 1) and that, according to
the definition of the curves Sij , i,j∈{1, 2},

S11 ∪ S21 = {(x, y) ∈ ∂D : ∂yP (x, y) 6 0}

and that by Lemma 4.1, the points (x∗P , Y1(x
∗
P ))=(x∗P , Y2(x

∗
P )) and

(x∗∗P , Y1(x
∗∗
P ))=(x∗∗P , Y1(x

∗∗
P )) are the only points on the boundary ∂D of the set D satisfy-

ing the relation ∂yP (x, y)=0.
Moreover, by relations (2.15) and (2.17), we have S11∪S21={(x, y) ∈ ∂D : y=Y1(x)}.

Hence, when M2<0, one has Y1(1)=1 and therefore φ1(1, Y1(1))=φ1(1, 1) = 1. By
Corollary 4.1, it follows that the point 1 is an end point of the line segment [x∗, x∗∗], and,
consequently, with relations (2.9) and (2.10), we conclude that one and only one of the
following cases occurs:

– x∗P < x∗ = 1 < x∗∗ 6 x∗∗P ;

– x∗P 6 x∗ < 1 = x∗∗ < x∗∗P .

By the implicit function theorem we have, for any x∈]x∗P , x∗∗P [,

d

dx
φ1(x, Y1(x)) = ∂xφ1(x, y) + ∂yφ1(x, y)∂xP (x, y)/∂yP (x, y)|(y=Y1(x))

,

hence, whenM2<0, the relation

d

dx
φ1(x, Y1(x))

∣∣∣∣
x=1

= ∂xφ1(1, 1) + ∂yφ1(1, 1)∂xP (1, 1)/∂yP (1, 1) = M1
1 −M1

2M1/M2,

holds, and, consequently, in a neighborhood of x=1, the function x 7→φ1(x, Y1x)) is

– non-decreasing ifM1
1−M1

2M1/M2 > 0,

– non-increasing ifM1
1−M1

2M1/M2 < 0.

By Corollary 4.1, we have the relation φ1(x, Y1(x))<1, for all x∈]x∗, x∗∗[, and
φ1(x, Y1(x))>1, for x∈[x∗P , x∗[∪ ]x∗∗, x∗∗P ]. Hence, when x∗P<x

∗=1<x∗∗6x∗∗P , the function
x 7→φ1(x, Y1(x)) is non-decreasing in a neighborhood of x=1 and M1

1M2−M1
2M1>0,

and, when x∗P6x
∗<1=x∗∗<x∗∗P , the function x 7→φ1(x, Y1(x)) is non-decreasing in a

neighborhood of x=1 andM1
1M2−M1

2M1<0.
The first assertion of our lemma is proved. The second assertion is symmetrical by

exchanging the roles of x and y.
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Proposition A.2. Under Assumptions (A1)–(A3), then

(i) (R0) holds if and only if (x∗, Y1(x∗))=(X1(y
∗), y∗)=(1, 1), x∗P<1 and y

∗
P<1;

(ii) (R1) " (x∗, Y1(x
∗))=(1, 1) and x∗P<1;

(iii) (R2) " (X1(y
∗), y∗)=(1, 1) and y∗P<1.

(iv) (T0) " (1, 1)∈S22, 1<x∗∗ and 1<y∗∗.

In this case, Y2(x∗∗)<1 and X2(y
∗∗)<1.

(v) (T1) holds if and only if (1, 1)=(x∗∗, Y1(x
∗∗)) and 1<x∗∗P .

(vi) (T2) " (1, 1)=(X1(y
∗∗), y∗∗) and 1<y∗∗P .

Proof. The assertions (i)–(iii) and (v)–(vi) follow directly from Lemma A.1.
We have only to establish (iv). By using again the relations M1=∂xP (1, 1) and

M2=∂yP (1, 1), when (1, 1)∈S22, by relations (2.9), (2.10) and (2.18), and with Lemma 4.1,
we get the identities (1, 1)=(1, Y2(1))=(X2(1), 1) and the relations

x∗P < X1(y
∗∗
P ) 6 1 6 x∗∗ 6 x∗∗P and y∗P < Y1(x

∗∗
P ) 6 1 6 y∗∗ 6 y∗∗P , (A.3)

and

M1>0 ⇔ (1, 1) 6= (X1(y
∗∗
P ), y∗∗P ) ⇔ 1 < y∗∗P , (A.4)

M2>0 ⇔ (1, 1) 6=(x∗∗P , Y1(x
∗∗
P )) ⇔ 1 < x∗∗P . (A.5)

Hence, when (1, 1)∈S22, we have 1<x∗∗ and 1<y∗∗, the condition (T0) holds.
Conversely, if (T0) holds, then, according to the definition of the curve S22,

(1, 1) = (1, Y2(1)) = (X2(1), 1) ∈ S22 (A.6)

and, by using relations (A.4) and (A.5), we get

1 < x∗∗P , and 1 < y∗∗P .

