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Abstract

We consider homogenization of random surfaces and study the variational principle
for graph homomorphisms from subsets of Zm into Z, where the underlying uniform
measure is perturbed by a random potential. Motivated by the theories of random
walks in random potentials, we assume that random potential is stationary, ergodic,
and bounded in L1. We show that the variational principle holds in probability and
that the entropy functional homogenizes, i.e. is independent of the values taken by
the random potential. The main ingredients in the argument are the existence of the
quenched surface tension, the equivalence of the quenched and the annealed surface
tension, and robustness of the surface tension under change in boundary data. These
ingredients are deduced by a combination of a superadditive ergodic theorem and
combinatorial results, especially the Kirszbraun theorem.
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1 Introduction

The broader scope of this article is the study of limit shapes as a limiting behavior of
discrete systems. Limit shapes are a well-known and studied phenomenon in statistical
physics and combinatorics (e.g. [24]). Among others, models that exhibit limit shapes
include domino tilings and dimer models (e.g. [25, 12, 13]), polymer models (e.g. [6, 4]),
lozenge tilings (e.g. [16, 35, 48]), Ginzburg-Landau models (e.g. [17, 22]), Gibbs models
(e.g. [44]), the Ising model (e.g. [18, 10]), asymmetric exclusion processes (e.g. [20]),
sandpile models (e.g.[32]), the six vertex model (e.g. [7, 14, 42]), and the Young tableaux
(e.g. [34, 47, 41]).

Figure 1: An Aztec diamond for domino tilings. The combinatorics of the model is similar
to Lipschitz functions from Z2 to Z (see [13]).

Limit shapes appear in stiff models whenever fixed boundary conditions force a
certain response of the system. The numerous examples in the literature and many
simulations show that the existence of limit shapes is a universal phenomenon. Among
many possible references, let us just mention [27, 8, 36, 37, 26]. Several new approaches
were developed recently to make methods more robust; see for example [11, 9, 14, 1].
In [36], variational principles were studied in target spaces where the usual cluster
swapping methods do not work.

In this article we explore a new direction and show the robustness of the variational
principle in a random potential. The basic objects for our model are graph homomor-
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phisms from finite subsets of the m-dimensional lattice Zm into Z, also called height
functions. The physical motivation behind our model is the study of interfaces that
separates two phases. An example of an interface would be the surface that separates a
fluid droplet from its surrounding air, or domain walls in a ferromagnet at low tempera-
tures. We consider an effective model which means that the interface has no overlap
and can be represented as the graph of a height function f : R → R, for some domain R.
Additionally, we assume that the interface is forced to have a certain height at the
boundary, which is for example the case when describing the membrane of a drum. As
an interface strives to minimize the local surface tension, the shape f of the interface
can be macroscopically described as the minimizer of the variational problem

min
f,f|∂R=g

∫
R

ent(∇f(x), f(x), x)dx, (1.1)

where ent denotes the local surface tension. For details we refer to the standard literature
on interface models, e.g. [21].

In this article, the interface is modeled microscopically via a height function h : Zm ⊃
Rn → Z, allowing only height differences of ±1 between neighboring sites. Without the
random perturbation the model could be interpreted as degenerate ∇φ model, where
the potential φ is a degenerate double well potential given by

φ(z) =

{
0, if |z| = 1,

∞, else.
.

As the microscopic ensemble µω of height functions, we consider the uniform measure
perturbed by a random potential ω acting on the height space Z. The random potential ω
makes certain heights more attractive for the height function h than other heights.
The role of the random potential ω is to model the pinning of the interface at certain
height levels, caused for example by random heterogeneities in the medium like defects,
dislocations, dopants, and vacancies. The pinning of interfaces plays an important
role in a variety of phenomena, including grain growth, martensitic phase transitions,
ferroelectricity, dislocations and fracture (see e.g. [46] and the references therein).

In two dimensions and without random potential, Z-homomorphisms are equivalent
to a special case of the six-vertex model, where all vertex weights are identical, i.e. the
square-ice model. The limiting behavior of the Z-homomorphism model without random
potential is well-studied; see for example [3, 40, 39]. As we add the random potential
on height levels, this perturbation is highly nontrivial for the square-ice model. The
likelihood of placing a specific ice-molecule at a certain position would depend in a subtle
way on its environment via the associated height function. A direct way to approach
stochastic homogenization on the square-ice model would be to add the random potential
onto the underlying lattice Zm, modulating the likelihood of placing different molecules
depending on the lattice location x ∈ Zm. In the meantime of the review process of this
article, a study on deterministic periodic homogenization of the six-vertex model was
published (see [19]).

Another reason for introducing a random potential is to test the robustness of the
methods used to prove variational principles and similar results. Several nice properties
do not carry over from the unperturbed model: exact computations like those in [13]
are prohibitively difficult, a priori proofs of concentration (e.g. the martingale method
of [12]) do not seem to apply, and there are no obvious global symmetries. To overcome
those obstacles we make use of ergodicity and homogenization.
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The random potential is inspired by homogenization of random walks in random
environment (see e.g. the survey [5]). Indeed, the bridge model of [23], i.e. transient
random walks in random environment conditioned to start and end at prescribed bound-
ary values, is a special case of the Z-homomorphism in random potential model with
dimension m = 1. The bridge model exhibits asymptotically different maximal order
statistics than does the bridge model originating from the simple random walk. The
model considered in this article is a natural extension of bridges to “random sheets.”
It would be interesting to extend the results of [23] to higher dimensions and compare
against the Gaussian free field.

Before summarizing the mathematical results of the article, let us motivate the model
further by discussing empirical results from computer simulation; cf. Figure 2 and 3.
We generated random environments (ωe)e∈E(Sn) according to various distributions (e.g.
i.i.d. Gaussian) and for various box sizes (up to a 1000×1000-vertex box). We chose
boundary data h∂Sn

, then we sampled a height function h ∈ M(Sn, h∂Sn
) according to

the random measure µω using the Markov chain Monte Carlo method.

We call attention to a few details from the simulations. The two height functions in
Figure 2b are drawn from two different measures µω, where the random potentials ω are
sampled such that {ωe | e ∈ E(Z)} are i.i.d. with P(ωe = 1) = P(ωe = −1) = 1

2 . Although
the exact value of ω varies in the two samples, the randomly chosen height functions
in the pictures appear to be macroscopically identical. This is a good indicator that
this model homogenizes. By this we mean that the macroscopic features measure µω

do not depend (in the limit, except with negligible probability) on the exact choice of ω.
Rather those macroscopic features of µω only depend on the distribution of ω and the
boundary data. Indeed, the main results of this article apply to the random potential
from Figure 2b, so we know that this model homogenizes.

The three height functions in Figure 2c are sampled from three different measures
µω, where ωe ∼ N (0, 1) are i.i.d. standard normal variables. Notice that these three
height functions differ macroscopically, depending on the realization of ω. This does
not contradict the results of this article because the random potential is unbounded.
We expect (but have not proven) that this model fails to homogenize when the random
potential is unbounded, with energetic pinning effects from ω overwhelming the entropic
effects from the underlying combinatorial Z-homomorphism model. If the random
measure µω does not homogenize, then the limit shape under µω may depend on the
actual values of ω, and thus be may be a non-trivial random variable (with respect to the
randomness that determines ω). However, we conjecture that the arctic circle, i.e. the
boundary between the frozen and liquid region, still homogenizes and is independent
of the law of the perturbation even in the case of an unbounded random potential (see
Figure 3).

In order to understand the behavior underlying the simulations in Figure 2, we prove
two main results: a profile theorem (see Theorem 2.22) and a variational principle
(see Theorem 2.23). A third related result, namely a large deviations principle (see
Theorem 2.24), is not difficult to prove by the same methods, but we omit it for brevity.
These results hold with high probability for fixed environments ω. They establish that, for
typical samples of ω, there holds a conclusion similar to the profile theorem or variational
principle for the non-random model studied in our companion article [31]. Indeed the
purpose of the companion article was to distill, simplify, and explain the steps involved in
proving these results. Understanding the methods in the companion article will help to
understand the general outline of the proofs in this article. From a high-level perspective,
the main results are similar to the simpler case studied in [31].
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(a) A height function sampled
without random potential.

(b) Two height functions sampled from µω, under two dif-
ferent samples of ω with a.s. bounded distribution. Specif-
ically, the random variables {ωe | e ∈ E(Z)} are i.i.d. with
P(ωe = 1) = P(ωe = −1) = 1

2
.

(c) Three height functions sampled from µω, under three different samples of ω with
a.s. unbounded distribution. Specifically, the random variables {ωe | e ∈ E(Z)} are i.i.d.
standard normal variables. One can observe the pinning of the surface to certain height
levels.

Figure 2: Height functions h, sampled from random measures µω, which in turn are
derived from randomly sampled fields ω. The height functions are rendered as 3D solids
with the random surface {(x, y, h(x, y)) | (x, y) ∈ Sn} as their “top” face. Boundary values
of h are fixed, and the behavior of h on the interior of the domain Sn depends on ω. If
the law of ω is bounded (as is the case in Figure 2b), then the results in this article imply
that with high probability, the macroscopic behavior of h does not depend on the specific
realization of ω, but only on its distribution.

Let us now briefly discuss the main results of this article. We start with the profile
theorem. It asymptotically characterizes the cardinality of the set of height functions hRn

that are uniformly close to a particular macroscopic state hR (also called asymptotic
height profile later on). Without random potential, the profile theorem states (cf. [31,
Theorem 15]) that

EntRn

({
height functions hRn

: Rn → Z

with ‖hRn
− h̃R‖∞ < ε

})
≈ EntR(hR) ,

(1.2)
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Figure 3: The height functions h are rendered from the birds-eye perspective and satisfy
the same boundary conditions as in Figure 2. The first picture has no random field, the
second has an iid. random field uniformly distributed on the set {1, . . . , 10}. In the third
picture, the random field is idd. standard normal. By zooming into the picture, it seems
that the arctic circle, i.e. the boundary between the frozen and the liquid region, seems
not to be effected by the law of the random field.

where (for details see Section 2):

Rn ⊂ Zm is such that 1
nRn converges to R ,

h̃R(z) = nhR(
z
n ) is a rescaled version of hR ,

EntRn(M) = − 1

|Rn|
log|M | , (1.3)

EntR(hR) =

∫
R

ent(∇hR(x)) , and (1.4)

ent : [−1, 1]m → R is determined by the combinatorics

of the Z-homomorphism model.

In the setting of homogenization we substitute the uniform measure on the set of
microscopic height functions with a random measure µω that is characterized by the
random potential ω. The quantity EntRn

(M) from (1.3) is dependent on ω, and is
therefore a random variable. Specifically, the cardinality |M | is replaced by a partition
function of µω on the set of height functions. The quantity EntR(hR) from the right-
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hand side of (1.2) is replaced by EntR,an(hR), the annealed macroscopic entropy (see
Definition 2.21). Likewise the local surface tension ent(·) in the definition (1.4) is replaced
by the annealed local surface tension entan(·). In both cases, “annealed” means that the
influence of the random field ω is averaged out i.e. entan(s) := E[ent(s, ω)]. Therefore
entan(·) and EntR,an(·) are non-random. Turning back to the conclusion (1.2) of the profile
theorem, the left-hand side is a non-trivial random variable, but the limiting quantity on
the right-hand side is not random.

