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A classification of asymptotic behaviors of Green
functions of random walks in the quadrant

Irina Ignatiouk-Robert*

Abstract

This paper investigates the asymptotic behavior of Green functions associated to
partially homogeneous random walks in the quadrant Zi. There are four possible
distributions for the jumps of these processes, depending on the location of the
starting point: in the interior, on the two positive axes of the boundary, and at the
origin (0, 0).

With mild conditions on the positive jumps of the random walk, which can be
unbounded, a complete analysis of the asymptotic behavior of the Green function of
the random walk killed at (0, 0) is achieved. The main result is that eight regions of
the set of parameters determine completely the possible limiting behaviors of Green
functions of these Markov chains. These regions are defined by a set of relations for
several characteristics of the distributions of the jumps.

In the transient case, a description of the Martin boundary is obtained and in the
positive recurrent case, our results give the exact limiting behavior of the invariant
distribution of a state whose norm goes to infinity along some asymptotic direction
in the quadrant. These limit theorems extend results of the literature obtained, up
to now, essentially for random walks whose jump sizes are either 0 or 1 on each
coordinate.

Our approach relies on a combination of several methods: probabilistic repre-
sentations of solutions of analytical equations, Lyapounov functions, convex analysis,
methods of homogeneous random walks, and complex analysis arguments.
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Classification of asymptotic behaviors of Green functions

1 Introduction

For a transient Markov chain (Z(n)) on an infinite countable state space £ determining
all possible limits of the associated Martin kernel, the Martin boundary, is an important
and difficult problem in general. By the Poisson-Martin representation theorem, it
gives the Martin compactification of the state space, an integral representation of all
non-negative harmonic functions. For an introduction to the theory of Martin boundary
for countable Markov chains, see the classical references Doob [5] and Dynkin [6].

The characterization of the Martin boundary for homogeneous random walks in Z¢
has been obtained in Ney and Spitzer [27], via a set of technical estimates related to the
local central limit theorem. The Martin boundary has been also identified for random
walks on free groups, hyperbolic graphs and Cartesian products. See Woess [30] for a
thorough presentation of boundary theory of random walks.

There are few results for more general Markov chains. For random walks on non-
homogeneous trees, the Martin boundary has been obtained in Cartier [3]. Doney [4]
identified the Martin boundary of homogeneous random walks (Z(n)) on Z killed on
the negative half-line of Z. For space-time random walks (S(n))=(n, Z(n)) associated
to a homogeneous random walk Z(n) on Z killed on the negative half-line, the Martin
boundary is obtained in Alili and Doney [1]. The proof of these results relies on the
one-dimensional structure of these processes.

The Martin boundary for partially homogeneous random walks killed or reflected
on a half-space or a cone of Z? has been identified with large deviation techniques,
Choquet-Deny theory and ratio limit theorems of Markov-additive processes. See
Ignatiouk [15, 16, 17].

Random walks on 73

In this paper we consider a partially homogeneous random walk (Z(n)) on Z2 with
the following characteristics: the distribution of its jumps is

a) 4 in the interior of Z2; b) 110 at 0=(0,0);
0 i in {0} %(Z,\{0}); d) a2 in (2, \{0})%{0};

The possible negative jumps are either 0 or —1 on each coordinate for yu, 1 and po.
When it is transient, the Green function G of the Markov chain is, for j, kEZi,

+oo
G(j. k) = P (Z(n)=k).
n=0

The strict hitting time of 0=(0, 0) is denoted as

70 < inf{k>0: Z(k)=(0,0)}

and the Green function of the Markov chain killed at 0 is, for jeZ?, k€Z3 \{0},

g(Ja k) dgf- ZIP](Z(n) = ]ﬂ,’n<7'()).
n>0

Exact asymptotics of Green functions

The Martin Kernel being the ratio of two Green functions, its limiting behavior can
be obtained from the exact asymptotics of G(j, k) when k goes to infinity. Ney and
Spitzer [27] determines the Martin boundary of homogeneous random walks in Z¢ in
this way.
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It is easily seen that, for j, k€Z2 \{0},
G(j. k) = g(j, k) + G(4,0)9(0, k) and G(0, k) = G(0,0)g(0, k),

which gives a relation between the asymptotic behaviors of the Green functions k—G(j, k)
and k—g(j, k).

This type of asymptotic analysis can also be used to investigate positive recurrent
Markov chains. The invariant distribution 7 is represented with the Green function of
the Markov chain killed at 0, for k€72,

+oo
m(k) = 7(0) Y _ Py (Z(n)=k,n<m0) = 7(0)g(0, k), (1.1)
n=0

The limiting behavior of k—g(0, k) gives therefore the asymptotic behavior of the
invariant distribution of a state k going to infinity.

Convergence to infinity

For jeZ3, we will investigate the asymptotic behavior of ¢(j, k) as k=(k1, k2)€Z2 gets
large in several ways.

(1) With direction ueS} ={z=(z1,22)€R? : ||z|=a+a3=1},
. k
min(ky, k2) — +oo, and &l — u.

(2) Along the axes.
The quantity ky€Z, varies in a finite subset of Z, and k;—+o0, and the
symmetrical case by exchanging the variables k; and ks.

The case (1) is the classical set of asymptotic behaviors considered in general. As we will
see, the asymptotics of the Green function for the case (2) are different from the case (1),
they depend on k; and exhibit interesting behaviors. They have also been considered
in Kobayashi and Miyazawa [20] for random walks with jumps of size 1. Note that there
is a slight abuse of terminology for (2) since, strictly speaking, the cases u=(1,0) and
u=(0,1) of (1) are also “along the axes”.

A functional equation

A functional equation for generating functions of the Green function of the Markov
chain Kkilled at 0 plays a central role in our study. It is expressed as, for j EZi and (z,y)
in a convenient subset of C?,

(1—P(a,)) (H, (z. y)—Hy (2,0~ H, (0, 1))
= Lj(w,y) + (d1(z,y)—1) H;(x,0) + (¢2(2,y)—-1) H;(0,y) (1.2)
holds, where the quantity (L;(z,y)) is a known function (defined by (2.27)) and
(1) (H;(z,y)) is the generating function of (¢(j, k), k€Z2);

(2) P(z,y) is the generating function of i at (x,y), the distribution of the jumps in the
interior of Z2 . The quantity Q(z,y)=zy(1—P(z,y)) is in general referred to as the
kernel;

(3) Fori=l1, 2, ¢;(x,y) is the generating function of y; at (z,y).

(See Theorem 2.1 and its proof in Section 6).
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The Kernel method consists in finding a convenient root Y (z) of the equation
Q(x,y) = 0 in order to inject it to the functional equation (1.2). The left hand side
of the resulting equation will became then zero, and one can use its right hand side in
order to investigate the analytical properties of the function H,(x,0).

In most of studies on the asymptotic behavior of Green functions or invariant
measures of random walks in the quadrant, there is always an associated functional
equation similar to equation (1.2).

Literature

We now give a brief presentation of the existing asymptotic results for non-
homogeneous random walks in the quadrant.

1)

(2)

(3)

(4)

Nearest neighbor random walks: Jumps of size 0 or 1 on each coordinate.

In this case, the kernel Q(x,y) is a polynomial of degree at most 2 in each variable
and hence for any = € C, the kernel equation Q(x,y) = 0 has exactly two roots
(counting their multiplicity) having an explicit form. In the positive recurrent case,
by using methods of complex analysis on elliptic curves, the asymptotic behavior
of the invariant distribution along lines of Zi has been obtained in the early work
Malyshev [25] in 1973. Following these ideas, extensions of these results have been
established in Kurkova and Malyshev [22], Kurkova and Raschel [23], Raschel [28]
and Li and Zhao [24], but, as in the original paper [25], only when positive jumps
are of size 1. See Fayolle et al. [8] for a general presentation and additional
references therein.

In the positive recurrent case, Kobayashi and Miyazawa [20] determines the exact
domain of convergence of the generating function of stationary distribution and
obtains the asymptotic behavior of the stationary distribution.

In both cases, [20] and [25], the analysis relies in an essential way on the explicit
representation of the roots of the quadratic kernel equation Q(z,y) = 0. This is the
main limitation of this type of approach.

Reflected Brownien motion. For reflected Brownien motion in R?, similar problems
and with an analogous approach to Malyshev [25] were investigated in a series of
papers Franceschi and Kourkova [12], Franceschi [11], Franceschi et al.[13]. In
this case, the kernel equation is also quadratic and its roots are explicit.

For positive recurrent random walks with unbounded positive jumps, exact
asymptotics of the stationary measure have been investigated in Borovkov and
Mogulskii [2] with large deviation techniques. The asymptotics are considered for
interior directions of S}r. Some constants do not seem to be explicitly determined
in the limit results of this reference. In particular, it is not clear how the limiting
behavior of the invariant distribution of a state going to infinity depends on the
asymptotic direction u€S$} .

Positive recurrent random walks with unbounded positive jumps have also been
analyzed in Kobayashi and Miyazawa [21] from the point of view of tail asymptotics.
For these asymptotics, a line of Zi associated to a fixed vector is going to infinity
in the sense that its distance to (0, 0) is going to infinity. The quantity considered
for the tail asymptotics is the invariant distribution of all states of Zi above this
line. The exact domain of convergence of the generating function of the invariant
distribution is obtained and, with methods of Markov-additive processes, exact tail
asymptotics with explicit constants are derived.
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(5) Ignatiouk et al. [19] has investigated transient random walks in the quadrant Zi
with unbounded positive jumps, the size of negative jumps is not necessarily 1 but
bounded. An additional assumption in [19] is that the random walk escapes to
the infinity along the horizontal axis and the vertical axis. With methods of local
Markov-additive processes and complex analysis arguments, the exact asymptotics
of the Green function are obtained. They are expressed in terms of asymptotics of
Green functions of random walks in half-plane, i.e. with one boundary removed.
Our present paper shows that such a result is wrong in general, both boundaries
play a role in fact in several of our convergence results.

(6) Additionally, in Viet Hung Hoang and al. [14], the authors have obtained exact
asymptotics of the Green function for a singular random walk by using specific
properties of their model. In Ignatiouk-Robert [18], exact asymptotics of the Green
function have been obtained for a homogeneous random walk in Z killed outside
of an open cone by using methods of functional equations, integral representations
of the Green function and Woess’ approach for the case of homogeneous random
walks in Z¢. The technical results of the last paper are used in the present paper
in order to get the asymptotic behavior of the Green function for the directions in
the interior of the quadrant.

A quick presentation

A significant part of our paper is devoted to the definition and the properties of the
classification in eight regions of the space of parameters, see Proposition 2.2 below. It is
defined as a set of relations for several characteristics associated to the distributions
of the jumps u, p;, 1€{1,2}. For each region of this classification, an investigation
of the analyticity properties of the generating functions functions H;, j €Z2+ and the
study of the nature of their dominant singularities are achieved. With these results, the
exact asymptotics of the Green function (g(j, k), j, k€IN?) are derived. They are stated in
Theorems 2.4 and 2.6 of Section 2.

In the literature, asymptotic results for nearest neighbor random walks in the
quadrant are often formulated either under conditions of positive recurrence, see [8, 24,
25, 26], or under conditions of transience, see [22], and use in both cases an explicit form
of the roots of the quadratic equation Q(z,y) = 0. In [8, 24, 25, 22] results are obtained,
a kind of classification of asymptotic behaviors, separately for each configuration of the
mean drifts. In [26] the authors have considered only positive recurrent random walks
and the classification of asymptotic behaviors of stationary probabilities is given in terms
of the domain of convergence of the generating function of the stationary probabilities
of the process. If the classification of this last reference has some similarities with our
classification, it still use the conditions of positive recurrence, formulated in terms of the
mean drifts. In our paper, we give a commun classification in eight regions of the space
of parameters which is valid both for positive recurrent and transient random walks and
is not determined by the mean drifts but by the mutual disposition of the level sets of
the jump generating functions.

We now give a sketch of the general method used to obtain these convergence results.
Section 2 gives a much more detailed description of the contributions and also of the
methods used.

In the first step we study the solutions (z, y) of the equation Q(z,y)=zy(1—P(z,y))=0.
This is done by investigating the existence of a function Y (x) defined on a subset of C such
that (z,Y (z)) is a zero of Q. By canceling the left-hand side of (1.2), it gives a relation
between (H,;(z,0)) and (H;(0,Y(z))). An analogue study is done, by exchanging the
roles of z and y, with (X (y),y). After this step, an analytic continuation of (H;(0,Y (x)))
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is achieved and, with relation (1.2) it gives an analytic continuation of (H;(z,0)). This is
a difficult point and this is where a convenient representation of (Y (z)) is crucial. In our
approach, the key argument in this step is a probabilistic representation of the function
(Y(z)). Under general conditions, an expression of the functions (H;(0,y)) and (H;(z,0))
is derived, and therefore an expression of (H,(x,y)), the generating function of (g(j, k)).
The last step uses this representation and, with complex analysis arguments, one can
derive the asymptotic behavior of (¢(j, k)) when k goes to infinity.

2 Overview of the results

General notations

Throughout the paper, the following notations are used.

(1) For two points (x1,y2), (72,y2)€R?, the line segment in R? with the end-points
(z1,y2) and (x2, y2) is denoted by [(z1,y2), (%2, y2)]. The unit circle of R is

§1 C f=(u,v)eR? : |lz| = u’+0* = 1}. 2.1)

(2) For aeC and r>0, we denote by B(a,r) the open disk in C with center « and radius
r. A poly-disc of C? is the product of two open discs.

(3) For ro>1r1>0, we let

Clri,re)={z€C: r <|z|]<ry} and C(ri,m)={xeC: ry <|z|<ra}.

(4) For a subset B of [0, +xoo[2, we denote

QB) E {(z,y) € C?: (|z|,|y|) € B}. (2.2)

A set B C [0, +oc[? is logarithmically convex (resp. strictly logarithmically convex)

if, for any x, y€ B and A\€[0,1], 2y ~*€B, resp. 2y ~*€B when z#y. We denote
by LogCH(B) the logarithmic convex hull of B in [0,+o0c[?, i.e. the smallest
logarithmically convex set of [0, +o00[? containing B.

To simplify some expressions, we will also use the notations, for a C»-function f on C?,

of of

a’rf(xay) = %(Ivy)a ayf(xvy) = @($7y),
0% f 0% f 0% f

We now introduce the non-homogeneous random walks investigated in this paper.

2.1 Non-homogeneous random walks in Z?,_: definitions and assumptions

The process Z(n)=(Zi(n), Z>(n)) on Z2% is a Markov chain on Z3 with transition
probabilities given for j=(j1, jo)€Z3 by

u(k) if j1>0 and 72>0,

k) if 71>0 and j>=0
Py (Z(1) = j+b) e ) e (2.3)
p2(k) if j2>0 and j;=0,
,Lto(k/’) if (]17]2):(070)a
EJP 30 (2025), paper 4. https://www.imstat.org/ejp
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where y is a probability measure on Z?, and j1, 2 and i are sub-probability measures
(positive measures with total mass less or equal than 1) on, respectively, ZxZ.,, Z xZ
and Z2 .

+

Their generating functions, defined on their set of convergence in C?, are denoted by

Ply)= 3 u()aiy, (2.4)
J=(j1,j2)€Z?

o) T N mGay galey) T )iy, (2.5)

J=(j1,j2)€Z? J=(j1,42)€Z?

polz,y) = Y po(i)aly” (2.6)

3=(j1,42)€Z2
The level sets D, D, and D- of these generating functions are defined as
D {(z,y) €]0,+00* : Pla,y) <1}
and D; < {(2,y) €]0, 400> : ¢i(x,y) <1}, i€{1,2}. (2.7)
There are three main assumptions used in our results.
Assumption (A1)

(i) The homogeneous random walk associated to the distribution y is irreducible on
72;

(ii) The generating function P is finite in a neighborhood of the set D in R2;

(iii) The set D has a non-empty interior.

Assumption (A2)

(i) For j=(j1,j2)€Z?, u(j1,j2)=0 if j1<—1 or jo<—1.

Assumption (A3)
(i) The random walk Z(n)=(Z1(n), Z>(n)) is irreducible on 72 ;
(ii) The generating functions ¢1, ¢o and ¢q are finite in a neighborhood of the set D;
(iii) The sets DND; and DNDy have a non-empty interior;
(iv) For j=(j1,j2)EZ?,

- p1(j1, Jj2)=0 if j1<—1;
— p2(j1, j2)=0 if jo<—1;

(v) There exists jz(jl,jz)EZQ with jo>0 such that p;(j1, j2)>0;
(vi) There exists j=(j1, jo)€Z?* with j;>0 such that p(j1, j2)>0.

The Markov chain (Z(n)) killed at 0 and its Green function are now introduced.

EJP 30 (2025), paper 4. https://www.imstat.org/ejp
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Definition 1 (Killed Markov Chain). The return time of the process (Z(n)) to the origin
0=(0,0) is defined by

70 & inf{fn >1 : Z(n) =(0,0)}
and (Z,,(n)) denotes a process with the distribution of the Markov chain (Z(n)) killed at
0. Its Green function is defined by, for j, keZi,

9. k) E S Pi(Zey(n) = k) = > Pi(Z(n) = k, 7 > n). (2.8)
n=0 n=0

A non-negative function s : Z2 —»R is said to be harmonic for the Markov chain (Z(n))
killed at 0 if, for j€Z?2,
E;j(3(Z(1)); 70 > 1) = 5(j).

The next proposition introduces key quantities used to define the different regions
which determine the asymptotic behavior of the Green function (g(j, k)). Its proof follows
from Lemma 4.1 and Lemma 4.2 of Section 4. Figures 1, 2, 3 and 5 in Section C of the
appendix illustrate some of these definitions.

Proposition 2.1. Under the assumptions (A1)-(A3),

(1) the sets Dy and D, are logarithmically convex and the set D is compact, strictly
logarithmically convex and does not intersect with the axes {(z,y)€R?:2=0} and
{(z,y)€R*y=0};

(2) There exist 3, 23 €]0, 400 and z*, 2** €]0, +-00[ such that 2} <z}, z*<z**, and
[2p, 2p] = {2€]0, +oo[: Fy€]0, +ool, (z,y)€D},

[z*, 2] = {x€]0, +o0o]: Ty€]0, +o0[, (x,y)eD N D1}.

(3) There exist functions Yy, Y2 : [zh,25]—[yp,y5'], such that, for x€[zh,z}],
Y1 (2)<Y2(z) and
Yi(x), Ya(2)] = {y€]0, +ool : (2,y)eD}.
)

[
For z€lx}, 23], Yi(x), Ya(x) are the unique positive solutions of the equation
P(z,y)=1, and Y7 (z)=Y>(x) holds if and only if ze{z}, 2}

(4) There exist y}, y5 €]0, +oo[ and y*, y**€]0, +00[ such that y;<yp", y*<y**, and
lp,yp] = {y€l0, +oo[: Fz€]0,+00], (z,y)€D},

[v*, y™*] = {x€]0, +oo[: Tx€]0,+o0|, (x,y)€D N Da}.

(5) There exist functions X;, Xo:[yp,yp]—[zp,2p] such that, for yelyp,yp,
X1(y)<X2(y) and

[X1(y), Xa(y)] = {z€]0, +-00[ : (z,y)eD}.

For yelyp,y5'], Xi(y), X2(y) are the unique positive solutions of the equation
P(z,y)=1, and X;(y)=X>2(y) holds if and only if ye{y}, y5"}.

The relations DND,CD and DND->CD give the inequalities
zp <zt <z <2y and yp <y <y <yp. (2.9)
Note that, since the point (1, 1) is an element of DND; and DND,, one has also
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We now define four curves Si1, S12, So1 and Sy, on the boundary 0D of the set D.
They are also used in the definition of our classification.

Sy & {(x,y) € OD : 9,P(x,y) <0, d,P(x,y) <0}, (2.11)
S12 E {(2,y) € 0D : 9, P(w,y) <0, 9,P(x,y) > 0}, (2.12)
So1 & {(z,y) € 0D : 0,P(x,y) >0, 8,P(x,y) <O}, (2.13)
Son & {(2,y) € 0D : 0, P(x,y) >0, 9,P(x,y) > 0}. (2.14)

With Lemma 4.1 of Section 4, these curves can be expressed in terms of the functions
X1, X5 and Y7, Y5 of Proposition 2.1 as follows,

Su = {(z,Yi(x) v, X1(yp)l} = {(X1(y),9) : v € [yp, Va(2p)]}, (2.15)

(x)): welrp
Siz = {(2,Ya(2)) : @ € [2p, Xu(yp)]} = {(X1(y),v) = v € Vi(2p), yp ]}, (2.16)
Sor = A{(z,V1(2)) : w € [Xilyp),2p 1} = {(X2(y),9) - v € lyp, Va(2p)]}, (2.17)
Saz = {(2,Ya()) : @ € [Xa(yp), 2¥ 1} = {(Xa(y),9) : y € M(zF), yp'l}, (2.18)

(
and the relations X (y5)=X2(yp), X1(y5)=X2(y5"), Y1(ap)=Ya(z}) and Y7 (z5)=Y2(x}")
hold.

2.2 A partition of the space of parameters

The next proposition shows that there is a partition of eight regions (Ba), a€{0,...,7}
for the possible locations of the points z**, Y7 (z**), Ya(2™), v**, X1(y™), Xa2(y**). Its
proof is given in Section 5. As it will be seen, the asymptotic behavior of the Green
functions of the Markov chain killed at 0 depends on the region associated to its
parameters. Figures 6, 7, 8 and 9 in Section C of the appendix give an illustration
of several situations.

Proposition 2.2 (Definition of the Classification). Under the assumptions (A1)-(A3), one
and only one of the following cases can occur,

(BO) Xi(y**)<z**<Xso(y**)and Yi(z**)<y**<Yo(z**);
(Bl) Xi(y*)<Xo(y™) =™ <y, Yi(o™)<Ya(2**) = y*™* <y} and (x**,y**) € Saz;
(B2) Xao(y™)<az™, Ya(z*)<y™ and (&, Ya(z™)), (Xa(y™), y™) € Soa;
(B3) o™ = X)(y™)<z, Yi(z™)<Ya(z™) =y, y*<1<Ya(z™)and (z**,y*) € Siz;
(B4) ™ <Xq(y™)<zy, Yi(z*)<Ya(z**)<y™, y*<1<Y3(z*™*) and

(@, Ya (™)), (Xa(y™),y™") € Siz;
(B5) y** =Yi(z™)<yp, Xa(y™)<Xao(y™) = 2™, 2*<1<Xy(y**)and (z**,y**) € Sar;
(B6) y*<Yi(ax™)<yrr, Xi(y™)<Xa(y*™)<a™, z*<1<Xo(y**) and

(Xa2(y™),y™), (@7, Y1(2™)) € San;

(B7) ™ =X;(y™) =1, y*=Yi(z**)=1, 9,P(1,1)<0 and 9,P(1,1)<0.

The cases (B0)-(B7) have in fact a simple geometrical interpretation. They are
determined by the location of the line segments [(z**,Y:(z*)), («**,Y2(2**))] and
[(X1(y™),y*), (X2(y*),y**)]. See Figures 5 of Section C of the appendix, where, see
Section 5,
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— the horizontal line segment represents [(X;(y**),y**), (Xo(y**), y**)];
— the vertical " [(z**, Y71 (x*%)), (™, Ya(a*))].

The case (B7) corresponds to the case when the Markov chain (Z(n)) is transient and
escapes to the infinity along the each of the axes {0} xIN and INx{0}. See Section A. In
this case, the exact asymptotic of the Green function has been already obtained in the
paper [19] by using methods of Markov-Additive processes. For this reason we will not
consider this case.

Recall that in the literature, asymptotic results for nearest neighbor random walks
in the quadrant were formulated either under conditions of positive recurrence,
see [8, 24, 25, 26], or under conditions of transience, see [22], in terms of the
recurrence properties of the random walks, i.e. via conditions satisfied by the drift
vectors. It turns out, as we will see, that the drift vectors are not appropriate to
define properly such a classification in the general case we consider. As it will be
seen in Section A, the classification of Proposition 2.2 is not defined in such a way.
The recurrence/transience properties of (Z(n)) have in fact a marginal impact in our
investigation of the asymptotic behavior of the Green function (¢(j, k)) of the killed
Markov chain. Transience and recurrence properties may hold in each of the regions
(Ba), ae{3,4,5,6}. See Proposition A.1.

2.3 Convergence domain and functional equation

For j€Z2, the generating function of (¢(j, k), k€Z32 ), defined on its convergence
domain in C?, is denoted as

def. .
Hj(z,y) = Z g(j, k)akiyPe, (2.19)

k=(k1,k2)€Z3 \{0}

This is a central set of functions in our analysis. A significant part of our work is devoted
to the investigation of their convergence domain and also to determine the nature of
the dominant singularities of the functions x—H;(z,0) and y—H;(0,y). Once it is done,
with Tauberian like theorems and complex analysis arguments, we will able to derive the
asymptotic behavior of the Green function (¢(j, k), k€Z?2 ) when k goes to infinity.

Our first important result is that if

r % {(z,y) € [0, +00[*: x<z’ and y<y' for some (z,y') € D}, (2.20)

where D is defined by (2.7), and

def. | ** if one of the conditions (B0)-(B4) holds, 2.21)
Tq = .
7 ) Xa(y™) if either (B5) or (B6) holds,
def. y** if one of the conditions (B0)-(B2), (B5) or (B6) holds, (2.22)
Y=\ Ya(2*) if either (B3) or (B4) holds. '
then, for any j€Z?2, the generating function (z,y)—H;(x,y) is analytic on
Qu(T) < {(a,y) € AUD) : |2l <aa, lyl<ya), (2.23)

In our next result, we will see that the point =4 (resp. y4) is the dominant singularity of
the functions z—H,(x,0) (resp. of the functions y— H;(0,y)) and that the set Q4(T') is the
maximal domain in C? where all generating functions (z,y)—H;(z,y), j€Z2, converge.
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For j€Z2, to formulate a key relation for the generating functions (H,(z,y)), we
define

Qa.y) T ay(l - Pla,y) =ay— . a"Flyftlyp) (2.24)
k=(k1,ko)EZ2
and
Yi(y) T al—gu(y) =a— > 2Py (k) (2.25)
k=(k1,k2)€Z2
def.
Yalw,y) Tyl —o(m,y) =y— > a2 k), (2.26)
k}=(l€1,k2)EZ2
Jyis — Pi(1y < if (j1,72)7(0,0
Lj(lﬂ,y) déf‘ 7y J(TO +OO) 1 (]1 ]2)7A( ) )a (227)
do(,y) — Po,0)(10 < +00) if (j1,52)=(0,0),
hi(wy) E Y g O+ Lk + 1)abr g, (2.28)
k=(k1,k2)€Z2
hy(@) €N g0, (ky + 1,00, and hoj(y) = N g( 0,k + 1)y*2. (2.29)
k1:0 ]C2:O

Under the assumptions (A1)-(A3), the functions (z,y)—L;(x,y), j€Z2 are clearly analytic
in a neighborhood of the set (T, see relation (2.2), and the functions (z,y)—Q(x,y)
and (x,y)—;(z,y), i=1, 2, can be analytically continued to a neighborhood of Q(T).

Theorem 2.1 (Convergence Domain and Functional Equation). Under the assumptions
(A1)-(A4), for any j€Z2, the following assertions hold

i) The function x—hq;(x), resp. y—hs;(y), is analytic in B(0,x4), resp. in B(0,y4).

ii) On the set Qq(T") the function (z,y)—h;(z,y) is analytic and the relation

Qz,y)hj(x,y) = Lj(z,y) +1(x,y)h1;(x) + 2z, y)hoj(y) (2.30)
holds.

When the random walk (Z(n)) is positive recurrent, Theorem 2.1 has been established
in Kobayashi and Miyazawa [21]. With Proposition 2.2, the transience or recurrence
properties do not play a role in our proof of this result.

Section 6 is devoted to the proof of Theorem 2.1. We give a sketch of it.

(1) We first prove that the series (2.29) and (2.28) converge in Q(©) for a
logarithmically convex set ©C[0,+oc[> whose boundary contains the line

segments [(z4,0), (x4, Y1(24q))] and [(0,ya), (X1(y4), ya)] and such that (2)057&(2) and

OUD={(z,y)el' : x<zq,y<yq}. See Proposition 6.1 and Lemma 6.4. An important
ingredient of the proof of this step is the use of Lyapunov functions. See also
Figure 10 of Section C of the appendix.

(2) The functional equation (2.30) is established on the set {2(0). From there, we get
that, for j€Z2, the functions (z,y)—Q(z,y)h;(z,y) can be analytically continued
to the set Qq4(T).

(3) Since the function (z,y)—h;(z,y) is analytic in (©) and the function

e}

(z,y)—1/Q(z,y) is analytic in Q(D), from these results, we will be able to deduce
that the function (x, y)—h,(x,y) can be continued as an analytic function to the set
Qq(T).
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Remark.
Clearly, for j€Z? and z#0, y#0,

Hj(x,0) = xhyj(x), H;(0,y) = yho;(y), Hj(z,y)—H;(z,0)—H;(0,y) = zyh;(z,y),

and the functional equation (1.2) of the introduction is equivalent to relation (2.30). The
technical advantage of the formulation (2.30) is that the functions v, ¥ and @Q are
also defined when x=0 or y=0. In some cases, however, the expression (1.2) is more
convenient.

2.4 Singularity analysis of H;

Since the set Q4(I") can be represented as a union of the poly-discs centered at
the origin of C2, the above theorem proves that for any jeZi, the generating function
H;(z,y) converge in Q4(I"). The results of this section establish that the set 24(I") defined
by (2.23) is the exact domain of convergence of the functions H, j eZi, i.e. the maximal
domain in C? where the series (2.19) converge, and the dominant singularities of the
functions x+—H;(z,0) and y—H;(0, y) and their nature are identified.

Before stating these results, in order to have straight assertions, we have to fix
a (small) technical problem related to irreducibility. It must be noted that, even
under the assumptions (A1)-(A3), the killed Markov chain (Z,,(n)), see Definition 1, is
not necessarily irreducible on the space Z2\{0}. One may have g(j, k)=0 for some j,
keZ?\{0}. The following lemma solves this problem.

Lemma 2.2. Under the assumptions (A1)-(A3), there exist Ny>0 and a finite subset E
of Z2\{(0,0)} such that for j, keZ?,

g(j,k) =0 ifjcEy and kg¢Ey, (2.31)
g(j,k) >0 if j¢Fy and ||k|>No. (2.32)

Consequently, to investigate the asymptotics of g(j,k) as k goes to infinity, it is
sufficient to consider a starting point j outside Ey. The proof of this lemma is given in
Section B of the appendix. From now on, the integer Ny>0 and the set E, satisfying
(2.31) and (2.32) are fixed. When the killed Markov chain (Z,,(n)) is irreducible on
72\{(0,0)}, the set Ej is of course empty.

Proposition 2.2 and the definition of the points x; and y; show that the relations,
rq<e** <o and y <y** <yp hold. For j € Zi\EO, we will prove that x4, resp. yq, is the
dominant singularity of the function z+—H,(x,0), resp. y — H,(0,y). We will see that the
nature of the singularity x4, resp. 4, is determined by the cases (B0)—-(B6) and also by
several relations between the quantities x4, ** and z}°, resp. yq, ¥** and y5'.

By relation (2.9), the points ** and y** are respectively in [z}, 23] and [yp, y5'], and
from the definition of the functions Y3 : [25, 23] —=[yp, y5] and Xo : [yp, y5]— [k, 23],
we have

Y2(2™) <yp and Xo(y™) < ap.

Proposition 2.2 gives that y**<y%7" if one of the cases (B0), (B1), (B5) or (B6) holds and,
similarly, **<a%" if one of the cases (B0)-(B4) holds. This is summarized as follows.

<y if one of the cases (B0), (B1), (B3) or (B4) holds,
<L with a possible equality +**=z%", if (B2) holds,

Tq= ] (2.33)
Xo(y*™)=a"" <a}p 7 r**=x%, if (B5) holds,

Xo(y**)<a**<xp'  if (B6) holds,
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and
Y <yp if one of the cases (B0), (B1), (B5) or (B6) holds,
)y with a possible equality y**=y3", if (B2) holds, (2.34)
Yd Yg(x**)Zy**<y}S* 9 y**:y}«;«, if (B3) hOldS, :

Ya(z*)<y*™<yp* if (B4) holds.

We now introduce several functions on Zi which will be used to describe the dependence
on the initial state j GZi in the asymptotic behavior of ¢(j, k) when k goes to infinity.
Under convenient conditions, as we will see, these functions are harmonic for the killed
Markov chain at 0.

Definition 2 (Functions for the Dependence on the Initial State). For j € 72,

() E Lj(wa, Yi(2a)) + (62(2a, Y1 (2a)) — 1) Hj(0, Y1 (wa)), (2.35)
e (chc,y) + (92(z,y) = 1) Hj<07y>> . (236
7 (]) Y 1- ¢l (:I:a y) (z,y)=(zp",Y1(zp"))
s(5) & Li(X1(ya), ya) + (61(X1(ya), ya) — 1) Hj (X1 (ya),0), (2.37)
_ o def o, (Lj($>y) + (¢1(z,y) — 1)Hj(x’0)> , (2.38)
%) 1= 6a(x,1) (o) =X (3 05)

() E L2, y) + (d1(2,y) — V) H;(2,0) + (¢2(z,) — 1)H;(0,2), (2.39)

By Theorem 2.1, and since the functions 1,12, @ and L; are analytic in a
neighborhood of the set Q(T'), we have

— 1 is well defined on Zi if Y1 (zq)<xg4, that is, if one of the cases (B0)—-(B4) holds;

- i " if (B2), xq=x**=x% and ¢, (23, Y1(2%))<1 hold;
- 2y " if one the cases (B0)-(B2), (B5) or (B6) holds;

- o " if (B2), ya=y**=y3" and ¢2(X1(y3"), yp')<1 hold;
- H(zy) " for (x,y)€Q(T) such that |z|<z4 and |y|<yq.

The following theorem gives a complete description of the nature of the singularity
x4 for the function a:»—>Hj(:c, 0). Note that the case (B7) is not considered because, as
mentioned before, it has been already investigated in [19].

Theorem 2.3 (Singularity Analysis of (Hj)). Under the assumptions (A1)-(A3), the
following assertions hold.
i) If one of the cases (B0), (B1), (B3), (B4) holds or (B2) and x4<x% hold, then
— there exists >0 such that, for any j€Z?2, the function z+H;(x,0) can be
analytically continued to the set B(0,z4+¢)\{z4};

- the function s of (2.35) is non-negative on 7>, harmonic for the Markov
chain (Z(n)) killed at 0 and positive on the set Z3 \ Ey;

- forany j € 72,

lim (zg—z)H;(x,0) = a1 21 (j), (2.40)
T—Tq
where
d —1
z Tr=xq
EJP 30 (2025), paper 4. https://www.imstat.org/ejp
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ii) If (B2) and z4=x%" hold, then
— there exists e>0 such that, for any j€Z?, the function x+H;(z,0) can be
analytically continued to B(0, x5 +¢)\[x 3", 5 +¢];

— if ¢y (x4, Y1(24))=1, then the function s, is non-negative 7?2 , harmonic for the
Markov chain (Z(n)) killed at 0, positive on the set Z3 \E, and for any jeZ?,

lim vaq—z Hj(z,0) = ag (), (2.42)

Tr—xq

where the limit is taken in the set B(0, 23 +¢)\[z%, 3 +¢] and

> 0; (2.43)
(z,y)=(za,Y1(zq))

a2 = (0,01 (w.9), [0, P(w.9)/ %, Plz.))