By relation (A.3), we have always 16x∗∗ and, if we assume that x∗∗=1, then, by
relations (A.6) and (A.3), we obtain x∗P<1=x

∗∗<x∗∗P . Consequently, by Lemma 4.1 and
Corollary 4.1, we have Y1(1)<Y2(1) and φ1(1, Y1(1))=1.

Since under our assumptions (A3) (ii) and (A3) (v), the function y 7→φ1(1, y) is strictly
increasing on the line segment [0, Y1(1)], these relations imply that φ2(1, Y2(1))>1 and,
consequently, (1, Y1(1)) 6=(1, 1). Since this last relation contradicts relation (A.6), we
conclude that x∗∗>1.

By exchanging the roles of x and y, the same arguments prove also that when (T0)
holds, the relation y∗∗>1 holds. By relation (2.18), we have

S22={(x, Y2(x)) : x∈[X1(y
∗∗
P ), x∗∗P ]}={(X2(y), y) : y∈[Y1(x∗∗P ), y∗∗P ]},

and, by Lemma 4.1, the functions

X2 : [Y1(x
∗∗
P ), y∗∗P ]→[X1(y

∗∗
P ), x∗∗P ] and Y2 : [X1(y

∗∗
P ), x∗∗P ]→[Y1(x

∗∗
P ), y∗∗P ]

are strictly decreasing. It follows that Y2(x
∗∗)<Y2(1)=1 holds and, similarly,

X2(y
∗∗)<X2(1)=1. The assertion (iv) of Proposition A.2 is proved.

The following statement give relations between the conditions (B0)–(B7) and the
conditions (R0)–(R2) and (T0)–(T2).
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Proposition A.3. Under the assumptions (A1)–(A3), then

(1) both conditions (T1) and (T2) hold if and only if (B7) holds;

(2) (B2) holds if (T0) holds.

(3) If either (B3) or (B4) holds, then

– (T2) is not possible;

– (T1) holds if and only if x∗∗=1, and in this case, Y1(1)=1;

– either (R0) or (R1) or (R2) holds whenever x∗∗>1.

(4) If either (B5) or (B6) holds, then

– (T1) is not possible;

– (T2) holds if and only if y∗∗=1, and in this case, X1(1)=1;

– either (R0) or (R1) or (R2) holds whenever y∗∗>1.

Proof. The first and the second assertions of this statement follow from directly
Proposition 2.2 and Proposition A.2.

If either (B3) or (B4) holds, by Proposition 2.2, 1<Y2(x
∗∗)6y∗∗ holds, and,

consequently, by Proposition A.2, the case (T2) is not possible.
Still under the condition that either (B3) or (B4) holds. By Proposition 2.2 and with

relations (2.9) and (2.10), we have 16x∗∗<x∗∗P . Therefore, by Proposition A.2, (T1) holds
if and only if (1, 1)=(x∗∗, Y1(x

∗∗)) holds. Since P (1, 1)=1, by Lemma 4.1, either Y1(1)=1

or Y2(1)=1 holds, since, in our case, we have 1<Y2(x
∗∗) by Proposition 2.2, it follows

that when either (B3) or (B4) holds, the condition (T1) is satisfied if and only if x∗∗=1.
Under the condition that either (B3) or (B4) holds and that x∗∗>1 holds. We have

that either M260 or M160, because otherwise (T0) and, consequently, (B2) holds. By
Proposition 2.2 and with relation (2.9), we get the relations 1<Y2(x