Let’s turn to the second main result, namely the variational principle. Recall that the
profile theorem measures the set of height functions that stay close to a target asymptotic
height profile over the entire domain. The variational principle instead measures the
whole set of height functions with certain boundary values. Without random potential
(cf. [31, Theorem 16]), the result is

EntRn

({
hRn

: Rn → Z
∣∣hRn

|∂Rn
is close to h∂R

})
≈ inf

hR

EntR(hR) ,
(1.5)

where “close” means close in the supremum norm after rescaling, and where the
infimum runs over all asymptotic height profiles consistent with the given boundary data
h∂R : ∂R → R. In the setting of homogenization, i.e. adding a random potential to the
uniform measure, the necessary modifications to this approximate identity are analogous
to those for the profile theorem above: EntRn

(·) becomes a random variable dependent on
ω just as above, and EntR(hR) is again replaced by the non-random quantity EntR,an(hR).
Hence, it follows from our main result that the variational principle homogenizes. Coming
back to our initial motivation of studying interfaces, the variational principle vindicates
the Ansatz (1.1), i.e. that an interface can be described macroscopically by minimizing
the overall surface tension.

Let’s now discuss the large deviations principle. Let h∂R be an asymptotic boundary
height function and let A be a Borel set in the space of asymptotic height functions with
boundary values given by h∂R, equipped with the supremum norm. Without random
potential the large deviations principle states (cf. [31, Theorem 17]):

− 1

|Rn|
logµn

({
hRn : Rn → Z

∣∣ after rescaling, hRn ∈ A
})

≈ inf
hR∈A

EntR(hR)− E0 ,
(1.6)

where µn is the uniform measure on the set of (microscopic) height functions with
appropriate boundary values, where E0 := infhR

EntR(hR) is the infimum of the entropy
over all asymptotic height functions with boundary values h∂R.

In the setting of homogenization, the large deviation principle needs to be adapted
in an analogous way as for the profile theorem and the variational principle: The
uniform measure µn is replaced by the random measure µn,ω, and EntR(·) is replaced
by the annealed macroscopic entropy. Then the large deviation principle holds again
with respect to sample ω of the random field with high probability. Because the rate
functional homogenizes, i.e. it is independent of the realization ω of the random field,
the large deviation principle would also homogenize.

It is natural to ask whether the infima in (1.5) and (1.6) admit a minimizer, and if
so whether the minimizer is unique. Existence follows from convexity of the integrand
function entan(·) (Lemma 3.16 establishes convexity of entan(·)). Uniqueness of hR,min

follows from strict convexity of entan(·); see for example [13]. Strict convexity remains
an open question for this model.
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The proofs of the main results are based on two main ingredients: existence and
characterization of the quenched local surface tension and robustness of the entropy.

The first main ingredient is the existence of the quenched local surface tension
entan(s, ω). Without random potential existence follows from superadditivity by appli-
cation of Fekete’s lemma. With random potential we turn to a superadditive ergodic
theorem instead. Superadditivity and translation invariance are enough to establish
existence of the quenched local surface tension. Ergodicity is used to characterize the
quenched local surface tension. At slopes s 6= 0, translating a domain Rn by z ∈ Zm

implies shifting the boundary heights by s · z, and the random potential is ergodic with
respect to this kind of height shift. Since the quenched local surface tension is translation
invariant, it follows that it is almost surely equal to its expectation, the annealed local
surface tension. The same conclusion holds in the case s = 0, which we show using an
argument with credit to Marek Biskup.

The second main ingredient in proving the main results of this article is robustness. In
Section 3 we prove several results, which serve to control the change in the microscopic
entropy EntRn(A,ω) as the set of height functions A changes. For example, when

A =
{
hRn

∣∣hRn
|∂Rn

= h∂Rn

}
is defined by boundary data h∂Rn , we consider the effect of changing the boundary
data. In order to control the change of microscopic entropy, the main idea is to use the
Kirszbraun theorem (see Theorem 3.1). It allows to extend height functions on a domain
to height functions on the larger domain. This provides an injection between the two
sets of height functions, and it remains to control the energetic effect contributed by the
newly added edges in the larger domain. When the Kirszbraun theorem is not useful, we
fall back to combinatorial results.

The proof of the robustness results illustrate a primary source of difficulty: passing
from combinatorial estimates on the number of height functions to control over energetic
effects arising from the random potential. In the example discussed above, every height
function in the smaller (in the sense of cardinality) set admits an extension in the larger
set. It is not difficult to compare the total energy of an extension to that of the original
height function, using the assumption that the random potential is bounded.

After applying the two ingredients listed above, it remains to apply approximations
of Lipschitz functions and compactness of the space of asymptotic height functions
(with fixed boundary values). For these last steps of the argument we follow Sections 5
through 8 of [31], with some modifications needed to account for the random potential.
Because the proof is largely the same as in our companion article we do not go into great
detail for these steps.

The rest of this article is organized as follows.

• In Section 2 we define the precise setting and state the main results.

• In Section 3 we state and prove key results about the local surface tension.

• In Section 4 we prove the first main result, namely the profile theorem.

• In Section 5 we prove the second main result, namely the variational principle.

• In Section 6 we state a few open problems and directions for further research.

Notation and conventions

For the convenience of the reader, we summarize the basic notation that we use
throughout this article.
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• |A| denotes either the cardinality or the Lebesgue measure of the set A, depending
on context.

• Sn := {−n,−(n− 1), . . . , n− 1, n}m ⊂ Zm denotes a hypercube in the lattice, cen-
tered at the origin.

• For z, z′ ∈ Zm, z ∼ z′ means that z and z′ are nearest-neighbors (i.e. the `1 distance∑m
i=1|zi − z′i|1 is exactly 1).

• For S ⊂ Zm, ∂S := {z ∈ S | ∃z̃ ∈ Zm \ S, z̃ ∼ z} is the (interior) boundary of S.

• ezz′ is the unoriented edge between neighbors z ∼ z′ in Zm.

• For h : Zm → Z and e = ezz′ ∈ E(Zm), we abuse notation and write h(e) to denote
the edge eh(z),h(z′) ∈ E(Z).

• τw denotes the shift by w ∈ Zm on edges of the graph Zm. That is, τwezz′ =

ez+w,z′+w.

• s ∈ Rm denotes a vector satisfying |s|∞ ≤ 1.

• For a vector x of parameters, we denote with θx(ε) a smooth, non-negative function
that may depend on the parameters x and satisfies limε→0 θx(ε) = 0. If the function
does not depend on any parameters, we also write θ (see also the notation explained
in [31, Section 2.4]).

2 Setting and main results

In this section we describe the model under study, introduce related notation, and
state the main results of this article. The setting, notation, and main results are similar
to those of the companion article [31].

2.1 Basic definitions

Throughout the sequel, we fix a dimension m ∈ N, a macroscopic domain R ⊂ Rm,
and a sequence of microscopic domains Rn ⊂ Zm satisfying these assumptions:

Assumption 2.1 (Assumptions on domain R and Rn). We assume that R ⊂ Rm is
compact and connected, that R is the closure of its interior, and that the boundary of R
has zero Lebesgue measure. We assume that Rn ⊂ Zm is contained in R after rescaling,
i.e. that 1

nRn ⊂ R, although this is just a simplifying assumption. Moreover, we assume
that 1

nRn → R in the Hausdorff metric, i.e. the metric on {A ⊂ Rm} defined by

dH(A,B) :=

(
sup
x∈A

inf
y∈B

|x− y|1

)
∨
(

sup
y∈B

inf
x∈A

|x− y|1

)
.

Now, we define precisely the height functions in our model.

Definition 2.2 (Height function and lifted height function). A height function on Rn is
a graph homomorphism hRn

: Rn → Z. In other words, if z, w ∈ Rn and z ∼ w, then
|hRn

(z)− hRn
(w)| = 1, and for any z = (z1, . . . , zm) ∈ Rn,

hRn
(z) ≡ z (mod 2) , i.e. hRn

(z) ≡
m∑
i=1

zi (mod 2) . (2.1)

Let E(G) denote the set of undirected nearest-neighbor edges on a graph G. To a height
function hRn

: Rn → Z we associate the lifted height function ĥRn
: E(Rn) → E(Z)

via the formula ĥRn(ez,z′) := ehRn (z),hRn (z′). As graph-homophormisms map nearest-

neighbors to nearest-neighbors, the lifted height function ĥ is well defined. With a slight
abuse of notation we write hRn

(e) instead of ĥRn
(e). It becomes clear from the argument,

which is either a vertex x or an edge e, if the height function hRn
(x) or lifted height

function ĥRn
(e) is considered.
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The condition (2.1) states that a height function preserves the parity of the lattice Zm.
Indeed, every graph homomorphism either preserves parity at all points or inverts parity
at all points, since the source space Zm and the target space Z are both bipartite. Our
main results are also valid without the parity-preserving condition, but for the same
reasons as outlined in [31, Section 2.1] we include it for simplicity.

We introduce the following symbols to refer to sets of height functions:

Definition 2.3 (Sets of height functions). Let Rn be a microscopic domain as above, let
hRn

: Rn → Z be a boundary height function, and let δ > 0. We define:

M(Rn) :=
{
hRn : Rn → Z

∣∣hRn is a height function
}
,

M(Rn, h∂Rn
) :=

{
hRn

∈ M(Rn)
∣∣hRn

|∂Rn
= h∂Rn

}
,

M(Rn, h∂Rn
, δ) :=

{
hRn

∈ M(Rn)
∣∣ sup
z∈∂Rn

|hRn
(z)− h∂Rn

(z)| < δn
}
, and

B(Rn, hR, δ) :=
{
hRn

∈ M(Rn)
∣∣ sup
z∈Rn

|hR(
1
nz)−

1
nhRn

(z)| < δ
}
.

In the last definition, the expression “hR(
1
nz)” makes sense because of the assumption

that 1
nRn ⊂ R in Assumption 2.1.

The limiting object for convergent sequences of height functions is:

Definition 2.4 (Asymptotic height function). We call a function hR : R → R an asymptotic
height function if hR is Lipschitz with Lipschitz constant at most 1, with respect to the
`1-norm on Rm; that is, if

Lip(hR) := sup
x6=y∈R

|hR(x)− hR(y)|
|x− y|1

≤ 1 .

Likewise, if h∂R : ∂R → R is 1-Lipschitz (with respect to the `1-norm), we call h∂R an
asymptotic boundary height function.

The limit of height functions is defined as follows.

Definition 2.5 (Convergence of height functions). Given a sequence of height functions
hRn

: Rn → Z and an asymptotic height function hR : R → R, we say that hRn
converges

in the scaling limit to hR if

lim
n→∞

sup
z∈Rn

sup
x∈R

|x− 1
n z|1≤dn

∣∣∣ 1
n
hRn

(z)− hR(x)
∣∣∣ = 0 ,

where dn := dH( 1nRn, R).

Finally, we define the following sets of asymptotic height functions:

Definition 2.6 (Sets of asymptotic height functions). Let R ⊂ Rm be a domain satisfying
Assumption 2.1, let h∂R : ∂R → R be an asymptotic boundary height function, and let
δ > 0. We define:

M(R) :=
{
hR : R → R

∣∣hR is an asymptotic height function
}
,

M(R, h∂R) :=
{
hR : R → R

∣∣hR|∂R = h∂R

}
,

M(R, h∂R, δ) :=
{
hR : R → R

∣∣ ∀x ∈ ∂R , |hR(x)− h∂R(x)| ≤ δ
}
, and

B(R, h̃R, δ) :=
{
hR : R → R

∣∣ ∀x ∈ R , |hR(x)− h̃R(x)| < δ
}
.

2.2 Defining the entropy

In order to define the local surface tension, both quenched and annealed, we fix a
family of canonical height functions with fixed slope. These are the linear and affine
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height functions, so called because they approximate linear and affine functions of real
variables.