- if ¢1(xzq,Y1(2q))<1, then the function 3z of (2.36) is non-negative on Z%r,
harmonic for the Markov chain (Z(n)) killed at 0, positive on the set Z2 \ Ey,
and for any j€Z2,

lim zgq—z a H;(x,0) = a3 3(j), (2.44)

z—ozg dx

where the limit is taken in the set B(0, x5 +¢)\[z3, 25 +¢] and

1
as = 5/0:P(@.)/22, P(,y) >0, (2.45)
(z,y)=(xa,Y1(za))

iii) If (B5) and zq4<zp" hold, then
- there exists e>0 such that, for any j€Z?, the function x—H;(z,0) can be
analytically continued to the set B(0,zq+¢)\{za};

- the function - of (2.37) is non-negative on Zi, harmonic for the Markov
chain (Z(n)) killed at 0, positive on the set Z3 \ Ey and for any jeZ2,

1i>m (xg—)?Hj(x,0) = ayq »2(j), (2.46)
where
d d d !
s = (6alo.)-1) (0@ Va(0) 12X 0)0) Vi) >0
(@9)=(2a,ya)
(2.47)

iv) If (B5) and z4=z}" hold, then
- there exists >0 such that, for any j€Z? , the function x + H;(x,0) can be
continued as an analytic functions to the set B(0, x5 +e)\[z%, 23 +¢;

~ the function s is non-negative on 72, harmonic for the Markov chain (Z(n))
killed at 0 and positive on the set Z3 \ E;

- if ¢1(xq,Y1(x4))=1 then for any j€Z2,
lim (zq — ) H;j(z,0) = a5 22(j), (2.48)

T—Tq

where the limit is taken in the set B(0, 25 +¢)\[z}, 5 +¢| and

dgs -
05 = (Ol ) =108, Pla.) (0401 (2:9)0. Pl ) 52 (X1 (0).0) >0,
(z,y)=(a:ya)
(2.49)
EJP 30 (2025), paper 4. https://www.imstat.org/ejp
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— if ¢1(zq, Y1(x4))<1 then for any jeZ2,

lim \/xd—xHj(x,O) = Qg %Q(j), (250)

T—xq
where the limit is taken in the set B(0, 2’5 +¢)\[z}, 5 +¢| and

<(1¢1(m,y))jy¢2(X1(y),y)> > 0.

(z,y)=(xa,ya)

51)

02,P(x,y)

a6 = (02(=.9) =\ [ 5 by

v) If (B6) holds, then
- there exists £>0 such that, for any j€Z2, the function x—H;(z,0) can be
analytically continued to the set B(0, z4+¢)\{zq};

— the function s is non-negative on Z?2 , harmonic for the Markov chain (Z(n))
killed at 0, positive on the set Z3 \ E, and for any jeZ?.,

lim (zq—2)H;(x,0) = a7 (j), (2.52)
where
d d !
o7 = (Gate)=1) ((1-61(50) 1026, () S V(o)) >0,
Y (z,y)=(2d,ya)
(2.53)

vi) If (B2) holds, then

- the set {(x,y)€S22 : <w4, Y<yq} is non-empty;

- there exists a neighborhood V of the set Sa5 in ]Ri such that, for any j€Z?2,
the function x—(1—P(z,y))H;(x,y) can be analytically continued to the set
{(z,9)eQV) : |z|<za, ly|<ya};

- for any (z,9)e{(z,y)€S22 : x<wq,y<ya}, the function s ;) is non-negative
on Z?, harmonic for the Markov chain (Z(n)) killed at 0, positive on the set
72 \E, and for any j€Z2,

lim  (1=P(z,y))Hj(z,y) = 5.4 (5)- (2.54)
(z,y)—=(2,9)

o
(z,y)€D

By symmetry (it is sufficient to to exchange the roles of x and y), the analogous results
for the assertions i)-v) of Theorem 2.3 hold for the functions y—H;(0,y), j€Z3\Ej.

The last assertion of Theorem 2.3 is obtained as a consequence of Theorem 2.1. The
proofs of the first five assertions are more demanding as it will be seen.

Remark.

In the context of the functional equation (2.30), a classical approach of the literature
consists in finding a suitable analytic function z—Y (z) (resp. y—X (y)) satisfying the
equation Q(z,Y (x))=0 for any z, resp. Q(X(y),y)=0 for any y, in some domain large
enough, in order to inject y=Y (z) (resp =X (y)) in (2.30).

For nearest neighbor random walks, see Malyshev [25], the equation Q(z,y)=0 is
quadratic in z and y, its solutions have therefore an explicit form. In the general case,
when the jumps of the random walk are unbounded, one clearly cannot find the functions
Y and X in such a way. See Remark 2.3 of Kobayashi and Miyazawa [21].
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Probabilistic representations of X; and Y,

In our analysis, a part of the technicalities of the literature related to analytic
continuation of the functions (Y (z)) and (X(y)) mentioned above is avoided via a
probabilistic argument.

We show (see Section 7.2) that the functions Yi:[z}h,z3]—=[yp,yp| and
X1:[yp, ¥y —[zp, 23], introduced in Proposition 2.1, have a probabilistic representation.
With this result, we are able to prove that there exists £>0 such that the function X,
resp Y1, can be analytically continued to the set

{reCixp<|z|<zy +e, x|z, 23 +el}, resp. {yeCyp<|y|<yp +e, y€lyr, yp +el}-

From there, several important properties of the analytic continuation of Y; and X, are
then derived. As a consequence one can inject y=Y;(x) or x=X;(y) in the equation
(2.30), and then to establish Theorem 2.3.

2.5 Asymptotics of the Green function along the axes

In this section, we investigate the asymptotics of the Green function ¢(j, k) when one
of coordinate of k=(k1, kzg)eZi is fixed, i.e. as k;—+oo with ks fixed or ky— 400 and k;
fixed. By symmetry it is enough to consider only the first convergence.

We define v (0)=1 and, for n>1,

et 1 0N (i(x4,y)
vi(n) = (n—1)! gyn—1 (Q(mm))

where @ and ¢, are defined by (2.24) and (2.25) respectively. As the following theorem
shows, the quantity v; (ko) expresses the dependence on ks in the limiting behavior of
kl’—)g(j, (]{/‘1, kg))) when k;—+o0.

In Section 8, it is shown that v is, up to a multiplicative constant, the invariant
distribution of a twisted version of a random walk on Z x Z, obtained by removing
the boundary {0} xZ,.. It will show in particular that the coefficients v4(n), n€Z,, are
positive.

The case (B7), already analyzed, excepted, the following result gives a complete
description of all possible cases for the asymptotic behavior of the Green function
9(4, (k1,k2)) as k1 — +oo for a fixed ko€Z, .

Theorem 2.4 (Asymptotics of Green Function with a Fixed Second Component). Under
the assumptions (A1)-(A3), the following assertions hold.

, (2.55)

y=0

(1) If either one of the cases (B0), (B1), (B3), (B4) holds or (B2) and xq<xp hold, then
for anijZi\EO, as k1—+o0 and ko varies in a finite subset of Z,

904, (k1,k2)) ~ ayvi(ka)sa (§)a ™" (2.56)
where 5 (j) > 0 and a1 > 0 are defined respectively by (2.35) and (2.41).

(2) If (B2) and xq=x%" hold, then for anyjeZi\Eo, as k1—-+oo and ko varies in a finite
subset of Z..

0. (ko)) ~ an (ko™ (Vakia)  if (e Vilaa)=1,  (257)

9, (k1 k2)) ~ agvr (ko34 (j)z, ™ (kw 7Tk1ffd) if ¢1(za, Y1(za))<l, (2.58)

where s (j) > 0, 51(j) > 0, a; > 0 and ay > 0 are defined respectively by (2.35),
(2.36), (2.43) and (2.45).
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(3) If (B5) holds and z4<x7}, then forjeZi\Eo, as k1—+oo and k, varies in a finite
subset of Z.,
94, (k1,k2)) ~ a4l/1(k2)%2(j)k1$;k1_27 (2.59)

where s (j) > 0 and a4 > 0 are defined by (2.37) and (2.47).

(4) If (B5) holds and z4=x7', then forjeZi\EO, as k1—+oo and k, varies in a finite
subset of Z.,

90, (k1. k2)) ~ asvi(ka)se(f)a ™ ™" if  ¢1(za, Yi(za))=1, (2.60)

06, (ko)) ~ agnr(k)m(ag® (Vikioa) i o(ea Viwa)<1,  (261)

where s(j) > 0, as > 0 and ag > 0 are defined respectively by (2.37), (2.49)
and (2.51).

(5) If (B6) holds, then forjeZi\Eo, as k1—+o0 and ko varies in a finite subset of Z.,

90, (k1, k) ~ azvy(ka)sea(j)az; ™1, (2.62)
where s, (j) > 0 and a7 > 0 are defined respectively by (2.37) and (2.53).

For k; = 0, this result is obtained as a straightforward consequence of Theorem 2.3
by using the Tauberian-like theorem due to Flajolet and Odlyzko [9], see Corollary VI.1
of [10]). To get this result for ks € Z, that varies in a finite subse of Z., it is sufficient to
prove it for any given k; € Z . For this we prove that for any j € Zi \ Epand ko € Z,
nl{r-ﬁl:loog(j’ (nakQ))/g(()? (TL, k2)) = Vl(kZ)a k2 € Z+7
by using a probabilistic representation of the coefficients v (k2), k2 € Z... The proof of
this result is given in Section 8.

2.6 Asymptotics of the Green function along directions of S}r

In this section, we present the asymptotics of the Green function g(j, (k1,k2))
as min{ky,k2} — oo and k/||k|>w where w, the direction, is an element of
$! ={(u1,u2)eRY : ui+u3=1}.

For each of the cases (B0)-(B6), we will introduce subsets Wy, W, and W, of S}r used
to define the partition of the set of directions in S-lv This is achieved by the definitions 3,
4, 5 and 6 in Section 2.6.2. A critical direction w.=(u,v.) in Sl+ will play a role in several
cases. As it will be seen this partition will determine a structure of the asymptotics
behavior of the Green function k—g(j, k).

2.6.1 Diffeomorphism between $! and Sy,

The sets S}r and Sos are defined by (2.1) and (2.14). Under Assumptions (A1), see for
instance Ney and Spitzer [27], the Laplace transform

(0, 8) = P(a, B) = P(e®, Py = Y p(k)etr ok, (2.63)
k=(k1,k2)€Z2

is strictly convex, the level set D {(a, )€R? : P(a, B)<1} is strictly convex and
compact, the gradient V,,, gﬁ(m B) does not vanishes on the boundary 0D of D, and the
function _ B

(OA,B) = Va,ﬁp(aaﬂ)/ﬂva:ﬁp(a, B)H (2.64)
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determines a diffeomorphism from 9D to the unit circle $'={(uy, us)€R? : u2+u=1}.
Since for z=e® and y=¢”, one has

8a]3(a,6) =20, P(z,y) and 85}5(a,ﬁ) = y0,P(z,y), (2.65)

for the set D defined by (2.7), it follows that the function

(a;,y) = wD(x,y) = (U’D(m?y)’vD(x?y))
def. 1
Va2 (0, P(x,y))? + y2(9,P(,y))

is a diffeomorphism from 0D to $' and, by the definition of Sy, from Sso to S}r. We
denote by w—(xp(w),yp(w)), resp. w—(ap(w),Bp(w)), the inverse mapping of the
function (2.66), resp. of (2.64).

Remark that, for wi;=(u1,v1) and wo=(us, vg)eSL, the inequalities u; <us and v >ws
are equivalent and, since the set D is strictly convex, ap(ur,v1)<ap(ug,vs), resp.
Bp(u1,v1)<Bp(ug,vs), if and only if u; <us, resp. vy >vs. Hence, using again (2.65) for
r=e® and y=c”, one gets a similar property for the diffeomorphism w(zp(w),yp(w)):

= (0. P(x,y), yO,P(z,y)) (2.66)

Lemma 2.5. Under Assumption (A1), for any wy=(u1,v1), wa=(uz,v2)€SL, then
SCD(Ul,Ul) < SCD(UQ,UQ) < up < Uy & U1 > Uy & yD(Ul,’Ul) > yD(u27'U2).
This elementary property of the diffeomorphism w—(xp(w), yp(w)) will be useful in the

next section.

2.6.2 Regions of directions

Definition 3. If (BO) holds, we introduce the vector w.=(u.,v.) € Si orthogonal to the

vector
(Inz™ —1n Xo(y™™),In Xo(y**)—Iny™™)
and we let
Wy = {w=(u,v) € S} : u>u.} (2.67)
Wy = {w=(u,v) € Si_ Cu < uet (2.68)
W = 0. (2.69)

Since in the case (B0), we have X5 (yq)>xz4 and Ys(z4)>yq4, such a vector w.=(u, v.) €
S}r exists, is clearly unique and has positive coordinates. The sets W, and W, are
therefore both non-empty: W is a part of S}r included in the half-plane

{w=(u,v)€ER? : vou>ucv} = {w=(u,v)€R? : (In(Xa(yq))—In(zq))u > (In(Ya(zq))—In(yq))v}
and contains the vector (1,0), and W is a part of S}r included in the half-plane
{w=(u,v) € R?: vou<ucv} = {w=(u,v) € R?: (In(Xa(yq))— In(zq))u < (In(Ya(zq))— In(yq))v}

and contains the vector (0, 1).

Definition 4. If(B1) holds, we take w.=(u., v.)=wp (x4, Y2(x4)) and define the regions
Wop, Wi and W, in the same way as in the case (B0).

In the case (B1), we have z,<z¥, ya<yp’ and (x4, Ya(xq))=(X2(zq), ya) S22, hence,
similarly to the case (B0), both coordinates of the vector w. are positive and the sets
of the regions W; and W, are non-empty: W is a part of S}r included in the half plane
{w=(u,v) € R? : ucu>v.v} containing the vector (1,0), and W, is a part of $1 included
in the half-plane {w=(u,v) € R?: u.u<v.v} containing the vector (0, 1).
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Definition 5. If (B2) holds, we define

Wo = {w=(u,v)€SL : up(Xa(ya), ya)<u<up(zq,Ya(z4))}, (2.70)
Wi = {w=(u,v)€S] : u>up(zq, Ya(za))}, (2.71)
Wo = {w=(u,v)€S} : u<up(X2(ya), ya)}- (2.72)

By Lemma 2.5, for w=(u,v)€S$}, the inequalities up(X2(yq),ya)<u<up(zq,Y2(zq))
are equivalent to the inequalities zp(u, v)<z4 and yp(u,v)<ys, and hence, the above
definition of the sets Wy, W; and W, is equivalent to

Wo = {wp(x,y) : (v,y) € Sa2, <4, y<ya},

Wy ={wp(z,y) : (z,y) € Sa2, z>24},

Wo = {wp(z,y) : (2,y) € Saa, y>ya}-
In the case (B2), we have Xs(yq)<zq<zh and Ya(xq)<ya<yp', hence the set {(z,y)ESa2 :
x<zq,y<yq} is non-empty, and consequently, the set of directions W, is also non-empty:
this a part of the set $! included in the intersection of the two half-planes {w =

(u,v)ER? : vp(Xa(ya), ya)u > up(X2(ya),va)v} and {w=(u,v) € R? : vp(xg, Ya(zg))u <
up (x4, Ya(zq))v}. Similar arguments show that in this case,

- the set of directions W, is empty if and only if z4=2%",
- ! Wy " if and only if y4=y7".
Definition 6. If either (B3) or (B4) holds we let W, = W, = () and we define W, by

L .
W — S1+ \ {(0,1)}, ?f (B3) holds (2.73)
st if (B4) holds.

Similarly, if either (B5) or (B6) holds we take W;=W,=0 and we define W, by

1 .
Wy = {S+ \{(1,0)}, if (B5) holds

(2.74)
1 if (B6) holds.

We will see that for any j€Z2 \Ey, the asymptotic of the Green function g(j, k) as
min{ky, ko }—+o0 with (ki1, k2)/[|(k1, ko) || 5weS?, is

- determined by the simple pole x4 of the function a—H;(z,0) when w € Wi;
- " Yd : y—H;(0,y) when w € Wy;
- similar to the asymptotic of the Green function of the homogeneous random walk
on Z? associated to the distribution z when weW,.
Twisted homogeneous random walks

To formulate convergence results when min{ky, ks}—+o0o and (kq,k2)/||(k1, k2)||—w,
for w € Wy, some quantities, also used in the asymptotics of the Green function of
the homogeneous random walk, are now introduced. See Ney and Spitzer [27] or
Theorem 25.15 in Woess [30].

Definition 7. For weS$’, we denote by (S¥(n)) the homogeneous random walk on 7>
with transition probabilities, for m, k=(ky, k2)€Z?,

P, (S*()=m-+k) = (zp(w))* (yp(w))*2 (k).
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The vector of first moments and the matrix of second moments of (S(*)(n)) are denoted
respectively by m(w)=(m; (w), mg(w)) and Q(w)=(Q; ; (w))?jzl: for i, j{1,2},

m;(w) = Z ki (zp(w))* (yp (w))* u(k),

kez?

Qi j(w) =Y kik; (xp(w)* (yp(w))* u(k).

kez?
The associated quadratic form at z€RR? is denoted by 2-Q(w)-z. For w=(u,v)eS$!, we
define wt=(—v, u).

We can now state our second set of asymptotic results. The proof of this theorem
is given in Section 9. Recall that here and throughout the paper, for k=(k;, k2)€Z?, we
denote wi=k/| k||

Theorem 2.6 (Asymptotics of Green Function along Directions of Si)- Under the
assumptions (A1)-(A3), for any j € Zi\EO, the following assertions hold:

i) If min{k,, ko }——+oc0, then, uniformly with respect to wy, in any compact subset of

Wi,
90 k) ~ b (g™ (Ya(za) T, (2.75)
where
-1
b1 = (¢1(za, Ya(za))—1) <(9yP(:E,y)|(I7y)_($d)Y2(wd)) %¢1($,Y1($)) > 0;
o (2.76)
ii) If min{ky, ko }—+oc0, then, uniformly with respect to wy, in any compact subset of
Wha,
9(j: k) ~ barea(5)(Xa(ya)) ™ 1y, ", (2.77)
where

d
by = (¢2(X2(ya),ya)—1) <3zp($’y)|(z,y)_(xz(yd),yd) @¢2(X1(y)7y)

—1
) )
Y=Ya

(2.78)

iii) If (BO) holds then, as min{ky, ks }—+o00 and wi—w.,
903 k) ~ Cra (a7 (Valwa) %71 + Cosna () (Xa(ya) M 1y 71 (2.79)
where b, >0 and by >0 are given respectively by (2.76) and (2.78).

iv) If (B3) and y4<y3" hold, then as min{ky, ks }—+oc0 and wr—(0, 1),

90k ~ sa() (gt b (Xalwa) M g k) v 2.80)
where by > 0 is given by (2.76) and

d

b = a(0n (20, ~1) 04 P(020) o n (X)) 00 Vi) X0 0) >0

(z,y)=(2d,ya)
2.8

dy
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v) If (B5) and zq4<z’" hold, then, as min{ki, k2 }—+o00 and wr—(1,0),
90 k) ~ (a7 (ke Va(ea) 2+ by 7Y) (282)
where by, > 0 is given by (2.78) and

d

b1 = aa(ea o)1) (0 P(o) 0n (0. V) S0 0 Vi) )

(z,y)=(za,ya)
> 0.
(2.83)

vi) if (B2) holds and min{k;, ks }—-+o0o, then, uniformly with respect to wy, in any
compact subset of W,

[[m(wi) |/ wic - Qwr)-wi;

g(],k) ~ %acD Wk ), YD (W (]) . (284)
(o tonunt )NV BTRT (o (we))F (yp (we) )

2.6.3 Missing asymptotics

With the definition of the regions of directions W,, W; and W,, the above theorem
provides the asymptotics of the Green function ¢(j, k) as min{k;, k2 } —+o0 for all possible
directions w except the following singular cases:

- (B1) holds and w=w.=wp (z**, Yo(x**));

- (B2) holds and either w=wp (z**, Y2(z**)) or w=wp(Xa2(y**), y**);
- (B3) and y4=y**=y5" hold and w=(0, 1);

- (B5) and z4=z**=z%" hold and w = (1,0).

We believe that obtaining these missing asymptotics requires an additional significant,
non-trivial, technical effort. It should be noted that for random walks, the asymptotics
for these singular directions have not been derived, even in the case of nearest neighbor
jumps. In Kurkova and Malyshev [22] such asymptotic results are obtained but only along
lines of Z2 with a rational direction. For reflected Brownian motions in R, Franceschi
et al. in their recent paper [13] proves such a result in the case analogous to (B2) for
the directions w=wp (z**, Y2(z**)) and w=wp(Xa2(y**),y**). Their results show that the
asymptotic behavior for these directions is expressed as the competition of two terms:
one determined by a simple pole and another given by a saddle point, the slowest of them
determines the exact asymptotics. We believe that in our setting a similar phenomenon
should also hold. However, contrary to the case of reflected Brownian motions in ]Ri, the
roots of the kernel equation Q(x,y)=0 are not explicitly known in our case and hence,
proving an analogous result seems to be quite challenging.

Remarks on Asymptotic Expressions.

To the best of our knowledge, the asymptotic behaviors iv) and v) have not been
established in the literature, even in the case of nearest neighbor jumps. Note that the
asymptotics of the cases iii), iv) and v) of Theorem 2.6 are expressed as a sum of two
terms. We now discuss the implications of these asymptotic results.
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Case iii) The asymptotics (2.79) reflect in fact a competition between the geometric decay
determined by the simple pole z4=x** of the function x+H;(z, 0) and the geometric
decay determined by the simple pole y,=y** of the function y — H;(0,y). In the
case when (B0) holds and if (k,,)=(k1,,, k2,,,) is a sequence of points of Z2 going to
infinity such that &, /|| k.|| —w., since (xq/X2(ya))*=(ya/Y2(xq))" and Xa(yq)>x4,
Theorem 2.6 shows in fact that for j€Z? \ E,

9, kn) ~ Com (g™~ (Valwa)) 271 it lim (byu—ho,ntte /o) = +o00

—k2n—1

90 k) ~ Cosea(5)(Xa(ya) ™~y iF T (g — ko ntio/ve ) = —o0

ik ~ (Con)+Ca (L2 ) ) ™ ) oo 289

if li?(kl,n—kg,nuc/vc) —seR.

The convergence (2.85) exhibits an interesting phenomenon.

(1) If u./v.€R\Q, then for any c€R, there is a sequence (k,)=(k1,,ko,n)EZ
going to infinity such that lim,, k,,/||k, || —w., for which o=1im,, (k1 ,,—k2 nuc/vc)
and relation (2.85) holds.

(2) The rational case, i.e; when u./v.=p/qeQ for some p, ¢gcIN*, relation (2.85)
holds if and only if for n large enough, gk ,,—k2 ,p is constant and, therefore,
0€Q is of the form o=p/q for some peZ. An analogous result has been
established in Ignatiouk et al. [19].

Case iv) The asymptotics (2.80) reflect a competition between the geometric decay
determined by the simple pole z4=x** of the function x+H;(z, 0) and the geometric
decay multiplied by a factor ko determined by the pole y;=Ys(x4)=y** of the second
order of the function y—H, (0, y). If (B3) and yq<y}" hold and (k,)=(k1 n, k2n) is a
sequence of points of Z2 going to infinity such that ||k, ||—-+oc and &, /||k.|—(0,1),
Theorem 2.4 shows that for j€Z2 \ Ey,

9 k) ~ s (§)Crag Ty e if Tim b ph" " /(Xa (ya)) 7 =0;

90 k) ~ 501 (5)Ca(Xa2(ya)) kg 2 if lim ks ) (Xa(ya)))Ftm =-+00;

9, k) ~ 50 (j) (C1 + 0Coy; V) ™y 2™t if lim ko mait™ /(Xa(ya)))*tm=o>0.

Case v) The asymptotic (2.82) reflects a competition between the geometric decay
multiplied by a factor k; determined by the pole z4=X5(yqs)=2"* of the second
order of the function x — H,;(x,0) and the geometric decay determined by the
simple pole y;=y** of the function y—H;(0,y).

Similar asymptotics hold, by exchanging the roles of x and y in this case when
xa<xy, ||kn|| =400 and k,/ ||k, [ —(1,0).

Relations with Homogeneous Random Walks.

The asymptotic relation (2.84) is similar to the exact asymptotics of the Green function of
the homogeneous random walk (S(n)) in Z?, see Ney and Spitzer [27] and Theorem 25.15
of Woess [30]. The only difference in fact is that in the asymptotic obtained by Ney and
Spitzer [27], the function j=(j1, j1)— (zp(wk))’* (yp(wr))r = exp(ap(wy) i1 + Bp(wk)ja),
which is harmonic for the homogeneous random walk, is replaced in our case by the
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function j > (s, (wy).yp (we)) (7), Which is harmonic for the killed random walk (Z,(n)).
Analogous results have been obtained in Ignatiouk [18] for the Green functions of a
homogeneous random walk in Z killed outside of an open cone and for the asymptotics
along the interior directions of the cone.

Outline of the paper
Our paper is organized as follows:
— In Section 3, our results are used to investigate the Martin compactification of Zi

of the killed Markov chain (Z,,(n)) and also of the original random walk (Z(n))
when it is transient.

- Section 4 contains the proof of preliminary results. It is shown that the points z7},

*

x*, o, oy, yh, v, ¥, ypt and the functions Yy, Ys @ [2h, 25— [yp, y5] and X;,
Xo : [y, yp]—|2h, 257 are well defined, and their firs properties are obtained.

- Proposition 2.2 is proved in Section 5.
- Sections 6-9 are respectively devoted to the proofs of Theorems 2.1 - 2.6.

- In Section A, the conditions (B0)-(B7) are compared with the conditions of positive
recurrence and transience for the random walk (Z(n));

3 Application to the Martin boundary

When the Markov chain (Z(n)) is transient, for j, k€Z2, its Green function

is related to the Green function ¢(j, k) of the killed Markov chain at 0 in the following
way,
G(j, k) = 9(j, k) + G(4,0)9(0, k), for j#O0,
and
G(0,k) = G(0,0)g(0, k).
The Martin kernels have therefore a simple relation

G, k) 1 g(j,k) +G(j,0)
G(0,k)  G(0,0) g(0,k)  G(0,0)

9(j, k)
g(0, k)

and the Martin compactification of Z?% for the killed Markov chain (Z(n)) at 0 is
homeomorphic to the Martin compactification of the original random walk (Z(n)).

In this section, our asymptotic results, Theorems 2.4 and 2.6, are used to obtain
the asymptotics of the Martin kernel of the killed Markov chain (Z(n)) at 0. We do not
assume that the original random walk (Z(n)) is positive recurrent or transient. The
Martin boundary of (g(j, k)) is in fact almost completely described, the four asymptotic
cases mentioned in Section 2.6.3 excepted. Throughout this section, we will assume that
the conditions (A1)-(A3) are satisfied.

Since by Lemma 2.2, ¢(j, k) = 0, for any j € Ey, and k € Z2 \ Ey, to investigate the
Martin boundary of the killed random walk, it is sufficient to consider j € Zi\EO.
Proposition 3.1. Suppose that either (B0O) or (B1l) holds, and let the vector
wc:(uc,vc)eS}r be the critical direction defined in Section 2.6.2 and (k,)=(k1,k2,n)
be a sequence of Z?r whose norm goes to infinity. Then for any jeZi\Eo, the following
assertions hold.

= Po(70 = +00) + Pj(19 < +00), (3.1)
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(1) If liminf, kq »/||kn||>u. then

i g(]vkn) _ %1(.7)
n—+too g(0,ky)  2(0)’

(3.2)

where 57 is the function defined by relation (2.35).
(2) If limsup,, k1, /| kn||<u. then

. g(J7kn) _ %2(.7)
ngrfoo g(O,k‘n) n %2(0)7 (33)

where s is the function defined by relation (2.37).
(3) If (BO) holds and lim,, k,, /|| k, ||=w., then

oy U k) _ bisaa ()AL Hbosea ()
n—+00 g(O7kn) b1%1(O))\Iklil—FbQ%Q(O))\;kZil7

with A=z4/X2(yq) and Ae=yq/Ya(z4) and b1>0, resp. be>0, is given by
relation (2.76), resp. relation (2.78).

When either (B0O) or (B1) holds, Proposition 3.1 implies that the minimal Martin
boundary 8mZi, see Proposition 24.4 of [30], contains two points & and &, and any
sequence of points (k,,) converging to infinity and such that lim inf,, kin) /1 ||>u, (resp.
limsup,, k™ /||k™||<u.) converges in the Martin compactification of Z2 to ¢ (resp. to
§2).

When (B0O) holds, with this result one gets that the minimal Martin boundary of
Zi relative for the killed Markov chain at 0 contains exactly two points, and with the
same arguments as in Theorem 3 of [19], we obtain that the full Martin boundary is
homeomorphic to Z U {+oc}, resp. RU {£o0}, if u./v.€Q, resp. u./v.¢Q. By the Poisson-
Martin representation theorem, in this case, any non-negative harmonic function for the
killed Markov chain is therefore of the form 6, s; +6053¢; with for some 6,, 6,€[0, +o0].

Note that the full Martin boundary is not obtained in the case (B1) since the
asymptotics of the Green function ¢(j, k) along the direction w. are missing. See
Section 2.6.3.

For the region (B2) we have the following proposition.

Proposition 3.2. Suppose that (B2) holds, and let (k,)=(k1,n, k2») be a sequence of Z2
whose norm goes to infinity. Then for any jeZ \Ep, the following assertions hold.

(1) If limy, ky/||kn|| = w € W, then

fi U En) _ #apw).upw) () (3.4)

n—-+oo (0, k) %(ID(W)WD(W))(O)

where . is the function defined by (2.39).

(2) If z4=z3" and the sequence (kz,,) is bounded, then

gk [)/20) i 61, Vi) < 1, a5
n=too g(0, k) #1(§)/21(0) if 1 (23", Ya(2p)) = 1.
where 7z is the function defined by (2.36).
(3) If o** <z} and liminf, ki ./ ||k, ||>up(zq, Y2(24)), then
i U ka) _ (i)
n—+oo g(0,k,)  (0)
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(4) if y**=y3* and the sequence (k; ,,) is bounded, then

g kn)
1
"HHEOO 9(07 kn)

302(j)/72(0) 3 6 (X (yi), yir) = 1 (3.6)

_ {%m/;@(m if 62 (X1 (y5), v5") < 1,
where 3z is the function defined by (2.38).
(5) If y*™*<y3" and liminf, ko .,/ ||kn||>vp (24, Yo(z4) then,

ey 96 En) _ ea(d)
n—+oo g(0,kp)  s2(0)°

When (B2) holds, this result proves that for any direction weﬂ?al+ in the closure W,
of W) there is a point £(w) in the Martin boundary of the killed Markov chain, and that
if (k) is a sequence of points of Zi whose norm converges to infinity then, for the
convergence in the Martin compactification,

&(w) for weW, if k,, /| k|| —w,
nll}r_ir_loo kn = &(wp(xa, Ya(zq))) if Uminf, k1, /||kn]>up (24, Ya(za)),
§(wp(X2(va),ya)) if limsup, k1n/|[knll<up(X2(ya), ya)-

As explained before, in the case (B2), also due to the missing asymptotics for the singular
directions wp (x4, Y2(z4)) and wp(X2(ya), ya), the full Martin boundary is not completely
determined. We conjecture that in this case it is homeomorphic to W.
Proposition 3.3. Suppose that either (B3) and y;<yp" hold or (B4) holds. Then for any
JEZA\E,,

9(j. k) _ ()

—¥o0 g(0,k)  a(0)

If either (B3) and y4<yp" hold or (B4) holds, the full Martin boundary of Zi of the
killed Markov chain is therefore a single point, and, up to a multiplicative constant, the
function s¢; is the unique non-negative harmonic function.

When the original random walk (Z(n)) is transient and the measures pg, 11 and po
are stochastic, since the Martin compactification of Z2 of the Markov chain (Z(n)) is
homeomorphic to the Martin compactification of Zi of the killed Markov chain, we have
the following corollary.

Corollary 3.4. If the measures pg, i1 and p9 are stochastic and the Markov chain (Z(n))
is transient, then under the hypotheses of Proposition 3.3, for any j€Z2,

[kl =+o0 G(0, k)

=1. (3.7)

Proof. Indeed, in this case, using (3.1), Proposition 3.3 and Lemma 2.2, since the set Fj
does not contain the origin, one gets

G, k)

Ikl 00 G(O, k) o(10 = +00)501(j) + Pj(10 < +00), Vj€Z3,

and consequently, by the Poisson-Martin representation theorem, up to a multiplicative
constant, for any harmonic function s for the Markov chain (Z(n)), one has

5(j)/#(0) = Po(19 = +00)501(§) + Pj(10 < +00), Vj € Z7.
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Since in the case when the measures i, 11 and po are stochastic, the constants functions
are harmonic for (Z(n)), from this it follows that

Po(79 = +00)341(§) + Pj(10 < +00) =1, Vj € Z2, (3.8)

and (3.7) holds.
Remark that the identity (3.8) can also be obtained in a straightforward way by using
Proposition A.3 of Section A. O

By symmetry, similar result can be obtained with sz, instead of s if either (B5) and
zq = x5 hold or (B6) holds.

We conclude with the case when either (B3) holds with y;=y7" or (B5) holds with
T4=Tp .
Proposition 3.5. Suppose that (B3) holds with y,=y5" and let (k,) be a sequence of
points of Zi whose norm converges to infinity. Then for any j € Zi\EO, the convergence

iy 9U: k) _ ()

n—+oo g(0,k,)  21(0)

holds in any of the two following cases:
- when liminf,, k1 ,,/|/kn]>0;
- when the sequence (k1 ,,) is bounded and lim,, k3 ,, = +0c0.

When (B3) holds with yq=y7" there is therefore a point {; in the Martin boundary of
Zi of the killed Markov chain, such that any sequence of points of Zi satisfying the
conditions of Proposition 3.5 converges in the Martin compactification to &.

Similar result with the function sz instead of sr; can be obtained when (B5) holds
with z4=27".

When (B3) holds with y4=y7", resp. (B5) holds with z,=27%", the asymptotics of
the Green function ¢(j, k) when ||k||—+oc0 and k;/||k||—0, resp. when ||k||—+oco0 and
k2/]/k||—0 are not known. See Section 2.6.3. For this reason, the full Martin boundary is
not determined in this case. We conjecture it is a single point.

4 Preliminary results

In the following statement, we investigate the set D defined by (2.7): it is proved
that the line segments [z%, 25, [yp, y5'] and the functions Y1,Y2 : [25, 2] — [yp, 5]
and X1, Xs : [yb,y5] — [25, 23] are well defined, and the first useful for our purpose
properties of these functions are obtained.

Lemma 4.1. Under the hypotheses (A1), the line segments [z}, x| and [y}, y5'| and the
functions Y1,Ys : [2p, 23] = [yp,yp] and X1, Xs : [y, ypf] — [zp, 23] are well defined
and the following assertions hold:

7

1) For any & € [z%,23], Y1(2) and Y2(Z) are the only real positive solutions of the
equation P(#,y) =1

Yi(d) < Ya(#), 0,P(2,Y1(£)) <0 and 9,P(&,Ya(2)) <0 if ap<i <l

and
Vi(2) = Ya(2#) and 9,P(#,Yi(2)) =0 if &€ {zh a5
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2) For any § € [yp,y5], X1(9) and Xo(§) are the only real positive solutions of the
equation P(x,j) =1,

X1(9) < X2(9), 0.P(X1(9),9) <0 and 0,P(X2(3),9) Iif yp <§<yp,

and
X1(9) = X2(9) and 0.P(X1(9),9) =0 if §<{yp,yp'}.

3) The four points (z%,Y1(2%)), (23, Y1(2F)), (X1(yp),yp) and (X1 (y}),yp") are two
by two distinct and moreover Yi(z%),Y1(2%) €lyp, vy and X1(yp), X1(ys) €
Jo, o .

4) The function X1 : [y5, Yi(a}h)|—= [z, X1(yp)] is strictly decreasing and its inverse is
Vi [op, Xa(yp)l=lyp, Yi(ah)]-

5) The function X; : [Y1(2}), y5|—[xh, X1(yE")] is strictly increasing and its inverse is
Yo [op, Xa(yp) = Yi(eh), yp]-

6) The function Xs : [yp, Y1(zp|—[X1(yp), x| is strictly increasing and its inverse is
Yi: [Xi(yp) 25 = lyp, i(zF].