∗∗)6y∗∗6y∗∗P and
1<x∗∗6x∗∗P , and, consequently, (1, 1) 6=(x∗∗P , Y1(x

∗∗
P )) and (1, 1) 6=(X1(y

∗∗
P ), y∗∗P ). Since the

point (x, y) = (x∗∗P , Y1(x
∗∗
P )), resp. (x, y)=(X1(y

∗∗
P ), y∗∗P )) is the only point on the boundary

∂D of D for which ∂xP (x, y) > 0 and ∂yP (x, y) = 0, resp. ∂xP (x, y)=0 and ∂yP (x, y)>0)
and, since M1=∂xP (1, 1) and M2=∂yP (1, 1), we conclude therefore that, either M1<0

or M2<0. If M2<0, then, by Lemma A.1, and the assumption x∗∗>1, we get x∗=1

and M1M
1
2<M2M

1
1 . Similarly, if M1<0, by Lemma A.1 and since, by Proposition 2.2,

1<Y2(x
∗∗)6y∗∗ holds, we obtain y∗=1 andM2M

2
1<M1M

2
2 . We conclude that in the case

when either (B3) or (B4) holds and x∗∗>1, one of the conditions (R0), (R1) or (R2) is
satisfied.

The third assertion of Proposition A.3 is therefore also proved. The last assertion
follows by exchanging the roles of x and y.

We can now establish the relations with the locations of the dominant singularities xd
and yd.

Proposition A.4. Under the assumptions (A1)–(A3) the following assertions hold:

(i) If the Markov chain (Z(n)) is positive recurrent then xd>1 and yd>1.

(ii) If (T0) is satisfied then (B2), xd=x∗∗>1 and yd=y∗∗>1 hold.

(iii) If (T1) is satisfied then

– in the cases (B0)–(B2), relations xd=x∗∗=1<x∗∗P and yd=y∗∗>Y1(1)=1 hold;

– in the cases (B3) and (B4), relations xd=x∗∗=1<x∗∗P and yd=Y2(1)>1 holds;
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– (B5) and (B6) do not hold.

(iv) If (T2) is satisfied then

– in the cases (B0)–(B2), relations yd=y∗∗=1<y∗∗P and xd=x∗∗>X1(1)=1 hold;

– and (B3) and (B4) do not hold;

– in the cases (B5) and (B6), relations yd=y∗∗=1<y∗∗P and xd=X2(1)>1 hold.

Proof. Consider first the case when one of the cases (B0)–(B2) occurs. Then by
Proposition 2.2 and according to the definition of xd and yd,

xd = x∗∗ > X1(y
∗∗) and yd = y∗∗ > Y1(x

∗∗). (A.7)

Hence, if we suppose moreover that (R0) holds, by Lemma A.1 and using (2.9), we obtain

1 = x∗ < x∗∗ = xd and 1 = y∗ < y∗∗ = yd.

If we suppose that (R1) holds, then by Proposition A.2 and using (2.9), and (A.7),

1 = x∗ < x∗∗ = xd, and 1 = Y1(x
∗) < yd.

And similarly, if we suppose that (R2) holds, then by Proposition A.2 and using (2.9), and
(A.7),

1 = y∗ < y∗∗ = yd, and 1 = X1(y
∗) < xd.

In the case when one of the cases (B0)–(B2) holds, the first assertion of out statement is
therefore proved.

Suppose now that either (B3) or (B4) holds. In this case, by Proposition 2.2 and
according to the definition of xd and yd, we have

xd = x∗∗ < x∗∗P and yd = Y2(x
∗∗) > 1. (A.8)

Moreover, by relation (2.10), the inequality 1 6 x∗∗ always holds, and consequently, in
this case, by Proposition A.3, one of the conditions (R0)–(R2) is satisfied if and only if
1 < x∗∗ = xd. Hence, when either (B3) or (B4) holds, the first assertion of Proposition A.4
is also proved. The same arguments (it is sufficient to exchange the roles of x and y)
prove the first assertion of our proposition in the case when either (B5) or (B6) holds.

Furthermore, if the condition (T0) is satisfied, then by Proposition A.3, (B2) holds and
consequently, by Proposition A.2 and using (A.7) one gets xd = x∗∗ > 1 and yd = y∗∗ > 1.
The second assertion of Proposition A.4 is therefore also proved.