Definition 2.7 (Affine and linear height functions). For s ∈ [−1, 1]m, b ∈ R, and n ∈ N,
we define the affine height function hs·x+b ∈ M(Zm) as

hs·x+b(z) := [s · z + b]z mod 2 for all z ∈ Zm ,

where for t ∈ R and z ∈ Zm, [t]z mod 2 is the integer with the same parity as z that is
closest to t. (In the ambiguous case, namely when t is an integer having opposite parity
as z, we choose arbitrarily but consistently to “round up” and set [t]z mod 2 = (t+ 1).) For
s ∈ [−1, 1]m, the linear height function hs ∈ M(Zm) is given by hs = hs·x+0, i.e.

hs(z) := [s · z]z mod 2 for all z ∈ Zm ,

Remark 2.8. The symbol “x” in the superscript “s · x + b” is a formal variable, used
so that the superscript resembles a meaningful expression instead of, say, the less
intuitive pair (s, b). It is not difficult to verify that the functions defined above are graph
homomorphisms. We refer the reader to [31, Lemma 7] for the details.

Until now, the setup has been the same as in the companion article [31]. Let us now
turn to homogenization and to the new contributions of this article. The main change in
the model is that instead of the uniform measure on M(Rn, h∂Rn

) we consider a noisy
perturbation µω of the uniform measure, where ω = (ωe)e∈E(Z) denotes a random field. In
contrast to some other models in homogenization, the noise ω acts on the height space Z
and will make certain height levels more and other levels less attractive, modeling a
pinning effect caused for example by random inhomogenities in the material or medium.

Assumption 2.9 (Random field ω). We consider a real-valued random potential

ω = (ωe)e∈E(Z) ∈ RE(Z)

defined on the set of edges E(Z) of Z. We assume that ω satisfies the following assump-
tions:

• The random field ω is almost surely finite, and moreover the random variable Cω

defined by

Cω := 1 ∨ sup
e∈E(Z)

|ωe|

is in L1, i.e. E[Cω] < ∞.

• The random field ω is shift invariant. This means that for any finite number of edges
e1, . . . ek ∈ E(Z), any integer z ∈ Z, and any bounded and measurable function
ξ : Rk → R,

E
[
ξ(ωe1 , . . . , ωek)

]
= E

[
ξ(ωτz(e1), . . . , ωτz(ek))

]
,

where τz : E(Z) → E(Z) is the shift by z (as per the Notation and Conventions
above).

• Moreover, the random field ω is ergodic with respect to the set of shifts {τz | z ∈
Z, z ≡ 0 (mod 2)}. This means that if E ⊂ Ω is a shift invariant event, i.e. if
E = τ−1

2 (E), then P(E) ∈ {0, 1}.
• We assume w.l.o.g. (as a matter of normalization) that

E[ωe0,1 ] = 0 ,

where e0,1 is the edge from 0 to 1 in Z.
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Example 2.10. The simplest non-trivial example of a random field ω that satisfies
Assumption 2.9 is the i.i.d. field. Let X denote a bounded (real) random variable with
mean 0, and let (ωe)e∈E(Z) denote a family of i.i.d. copies of X.

Remark 2.11. The assumptions of shift invariance and ergodicity are standard in homog-
enization literature; see for example the “usual conditions” for the random conductance
model from [5, Definition 3.1]. However we point out one difference: the random field ω

is ergodic with respect to the even shifts {τz | z ≡ 0 (mod 2)}. This is a stronger condition
than being ergodic with respect to the full set of shifts {τz | z ∈ Z}. This requirement is
due to the earlier assumption made in Definition 2.2 that height functions preserve parity.
As such, we cannot simply shift a height function up or down by 1 in the height space; if
hSn

(z) = k ∈ Z, then there is no (parity-preserving) height function “τ1hSn
” such that

τ1hSn
(z) = k + 1. More concretely, the family of measure-preserving translations used in

the proof of Lemma 3.14 below includes all of the shifts {τz | z ≡ 0 (mod 2)} and none of
the shifts {τz | z ≡ 1 (mod 2)}, hence the stronger ergodicity assumption is technically
required.

In this article we study the random surfaces in the random potential defined by ω.
In homogenization one considers two different situations: In the quenched case, one
considers the measure µω for fixed ω. In the annealed case, one takes the expectation
with respect to ω. Our goal is to show that the variational principle holds with high
probability. With that context in mind, we define the quenched Hamiltonian HRn

(·) =
HRn

(·, ω) and the quenched measure µω as follows:

Definition 2.12 (The quenched Hamiltonian). For finite subsets Rn ⊂ Zm, We define the
Hamiltonian HRn

as follows: for a fixed boundary height function h∂Rn
: ∂Rn → Z, and

for any height function hRn
∈ M(Rn, h∂Rn

) and any realization ω of the random field,

HRn(hRn , ω) =
∑

e∈E(Rn)

ωhRn (e), (2.2)

where E(Rn) = {ex,y |x, y ∈ Rn} is the edge set of the subgraph of Zm induced by
Rn. The edge hRn(e) ∈ E(Z) is given by the lifted height function, i.e. hRn(ex,y) :=

ehRn (x),hRn (y) (see also Definition 2.2).

Definition 2.13 (Quenched Gibbs measure). Given a realization ω of the random field
and a set A ⊂ M(Rn) of height functions, the partition function Zω(A) is given by

Zω(A) =
∑

hRn∈A

exp
(
HRn

(hRn
, ω)
)
.

For a fixed boundary data function h∂Rn ∈ M(∂Rn), the quenched Gibbs measure µω

on M(Rn, h∂Rn
) is defined by

µω(hRn
) =

1

Zω

(
M(Rn, h∂Rn)

) exp(HRn
(hRn

, ω)
)
.

Remark 2.14. If one chooses the constant field ω = 0 = (0)e∈E(Z), then the associated
quenched Gibbs measure µ0 is the uniform measure on M(Rn, h∂Rn

). In this case one
recovers the variational principle of [31].

Remark (The role of the random field ω). The values ωe of the random field ω modulate
the likelihood of seeing certain height levels. More precisely, let us consider two
edges e, ẽ ∈ E(Z) that denote two different height levels. Let us assume that ωe � ωẽ.
We consider two height function h and h̃, the first one oscillating around the height
level e and the second one around the height level ẽ. From (2.2) we get that the
Hamiltonian HRn

(h) � HRn
(h̃). Because in the quenched Gibbs measure µω height
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functions with larger Hamiltonian are exponentially more likely, we will observe the
height function h more often compared to h̃ when sampling from µω.

Now let us introduce the microscopic entropy of our model. Again there are two
situations: first, the quenched case, defined for a fixed realization ω and the annealed
case.

Definition 2.15 (Quenched and annealed microscopic entropy). Given a domainRn ⊂ Zm

and a finite non-empty subsetA ⊂ M(Rn), the quenched microscopic entropy EntRn(A,ω)

is given by

EntRn
(A,ω) := − 1

|Rn|
logZω(A)(

= − 1

|Rn|
log

∑
hRn∈A

exp
(
HRn

(hRn
, ω)
))

.

The annealed microscopic entropy Ent(Rn, h∂Rn
) is given by

EntRn,an(A) := E
[
EntRn(A,ω)

]
.

Remark 2.16. As in Remark 2.14, if one chooses the constant field ω = 0, then the
quenched microscopic entropy EntRn

(M(Rn, h∂Rn
),0) is the same as the microscopic

entropy of [31].

Next, we define the local surface tension. As with the microscopic entropy, the local
surface tension admits both a quenched and an annealed version.

Definition 2.17 (Quenched microscopic and local surface tension). The quenched local
surface tension is the a.s.-limit

ent(s, ω) := lim
n→∞

entn(s, ω) , (2.3)

where entn(s, ω) is the quenched microscopic surface tension, defined by

entn(s, ω) := EntSn

(
M(Sn, h

s
∂Sn

), ω
)
.

Recall from Notation and Conventions above that Sn = {−n, . . . , n}m, and note that
the existence of the limit in (2.3) is the content of Lemma 3.14.

Definition 2.18 (Annealed microscopic and local surface tension). The annealed micro-
scopic surface tension entn,an(s) is given by

entn,an(s) := E [entn(s, ω)] ,

and the annealed local surface tension entan(s) is given by

entan(s) := E [ent(s, ω)] .

Remark 2.19. Similarly to Remark 2.14 and Remark 2.16, we obtain back the local
surface tension for the uniform measure if we consider a constant random field ω = 0.
In the case of random potential, it follows from Assumption 2.9 and Lemma 3.2 that
entn(s, ω) is uniformly integrable and therefore that entn,an and entan are well-defined.

Remark 2.20. It is not hard to see that the annealed local surface tension is also the
limit of the annealed microscopic surface tension. Indeed, from Assumption 2.9 the
quenched microscopic surface tension entn(s, ω) is dominated by an L1 function (see
Lemma 3.2). Therefore, the dominated convergence theorem implies that

lim
n→∞

entn,an(s) = lim
n→∞

E [entn(s, ω)] = E
[
lim
n→∞

entn(s, ω)
]
= entan(s) .
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The annealed macroscopic entropy is defined by:

Definition 2.21 (Annealed macroscopic entropy). Given an asymptotic height func-
tion hR ∈ M(R, h∂R), the annealed macroscopic entropy EntR,an(hR) is defined by

EntR,an(hR) :=

∫
R

entan(∇hR(x)) dx .

The first main result of this article is the profile theorem:

Theorem 2.22 (Profile theorem). Recall that Cω := 1∨supe∈E(Z)|ωe| is by Assumption 2.9
an L1 random variable. Then for any hR ∈ M(R, h∂R) and any η > 0, there exist functions
θhR

(δ) and θhR,δ(
1
n ) with θhR

(δ) → 0 as δ → 0 and θhR,δ(
1
n ) → 0 as n → ∞ such that

lim
n→∞

P

(∣∣∣EntRn

(
B(Rn, hR, δ), ω

)
− Entan(R, hR)

∣∣∣
≥ η + CωθhR

(δ) + CωθhR,δ

(
1
n

))
= 0 .

(2.4)

The second main result is the variational principle:

Theorem 2.23 (Variational principle). The random variables

EntRn
(M(Rn, h∂Rn

, δ), ω)

converge in probability to the infimum of Entan(R, hR) over asymptotic height functions
hR ∈ M(R, h∂R), i.e. for every η > 0,

lim sup
δ→0

lim sup
n→∞

P

( ∣∣∣EntRn

(
M(Rn, h∂Rn , δ), ω

)
− inf

hR∈M(R,h∂R)
EntR,an(hR)

∣∣∣ ≥ η

)
= 0 .

The third main result, which we state but do not prove, is the large deviations
principle. The notation introduced below is standard for large deviations theory.

Theorem 2.24 (Large deviations principle). Consider the space M(R) of asymptotic
height functions on R, endowed with the topology of uniform convergence. For δ > 0

and n ∈ N, define a random probability measure µδ,n(·, ω) on M(R) by

µδ,n(A,ω) :=
Zω

({
hRn

∈ M(Rn, h∂Rn
, δ)
∣∣ h̃Rn

∈ A
})

Zω

(
M(Rn, h∂Rn

, δ)
) ,

where h̃Rn
∈ M(R) denotes the asymptotic height function given by rescaling and

interpolating hRn
∈ M(Rn), i.e. h̃Rn

( 1nz) =
1
nhRn

(z) for z ∈ Rn.
Then the measures µδ,n satisfy a large deviations principle in probability with rate

functional I given by

I(hR) :=

{
EntR,an(hR)− E if hR ∈ M(R, h∂R) ,

+∞ otherwise ,

where E := infhR∈M(R,h∂R) EntR,an(hR). Specifically, this means that for any Borel set
A ⊂ M(R),

lim sup
δ→0

lim sup
n→∞

P

(
1

|Rn|
logµδ,n(A) ≥ − inf

hR∈A◦
I(hR)

)
= 0

and

lim sup
δ→0

lim sup
n→∞

P

(
1

|Rn|
logµδ,n(A) ≤ − inf

hR∈A
I(hR)

)
= 0 ,

where A◦ denotes the interior of A and A denotes the closure.
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3 The quenched and annealed local surface tension

The purpose of this section is to establish several fundamental properties of the
quenched entropy and local surface tension of our model. We proceed as follows:

• In Section 3.1 we state the Kirszbraun theorem, used heavily in the rest of this
section and beyond.