7) The function X5 : [Y1(z3), y5'|=[X1(y5), 3] strictly decreasing and its inverse is
Yo [Xa(yp), ap =M (2F), yp-

Proof. To prove this lemma we notice that under the hypotheses (A1) the jump generating
function P : R? — R, defined by (2.63) is strictly convex and finite in a neighborhood
of the set D = {(a,8) € R?* : P(a, 3) < 1}. The set D is therefore strictly convex
and compact (see for instance, Spitzer [29]) and because of the assumption (A1) (iii),
it has a non-empty interior. Since the mapping («, B)@(m,y):(e“,eﬁ) determines a

homeomorphism from R? to 0, +oo[? and maps the set D to the set D, one gets that
Th = P, p = P,y = PP and y} = ’F where

[op,ap]={aeR: inf Pla,f) <1} [8p. B = {8 €R: inf Pla,f) <1}
Our lemma holds therefore with Y () = e#1(n%) v5(3) = f2(08), X, () = e*:(n¥) and
X(9) = e*2(n9) where for & € [ah, a¥], f1(a) < B2(@) are the only real solutions of the

equation P(d, B) =1 and for B € B, 5] < a1(B) and as(J3) are the only real solutions
of the equation P(q, 8) = 1. O

In the following lemma, we investigate the sets D N Dy and D N Ds. It is proved that
the line segments [z*,2**] and [y*, y**| are well defined. With this result, we will be able
to get the first useful for our purpose properties of the functions x — ¢;(z, Y1(x)) and
y = $2(X1(y), y)-

Lemma 4.2. Under the hypotheses (A1) and (A3), there exist x*, x** €]0, +oo[ such that
x* < z** and

[z, 2""] = {z €]0,+o0[: (z,y) € D1 N D for some y > 0}.
Moreover, for any « € [¢*,z**], there exists Y5(z) > Y (z) such that
{y>0: (w.y) € Dy N D} = [Vi(a), Vala)),
the points Y;(x) and }72(:10) are the only real positive solutions of the equation
max{P(z,y), ¢1(z,y)} = 1, (4.1)
and Y;(z) < Ya(z) if and only if z* < x < z**.
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Proof. To prove this lemma, we consider the jump generating function P defined by
(2.63), the jump generating function ¢; : R? — R, defined for (o, 8) € R?, by

dr(a,B)= Y exp(aks+ Bka)m (k)

k=(k1,k2)EZ2

and the sets D = {(a,8) € R? : P(o, 8) < 1} and D; = {(o, 8) € R? : ¢1(e, B) < 1}
Recall that for z = e and y = €,

P(Oé,ﬁ) = P(l‘,y), d)l(avﬁ) = ¢1($7y)a

and that the mapping («a, 8) = (7,7y) = (e®, ¢”) determines a homeomorphism from R? to
10, +00[? and maps the set D N D; to the set D N D;. Hence, to prove our lemma, it is
sufficient to show that under our assumptions, the following assertions hold

- there exist a*, a** € R such that a* < o™* and

[a*,a*] = {a € R: (a,) € D, N D for some 3 € R}.

- for any a € [o*, a**], there exists B(ar) > InY;(e®) such that
{BER : (o, ) € Dy N D} = [InY;(e), B2(a)],

the points §;(a) = InY;(e*) and 35(«) are the only real positive solutions of the
equation

max{P(a, 8), b1 (e, B)} = 1, 4.2)
and InY; (e®) < Bz(a) if and only if o* < o < o**.

For this we remark that the set D N D, is compact convex and has a non empty interior
because

- the function gz~51 is convex and consequently also the set D; is also convex;
— the set D is convex and compact (see the proof of Lemma 4.1);

- by Assumption (A3)(iii), the set D N D; has a non-empty interior, and consequently,
since the mapping («, 8) — (z,y) = (e%,e?) determines a homeomorphism from R?
to ]0, +oo[? and maps the set D1 N D to the set D; N D, the set D; N D has also a
non-empty interior.

From this, it follows that the following assertions hold:

- there exist a* > 0 and a** > a* such that
[a*;a™]={a€eR : (a,f) € Dy N D for some 3 € R},
- for any a € [o*, a**], there exists 3;(a), f2(a) €]0, +-00[ such that 3; () < f2(a),

[B1(c0), B2(@)] = {B € R: (a, B) € DN D1},

and
max{¢1 (o, B1()), P(av, B ()} = max{1 (e, Ba(a)), Pa, Ba(c))} =1,

- for any « €]a*, a**|

B1(a) < Ba(a).
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Hence to complete our proof, it is sufficient to show that for any a € [a*,a**], the
following relations hold:

Bi(a) = InY;(e®), (4.3)
max{P(c, 8),1(a, /)y <1 if  Bi(a) < B < Ba(a), (4.4)

and B .
of <a<a™ if 51( ) < 62( ) (4.5)

Remark moreover that if (4.4) holds, then any 3 such that 51( )< B < /3’2( ), the point
(c, B) belongs to the interior of the set DN D, and consequently, (4.5) also holds. Hence,
to complete our proof, it is sufficient to prove that for any a € [o*, a**], (4.3) and (4.4)
hold. To get these relations, we remark that by Lemma 4.1 and since DnND; c D, one
has

[0, 0] Cc{aeR:(a,8) e D forsome feR}=[nzh,Inz}]

and that for any « € [a*, a**],

[Bi(a), B2(a)] C {B € R: (a,8) € D} = [InYi(e), In Ya(e®)].

Since because of Assumption (A3), the function g — QNS (o, B) is finite and strictly
increasing in a neighborhood of the line segment [0,1nY>(e“)], one gets therefore that
for any a € [a*,a**] and 3 < Ba(a),

él(aaﬂ) < (51(&,52(04)) <1

This implies that for any o € [a*, a**], (4.3) holds. Moreover, since by Lemma 4.1,
P(a,B) < 1for any 8 €]InYi(e?),InYs(e”)[, from the last relation it follows that for any
B €]lnYi(e®), f2(a)[, (4.4) also holds. O

As a consequence of Lemma 4.2 we obtain
Corollary 4.1. Under the assumptions (A1) and (A3), for any x € [z}, z}],
(i) z € [z*,z**] if and only if ¢ (x, Y1(z)) < 1;
(i) ¢1(z,Yi(x)) <lifz* <z < x™*
(i) ¢y (2, Vy(2*)) = Lif 2™ < 2%,
(iv) ¢1(z*, Y1(z*)) =1if z* > a%.
Proof. Indeed, since P(z,Yi(z)) = 1 for any = € [z}, 2], the first assertion of this
corollary follows from Lemma 4.2.

To get (ii), we recall that by Lemma 4.2, for any 2* < x < 2™ one has Yi(z) < Ya(z)
and max{¢:(z,Ya(z)), P(z,Ya(z))} = 1. Since under the hypotheses (A3), for any
x € [z*, P,x%y], the function y — ¢;(x,y) is finite and strictly increasing n a neighborhood
of the line segment [0,1nY>(e®)], from this it follows that ¢;(x,Y7(z)) < 1 whenever

x* < x < xz**. The assertion (ii) is therefore also proved.
Suppose now that z** < z%". Then by the first assertion of our corollary,

p1(x,Yi(z)) > 1 if 2™ <z <zF, (4.6)
and by the second assertion,
o1(x,Y1(z) <1 if 2" <z <a™. (4.7)

Since the function ¢; is continuous in a neighborhood of the set D, the function
Y; is continuous on [z}, 23] and (z,Y1(z)) € D for any z € [z}, 2%, the function
x — ¢1(x,Y1(z)) is therefore continuous on [z}, 23], and consequently, relations (4.6)
and (4.7) prove that ¢, (z**, Y1 (2**)) = 1. The assertion (iii) is therefore also proved. The
proof of the assertion (iv) is quite similar. O
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5 The classification in eight regions

This section is devoted to the proof of Proposition 2.2 establishing our classification
into eight regions in the set of parameters of the random walk (Z(n)).

5.1 The main idea of the proof

Remark first of all that the cases (B0)-(B7) have a simple geometrical interpretation:
if we denote by [(x,%), (Z,7)] the line segment in R? with the end-points at (z,y) and
(Z,9), then by Lemma 5.1 below, for any = € [}, 2} and y € [y}, y}'], one and only one
of the following assertions holds:

- the line segments [(z,Yi(x)), (z,Y2(z))] and [(X1(y),y), (X2(y),y)] have the
common point (z,y) € D,

- these line segments are disjoint and (z,y) € D.
The case (B0) occurs when the line segments

have the common point (z**,y**) in the interior of the set D. The cases (B1), (B3),
(B5) and (B7) occur when these line segments have the common point (z**, y**) on the
boundary of the set D:

Ss5 in the case (B1),
S12  in the case (B3),
Sy1  in the case (B5),
Si11  in the case (B7).

(x**,y**) c

The cases (B2), (B4) and (B6) occur when the line segments (5.1) are disjoint and
(x**,y**) ¢ D. The nearest to (z**, y**) vertices of these line segments belong to Sss in
the case (B2), to S; in the case (B4) and to Sp; in the case (B6).

The main idea of our proof is the following:
First, we show that the point (z**, y**) either belongs to each of the line segments

or does not belong to any of them. With this result we describe all possible cases:

@) Xi(y) <z < Xo(y™) and Yi(z™) < y** < Ya(a™)
(b) Xi(y**) < 2** = Xp(y*) and Yi(a™) < y** = Ya(2™)

() 2 > Xo(y™) and  y** > Ya(z**)

(d) T — Xl(y**) and Yl(x**) < y** _ }/'2(1,**)

(e) o < X1(y™) and  y** > Ya(z**) (5.3)
(f) X1(y**) <t = X2(y**) and y** — Yl(a:**)

(@) ™ > Xo(y™) and  y* <Yi(z™)

(h) e =X1(y™) and y* =Yi(z™)

(i) e < Xi(y™) and y* <Yi(z™)

Next, using (2.10), we prove that the cases (B0)-(B7) correspond respectively to the
cases (a)-(h), and the case i) never holds.
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5.2 Preliminary results for the proof of Proposition 2.2
We begin our proof with the following preliminary results.

Lemma 5.1. Under the hypotheses (A1), for any « € [z}, 2% and y € [y}, y5], the line
segments [(z,Y1(x)), (z,Ya(x))] and [(X1(y),v), (X2(y),y)] are disjoint if and only if the
point (x,y) does not belong to the set D.

Proof. Indeed, by Lemma 4.1, for any z € [z}, 23] and y € [y}h,y5"], the line segment
[(z,Y1(2)), (=, Ya(z))] is the set of all points (z',y’) € D with 2’ = z, and similarly the line
segment [(X1(y),y), (X2(y),y)] is the set of all points (z',y') € D with ¢ = y. Hence, if
(z,y) € D then the both line segments [(z,Y1(z)), (z, Y2(z))] and [(X1(y),v), (X2(v),y)]
contain the point (z,y). Conversely, if these line segments are not disjoint, then the point
(z,y) belongs to each of them, and consequently (z,y) € D. O

Since for any z € [z}, 23] and y € [y5,y5'], the point (z,y) is the only point that
could belong to the both line segments [(z, Y1 (2)), (z, Y2(x))] and [(X1(y),v), (X2(y), y)],
the above lemma implies the following statement.

Corollary 5.1. Under the hypotheses (Al), for any = € [z%,25] and y € [yh,y5], if
the point (z,y) does not belong to some of the line segments [(z,Y;(z)), (z, Y2(z))] or
[(X1(y),v), (X2(y),y)] then (x,y) neither belongs to any of them.

By lemma 4.1, for any = € [z},z}], the points Yi(z) and (Y2(z) are the only
real and positive solutions of the equation P(x,y) = 1, and that P(x,y) < 1 for any
y €]Y1(z), Ya(x)[. Hence, for any x € [z}, 23], each of the points (z,Y1(x)) and (x, Ya(z))
belongs to the boundary of the set D, and for any y €]Y;(z), Y2(z)[, the point (z, y) belongs
to the interior D of D. Similarly, for any y € [y5, vy, each of the points (X;(y),y) and
(X2(y),y) belongs to the boundary of D and for any = €]X;(y), X2(y)[, the point (z,y)
belongs to D. Using Corollary 5.1 it follows the following useful for our purpose property
of the set D:

Corollary 5.2. Under the hypotheses (A1), for any (z,y) € D, one and only one of the
following assertions holds

- the point (z,y) belongs to the interior of the set D and in this case, X;(y) < z <
Xo(y) and Yy (z) <y < Ya(x);

- the point (z,y) belongs to the boundary of D and in this case, the point
(z,y) is an end point of each of the line segments [(z,Y1(x)), (z,Y2(x))] and

[(X1(),9), (Xa(y), y)]-
By Lemma 4.1, for any = € [z}, 23], we have
Yi(x) =Ya(x) ifand onlyif z € {zh, 23
and, for any y € [yp, 5],
Xi(y) = Xa(y) ifandonlyif y € {yp,yr},
and, the four points (2}, Yi(2})), (25, Yi(2})), (X1(yp),yp) and (Xa2(yy"), y5s*) are two
by two distinct. Hence, the case with z = X;(y) = X5(y) and y = Yi(x) = Ya(z) is not

possible, and as a straightforward consequence of Corollary 5.1 and Corollary 5.2 one
gets
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Corollary 5.3. Under the hypotheses (A1), for any = € [z}%,2%] and y € [yp, y}3'], one
and only one of the following cases holds:

(a) Xi(y) <z < Xso(y) and Yi(x) <y < Ys(w)
(b) z=Xs(y)>Xi(y) and y=Yz(x)>Y(x)

(c) x> Xo(y) and y > Ya(z)

(d) r=X1(y) and Yi(x) <y=Ya(z)

(e) x< X1(y) and y > Ys(z) (5.4)
® Xi(y) <z =X3(y) and y="Yi(z)

(9) > X3(y) and y <Yi(z)

(h) z=Xi(y) and y=Yi(z)

(i) < Xi(y) and y<Yi(z)

In the case (a) of this statement, the point (z,y) belongs to the interior of the set D,
in each of the cases (b), (d), (f) and (h), the point (z,y) belongs to the boundary of D,
and in each of the cases (c), (e), (g) and (i), the point (z,y) does not belong to the set D.

When applied with x = z** and y = y**, this statement proves that under the
hypotheses (A1), one of the assertions (a)-(i) of (5.3) holds.

The following statement will be used to investigate the position of the nearest to
(x**,y**) vertices of the line segments (5.2) when the point (z**, y**) does not belong to
the interior of D.

Lemma 5.2. Under the hypotheses (Al), for any = € [z},23] and y € [y}, y}’], the
following assertions hold:

1) Ifr < X4 (y) and Ya(x) < y, then (x,Y3(x)), (X1(y),y) € Si2.

2) Ify < Yi(z) and X»(y) < z, then (X2(y),y), (z,Y1(x)) € Sa1.

3) Ifx > X5(y) and y > Xo(z) then (z,Ya(x)), (X2(y),y) € Saz.

4) If x < X;1(y) and y < Yi(z) then (z,Y1(z)), (X1(y),y) € S11.

Proof. Suppose that z € [z}, z5] and y € [y5,y5] and let z < X;(y) and Y2(x) < y. Then
by Corollary 5.3, either < X;(y) and Y3(z) < y, or x = X;(y) and Yz(z) = y. In the
second case, i.e when z = X;(y) and Y2(x) = y, we have (z,Ya2(z)) = (X1(y),y) and
consequently, by the definition of Sy,

(z, Ya(2)) = (X1(y),y) € Sia.

Consider now the case when x < X;(y) and Y2(x) < y. By the definition of the curves
(2.11)~(2.14), we have

(.’L’,Yé(x)) € S12 U832 and (Xl(y),y) € 811 USe.

If we suppose that (z,Yz(z)) € Si, then we will get Ya(z) € [Vi(z}),y}p] and
consequently, since Y3(z) < y < y3¥, we will have also y € [Yi(z}),y5]. Since the
function Y5 is strictly decreasing on [Y1(23), y}5'] and since y > Y5(x), it follows that

Xo(z) < Xoo0Ys(x) ==z (5.5)

where the last relation holds because by Lemma 4.1, the function X5 : [V1(z%), y5] —
[Xo(ypr), x5 is inverse to the function Y2 : [Xo(y5), 23] — [Ya(zd),yp]. Since
Xi1(y) < Xa(y), (5.5) contradicts the inequality z < X;(y) and consequently, when
z < X1(y) and Ya(z) < y, the point (z, Y2(z)) belongs to S12. Similar arguments show
that in this case, the point (X (y), y) also belongs to S;2. The first assertion of Lemma5.2
is therefore proved. The proof of the assertions 2)-4) is quite similar. O

To investigate the cases (d) and (e) we will need the following preliminary result.
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Lemma 5.3. If the conditions (A1)-(A3) are satisfied and (z**,Y3(z**)) € S12, then
Yi(z™) < Yo(2**) and 1< Ya(z™). (5.6)

Proof. Indeed, under the hypotheses of this lemma, with the definition of S15 and using
(2.9), one gets
xp <zt <™ < Xy (yp) < op. (5.7)

ok

Hence, in this case, =** # z} and z** # z}°, and consequently, by Lemma 4.1,
Y1(z**) < Ya(z**). The first relation of (5.6) is therefore proved. To get the second
relation of (5.6), we recall that by Lemma 4.1, the function Y5 is strictly increasing on the
line segment [z}, X1 (y5")], and we remark that by(5.7) and (2.10) the following relations
hold:

p <1 <™ < X1 (yp).

Hence, Y>2(1) < Yo(2**) and moreover,
Y2(1) < Ya(z™*) whenever 1 < z**. (5.8)
Remark now that, with the definition of Y;(1) and Y5(1) and since P(1,1) = 1, we have
either Y1(1)=1<Y3(1) or Yi(1) <1=Y5(1). (5.9)
With these relations and using (5.8), one gets
1 <Y3(x™) whenever 1 <a™.
Now, to complete the proof of our lemma it is sufficient to show that
1 <Y2(1) whenever 1=uz"".
Suppose that £** = 1. Then from the first relation of (5.6) one gets
Yi(1) < Ya(1), (5.10)
and by Corollary 4.1 and using (5.7), we obtain
$(1,Yi(1) = L.

Since the function y — ¢(1,y) is strictly increasing, from the last relation and (5.10) it
follows that ¢;(1,Y2(1)) > 1, and since under our hypotheses, ¢1(1,1) < 1, this proves
that Y2(1) # 1. Hence, using again (5.10), we conclude that

Yao(z™) =Ye(1) > Y1(1) = 1.
Lemma 5.3 is therefore proved. O

To investigate the cases (h) and i) the following lemma will be used.

Lemma 5.4. Suppose that the condition (A1) is satisfied and let x € [z}, 23], vy € [y, y}']
and (2',y’) € D be such that

@ <r<Xi(y) and y <y<Yi(o). (5.11)
Then

¥=r=X(y) and y =y=Yi(z). (5.12)
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Proof. Indeed, suppose that the conditions of our lemma are satisfied and let (5.11)
holds. Then according to the definition of the line segments [z}, 23] and [y}, y5], we
have 5 < 2/ < 2% and yp < ¥ < y}', and by Lemma 5.2, the points (z,Y7(z)) and
(X1(y),y) belong to the set S1;. Using the definition of Sy, it follows that

p <2’ <z <Xi(yp) and yp <y <y<Yi(ah). (5.13)

Since by Lemma 4.1, the function Y; is decreasing on the line segment [z}, X1(y5)] and
the function X, is decreasing on the line segment [y}, Y1(2%)], relations (5.13) imply
that Y1 (2') > Y1(x) and X;(y') > X:(y), and consequently, using (5.11) one gets

Y <y <Yi(z) <Yi(2)) and 2’ <z < Xi(y) < X1(y). (5.14)

Under the hypotheses of our lemma, (z',3) € D and by Corollary 5.1 and the definition
of the line segments [X;(y'), X2(y')] and [Y1(z'), Y2(z')], we have

X1(y) <2’ < Xo(y') and Yi(2') <y < Ya(x').

When combined with (5.14) these relations prove (5.12). O

5.3 Proof of Proposition 2.2

Now we are ready to complete the proof of Proposition 2.2. Under our hypotheses,
by Corollary 5.3 applied with x = z** and y = y**, one and only one of the cases (a)- (i)
of (5.3) holds, and remark that the case (a) is equivalent to the case (BO).

Remark furthermore that the case (B1) implies (b), and conversely, if the case (b)
of (5.3) holds, then by Lemma 5.2 applied with = 2** and y = y**, the point (z**, y**)
belongs to the set S, and by Lemma 4.1,

¥ <zp and Yyt <y

because in this case, we have Y;(z**) < Ya(z**) and X1 (v**) < X2(y**), The case (B1) is
therefore equivalent to the case (b).

Similarly, the case (B2) implies the case (c) of (5.3) and conversely, in the case (c), by
Lemma 5.2 applied with z = «** and y = y**, the points (z**, Y3(2**)) and (X2 (y**), y*™)
belong to the set Syo. The case (B2) is therefore equivalent to the case (c) of (5.3).

And similarly, the case (B3) (resp. (B4)) implies the case (d) (resp (e)), and conversely,
if (d) (resp. (e)) holds, then by Lemma 5.2 applied with z = =™ and y = y** the
point (z**, y**) = (X1 (y**),y*™*) = (x**,Ya(2**)) belongs to the set Sy, (resp. the points
(x**, Y2 (2**)) and (X1 (y**),y**) belong to the set Si2), and by Lemma 5.3 combined with
Lemma 4.1 and (2.10), one gets

Yi(z™) < Yao(z™), 2™ <zp and y* <1<Ya(x™).

The case (d) is therefore equivalent to the case (B3), and the case (e) is equivalent to
(B4).
Similar arguments (it is sufficient to exchange the roles of z and y) show that the case
(f) is equivalent to (B5) and the case (g) is equivalent to (B6).
Now, to complete the proof of our proposition it is sufficient to show that the case (i)
of (5.3) never holds, and the case (h) is equivalent to (B7). To get this result we apply
Lemma 5.4 with (¢/,3) = (1,1) and (z,y) = (z**, y**). By relations (2.9) and (2.10), we
have

zp <2’ <l<e™ <ap and yp <y <1<y <yp. (5.15)

Hence, when either (h) or (i) holds, i.e. if
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using Lemma 5.4 with © = z**, y = y** and (2/,y’) = (1, 1) we obtain
(2", y™) = (1,1) and X;(1)=Y;(1)=1. (5.16)

The case (i) is therefore impossible and the case (h) is equivalent to (5.16). Remark
moreover that by Lemma 5.2 applied with x = 2** = 1 and y = y** = 1, from (5.16) it
follows that the point (1, 1) belongs to the curve S;; and consequently, by Lemma 4.1,

0,P(1,1) <0 and 9,P(1,1) <0, (5.17)
and notice that by (5.16) and using (2.9) and (2.10),
rp <ot <z™=1 and yp<y <yr=1

Since the points (z,y) = (¢, Y1(2%)) and (2/,y') = (X1(y}), yp) are the only points in
&1 for which 9, P(z,y) = 0 and 9, P(2’,y’) = 0, the last relations show that 9, P(1,1) # 0
and 6yP(1, 1) # 0. Using (5.17) we conclude therefore that when (h) holds, we have also
0.,P(1,1) < 0 and J,P(1,1) < 0 and consequently the case (h) is equivalent to (B7).

6 The functional equation and the convergence domain

6.1 Sketch of the proof of Theorem 2.1

The main ideas of the proof of Theorem 2.1 are the following: By using the method of
Lyapunov functions, we first show that the series

Hj(z,y) = Z g(j, k)xfyh2 e Vil (6.1)
}C:(kl,kz)ezi

(and consequently, also the series (2.28) and (2.29)) converge on a suitable polycircular
set Q(O) closed to the points (z4,0) and (0, y4). This is a subject of Proposition 6.1 below.
With this preliminary result, we will be able to get the first assertion of Theorem 2.1
and to introduce on the set Q(©), the functional equation (2.30) (see Proposition 6.3).
Next, we show that the functions at the right hand side of (2.30) are analytic in the
set {(z,y) € Q) : |z| < x4, |y| < ya}, and we extend in this way, first the function
(z,y) = Rj(z,y) = Q(z,u)h;(zr,y) and next the function (x,y) — h,(x,y) as analytic
functions to the set {(z,y) € UT) : |z| < x4, Y| < ya}-

Definition 8. If one of the cases (B0)-(B2) holds, we define © as the logarithmically
convex hull of the union of the two rectangles [0, z4[x [0, Y1 (z4)[ and [0, X7 (y4)[X [0, ya[
(see Figure 10):

0= LOQCH{([nyd[X[Q Yi(za)[) U ([0, X, (yd)[x[oaydD}- (6.2)

In the case when one of the assertions (B3)-(B6) holds, we let
O = [0, 24[%[0, yal-. (6.3)
Proposition 6.1. Under the hypotheses (A1)-(A4), the series (6.1) converges on the set
Q(8) = {(z,y) € €* : (lz].|y|) € ©}. (6.4)

In the case when the random walk (Z(n)) is positive recurrent, this statement follows
from the results of Miyazawa [26]. In Section 6.2, we give another proof of this statement
by using the method of Lyapunov functions. Our proof is valid both for positive recurrent
and for transient random walks.
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Since for any j € 72, and (z,y) €0, +oo[?,
wyhj(z,y) < Hj(x,y), xhy(x) = Hj(z,0) < Hj(z,y) and yhy;(y) = H;(0,y) < Hj(z,y),

as a straightforward consequence of Proposition 6.1, one gets

Corollary 6.2. Under the hypotheses (A1)-(A4), for any j € 732,

i) the series (2.29) converge (and consequently the functions h;; and h; are analytic)
respectively in B(0,z4) and in B(0, y4), with x4 and y, defined respectively by (2.21) and
(2.22);

ii) the series (2.28) converge on the set (0) and consequently, the function h; is
analytic in Q(0).

With this results, using classical arguments (see Section 6.3) we obtain

Proposition 6.3. Under the hypotheses (A1)-(A4), for any j € Z? and (z,y) € Q(©), the
functional equation (2.30) holds.

By the definition of the points x4 and y,, see relations (2.21) and (2.22), and of the
sets © and I', when either (B3) or (B4) holds, we have the relations

rg =", ya="Ya(rq) and O =[0,74[x[0,Y2(za)[={(7,y) €T : x <@g, y < ya},
and when either (B5) or (B6) holds,
Yya =y, xa=Xa(ya) and O =0, Xo(ya)[x[0,z4[= {(z,y) €T : v < w4, y < ya}

Hence, when one of the case (B3)-(B6) occurs, Theorem 2.1 follows from Corollary 6.2
and Proposition 6.3.

When one of the cases (B0)-(B2) occurs, the first assertion of Theorem 2.1 follows
from Corollary 6.2 as well, and to prove the second assertion of Theorem 2.1 the following
proposition will be used.

Proposition 6.4. If the conditions (A1)-(A3) are satisfied and one of the assertions
(B0O)-(B2) holds, then

{(z,y) €T x<xq, y<yat COU{(z,y) €ED: < xq, y <y} (6.5)

With this lemma and using our previous results we will be able to show first that the
function (z,y)—h;(z,y) can be continued to the set {24() as a meromorphic function,
and next to show that it is in fact analytic in this set.

The proof of Theorem 2.1 is organized as follows:

— Proposition 6.1 is proved in Section 6.2;
- Section 6.3 is devoted to the proof of Proposition 6.3;
— the proof of Proposition 6.4 is given in Section 6.4;
— the proof of Theorem 2.1 is completed in Section 6.5.
6.2 Proof of Proposition 6.1
6.2.1 The main idea of the proof

To main tool of our proof of thls pr0p051t10n is the method of Lyapunov functions. We

show that for any (z1,y1) € D N D1 and (z2,y2) € D N D2 such that

1 >y and y; < ys, (6.6)
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the function f : Z2 — [0, +oc[ defined by
flki, ko) = 2y + o yb2, (k ko) € Z2. (6.7)
satisfies
E;(f(Z(1) <Of(j), VjeZi\E, (6.8)
with some 0 < 6 < 1 and for some finite subset £ C Zi. This is a subject of lemma 6.1
below. With this result we are able to prove that for any two points (x1,¥;) € DN D; and
(z2,y2) € DN Dy satisfying (6.6), the series

> 90, F) @y + 25" y5%) (6.9)
k=(k1,k2)€Z2\{(0,0)}

converges, this is a subject of Lemma 6.2. Next, to prove that the series (6.1) converge

for any (z,y) 6 0, we show that for any (z,y) € ©, there are two points (x1,y1) € D N D1
and (x9,y2) € D N Dg satisfying (6.6) and such that

ahryhe Caliyh 1 abiybe k= (ki ko) € Z2. (6.10)

6.2.2 Preliminary results for the proof of Proposition 6.1

We begin our analysis with the following statements.

Lemma 6.1. Suppose that the conditions (A1)-(A3) are satisfied and let two points
(r1,y1) € DN Dy and (x2,y2) € DN D, satisfy (6.6). Then for some finite set E C 72, the
function f : Zi —10, +oo[ defined by (6.7) satisfies (6.8) with some 0 < 6 < 1.

Proof. Consider two functions f1, fo : Zi — R defined by

fil1,d2) = 2'yl?, and  fo(ji, o) = 23y, V(1. je) € Z2,

and let

ézmax{(bl(xlayl)? P('rhyl)a ¢2(m2ay2)7 P(3727y2)}~

Then 0 < 6 < 1 because (z1,11) € DN Dy and (z2,y2) € D N Dy, and moreover, for any

(7 = (j1. j2) € Z2\{0},

61101, if j1 # 0,
SR re e

and i
9f2(j1)j2)7 1fj2 7& 0,

E(jhjz)(fQ(Z(]-)) < e s
¢1 (w2, y2)2y  if jo = 0.

For the function f = f; + f», we obtain therefore that for any j = (ji, j2) € Z23\{0},

0f(jr,j2) if j; >0and j, >0
E(jl»jz)(f(z(l)) < 9y%2 + ¢2($1,y1)y{2 ifj3=0 (6.11)
027" + d1(xa,y2)25 if jo = 0.

Since under hypotheses of our lemma, z; > x5 > 0 and 0 < y; < y2, we have moreover

1111’1(.’172/11}1)]1 = hm (yl/yg) =0,

J1
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and consequently, for any ¢ > 0 there is N. > 0 such that for any (ji,j2) € Zi with
Jj2 > Ng andj1 =0,

5+ da(r, gyl < (0 +e)yd® = (0 + ) falr, j2) < (04 €)f (i, j2)
and similarly, for any (ji, j2) € Z3 with j; > N, and j, =0,
027" + d1(wa, y2)d' < (0 +2)f(jr, J2)-
Hence, for ¢ > 0 such that § + ¢ < 1, letting
E={(j1,0) € Z} : ji < NJU{(0,j2) € Z% : jo < N:}
one gets (6.8) with 0 = O+¢e<1. O

Lemma 6.2. Under the hypotheses of Lemma 6.1, for any j € Z2, the series (6.9)
converges.

Proof. Indeed, consider two points (z1,y1) € f)ﬂDol and (z2,y2) € 109052 satisfying (6.6)
and let the function f : Zi —1]0, +o0[ be defined by (6.7). Then by Lemma 6.1, for some
finite set £ C Zi and some positive number 6 < 1, (6.8) holds. Without any restriction
of generality, we will suppose that F contains the origin (0,0). Denote by 7z the first
time when the process (Z(n)) hits the set E:

g =inf{n > 1: Z(n) € E},
and let
oo
= Z]Pj(Z(n) =k, g 2n), jEZ2\E, keZ.
Then by (6.8), for any j € Z2 T\E,
E;(f(Z(n)); 76 2 n) <0"f(j), VneN,
and consequently,

> s R)(ahul +abil) = 3 gpGi kIR = S B (F(Z(0); T

2 2 =
k€Z+ keZ n=1

WV

n) < f(7)(1-0)7"

(6.12)
Using the identity

90 k) =ge( k) + D>, > g (Z(1) = m)gr(m, k)

LeE\{0} meZ? I\E

from the above relation it follows that for any j € Z?2 T\E,

S R ) < (O Y Y a6 OPAZ() = m)f(m))

k=(k1,k2)€Z3 LeE\{0} meZ3 \E
1 . )
<0+ X s omEo)).
te B\{0}

Since the set F is finite and under the hypotheses (A1) and (A3), E,(f(Z(1))) < 4+oo for
any ¢ € F, this proves that the series (6.9) converges for any j € Zi\E. To prove that
this series converges for j € F, it is sufficient now to notice that for j € F,

gk = 3 96,0 Y PuZ(1) = m)gu(m.k),

teE\{0} mEZ2\E
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and consequently,

S gk (el )
k=(k1,k2)€Z2

<Y 960 Y Pz =m) > gemk) (ahyl +akyl?) < +o0.0

Le E\{0} 77LEZi\E k:(k’l,kg)EZi

Lemma 6.3. Suppose that the conditions (A1)-(A3) are satisfied and let & €|x*, x**[ and
g €]y*,y**[ be such that
Z>X1(g) and §>Yi(2). (6.13)

Then for any y; > Y1(Z) closed enough to Y;(Z) and any x2 > X;(§) closed enough

to X1(y), the points (x1,y1) = (Z,y1) and (z2,y2) = (x2,y) satisfy the conditions of
Lemma 6.1.

Proof. Indeed, by Lemma 4.2, for # €]z*,2"*[ and § €]y, y**|, each of the line segments
Y1(2),Y2(2)] ={y > 0: (Z,y) € DN D1} and [X1(9), Xo(9)] = {z > 0: (z,9) € DN Dy}
has a NON-Zero length, and for any y; and z2 such that Y1(Z) < y1 < Y2(Z) and
X1(9) < z2 < X5(g), one has

o o

(#,91) e DN Dy, and (z2,3) € DN Ds.

Using (6.13), this proves that for any y; and z» such that Y1(%) < y1 < min{Y> (%), 7} and
X1(9) < x2 < min{Z, X2(7)}, the points (x1,y1) = (Z,y1) and (x2,y2) = (x2,¥) satisfy the
conditions of Lemma 6.1. O

Now we are ready to get
Lemma 6.4. Suppose that the conditions (A1)-(A4) are satisfied and let

([0, zq[x [0, Y (za)[) U ([0, X1(ya)[x[0,ya[) if either (BO), or (B1) or (B2) holds
B0 = 1 [0, 24[X[0, Ya(zq)[ if either (B3) or (B4) holds
[0, X1 (ya)[x[0, ya] if either (B5) or (B6) holds.
(6.14)
Then for any (z,y) € ©y, there are two points (z1,y1) and (x2, y2) satisfying the conditions
of Lemma 6.1 and relations (6.10).

Proof. Suppose first that one of the cases (B0), (B1) or (B2) occurs and let (z,y) €
[0, z4[%[0,Y1(zq)]. The definitions of the cases (B0), (B1), (B2) and of the points z; and
ya (see Proposition 2.2 and relations (2.33), (2.34)), give

max{Xi(yq), v} <zg=2"" and y<Yi(rq) <yqs=1vy",
and by (2.9),
rp <t <z =z4 and yp <Y <y =yq.

Since the functions X : [y, y5] — @5, 2] and Y7 : [25, 23] — [yp, y5'] are continuous,
it follows that for any & €] max{z*, z}, 24 and ¢ €]y*, y4[ closed enough respectively to
xq and y4 one has

0<z<# 0<y<Yi(d), (6.15)

X1(j) <& and Yi(Z) < §. (6.16)

By Lemma 6.3, from (6.16) it follows that for y; > Y1(Z) and 2 > X;(7) closed enough
respectively to Y (%) and X (g), the points (x1,y1) = (Z,y1) and (z2,y2) = (z2, §) satisfy
the conditions of Lemma 6.1, and using (6.15) one gets (6.10).
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When one of the cases (B0), (B1) or (B2) holds and (z,y) € [0,z4[%[0,Y7(z4)], our
lemma is therefore proved. For (z,y) € [0, X1(y4)[x [0, y4[, the proof is quite similar.