Suppose now that the condition (T1) is satisfied. Then by Proposition A.3, the cases
(B5) and (B6) are impossible, and by Proposition A.2,

x∗∗ = 1 and Y1(x
∗∗) = 1. (A.9)

Moreover, if one of the cases (B0)–(B2) holds, then by (A.7), one gets yd = y∗∗ > Y1(x
∗∗) =

1, and if either (B3) or (B4) holds, then by (A.8) and using the second relation of (A.9),
we obtain yd = Y2(x

∗∗) > Y1(x
∗∗) = 1. The third assertion of Proposition A.4 is therefore

also proved. The proof of fourth assertion is the same, it is sufficient to exchange the
roles of x and y.
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B Irreducibility properties of the killed Markov chain

Proof of Lemma 2.2

Since by the assumption (A1), the homogeneous random walk (S(n)) with transition
probabilities Pj(S(1) = k) = µ(k − j) is irreducible on Z2, for any k ∈ Z2, there
is a sequence of points `k(1) = (`k1(1), `

k
2(1)), . . . `

k(Nk) = (`k1(Nk), `
k
2(Nk)) ∈ Z2 such

that `k(1) + · · · + `k(Nk) = k and P0(S(Nk) = k) > µ(`k1) × · · · × µ(`k(Nk)) > 0. Let
N1 = 1 +max{N(−1,0), N(1,0), N(0,−1), N(0,1)}. Then because of Assumption (A2), for any
j = (j1, j2) ∈ Z2

+ with j1, j2 > N1 and k ∈ {(−1, 0), (1, 0), (0,−1), (0, 1)} the sequence of
points mk(1) = j + `k(1), . . . ,mk(Nk) = j + `k(1) + · · ·+ `k(Nk) does not exit from the set
(N∗)2, and consequently

Pj

(
Z(n) = j + k, for some n < τ

)
> Pj

(
Z(n) = mk(n), ∀n ∈ {1, . . . , Nk}

)
> 0.

This proves that

g(j, k) > Pj(Z(n) = k, for some n < τ) > 0 whenever j1, j2, k1, k2 > N1. (B.1)

Consider now a random walk (Ŝ(n)) on Z×N with transition probabilities

Pj(Ŝ(1) = k) =

{
µ(k − j) for all j = (j1, j2), k ∈ Z×N with j2 > 0,

µ1(k − j) for all j = (j1, j2), k ∈ Z×N with j2 = 0.

By Assumptions (A1) and (A3) (v) and (vi), such a random walk is irreducible on Z×N,
and consequently, for any j2 ∈ N and k = (k1, k2) ∈ Z2 such that (k1, k2 + j2) ∈
Z × N, there is a sequence of points `j2,k(1) = (`j2,k1 (1), `j2,k2 (1)), . . . `j2,k(Nj2,k) =

(`j2,k1 (Nj2,k), `
j2,k
2 (Nj2,k)) ∈ Z2 such that for any n ∈ {1, . . . , Nj2,k},

(0, j2) + `j2,k(1) + · · ·+ `j2,k(n) ∈ Z×N,

and

P(0,j2)

(
Ŝ(Nj2,k) = (0, j2)+k

)
= P(0,j2)

(
Ŝ(n)−Ŝ(n−1) = `j2,k(n), ∀n ∈ {1, . . . , Nj2,k}

)
> 0.

Letting

N2 = 1+max{Nj2,k : j2 6 N1, (k1, k2) ∈ {(−1, 0), (1, 0), (0,−1), (0, 1)}, (k1, k2+j2) ∈ Z×N}

and using Assumptions (A2) and (A3) (iv), we obtain that for any j = (j1, j2) ∈ Z2
+ with

j1 > N2, and any k = (k1, k2) ∈ {(−1, 0), (1, 0), (0,−1), (0, 1)} such that j + k ∈ Z×N, the
sequence of pointsmj,k(1) = j+`j2,k(1), . . . ,mj,k(Nj2,k) = j+`j2,k(1)+ · · ·+`j2,k(Nj2,k) =

(`j2,k1 (Nj2,k), `
j2,k
2 (Nj2,k)) does not exist from the set N∗ ×N, and consequently,

Pj

(
Z(n) = j + k for some n < τ

)
> Pj

(
Ŝ(n) = mj2,k(n), ∀n ∈ {1, . . . , Nj2,k}

)
> 0.