• In Section 3.2 we derive robustness of the entropy and local surface tension under
boundary value changes.

• In Section 3.3 we prove the existence of the quenched local surface tension and
the equivalence between the quenched and annealed local surface tension.

• In Section 3.4 we study the local surface tension as a function s 7→ entan(s), and we
show that this function is convex and continuous.

3.1 Kirszbraun theorem

We consider a discrete analogue of the classical Kirszbraun theorem of [30]. The
classical theorem gives a condition under which a Lipschitz continuous function can
be extended from a subset of a domain to the entirety of that domain. Likewise, the
Kirszbraun theorem for graph homomorphisms gives a condition under which a Z-valued
graph homomorphism may be extended from a subset of a domain to the entire domain.
Note that the property of being a Z-valued graph homomorphism is stronger than the
Lipschitz property with constant 1, since if z ∼ z̃ are two adjacent points in the domain
of a graph homomorphism h : S → Z, then h(z) 6= h(z̃).

Theorem 3.1 (Kirszbraun). Let Λ be a connected region of Zm, let S be a subset of Λ,
and let h̄ : S → Z be a graph homomorphism that preserves parity. There exists a graph
homomorphism h : Λ → Z such that h = h̄ on S if and only if for all x, y ∈ S,

dZ(h̄(x), h̄(y)) ≤ dΛ(x, y), (3.1)

where dZ and dΛ denote respectively the graph distance on Z and on Λ ⊂ Zm.

This is a well-known result (see e.g. [44, Lemma 4.3.1]), and we omit the proof
from this article. As an illustration of the usefulness of the Kirszbraun theorem, we
prove the following lemma, which justifies the choice of the normalizing factor 1

|Rn| in
Definition 2.15:

Lemma 3.2. Almost surely (in terms of the distribution P of the random field ω),

− log(2)− 2mCω ≤ EntRn

(
M(Rn, h∂Rn

), ω
)
≤ 2mCω .

Proof. As a corollary of the Kirszbraun theorem (Theorem 3.1), there is always at least
one height function h0 ∈ M(Rn, h∂Rn

). So,

EntRn

(
M(Rn, h∂Rn

), ω
)
≤ − 1

|Rn|
log

∑
h∈{h0}

exp

 ∑
e∈E(Rn)

ωeh(x),h(y)


≤ |E(Rn)|

|Rn|
Cω

≤ 2mCω .

On the other hand, we overestimate the cardinality of M(Rn, h∂Rn
) as follows: enu-

merate the points of the interior of Rn, in such a way that each point xi is adjacent to
the previous point xi−1 (and the first point x1 is adjacent to x0 ∈ ∂Rn). For each point xi
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in the enumeration, we require that h(xi) = h(xi−1)± 1, so there are at most 2 choices
for h(xi). All together, |M(Rn, h∂Rn

)| ≤ 2|Rn|. It follows that

Ent(Rn, h∂Rn
, ω) ≥ − 1

|Rn|
log
(
|M(Rn, h∂Rn

)| exp
(
Cω|E(Rn)|

))
≥ − 1

|Rn|
log 2|Rn| − |E(Rn)|

|Rn|
Cω

≥ − log(2)−mCω.

In the sequel, we will usually use the Kirszbraun theorem in the following setting.
Given two domains Rn1 ⊂ Rn2 ⊂ Zm, a height function hRn1

∈ M(Rn1), and a bound-

ary height function h∂Rn2
∈ M(∂Rn2), there exists an extension h̃Rn2

∈ M(Rn2) with

h̃Rn2
|Rn1

= hRn1
and h̃Rn2

|∂Rn2
= h∂Rn2

if and only if

|hRn1
(z1)− h∂Rn2

(z2)| ≤ |z1 − z2|1 for all z1 ∈ ∂Rn1
, z2 ∈ ∂Rn2

.

3.2 Robustness of the quenched entropy

In this section we show that the quenched microscopic entropy and local surface
tensions are robust, in the sense that small changes in boundary values cause small
changes in the numeric value of the entropy. There are two steps in proving these
robustness results: First, just as for the unperturbed model of [31], compare the two
sets of height functions associated with the two boundary value functions, perhaps by
exhibiting an injection from one set into the second or by estimating cardinalities directly.
Second, show that individual height functions from each of the two sets contribute
comparable amounts to the entropy after applying the random potential, e.g. by showing
that every height function in one set admits a “similar” height function in the second set,
whose Hamiltonian value is not much different; this step is sometimes straightforward
and other times quite subtle.

Before stating the results of this section, let us recall the definition of the quenched
microscopic surface tension entn(s, ω) and how it is related to the quenched microscopic
entropy EntRn(A,ω) of some set A ⊂ M(Rn) of height functions. By Definition 2.15 it
holds that

EntRn
(A,ω) = − 1

|Rn|
log
∑
h∈A

exp

 ∑
ex,y∈E(Rn)

ωh(ex,y)

 ,

where h(ex,y) = eh(x),h(y) denotes the lifted height function. We recall that M(Sn, h
s
∂Sn

)

denotes the set of height functions with linear boundary condition (see also Definition 2.7).
By Definition 2.17 it holds

entn(s, ω) := EntRn(M(Sn, h
s
∂Sn

), ω).

The next statement shows the robustness of the microscopic local surface tension
under small changes in the boundary condition, if the l∞ norm |s|∞ of the slope s is
bounded away from 1.

Lemma 3.3. Let α > 0, let s ∈ Rm with |s|∞ ≤ 1 − α, let ε ∈ (0, α
2 ), let n ∈ N with

n ≥ (1− 2ε
α )−1, and let h∂Sn

∈ M(∂Sn, s, ε). Write

n+ :=
⌈
(1 + 2ε

α )n
⌉

and n− :=
⌊
(1− 2ε

α )n
⌋
.

(We remark that 1 ≤ n− < n < n+.) Then,

entn+(s, ω)− Cω θm
(
ε
α

)
≤ EntSn

(
M(Sn, h∂Sn

), ω
)

≤ entn−(s, ω) + Cω θm
(
ε
α

)
.

(3.2)
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Here, θm : R→ R denotes a universal function, that may depend on the dimension m of
the lattice, satisfying limε→0 θm(ε) = 0. The constant Cω := 1 ∨ supe∈E(Z)|ωe|, defined in
the Assumption 2.9, is an upper bound on the magnitude of the random field ω that may
depend on the realization ω of the random field.

Sn−

Sn

Sn+

2ε
α n

Figure 4: Nested domains from Lemma 3.3.

Proof of Lemma 3.3. We prove the inequality

entn+(s, ω)− Cωθm
(
ε
α

)
≤ EntSn

(
M(Sn, h∂Sn), ω

)
.

The proof of the reverse inequality is similar.
Note that the smaller square Sn = {−n,−(n− 1), . . . , n− 1, n}m is contained inside

the larger square Sn+ , and that

|x− y|1 ≥ 2ε
α n whenever x ∈ ∂Sn and y ∈ ∂Sn+ . (3.3)

We construct an injection from M(Sn, h∂Sn) into M(Sn+ , hs
∂Sn+

) using the Kirszbraun

theorem, Theorem 3.1. Let hSn ∈ M(Sn, h∂Sn), let x ∈ ∂Sn, and let y ∈ ∂Sn+ . By the
definitions of M(Sn, h∂Sn) and of hs

∂Sn
,∣∣hSn(x)− hs

Sn+
(y)
∣∣

≤
∣∣hSn

(x)− s · x
∣∣ + ∣∣s · (x− y)

∣∣ + ∣∣hs
Sn+

(y)− s · y
∣∣

≤ εn+ |s|∞|x− y|1 + 1.

By hypothesis |s|∞ ≤ 1− α and by (3.3), εn ≤ α
2 |x− y|1. Therefore for n ≥ 2

α ,

|hSn(x)− hs
Sn+

(y)| ≤ |x− y|1 ,

so hSn admits an extension hSn+ ∈ M(Sn+ , hs
∂Sn+

). The map hSn 7→ hSn+ is an injec-

tion from M(Sn, h∂Sn
) into M(Sn+ , hs

∂Sn+
). The existence of such an injection implies

immediately that

EntSn

(
M(Sn, h∂Sn

), ω
)
≥ |Sn|

|Sn+ |
EntSn+

(
M(Sn+ , hs

∂Sn+
), ω
)

− 2mCω(|Sn+ | − |Sn|)
|Sn|

= EntSn+

(
M(Sn+ , hs

∂Sn+
), ω
)
− Cωθm

(
ε
α

)
.
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This proves the first inequality of (3.2). As mentioned at the beginning of the
proof, the other inequality is similar. Since n− < n, one extends height functions
from M(Sn− , h∂Ss

n−
) to M(Sn, h∂Sn

). We omit the details.

Lemma 3.3 does not extend to the case where |s|∞ = 1. As |s|∞ → 1 the ratio of the

box sizes
|Sn+ |
|Sn| ≈ 1 + ε

α and the error bound θ( ε
α ) both diverge. Fundamentally these

difficulties come from the Kirszbraun theorem. When |s|∞ is close to 1, the “margin”
Sn+ \ Sn must be large in order to connect h∂Sn

to h∂Sn+ and when |s|∞ = 1, such an
extension is not generally possible. Therefore we take a different approach for |s|∞ ≈ 1,
using elementary combinatorics to count the number of height functions. The two
following calculations are intermediate results used to prove the robustness lemma,
Lemma 3.6.

Lemma 3.4 (Counting height functions near |s|∞ = 1). Let ε > 0. Let s ∈ Rm with
1− ε < |s|∞ ≤ 1, and let h∂Sn ∈ M(∂Sn, h

s
∂Sn

, ε). Then,

1

|Sn|
log
∣∣M(Sn, h∂Sn)

∣∣ = θ(ε) . (3.4)

Proof of Lemma 3.4. Fix a coordinate index 1 ≤ i ≤ m such that |si| > 1− ε, and assume
without loss of generality that si > 1 − ε. Decompose Sn into (2n + 1)m−1 lines in the
ith coordinate direction. Along each such line hSn

must increase by at least 2(1− 2ε)n.
Therefore, the 2n edges in the line split into two subsets: at least 2(1− 2ε)n “increasing”
edges, and at most 4εn “decreasing” edges. Counting each line independently, we
conclude that ∣∣M(Sn, h∂Sn)

∣∣ ≤ ( 2n

d4εne

)(2n+1)m−1

.

The conclusion (3.4) follows immediately. For a more verbose version of this proof, see
[31, Lemma 21].

Lemma 3.5 (Height functions at slope |s|∞ = 1). Let s′ ∈ Rm with |s′|∞ = 1. Then
|M(Sn, h

s′

∂Sn
)| = 1, and the sole element of M(Sn, h

s′

∂Sn
) is the canonical height function

hs′

Sn
.