Suppose now that either (B3) or (B4) holds. The definitions of the cases (B3) and
(B4) and of the points x4 and y4 (see Proposition 2.2 and relations (2.33), (2.34)), and by
(2.9), give

xp <ot <™ =24 < X1y, (6.17)
Yy <1 <yg=Ya(wg) <y™, (6.18)
(Xl(y**)vy**)a (x**7Y2(x**)) = (xdvyd) S 8127 (619)
and
Yl(IEd) < Yg(iﬂd). (6.20)

From the definition of S;2 and relation (6.19), it follows that X;(y**) < X;(y}3") and
consequently, by (6.17),

N

rp <ot <xg < X1(y™) < Xi(yp). (6.21)

Consider now a point (z,y) € ©g. Then by (6.14) and using (6.21), (6.18) and (6.20),
0 < max{z*,z} < zq < X1(yp) and 0 < max{Yi(xq),v",y} <yqs=Ya(zq) <y**
(6.22)
Since the function Y3 is strictly increasing on the line segment [z}, X;(y}5")] and the
functions Y; and Y5 are continuous on [z}, 2}, it follows that for any & and Z closed
enough to x4 and such that

max{z",x} < T < T < z™ =g, (6.23)
one has
max{Y1(2),y", y} < Y2(2) < Ya(Z) < Ya(za) = ya < ¥,

Remark that because of (6.21) and (6.23), the points &£ and = belong to the line
segment [z}, X1 (y5)]. Since the functions X; : [Yi(zh),ys] — [zh, X1(y3)] and
Yo o [zh, X1(yp)] — [Yi(zh),y5'] are inverse to each other, letting § = Y2(Z) we get
therefore X (§) = & and using the above relations we obtain

Yy <g=Ya(2) <y, i(T) <Y2(?) =9y, Xi(y)=2<7, (6.24)

r<i=X(§) and y<Ya(d)=74. (6.25)

By Lemma 6.3, from (6.23) and (6.24) it follows that for any y; > Y;(Z) closed enough
to Y1(%) and z2 > X;(y) closed enough to X;(g), the points (z1,31) = (&,y1) and
(z2,y2) = (22, 7) satisfy the conditions of Lemma 6.1, and using moreover (6.25), we get
that for any j = (j1, o) € Z2,

leyjz < (Xl(g))jlgjz < :rély? < l,jl'ly{é + xély%é.
Hence, in the case when either (B3) or (B4) holds, Lemma 6.3 is also proved. To prove

this lemma the case when either (B5) or (B6) holds, it is sufficient to exchange the roles
of x and y. O

EJP 30 (2025), paper 4. https://www.imstat.org/ejp
Page 40/103


https://doi.org/10.1214/24-EJP1252
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Classification of asymptotic behaviors of Green functions

6.2.3 Proof of Proposition 6.1

This proposition is a consequence of Lemma 6.2 and Lemma 6.3: by Lemma 6.3, for
any (x,y) € Og, there are two points (z1,y;) and (z2,y2) for which the conditions of
Lemma 6.1 are satisfied and relations (6.10) hold. By Lemma Lemma 6.2 and using
(6.10), this proves that

Z g(j, k)zFryh2 < Z 9(7, k) (x’flyf‘" + x§1y§2) < +o0.
k:(khkz)ezi k:(khkz)eZﬁ_

Hence, for any (z,y) € Oy, the series (6.1) converge. Since the set O is the logarithmically
convex hull of the set Oy, and the domain of convergence of power series with center 0
is always logarithmically convex, this proves that the series (6.1) converge in ().

6.3 Proof of Proposition 6.3

Consider first the case when j = (j1,j2) # (0,0). By Proposition 6.1, the series (6.1)
converge on the set Q(©). Hence, for any (z,y) € Q(0) with non-zero x and y, by the
Fubini theorem and using the Markov property, one gets

o0
Hj(wy)=ay” + Y Y Pi(Z(n) =k, 10 >n)atry"
k=(k1,k2)€Z3 n=1
=2y + Y g(j,OE (le<1>y22(1>, 0> 1) (6.26)
273 \{(0,0)}

Because of Assumptions (A1)—(A3), for (z,y) € Q(©) with z # 0 and y # 0, we have

ay2 Pz, y) — p(—=1, =)Ly 1)y (41, €2) if 1 > 0and ¢, > 0,
E, (le(l)ng(l), 0 > ].) ={ zh (251(.%, y) — ,ul(—l, 0)1{(170)}(51,62) if /4 > 0and ¢, =0,
Y2 ga(x,y) — p2(0, —1) 10,1y} (1, 2) if {, =0 and ¢, > 0.

Using these relations in (6.26), for (z,y) € 2(0) with non-zero = and y, one gets therefore

Hj(‘rvy) = leyjz - :u(_]-v _1)g(jv (1a ]-)) - :ul(_la 0)9(3) (170)) - /1'2(07 _1)g(jv (07 1))

+ P(z,y) Z g(j, 0)z"ry*
(=(t1,62)€Z2 :
£1>0, £2>0
oo

+ (151(-'177 y)z g(j’ (gl’ O))xél
li=1

+ ¢2(xa y)z g(]» (07 62))y£2
lo=1
or equivalently,

with

Lj('ra y) = leyh - /L(_L _1)g(j7 (1’ 1)) - ,ul(_la O)g(]’ (170)) - :UQ(Oa _1)g<j7 (Ov 1))
= aiyl2 — P;(1 < +00).
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Since clearly H,(z,y) = zyh;(x,y) + zh1;(x) + yhe;(y), the last relation proves (2.30) for
any (z,y) € Q(©) and j = (j1,j2) € Z2\{(0,0)}. To get (2.30) for (j1,j2) = (0,0), it is
sufficient now to notice that for any (x,y) € Q(©),

H0)(z,y) = Z P0,0)(Z(1) = (jr1, j2)) H;(x,y)
(41,52)€Z3\{(0,0)}

and

Z Po.0y(Z(1) = (j1,42)) Ly (2, y) = Eo) (Izlu)yzm); 0> 1)
(1,42) €22\ {(0,0)}

— P(O,O)(l < T0 < +OO)
= ¢o(z,y) — P 0,0y (10 < +00).

6.4 Proof of Proposition 6.4

Suppose that one of the cases (B0)-(B2) holds. Then by Proposition 2.2 and the
definition of the points x4, y4, the following relations hold

xg =2 > X1(ya), Ya =y > Yi(zq), (6.27)
and the set © is defined as a logarithmically convex hull of the set
(10, za[x[0, Y1 (xq)[) U ([0, X1 (ya) [x[0, yal)-

The points (z1, y2) = (24, Y1(z4)) and (z2, y2) = (X1(ya), ya) are therefore on the boundary
of the set © and also on the boundary of the set D. Since the set © is logarithmically
convex and the set D is strictly logarithmically convex, it follows that for any 0 < 6 < 1,

the point (zg,yg), with zy = 2227 and vy = y/y3~ %, belongs to the set © N D, and

consequently,
Yi(zo) < yp < Ya(zg).

By the definition of the set ©, for any 0 < 6 < 1 and y € [0, yg[, the point (zg,y) is in
O, and for any y €]Y1(zg), Ya(zp)[ and the point (zy,y) is in D. Consequently, for any

0 <60 <1andy € [0,Y2(xp)], the point (zy,y) belongs to the set © U D, or equivalently,
that forany y > 0,

y > Ya(zs) whenever (zg,y)¢OUD. (6.28)
(

Consider now a point (%,9) € [0,+oo[*> with & < z4 and § < yg and such that

x?

(Z,9) € (OU lo)) Then & > X;(yq) (because otherwise (Z,7) € [0, X1(yq)[x[0,y4)[C ©),
and consequently forsome 0 < 0 < 1, Z = x9 = :cg(Xl(yd))I*‘). Hence, by (6.28), we get
¢ > Y2(Z), and with similar arguments (it is sufficient to exchange the roles of x and y) we
obtain & > X,(¢). By Lemma 5.2, these inequalities show that (%, Y2(2)), (X2(9), §) € Sao.
Hence, if we suppose that for some (z/,y’) € D, the inequalities # < 2’ and § < 3’ hold,
then using the similar arguments as in the proof of Lemma 5.4, we will obtain that
& =2a' = X3(y) and § = ¢y = Ya(&). With the definition of the set I, this proves that
(2,9) #T.

6.5 Proof of Theorem 2.1

Now, we are ready to complete the proof of Theorem 2.1. In the cases (B3)-(B6),
Theorem 2.1 follows from Corollary 6.2 and Proposition 6.3, and in the cases (B0)-(B2),
the first assertion of Theorem 2.1 follows from Corollary 6.2 as well.To complete the proof
of Theorem 2.1 we have therefore to prove its second assertion in the cases (B0)-(B2).
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We know that, for any j € Z2, the function (z,y) — L;(z,y) is analytic in Q(I),
the functions (z,y) — Q(z,y) = xzy(1 — P(x,y), (z,y) — ¥1(x,y) = x(¢d1(z,y) — 1) and
(x,y) = ¥a(x,y) = y(1 — ¢2(x,y)) can be analytically continued to the set Q(T"), and by
Corollary 6.2, the functions hy; and ho; are analytic respectively in the discs B(0, zq)
and B(0,y4). Hence for any j € Z2, the function (z,y) — L;(z,y) + ¥1(z,y)h;(z) +
¥a(x,y)ho;(y) is analytic in the set {(z,y) € QT) : |z| < x4, |y| < ya}. Since by
Proposition 6.3, on the set Q(©),

Qx,y)hj(x,y) = Lj(x,y) + ¢1(z, y)hi; () + Yoz, y)hoj(y),

and since clearly © C {(z,y) € T': z < x4,y < ya}, we conclude therefore that the
functions (z,y) — Q(z,y)h;(z,y) can be analytically continued to the set

Qa(0) = {(z,y) € AD) : 2| < za, |yl < ya}

and the function (z,y) — h;(z,y) can be continued as a meromorphic function

Lj(z,y) + ¥1(x, y)h;(x) + Pa(w, y)ho;(y)
Q(w,y)

hj(z,y) =

to the set Q4(T"). Since

— by Proposition 6.1, for any j € Z2, the function h; is analytic in Q(0);

- for any (z,y) € Q(D), by the definition of the set D, we have |P(x,y)| < P(|z|, |y|) <
1 and, consequently, Q(z,y) # 0;

- and by Proposition 6.4, the set 4(T") is included to the union of the open sets 2(0)
and Q(D),

we conclude therefore that the function /; can be analytically continued to the set 4(T").

7 Singularity analysis of generating functions

This section is devoted to the proof of Theorem 2.3. Recall that the case (B7) will not
be considered. See Section 2.2. Throughout this section we will assume therefore that

Assumption (A4) one of the cases (B0)-(B6) holds.

7.1 The main ideas and the sketch of the proof

The main steps of our proof are the following. First, we prove the light version of
the assertion (i)-(v) of this theorem, i.e. we get, in each of the corresponding cases,
relations (2.40), (2.44) (2.42), (2.46), (2.48), (2.50), (2.52), and (2.54) with positive
constants given by (2.41), (2.43), (2.45), (2.47), (2.49), (2.51), (2.53). This is a subject
of Propositions 7.10 and 7.12 and Lemma 7.6 below.

With these results we will be able to show that in each of the assertions (i)-(vi) of our
theorem, the corresponding function s¢;, 3; or s(; 5 is non-negative on Z%r.

Second, in Proposition 7.13 below, we prove that in each of the assertions (i)-(vi),
the corresponding function s;, 7; or s(; ) is harmonic for the random walk (Z,,(n)) and
positive everywhere in the set Zi\EO. With this statement, the proof of our theorem will
be completed.

The first step of the proof of the last assertion of Theorem 2.3 is given by Lemma 7.6.
This result is obtained as a traightforward consequence of Theorem 2.1.
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The first step of the proof of the assertions (i)—(v) of Theorem 2.3 proof is the most
difficult. Its main idea is the following: we extend the function Y7 as an analytic function
to some domain of C large enough and we inject next y = Y; (z) to the functional equation
(2.30) in order to get the identity

Lj(z, Y1 (2)) + ¢ (2, Y1 () haj(2) + P22, Yi(2))he; (Y1 (2)) = 0. (7.1)

Using this result we will be able to extend beyond the point x, first the function
x = Y1 (z,Y1(x))hij(z) = (¢1(z, Yi(z) — 1)H;(z,0) and next the function = — H,(x,0).

Remark that in a difference with nearest neighbor random walks, we have no explicit
form of the function Y;. Moreover, by the implicit function theorem, this function
can be extended only to some neighborhood of the interval |z}, 23 [ in C which is
clearly not sufficient for our purpose. The first difficulty of our proof is therefore to
extend the function Y; to some sufficient for our analysis domain of C. We perform
this first step of our proof by using the probabilistic representation of the function
Y (2%, 23] — [yp, y5| obtained in [16]. This is a subject of Proposition 7.1 below. In
this statement, for some ¢ > 0, we extend the function Y; as an analytic function to the
set

Ue = Clap,ap +e)\[zp, 25 +el,

and a continuous function on the set
U. = Cah, o3 + e\, ol +e[= U. U {z3). (7.2)
It is proved moreover that the extended function Y; satisfies the identity
Q(z,Y1(z)) =0, (7.3)
on the set U, and that, on the closed annulus C(z}, %), the following relations holds
|Y1(z)| < Yi(Jz|) whenever x # |z|. (7.4)

Another difficulty is that by Theorem 2.1, we know only that the function y — ho;(y) is
analytic in B(0,y4), and the function (x,y) — h;(z,y) is analytic in {(z,y) € Q) : |z| <
x4, ly| < yqa}. Hence, we can inject y = Y7(z) to the functional equation (2.30) only
for those © € B(0,z,4) for which |Y1(z)| < y4. To overcome this difficulty, we use the
inequality (7.4). With this inequality, we are able to show that for some § > 0, the
function = — (z,Y1(x)) maps the annulus C(xg — d,24) = {x € C: 24 — 6 < |z] < x4}
to the set {(z,y) € Q) : |z| < zp, |y| < ya} where the functions (z,y) — H;(z,y),
(xz,y) = Lj(z,y) +v2(x,y)he;(y) and (z,y) — 1 (x, y)hq,;(x) are analytic. This is a subject
of Proposition 7.4 below.

In this way, on the annulus C(z4—0, z4), by letting in the functional equation (2.30) y =
Y1 (z) and using (7.3) we obtain the identity (7.1) with analytic in C (x4 — 6, x4) functions
z = P1(z,Y1(x))h;(x) and @ — Lj(z,Yi(z)) and z — ¥o(z, Y1(x))he;(Yi(z)). Moreover,
when one of the cases (B0)-(B4) holds, using again the inequality (7.4), we will be able
to show that for some ¢ > 0, the function (z,y) — L;(z, Y1(x)) + ¥2(z, Yi(z))he; (Y1 (2)) is

analytic in C(z4— 9,24+ 0)NU. and continuous on C(z4—d, x4+ 6) NU.. Using this result
together with the identity (7.1), we will extend the function  — —1(z,Yi(z))hi;(z) =

[e]

(1 — ¢1(z,Y1(x))H;(z,0) as an analytic function to the set C(zq — §,24 +J) N U, and a
continuous function to the set C(xq — d, 24 + 6) N U.. This is a subject of Corollary 7.6
below.

Next, in Proposition 7.7, we investigate the function z — 1 — ¢1(x, Y1(z))), and finally,
in Proposition 7.10 and Proposition 7.11 below, when one of the cases (B0)-(B4) holds,
we extend the function z — H;(z,0) beyond the point z,.
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In the case when either (B5) or (B6) holds, we begin our analysis by investigating
the function hy;. With the same arguments as in the previous cases (it is sufficient to
exchange the roles of x and y) we obtain that the function hy; can be extended as an
analytic function to the set B(0,yq + d0)\{va}. Next we show that for some § > 0, the
function x — hg;(Y1(x)) is analytic in the set C(zq — d,zq + 0) N U \{z4}. And finally,
using again the identity (7.1) we extend first the function = — 1 (z,Y1(z))h1;(z) and
next the function z — h;;(z) beyond the point 4. This is a subject of Proposition 7.12
below.

7.2 Analytic continuation and properties of the function = — Yi(z)
We begin our analysis with the following result.

Proposition 7.1. Analytic continuation of the function Y;. Suppose the conditions
(A1) are satisfied and let u(j) = 0 for all j € Z? with j» < —1 (remark that we do not
need the whole condition (A2) to be satisfied). Then

i) the function Y; is strictly convex on the line segment [z%, %] and for some € > 0, it

can be extended to the set U, as an analytic function in the set U, and a continuous
function on the set U. satisfying there the identity (7.3).

ii) relation (7.4) holds on the set C(z%, 2%);

iii) for any & €]X;(yp), [, the function = — (Y7(x) — Y1(&) does not vanish in the set
C(& — 6,2+ 0)\{#} for some § > 0, and has at the point & a simple zero with

- ) > 0; (7.5)

|(r-,y):(53-,Y1(56)

iv) the function =z — Yi(z) — Y1(z}") does not vanish in the set C(z% — 6,25 +
M\[z5, 23 + o[ for some 6 > 0, and as z — x5,

d
Yi(z) - Yi(ap) ~ —cy/o3r —x and —Yi(z) ~ S — (7.6)
dx 2\/a5 —
with
¢ = /0, P(x,y)/02, Pz, >0
\/ o P2, 4)/ 0, P(2-4) (@)= Yi(a}))

7.2.1 The main ideas and the sketch of the proof of Proposition 7.1

To prove this result, we first get a probabilistic representation of the function Y;. As
a consequence, we obtain that the function Y; is strictly convex on the line segment
[z}, 23] and can be continued as an analytic function to the open annulus C(z}, 2}) and
as a continuous function to the closed annulus 6(%‘*13, x}) satisfying there the inequality
(7.4) and the identity (7.3). This is a subject of the results of Subsection 7.2.2.

Next, in Subsection 7.2.3, we extend the functions Y; and Y5 to a neighborhood of 7
as two branches of a two-valued analytic function having a branching point 23" and we
get (7.6). This result is obtained by using the implicit function theorem and the Morse
lemma.

Finally, in Subsection 7.2.4, the proof of Proposition 7.1 is completed: by using the
implicit function theorem and relations (7.4) and (7.3) on the circle {z € C: |z| = 23},
we extend the function Y; and the identity (7.3) to the whole set U, = C(z}, 25 +
e\|Jxp, % + €[ for some ¢ > 0, and we prove the two last assertions of Proposition 7.1.
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7.2.2 Probabilistic representation of the functions Y; its consequences

Consider the homogeneous random walk (S(n) = (S1(n), S2(n)) on Z? with transition
probabilities

IPJ(S(]-) = k) = N(k_j)a Vk,j € Z2»

and the first time 7; when the random walk (S(n)) hits the set Z x {0}:
nn=inf{n>1 : S(n) € Z x {0}},

By Lemma 2.2 of [16]
Lemma 7.1. Under the hypotheses of Proposition 7.1, for any j = (j1,j2) € Z x IN* and
z € [vp, 2p],

E; (xsl(ﬁ); T < —|—oo> = 271Y; (x)72.

As a straightforward consequence of this statement one gets the following
probabilistic representation of the function Y;:

Corollary 7.2. Under the hypotheses (A1) and (A2), for any z € [z}, 23],
Yi(x) = K1) (xsl(ﬁ); < —l—oo) (7.7)

With this result we get

Lemma 7.2. Under the hypotheses of Proposition 7.1, the function Y is strictly convex
on [z}, x| and can be extended to the set C(z7,2}°) as a function

Yile) = 3 Py (S(r) = (k1,0), 71 < +oo)a (7.8)
k1€Z

which is continuous on C(z%},z}), analytic in C(x%,2}) and, on the set C(z}, x%),
satisfies the inequality (7.4) and the identity (7.3).

Proof. Indeed, by Corollary 7.2, the series

Z P,y (S(m1) = (k1,0), 1 < +o00)zh = K1) (acsl(ﬁ); T < +oo) (7.9)
k1€Z

converges and the identity (7.8) holds for any real = € [z}, 2}]. Since the coefficients of
the series (7.9) are real and non-negative, it follows that this series converges also on
C(a%, 2. Hence, by letting (7.8) for x € C(z%,z3), the function Y; can be extended
to the set C(x, 2} ) as a function which is continuous on C(z%,z}) and analytic in
C(zp, ).

To get (7.4) and to show that the function Y; is strictly convex on [z}, 2}], we show
that all coefficients of the series (7.9) are strictly positive. For this we recall that
under our hypotheses, the random walk (S(n)) is irreducible on Z? and hence, for any
ki € Z, there are n € IN and a sequence of points /,...,¢, € 7> with ¢, = (0,1) and
St ol = (k1,0) such that

w(;) >0 foranyie {1,...,n}.

Moreover, without any restriction of generality, one can assume that for some j €

{1,...,n}, the second coordinate of each of the points ¢4, ..., ¢; is either zero or positive,
and the second coordinate of each of the points ¢;1,...,/, strictly negative. Then for
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any j € {0,...,n — 1}, the second coordinate of the point ¢, + - - - + ¢, is strictly positive
and consequently,

n

Po,1(S(m1) = (k1,0), 71 < +00) > [[ ults) > 0.
i=1

All coefficients of f the series (7.9) are therefore strictly positive.

Since for any k; € Z, the function z — P(2)(S(r1) = (k1,0), 71 < +00)z*" is convex
on [z}, z}] and the function z — P 0)(S(11) = (2,0), 71 < +oo)a? is strictly convex
on [z}, z}], this proves that the function Y; is strictly convex on [z}, z}']. And using
moreover Proposition P7.5 of [29] we get (7.4).

Remark finally that by relation (7.4), the function =z — (z,Y7(z)) maps the closed
annulus C(z%, r3) to the set

Iy ={(,y) € C*: w € Clzp,ap), lyl <Yi(jz])}
Since under the hypotheses of Proposition 7.1, the function

Q,y)=zy— > plkr— 1,k —1)z1y
k=(k1,ko)EIN2

is analytic in a neighborhood of the set I';, and the function Y; is already extended
as an analytic function to the open annulus C(z},z}") and as a continuous function to
the closed annulus C(z%, z3), it follows that the function z — Q(z, Y1(z)) is analytic in
C(z%,x3) and continuous on C(z%, z%"). Since moreover the identity (7.3) holds for any
real z € [z}, 23], by the uniqueness of the analytic continuation to the set C(z}, z5)
and by continuity of the function z — Q(z,Y1(x)) on C(z}, x}), this proves that the
identity (7.3) holds also on the whole set 6(:5},7 ). O

7.2.3 Analytic continuation of the functions Y; and Y, to a neighborhood of the
branching point 2%

Now, we extend the functions Y; and Y5 to a neighborhood of 27" as two branches of a
two-valued analytic function having a branching point 3" and we get (7.6).

Lemma 7.3. Under the hypotheses of Proposition 7.1, for some ¢ > 0 small enough, the
functions Y7 and Y, can be continued to the disk B(z},¢) as two branches of two-valued
analytic in B(z%,¢)\{x3"} function such that for any x € B(z}',e)\[z%, 25 + ¢,

P(z,Y1(z)) = P(z,Y2(2)) =1, (7.10)
and there is an analytic in B(0, /¢) function function Fy such that

Yi(z) = Fy (—/z3 —x), Yo(z) = Fy (/o — x) (7.11)

| 9:P(x,y)
u=0 agyp(m>y)

Proof. By the definition of the point 23" and the functions Y;, Y5, we have

and

> 0. (7.12)
(z,y)=(zp" Y1 (z}"))

Yi(zp)) = Ya(aF), Py, Yi(zp)) =1,
and by Lemma 4.1,

ByP(:my)\(m7y):(l}*7yl(ﬂ)*)) =0, and BQJP(:E,y)\(m’y):(m}*’yl(m}*)) > 0. (7.13)
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Hence, by the implicit function theorem, there are a neighborhood V of the point z7'
and an analytic in a neighborhood U of Y;(z}") function y — ¢(y) such that for any
(x,y) eU XV,

Plz,y) =1 & x=1(y),

* %k *k d
Y(Yi(zp)) = 2p, Iw(y) =0 and
Y y=Y1(z3")
& 95, P(z,y)
&'V, 0Py <0
y=Y1(z}3") z ’ (,9)=(z Y1 (z5))

where the last relation follows from the second relation of (7.13) because under
the hypotheses (Al), the real valued function y — P(z},y) is strictly convex in a
neighborhood of Y7 (z}). Using the Morse lemma we conclude therefore that for some
neighborhood U C U of Y1 (x3), there is a C-diffeomorphism w from U to a neighborhood
V of 0, with

_ 25 P(z,y) —_
9. P(z,y) ’

(zy)=(zp" Y1 (zE"))

w(YVi(z})) =0 and di“ymy)

y=Y1(z}")

such that V + 2% C V and for any (z,y) € (V +23) x U,
Plry)=1 & z=ap -w(y).

Without any restriction of generality, one can assume that w(U) = I:/ = B(0,+/¢) with
¢ > 0 small enough. Then for z € B(x}3,e)\[z}, 25 + €], and y € U, from the above
relation it follows that

Plz,y) =1 & (w(y)=\z5 -2 or wly)=—\25—1)
o (= (WFETD) or y=uyEFoD)

with the square root function ,/” analytic in C\] — 00, 0]. Since the inverse to w function
w~1! is analytic in B(0,/2), and since for real = € [z%, 23] and y > 0,

P(z,y)=1 & (y=Yi(z) or y=Ys(x))

we conclude therefore that the functions Y; and Y> can be extended to the set
B(z%,e)\[x5, 3 + €] as analytic functions such that either

Vi() =™ (Vo —a) and Yo(w) = (- @), Vo € B, e\lrE, o + <)

or

Yi(r) = w ™ (—V/oF — o) and Yo(a) =w (VoF —0), Vo€ Baf o\laF of + o]

These relations show that the function w~! is real valued on the interval | — \/z, /2],
and hence, by the second relation of (7.14), it is strictly increasing in a neighborhood
of 0. Since the function Y; is increasing on the interval [X;(y*), 23] and the function
Y, is decreasing on the interval [X; (y*), 3], it follows that (7.10) and (7.11) hold with
Fy = w™!. Relation (7.12) follows from (7.14). O
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7.2.4 Analytic continuation of the function Y] to the set C(z}, 25 +¢)\ [z, 23 +¢]

Now we extend the function Y; and the identity (7.3) to the set C(z%, 25 +e)\ [z 5", 25 +¢]
for some small € > 0.

Lemma 7.4. Under the hypotheses of Proposition 7.1, for some € > 0 small enough, the
function x — Y1 (x) can be analytically continued to the set C(zp, x5 +e)\[z}, 2} + €|,
and satisfies there the identity (7.3).

Proof. By Lemma 7.2, the function Y; is already extended to the closed annulus C(z%, 2%)
as an analytic function in C(z}, z%") and a continuous function on C(z%, z3) satisfying
there the identity (7.3), and by Lemma 7.3, for some ¢ > 0, the function Y; is also already
analytically continued to the set B(z}, ¢)\[z}", 2** + ¢]. Hence, to prove this lemma, it is
sufficient to show that the function Y; can be analytically continued to a neighborhood
of the set {x € C: |z| =z}, |z| # 5 }. In order to get this result, we use the implicit
function theorem.

By Lemma 7.2, Q(Z,Y1(Z)) = 0 for any point # € C with |Z| = 2 and under the
hypotheses of Proposition 7.1, the function @ is analytic in a neighborhood of (Z, Y1(Z)).
Hence, by the implicit function theorem, it is sufficient to show that for any such a point
z,

0,Q(Z,Y1(%)) # 0 whenever I #xp. (7.15)

To get this relation, we let us remark that according to the definition (2.24) of the
function ) and using (7.4), for any point & € C with |Z| = 3" and such that & # 2%, one
has

5-0,QE V@ < X0 3 (ha+ il b)) ¥ 0)
k1€Z k2=0
<Y 0> (ke Dk, ko) (23 Y (05 = 2 - 0,Q(F, Ya(aF))
k1€Z ko=0
where

9yQ(zp, Y1(x¥)) = 2p — wp P(ap, Vi(zp)) — epY1(2p)9y Prp’, Yi(2p)) = 0

because P(z3,Y1(2%)) = 1 and by Lemma 4.1, 0,P(xy,Y1(23)) = 0. Hence, for any
z € Cwith |Z| =23 and such that & # 7}

10,Q(%,Y1())| = |2 — |2 — 0,Q(F,Y1(%))| = 2" — |7 — 9,Q(%, Y1(Z))| > 0

and consequently, (7.15) holds. O

7.2.5 Proof of Proposition 7.1

The first two assertions of Proposition 7.1 are proved by Lemma 7.2, Lemma 7.3 and
Lemma 7.4.

To prove the third assertion of Proposition 7.1, recall that by Lemma 7.2, the function
Y; is analytic in the annulus C(z},z5") and satisfies there the inequality (7.4) and
remark that any point & €]X;(y}), 25 belongs to the annulus C(z},2%") because
zp < X1(yp) < o3. Hence, for any & €] X, (y}5), 23|, the function z — (Y1(z) — Y1(2) is
analytic in a neighborhood of the circle {z € C: |z| = &, and by (7.4), the point % is
an only zero of this function in the circle {z € C : |z| = . Since the zeros of analytic
functions are always isolated, this proves that for any & €] X;(y}), %[, there is 6 > 0 for
which the function z — (Y1 (z) — Y1(2) does not vanish in the set C(Z — 4,2 + §)\{Z}.

Moreover, we have
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- by Lemma 4.1, the real valued function Y; is strictly increasing on the interval
X1 (yp), ¥,

- by Lemma 7.2, it is also strictly convex on | X (y}), 23],

- and by Lemma 4.1, P(2,Y31(£)) =1 and 0,P(Z,Y1(2)) < 0.

Hence, for any & €] X1 (y}), 25|, using the implicit function theorem, one gets (7.5). From
this relation, it follows moreover that for any & €]X;(y}), 5[, the point the point Z is a
simple zero of the function x — Yj(x) — Y1(&). The third assertion of Proposition 7.1 is
therefore also proved.

To get the last assertion of Proposition 7.1, recall that by Lemma 7.3 and Lemma 7.4,
the function Y; was already extended to the set U. = C(z%,2** + ¢)\|z5, 25 + ¢[ as

an analytic function in U, = C(z},2** + ¢)\[z5", 23" + ¢[ and a continuous function on
U. satisfying there the inequality (7.4). The function x — Yi(z) — Yi(2}) is therefore

analytic in [j' . and continuous on U, and moreover by (7.4), the point 2% is its only
zero in the circle {z € C: |z| = 2}3°}. To complete the proof of the fourth assertion of
Proposition 7.1, it is therefore sufficient to get (7.6) and to show that the point 23" is an
isolated zero of the function « — Y;(z) — Y1 (2}"). For this, we remark that by Lemma 7.3,
as T — zp,

Yi(z) - Yi(ap) = Fy (=25 —x) — Fy (0) ~ —c\/ap —x (7.16)

and d
c
Y, ~N—_—
dx (@) 2\/xp —x
with g
= —Fy(0 - a’I'P ) 82 P ’ >
=w VPP (=4)=(3 Vi (@3)

Relations (7.6) are therefore proved, and since the constant c is strictly positive, from
(7.16) it follows that the point 7} is an isolated zero of the function z — Y;(x) — Y1 (2}).

7.3 The properties of the mapping = — (x,Y7(z)) and their consequences

Remark that by (7.4), the function = — (z,Y:1(x)) maps the closed annulus to the
set {(z,y) € C*: =z € C(ap,r%), |yl < Yi(Jz|)}, and under the hypotheses (A1)-(A3),
for any j € Z2, the functions (z,y) — ¢1(z,y), (z,y) — Y2(z,y) and (z,y) — L;(z,y)
are analytic in a neighborhood of this set. Hence, as a straightforward consequence of
Proposition 7.1 one gets

Corollary 7.3. Under the hypotheses (A1)-(A3), for some 6 > 0, the functions z —
1 (2, Y1(2)), © = o(z,Y1(x)) and z — L;(x,Y:(z)) for any j € Z2, are analytic in the set
Us and continuous on the set Us.

Another consequence of Proposition 7.1 is the following property of the mapping
z—(2,Y1(2)).
Proposition 7.4. Under the hypotheses (A1)-(A4), for some 6 > 0, the function
x +— (x,Y1(x)) maps the annulus C(x4—0, x4) to the set {(x,y) € QT) : |z| < xa, ly| < ya}-
Moreover, for any neighborhood V of the set Q(T') in C? and § > Y;(z,), there is § > 0,
for which the function z — (z,Y7(z)) maps the set C(xy — §, 24 + 0) N U. to the set

{(z,y) €V : |y < g}

Proof. Remark that by (7.4), for any z €]ap, 23],

Y1(2)] < Ya(lz]) < Ya(l2)).

EJP 30 (2025), paper 4. https://www.imstat.org/ejp
Page 50/103


https://doi.org/10.1214/24-EJP1252
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Classification of asymptotic behaviors of Green functions

Hence, the function z — (z,Y7(x)) maps the set C(z}, z3") to the set
Iy ={(z,y) €C*: zcCap,zy), |yl < Ya(z|)}.

Forany = €]a}, 23|, Y1(x) and Y2(x) are the only real and positive solution of the equation
P(z,y) =1, Yi(z) < Ya(z) and for any Yi(z) < y < Ya2(z), the point (z, y) belongs to the
interior of the set D = {(x,y) € [0, +00[?: P(z,y) < 1} (see Lemma 4.1 for more details).
Hence for any (x,y) € T'y), there is a point («’,y’) € D such that |z| < 2’ and |z| < ¥/
and consequently, the set I'; is included to the set I'. The mapping = — (x,Y7(x)) maps
therefore the set C(z}, 23) to the set I'.

Consider now the case when one of the cases (B0)-(B4) holds. In this case, (see
Proposition 2.2 and relations (2.33), (2.34)), we have Y;(z4) < yq. Since the function
z — (z,Y1(r)) maps the annulus C(z},2%") to the set I' and by Proposition 7.1, the
function Y; is continuous on U, it follows that for some ¢ > 0, the function = — (z, Y1(z))
maps the annulus C(xq4 — §, x) to the set {(z,y) € Q) : |z| < z4, |y| < Ya}-

When one of the cases (B0)-(B4) holds, the first assertion of Proposition 7.4 is
therefore proved.

Consider now the case when (B5) or (B6) holds. In this case (see Proposition 2.2
and relations (2.33), (2.34)), the point (z4,y4) = (X2(v™),y™*) belongs to the curve

S = {(z,Y1(2)) : @ € [Xa(yp),2F ]} = {(X2(y),y) © ¥ € [yp, Yi(ap)]} and yp < y* <
ya = y** < y}'. Since by lemma 4.1, the functions X5 : [y5, Yi(z3)] — [X1(vh), 23]
and Y7 : [X1(yp), z5] — [yp, Y1(a}")] are strictly increasing and inverse to each other, it
follows that in this case, we have 2% < X2(yq) = 4. Hence, for any x € C(x}, z4), using
(7.4) one gets

Yi(2)| < Yi([z]) < Yi(za).

Since we have already proved that the function = — (z,Y7(z)) maps the annulus
C(z3, x3) to the set I, the last relations prove that for § = z4 — 2% > 0, this function
maps the annulus C(x4 — §,24) to the set {(z,y) € QUT) : |x| < zq, y| < ya}.

In the case when one of the cases (B5) or (B6) holds, the first assertion of
Proposition 7.4 is therefore also proved.