This proves that

g(j, k) > 0 whenever j2 6 N1, k2 6 N1 + 1 and j1, k1 > N2, (B.2)

and with exactly the same arguments (it is sufficient to exchange the roles of the first
and the second coordinates of the points in Z2

+), one gets that for some N3 > 0,

g(j, k) > 0 whenever j1 6 N1, k1 6 N1 + 1 and j2, k2 > N3. (B.3)
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When combined together, relations (B.1), (B.2) and (B.3) show that for some N0 > 0,

g(j, k) > 0 for all j, k ∈ Z2
+ with ‖j‖ > N0 and ‖k‖ > N0. (B.4)

Remark now that if ` ∈ Z2
+ is such that g(`, j0) > 0 for some j0 ∈ Z2

+ with ‖j0‖ > N0, then
also P`(Z(n) = j0, τ > n) > 0 for some n ∈ N, and consequently, by (B.4) and using the
inequality

g(`, k) >
∑

j∈Z2
+\{0}

P`(Z(n) = j, τ > n)g(j, k) > P`(Z(n) = j0, τ > n)g(j0, k) (B.5)

we obtain

g(`, k) > P`(Z(n) = j, τ > n)g(j, k) > 0 for all k ∈ Z2
+ with ‖k‖ > N0.

Hence, for any ` ∈ Z2
+ we have either g(`, k) > 0 for all k ∈ Z2

+ with ‖k‖ > N0, or
g(`, k) = 0 also for all k ∈ Z2

+ with ‖k‖ > N0, and in the last case, because of (B.4),
‖`‖ < N0. Letting therefore E0 = {` ∈ Z2

+ : g(`, k) = 0 for all k ∈ Z2
+ with ‖k‖ > N0} we

obtain a finite subset of Z2
+ satisfying (2.32). Remark moreover that this set satisfies

also (2.31) because if suppose that g(`, j) > 0 for some ` ∈ E0 and j ∈ Z2
+\E0, then using

again the inequality (B.5) and the same arguments as above we would get g(`, k) > 0 for
all k ∈ Z2

+ with ‖k‖ > N0. Now, to complete the proof of our lemma, it is sufficient to
notice that g(0, k) > 0 for any k ∈ Z2

+\{0}, because under our assumptions, the random
walk (Z(n)) is irreducible on Z2

+, and consequently, the point 0 = (0, 0) does not belong
to the set E0.
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Figure 5: Possible cases for the location of the line segments [a, b] =

[(X1(y
∗∗), y∗∗), (X2(y

∗∗), y∗∗)] and [cd] = [(x∗∗, Y1(x
∗∗)), (x∗∗, Y2(x

∗∗))].

- ☐
(B0)

a b
d

c (B1)

a b = d
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a = d b

c
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(B6)
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Figure 6: All possible configurations for the line segments [a, b] =

[(X1(y
∗∗), y∗∗), (X2(y

∗∗), y∗∗)] and [cd] = [(x∗∗, Y1(x
∗∗)), (x∗∗, Y2(x

∗∗))] and the trace
of the set {(x, y) ∈ D : |x| < xd, |y| < yd}. Cases (B0)–(B6).
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'⇐D ∩D2

(1, 1)

D ∩D1

D

(X1(yd), yd) (X2(yd), yd)

(0, 0) (xd, 0)

(xd, Y1(xd))

Figure 7: Case (B2) with xd = x∗∗ = x∗∗P . In this case, the line segment
[(x∗∗, Y1(x

∗∗)), (x∗∗, Y2(x
∗∗))] is a single point and yd = y∗∗ 6 y∗∗P .

"

(0, y∗∗P )

D

D ∩D2
D ∩D1

(X1(yd), yd)

(0, 0) (xd, 0)

(xd, yd)

Figure 8: Case (B5) with xd = x∗∗ = x∗∗P . In this case, the line segment
[(x∗∗, Y1(x

∗∗)), (x∗∗, Y2(x
∗∗))] is a single point and yd = y∗∗ = Y1(xd) < y∗∗P .

NED ∩D2

(1, 1)
D ∩D1

(0, 0)

(0, yd)

(xd, 0)

Figure 9: Case (B2) with xd = x∗∗ = x∗∗P and yd = y∗∗ = y∗∗P . Here, each of the
line segments [(x∗∗, Y1(x∗∗)), (x∗∗, Y2(x∗∗))] and [(X1(y

∗∗), y∗∗), (X2(y
∗∗), y∗∗)] is a single

point.
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/
.

DΘ

(0, 0)

(0, Y1(x
∗∗))

(X1(y
∗∗), 0)

(0, y∗∗)

(x∗∗, 0)

(x∗∗, Y1(x
∗∗))

Figure 10: Set Θ, cases (B0)–(B2).
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