Proof of Lemma 3.5. As in the proof of Lemma 3.4, fix a coordinate index 1 ≤ i ≤ m

such that |si| = 1. Decompose Sn into lines in the ith coordinate direction. Along each
line, any height function hSn

∈ M(Sn, h
s′

∂Sn
) must increase by exactly 2n. Since hSn

is a graph homomorphism, that is only possible if hSn
increases along every edge, i.e.

hSn
(x + 1, y) − hSn

(x, y) = 1 for x = −n, . . . , n − 1. It follows that |M(Snh
s′

∂Sn
)| ≤ 1. To

complete the proof, observe that hs′

Sn
∈ M(Sn, h

s′

∂Sn
).

Having recorded Lemma 3.4 and 3.5, we return to establishing robustness re-
sults. As in Lemma 3.3, our goal is to compare the microscopic surface tension
entn(s, ω) := EntSn

(M(Sn, h
s
∂Sn

), ω) and the entropy EntSn
(M(Sn, h∂Sn

), ω) associated
to an “approximately affine” boundary height function h∂Sn

∈ M(∂Sn, h
s
∂Sn

, ε). The
difference is that Lemma 3.3 took |s|∞ ≤ 1− α and the lemma below takes |s|∞ > 1− α.

Lemma 3.6. Let ε > 0. Let s, s′ ∈ Rm with |s|∞ ≤ 1, |s′|∞ = 1, and |s − s′|∞ < ε. Let
n ∈ N be sufficiently large (specifically, n ≥ 1

ε ) and let h∂Sn
∈ M(∂Sn, h

s
∂Sn

, ε). Then:∣∣Ent(Sn, h∂Sn , ω)− entn(s
′, ω)

∣∣ ≤ Cω θ(ε) .

Because of the θ(ε) error term, Lemma 3.6 will not be useful for slopes s with |s|∞
far from 1.
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Remark 3.7 (Comment about the proof). There are two ingredients to the proof. The
first is counting results of Lemma 3.4 and Lemma 3.5, and the second is a comparison
between the Hamiltonian HSn

(hSn
, ω) of a generic height function hSn

∈ M(Sn, h∂Sn
)

and the Hamiltonian HSn
(hs′

Sn
, ω) of the unique element hs′

Sn
∈ M(Sn, h

s′

∂Sn
). Since proofs

were already given for the two lemmas, most of the argument below is spent on the
comparison of Hamiltonians.

The comparison of Hamiltonians is also fundamentally a combinatorial argument that
relies on the rigidity caused by the slopes s and s′ being close to (or on) the boundary
of the slope space [−1, 1]m. It is surprising that such a subtle argument is (apparently)
needed in the case of homogenization, since the two counting lemmas are sufficient in
the uniform case, and these lemmas are not very complicated to prove.

The subtlety is similar to that of the proof of Lemma 3.9 below. In both cases, the
difficulty arises when comparing Hamiltonians for two height functions defined on the
same domain Sn. In comparison, the proof of Lemma 3.3 (which has a similar statement
to the current Lemma 3.6) is based on extending height functions from one domain to
another larger domain via the Kirszbraun theorem. Comparing the Hamiltonian of a
height function on a large domain to the Hamiltonian of the same function on a restricted
domain is simple, since the difference is exactly relatable to the difference in domains.

Proof of Lemma 3.6. As mentioned above, we will compare the HamiltoniansHSn(hSn , ω)

and HSn(h
s′

Sn
, ω), where hSn ∈ M(Sn, h∂Sn) and hs′

Sn
∈ M(Sn, h

s′

∂Sn
). More precisely, we

will later deduce the inequality∣∣HSn(hSn , ω)−HSn(h
s′

Sn
, ω)
∣∣ ≤ 210m2(2n+ 1)mCωε . (3.5)

Given that (3.5) holds, the proof is straight-forward: For one inequality, we calculate

EntSn

(
M(Sn, h∂Sn

), ω
)

= − 1

|Sn|
log

∑
hSn∈M(Sn,h∂Sn )

exp
(
HSn

(hSn
, ω)
)

(3.5)
≤ − 1

|Sn|
log

∑
hSn∈M(Sn,h∂Sn )

exp

(
HSn

(hs′

Sn
, ω)

− 210m2(2n+ 1)mCωε

)
Lemma 3.4

≤ − 1

|Sn|
HSn

(
hs′

Sn
, ω
)
+ θ(ε) + 210m2Cωε

= EntSn

(
M(Sn, h

s′

Sn
), ω
)
+ Cωθ(ε) .

The opposite inequality is derived in the same way, which concludes the proof of
Lemma 3.6 up to the verification of (3.5).

For convenience, let us use for the remaining argument the following convention:
When denoting the Hamiltonian of H(hSn

, ω) we just write H(hSn
), omitting the depen-

dency on the random field ω.

Verification of (3.5): Heuristically, the estimate (3.5) makes sense. Because the
slopes s and s′ are ε-close to each other, and s′ has slope 1, every height function
hSn

∈ M(Sn, h∂Sn
) has to behave similar to the canonical height function hs′

Sn
of slope

s′. Therefore, the difference in the associated energies, as measured by the Hamilto-
nian HSn

(hSn
) and HSn

(hs′

Sn
), should vanish as ε → 0.
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To make this argument rigorous one needs to precisely estimate the number of heights
that each height function hSn

visits, i.e. the set {hSn
(e) | e ∈ E(Sn)} with multiplicities,

and compare to the corresponding set for hs′

Sn
. This is relatively straight-forward on

a one-dimensional lattice but unfortunately becomes much more subtle on a higher-
dimensional lattice. To see why, consider the decomposition of the box Sn into lines. This
leads a decomposition of the edges in E(Sn) into parallel edges within a line, and cross
edges connecting two lines. Without cross edges the one-dimensional argument would
easily carry over, but controlling the cross edges is necessary as well. This control is
accomplished by the sets Gy below.

To begin the rigorous verification of (3.5), pick an arbitrary height function hSn ∈
M(Sn, h∂Sn). As mentioned above, we decompose Sn into lines parallel to one of the
coordinate axes. Assume by symmetry that s = (s1, s2, . . . , sm) and s′ = (s′1, . . . , s

′
m)

satisfy s′1 = 1 and (therefore) s1 > 1− ε. For y ∈ {−n, . . . , n}m−1 let `y denote the line in
the first coordinate direction through (0, y) in Sn, i.e.

`y :=
{
(−n, y), (−n+ 1, y), . . . , (n− 1, y), (n, y)

}
.

Observe that Sn is the disjoint union of the (2n + 1)m−1 lines `y. In particular, the
Hamiltonian HSn(hSn) decomposes with respect to the lines `y as

HSn
(hSn

) :=
∑

e∈E(Sn)

ωhSn (e)

=
∑
y

( ∑
e∈E(`y)

ωhSn (e) +
1

2

∑
y′∼y

∑
e∈Ẽy,y′

ωhSn (e)

)

=
∑
y

H̃`y (hSn) ,

(3.6)

where Ẽy,y′ is the set of edges in E(Sn) with one endpoint in `y and the other in `y′ (we
call these cross edges), and where H̃`y is defined to be the parenthesized quantity from

the line above. Note that the factor 1
2 is necessary because each cross edge in Ẽy,y′ also

contributes to H̃`′y
(hSn), so without the factor 1

2 the contributions from the cross edges
would be double-counted.

We define two families of sets Ay ⊂ E(Z) and Gy ⊂ Ay, indexed by points y ∈
{−n, . . . , n}m−1. In terms of the heuristic argument above, these sets roughly correspond
to the heights visited by hSn

and hs′

Sn
, although in fact both Ay and Gy are subsets of

{hSn
(e) | e ∈ E(Sn)}.

Let Ay denote the edges e ∈ E(Z) that lie inside the interval from (s · (−n, y) + 2εn)

to (s · (+n, y) − 2εn). Based on the boundary conditions and homomorphism property
of hSn

and hs′

Sn
, every edge e ∈ Ay occurs both in the image {hSn

(ẽ) | ẽ ∈ E(`y)} and

in the image {hs′

Sn
(ẽ) | ẽ ∈ E(`y)} of the corresponding lifted height functions (see also

Definition 2.2). (The factors of 2 in the definition of Ay are necessary since the boundary
height function h∂Sn

may differ from hs
∂Sn

by up to εn, in addition to s1 differing from 1

by up to ε.) The situation in dimension m = 1 is illustrated in Figure 5a.

We defineGy ⊂ Ay in the following way: These are the edges e ∈ Ay ⊂ E(Z) satisfying
these three constraints with respect to hSn

(illustrated in Figure 5b):

• e occurs with multiplicity 1 in the multi-set {hSn
(ẽ) | ẽ ∈ E(`y)}. (By choice of Ay,

e occurs with multiplicity ≥ 1.) Write es for the unique edge es ∈ E(`y) such that
hSn

(es) = e.
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x

hSn
(x)

(−n,−sn)

(n, sn)

Ay

(a) Here hSn is a one-dimensional height
function with slope s ≥ 1 − ε. The set Ay

comprises the 1−4ε fraction of the 2n edges
in `y, centered around 0. (The central height
in higher dimensions is instead s · (0, y).)
Both hSn and hs′

Sn
must contain all of these

edges in their image. They might contain
additional edges.

`y

es

`y′′`y′

(b) The three lines are `y in the center and
two of its neighbors, `y′ and `y′′ . The high-
lighted edge is the edge es ∈ E(`y) for
e ∈ Gy, i.e. the unique edge in `y with
hSn(es) = e. There is also an edge es′ (not
shown), satisfying the corresponding unique-
ness property for hs′

Sn
. Finally, all six high-

lighted vertices are good, i.e. each vertex
has a unique height within its line.

Figure 5: Figures relating to the proof of Lemma 3.6.

• Both endpoints of e occur with multiplicity 1 in the multi-set {hSn(z) | z ∈ `y}.
• For each endpoint z of es and each neighboring vertex z′ ∼ z that lies in Sn \ `y,

hSn(z
′) occurs with multiplicity 1 in the multi-set {hSn(z̃) | z̃ ∈ `y′} for the line `y′

that contains it.

Further on in the argument, we will call elements of Gy “good” edges. We will call a
vertex z ∈ `y “good” if its height hSn

(z) occurs in with multiplicity 1 in {hSn
(z̃) | z̃ ∈ `y},

and likewise for z′ ∈ `y′ .

Later on, we will need that for an arbitrary “good” edge e ∈ Gy it holds:∑
y′∼y

∑
ẽ∈Ẽy,y′

hSn (ẽ)=e

ωhSn (ẽ) =
∣∣{y′ ∼ y}

∣∣ωe. (3.7)

Note that |{y′ ∼ y}| ≤ 2m for all y, with equality unless y is a boundary point (implicitly
we assume that y′ ∈ {−n, . . . , n}m−1). Argument for (3.7): We observe that for each
y′ ∼ y, by using the second and third constraints and considering cases, there is a unique
cross edge es,y′ between `y and `y′ such that hSn(es,y′) = e. For a proof of this simple
fact, we refer to Figure 6. The identity (3.7) follows then immediately.