The second assertion of Proposition 7.4 holds because the function = — (z,Y1(z)) is
continuous in the set U, including the closed annulus C(z%, z%") and maps C(z%, 23) to
the closure of the set I'. O

Remark that under the hypotheses (Al)(ii), (A2) and (A3) (ii), (iv), the functions

(I7y) — Q(I7y) = xy(lip(zvy)' (llf,y) = qZ)l(gjvy) = z(d)l(xvy)il) and (llf,y) = QZJQ(Iay) =
y(1 — ¢a(z,y)) can be continued as analytic functions to some neighborhood of the set
Q(T). Hence, from Theorem 2.1 it follows

Corollary 7.5. Under the hypotheses (A1)-(A4), there is a neighborhood V C C? of the
set Q(T) such that for any j € Z2,

- the function (z,y) — ¥1(z,y)h1;(x) is analytic in the set {(z,y) € V : |z| < z4};
- the function (z,y) — ¥2(z,y)he;(y) is analytic in the set {(z,y) € V: |y| < ya}

- the function (z,y) — R;(z,y) = Q(z,y)h;(z,y) can be extended as an analytic
function to the set {(x,y) € V: |z| < x4, |y| < ya} by letting

Rj(z,y) = Lj(z,y) + ¥1 (2, y)h1; () + Pa(, y) hoj (y). (7.17)

When combined together, Proposition 7.4, Corollary 7.3 and Corollary 7.5 imply the
following statement.
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Corollary 7.6. Under the hypotheses (A1)-(A4) for some § > 0, and any j € Z2,

i) the functions x — —y(z,Yi(z))hi;(z) = (1 — ¢1(z,Yi(2)))H;(2,0) and =
o(x,Y1(x))hej(Y1(x)) are analytic in the annulus C(zq — 0,24) and satisfy there the
identity

(1= 61 (@, V(@) Hj(,0) = Li(w, Vi () + a0, Vi(@)hs V(@) (7.18)

ii) moreover, if one of the cases (B0)-(B4) holds with =4, < z7" (i.e. if either one
of the cases (B0), (B1), (B3) or (B4) holds or (B2) and z4 < =3 hold), then for some
d > 0, the function z — L;(z,Y1(x)) + ¢2(z, Y1(2))he;(Y1(x)) is analytic in the annulus
C(zq— 6,24+ 6) and by (7.18), the function z — n;(z) = (1 — ¢1(z,Yi(z)))H;(x,0) can be
extended as an analytic function to C'(zq — d, 24 + 9).

iii) if (B2) holds with x4 = z}', then for some ¢ > 0, the function z — L;(xz,Y1(z)) +
Y(z, Y1 (x))he;(Yi(z)) is analytic in the set C(xq—J, 24+ )N [O]E and continuous on the set
C(xq—0,xq+0)NU,, and by (7.18), the function z — n;(z) = (1—¢1(z,Y1(z)))H;(z,0) can
be extended to the set C'(zy—d, x4+ ) NU. as an analytic function in C(xg—6§,24+6)NU.
and a continuous function on C(z4 — d, 24 + §) N Uk.

With this result, when one of the cases (B0)-(B4) holds, the function z — (1 —
¢1(x,Y1(x)))H;(z,0) is therefore already extended beyond the point z4. To extend

the function = — H;(z,0) beyond the point x; we need to investigate the function
x +— ¢1(z,Y1(x)). This is a subject of the next section.

7.4 Analytic continuation and properties of the function = — ¢ (z,Y1(2))
By Corollary 7.3, for some ¢ > 0, the function x — ¢ (z, Y1 (x)) is already extended to

the set Us as an analytic function in the set U and a continuous function on the set Us.
We will need moreover the following properties of the function x — ¢ (z, Y1 (x)).

Proposition 7.7. Under the hypotheses (Al)- (A3), the following assertions hold:
i) the function z — ¢1(z, Y1(2)) is strictly convex on the line segment [z}, 23].
ii) for any x € C(z*, z**),

|61 (2, Y1 (2))| < o(|z], Ya(lz]) <1; (7.19)

iii) if ** < 2%, then for some 5 >0, the point x** is an only and simple zero of the
function  — 1 — ¢ (x, Y1 (x)) in the annulus C(a*, z** 4+ ¢) and

d
@Qﬁl(xa}/l(x)) > 0; (7.20)

r=x**

iv) if 2** = 2%, then ¢1 (23, Yi(25)) < 1;

v) if 2 = 2% and ¢ (23,Y1(z)) < 1, then for some § > 0, the function
x 1 —¢1(z,Y1(x)) has no zeros in Us = C(z*, 25 + O\, 2% + 6[;

vi) if 2** = 23" and ¢y (2%, Yi(23)) = 1, then for some § > 0, the point %" is an only
zero of the function z — 1 — ¢1 (2, Y1(2)) in U; and as  — 23,

. Oy P(x,
L= ¢1(2,Y1(2)) ~ /a5 —x  with ¢ = 0ye1(,y) 82]3((myy)) < 0.
v @)=y @)
(7.21)

7.4.1 Outline of the proof of Proposition 7.7

To prove this proposition, we first get a probabilistic representation of the function
x — ¢1(z,Y1(x)) similar to those of the function = — Yj(z). This is a subject of
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Corollary 7.8. In Section 7.4.3, as a straightforward consequence of this result, we
get the first and the second assertion of Proposition 7.7. The proof of the third assertion
of this statement is given in Section 7.4.4 and the proofs of the last tree assertions are
completed in Section 7.4.5.

7.4.2 Probabilistic representation of the function = — ¢ (z, Y1 (2))

The following probabilistic representation of the function z — ¢ (z,Y1(z)) is another
useful for our purpose consequence of Lemma 7.1:

Corollary 7.8. Let (S(n)) be a random walk on the half-plane Z x IN with transition
probabilities

p(j—k) forall jk = (ki, ko) € Z x N with ky > 0

(7.22)
pi1(j —k) forall j, k= (ki,ke) € Z x N with ky =0

Pr(S(1) =j) = {

and let 77 be the first time when the random walk (S(n) = (S1(n), S2(n))) hits the
boundary Z x {0}: A
Ty =inf{n >0: S(n) € Z x {0}}.

Then under the hypotheses (A1)~(A3), for any x € C(z%, 2%)
612, Yi(2)) = gy (25 Ty < +o0). (7.23)

Proof. To get (7.23) from Lemma 7.1 it is sufficient to notice that by the Markov property,

and according to the definition of the random walks (S(n)) and (S(n)),

E0,0) (xgl(Tl); 1 < +oo) = Z pr (k)z* + Z 1 (k) Eg (25T Ty < 400)
keZx {0} k=(k1,kz) EZXIN: ka#0
= Z pr (k)xk + Z o (k)21 Yy ()72
keZx{0} k=(k1,kz) EZXIN: ky#0
— pu(a, V(). 0

7.4.3 Proof of the first and the second assertions of Proposition 7.7

With Corollary 7.8, by using the same arguments as in the proof of Lemma 7.2 we get

Corollary 7.9. Under the hypotheses (A1)-(A3), the function x — ¢;(x, Y7 (z)) is strictly
convex on [z}, 7| and satisfies on the set C(z}, z%) the following relation

01(2, Y1(2))| < d1(fa], Ya(lz])), Vo # |zl (7.24)

Remark that this statement proves the first assertion of Proposition 7.7. Moreover,
since by Corollary 4.1,

¢1(z,Y1(z)) <1 forany =z €la™, 2™, (7.25)

using (7.24) one gets (7.19), and consequently, the second assertion of Proposition 7.7
also holds.

7.4.4 Proof of the third assertion of Proposition 7.7

Suppose now that 2** < z%'. In this case, by Corollary 4.1,

1z, Y1 (™)) =1 and ¢1(z,Yi(x)) >1 forall z€la™, zp]. (7.26)
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Using this relation together with (7.19) one get that the point 2** is an only zero of the
function « — ¢1(z,Y1(x)) — 1 in the set {x € C : z* < |2| < £**}, and since the function

x +— ¢1(x,Y1(x)) — 1 is analytic in the neighborhood U of this set, it follows that for
some 4 > 0, the point z** is an only zero of this function in the annulus C(z*, z** + §).
Moreover, since the function = — ¢;(z, Yi(x)) is strictly convex on the line segment
[z}, 23] and by (2.9), in the case when z** < z73, the point 2** belongs to the interior of
this line segment, from (7.25) and (7.26) it follows that

Lpen@) >0

r=x**

and consequently, the point z** is in this case a simple zero of the function = —
¢1(x,Y1(z)) — 1. The third assertion of Proposition 7.7 is therefore also proved.

7.4.5 Proof of the last three assertions of Proposition 7.7

Suppose now that z** = z}'. Then by Corollary 4.1, ¢;(z3,Y1(z3)) < 1, and
consequently, the fourth assertion of Proposition 7.7 holds. Moreover, if z** = z}'
and ¢ (x5, Yi(z}3)) < 1, using (7.24) we get

|p1(x, Y1(2))] < ¢1(|z], Yi(|z])) <1, forany z € C with z* < |z| < =},

and consequently, the function z — ¢;(x,Y1(x)) — 1 has no zeros in {z € C : z* <
|z| < 23" }. Since the function z — ¢1(z, Y1(x)) is continuous on the set Us, we conclude
therefore that, for some 5> 0, it has no zeros in U 5

Finally, if z** = 23" and ¢1 (3, Y1 (23")) = 1, using again (7.24) one gets that the point
x5 is an only zero of the function z — ¢1(z,Y1(x))—1lintheset {x € C : z* < |z] < 2}
Moreover, since under our hypotheses, the function (z,y) — ¢1(z,y) is analytic in a
neighborhood of the point (23, Y1(x}")) and since because of Assumption (A3)(iv),

ay(bl(m};*’Yl (‘T}(’*)) >0,

using (7.6) one gets that as z — z},

613 Yi(2) ~ 1 ~ (0= 25)001 (05, Vi () = oy/a — 20, 01(a5 Vi)
~ —e\/Ty — 20,61 (23, Y1 (a}))

with

> 0.

(z,y)=(=%",Y1(zF"))

¢ = /0. P(2,9)/02,P(x,y)

This proves that the point 2% is in this case an isolated zero of the function =z —
¢1(x,Y1(z)) — 1 in Us. Since this function is continuous in a neighborhood U; of the set
{r € C : z* <|z|] < z}}, and has no zeros in {z € C : z* < |z| < =}, v # =3}, we
conclude therefore that for some 4 > 0, the point 23 is an only zero of the function
x + ¢1(x,Y1(x)) — 1 in U;. The last assertion of Proposition 7.7 is therefore also proved.

7.5 Analytic continuation of the function z—H,(z,0), cases (B0)-(B4)

In this section, we extend the function « — H;(z,0) beyond the point z4 in the
cases (B0)-(B4). The cases (B0), (B1), (B3), (B4), and the case (B2) with z** < z}
are considered in Proposition 7.10. The case (B2) with z; = 23" is considered in
Proposition 7.11 below.
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Proposition 7.10. Suppose that the conditions (A1)-(A3) are satisfied and let either one
of the cases (B0), (B1), (B3), (B4) holds or (B2) and z** < 3" hold. Then for some § > 0
and any j € Z%r, the function z — H,(z,0) can be extended as an analytic function to the
set B(0,zq4 + d)\{z4}, and (2.40) holds with s (j) defined by (2.35) and a; > 0 defined
by (2.41).

Proof. Under the hypotheses of this proposition, by Corollary 7.6, for some 4; >
0, the function x — L;(z,Yi(x)) + ¥a(x,Yi(x))he;(Yi(x)) is analytic in the annulus
C(xq — 01,24 + 01), and using the identities

(1= ¢1(z,Y1(2)))Hj(z,0) = =1 (z, Yi(2)) h1j () (7.27)
= Lj(x,Y1(x)) + Yo(z, Y1 (x))he; (Y1 (2)) (7.28)

the function z — (1 — ¢1(z, Y1(x)))H,(x,0) can be analytically continued to the open
annulus C(xq — 41,24 + 91). Since by Proposition 7.7, for some d2 > 0, the function
x> (1—¢1(z,Y1(x))) ! is analytic in the set C (x4 — da, 24+ 92)\{z4} and has at the point
x4 a simple pole with

. Tg — X
lim

i vy~ (o)

T=Tq

we conclude therefore that the function z — H,;(x,0) can be extended as an analytic
function to the set B(0,z4 + 0)\{z4}, and that (2.40) holds with s (j) given by (2.35),
and a; > 0 given by (2.41). O

Proposition 7.11. Suppose that the conditions (A1)-(A3) are satisfied and let (B2) and
zq = 7 hold. Then the following assertions holds.

- If ¢1(z3", Yi(2p)) = 1, then for some § > 0, the function « — H;(x,0) can be
extended as an analytic function to the set B(0,z% + §)\[z**, 25" + J[ satisfying
(2.42) with s, (j) defined by (2.35) with 24 = 3" and a > 0 defined by (2.43).

- If ¢1(a3 . Yi(z3)) < 1, then for some § > 0, the function « — H;(z,0) can
be extended to the set B(0,z} + 0)\|z}p,2p + 6] as an analytic function in
B(0,z% + §)\[z5, 23 + d[ and a continuous function on B(0, x5 + d)\]|z3, 25 + J],
satisfying (2.44) with 3 (j) defined by (2.36) and a; > 0 defined by (2.45).

Proof. Indeed, in this case, by Corollary 7.6, for some 0 < §; < ¢, the function

z +— Lj(z,Y1(x)) + ¢¥(z,Y1(x))he;(Y1(2z)) is analytic in C(zq — 01,24 + 61) N U, and
continuous on C(xq — 61,24 + 91) N U., and using the identities (7.27) end (7.28),
the function z — n;(z) = (1 — ¢1(z,Y1(x)))H;(2,0) can be extended to the set

C(xg— 01,29+ 061)NU; as an analytic function in C(x4 — §1, 24+ 1) NU. and a continuous
function on C(z4 — 1,24 + 61) N U.. Since by Proposition 7.7, for some 0 < § < §;, the

function z — 1/(1 — ¢1(x,Y1(x))) is analytic in the set C(xq — §, 24 + 0) N U., we get
therefore that the function  — H;(x,0) can be extended as an analytic function to the

set C(zqg — 6,24+ 96) N (j's by letting

Hj(2,0) = nj() (1 — ¢1 (2, Y1 (2))) "

= (Lj(2,Y1(2)) + o (@, Y1 (@) hoy (V1 (2)) (1 = 61w, Vi (@) . (7.29)
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Recall moreover that by Proposition 7.7, when ¢, (3, Y1 (2%")) < 1, the function z —
1/(1 — ¢1(z,Y1(z))) is continuous on C'(zq — 6, x4+ 0) N U, and when ¢ (23, Y1 (25)) = 1,

ok
J}P — X

lim ———————— > 0.
T E" 1— ¢1($, Y1(.23))

(zy)=(zp", Y1 (zp))
(7.30)

Hence, in the case when ¢, (23", Y1(2}")) < 1, the function « — H;(z,0) can be extended
as a continuous function to the set C(xq — d,24 + 6) N U, and in the case when
o1(x3, Yi(x3)) = 1, using (7.29) (7.30), one gets (2.42) with s (j) defined by (2.35),
and as > 0 given by (2.43).

Remark finally that when ¢ (¢, Y1 (23)) < 1, using (7.29), for « € B(0,z%") closed
enough to =7, one gets

= <8y¢1($7y)\/azp(xvy)/agyp(x’y))_l

iH-(:c,O) = % (rj (2, Y1(2))(1 = ¢ (2, Y () 71)

dx
= ( (2, Y1 (2)) + (¢2(z, Y1(2)) = 1) H; (0, Y1 (2)(1 = du (2, Yi(2))) ")
=9, ((L; ¢2(Jc y) = DH;(0,9))1 = d1(2,9)) )|,y 0
+ 0y ((Lj(z, Yi(2)) + (f2(, Yi(2)) = 1)H;(0,Y1(2)))(1 = du (@, Yi(2) ™) [, _y, )
d

where by (7.6), as T — rp

d c 1

—Y: ————— with c¢= ;,/0,.P(z,y)/0%,P(x, 0.

' gV 0P e e Wit

Since in the case when ¢, (z}, Y1 (z}3")) < 1, the function

(x,y) = (LJ(x7y) + (¢2($,y) - 1)HJ(07y))(1 - ¢1(x7y))_1

is analytic in a neighborhood of the point (z3,Y1(z})), it follows (2.44) with a; > 0
given by (2.45). O

7.6 Analytic continuation of the function z—H;(z,0), cases (B5) and (B6)

Now we are ready to extend the function z — H;(z,0) beyond the point z; when
either (B5) or (B6) holds. This is a subject of Proposition 7.12 below.

Proposition 7.12. Under the hypotheses (A1)-(A3), there is § > 0 such that for any
Jje Zi, the following assertions hold

i) If (B6) holds, then the function = — H;(x,0) can be extended as an analytic function
to the set B(0,z4 + 0)\{zq} and (2.52) holds with a5 > 0 given by (2.53).

ii) If (B5) holds and z4 = 2** < z7, then the function z — H;(z,0) can be extended
as an analytic function to the set B(0,z4 + 0)\{zq} and (2.46) holds with a3 > 0 given by
(2.47).

iii) If (B5), 2q = 2™ = o} and ¢ (23, Y1(«}")) = 1 hold, the function z — H;(z,0) can
be extended as an analytic function to the set B(0,z4 + 0)\[z4, 24 + [ and (2.48) holds
with a4 > 0 given by (2 49).

iv) If (B5), 24 = o™ = 2" and ¢ (23", Yi(2}")) < 1 hold, the function z — H;(x,0) can
be extended as an analytic function to the set B(0, x4 + 0)\[zq4, z4 + [ and (2.50) holds
with a4 given by (2.51).

Recall that under our hypotheses, all functions (z,y)—L;(z,y), (z,y)—¢1(z,y) and
(x,y)—o(z,y) are analytic in some neighborhood V of the set Q(T'). Throughout this
section, the set V will be given.
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7.6.1 Preliminary result

We begin the proof of this proposition with the following lemma.

Lemma 7.5. Under the hypotheses (A1)-(A3) and if one of the cases (B5) or (B6) holds,
there is 6 > 0 such that for any j € Z?2, the function z — (1 — ¢y (z,Y1(x)))H;(0,Y1(x))
can be analytically continued to the set C(xzq — 6,24+ 6) N U \ {z4}.

Proof. Suppose that either (B5) or (B6) holds. Then by Proposition 2.2 and using
relations (2.33), (2.34)), one gets

*%

X1(ya) <wa=Xo(ya) <™, y" <ya=y" =Yi(za) <yp and (za,ya) € Sa,
(7.31)
with 4 = 2™ in the case (B5), and z4 < z** in the case (B6). Hence, with the same
arguments as in the proof of proposition 7.10, (it is sufficient to exchange the roles of x
and y), one gets that there exists dy > 0 such that for any j € Z2, the functions h; j and
y — yho;(y) = H;(0,y) and can be analytically continued to the set B(0,yq + d0)\{ya},
and

Jim (ya = y)yha;(y) = lim (ya — ) H;(0,y)

= o1 (X2 (ya), ya) + (61 (X (ya), ) = VH; (X2 (ya), 0))  (7.32)
with
> 0. (7.33)

Y=Yd

o = (jy@(Xl(y),y))_l

Since by (7.31), y4 < yp', without any restriction of generality, we will suppose
throughout our proof that
Ya + 00 < yp- (7.34)

Moreover, by using Proposition 7.1 and the first assertion of Corollary 7.6 we can inject
y = Y1(z) to the functional equation (2.30):
- by Proposition 7.1, for some ¢ > 0, the function Y; is already analytically continued
to U, and extended as a continuous function to the set U,
- by Corollary 7.6, there is 4;€]0,¢[, such that any j € Z2, the functions
T Lj(x,yl(l‘)) + Z/J2($7Y1(,’L‘))h2J(Y1(IE)) and z — —l/Jl(l‘,Yl(Qi))hlj(m) = (1 —
¢1(x,Y1(z)))H;(z,0) are analytic in the set C(xzq — 61,24) and for any « € C(zq —
01, z4) the following relation holds

(1 —¢1(z,Yi(2)))H;(x,0) = Lj(z,Y1(z)) + ao(z, Yi(z))ho; (Yi(2)). (7.35)

To complete the proof of Lemma 7.5, the following steps will be performed:

step 1: First we will show that for some J; €]0,4:], the function z — L;(z,Yi(z)) +
o (z,Y1(x))he; (Y1 (x)) is analytic in the set

{LL‘ S C(l‘d — 09, g + 62) NnNU; : Yl(l') #* Yl(l‘d)} (7.36)

step 2: Next we will prove that for some d3 €]0,ds[, the point x4 is an only zero of the

function z — Yi(z) — Yi(zq) in C(xq — 03,4 + 03) N U, and we will deduce from

our previous result that the function z — L;(z,Y1(x)) + ¥a(z, Y1(x))he; (Y1 (2)) is
analytic in the set

C(:L'd — 03,24 + 53) NU. \ {xd} (7.37)

With this result and using the identity (7.35) we will be able to complete our proof.
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Step 1: Since because of (7.31), Y1(z4) = ya < ya + 0o, by Proposition 7.4 applied
with § = yq + d9, we obtain that for some 0 < d2 < ¢, the function = — (x,Y1(x))
maps the set C(zq — 2,24 + d2) N U, to the set {(z,y) € V : |y| < yq + do}. Since the
function y — H;(0,y) is already analytically continued to the set B(0,yq + do) \ {y4} and
the functions (z,y)—2(x,y) and (z,y) — L,(x,y) are analytic in V, it follows that the
function z — L;(z,Y1(2)) + v2(z, Y1(x))he; (Y1 (z)) is analytic in the set (7.36).

Step 2: by (7.31) and (2.9), we have

Yp Sy <ya=y" =Yi(za),

and consequently, (z4,y4) # (X1(yp),yp). Since by (7.31), (z4,y4) € S21, using the
definition of the curve Sy (see (2.17)) one gets therefore

Xy (yp) < wa < T,

and consequently, using the assertions (ii) and (iv) of Proposition 7.1, we conclude that
for some 0 < d3 < d, the point x4 is an only zero of the function « — Y;(z) — Y1 (z4) in
C(xq — 3,24 + 93) N U. Since with our previous result, we have already proved that
the function z — L;(z,Yi(z)) + ¥a(x, Yi(x))he;(Y1(x)) is analytic in the set (7.36), this
proves that the function z — L;(z,Y1(z)) + ¢2(z, Y1(x))he;(Yi(2)) is analytic in the set
(7.37). Finally, since on the annulus C(x4 — 01, 24), the identity (7.35) holds, this proves
that the function z— — 91 (z, Y1 (x))hij(x) = (1 — ¢1(x, Yi(z)))H,(x,0) can be analytically
continued to the set (C(xq — 3,24 + J3) N U)\{za}- O

7.6.2 Proof of Proposition 7.12
To complete the proof of Proposition 7.12, we consider separately all possible cases:

when (B6) holds;

when (B5) holds with z4 = ™ < 2};

when (B5) holds with 74 = 2** = 2% and ¢, (2%, Y1 (25)) < 1;

when (B5) holds with z4 = ** = 2% and ¢1 (x5, Y1(z3)) = 1.

Suppose first that (B6) holds. Then by Proposition 2.2 and the definition of x,; (see
(2.33)), the following relations hold

* 3k

zp <" < Xq(2™) <xqg=Xo(y™) <™ <z (7.38)

Hence, by Lemma 7.5 and according to the definition of the set U. (see (7.2)), for
some 4 > 0, the function z — =11 (z, Y1 (2))h1(z) = (1 — ¢1(x, Yi(z)))H;(z,0) is already
analytically continued to the set C(zq — 6,24 + 0)\{z4}. By Proposition 7.7, for any
x € C(z*,z*™),

|¢1(2, Y1 (2))] < ¢1(|], Ya(lz])) < 1.

Since by (7.38), z* < x4 < z**, it follows that for 0 < ¢’ < min{z** — z4,z4 — 2*}, the
function z — 1/(1 — ¢1(x, Y1 (x)) is analytic in C(xq — 0,24 + ¢') and

1 — ¢1 (x4, Yl(:I:d)) > 0. (7.39)

Since the function z — 7;(z) = —¢1(z,Y1(2))h1;(z) = (1—¢1(z,Y1(x)))H;(x,0) is already
extended as an analytic function to the set C(xy — 0,24 + 0)\{z4}, it follows that for
0 = min{¢’, ¢}, the function the function z — H;(z,0) can be analytically continued to

C(xqg — 6,24+ 6)\{xq} by letting
Hj(x,0) = (1= ¢1(x, Y1(2))) 7" (L; (2, Y1(2)) + vha (@, Yi(2))ho; (Y1 (2))). (7.40)
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Remark finally that by (7.31), y4 = y** < y5'. Hence, using exactly the same arguments
as in the proof of Proposition 7.7 (it is sufficient to exchange the roles of x and y), one

gets ¢2(X1(yd)7yd) = ¢2(X1(y**)7y**) = 1. Since by (731), Xl(yd) < Xg(yd) = Xq and
Y1 (z4) = y4, and since under our hypotheses (see Assumption (A3)(vi)) the real valued
function x — ¢o(x, yq) is strictly increasing, it follows that

b2(za,Y1(24a)) = ¢2(wa,ya) = ¢2(X2(Ya), ya) > ¢2(X1(ya),ya) = 1. (7.41)

Using these relations together with (7.40), (7.39), (7.32) and (7.5), we obtain

lim (zq — 2)H;(2,0) = lim (24 — 2)(1 — ¢1(z,Y1(x))) " a(, Y1 () hoj (Y1 ()

= lim (24— 2)(1 = 612, Yi(@))) " (6 (e, V(@) — DH; (0, Yi (@)
= a5 (L;(X1(9a): va) + (61(X1 (9a): va) = DH;(X1(92), 0)) = as ()

with

0 = (Gale) = 1) (1= n(a) LK) Vi) >0

(z,y)=(Ta,ya)

The first assertion of Proposition 7.12 is therefore proved.

Suppose now that (B5) holds and let 24 = ** < 23°. Then by Proposition 2.2 and the
definition of x4 and y,4 (see (2.33) and (2.34)), one has

Yya =y =Y1(2™) =Yi(zq) and z* < X1(ya) < g = Xo(yq) = 2™ < 23

and by Proposition 7.7, for some § > 0, the function z — 1/(1 — ¢1(z,Yi(z))) is
meromorphic in the annulus C(z*,z4 + ¢), and has there a unique and simple pole
at the point z4 = x** with

. g — &
lim

o ) (dcfc@(m’“(m”)_l

> 0; (7.42)

T=Tq

Here, the only difference with the previous case is that the function x — 1/(1—¢4 (z, Y1 (2))
has a simple pole at x4, = **. Using therefore exactly the same arguments as in the
previous case we obtain that for some § > 0, the function z — H;(z,0) can be extended
as an analytic function to the set C'(z4 — 0, x4 + §)\{zq}. And using finally (7.40) together
with (7.32), (7.41), (7.5) and (7.42) we get

lim (x4 —x)*H;(z,0) = as (Lj(Xl(yd)a ya) + (¢1(X1(ya), ya) — 1)H;(X1(ya),0)) = az2(j)

T—Tqg
with

d

0 = (Ol Vi(o)) = 1) ( o V(o) a0 () ) i) )

T=T4,Y=Yd

= (6a(e) = 1) (oo Vi) L n (a0 Vi) ) >0,

T=Td,Y=Yd
The second assertion of Proposition 7.12 is therefore also proved.

Suppose now that (B5), zq = 2™ = z} and ¢1 (23, Y1(z3)) < 1 hold. Then by
Lemma 7.5 and according to the definition of the set U. (see (7.2)), by using the identity
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(7.35), the function z — —1(x,Y:1(x))h1;(z) was already analytically continued to the
set C(zy — 0,25 + 6)\[3:}*,9013 + 4], and by Proposition 7.7, for some 0 < § < ¢, the
function z — (1 — ¢y (z, Y1 (x)) ! is analytic in C(z% — 6,235 + 0)\[z5, 2" + 6] and

Hj(x,0) = whyj(2) = an; () (12, Y1(2)) 7" = n;(2)(1-¢1 (2, Yi(2)) ™', Vo € Cap —6,25).

Hence, by using the identity (7.40), the function z — H;(z,0) can be analytically
continued to the set C(z% — 0, 2% + d)\[z%, 25|, and using finally (7.40) together with
(7.32), (7.6) and (7.31) one gets

lim
T

- hm VrE —z(1— ¢1(z,Yi(2) " (Ly(2, Yi(2)) + (2, Yi(2))he; (Yi(2)))

= Lm Vi — a1 = 61(, Yi(2)) (e, Yi () hay (Yi ()
= Jim Va1 61, Va(@) ™ (6 Vi(@) — DH; (0, Yi(x)

= (L;(X1(9a): va) + (61(X1(9a): va) = DH;(X1(92), 0)) = dazea ()

with

1
ag = (p2(x4,ya)— \/ P(x4,ya)/0zP(xa,ya) ((1 - ¢1(afd,yd))jy</>2(X1(yd),yd)> >0,

Consider now the case when (B5), z4 = 2™ = 23 and ¢1(z3, Yi(2%)) = 1 hold.
In this case, with exactly the same arguments as above one gets that for some
0 > 0, the function x — H;(z,0) can be continued as an analytic function to the set
C(x3 — 6,25 + 0)\[z5, 37 by using the identity (7.40). The only difference is here that

now, by Proposition 7.7,
1 C1

1= i@ Vi) Jap —o

with

>0
(zy)=(zp" Y1(23"))
and consequently, since in this case z4 = 23 and yq = Y1 (2}"), using (7.40) together
with (7.32) and (7.31), one gets

c1 = (3y¢1(337y))\/&cp(xvy)/agyp(x’y))il

lim (zq — 2)H;(z,0) = a4 (L (X1(ya),ya) + (1(X1(ya), ya) — 1) H;(X1(ya),0))

T—Tqg

with

> 0.

a1 = (da(e.y) — )32, Pla,y) (ayqsl(x,y)@P(x,y)j;asQ(Xl(y),y))

(z,y)=(za,ya)

Proposition 7.12 is therefore proved.

7.7 Analytic continuation of the function (z,y) — (1 — P(z,y))H,(z,v)
The following Lemma is the first step in the proof of the last assertion of Theorem 2.3.
Lemma 7.6. If the conditions (A1)-(A3) are satisfied and (B2) holds, then

- the set {(z,y) € Sa2: * < 4, y < yq} is non-empty;
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- there exists a neighborhood V of the set Ss5 in ]R?|r such that, for any j€Z?2,
the function z—(1—P(z,y))H;(z,y) can be analytically continued to the set
{(z,9)eQV) : [z|<za, [y|<ya};

- for any (z,9)€{(z,y) €S20 : v<x4,y<ya}, the function »; ;) is non-negative on 72
and for any j € 73 \Ey,

lim (1 - P(z,y))(H;(z,y) — Hj(z,0) — H;(0,y)) = 5,9 (7.43)
(mﬁy)%(mo»y)
(z,y)eD

Proof. Indeed, by Theorem 2.1, for any j € Zi and (&,9) € Syo with & < z4 and § < yq,
there is a neighborhood V (&, %) of the point (£, 7) in R?, such that for any j € Z2, the
function

(a:,y) = Lj(‘r’y) + (¢1($7y) - 1)Hj($>0) + (¢2(x’y) - 1)Hj(0’y)
= Lj(z,y) + ¥1(2,y)h;(x) + 2z, y)he;(y)
is analytic in the polycircular set {(z,y) € C? : (|z|,|y|) € V(%,9)}, and the function
(1’7 y) — (1 - P(.T, y))(Hj(xv y) - Hj(x7 0) - Hj(oa y)) = Q(l’, y)hj(xa y) can be continued as
an analytic function to {(z,y) € C*: (|z|,|y|) € V(Z,9)} by letting
(1 - P(a:)y))(H](x’y) - Hj(x’ 0) - H]<O’y)) = Lj(xvy) + (¢1(.13, y) - 1)Hj(x’ 0)
=+ (¢2(‘ray) - 1)HJ(0ay)

Hence, for any j € Z3 the quantity

#ag) = Li(#,9) + (61(2,9) — DH;(2,0) + (¢2(2,9) — 1) H;(0,9)

is well defined and as (z,y) — (Z,9) for (z,y) € lo) (7.43) holds. Moreover, since by
Theorem 2.1, the function (z,y) — H;(x,y) is analytic in the set Q4(I') = {(z,y) € C? :
(lz],ly]) € T, |z| < x4, ly| < ya}, and since the set 24(T") is a union of the poly-discs
centered at the origin in €2, the power series

Hj(l‘,y) - Hj(l',o) - Hj(o,y) = Z Z g(j’k)xk'lykz
k1=1ko=1

converge on the set Q4(T"), and consequently, for (z,y) € I’ such that z < 24 and y < yq,

Hj(zay) - Hj(l’,O) - Hj(O,y) 2> 0.

Since for (z,y) € D, P(z,y) < 1, it follows that for any j € Z?2, the left hand side of
(7.43) is non-negative and consequently, the function »(; ;) is non-negative on Z%r. O

7.8 Harmonic functions x;, »; and x(, ) and their properties

In this section, the second step of the proof of Theorem 2.3 is performed (see
Section 7.1). This is a subject of the following statement.

Proposition 7.13. Under the hypotheses (A1)-(A3), the following assertions hold:
i) The function s¢; defined by (2.35) is non-negative on Zi, positive on Zi\EO and
harmonic for (Z,,(n)) in each of the following cases:

- if one of the assertions (B0), (B1), (B3) or (B4) is valid;
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- if (B2) holds and z* < %'
- if (B2) holds, z** = 2% and ¢ (23", Yi(23)) = 1.

ii) The function s, defined by (2.37) is non-negative on Z2, positive on Z?2 \Eo and
harmonic for (Z,,(n)) in each of the following cases:

— if one of the assertions (B0), (B1), (B5) or (B6) is valid;
- if (B2) holds and y** < y5';
— if (B2) holds, y** = y&* and ¢1 (X1 (y5),y5) = 1.

iii) If (B2) is valid with ** = =3 and ¢1 (23", Y1(2%)) < 1, then the function 34 defined
by (2.36) is non-negative on Z?2 , positive on Z?2 \ E, and harmonic for (Z,,(n)).

iv) If (B2) is valid, then for any (Z,§) € So2 with < 24 and § < 4, the function s; j
defined by (2.39) is non-negative on Z2, positive on Z3 \ E; and harmonic for (Z,,(n)).

To get this result, we first show there that the left hand sides of (2.40), (2.42),
(2.44), (2.46), (2.48), (2.50), (2.52) and (2.54) are non-negative. With these arguments
we conclude that each of the functions defined by (2.35), (2.36), (2.37), (2.39) is non-
negative on Zi. Next we show that each of these functions (in the corresponding cases i)-
iv). of our proposition) is harmonic for (Z,,(n)), and by using suitable Lyapunov functions,
we prove that each of them is not identically zero on the set {j € Z2; ||| > No}. With this
results and using Lemma 2.2 we will be able to show that each of the functions defined
by (2.35), (2.36), (2.37), (2.39) (in the corresponding cases i)-iv). of our proposition) is
positive throughout the set Z3 \ E.

7.8.1 Preliminary estimates

We begin the proof of this proposition with the following preliminary result
Lemma 7. 7 Suppose that the cond1l:1ons (A1)-(A3) are satisfied and let two points
(x1,11) € D N D1 and (x2,y2) € D ﬂ D2 sat1sfy (6.6). Then for some constant C' > 0
(depending on the points (x1,y1) € D N D1 and (z2,y2) € D N DQ but do not depending
onje7Z?),
P;(mo < +00) < C (x{ly{Q + xélyéz) , Vjezi (7.44)

and

> gk (huhe +aboh) <O (alyd +ahud), VieZi  (749)

keZ?