We will also need to count |Gy|. Heuristically, since the slope s is close to 1, Gy must
be a large subset of E(`y). To be precise, recall that |Ay| ≥ 2n− 4dεne by construction,
and that Gy is the subset of edges e ∈ Ay that satisfy the three constraints above. The
second constraint actually implies the first, so to count Gy we simply count how many
edges in Ay satisfy the last two constraints. Actually we count the complement, i.e. how
many edges do not satisfy these two constraints. Indeed, each “bad” vertex in `y (in the
sense described after the constraints) causes at most two edges in E(`y) to violate the
second constraint. Likewise, each “bad” vertex in an adjacent line `′y causes at most two
edges in E(`y) to violate the second constraint. All other edges in Ay are “good,” i.e. are
included in Gy.
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`y `y′

k

k + 1

k + 1

k + 2

(a) Case 1 (both adjacent
height values larger): Clearly
there is one edge between
`y and `y′ that is mapped to
e = ek,k+1. Suppose that an-
other cross edge has heights
k and k + 1. Then its left
endpoint would have either
height k or height k+1, which
contradicts the fact that the
two labelled vertices in `y are
“good,” i.e. that their heights
occur only once in `y.

`y `y′

k

k + 1

k − 1

k

(b) Case 2 (both adjacent
height values smaller): Again
there is one edge between `y
and `y′ that is mapped to e =

ek,k+1, and again no other
vertices in `y can have either
height k or height k + 1.

`y `y′

k

k + 1

α

k + 1

k

β

(c) Case 3 (cannot occur be-
cause e ∈ Gy): Here there
would be two edges between
the lines that both map to
ek,k+1. But since the vertex at
height k in `y is “good”, the
vertex labelled α must have
height k + 2. Likewise since
the vertex at height k+1 in `y′

is “good”, vertex β must have
height k−1. Since α ∼ β, this
violates the graph homomor-
phism property.

Figure 6: Consideration of cases for part of the proof of Lemma 3.6. The claim to be
shown is: given e ∈ Gy (say e = ek,k+1), there is a unique cross edge es,y′ ∈ Ẽy,y′ which
is mapped to e by the height function hSn

. In the figure, the vertices are labelled by their
heights, i.e. by the values of hSn

. The bolded edge in `y is es ∈ E(`y), i.e. the unique
edge in `y with hSn

(es) = e. In Figure 6a and Figure 6b, the bolded edge between the
lines is the unique edge between the lines with height ek,k+1. Figure 6c shows two such
edges, but in fact this case cannot occur. By the homomorphism property, these three
cases exhaust the possibilities for heights on the two vertices in `y′ that are adjacent to
the endpoints of es.

It remains to count the “bad” vertices in any line `y. Since s1 > 1 − ε and since
hSn

approximates the slope-s height function hs
Sn

on ∂Sn, the height values hSn
(−n, y)

and hSn
(+n, y) on the endpoints of `y differ by at least 2n − 4εn. Since hSn

is a graph
homomorphism, it maps the 2n+1 vertices in `y surjectively onto the set of≥ 2n−4dεne+1

integers between the heights of the endpoints. By the pigeonhole principle, at most
8dεne of these integers occur with multiplicity ≥ 2, i.e. at most 8dεne vertices are “bad.”
Thus

|Gy| ≥ |Ay| − 2
∣∣{“bad” vertices in `y or `y′ (for y′ ∼ y)

}∣∣
≥ 2n− 4dεne︸ ︷︷ ︸

|Ay|

− 2 · (2m+ 1)︸ ︷︷ ︸
# lines

· 8dεne︸ ︷︷ ︸
“bad” vertices per line

= 2n− (32m+ 20)dεne
≥ 2n− 52mdεne . (3.8)

Now we work towards the Hamiltonian estimate (3.5). Let e ∈ Gy, and recall that es
is the unique edge in E(`y) such that hSn

(es) = e, and that es,y′ is the unique cross edge
between `y and `y′ such that hSn

(es,y′) = e. As a result (recall the definitions of H̃`y and
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Ẽy,y′ from (3.6) above):

H̃`y (hSn
) =

( ∑
ẽ∈E(`y)

ωhSn (ẽ)

)
+

1

2

(∑
y′∼y

∑
ẽ∈Ẽy

ωhSn (ẽ)

)
(3.7)
=
(∑
e∈Gy

ωe +
∑

ẽ∈E(`y)
hSn (ẽ)6∈Gy

ωhSn (ẽ)

)

+
1

2

(∣∣{y′ ∼ y}
∣∣ ∑
e∈Gy

ωe +
∑
y′∼y

∑
ẽ∈Ẽy,y′

hSn (ẽ) 6∈Gy

ωhSn (ẽ)

)
,

so ∣∣∣H̃`y (hSn
)−

(
1
2

∣∣{y′ ∼ y}
∣∣+ 1

) ∑
e∈Gy

ωe

∣∣∣
≤ Cω

(
|E(`y)| − |Gy|

)
+

1

2

∑
y′∼y

Cω

(
|Ẽy,y′ | − |Gy|

)
(3.8)
≤ 52mCωdεne+

1

2

∑
y′∼y

Cω

(
52mdεne+ 1

)
≤ 52mCωdεne(1 +m) +mCω

≤ 104m2Cωdεne+mCω

≤ 105m2(2n+ 1)Cωε .

In the last line, we assume that n ≥ 1
ε , so that (2n+ 1)ε ≥ dεne ≥ 1.

Because s′1 = 1, hs′

Sn
|`y is an injection, the three bullet points above are also satisfied

with hs′

Sn
in place of hSn . Therefore the calculation above also applies with hs′

Sn
in place

of hSn , so ∣∣∣H̃`y (h
s′

Sn
)−

(
1
2

∣∣{y′ ∼ y}
∣∣+ 1

) ∑
e∈Gy

ωe

∣∣∣ ≤ 105m2(2n+ 1)Cωε .

By the triangle inequality,∣∣H̃`y (hSn
)− H̃`y (h

s′

Sn
)
∣∣ ≤ 210m2(2n+ 1)Cωε .

By summing over y ∈ {−n, · · · , n}m−1, we get the desired inequality (3.5), i.e.∣∣HSn(hSn)−HSn(h
s′

Sn
)
∣∣ ≤ 210m2(2n+ 1)mCωε .

Both Lemma 3.3 and Lemma 3.6 imply that the microscopic entropy is robust to
changes in boundary data, but they apply in different regimes. The former result applies
when the boundary data has slope s with norm |s|∞ bounded away from 1, and the latter
when the slope s has norm close to 1. For convenience later on, we combine the two
results into a single theorem.

Theorem 3.8. For any ε ∈ (0, 1
9 ) and any slope s ∈ [−1, 1]m, there exist A = A(s, ε) > 0,

B = B(s, ε) > 0, and n0 = d 1
εe ∈ N such that, for any n ≥ n0 and any boundary height

function h∂Sn
∈ M(∂Sn, h

s
∂Sn

, ε),

entAn(s, ω)− Cω θ(ε) ≤ Ent
(
M(Sn, h∂Sn

), ω
)

≤ entBn(s, ω) + Cω θ(ε).
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Moreover, the functions A(s, ε) and B(s, ε) are bounded away from 0 and ∞ uniformly
in s and ε. More precisely,

1 ≤ A(s, ε) ≤
(
1 + 2ε1/2 + 1

n

)
< ∞

and
0 <

(
1− 2ε1/2 − 1

n

)
< B(s, ε) ≤ 1.

Proof of Theorem 3.8. Take α = ε1/2, and proceed according to two cases. For slopes s
with |s|∞ ≤ 1 − α, use Lemma 3.3 to choose A = n+/n ≈ (1 + 2ε1/2) and B = n−/n ≈
(1− 2ε1/2). Note that ε < 1

9 implies that ε < α
2 and n ≥ 1

ε ≥ (1− 2ε1/2)−1, as required by
the lemma. Moreover 1− 2ε1/2 − 1

n > 2
9 , so B is indeed bounded away from 0. The error

terms θ( ε
α ) from the lemma are equivalent to θ(ε1/2) = θ(ε).

For slopes with |s|∞ > 1 − α, take A = B = 1 and apply Lemma 3.6 twice, using
α = ε1/2 in place of ε: once for the boundary height function h∂Sn

given in the statement
of the theorem, and once for the canonical boundary height function hs

∂Sn
. The estimate

on ∣∣Ent(M(Sn, h∂Sn), ω)− entn(s, ω)
∣∣

follows from the triangle inequality.

The robustness results above focused on boundary height functions that differed at
macroscopic scale, i.e. |h∂Sn

− h̃∂Sn
|u ≤ εn. For boundary height functions with sub-

linear differences, we will derive stronger robustness results. Lemma 3.9 addresses the
case where the two boundary height functions differ at only a single point on ∂Sn, and
Corollary 3.11 extends to the sub-linear case (actually, only to |h∂Sn

− h̃∂Sn
|u = o( n

logn ),
but that is sufficient for our purposes.)

Lemma 3.9 (Robustness for minimally different boundary height functions). Fix n ∈ N,
and let h+

∂Sn
and h̃−

∂Sn
be two boundary height functions on the hypercube Sn which differ

at exactly one point z0 ∈ ∂Sn, i.e. h
+
∂Sn

|Sn\{z0} = h−
∂Sn

|Sn\{z0} and h+
∂Sn

(z0) = h−
∂Sn

(z0)+2.
Then, ∣∣∣EntSn

(
M(Sn, h

+
∂Sn

), ω
)
− EntSn

(
M(Sn, h

−
∂Sn

), ω
)∣∣∣ ≤ 4mCω + log(2n)

|Sn|
.

Remark 3.10. The log(2n) term is necessary at least in some extreme cases. For example,
suppose that ω ≡ 0, m = 1, z0 = −n, h+

∂Sn
(−n) = 2, h−

∂Sn
(−n) = 0, and h±

∂Sn
(n) = 2n.

Then EntSn
(M(Sn, h

+
∂Sn

),0) = − 1
n log(2n) and EntSn

(M(Sn, h
−
∂Sn

),0) = 0; cf. Lemma 3.4
and Lemma 3.5 for calculations.

Proof of Lemma 3.9. For concreteness and w.l.o.g., we assume that the boundary values
at z0 are h−

∂Sn
(z0) = 0 and h+

∂Sn
(z0) = 2. (Technically this assumption is only valid if z0

has even parity because we require that height functions preserve parity, and one should
instead assume e.g. that h±

∂Sn
(z0) ∈ {1, 3} in the other case. For simplicity we ignore this

detail in the rest of the proof.)

Consider the line z0, z1, . . . , z2n of points in Sn starting from z0 and going into Sn,
perpendicular to the boundary. Classify each height function h+

Sn
∈ M(Sn, h

+
∂Sn

) based
on the number of initial “up” steps, i.e.

kup(h
+
Sn

) := max
{
k̃ ≥ 0 |h+

Sn
(zk) = h+

Sn
(zk−1) + 1 for 1 ≤ k ≤ k̃

}
.

Note that from our initial assumption, h+
Sn

(zk) = k + 2 for 0 ≤ k ≤ kup. Necessarily
kup(h

+
Sn

) < 2n, since if h+
Sn

went up along all 2n edges, then the values h−
Sn

(z2n) =

h+
Sn

(z2n) = 2n+ 2 and h−
Sn

(z0) = 0 would violate the Kirszbraun theorem.
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On the line segment {z0, . . . , znup} ⊂ Sn, h
+
Sn

is “too high,” in the sense that no height
function in M(Sn, h

−
∂Sn

) can match it. But by the Kirszbraun theorem, there exists

h−
Sn

∈ M(Sn, h
−
∂Sn

) such that h−
Sn

(znup+1) = h+
Sn

(znup+1). In fact, we may define h−
Sn

by

h−
Sn

(z) =

{
k = h+

Sn
(z)− 2, if z = zk for 0 ≤ k ≤ kup, and

h+
Sn

(z), otherwise .

It follows that h+
Sn

and h−
Sn

have the same Hamiltonian, except for the contribution
from the edges incident to a vertex zk (0 ≤ k ≤ kup). There are (2m − 1)(kup + 1) such
edges, which leads to the naive estimate |HSn(h

+
Sn

, ω)−HSn(h
−
Sn

, ω)| ≤ (2m−1)(kup+1)Cω.
This estimate is not useful because kup on the right-hand side leads to an error of order
n in the worst case.

However, a more careful estimate is possible. Indeed, both h+
Sn

and h−
Sn

map the
edges e in question to the same collection of edges {ek,k+1 | 0 ≤ k ≤ kup} ⊂ E(Z), with
each ek,k+1 repeated about 2m− 1 times. For a heuristic argument we refer to Figure 7.
We use the ad-hoc notation h+, h− and k to denote h+

Sn
, h−

Sn
, and kup(h

+), respectively.
We get that

HSn(h
+, ω)−HSn(h

−, ω) =

k∑
i=0

∑
x∼zi

x 6=zi+1,zi−1

ωh+(ex,zi
) − ωh−(ex,zi

)

+

k∑
i=0

ωh+(ezi,zi+1) − ωh−(ezi,zi+1
), (3.9)

where h+(ex,y) = ωh+(x),h+(y) and h−(ex,y) = ωh−(x),h−(y) (see Definition 2.2). From the
construction it follows that (cf. Figure 7)

h+(zi) =

{
i+ 2, for all 0 ≤ i ≤ k

k + 1, for i = k + 1,

and

h−(zi) =

{
i, for all 0 ≤ i ≤ k

k + 1, for i = k + 1.

Additionally, we observe that for any nearest neighbor x ∼ zi such that x 6= zl with
0 ≤ i, l ≤ k, it holds (cf. Figure 7)

h+(x) = h−(x) = i+ 1.

Therefore, we can rewrite (3.9) as

HSn
(h+, ω)−HSn

(h−, ω) = (2m− 2)

k∑
i=0

ωei+1,i+2
− ωei+1,i

+

k−1∑
i=0

ωei+2,i+3 − ωei,i+1

+ ωek+1,k+2
− ωek,k+1

.

Taking advantage that the edges are undirected, i.e. ei,j = ej,i, we observe that both
sums telescope. Hence, we obtain

HSn(h
+, ω)−HSn(h

−, ω) = (2m− 2)ωek+1,k+2
− (2m− 2)ωe1,0

+ 2ωek+1,k+2
− ωek,k+1

− ωe0,1 .
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This yields the improved inequality∣∣HSn
(h+

Sn
, ω)−HSn

(h−
Sn

, ω)
∣∣ ≤ 4mCω. (3.10)

1
2

0

z0

1

2
3

1
2

z1

3
4

2
3

z2

4
5

3
4

z3 = zkup

? 4

z4

?

(a) The values of the height functions h+
Sn

and h−
Sn

from the proof of Lemma 3.9. On
the vertices z0, . . . , zkup where the two height
functions differ, the larger value is the
height that h+

Sn
takes and the smaller value

is h−
Sn

. Here kup = 3, since h+
Sn

increases
across the first three edges in the center
line. The (2m− 1)(kup +1) shaded edges are
exactly the set up edges incident to any of
z0, . . . , zkup , and these are the only edges on
which h±

Sn
differ.

e ∈ E(Z) h+
Sn

h−
Sn

e0,1 0 2m− 1

e1,2 2m− 2 2m− 1

e2,3 2m− 1 2m− 1

e3,4 2m− 1 2m− 1
...

...
...

ekup,kup+1 2m− 1 2m− 1

ekup+1,kup+2 2m 0

(b) Number of shaded edges on which h+
Sn

,
h−
Sn

attain certain heights. For example,
from the last row of the table: h+

Sn
(e) =

ekup+1,kup+2 for all 2m edges incident on zkup .
In the difference HSn(h

+
Sn

)−HSn(h
−
Sn

), the
bulk of the height values in the table cancel,
leaving only boundary terms. That is why
the bound in (3.10) does not depend on kup.

Figure 7: Explanation of inequality (3.10) from the proof of Lemma 3.9.

Now, we turn to the entropy inequality. For 0 ≤ k < 2n, let

Mk :=
{
h+
Sn

∈ M(Sn, h
+
∂Sn

)
∣∣ kup(h+

Sn
) = k

}
.

Then the sets Mk (0 ≤ k < 2n) partition M(Sn, h
+
∂Sn

), so

EntSn

(
M(Sn, h

+
∂Sn

), ω
)

= − 1

|Sn|
log

2n−1∑
k=0

∑
h+
Sn

∈Mk

exp
(
HSn(h

+
Sn

, ω)
)

(3.10)
≥ − 1

|Sn|
log

2n−1∑
k=0

∑
h+
Sn

∈Mk

exp
(
HSn

(h−
Sn

, ω) + 4mCω

)

≥ − 1

|Sn|
log

2n−1∑
k=0

∑
h−
Sn

∈M(Sn,h
−
∂Sn

)

exp
(
HSn

(h−
Sn

, ω) + 4mCω

)
= EntSn

(
M(Sn, h

−
∂Sn

), ω
)
− 4mCω + log(2n)

|Sn|
.

EJP 30 (2025), paper 2.
Page 26/52

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1236
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Homogenization of the variational principle

The reverse inequality is derived by exchanging the roles of h±
∂Sn

, considering the

number kdown of initial downward steps of h−
∂Sn

on the line {z0, . . . , z2n}, and proceeding
as before with the necessary changes.

Lemma 3.9 applies only when the two boundary height function h+
Sn

and h−
Sn

differ
minimally. However by applying Lemma 3.9 repeatedly, we can compare two more
different height functions. That idea is captured in the following corollary.

Corollary 3.11 (Robustness with respect to sub-linear height differences). Let h∂Sn and
h̃∂Sn be boundary height functions on Sn, and let M = ‖h∂Sn − h̃∂Sn‖∞. Then∣∣∣EntSn

(
M(Sn, h∂Sn

), ω
)
− EntSn

(
M(Sn, h̃∂Sn

), ω
)∣∣∣

≤ M

2

(
4mCω + log(2n)

) |∂Sn|
|Sn|

.

Remark 3.12. The main idea of the proof is to interpolate the boundary height function
from h∂Sn

to h̃∂Sn
, where each step in the interpolation changes the value of the boundary

height function at exactly one boundary point. Note that each interpolation step changes
the height by 2 at that distinguished boundary point, which is the reason for the factor
M
2 rather than simply M . Given such an interpolation, all that remains is to apply
Lemma 3.9 and the triangle inequality.

Proof of Corollary 3.11. We claim that there exists a finite sequence h
(1)
∂Sn

, . . . , h
(k)
∂Sn

such

that each pair h
(j)
∂Sn

and h
(j+1)
∂Sn

differ at exactly one point, such that h(1)
∂Sn

= h∂Sn
and

h
(k)
∂Sn

= h̃∂Sn
, and such that k ≤ M

2 |∂Sn|. Each element of the sequence is constructed

from the previous element by a “flip” operation: Given a (boundary) height function h
(j)
∂Sn

and a vertex zj ∈ ∂Sn where all the neighboring vertices z′ ∈ ∂Sn, z
′ ∼ zj have the same

height h∂Sn(z
′) = a ∈ Z, the height function h

(j+1)
∂Sn

is identical to h
(j)
∂Sn

on ∂Sn \ {zj} and
takes the other valid value on zj . Specifically, if h

(j)
∂Sn

(zj) = a+ 1, then h
(j+1)
∂Sn

(zj) = a− 1;

otherwise h
(j+1)
∂Sn

(zj) = a+ 1.

It remains to show that the vertices z1, . . . , zk−1 can be chosen so that h(k)
∂Sn

= h̃∂Sn

and so that k ≤ M
2 |∂Sn|. To prove both these points, consider the metric d : M(∂Sn)×

M(∂Sn) → Z defined by

d(h′
∂Sn

, h′′
∂Sn

) :=
∑

z∈∂Sn

∣∣h′
∂Sn

(z)− h′′
∂Sn

(z)
∣∣ .

As long as d(h
(j)
∂Sn

, h̃∂Sn
) > 0, we will find a vertex zj for which the flip operation both

is valid and decreases the distance d. Towards this end, let Ej := {z ∈ ∂Sn |h(j)
∂Sn

(z) >

h̃∂Sn
(z)}. If Ej 6= ∅, choose zj := argmaxz∈Ej

h
(j)
∂Sn

.

We claim that flipping at zj is valid, and more specifically that for all neighbors z′ ∼ zj

in ∂Sn, h
(j)
∂Sn

(z′) = h
(j)
∂Sn

(zj)−1. Indeed, there are two cases. If h(j)
∂Sn

(z′) = h̃∂Sn(z
′) for any

z′ ∼ zj , then necessarily h̃∂Sn(zj) = h
(j)
∂Sn

(zj)− 2 and h̃∂Sn(z
′) = h

(j)
∂Sn

(z′) = h
(j)
∂Sn

(zj)− 1

for all z′ ∼ z. Otherwise all z′ ∼ z are also in Ej , so the claim follows since zj maximizes

h
(j)
∂Sn

over Ej . So as claimed, it is valid to flip the height function h
(j)
∂Sn

at zj , and this

flip decreases the difference |h(j+1)
∂Sn

(zj) − h̃∂Sn
(zj)| by two, and therefore decreases

the distance d(h
(j+1)
∂Sn

, h̃∂Sn
) by two. If Ej is empty, use instead the set Fj := {z ∈

∂Sn |h(j)
∂Sn

(z) < h̃∂Sn(z)}, pick zj := argminz∈Fj
h
(j)
∂Sn

, and repeat the argument, changing

inequalities and signs accordingly. If Fj is also empty, then h
(j)
∂Sn

= h̃∂Sn
and the process
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is complete. At most 1
2d(h∂Sn

, h̃∂Sn
) ≤ M

2 |∂Sn| steps are needed in total, since each step
decreases the distance by 2. To complete the proof of the corollary, apply Lemma 3.9 to
each pair {h(j)

∂Sn
, h

(j+1)
∂Sn

} and use the triangle inequality.

3.3 Existence and equivalence of quenched and annealed local surface tension

Recall from Definition 2.17 that the quenched local surface tension is defined as the
limit of the quenched microscopic surface tension. Because of the random potential ω,
the existence of this limit is not obvious. We prove the existence of the limit using an
ergodic theorem for almost superadditive random families.

First, we introduce the notation needed for stating the ergodic theorem. Let B denote
the set of all (non-empty) boxes in Zm, i.e.

B =
{(

[a1, b1)× · · · × [am, bm)
)
∩Zm

∣∣∣ a1 < b1, . . . , am < bm ∈ Zm
}
.

Note that the sets Sn := [−n, n]m ∩ Zm are included in B. We say that a family of L1

random variables F = (FB)B∈B is almost superadditive if, for any finitely many disjoint
boxes B1, . . . , Bn ∈ B whose union B = B1 ∪ · · · ∪Bn also lies in B,

FB ≥
n∑

i=1

FBi −A

n∑
i=1

|∂Bi| (a.s.) , (3.11)

where A = A(ω) : Ω → [0,∞) is an L1 random variable, and where ∂Bi = {x ∈ Bi | ∃y ∈
Zm \Bi, x ∼ y} is the inner boundary of Bi.

Theorem 3.13 (Ergodic theorem for almost superadditive random families). Let (Ω,F ,P)

be a probability space, let τ = (τu)u∈Zm be a family of measure-preserving transfor-
mations on Ω, and let F = (FB)B∈B be a family of L1 random variables satisfying the
following three conditions:

• F is almost superadditive, i.e. F satisfies (3.11),

• For all u ∈ Zm,

lim
n→∞

sup
u∈Zm

1

|Sn|

∣∣∣Fu+Sn
− FSn

◦ τu
∣∣∣ = 0 , (3.12)

where u+B = {u+ x |x ∈ B} is the translation of B by u.