Proof. Indeed, if two points (z1,y1) € D N Dl and (z2,y2) € D N D02 satisfy (6.6), then by
Lemma 6.1, for some 0 < # < 1 and some finite subset E of Z?% such that (0,0) € E and
the function f : Z2 — Ry defined by f(ji1, j2)=21'y]>+a} y3?, for all (jy, jo)EZ2 satisfies
the inequality

E;(f(Z(1)); 5 > 1) < Of(j), Vi= (jr.j2) € Z7,
with 7z = inf{n > 0 : Z(n) € E}. By Lemma 6.2, it follows that for any j € Z2, the
series

> gl k) (k) = (k) (fc’fly'fz +w’§1y§2) (7.46)

kez? kez?
converges, and moreover, (see (6.12) in the proof of Lemma 6.2), for

k)= P;j(Z(n)=k; e >n), jEZI\E, keZ?
n=0
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the following relation holds:

: J1,,J2 J1,,J2
> e k) (k) < fU) _ ay F oy (7.47)
1-06 1-6
kez3

Since (0,0) € E, from the last relation it follows in particular that for any j € Z2 \E,

P;(ry < +00) < (7 < +00) < <mmf( >) S 05 k) (R)

175 v
1

< (minro)) (efode + o) (7.48)

= \teE 1-0 !

and consequently (7.44) is proved.
Remark finally that for any j = (j1,0) € Z2\E,

doaG k)= > geG k) + Y. (0 DY g k)f(k),

kez2 kez? £eE\{(0,0)} kez?
< Y ge( k) f(k) + Pj(rp < +00) max > gt k)£ (k).
kez3 kez3

Since the set F is finite and for any j € Zi, the series (7.46) converge, this last relation
combined with (7.47) and (7.48) prove (7.45). O

Lemma 7 8. Under the hypotheses (A1)-(A3), for any 0 < y < yq there are two points
(x1,y1) € D N D1 and (z2,y2) € D N D2 satisfying (6.6) and such that for some C > 0,

H,(0,5) < C (x’l“y]fQ + x’glygz) , Viez?. (7.49)

Proof. Indeed, if 0 < y < yq4, then, by the definition of the set ©, the point (0, Y3 (2**)) is
in © and, consequently, by Lemma 6.4 there are two points (z1,y1) € D N D; and
(z2,y2) € D N Dy satisfying relations (6.6) and (6.9) with (z,y) = (0,Y1(z**)). By

Lemma 7.7, for these two points (z1,y1) and (z2, y2), one gets (7.45) with (z,y) = (0,y),
and consequently (7.49) holds. O
7.8.2 Proof of the first two assertions of Proposition 7.13
Consider first the case when one of the following assertions holds:

- one of the cases (B0), (B1), (B3), (B4) holds;

- (B2) and z4<z%" hold;

- (B2), zg=z% and ¢1 (23, Yi(25))=1 hold.
By Proposition 7.7 and the definition of x4, we have always x4 = x** and

¢1(zq,Y1(zq)) = 1. (7.50)

To prove Proposition 7.13 in each of the above cases, we first show that the function s,
is non-negative and harmonic for (Z,,(n)). Next we will prove that s (j1,0) > 0 for all
j1 > 0 large enough, and using finally Lemma 2.2, we will conclude that the function s
is strictly positive on the set Z2 \ Ej.
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Suppose first that either, one of the cases (B0), (B1), (B3), (B4) holds, or (B2) and
zq < x3 hold. Then, by Proposition 7.10, for any j € Z3,

lim (04— 2)H; (2,0) = e (§)
with ¢ > 0. Since (x4 — z)H,(x,0) > 0 for any real z €]0,z**[, it follows that sz (j) > 0
for any j € Zi. When either one of the cases (B0), (B1), (B3), (B4) occurs or (B2) and
z** <z’ hold, the function s is therefore non-negative on Zi.
Suppose now that (B2), z** = 23" and ¢1 (23, Y1(23)) = 1 hold. In this case, by
Proposition 7.11, for any j € Z2,
lim aq—xH;(x,0) = c(j)
T—Tq
with ¢ > 0. Since /zq — x H;(x,0) > 0 for any real z €0, z4], it follows that sz, (j) > 0 for
any j € Zi. Hence, in this case, the function s¢; is therefore also non-negative on Zi.
Harmonicity property of the function s¢; for the killed random walk. See Definition 1.
For j = (ji,j2) € Z2, by the definition of the functions (z,y) — L;(z,y) and
s : 2% — Ry, we have

2l (Yi(za))?2 = Pj(T < +00) + (¢2(z4, Yi(2a)) — 1) H;(0,Y1(24))

if j # (0,0),

bo(wa, Y1(za)) — P00y (7 < +00) + (¢2(2q, Y1(7a)) — 1)H(0,0)(0, Y1(74))
if j = (0,0).

s (j) =

Remark that for any j = (j1,j2) € Z3,
E; (P71 (T < +00); 7> 1) =P;(1 < 400) — p1(—1,0)L{(0,1)3 (ji1, j2) — p2(0, =1)L (1,003 (j1, J2)
— (=1, =D)L 1,1)3 (41, J2) — 10(0,0) L (0,0)3 (41, J2)

and since the function j — H,(0,Y:(z4)) is potential for (Z,,(n)) (see the properties of
potential for the Markov chains functions in [30]),

E;(Hz1)(0,Y1(za)), 7> 1) = H;(0,Y1(24)) — (Yi(24))* 1 (5,—0,5,50y (41, J2),
where for j, k € Z? we denote
1 ifj =k,
0 otherwise,

Ly (d) = {

By the definition of the function Y;, we have P(zq4,Yi(x4)) = 1, and because of (7.50),
¢1(z4,Y1(zq)) = 1. Hence, for any j € 72,

E; (27" (Yi(2a)) s 7> 1)
¢Q($dayl($d)) = 10(0,0)1¢(0,0)} (41, J2) if j = (0,0),
i o1(xq, Yi(2q)) — p1(—1,0)1y0,1)3 (J1, J2) if j1 > 0and jo =0,

(Yi(za))? pa(2a, Yi(xa)) — p2(0, =1) 111,003 (41, J2) if jy =0and j3 >0,
a} (Yi(2q))? P(xq, Y1(2q)) — (=1, =1)Lg1,103 (1. J2)  if j1 >0, j2 > 0,

do(xa,Y1(xa)) — 110(0,0)Lg0,0)3 (1, J2) if j = (0,0),
_ xfj — ,ul(—l,O)]l{(O}l)}(jl,jg) ifjl > (0 and Jo = 0,
(Yi(xa))?> dp2(xa, Y1(z4)) — p2(0, —=1)Lg 1,03 (J1,J2) if j1 = 0and jo > 0,
o (Yi(2q))?2 — p(=1, =1) D11y (41, J2) if j1 >0, j2 >0,
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With these relations, for any j = (ji,j2) € Z% with j; > 0, we get

E;(>1(Z(1)), 7> 1) = & (Yi(2a))* = Pj(7 < +00) + (¢2(2a, Yi(2a) — 1) H; (0, Ya(2a)),
= 1(9), (7.51)

for any j = (j1,j2) € Z3 with j; = 0 and j, > 0, we get

E;(3a(2(1)) = 2% (Yi(za))? ¢2(a, Yi(za)) — Pj(r < +00)

+ (¢2(a, Yi(za)) — 1) (= (Yi(2a)* + H;(0,Yi(za)))
= (). (7.52)

and for j = (0,0), we obtain

E;(5(Z(1)) = dpo(wa, Yi(za)) — P00y (T < +00) + (¢p2(x4, Y1(24)) — 1) H(0,0)(0, Y1(4))

Relations (7.51), (7.52) and (7.53) prove that function s is harmonic for (Z,,(n)).

To show that the function s is strictly positive at some point j = (j,72) € Z2,
we investigate an asymptotic behavior of this function as j» = 0 and j; — +o00. By
Proposition 2.2, in each of the cases (B0)- (B4) we have 0 < Yl(:nd) < yq. Hence, by

Lemma 7.8, there are two points (x1,y1) € D N D1 and (z2,y2) € D N D2 satisfying (6.6)
for which (7.49) holds for y = Y3 (z4) and consequently, by Lemma 7.7 we obtain (7.44).
Using these relations for j = (ji,j2) € Z3 with j, = 0 one gets

s (j1,0) — 2| < Oy (:c{1+xgl), Vj = (j1,0) € Z2, (7.54)

with some do not depending on j constant C; > 0. Remark that 0 < x5 < z; because

the points (z1,y1) and (z2,y2) satisfy (6.6), and that z; < x4 because (z1,y1) € DN D;.
Hence, from the last relation it follows that

%1(j1,0) ~ 17(]11 as jl — 00,
and consequently, there is N; > 0 such that

s1(j1,0) >0 forany j = (ji,0) € Z2 with j; > Ny. (7.55)

Now we are ready to complete the proof of the first assertion of Proposition 7.13: By
Lemma 2.2, there are Ny > 0 and a finite subset Ej of Z%r such that (0,0) ¢ Ey and for
any j € Z2\E, and k € Z2 with ||k| > Ny,

ZIP )=k, 10 >n)>0.

Hence, for any j € Z3\E, and k € Z3 with || k|| > Ny, there is n;; € IN such that
Pj(Z(nj}k) =k, 10> nj7k) > 0.

Forany j € Z2, k € Zi and n € N, since the function s is non-negative and harmonic
for the killed random walk, one has

x1(j) =E;(30(Z(n)), 1o >n) =2 P;(Z(n) =k, 19 > n)si (k).
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Using this relation together with (7.55), for k = (k1,0) € Z3 with k; > max{Ny, N1}, one
gets that for any j € Z3 \Ey

#(j) 2 Pj(Z(njx) =k, 10 > k) (k) >0,

and consequently, the function sz, is positive on Zi\EO.
The first assertion of Proposition 7.13 is therefore proved. To get the second assertion
of this proposition, it is sufficient to exchange the roles of x and y.

7.8.3 Proof of the third assertion of Proposition 7.13

Suppose that (B2) holds and let 2** = 23 and ¢ (25", Y1(2}°)) < 1. By the definition of
the point x4, we have here
xqg=2a"" =zp,

and remark that in this case,

~ e Lj(‘r?y)+(¢ ($>y)_1)HJ(O?y)
%1(])—(%( 1j¢1(x,y) )

o2
, JEZ.
(zy)=(z3" Y1 (25")

To show that the function 3 is non-negative on Z2, we recall that in this cases, by
Proposition 7.11,

lim W%Hj(x,o) = c5(j)

T—Tq
with ¢ > 0. Since for real x €0, 23|, the function z — H;(0, z) is increasing on |0, z}'[, it
follows that 5 (j) > 0 for any j € Z2.
Harmonicity property of the function 3¢ for the killed random walk. For j = (j1,72) €
73, we have

0,01 (@F Vi) |
-ty v ) "V T m@)

with ¢ (j) defined by (2.35) and

7)) = 51(7) (7.56)

sa(j) = OyLj(ap, Yi(ap))+(p2(ap, Yi(zp)) — 1)0y H; (0, Yi(2F')) (7.57)
+ Oy (23, Yi(2p))) H;(0, Y (zF)),
where
Jo X (xp ) (Yi(@p))2~t i j = (41, 42) € Z3\{(0,0)},
Oyo (23, Y1(27)) if j = (j1,J2) = (0,0).

Remark now that for any j = (j1,j2) € Zi, with the same arguments as in the proof of
the first assertion of our proposition, one gets

E; (31 (Z(1)), 10 > 1) = 5a(j) + (01(aF, Yi(2p)) = 1)(@F ) Lji>0,50=01 (j1, 72)  (7.58)

(here, an only difference with the proof of the first assertion of our proposition is
that ¢:(23, Yi(23)) < 1). Moreover, since the functions j — H;(0,Yi(z})) and
Jj— 0,H;(0,Y1(2})) are potential for (Z,(n)) (see the properties of potential functions
for Markov chains in Woess [30]), then for any j = (j1,j2) € Zi, one has

E;(Hz(1)(0,Y1(25)), 70 > 1) = H;(0,Y1(23)) — (Y1(25))* Lijy=0,2501(j1,2)  (7.59)

Oy Lj(xp, Y1(2p)) = {

and

E;j(9yHz(1)(0,Y1(z})), 70 > 1) = 0H;(0, Y1 (aF) —ja x (Yi(2z5))*  Lj,=0,550}- (7.60)
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Finally, straightforward calculation shows that

IE; (9, Lz<1 (@7, Yi(@}), 10> 1) = Ej(Ze(1)(@p) D (Yi(23) 207, 70 > 1)

= yéf’l(fﬂpa (@) (xp ) ]1{j1>0,j2:0}(]1,]2)

+ (Vi (23)0, P (a3, Yi(ap)) + j2 Pz, Yi(F)) ja(a ) (Vi (ap)) 2"

+ (Y1 (@p))2 7 (Yi(a )0y o2 (27, Yi(a)) + j2¢2 (25, Y1(2F))) Lji=0,5:>03 (1. J2)-

Since 9, P(z}", Y1(2**)) = 0 and P(z}", Y1 (2**)) = 1, from the last relation it follows that

Ej(a Lo (@i, Ya(@5), m > 1) (7.61)
= Oy (23", V1 (2 p) (@5 ) Uy, 50,55=0y (41, J2) + Ja (2P )Jl(Yl(ﬂf P
+ 52 (V1(25))2 7 (N (25) 0y da (25, Y1 (25)) + jada (25, Y1 (25))) L5, 0,5, >0 (J1, J2)-

When combined together, relations (7.56) - (7.60) imply that E,; (31 (Z(1), 70 > 1) = 51(j)
for any j € Z2, and hence, the function 5 is harmonic for (Z,,(n)).

To show that the function 3 is strictly positive on Z2 \{(O 0)}, we investigate an
asymptotical behavior of this function as jo = 0 and j; — +o0o. Remark that for any

j = (j1,J2) € Z2\{(0,0)} with j, =0,
1(j) = Ci(ap )t + CaPj(10 < 400) + C3H;(0, Y1 (2})) + Ca0, H;(0,Y1(2}))

with
C, — Oyd1 (x5, Yi(zp)))
- (1= oi(zp, Yi(ap)))?

and some Cy, C'3,C4 € R do not depending on j;. When (B2) and z** = =} hold, we have

(7.62)

*

xg=2"" =zp, and Yi(z}) <ya=v"" <yp,

Hence by Lemma 7.8, for e > 0 such that Yi(z**) + € < yq4, there are two points

(x1,11) € D N D1 and (z2,y2) € D N D2 satisfying (6.6) for which (7.49) holds
with y = Y1(2**) + ¢, and by Lemma 7.7 we get (7.44). Using these relations for
j = (j1,J2) € Z% with j> = 0 we obtain

.13{1 + Z’%l . . 2
IP(jl,O)(TO < +OO) < C5 ﬁ? v] = (.71’0) € Z+7 (763)
and ) .
H, 0)(0,Y1(zp) +¢) < Cs(x1" + 23') (7.64)

with some C5 > 0 and Cs > 0 do not depending on j;. Since the function y — H;(0,y)
is equal on the disk of its analyticity B(0,yy) to its power series with the positive
coefficients, we have moreover

9y H;(0,Y1(zp)) < CrH;(0, Yi(zp) + €2)

with some do not depending on j; constant C; > 0, and consequently, using (7.62), (7.63)
and (7.64), we obtain

|51 (j1,0) — Cr(a )| < Co(af! +adt), Vi >0,

with some do not depending on j; constant Cg > 0. Remark finally that the constant Cy
defined by (7.62) is strictly positive because the function y — ¢1 (23", y) is convex and
strictly increasing on |0, +oo[. Hence, with the same argument as in the proof of the first
assertion of Proposition 7.13 we obtain

51(j1,0) ~ Ci(zF)* asj; — +oo,
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and consequently, 5 (j) > 0 for all j; > 0 large enough.

The function 5 is therefore non-negative, harmonic for (Z,,(n)) and non zero at the
points (ji1,0) for all j; > 0 large enough. With this results and using exactly the same
arguments as in the proof of the first assertion of our proposition, we conclude that the
function ¢ is positive everywhere in Zi\EO.

7.8.4 Proof of the last assertions of Proposition 7.13

Suppose now that (B2) holds, and let a point (&, §) € S22 be such that & < z4 and § < yq4.
For such a point (,7), by Lemma 7.6, the function s; ;) is non-negative on Zi.

The proof of the identity
E;(5¢2.5)(Z2(1)), 70 > 1) = 3299 (§), Vi€ Z3,

is straightforward, it uses the arguments quite similar to those of the proofs of (7.51),
(7.52) and (7.53). The function *(5,9) 1S therefore harmonic for the killed random walk

(Zry (1))

To prove that s; 4)(j) > 0 for some j € Z3 we consider the point & = wp(,§) =
(up(2,9),vp(Z,9)) on the unit circle $* defined by (2.66) with z = # and y = ¢, and we
investigate an asymptotical behavior of »; 4 (j) as ||j|| = +oco and j/|j|| — .

By the definitions of the functions L; and s 4, for j = (j1,J2) € Z3\{(0,0)},

(a9)(7) = &9 = Pj(r0 < +00) + (¢1(2,9) — 1) H;(2,0) + (62(2,9) — 1) H;(0,9)

[e] [e]
Since we assume that § < y4, by Lemma 7.8, there are two points (z1,y1) € DN D; and

(z2,y2) € D N Dy satisfying (6.6) for which (7.49) holds with y = ¢, and by Lemma 7.7
we get (7.44). With the same arguments (it is sufficient to exchange the roles of x and y,

we get that there are two (z3,y3) € DN D; and (z4,y4) € D N D, for which
Hy(#,0) < O (2§ bt + afrul?) vy e 22,

with some do not depending on j € Zi constant C’ > 0. Using the last relation together
with (7.44) and (7.49), one gets

4
|35,y (G) — 27972 < CL Y altyl (7.65)
=1

with some do not depending on j constant C; > 0. For @ = wp(Z,§) = (up(Z,9),vp(Z,9))
defined by relation (2.66) with z = & and y = ¢, the point (z,¢) is an only point in the
set D where the function (z,y) — 2%y%2 achieves its maximum over D. Since non of
the points (x1,41), ..., (z4,y4) is equal to (Z, ) (recall that the points (z1,y1),. .., (Z4,y4)
belong to the interior of the set D and the point (&, §) belongs to the boundary of D), it
follows that

4
g D 0w 1l boe and /1]
and consequently, using (7.65), we get
() () ~ 2197 as ||jl| = +oo and j/|jll = @
This proves that s; 4)(j) > 0 for any j € Z2 with [|j| large enough and jl|j| closed

enough to 4.
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The function s(; ;) is therefore non-negative, harmonic for (Z,,(n)), and non zero at
some points j = (ji,j2) € Z% with [|j|| > No. Hence, the similar arguments as in the
proof of the first assertion of our proposition, we conclude that the function 5 is positive
everywhere on Z2 \ Ej.

7.9 Proof of Theorem 2.3

Now we summarize the above results in orther to get Theorem 2.3:

- The first assertion of Theorem 2.3 follows from Proposition 7.10 and the first
assertion of Proposition 7.13.

- The second assertion of Theorem 2.3 is a consequence of Proposition 7.11 and the
third assertion of Proposition 7.13.

- Proposition 7.12, Proposition 7.13 and the second assertion of Proposition 7.13
prove the assertions iii)- v) of Theorem 2.3.

— The last assertion of our theorem is proved by Lemma 7.6 and the last assertion of
Proposition 7.13.

8 Asymptotics along the axes

This section is devoted to the proof of Theorem 2.4.

For k2=0, the asymptotics (2.56)-(2.62) follows from Theorem 2.3 and the Tauberian-
like theorem (see Corollary VI.1 of Flajolet and Sedgevick [10]) in a straightforward way.
Hence, to complete the proof of our theorem, i.e. to get the asymptotics (2.56)-(2.62) for
ko > 0, it is sufficient to show that for any j € Zi\EO,

9(j, (n, k2)) 2
= = =p(ks) >0, Vky € Z”. (8.1)
Gy )
Before getting this result, let us notice that under the hypotheses (A1)-(A3), the function
y = Y1(zq,y)/Q(xq,y) is analytic at the origin y = 0 because the functions y — 91 (x4,y)
and y — Q(x4,y), see definitions (2.25) and (2.24), are analytic in a neighborhood of the
closed disk B(0, Y>(z4)) and with the definition of the function @ (see (2.24))

Qxa,0)=— Y ahpk)<O0.
k=(k1,k2)€Z:
ko=—1
For any given n € IN*, the quantity (2.55) is therefore well defined and equal to the
(n — 1)-th coefficient of the Taylor expansion of the function y — 1 (z4,y)/Q(z4,y) in a
neighborhood of the origin y = 0:

oo

(xd7 /Q La,y Z

To show that all coefficients v;(n), n € IN are positive, and to get (8.1) for ky > 0, we
will need a probabilistic representation of the quantities v4(n),n € IN*, in terms of the
invariant measure of the following Markov chain on Z_,: Define the twisted positive
measures fi on Z? and fi; on Z x Z, by letting

Ia(kla k2) = xsl (Yl (md))kzll(k’l, k2)a V(kl, kQ) S Zza

fir (1, k) = 2l (V1(2a)) ¥ pa (ks ko), V(ka ko) € Zx Zy.
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With the definitions of the point x4 and the function Y;, we have
A(Z) = Pea,Yi(za) =1 and ju(Z x Zy) = é1 (4. Yi(za)) < 1,

and consequently, the twisted measure [i is stochastic on Zi and the twisted measure
fi1 is sub-stochastic on Z x Z,. Consider now a twisted random walk (Z!(n) =
(Zfl)(n), Zél)(n))) on Z x Z, with transition probabilities

~ a(k — 9 if 50 > 0,
Py (D) = (hr k) = 4 PE =)
fir(k —j) if j2 = 0.

Since the transition probabilities of the twisted random walk (Z'(n) = (Zil) (n), Zél)(n)))
are invariant with respect to the shifts on (¢,0) for any ¢ € Z, its second component
(Zél)(n)) is a Markov chain on Z. (stochastic if ¢ (x4, Y1(z4)) = 1 and sub-stochastic if
o1 (x4, Y1(xq)) < 1) with transition probabilities

- (1) Sope_y ik, ko — ja) if jo >0,
Pj, (ZQ (1) = k’2> = -
> pr——1 b (K1, ko) if j2 = 0.

Recall that a non-negative measure 7, on Z. is invariant for (Zél)(n)) if, for any ¢eZ.,
the relation )

m(0) = > m()Pe(Z(n) = 0) (8.2)

el
holds. The following lemma relates the vector vy = (v (kz), k2 € Z.) with the unique (up
to a multiplicative constant) invariant measure for (Zél)(n))
Lemma 8.1. Under the hypotheses (A1)-(A3), 71 = (mw1(n) = v1(n)(Yi(xq))™, n € N) is
a unique up to the multiplication by constants invariant measure of the Markov chain
~(1)

(25" (n).

Proof. We prove this lemma in two steps: First we will show that the Markov chain
(Zél)(n)) has an invariant measure m; = (m1(n), n € IN) with 71(0) = 1, and next we
will prove that the generating function f(y) = Y .7 mi(n)(y/Y1(zq))" satisfies in a
neighborhood of the point y = 0 in C the identity

fy) = ¢1(xa,y) + P(za,y)(f(y) — 1)

and we will deduce from this identity that 71 (n) = v1(n)(Y1(z4))" for any n € IN.

To perform the first step of our proof, let us notice that under our hypotheses, the
jumps of the Markov chain (22(1)(”)) are integrable and moreover, for any non-zero
{ e Z+,

oo

Ed(ZP W) =0+ Y ke Y ah(Mi(wa)2p(ky, k2) = €+ Yi(24)0, P24, Yi(2a))
ko=—1 ki=—

with 9, P(z4,Y1(xq)) < 0. The Markov chain (Zél)(n)) is therefore recurrent if the
measure /i1 is stochastic, i.e. if ¢1 (x4, Y1(24)) = 1, and it is transient if ¢; (x4, Y1(z4)) < 1.

In the case when the Markov chain (Zél)(n)) is recurrent, it has a unique invariant
measure (71(¢),¢ € Z,) with 71 (0) =1 and

m(0) =Y Po(ZsV (n) = ¢, ZV (k) # 0, Yk <n), V>0,
n=1
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Suppose now that the Markov chain (Zél) (n)) is transient, and let
> ~
T80 =S P () = 0), kteZs.
n=0

Then for any k, ¢ € Z, such that k > ¢, with a straightforward calculation one gets
S AP (20 (1) = 0) = =P, (8.3)
Z’EZ+
Remark moreover that because of Assumption (A2), by the strong Markov property,

0 (0)/x0(0) = 0 (0) /20 (0), VE > 1,

and Py ( 2(1)(1) =/¢) =0 forall ¢/ > ¢+ 1. Using (8.3), it follows that the measure
7T1:(7Tl(£),€€ +) withm(O):land
m(0) =" (0/m7 ), veeN,

is invariant for ( ~§1) (n)). The first step of our proof is therefore completed.

Remark now that for any n € Z., using the identity

{4n

ST m ()P (Z5 (n) = £) = m(0) (8.4)

£'=0

with ¢ = 0, one gets

min) <) (Pa(Z () =0) " <m0) ( > ik, —1))

ki=—1
with - -

S0 k-1 = Y @b Viea) e, —1) = ~Q(ra,0) > 0.

ky=— ky=—
Hence, the generating function f(y) = Y .o, mi(n)(y/Y1i(zq))" is analytic in a

neighborhood of the origin y = 0 in C, and by (8.2), for any non zero y, satisfies
there the identity

Fo) =1 Y k) y/Yi(wa)™)

(k1,k2)E€ZXZ

U@ -1 Y Ak k) )/ Ya(@a) ™).

(kl,kz)EZXZ
Since f(0) = 7(0) = 1 and with the definition of the twisted measures /i and fi, for
non-zero y, we have

k2

. y
il ko) gl = Plaacy
<k1.k§);sz 1, 2) (Yi(zq))k> (wa,y)

and

Yoo k) e

(k}l ,kz)EZXZ+
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this implies that for any non-zero y € C with |y| small enough,

(f(y) = 1)1 = P(xa,y)) = ¢1(xq,y) — 1.

By the definition of the functions (z,y) — ¥1(x,y) and (z,y) — Q(z,y), from the last
relation it follows that for any y € C with |y| small enough,

(f(y) = 1)Q(xa,y) = y1(xa,y)

and consequently, since Q(x4,0) # 0, for any y € C with |y| small enough, we have also

. ywl(xdvy)
fo)=1+ Qra,y)

From the last relation, by the uniqueness of the coefficients of the Taylor expansion at
the point y = 0, it follows that

mi(n)(Yi(za)) ™" =vi(n), Vne€Zy,

and consequently, the measure m; = (v1(n)Y1(zq))", n € Z,) is the unique invariant
measure of the Markov chain (22(1)(”)) with 71 (0) = 1. O

As a straightforward consequence of Lemma 8.1 one gets the following property of
the coefficients v (n),n € IN:

Corollary 8.1. Under the hypotheses (A1)-(A3), all coefficients v4(n), n € Z,, are
positive and (v1(n),n € Z) is an only positive solution of the system

0 n+1 e’}
Z w1 (ly,n) + Z v1(£3) Z plly,n—Lly) =v1(n), ke € Zy. (8.5)
f6=1 lo=1 =1

Proof. Indeed, since by Lemma 8.1, v1(n) = m(n)(Yi(zq))™™ for any n € Z,, the
system (8.5) is equivalent to (8.2). Under our hypotheses, the Markov chain (Zél)(n))
is irreducible on Z, and 71(0) = 1 # 0. It follows that my(n) > 0 for any n € Z,, and
consequently also v4(n) = m(n)(Y1(zq))™™ > 0 forany n € Z,. O

From this result it follows that to get (8.1), it is sufficient to show that for any
j € Z2\E, and ky € IN*, the sequence (g(j, (n, k2))/g(j, (n,0))) converges and the limits
lim,, o0 9(4, (n, k2))/g(7, (n,O))) ko € IN, satisfy the system of the equations (8.5). To
prove the convergence of these sequences, the following preliminary results will be
needed.
Corollary 8.2. Under the hypotheses (A1)-(A3), if one of the conditions (B0)-(B6) holds,
then for any j € Z2%

lim g(j, (k1 +7,0))/9(j; (n,0)) = 1, Vki € Zy, (8.6)

and there are constants ¢; > 0 and ¢; > 0 such that for any k; > 0,

cjkyx(;kl < 9(J, (k1,0)) < c;szx;kl, (8.7)

where

—1/2 if x4 = 2} and either (B2) holds with ¢1(z4, Y1(z4)) = 1,

or (B5) holds with ¢ (x4, Y1(24)) < 1,,
v =4 —3/2 if (B2) holds with z4 = 2% and ¢1(z4, Y1(z4)) < 1,

1 if (B5) holds with z4 < 2},

0 otherwise.
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Proof. This result is a straightforward consequence of the asymptotics (2.56)-(2.62) with
ko = 0. These asymptotics follow from Theorem 2.3 and a Tauberian-like theorem (see
Corollary VI.1 of Flajolet and Sedgevick [10]) in a straightforward way. O

Lemma 8.2. Under the hypotheses (A1)-(A3), for any j € Zi and ke € Z there are
three constants ¢; > 0, co > 0 and N (k3) > 0, such that

c19(J, (k1,0)) < g(J, (K1, k2)) < c2 g3, (k1,0)), (8.8)
for any ki € Z such that k; > N (ko).
Proof. Remark that for any j,k = (k1,k2) € Z3 and N € NN, by using the Markov property
one gets

90, (k1. k2)) = Y Pi(Z(n) = (k1,k2), Z(N) = (k1,0), 70 > n)

> g(], (]fl, 0))IP(/€1,O) (Z(N) = (kl, ]{72), To > 0) (8.9)
Moreover, similar arguments as in the proof of Lemma 7.2 shows that for any %k, € Z,

there is N € IN* and a sequence (£§°>,£§°))7 o (£§N)7£§N>) € Z? such that

(O 4+ ezZxZ,, VYne{0,...,N},

N N
> =(0,ky)  and g (£9) [] n(e™) > 0.
n=0 n=1

Hence, using Assumption (A2) we conclude that for any (ki, k2) € Zi with k; > N,

N
P1,.0)(Z(n(k2)) = (k1,k2), 70 > 0) > 11 (¢©) H pu(em) > 0.

n=1

When combined with (8.9) the last relation proves the first inequality of (8.8) with

N
er = (09) T ne).
n=1
The proof of the second inequality of (8.8) is quite similar. O

Now we are ready to complete proof of Theorem 2.4. Throughout our proof, the starting
point j€Z2 \ Ey will be given.

Since by Lemma 8.2 for any k2 € Z, the sequence (g(j, (n, k2))/9(j, (n,0)), n = Ny,)
is bounded below and above by some positive constants, to get (8.1) it is sufficient to
show that for any subsequence (V,,) of the sequence of non-zero natural numbers (n),
for which the sequence of functions

ko = fn(k2) = g(j, (Nn, k2))/9(j, (Nn,0)) (8.10)
converges point-wise in Z, one has

lim fn(kg) = 1/1(1412), Vky € Z+. (8.11)

Suppose now that for a subsequence (N,,), the sequence of functions (f,,) defined by
(8.10) converges point-wise in Z, and let f., = lim,, f,,. By Corollary 8.1, to get (8.11) it
is sufficient to show that the limit function f,, satisfies the system of equations

[e’s) n+1 o)
Z ul(él, kg) + Z foo(ég) Z ,U,(fl,kg — 62) = foo(kg), kg S Z+. (812)
lel 22:1 lel
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To get this result, we consider the sequence of functions F;, : Z x Z — R defined for
any (k1,ks) € Z x Z. by

F (kl kg) _ (.77 (kl +Nn7k2))/g(]7( n70)) if kl +Nn > 0;
e 0 otherwise.

Remark that by (8.6), the sequence of functions (F},) also converges point-wise in Z x Z.,
and for any (ki,k2) € Z x Z,

Remark moreover that for any k = (kq, k2) € Z2\{j},

9(g, (b1, k2)) = Z 9(F, (b1, €2))P (0, 0,)(Z(1) = (K1, k2), 70 > 1)
(Z17Z2)€Zi

ka1 k141

= > 90, 0,6))pa(kr, k2 — £) + > g(i, (61,0))pa (kr — €1, k)
la=1 l1=1
k1+1ka+1
0 g0 (b, ) lky — by, Ky — L),
=1 =1

Using this relation with k; = N, for any n € IN such that N,, > j;, one gets

ko+1 Ny,
(0, k) = > Fo(=Ny, lo)pia (N by — £2) + Y Fu(—£1,0)) i1 (€1, ko)
ly=1 l=—
N, ko+1
+ >0 Y Fa(—t,b)uly ke — £y) Yy € Zy,
leflfg 1

and consequently, using (8.13) we will obtain (8.12) if we prove that for any k; € Z, and
ly € {1,..., ks + 1}, the following relations hold

lian(—Nn,ég)ug(Nn,kQ —52) ZO7 (814)
Ny,
lim Z Fn 61, [J,l el,kg Z hmF 61, ))‘Ll,l(gl,kg) (815)
" [1—71 [1—71
and
hran Z gl,gg ((17 ]{?2 — 52) = Z 1iTILnFn(—€1,€2)u(€1, kg — 52) (816)
l1=—1 l1=—1

To get (8.14) we remark that by Corollary 8.2, there is a constant C' > 0 such that for
any N, large enough,

Fu(=Nn, b2) = 9(5, (0,€2))/9(j, (N, 0)) < 9(j, (0,£2))C(Nn) g™

and consequently, for any ¢ > 0, there is a constant C. > 0 such that for any N,, large
enough,
Fp(—Np, £2) < g(4, (0,02))Ce (1 + ) Nr .

Since by Assumption (A3)(ii), the generating function ¢, is finite in a neighborhood of
the point (x4, Y1(z4)), there is € > 0 such that for any k; € Z,

ILm p1(n, k) (14 ¢e)"xl = 0.
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and consequently, for any ks € Z and /s € {1,..., ks + 1}, (8.14) holds.
To get (8.15) we use the implicit function theorem and Corollary 8.2. By Corollary 8.2,
there is a constant C; > 0 such that for any NV, > 0 and ¢; € Z such that —1 < ¢; < N,

9(J, (N, — £1,0))
9(j, (Nn,0))

In the case when v > 0, it follows that for any NV,, > 0 and ¢; € Z such that —1 < /; < N,

N, — £1)"
<oyl 4) zh. (8.17)

Fn(_gho) = N’y

Fo(—£1,0) < Oy}

and consequently, since F,,(—¢1,0) = 0 for all ¢; > N,,, and since under our hypotheses,

Z g (b, k) < (Yi(za)) "2 > 2t (Yi(2a))? pa (01, £2) = ¢1 (24, Yi(2a)) < +00,
=1 0=(01,62)€LX Ly,

by the implicit function theorem one gets (8.15). In the case when v > 0, (8.15) is
therefore proved.

Suppose now that v < 0. In this case, using (8.17), one gets that for any N,, > 0 and
{1 € Z such that —1 < ¢; < N,

N O Nl < oy 20zl if ¢, > N, /2
Fo(—41,0) < G4 4 { 1V Ty 1(20)Mwy i 4y /

X
(N, — L)1 C 21z if (1 < N,,/2

and consequently, for any € > 0 there is a constant C. > 0 such that N,, > 0 and
6y € {-1,...,N, — 1}, one has

Fp(—£1,0) < C.(1 + &)zl (8.18)

Since F,,(—¢1,0) = 0 for all ; > N,,, and since under our hypotheses, for some ¢ > 0
small enough,

Do U+ mb k) < Vi(wa) ™ Y (L40) 2y (Vi(za) 2 m (6, 6)
b=— 0=(01 ,02)ELX Ly
< (Yi(za) ™ ¢1((1 + €)za, Y (24)) < +00, (8.19)

by the implicit function theorem, it follows (8.15). Relation (8.15) is therefore proved.
To get (8.16) we use first Lemma 8.2. By Lemma 8.2, there are two constants N (¢s)
and C; > 0 such that forany N, > 0and ¢; € {-1,...,N, — N(¢2)},

g(ja(Nn_€1;£2)) g(ja(Nn_glvo))
904, (Nn, 0)) 9(j; (N, 0))

and for ¢; G{NH—N(EQ)—FL...,N”—I},

Fo(—t1,42) = <Oy

N _ 90, (Na =01, 45)) O
B ) = 200800 90, (8, 0))

with Cy = max{g(4,(1,0)),...,9(j, (N(¢2),0)}. Hence with the similar arguments as
above one gets that for any € > 0 there is a constant C. > 0 such that N, > 0 and
4 € {-1,...,N, — 1}, (8.18) holds, and consequently, using (8.19) we conclude that
(8.16) holds.

Theorem 2.4 is therefore proved.
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9 Asymptotics along directions of Si

This section is devoted to the proof of Theorem 2.6.

9.1 Main ideas and the sketch of the proof

The main ideas of the proof of Theorem 2.6 are the following:
By using Theorem 2.1, we first get an integral representation

(2m1)2 phitlyket1(1—P(z, y))

/ / i(@,y) + (¢1(z,y)—P(z,y))Hj(x,0)+(¢2(z, y) - P(, ))Hj(07y)dxdy 9.1)
lz|=2 Jy|=9 1=P(@.y) |

for any (#,9) € T with & < x4 and § < y4. Next we show that the set {(z,y) € D : x <

x4,y < yq} is non empty. By the definition of the set I, the set D is included to the set T,
with this result we will be able to consider the integral representation (9.1) with & < x4,

[e]

§ < yq such that (#,9) € D.
To prove the first tree assertions of Theorem 2.6, the integral representation
(9.1) is next modified in the following way: since the functions (z,y) — L;(z,y) and

(z,y) — (1 — P(z,y))"! are analytic in the polycircular set Q(B), and, by Theorem 2.1,
- the function (z,y)—=(¢1(z,y)—P(z,y))H;(x,0) is analytic in the polycircular set
{(z.y)eQD):la] <4},
- the function (z,y)—(¢2(x,y)—P(x,y))H;(0,y) is analytic in the polycircular set
{(e.p)e(D)lyl<ya,

o
and since the set (D) does not contain zeros of the function (x, y)—a*1 Tly*2+1(1-P(x,y)),
we can write

g(j’k) :IO(ja k)‘f'Il(j,k‘)—FIg(j,kj) (9.2)
with L)
. z,y
068 = G 1y A P ©-
(¢1(2,y) — P(z,y))H,(z,0)
Il(]a 27m /|I_gc1 /y —i xk1+1yk2+1(1_P(x,y)) dx dy (9.4)
and

(¢2(z,y) — P(z,y))H;(0,y)
I (Ja 271-1 /|£_JL2 /Iy —do Ik1+1yk2+1(1—P(x,y)) dx dy (9.5)

for any (Zo, %) € D, (Z1,71) € {(x,y) € D:a < xq}, and (&2, 92) € {(z,y) € D :y < ya}.

To prove the first assertion of Theorem 2.6, it is sufficient to get the asymptotic
behavior (2.75) when min{k;, k2} — +oo and wy = k/||k|| = w for any w € W;. In order
to get this result, we identify the asymptotic behavior of I;(j, k) by using the residue
theorem (applied first for the integral with respect to z and next for the integral with
respect to y), and using next large deviation estimates of I(j, k) and I2(j, k) we prove
that the terms Iy(j, k) and I5(j, k) are negligible with respect to I, (j, k).

The proof of the second assertion of Theorem 2.6 is exactly the same as the proof
of the first assertion, it is sufficient to exchange the roles of the first and the second
coordinates of the points j,k € Zi.

To prove the assertions (iii)—(v) of our theorem, we show that the term Iy(j, k) is
negligible with respect to I;(j, k) + I2(j, k) and we identify (in the same way as in the
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proof of the first assertion of our theorem) the asymptotic behavior of each term I;(j, k)
and I (j, k?)

Finally, the last assertion of Theorem 2.6, is obtained as a consequence of
Proposition 1 of the paper [18].

The proof of Theorem 2.6 is organized as follows:

The integral representations (9.1) and (9.2) of the Green function ¢(j, k) are obtained
respectively in Lemma 9.1 and Corollary 9.1 of Section 9.2.

Section 9.3 is devoted to the upper large deviation estimates for the integrals Iy(j, k),
I(j,k) and I»(j, k). These large deviation estimates will be used in order to identify the
dominant terms of the sum Iy(j, k)+1o(j, k)+1o(j, k) of the right-hand side of (9.2).

In Section 9.4 we obtain exact asymptotics of I (j, k) (resp I2(j, k)) as min{ky, ko} —
400 and k/||k|| — w for those w = (u,v) € $% for which u > up(zq, Ya(z4)) (resp. for
which v > vp(Xa2(ya),va)). This is a subject of Lemma 9.6 and Lemma 9.5 below.
Remark that we do not need the exact asymptotics of I;(j, k) (resp I>(j,k)) when
k/|k|| = w = (u,v) € 8% and u < up(zq, Ya(zq)) (resp. v < vp(Xa(ya),ya)): the large
deviation asymptotics obtained in Section 9.3 will be in this case sufficient.

In Section 9.5 the proof of the first assertion of our theorem is completed. It will
be proved there that for any w € W), the inequality u > up(z4,Y2(z4)) holds, and
consequently that the results of Section 9.4 provide the exact asymptotic for I (j, k) as
min{k;, k2} — +oo and k/||k|| — w € W;. A comparison of the exact asymptotics for
I(j, k) as min{ky, k2} — +o0 and k/||k| — w € W, with the asymptotics of I(j, k) and
Iy(4, k) will show that the terms Iy (j, k) and I>(j, k) are negligible with respect to I1(j, k).

The second assertion of Theorem 2.6 is obtained by using the arguments of the
symmetry: to get this statement, the same arguments as in the proof of the first assertion
can be applied if one exchanges the roles of z and y.

In Section 9.6 and 9.7, we complete the proof of the assertions (iii)-(v) of Theorem 2.6.
It will be shown in these cases, the exact asymptotics of I;(j, k) and I»(j, k) are given by
the results of Section 9.4 and that the term Iy (7, k) is negligible with respect to the terms
I1(j,k) and I1(j, k). The exact asymptotic of the Green function ¢(j, k) will be obtained
by comparing the exact asymptotics of I1(j, k) and I>(j, k).

9.2 Integral representation of the coefficients ¢(j, k)

Lemma 9.1. Under the assumptions (A1)-(A4), the set {(x,y) € D : x < x4, y < yq} IS
non empty and for any (&,9) € D such that & < x4 and § < yq, (9.1) holds.

Proof. By the first assertion of Theorem 2.1, the series (2.28) (and consequently also the
series (6.1)) converge on the polycircular set {(x,y)eQ(T) : |x|<z4, |y|<ya}. The function
(x,y)—H;(z,y) is therefore analytic in {(z,y)eQ(T') : |z|<zq, |y|<ya} and for any (&,y)el’
with 2<x4 and y<y4, one has

T

. 1 Hj(z,y) .
k)= —— — L dxd kez? 9.6
g(]v ) (277’&)2 /zl_i /Ul_g $k1+1yk2+1 xray, VJv S + ( )

Remark now that under our assumptions, the set {(x,y) € D : z < 24,y < y4} is non
empty:

- when one of the assertions (B0)-(B2) is valid, this is a consequence of the first
assertion of Lemma 6.4

(o)
- when one of the assertions (B3) or (B4) holds, the set {(z,y) € D:x < x4,y < ya}
is non empty because in this case and =3 < x4 = 2™ < 23, yqg > Y1(z4) and by
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Lemma 4.1, any point of the line segment [(x4, Y1(24)), (24, Y2(xq))], aside of the

ends points (x4, Y1 (z4)) and (x4, Ya(2z4)) belongs to the interior D of the set D;

- similarly, when one of the assertions (B5) or (B6) holds, the set {(x,y)eﬁ :
x<x4,y<yq} is non empty because vy} <yqs=y**<yi*, x4 > X1(yq) and by Lemma 4.1,
any point of line segment [(X1(va4),%d), (X2(va),ya)], aside of the end points
(X1(ya),va) and (X2(yq), ya) belongs to the interior of the set D.

By the definition of the set I', the set D is included to I, it follows that (9.6) holds also

for any (#,9) € D with & < x4 and § < yq.
Furthermore, by the second assertion of Theorem 2.1, for any j € Z2, on the set
{(z,y)eQT) : |z|<zq, |y|<ya}, the function h; satisfies the identity (2.30). Since

the set {(x,y) € QD) : v < x4,y < ya} has an empty intersection with the sets
{(z,y) € C* : = = 0} and {(z,y) € €C* : y = 0}, it follows that on the set

{(z, y)eQ(B) cx<z4,y<ya}, for any j € Z2, the relation
(1= P(z,y))(H;(z,y) — Hj(z,0)-H;(0,y)) = Q(z,y)h;(z,y)

= Lj(@,y) + 1 (2, y)hj (@) + a2, y)ho; (y)
- Lj(xay) + ((,251(%, y) - 1)HJ(IE, 0) + (¢2(I7y) - 1)HJ(07y)a

holds, or equivalently,

(1—P(x,y))Hj(a:,y) = Lj(xvy)+(¢1(x7y)_P(I7y))Hj('x’0)+(¢2($ay) _P(xvy))Hj(Ovy)'
Since the function (z,y) — 1/(1 — P(x,y)) is analytic in the set {(z,y) € C*: (|z|,|y|) €

D}, this implies that, on the set {(z,y) € C*: (|z|,|y|) € D, |z| < x4, |y| < ya}, we have
also the identity

Lj(x7y) + (¢1($ay) - P(x,y))HJ(a:,O) + (¢2($,y) - P(x’y))H](Ovy)
1- P(.’b,y)

Hj(z,y) =
The last identity combined with (9.6) proves (9.1). O

Since the functions (7,y) — L;(z,y) and (x,y) — a M~ lyk2=1(1 — P(z,y))7!
are analytic in the polycircular set (D), and by Theorem 2.1, the functions
(2,y) = (d1(z,y) — P(x,y))H;(2,0) and (z,y) — (¢2(z,y) — P(z,y))H,;(0,y) are analytic
respectively on {(z,y)eQ(D) : |z|<zq} and {(z,y) € QD) : |y| < w4}, as a
straightforward consequence of Lemma 9.1 we obtain
Corollary 9.1. Under the assumptions (A1)-(A4), for any j€Z3 and k=(k1, k2)€Z3\{(0,0)},
relation (9.2) holds with Iy(j, k), I1(j, k) and I»(j, k) defined respectively by (9.3), (9.4)
and (9.5), for any (Zo,90)€D, (Z1,91)€{(z,y)€D : z<zq}, and (&2, 92)e{(z,y) € D :
Y<ya}-

9.3 Large deviation estimates of the quantities /y(j, k), I1(j, k) and I1(j, k)

Lemma 9.2. Under the assumptions (A1)-(A4), for any w = (u,v) € S!, and j,k € 72,
as ||k|| — oo and k/||k|| — w,

limsup || k||~ log |Io(j, k)] < — max (u In(Z) + Uln(@)), (9.7)
k (z,9)eD
ims -1 k)| < — i J) ) .
hmkbup I£]| = log |11 (4, k)| < (i’g)rggﬁgm(u In(z) +v ln(y)> (9.8)
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and

lim sup ||k|| ! log | T k)| < — max uln(z) +vin(y) ). (9.9)
sup K|~ og | LG K)| < = max  (uln(@) +vIn(g))

Proof. Indeed, the definition of I5(j, k) and Cauchy’s inequality give, for any j,k =
(k1, ko) € Zi and (Z,9) € D with § < yq,

\L(j, k)| < M(2,9)a g%,
with
M (2,9) = max{|(¢2(z,y) — P(z,y))H;(0,)(1 — P(z,y)) "] : (z,y) € C*, |z| = &, |y| = 9}

This proves that as ||k|| = +oco and k/||k|| = w = (u,v),

limsup [|k[| " log |l (j, k)| < —  sup  (ulog(2) + vlog(y))
i (.9)€D:9<y,
= — max ulog(z) + vlog(y
(&Q)GD,Qéyd( g( ) g(y))
where the second relation holds because the function (x,y) — ulnx + vIny is continuous
on D. Relation (9.9) is therefore proved. The proof of (9.7) and (9.8) is quite similar. O

9.4 Exact asymptotic behavior of I;(jk) as min{k;, k2} — o0

To get the exact asymptotic of I (jk) as min{k;, ka} — oo we consider first the
following preliminary results.

Lemma 9.3. Under the assumption (A1), for any w = (u,v) € $1+, the function
x — uln(z) + vIn(Ya(x)) is strictly increasing in the line segment [z}, zp(w)] and strictly
decreasing in the line segment [z p(w), 3.

Proof. Indeed, recall that under our assumptions, the function («,f3) — ]3(04,6)
P(e?,€ef) is strictly convex and finite in a neighborhood of the set D = {(a,f)
R? : P(e*,e’) < 1}, and that for any w = (u,v) € $!, the point (ap(w),Bp(w) =
(In(zp(w)),In(yp(w))) (see Definition 2.6.1) is an only point on the boundary of the set
D, where the function (o, B) — ua + vB achieves its maximum over D.

Consider the line segment [a},a%] = {a € R : infger P(a, 8) < 1}. We have, see
the proof of Lemma 4.1, ap=zIn(z}), ap'=In(z}"), and that for any o €]ap, o} | and
B2(a) = In(Ya(e®)), we have

m |l

P(a, B2(a)) =1 and 9sP(a,Ba(a)) > 0.

Since the function P is strictly convex, by the implicit function theorem, it follows that
the function s is also strictly convex on the line segment [a}, a5

Under our assumptions, the definition 2.6.1 of the mapping
w—(ap(w), Bp(w))=(n(zp(w)),In(yp(w))) gives that, if w = (u,v) € $1,

93P (ap(w), Bp(w)) > 0.

By the definition of the function a — f2(a) = In(Y3(e®)), see the proof of Lemma 4.1, it
follows that,

Pp(w) = Ba(ap(w)),

and that ap(w) is an only point in the line segment o}, a}] where the function

a = ua 4+ vB2(a) = ua + vin(Ya(e®)) (9.10)
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achieves its maximum over [}, a5]. Since the function f; is strictly convex on (o}, o],
the function (9.10) is also strictly convex on [a},a}], and consequently, it is strictly
increasing on the segment [a}, ap(w)] and strictly decreasing on the line segment
[ap(w), a)]. Since the function z — In(z) is strictly increasing on |0, +oo|, this proves
that the function = — wln(z) + vIn(Y2(x)) is strictly increasing on the line segment
[, zp(w)] and strictly decreasing on the line segment [zp(w), 3. O

Lemma 9.4. If condition (A1) is satisfied and let, for some x¢ €]xp, x5 [, €1 > 0 and
€9 > 0, a function (z,y) — F(x,y) be analytic in the polycircular set

{(z,y) € €+ |zo—|z|| < e1, [Ya(zo)—yl| < e2}
and do not vanish at the point (z,Y2(z)). Then for any w = (u,v) € $1 such that

xp(w) > xzo and (&,9) € D such that zg —e; < & < zy and |Ya(xg) — §| < €2, as
min{ky, ko } = +oo and k/| k|| — w,

1 / / F(x,y) Ch
- drdy ~ ——— 9.11)
(270)2 J 1=z Jjy=g 2" y*2 (20 — 2)(1 — P(z,y)) zpt (Ya (o))
with .
Ci = 3 Pla ) ng’y) #0 (9.12)
y P (@ 9) | (2 )= (o, ¥2 (20)
and
1 / / F(x,y)
- - dx dy
(2m0)% g1z Jjy =g TFy*2 (20 — 2)2(1 — P(x,y))
~ — Hklcl - — haCh (9.13)
xo" T (Ya(wo))k2  xgt (Ya(2o))k2H!
with C, given by (9.12) and
_ F(z,9)0.P(x,y) (9.14)

; .
OuP@ )™ =033 00))

Proof. Before proving this lemma, remark that under our assumptions, by Lemma 4.1,
Ya(zo) > Y1(xo) and consequently, without any restriction of generality, we can assume
throughout our proof that

g9 < YYQ(.’E()) — Y1 ((E()).
Because of Assumption (A1), the function (z,y) — 1—P(z,y) is analytic in a neighborhood

Y
V of the set (D) and does not vanishes in its interior (D). Hence, for any m € IN*, the
function
(z,y) = Fz,y)(z0 — )" "a ™My~ (1 - P(,y))™"

(o)

is analytic in the polycircular sets {(x,y) € Q(D), z¢o — 1 < |z| < xo, |Ya(T0) — Y| < €2}
and {(z,y) € Q(D), zo < |z| < 20 + €1, |Ya(z0) — y| < €2}, and consequently, the function

= o1 F(z,y)dzdy
(:9) = Tns(2:9) = Gy /ac|=:fc /|y|=@ akryh (zo — )™ (1 — P(z,y))

is constant on the set A_ = {(x,y) € D: zg — &1 < & < X0, |Ya(x0) — y| < £2} and on the

set Ap = {(z,y) € D: xo < T < g+ €1, |Yo(zo) — y| < e2}. We denote
I (k) = Jmi(2,9)  for (&,7) € A,
I (k) = Jm(2,9) for (&,9) € Ay.
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Remark now that for any § €]Ya(zg) — €2, Ya(xo)[ and § > 0 small enough, the point
(xo — 4, 9) belongs to the set A_, the point (z( + J,9) belongs to the set A, and by the
residue theorem, for any y € C with |y| = g,

/ F(z,y)dz _ / F(z,y)dz —omi F(zo,y)
lw|=z0+6 T (x0 — ) (1 — P(z,y)) z|=z0—s T (20 — x)(1 — P(z,y)) zf (1 — P(x0,9))

and

/ F(z,y)dz _ / F(z,y)dz
z|=zo+s T (z0 — 2)%(1 — P(2,y)) z|=z0—s T (20 — x)2(1 — P(z,y))

+2m.< OcF(x0,y)  hF(ro.y) +F($0,y)3mp(xo,y)>
25" (1= P(zo,y)) 25" (1= P(xo,y)  a5' (1 — P(xo,y))?

Hence, for any g €]Y2(xo) — €2, Ya(x0)[,

7 1 F(l’o,y)
Ji(k) = Ji(k) + / d (9.15)
1( ) 1( ) 27T’i33’51 HyH:g ykz(l—P(l’o,y)) Y
and
3 1 8rF(any)
Ja(k) = Ja(k —7/
2(k) 2(k) 2771'9:’51 lyll=9 y*2 (1 — P(20,¥))
k1 / F(x07y) 1 / F(any)amP(x()»y)
: dy — ‘ dy. (9.16)
@ri)ag T Jyyi=g v (U= Pleo,y) ™ 2mialy Jyyi=g v (0= Po,y)?

Due to Assumption (Al)(ii), the function y — P(xg,y) is analytic in a neighborhood of
the closed annulus {y € C: Yi(x0) < |y| < Ya(zo)}, satisfies the inequality

[P(z0,y)| < P(xo, [y]) <1

on the annulus {y € C: Yi(zg) < |y| < Ya(xo)}, and because of Assumption (A1) i) (we
use here Proposition P7.5 of [29]), for any y € C with |y| = Y2(zo),

|P(w0,y)| < P(ao, Ya(ao)) = 1 whenever y # Ya(x).

Since by Lemma 4.1,

Oy P(z,y) ) > 0,

(@) =(a0.Ya (o
this proves that for some § > 0, the point Y5(zy) is an only and simple zero of the function
y — P(zo,y) in the annulus {y € C: Y1(zo) < |y| < Ya(zo) + ¢). Since we assumed that
Ya(x0) — €2 < Yi(zo), and the functions y — F(zo,y), y+— 0:F(x0,y), y — F(xo,y) are
analytic in the annulus {y € C: Yi(zg) — &2 < |y| < Ya(zo) + €2}, this implies that for
0 > 0 small enough, the functions

F(xo,y) 0 F'(0,Yy)
y*2(1 — P(z0,y)) y*2(1 — P(x0,y))

are analytic in the set {y € C: Ya(zo) — 2 < |y| < Ya(xo) + 0, y # Ya(x0)} and have at
the point Y3(zg), a simple pole with the residue equal respectively to

and y+—

Yy —

7_01 and 7_01
(Ya(zo))*2 (Ya(wo))k2
with C; given by (9.12) and
o axF )
Qzﬁpuw .
u P Y) | (04~ (@0, Ya o))
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Similarly, the function

F(zo,y)0:P(xo,y)

y*2 (1 = P(x0,y))
is analytic in the set {y € C: Ya(zo) —e2 < |y| < Ya(zo) + 9, y # Ya(zo)} and has at the
point Y5(zo), a pole of the second order with the residue equal to

C _ kQCQ
(Ya(zo))k2  (Ya(o))k=tt
with Cs given by (9.14) and some constant C' € C does not depending on k5. By the

residue theorem, it follows that for any Ya(zg) — g2 < § < Ya(zo) and Ya(zg) < ys <
YQ(.Z‘Q) + 5)

F(20,9) o 2miChy F(z0,y)
/M_g v (1 - Plo,y) "~ (Ya(wo))* /m”_% (1~ Plao.y)

0 F(z0,y) B 2miCy 0 F(z0,y)
/m—@ (- Plao.y) Y = Walwo)s T /|| (1~ Plao.y) Y

and

/ F(107y)8xp($03y) dy = —2mi < C B koCy )
lyl=g ¥** (1= P(zo,y))? (Ya(wo))k2  (Ya(o))k=Ht
+/ F(l.()»y)azp(xOvy)
loll=us ¥*2(1 = P(z0,))?
Using these relations at the right hand side of (9.15) and (9.16) we obtain

Cl 1 / F(Io,y) 7
Ji(k) = + - dy + J1(k (9.17)
W) = o awote T @) ey 2By = Pl T

k1Ch - koCo n C (9.18)

Jz(k):x§1+1(5/2(xo))k2 2" (Ya(wo)) R+l ag! (Ya(zo))2

o1 / 02 F(z0,y) . k1 / F(20,y)
2mial Jiyimys ¥ (L= Plao, ) " @ri)ab ™ Jiyieys ¥ (1 — Plug, )
1 / F(xo,y)0:P(20,y)
lyll=ys y*2(1 — P(z0,y))?

with some constant C' does not depending on k. Remark now that by the Cauchy
inequality, for k = (k1, k2) € Z%, as min{ky, ko} — oo and k/||k|| = w = (u,v),

dy + Jo(k
omizh! v+ Ja(k)

< —(ulog(zo) + vlog(ys))

F
limsup ||k|| ! log . / % (£0.1) dy
K (272) Jjyj=ys 25" y*2 (1 — P(z0,y))

< —(uln(zg) + vIn(Ya(x0))),
and with the same argument as in the proof of Lemma 9.2,

limksup (13l 10g|j1(k)| <—  sup (ulnd+vIn(Y2(2))) < —(uln(zo) + vin(Ya(z0)))

ToSESTo+EL

where the last relation holds because under our assumptions, =} < z¢y < zp(w) and
by Lemma 9.3, the function z — ulnz + v1n(Yz(z)) is strictly increasing on [z, xp(w)].
Since for k = (ky, k2) € Z2, as ||k|| = oo and k/||k|| = w,

F(l‘o, Yé(.%‘o))
61 (Ya(xo))k20y P(0, Ya(w0))

i 1~ log |- = — (ulog(o) + vlog(¥a(o)))
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this proves that as min{k;, k2} — +o0 and k/||k|| — w, the second and the third terms in
the right hand side of (9.17) are negligible with respect to the first one. Hence (9.11) is
verified, and with the same arguments, from (9.18) one gets (9.13). O

As a consequence of Lemma 9.4 and Theorem 2.3, we obtain the following result.

Lemma 9.5. Under the assumptions (A1)-(A3), for any j € Z3\E, and w = (u,v) € S}
with u > up(xq, Y2(x4)), the following assertions hold

i) If either one of the assertions (B0), (B1), (B3), (B4) holds or (B2) holds with
zq <z}, then for any k = (ki, ko) € Z2, as min{ky, ko} — oo and k/| k|| — w,

Li(j k) ~ c1arsa(j)a,™  (Ya(aq) T (9.19)

where

_ (bl(xvy) -1

c1 = >0 (9.20)

0P (@, 9)) |(25)=(2a, V2 ()
and a; > 0 is given by (2.41).

ii) If (B5) holds with x4 < x3, then for k = (k1,ks) € Z%r, as min{k;, ko} — oo and
k/|k| — w,

c1 az(j)ks ¢1 aza(j)ke
ag P2 (Ya(xa)) b2t 2l (Ya(g)) kot

where ¢, > 0 is given by (9.20),

Li(j,k) ~ (9.21)

axp(wda YQ(xd))
(0, P(24, Ya(wa)))”

Cc1 =
(z,y)=(za,Y2(za))

and as > 0 is given by (2.47).
iii) If (B6) holds, then for k = (k1, k2) € Z%, as min{ky, ko} — oo and k/||k|| — w,

Li(j, k) ~ cras o)z, (Ya(za) TH27! (9.22)
where ¢, > 0 is given by (9.20) and a5 > 0 is given by (2.53).

Proof. Indeed, when either, one of the conditions (B0), (B1), (B3) or (B4) is satisfied, or
(B2) holds with z4 < 23, by the first assertion of Theorem 2.3 and using Proposition 7.13,
one gets that for some ¢ > 0, the function z — H;(z, 0) can be extended as an analytic
function to the set B(0, z4+¢)\{xq} and has a simple pole at the point x4 with the residue

—avali) =~ ) (porleaViaa)) <o

Since the function (z,y) — ¢1(z,y) — P(z,y) is analytic in a neighborhood of the set (D),
this implies that the function (z,y) — F(z,y) = (x4 —x)(¢1(z,y) — P(x,y))H,;(x,0) can be
extended as an analytic function to a neighborhood of the set {(z,y) € Q(D) : |z| < z4+¢}
by letting

F(za,9) = (6(za,y) — P(@asy))arza ).

When either, one of the conditions (B0), (B1), (B3) or (B4) is satisfied, or (B2) holds
with z4 < z7°, one has always z,, < z4 = z** < 2}, and consequently, by Lemma 4.1,
Ya(x4) > Yi(x4) and by Lemma 4.1, ¢(xq, Y1(24)) = 1. Since the function y — ¢1(x4,y)
is strictly increasing, it follows that ¢1 (x4, Y2(z4)) > 1. Since by Theorem 2.3, a; > 0, we
obtain therefore

F(24,Y2(xa)) = (¢1(xa, Yao(2)) — P(za, Ya(xq))a150(j) = (¢1(xq, Y2(x)) — 1)arsa(j) > 0.
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By Lemma 9.4, it follows that for any w = (u,v) € S} such that zp(u) > x4, and as
min{ky,k2} — 400, (9.19) holds with ¢; > 0 given by (9.20). Since for w = (u,v) € $3.
the inequality zp(u) > x4 is equivalent to the inequality v > up(zq4, Ya(zq)), the first
assertion of our lemma is therefore proved.

Suppose now that (B5) holds with =4 < z%'. Then, by Theorem 2.3 and using
Proposition 7.13, one gets that for some ¢ > 0, the function z — H;(z, 0) can be extended
as an analytic function to the set B(0,z4 + €)\{z4} and has a pole of the second order at
the point x4 with

lim (l‘d — l‘)ZHj(I,O) = a3%2(j) >0

Tr—x0

where a3 > 0 is given by (2.47). With the same arguments as above, it follows that the
function (z,y) — F(z,y) = (x4 — )*(¢1(x,y) — 1)H,;(z,0) can be extended as an analytic
function to a neighborhood of the set {(z,y) € Q(D) : |z| < x4 + €} by letting F(z4,y) =
(¢1(z4,y) — 1)ag»a(j) and that the extended function F satisfies the assumptions of
Lemma 9.4 with zy = z4 and F(zo, Y2(z0)) = ass(j)(é1(xq, Ya(zq)) — 1) > 0. Hence,
using (9.13) we obtain (9.21) with ¢; > 0 given by (9.20). The second assertion of our
lemma is therefore also proved.

The proof of the third assertion of our lemma is exactly the same as the proof the
first assertion, with an only difference that now, one should use the fifth assertion of
Theorem 2.3 instead of the first one. O

Remark finally that if we exchange the roles of x and y, then with the same arguments
as above we obtain the following result.

Lemma 9.6. Under the assumptions (A1)-(A3), for any j € Z?\E, and w = (u,v) € S}
with v > vp(X2(ya), ya), the following assertions hold

i) If either one of the assertions (B0), (B1), (B5), (B6) holds or (B2) holds with
ya <y}, then for any k = (k1,k2) € Z2, as min{ky, ka} — oo and k/| k|| — w,

Ia(3. k) ~ e basea(3)(Xa(ya) ™ (ya) *7! ©:23
where
_ 7 1 axp ’ —1 >0 9.24
Co (¢2(1’ y) )( (.’E y)) (z,y)=(X2(ya),ya) ( )
and
d —1
ag = (Cly@(Xl(y),y)) 9:29)

Y=Ya

ii) If (B3) holds with yq < y}, then for k = (k1,k2) € Zi, as min{ky, ka} — oo and

KK = w, o o
. C2 0321(])R2 C2 03721(J )R
Ly, k) ~ (9.26)
2 5) (Xa(ya))krt1yht2 — (Xa(ya))krt2yghatt
with co > 0 given by (9.24),
, d d d -1
ay = (¢1(z,y) — 1) | --¢2(X1(y),y) b1 (x, Yi(z)) — X1 (y) >0
dy dx dy
(@,9)=(X2(ya),ya)

(9.27)
and some ¢, € R do not depending on j € Zi\EO.

iii) If (B4) holds, then for k = (k1, k2) € Z%, as min{ky, ko} — oo and k/||k|| — w,

L(j, k) ~ eaaksa(5)(Xa(ya)) " (yq) 2t (9.28)
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with ¢y given by (9.24) and

>0

(z,y)=(X2(ya).ya)
(9.29)

= () = 1) (1= alo) fon (e i) 350 0))

9.5 Proof of the assertions i) and ii) of Theorem 2.6

For I (j, k) the exact asymptotics as min{k1, ka} — +oo and k/||k|| = w = (u,v) € S}
were obtained only in the case where u>up(zq4, Y2(z4)). In the following lemma, we show
that this inequality always holds when w € W;. The definitions 3-6 give that the set W,
is empty if either, one of the cases (B5), or (B6) occurs or, (B2) and z4=27%" hold, we can
assume that either one of cases (B0), (B1), (B3) or (B4) occurs or (B2) and z4 < z3" hold.
Lemma 9.7. If conditions (A1)-(A3) hold and if either, one of cases (B0), (B1), (B3) or
(B4) holds, or (B2) and z4<xp" hold, then for any w € W,

u > up(zq, Ya(zq)). (9.30)

Proof. Suppose first that (B0) holds. Then by Proposition 2.2 and the definition of the
points x4 and y4 (see (2.33) and (2.34)),

X1(ya) < zg=2"" < Xao(ya), Yi(zq) <ya=9y"" < Ya(zq). (9.31)

In this case Wi = {w = (u,v) € 8} : u > u.} where w, = (uc,v.) is the only point in $!
such that
e In(zg) + veIn(Ya(zq)) = ue In(X2(ya)) + ve In(ya), (9.32)

or equivalently, such that
(In(X2(ya)) — In(za)

Since by (9.31), X2(yq) > x4 and Ya(xz4) > yq, the last relation implies that u. > 0 and
ve > 0, and consequently, if up(xq, Ya(z4)) < 0, one gets

e = (In(Ya(zq)) — In(ya))ve. (9.33)

—_  —

up(zq,Ya(zq)) < ue <u, Yw=(u,v)€W.

When (BO) holds and up(z4, Ya(z4)) < 0, our lemma is therefore proved.

Consider now the case when (B0) holds and up(z4, Y2(zq)) > 0. For @ = (4,0) =
(up (x4, Ya(zq)),vp(xq, Ya(x4))), by the definition of the mapping w — (zp(w),yqa(w)), the
point (24, Y2(z4)) is the only point in the set D where the function (z,y) — @ ln(x)+0 In(y)
achieves its maximum over the set D. Since in the case (B0), (x4, Ya(zq)) # (X2(Ya), Yd),
it follows that for & = (4, 9) = (up (x4, Yo(xa)), vp(xa, Ya(24))),

aIn(zg) + 01n(Ya(xq)) > 41n(Xa(yq)) + 01n(yq)
or equivalently that
(In(X2(ya)) — In(za))t < (In(Yz(za)) — In(ya))o.

Since X5 (ya) > x4 and Ya(z4) > yq4, and since we assumed that @ = up(zq, Ya(z4)) > 0,
the last inequality shows that o = vp (x4, Y2(24)) > 0 and consequently, & = /1 — 42 and

(In(X2(yq)) — In(zq))d < (In(Ya(za)) — In(yq))V'1 — G2

Finally, we have already proved that u, > 0 and v. > 0, and in this case, relation (9.33) is
equivalent to

(In(X2(ya)) — In(zq))ue = (In(Y2(za)) — In(ya)) v/ 1 — v
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Since the function v — (In(X2(y4)) — In(x4))u is strictly increasing and the function
u > (In(Ya(zq))—In(yq))y/1 — u2 is decreasing on the segment [0, 1], the last two relations
show that u. > @ = up(z4, Y2(z4)), and consequently using the definition of W; one gets
u > ue > up(aq, Ya(zq)) for all uw € Wy If (BO) holds, Lemma 9.7 is therefore proved.

When either, (B1) holds, or (B2) and z,<z%" hold, relation (9.30) follows directly from
the definition of the set W, (see Definition 4 and Definition 5).

Consider now the case when (B3) holds. With definition 6, W; = {w = (u,v) €
Sﬁr : u > 0} and by Proposition 2.2 and the definition of the points z4 and y, (see (2.33)
and (2.34)), one has (x4, Y2(zq)) € S12. By Lemma 4.1 and the definition of the mapping
(xz,y) = wp(x,y), it follows that

240z P (T4, Ya)
V(@a0: P(24,ya))* + (YaOy P(xa, ya))?

and consequently, for any w = (u,v) € Wy, (9.30) holds.

Suppose now that (B4) holds. Then, with the Definition 6, W; = S}r and by
Proposition 2.2 and the definition of the points z; and y; (see (2.33) and (2.34)) and
using (2.9) one gets

up(wa, Yao(za)) =

EES

<yp, (Td,Ya) € Sr2.

(9.34)
By Lemma 4.1 and the definition of the mapping (z,y) — wp(z,y), it follows that for any
w = (u,v) € Wy,

Xi1(ya) =xqg = 2" <2p, yp <y " <1<yq="Ya(za) <y

240, P(74,Yaq)
\/(-Tdaxp(xda yd))2 + (ydayp(xth yd))2

up(xq, Y2(2q) = up(xa,ya) = up(X1(za), ya) =

<0< u,
and consequently, (9.30) holds. O

As a straightforward consequence of Lemma 9.5 and Lemma 9.7, one gets

Corollary 9.2. Under the assumptions of Theorem 2.6, for any j € Zi\EO andw e W,
as min{ky, ko} — +oo0 and k/||k|| — w, (9.19) holds.

Now we will show that for any w = (u,v) € W, as min{k1, ko} — +oo and k/||k|| — w,
the terms Iy(j, k) and I>(j, k) are negligible with respect to I;(j, k). For this we will use
the large deviation estimates for Iy(k, j), and

- the large deviation estimates of I5(j, k) when

hmsup InIz(j, k) < lim — InI1 (4, k),
||k|| Hk||
- the exact asymptotic of I5(j, k) when
hmsup Inly(j,k) = InTy(j, k).
||k|| H/fll

To compare the limit limgInli(j,k)/||k|| with the large deviation estimates for
limsupy, In Iy(4, k) /|| k|| and lim sup,, In I»(j, k) , the following lemma will be useful.

Lemma 9.8. If conditions (A1)-(A3) hold and let w=(u,v)EW;, if one of the assertions
holds,

— one of the conditions (B0), (B1) or (B3) holds,
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- (B2) and z** <z} hold,
— (B4) holds and u > 0,
then

max (u In(x) + vln(y)) > uln(zq) +vin(Ya(zqg)). (9.35)
(z,y)€D, y<ya

Proof. Consider first the case when (B0) holds. We have, see the proof of Lemma 9.8,
X2(ya) > xq and Ya(zg) > yq, the point (w. = (ue,ve) € Si satisfies (9.33) and
Wi = {w = (u,v) € S} : u > u.}. For w = (u,v) € $1 with u > u. (and consequently also
with v < v,.), it follows that

(In(X2(ya)) — In(za))u > (In(Ya(za)) — n(ya))v

or equivalently,
wln(Xa(yq)) +vin(yq) > uin(zq) + vin(Ya(zq)). (9.36)

Since the point (X2(yq),yq) belongs to the set {(z,y) € D : y < yq}, this proves that for
any w = (u,v) € 8% with u > u,,

max (u In(x) +v ln(y)) > uln(Xa(ya)) + vin(ye) > vin(zq) + vin(Ya(zq)), (9.37)
(z,y)eD, y<ya

and consequently, (9.35) holds.

Consider now the case when (B1) holds, we have the relation
Wi = {w = (u,v) € 8} : u>up(za, Y2(za))},
and, by Proposition 2.2 and the definition of the points x,; and y4 (see (2.33) and (2.34)),
Xi(ya) <ma=2"" = Xo(ya), Yi(za) <ya=y"" =Ya(za) (9.38)
and (z4, Y2(zq)) = (X2(ya), ya) € S22. Hence, for any w = (u,v) € Wy,
xp(w) > x4 =Xa2(ye) and yp(w) < yq = Ya(zq). (9.39)

The last relations show that the point (zp(w), yp(w)) belongs to the set {(z,y) € D: y <
ya} and is not equal to (x4, Y2(z4)). Since the point (zp(w), yp(w)) is an only point in D
where the function (z,y) — uln(z) + z In(y) achieves its maximum over D, it follows that

(iyg)rergzgyd(u ln(fc)—&-vln(gj)) =uln(zp(w))+vin(yp(w)) > uln(zy)+vIn(Ya(zy)), (9.40)

and consequently, when the assertion (B1) holds, relation (9.35) is also proved.
Consider now the case when (B2) and x4 < z3° hold. By Proposition 2.2 and the
definition of the points x4 and y4 (see (2.33) and (2.34)),

za=2""> Xo(ya), va=y" >Ya(zq), (zq,Y2(zq)), (X2(ya),vya) € S22, (9.41)
and with the definition of W,
Wi = {w = (u,v) € 8} : u>up(zq, Ya(za))}.
Hence, in this case, for any w = (u,v) € Wy,

rp(w) > x4 > Xa(ya) and  yp(w) < Ya(zq) < ya-
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These relations show that the point (zp(w), yp(w)) belongs to the set {(z,y) € D: y <
ya} and is not equal to (24, Y2(z4)), and consequently, using exactly the same arguments
as in the previous case, one gets (9.35).

Suppose now that (B3) and y4 < y5* hold. By Proposition 2.2 and the definition of the
points x4 and ¥, (see (2.33) and (2.34)), we have

Xi(ya) =zqg=2"" <ap, ya=y" =Ya(xa), (Ta,yq)= (2q,Y2(xq)) € S12  (9.42)

and
Wi = {w = (u,v) € 8} : u>0}.

Since we assume that y; < y3° and by (2.9), y** > y* > y}, by Lemma 4.1 and the
definition of the mapping (z,y) — wp(z,y) = (up(x,y),vp(z,y)), from (9.42) it follows
that

Tqg = Xl(yd) < X2(yd) and ’U,D(Id,YQ(:Ed)) = ’U,D(lL'd,yd) < 0. (9.43)

Hence, in this case, for any w = (u,v) € Wy,

uln(zg) + xIn(Ya(z4)) = uin(zg) + vin(yg) < uln(Xa(yq)) + vin(yg)
< max  (uln(z)+vln(y)) (9.44)
(I;y)ED,ySyd

and consequently, (9.35) holds.
Suppose now that (B3) holds and yq = y}*. Then Wy = {w = (u,v) € $% : v > 0} and
(9.42) holds, but now, instead of (9.43) one has

xqg=X1(ya) = Xo(ya), ya=y" =yp and  wp(xa,yq) = (0,1).
Hence, in this case, for any w = (u,v) € Wi,
zp(w) >zg and yp(w) < yq. (9.45)

These relations show that the point (xp(w),yp(w)) belongs to the set {(z,y) € D: y <
ya}+ and is not equal to (x4, Y2(x4)) and consequently, using exactly the same arguments
as in the case (B2), one gets (9.35).

Consider finally the case when (B4) holds. In this case, W; = S}r and by
Proposition 2.2 and the definition of the points z4 and y, (see (2.33) and (2.34))

EES

Xi(yq) =zq =" <ap, y" <1<yqg=Yo(zq) <y <yp, (xa,ya) € S12. (9.46)

Hence, in this case, (9.43) holds and consequently, using exactly the same arguments as
above, one gets (9.35) for any w = (u,v) € Wy with u > 0. O

Now we are ready to complete the proof of the first assertion of Theorem 2.6: Since
the right hand side of (2.75) does not depend on w € W, it is sufficient to show that for
any j € Z3\Eo and w = (u,v) € Wi, (2.75) holds as min{ky, ko} — +o0 and k/[|k| — w.

Consider first the case when one of the following assertion holds

— one of the conditions (B0), (B1) or (B3) holds
- (B2) and z** < z7" hold,

- (B4) holds and u > 0.
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By using Lemma 9.2 and Lemma 9.8, as ||k|| — +oo and k/||k| — w, one gets
limsup || k||~ log [T (5, k) + I2(j, k)| < — max (uln(i‘) —&—vln(@))
k (2,9)€D, §<ya
< —uln(zq) +vIn(Ya(zq)). (9.47)

By Corollary 9.2, for any w = (u,v) € Wi and j € Z3\E,, as min{ky,kz} — +oo and
k/|k|| — w,
L(j, k) ~ crar s (f)ay ™ (Ya(ag))F2 ! (9.48)
where ¢; > 0 is given by (9.20) and a; > 0 is given by (2.41).
Comparison of (9.48) with (9.47) shows that the terms Iy(j, k) and I2(j, k) in (9.2) are
negligible with respect to I;(j, k), and consequently, from the integral representation
(9.2) and using (9.48) one gets (2.75).

The set of directions W, is empty in each of the following cases:
- (B2) and z4=27%" hold;
- (B5) or (B6) holds.

Hence, to complete the proof of the first assertion of Theorem 2.6 it is sufficient now to
prove (2.75) when (B4) holds and w=(0, 1). By Proposition 2.2 and the definition of the
points x4 and y4 (see (2.33) and (2.34)) one has

Xi(ya) =za=co"" <zp, v <1l<ys=Yo(rq) <y™ <yp, (zq,ya)€ S12. (9.49)

and the definition of the point y3* and the mapping w — (zp(w),yp(w)) give, for
w=(0,1),

(zp(0,1),yp(0,1)) = (X1(yF"), yp )- (9.50)
Hence, in this case, yp(0,1) = y5* > y4, and consequently, also 1 > vp(Xa2(y4), ya). By

Lemma 9.6 applied with w = (0,1), it follows that there is C' > 0 such that for any
j € Z2\Ey and k = (ky, k) € Z2, and as min{ky, ko} — +oo, k/| k| — (0,1)

Ly(j k) ~ C o () (Xa(ya) ™" (ya) 727" (9.51)

With Lemma 9.2 applied with w = (0,1), the definition of the point y}*, and using
relation (9.49),
limsup ||| =" In|Io(j, k)| < — Jax, In(y) = —In(yF) < —In(ya). (9.52)
k z,Y)€E

Remark that by relation (9.49) and Corollary 9.2 applied with w = (0,1) € W, for any
j € Z2\Ey, as min{ki, ka} — +oo and k/||k|| — (0,1),

Li(j k) ~ craysa(f)a;™  (Ya(za) %27 = crar e (j)ag ™y P2t (9.53)

where ¢; > 0 is given by (9.20) and a; > 0 is given by (2.41).

A comparison of relation (9.52) with relations (9.51) and (9.53) shows that for any
j € Z3\E; and k = (k1,ks) € Z2, and as min{ky,ka} — —+oo, k/||k]| — (0,1), the
term Iy(j, k) is negligible with respect to I1(j, k) + I2(j, k) in (9.2), and consequently,
using (9.51) and (9.53) one gets

9(isk) ~ L k) + (k) ~ crasa (e, ™ y ™7+ Coa()(Xa(ya) ™ (ya) 727"

Since by (9.49), 24 = X1 (y4) < X2(ya), this proves (2.75) with b; = cja;.
The first assertion of Theorem 2.6 is therefore proved. The proof of the second
assertion is the same by exchanging the roles of z and y.
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9.6 Proof of the assertion iii) of Theorem 2.6

Suppose first that (BO) holds. In this case, see the proof of Lemma 9.7,
Ue > up(xq,Ya(zq)) and wve > vp(Xa(ya), ya)- (9.54)

Consider j € Z2\Ey and let min{ky, ks} — +oc and k/||k|| — w.. Then using the first
relation of (9.54), by Lemma 9.5 applied for w = w. = (u,,v.), we get

LIi(j, k) ~ craysx (j)%?kl*l(Y2(90<1))_k2_17 (9.55)

where ¢; > 0 and a; > 0 given respectively by (9.20) and (2.41), and using the second
relation of (9.54), by Lemma 9.6 applied for w = w. = (u,,v.), we obtain

L(j, k) ~ caazse(5)(Xa(ya)) ™yt (9.56)

where c; > 0 and a; > 0 are defined respectively by (9.24) and (9.25). Comparison of
(9.55) and (9.56) with (9.7) shows that the term Iy(j, k) in (9.2) is negligible with respect
to I1(4,k) + I (j, k), and consequently, using (9.2) together with (9.55) and (9.56) one
gets (279) with b1 = C1a1 and bg = C202..

9.7 Proof of the assertions iv) and v) of Theorem 2.6

Suppose that (B3) holds, yq < y}3* and let w = (0,1). By Proposition 2.2 and the
definition of the points =4 and yg, one has =} < x4 = 2™ < 2%, (x4, Ya) = (24, Y2(xq)) =
(X1(ya),ya) € S12 and yp < ya = y** < y3'. By Lemma 4.1 and the definition of the
mapping (z,y) — wp(z,y) = (up(z,y),vp(x,y)), it follows that

rq = X1(ya) < X2(ya), (9.57)

up(zq,Y2(q)) <0 and vp(Xa(ya),ya) < 1. (9.58)
Consider now j € Z%\E, and let k € Z2, min{ky, k2} — +oo and k/||k| = w = (1,0).
Then by by Lemma 9.2 and since y4 < y3", one gets

lim sup ||k||~* ln|]o(j,k)’ < — max In(y) = —In(yp") < —In(ya), (9.59)
k (z,y)€D

by Lemma 9.5, from the first relation of (9.58) it follows
L(j k) ~ crasa(i)ey™  (Ya(wa) %270 = crarsa (j)ay ™y P20, (9.60)

where ¢; > 0 and a; > 0 are given respectively by (9.20) and (2.41), and by the second
assertion of Lemma 9.6, from the second relation of (9.58) it follows that there exists
¢» € R do not depending on j € Z2\E, such that

o azr(j)ka Ca a1 (f) k1

(X2(yd>)k1+1y§2+2 (XQ(yd))k1+2ydk2+1 (961)

I2(.7ak) ~

where ¢ > 0 and a} > 0 are given respectively by (9.24) and (9.27).

Comparison of (9.59) with (9.60) shows that the term Iy(j, k) is negligible with respect
to I1(j, k) + I2(j, k) in (9.2). Using therefore (9.2) together with (9.60) and (9.61) we
obtain

C1 alxl(j) Co aé%l(j)kg 52 bg%l(j)kl

~ - (9.62)
z§1+1y§2+1 (XQ(yd))k1+1y§2+2 (X2(yd))k1+2ydk2+1
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Finally, by relation (9.57) we have x4<X5(y4), hence, in relation (9.62), the last term
is negligible with respect to the first one and consequently, relation (2.80) holds with
by = c1ap and by = cg af.

The assertion iv) of Theorem 2.6 is therefore also proved. The proof of the assertion
v) is exactly the same (it is sufficient to exchange the roles of the first and the second
coordinates of the random walk (Z(n))).

9.8 Proof of the assertion vi) of Theorem 2.6

To prove the last assertion of Theorem 2.6 it is sufficient to show that for any w € W,
(2.84) holds uniformly with respect to w,,, = m/||m/| in some neighborhood of w. For this
we use Proposition 1 of [18]. In our setting, this result gives the following lemma.

Lemma 9.9. Suppose that the Assumption (A1) is satisfied and let w = (u,v)€S$} and
>0 and a function (z,y)—F(x,y) be analytic in the polycircular set

{(z,y) € C*: ||a:| - a:D(w)| <e, ||y| — yD(w)| < e}, (9.63)

and not vanishing at the point (xp(w),yp(w)). Then the integrals

F(z,y) 2
I( dxd = el 9.64
)= G // (L P,y T ) € 2 060

are well defined and does not depend on the point (Z, 4) on the set

{(‘%7:0) € B : |‘% - JTD(’LU>| <g, |g - yD(w)| < E}? (965)

and as ||m|| — +oo, uniformly with respect to w,, = m/||m/| in some neighborhood of w,

F(zp(wk), yp(wi))y/wi - Qwe)wy

I(m) ~ (9.66)
)~ R mCan) | e (we)) (g ()
By Corollary 9.1, for any (&, ¢) € D, with & < x4 and § < y4, we have
1 F.
i(@:y) dady. (9.67)

90, k) = 75—
(2m)2 J =z Jjy)=g TP Ty (1 — P(x,y))

with

Fj(z,y) = Li(x,y) + (¢1(2,y) — P(x,y))H;(z,0) + (¢p2(x,y) — P(z,y))H;(0,y).

Remark moreover that the set of directions W, is non-empty if and only if (B2) holds,
and that in this case, for any w = (u,v) € W,, one has

zp(w) < zq4, yp(w) < yq. (9.68)

By Theorem 2.1, it follows that for some nelghborhood V(zp(w),yp(w)) of the point
(zp(w),yp(w)) in R?, the function (z,y) — Fj(z,y) = L;(x,y) + (¢1(z,y) — 1) H;(x,0) +
(¢2(z,y) — 1)H,;(0,y) is analytic in the polycircular set {( y) € C 2 (|z,|y]) €
V(zp(w),yp(w))}, and by Proposition 7.13,

Fj(xD(w)vyD(w)) = %(:cD('w),yD(w))(j) > 0, VJ € Z \EO

For any weW, and ]EZ \Ey, the conditions of Lemma 9.9 are therefore satisfied with
F=F}, and consequently relation (2.84) holds uniformly with respect to wi=Fk/| k|| in
some neighborhood of w.
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A Relations with positive recurrence and transience conditions

This section discusses the conditions (B0)-(B7) defining our classification with
transience and positive recurrence conditions of of these random walks. As we will see,
the regions of our classification are in fact not defined in terms of positive recurrence or
transience. Transience and positive recurrence are possible in several regions.

Throughout this section, pg, 11 or o are assumed to be stochastic, i.e. probability
distributions. Before getting these results, note that Assumption (A1)‘(ii) is equivalent to
the usual Cramer’s condition for the distribution of the jumps of (S(n)). It is satisfied if
and only if the function

(a, B) =+ Pla, B) & P(e”,ef) = Z pu(k)ekr ke

k=(ky,k2)

is finite in a neighborhood of the set D Lt {(a, B)ER? : P(e,e?)<1}. Similarly,
Assumption (A3) (ii) is satisfied if and only if the generating functions

i, B) Z pa(e®,e®) = ST pilk)et PR ief0,1,2),

k=(k1,k2)

are finite in a neighborhood of D. Since (0,0)€D, all jumps of the random walk (Z(n))
are in particular integrable.
Remark furthermore that because of Assumptions (A1) (ii) and (A3) (iv), the mean jumps

(My, M) = Y julj), (M{,M3) =Y jm(j) and (MP,M3)= " jui(j)
Jj€Z? jeZ? jEZ2

are non zero, M} >0 and M#>0. Moreover, since with Assumption (A1) (iii), the sets DND;
and DND, have a non-empty interior, one has also M; MJj#MyM;{ and My M3#M;M3.

Under our assumptions, the necessary and sufficient conditions of positive recurrence
and transience for the Markov chain (Z(n)), are given in the next proposition. See
Theorem 3.3.1 of [7] for example.

Proposition A.1. Under the assumptions (A1)-(A3) then, the following assertions hold
for the Markov chain (Z(n)) on Z3.

(1) Positive recurrence. If and only if one of the following conditions is satisfied:

(RO) M;<0, My<0, MyM}<MyM} and MyM2<M; MZ;
(R1) My<0, M;>0 and M; M} <M,M7;
(R2) M;<0, My>0 and MyM2<M; M2.

(2) Transience. If one of the following conditions is satisfied:

(TO0) M;>0 and M5>0;
(T1) M2<0 and M1M21>M2M11;
(T2) M;<0and MyM2>M, M2;

The proposition below studies the relation between conditions of transience and
positive recurrence for the Markov chain (Z(n)) and the location of the points defining
the regions (B0)-(B7). We formulate the conditions (R0)-(R2) and (T0)-(T3) in terms
of the location of the points (z*,Y;(z*)), (X:(y*),y*), and (z**,Y;(z**)), (Xi(y*),y*"),
i€{1,2}. In Proposition A.4, the relation with the location of the dominant singularities
xq and yg is analyzed.

We first establish a technical lemma.
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Lemma A.1l. Under the assumptions (A1)-(A3), then

(i) M2<0 if and only if (1,1)€8511USs; and zh<1<z}r.
In this case, Y1(1)=1 and

* if MqaM}! < MyM},
1= T 1 14VLy 24Vl (A.1)
** 1fM1M21 > M2M11
(ii) M;<0 if and only if (1,1)€S511US12 and yp<1<yp'.
In this case, X;(1)=1 and
*if My M2 < My M2,
_ Yy 1 247 14 (AZ)
Y if MyM? > M M2.

Proof. To prove (i), it is sufficient to remark that M;=0,P(1,1) and that, according to
the definition of the curves S;;, ,j€{1,2},

S11 U8 = {(z,y) € 0D : 9,P(z,y) <0}

and that by Lemma 4.1, the points (z},Y1(zh))=(zp,Y2(2}%)) and
(3, Yi(ap))=(2%, Yi(23)) are the only points on the boundary 0D of the set D satisfy-
ing the relation 9, P(z,y)=0.

Moreover, by relations (2.15) and (2.17), we have S;1USs1={(x,y) € 0D : y=Y1(x)}.
Hence, when M><0, one has Y;(1)=1 and therefore ¢;(1,Y1(1))=¢1(1,1) = 1. By
Corollary 4.1, it follows that the point 1 is an end point of the line segment [z*, 2**], and,
consequently, with relations (2.9) and (2.10), we conclude that one and only one of the
following cases occurs:

x *=1<a™ <o}

- *P<
* * k% * ok
-Trp STt <1l=a" <zp.

By the implicit function theorem we have, for any z€|zp, 23],

d
T 01(@.Y1(2)) = 02012, y) + Oy¢1(x,y)0uP(2,y) /0y P, Y)l -y, (2

hence, when M5<0, the relation

%qﬁl(a:,yl(a:)) = 0,$1(1,1) + 0y1(1,1)9,P(1,1) /0, P(1,1) = M{ — M3y M;/Ms,

r=1

holds, and, consequently, in a neighborhood of =1, the function z+— ¢, (z, Y12)) is
- non-decreasing if M| —MjM; /M, > 0,
- non-increasing if M{—Mgj M, /Ms < 0.

By Corollary 4.1, we have the relation ¢;(z,Y1(z))<1, for all z€]z*,z**[, and
¢1(x, Y1 (2))>1, for z€lzh, x*[U]z**, 23]. Hence, when 2% <z*=1<z**<z%’, the function
x—¢1(x, Y1 (7)) is non-decreasing in a neighborhood of x=1 and M My—MJM;>0,
and, when zp<z*<l=z**<z}, the function z—¢;(x,Y1(z)) is non-decreasing in a
neighborhood of =1 and M} M,— M3 M; <0.

The first assertion of our lemma is proved. The second assertion is symmetrical by

exchanging the roles of x and y. O
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Proposition A.2. Under Assumptions (A1)-(A3), then

(i) (RO) holds if and only if (z*, Y1 (z*))=(X1(y*),v*)=(1,1), 2p<1 and y};<1;

(i) (R1) " (z*,Y1(z*))=(1,1) and zH<1;
(iii) (R2) " (X1(y*),y")=(1,1) and yp<1.
@(iv) (TO) " (1,1)€8,, 1<z** and 1<y**.

In this case, Y2(z**)<1 and Xo(y**)<1.
(v) (T1) holds if and only if (1, 1)=(z**,Y1(2**)) and 1<z}
(vi) (T2) " (1,1)=(X1(y**),y™) and 1<y’

Proof. The assertions (i)—(iii) and (v)-(vi) follow directly from Lemma A.1.

We have only to establish (iv). By using again the relations M;=0,P(1,1) and
M>=0,P(1,1), when (1,1)€S,, by relations (2.9), (2.10) and (2.18), and with Lemma 4.1,
we get the identities (1,1)=(1, Y2(1))=(X2(1),1) and the relations

rp < Xi(yp) <1<z <2y and yp <Yi(zp) <1< y™ <yp, (A.3)

and
Mi>0 & (1,1) £ (i) ) & 1<yi, (a.4)
My>0 & (1,1)#£(xp, Yi(23)) & 1<ap. (A.5)

Hence, when (1,1)€S85,, we have 1<z** and 1<y**, the condition (T0) holds.
Conversely, if (T0) holds, then, according to the definition of the curve Sos,

(1, 1) = (1,Y2(1)) = (Xg(l), 1) € Soo (A.6)
and, by using relations (A.4) and (A.5), we get
1<zpy, and 1<yp.

By relation (A.3), we have always 1<z** and, if we assume that z**=1, then, by
relations (A.6) and (A.3), we obtain z}p<l=x"*<z}". Consequently, by Lemma 4.1 and
Corollary 4.1, we have Y7 (1)<Y2(1) and ¢1(1,Y1(1))=1.

Since under our assumptions (A3) (ii) and (A3) (v), the function y—¢(1,y) is strictly
increasing on the line segment [0, Y;(1)], these relations imply that ¢2(1,Y2(1))>1 and,
consequently, (1,Y7(1))#(1,1). Since this last relation contradicts relation (A.6), we
conclude that z**>1.

By exchanging the roles of z and y, the same arguments prove also that when (TO0)
holds, the relation y**>1 holds. By relation (2.18), we have

Soo={(z,Y2(2)) : z€[Xa1(yp), 2F]}={(X2(y),y) : yeY1(zF ), yp}
and, by Lemma 4.1, the functions
Xt [Yi(2F), yp =X (yp),2p] and Ya : [Xa(yp), 25 | = [Ya(2F), yp]

are strictly decreasing. It follows that Y3(z**)<Y3(1)=1 holds and, similarly,
Xo(y**)<X2(1)=1. The assertion (iv) of Proposition A.2 is proved. O

The following statement give relations between the conditions (B0)-(B7) and the

conditions (R0)-(R2) and (T0)—-(T2).
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Proposition A.3. Under the assumptions (A1)-(A3), then
(1) both conditions (T1) and (T2) hold if and only if (B7) holds;
(2) (B2) holds if (T0) holds.
(3) If either (B3) or (B4) holds, then

- (T2) is not possible;
- (T1) holds if and only if z**=1, and in this case, Y;(1)=1;
— either (RO) or (R1) or (R2) holds whenever z**>1.

(4) If either (B5) or (B6) holds, then

- (T1) is not possible;
- (T2) holds if and only if y**=1, and in this case, X;(1)=1;
— either (RO) or (R1) or (R2) holds whenever y**>1.

Proof. The first and the second assertions of this statement follow from directly
Proposition 2.2 and Proposition A.2.

If either (B3) or (B4) holds, by Proposition 2.2, 1<Y¥3(z**)<y** holds, and,
consequently, by Proposition A.2, the case (T2) is not possible.

Still under the condition that either (B3) or (B4) holds. By Proposition 2.2 and with
relations (2.9) and (2.10), we have 1<z**<xz}p". Therefore, by Proposition A.2, (T1) holds
if and only if (1, 1)=(z**, Y1 (2**)) holds. Since P(1,1)=1, by Lemma 4.1, either Y;(1)=1
or Y>(1)=1 holds, since, in our case, we have 1<Y5(z**) by Proposition 2.2, it follows
that when either (B3) or (B4) holds, the condition (T1) is satisfied if and only if z**=1.

Under the condition that either (B3) or (B4) holds and that z**>1 holds. We have
that either M><0 or M;<0, because otherwise (T0) and, consequently, (B2) holds. By
Proposition 2.2 and with relation (2.9), we get the relations 1<Y3(z**)<y**<y}" and
l<z**<z¥, and, consequently, (1,1)#(x5, Y1 (23)) and (1,1)#A(X1(yy), y5"). Since the
point (z,y) = (x5, Yi(2})), resp. (z,y)=(X1(y}5"), y5)) is the only point on the boundary
0D of D for which 9, P(z,y) > 0 and 9,P(z,y) = 0, resp. 0,P(z,y)=0 and 9, P(x,y)>0)
and, since M1=0,P(1,1) and M>=0,P(1,1), we conclude therefore that, either M;<0
or My<0. If M5<0, then, by Lemma A.1, and the assumption x**>1, we get z*=1
and M; MJ}<MyM{. Similarly, if M;<0, by Lemma A.1 and since, by Proposition 2.2,
1<Ys(z**)<y** holds, we obtain y*=1 and MyMZ<M; M3. We conclude that in the case
when either (B3) or (B4) holds and x**>1, one of the conditions (R0), (R1) or (R2) is
satisfied.

The third assertion of Proposition A.3 is therefore also proved. The last assertion
follows by exchanging the roles of x and y. O

We can now establish the relations with the locations of the dominant singularities x4
and Yd-

Proposition A.4. Under the assumptions (A1)-(A3) the following assertions hold:
(i) If the Markov chain (Z(n)) is positive recurrent then x4>1 and y4z>1.
(i) If (TO) is satisfied then (B2), x4=x*">1 and yz=y**>1 hold.
(iii) If (T1) is satisfied then

- in the cases (B0)-(B2), relations zq=2"*=1<z}" and ys=y**>Y7(1)=1 hold;
- in the cases (B3) and (B4), relations z,=¢**=1<z}%" and ya=Y2(1)>1 holds;
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— (B5) and (B6) do not hold.
(iv) If (T2) is satisfied then

- in the cases (B0)-(B2), relations y;=y**=1<y}" and z4=2"*>X;(1)=1 hold;
- and (B3) and (B4) do not hold;

- in the cases (B5) and (B6), relations y;=y**=1<y}" and x4=X>(1)>1 hold.

Proof. Consider first the case when one of the cases (B0)-(B2) occurs. Then by
Proposition 2.2 and according to the definition of x; and yg4,

xg =2 > X1 (y"") and yq=y™ > Yi(z™). (A.7)
Hence, if we suppose moreover that (R0) holds, by Lemma A.1 and using (2.9), we obtain
l=a"<a™ =24 and 1=9y* <y™ =yq,.
If we suppose that (R1) holds, then by Proposition A.2 and using (2.9), and (A.7),
l=a"<a™ =z4, and 1=Yi(z") < yq.

And similarly, if we suppose that (R2) holds, then by Proposition A.2 and using (2.9), and
(A.7),

l=y" <y =yq4, and 1=X;1(y") < zq4.

In the case when one of the cases (B0)-(B2) holds, the first assertion of out statement is
therefore proved.

Suppose now that either (B3) or (B4) holds. In this case, by Proposition 2.2 and
according to the definition of x4 and y,, we have

g =2 <zp and yg=Ya(z™) > 1. (A.8)

Moreover, by relation (2.10), the inequality 1 < #** always holds, and consequently, in
this case, by Proposition A.3, one of the conditions (R0)-(R2) is satisfied if and only if
1 < 2™ = z4. Hence, when either (B3) or (B4) holds, the first assertion of Proposition A.4
is also proved. The same arguments (it is sufficient to exchange the roles of x and y)
prove the first assertion of our proposition in the case when either (B5) or (B6) holds.

Furthermore, if the condition (TO) is satisfied, then by Proposition A.3, (B2) holds and
consequently, by Proposition A.2 and using (A.7) one gets x4 = 2** > 1 and y4 = y** > 1.
The second assertion of Proposition A.4 is therefore also proved.

Suppose now that the condition (T1) is satisfied. Then by Proposition A.3, the cases
(B5) and (B6) are impossible, and by Proposition A.2,

=1 and Y(z™)=1 (A.9)

Moreover, if one of the cases (B0)-(B2) holds, then by (A.7), one gets yq = y*™* > Yi(2**) =
1, and if either (B3) or (B4) holds, then by (A.8) and using the second relation of (A.9),
we obtain y; = Y2(2z**) > Y1(2**) = 1. The third assertion of Proposition A.4 is therefore
also proved. The proof of fourth assertion is the same, it is sufficient to exchange the
roles of x and y. O
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B Irreducibility properties of the killed Markov chain

Proof of Lemma 2.2

Since by the assumption (A1), the homogeneous random walk (S(n)) with transition
probabilities P;(S(1) = k) = u(k — j) is irreducible on Z?, for any k € Z?, there
is a sequence of points (¥(1) = (¢¥(1),£5(1)),...£%(Ny) = (¢%(Nw),5(Ny)) € Z? such
that ¢%(1) + --- + (*(Ny) = k and Po(S(Ny) = k) > p(l¥) x - x u(f*(Ny)) > 0. Let
Ny =1+ max{N1,0), N1,0, No,-1), N(o,1) }. Then because of Assumption (A2), for any
j = (j1,J2) € Z% with ji,j> > Ny and k € {(—1,0),(1,0),(0,—1),(0,1)} the sequence of
points m*(1) = j + ¢8(1),...,mF(Ny) = j + £¥(1) + - - - + £*(N},) does not exit from the set
(IN*)2, and consequently

P;(Z(n) =j+k, forsomen < 7) >P;(Z(n) =mF(n), VYne{l,...,N}) > 0.
This proves that
9(4,k) 2 P;(Z(n) =k, forsome n < 7) >0 whenever ji,j2, k1, ks > Ny. (B.1)
Consider now a random walk (S(n)) on Z x IN with transition probabilities

w(k —yj) forall j = (j1,j2),k € Z x N with js > 0,

P;(5(1) = k) = . N L
pi(k —j) forall j = (j1,72),k € Z x IN with j, = 0.

By Assumptions (A1) and (A3) (v) and (vi), such a random walk is irreducible on Z x NN,
and consequently, for any jo» € IN and k = (ki,ko) € Z2 such that (ki, ks + j2) €
7 x N, there is a sequence of points #2%(1) = (¢22F(1),02%(1)),.. 072k (N}, ) =
(727 (N, 1), 657 (Nj, 1)) € Z2 such that for any n € {1,...,N;, 1},

J2,
(0, 2) + 6725 (1) + -+ - + £72F(n) € Z x N,
and
P o.4,) (S(Nj,6) = (0,52)+k) = P g4, (S(n)—S(n—1) = ¢2F(n), ¥n € {1,...,Nj, x}) > 0.
Letting
Ny = 1+max{Nj2,k : Joa < Nl, (kl,kg) € {(—1,0), (1,0), (0, —1), (0, 1)}, (kl,k2+j2) c ZXIN}
and using Assumptions (A2) and (A3) (iv), we obtain that for any j = (j1,j2) € Zi with
J1 = N, and any k = (k1, k2) € {(-1,0),(1,0),(0,—1),(0,1)} such that j + k € Z x N, the
sequence of points m?* (1) = j+ 62k (1), ... mP*(Nj, 1) = j+02F (1) +- -+ 028 (N, ) =
(Z{Z’k(NjQ,k), 6722’k(Nj2,k)) does not exist from the set N* x IN, and consequently,
P;(Z(n) = j + k for some n < 7) > P;(S(n) = m’>*(n), ¥n € {1,...,Nj, x}) > 0.
This proves that

g(j, k) >0 whenever jo < Ni,ky < N;+1and ji, ki > No, (B.2)

and with exactly the same arguments (it is sufficient to exchange the roles of the first
and the second coordinates of the points in Z%r), one gets that for some N3 > 0,

9(j, k) >0 whenever j; < Ni,k1 < Ny +1and ja, ko > Ns. (B.3)
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When combined together, relations (B.1), (B.2) and (B.3) show that for some Ny > 0,
9(j,k) >0 forall j ke Z3 with || > No and ||k|| > No. (B.4)

Remark now that if £ € Z2 is such that g(¢, jo) > 0 for some j, € Z3 with |[jo|| > No, then
also Py(Z(n) = jo, 7 > n) > 0 for some n € N, and consequently, by (B.4) and using the
inequality

g(tk) = Y PuZ(n)=j, 7 >n)g(G k) = Pu(Z(n) = jo, T >n)g(jo,k)  (B.5)
JEZI\{0}

we obtain
g(t,k) > Py(Z(n) = j, 7 >n)g(j, k) > 0 forall k € Z3 with [|k|| > No.

Hence, for any ¢ € Z% we have either g(¢,k) > 0 for all k € Z2 with ||k|| > No, or
g(¢,k) = 0 also for all k € Z2 with |k|| > Ny, and in the last case, because of (B.4),
€]l < No. Letting therefore Ey = {¢ € Z2 : g({,k) =0 for all k € Z2 with |[k| > Ny} we
obtain a finite subset of Zi satisfying (2.32). Remark moreover that this set satisfies
also (2.31) because if suppose that g(¢, j) > 0 for some ¢ € E; and j € Z2 \ Ey, then using
again the inequality (B.5) and the same arguments as above we would get g(¢, k) > 0 for
all k € Z% with ||k|| = No. Now, to complete the proof of our lemma, it is sufficient to
notice that ¢(0, k) > 0 for any k € Z2 \{0}, because under our assumptions, the random
walk (Z(n)) is irreducible on Z?, and consequently, the point 0 = (0,0) does not belong
to the set Ej.
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Figure 5: DPossible cases for the location of the line segments [a,b] =
(X2 (y™),y™), (Xa(y™),y™)] and [ed] = [(z77, Y1 (2™7)), (&7, Ya(2™))].

/ d
[
|
\ )
X
\\
S C
(B1) (B2) S
a=d b
% d
{
\\
\\
€ b =c
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Figure 6: All possible configurations for the line segments [a,?] =
[(X1(y™),y™), (Xa(y™),y™)] and [ed] = [(z™,Y1(2z™)), (z*,Y2(z""))] and the trace

of the set {(z,y) € D: |z| < x4, |y| < ya}. Cases (BO)-(B6).
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(za, i (7a))
(0,0) (24,0)
Figure 7: Case (B2) with z4 = 2™ = zp. In this case, the line segment
[(z**, Y1 (z*)), (x**, Ya(2**))] is a single point and y; = y** < y5'.
0,y5)
D e )
(X1(ya), va) — —— ¢
\DA D, DND ——
CNCRRY ///_;/—_/‘/
(0,0) (z4,0)
Figure 8: Case (B5) with z4 = 2" = 2z3. In this case, the line segment

[(z**, Y1 (2x*)), (z**, Y2 (x**))] is a single point and y; = y** = Y1(z4) < y3"

(07 yd)

pop, D

L Dn D

(0,0) (za,0)

Figure 9: Case (B2) with z4 = 2™ = 2} and yq = y** = yp5'. Here, each of the
line segments [(x**, Y7 (™)), (z**, Yo (x**))] and [(X;(y**), y**), (X2(y*), y™*)] is a single
point.
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Figure 10: Set O, cases (B0)-(B2).
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