• The quantity γ̃(F ) = lim supn→∞
1

|Sn| E[FSn
] is finite.

Then the limit limn→∞
1

|Sn| FSn
exists almost surely and in L1. If moreover {τu}u∈Zm is

ergodic, then the limit is

lim
n→∞

1

|Sn|
FSn = γ̃(F ).

This theorem is based on [2, Theorem 2.4], which is a multidimensional extension
of the subadditive ergodic theorem proven in [29, 33] among many other sources. The
version stated here is adapted to notion of almost superadditivity that the quenched
microscopic entropy satisfies. For completeness, we give a proof of this version of
the ergodic theorem in Appendix A. Now let us turn to the application of this ergodic
theorem:

Lemma 3.14 (Existence of the quenched local surface tension). For almost every realiza-
tion ω of the random field, the limit (2.3) exists.

The proof is a straightforward application of the ergodic theorem.
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Proof of Lemma 3.14. Fix s ∈ [−1, 1]m. Let the family of measure-preserving transforma-
tions τ = (τu)u∈Zm be given by(

τuω
)
e
:= ωe−[s·u]u mod 2

for e ∈ E(Z) and u ∈ Zm. (3.13)

Define the random process F = (FB)B∈B by

FB := −|B| Ent
(
M(B, hs

∂B), ω
)
= logZω

(
M(B, hs

∂B)
)
.

Now we verify the hypotheses of the ergodic theorem (Theorem 3.13). First, the fact
that |ωe| ≤ Cω for all edges e ∈ E(Z) implies that each variable FB (B ∈ B) is in L1.

Next, the almost superadditivity property (3.11) follows from distributivity:

n∑
i=1

FBi = log

n∏
i=1

∑
hBi

∈M(Bi,hs
∂Bi

)

exp
(
HBi(hBi , ω)

)

= log
∑

hB1
∈M(B1,h

s
∂B1

)
···

hBn∈M(Bn,h
s
∂Bn

)

exp

(
n∑

i=1

HBi
(hBi

, ω)

)
.

The final sum is indexed by n-tuples of height functions, i.e. it is the sum over
the Cartesian product of the sets M(Bi, h

s
∂Bi

). This Cartesian product is a subset of
M(B, hB), so

n∑
i=1

FBi ≤ log
∑

hB∈M(B,hs
∂B)

exp

(
n∑

i=1

HBi(hB |Bi , ω)

)
. (3.14)

The quantity on the right-hand side of (3.14) differs from FB by at mostmCω

∑n
i=1|∂Bi|,

since the Hamiltonian terms in (3.14) do not include edges that cross from one box Bi to
another box Bj . This error term satisfies (3.11).

Now let us show that F satisfies the translation invariance estimate (3.12). For
h∂(u+B) ∈ M(∂(u + B)), consider the shifted boundary height function Ψuh∂(u+B) ∈
M(∂B) defined by

(Ψuh∂(u+B))(z) := h∂(u+B)(u+ z)− bs · uc for z ∈ ∂B .

Since both hs
∂B and hs

∂(u+B) are rounded to the nearest integer (of appropriate
parity), the shifted boundary height function Ψuh

s
∂(u+B) may not agree exactly with hs

∂B.
However, it holds that∣∣Ψuh

s
∂(u+B)(z)− hs

∂B(z)
∣∣ ≤ 4 for all z ∈ ∂B .

Therefore by Corollary 3.11, ∣∣Fu+B − FB ◦ τu
∣∣ ≤ |B| θ

(
1
n

)
.

The last condition to check is γ̃(F ) = lim supn→∞
1

|Sn|E[FSn
] < ∞, which follows

from boundedness of the quenched entropy. Indeed by Lemma 3.2, the inequality
FB ≤ m|B|Cω holds almost surely, so γ̃(F ) ≤ E(Cω) < ∞.

At this point we have checked all the hypotheses of the ergodic theorem (Theo-
rem 3.13). From the ergodic theorem we conclude that the pointwise limit

ent(s, ω) = lim
n→∞

entn(s, ω) = lim
n→∞

1

|Sn|
FSn(ω)

exists almost surely. In addition, when s 6= 0, the family of measure-preserving trans-
formations (τu)u∈Zm is ergodic with respect to P, since the family includes every shift
ω 7→ (ωk+e)e∈E(Z) for k ∈ Z. Therefore whenever s 6= 0, the limit ent(s, ω) is almost surely
equal to its expectation, E[ent(s, ω)] = entan(s).
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The failure of ergodicity in the case s = 0 is evident from the definition of (τu)u∈Zm

in (3.13): there we have (τuω)e := ωe−[s·u]u mod 2
for each e ∈ E(Z). When s = 0 the

quantity s · u is zero even as u → ∞, so the entire family of transformations (τu)u∈Zm is
actually finite rather than ergodic. As such, a different argument is needed for s = 0.
The authors would like to thank Marek Biskup for suggesting the following argument.

Lemma 3.15 (Equivalence of quenched and annealed local surface tension). For almost
every ω, it holds that

ent(s, ω) = entan(s). (3.15)

Moreover, the quenched microscopic surface tension entn(s, ω) converges in L1 to entan(s).

Proof of Lemma 3.15. For s 6= 0, the desired identity (3.15) follows from the ergodic
theorem, as mentioned at the end of the proof of Lemma 3.14.

For s = 0, we will establish translation invariance of ent(s, ω) directly. First we
replace the environmental shift τ2 by a shift in heights, i.e.

EntSn

(
M(Sn, h

0
∂Sn

)
)
◦ τ2 = EntSn

(
M(Sn, h

0·x+2
∂Sn

)
)
. (3.16)

This identity is justified simply by expanding definitions; both sides are equal to
− 1

|Sn| log
∑

hSn
exp(

∑
e ωhSn (e)+2), where the first sum runs over hSn

∈ M(Sn, h
0
∂Sn

) and

the second runs over e ∈ E(Sn).
Now, the square Sn sits inside of Sn+2. The boundary values h0·x+2

∂Sn
and h0

∂Sn+2
satisfy

the Kirszbraun criterion (3.1); in fact, each h ∈ M(Sn, h
0·x+2
∂Sn

) admits a unique extension

h̃ in M(Sn+2, h
0
∂Sn+2

). Since h̃ is an extension of h to a domain with O(nm−1) more points

and O(nm−1) more edges, the Hamiltonians satisfy∣∣HSn
(h, ω)−HSn+2

(h̃, ω)
∣∣ ≤ cnm−1Cω

for some c > 0. Therefore

EntSn

(
M(Sn, h

0·x+2
∂Sn

), ω
)

≥ − 1

|Sn|
log

∑
h∈M(Sn,h

0·x+2
∂Sn

)

exp
(
HSn+2

(h̃, ω)
)
− cCω

n

≥ EntSn+2

(
M(Sn+2, h

0
∂Sn+2

), ω
)
− cCω

n
.

(3.17)

Now, we combine (3.16) and (3.17) and send n → ∞, which yields

ent(0, ω) ◦ τ2 ≥ ent(0, ω) .

By a similar argument with τ2 replaced by τ−2, we conclude that ent(0, τ2ω) = ent(0, ω),
i.e. ent(0, ω) is invariant under τ2. Since the distribution P of ω is ergodic with respect
to τ2 (cf. Assumption 2.9), this implies that ent(0, ω) = E[ent(0, ω)] = entan(0) almost
surely.

3.4 Convexity and continuity

The last results that we need about the annealed local surface tension entan(s)

are that is is convex and continuous as a function of the slope s. Convexity allows
us to apply standard analytic techniques to conclude that the macroscopic entropy
functional EntR,an(·) is lower semi-continuous (see, for example, [13, Section 2]). By
semi-continuity, there exists a (perhaps non-unique) minimizer of the entropy functional,
so the minimum in the variational principle (Theorem 2.23) is achieved.

Lemma 3.16. The function s 7→ entan(s) is convex for s ∈ (−1, 1)m.
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(0, 0)
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(1, 1)
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(2, 0)
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‘ n = k(2L+ 2).

2L+ 1

Figure 8: The large box S2n+1 is decomposed into (2k)2-many small boxes S2L+1(i, j)

separated by the grid S′ (see the dashed lines). The large box S2n+1 is endowed with
linear boundary condition of slope s1. The blue boxes are endowed with an affine
boundary condition of slope s0, and the red boxes with slope s2. In the figure k = 3.

Remark 3.17. The proof follows a standard argument for the uniform case and is based
on buckled height functions (see e.g. [44]).

Proof of Lemma 3.16. We shall prove that for any choice of fixed coordinates

s1, . . . , si−1, si+1, . . . sm ∈ [−1, 1]m−1,

the single-variate functions si 7→ entan((s1, . . . , si−1, si, si+1, . . . , sm) are convex. It follows
from elementary analysis that s 7→ entan(s) is a convex function on the m-dimensional
domain [−1, 1]m. To simplify notation, we state the proof in the case m = 2, The proof
generalizes to higher dimensions.

We choose u0, u1, u2, v ∈ [−1, 1] such that such that

u1 =
1

2
u0 +

1

2
u2.

Our goal is to prove that

entan((u1, v)) ≤
1

2
entan((u0, v)) +

1

2
entan((u2, v)), (3.18)

from which the desired convexity follows.
We proceed as follows. First, let us consider the box

S2n+1 := {−n, . . . , n}2,
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−3 −2 −1 1 2 3

−2

−1

1

2

Figure 9: Illustration of buckling in one dimension. In the figure, the blue parts have
slope 3

4 and the red parts have slope 1
4 resulting in an average slope of 1

2 .

which is centered at 0 and has side length 2n + 1. On S2n+1 we consider the negative
normalized log-partition function of height functions with linear boundary values of
slope s1 = (u1, ν). By definition this equals to the quenched microscopic surface ten-
sion entn(s1, ω). By Lemma 3.15 it holds limn→∞ entn(s1, ω) = entan(s1), which recovers
the left hand side of the desired inequality (3.18).

Now, we subdivide S2n+1 into (2k)2 many smaller boxes S2L+1(i, j), −k ≤ i, j < k of
side length 2L+ 1. The cubes are separated by the grid S′ := (2k + 2)Z. For details we
refer to the Figure 8. This decomposition implies the relation

n = k(2L+ 2). (3.19)

The grid S′ is introduced for convenience as it allows to work with centered sub-
boxes S2L+1(i, j) with odd side length. Centered boxes are a requirement of the ergodic
theorem that we used to prove Lemma 3.14 (the existence of the quenched local surface
tension) and Lemma 3.15 (the equivalence of the quenched and annealed local surface
tension). One could generalize those lemmas but the formulation and proof would
become more subtle. Instead, we choose to add the grid S′ to the decomposition of
the hypercube S2n+1. Because |S′| ≤ 2(2k + 1)n, the effect of S′ will be asymptotically
negligible.

On the colored boxes S2L+1(i, j), −k + 1 ≤ i, j < k − 1, we define a buckled boundary
condition via a piece-wise affine boundary height function g that alternates between the
slope s0 = (u0, v) and s2 = (u2, v) from left to right. We will give the precise definition of
the boundary height function g in the next paragraph. The boundary height function g

buckles around the slope s1 = (u1, v) = ( 12u0 + 1
2u2, v) on a macroscopic scale. We

refer to Figure 9 for an illustration of buckling. In the block decomposition of Figure 8,
boxes with boundary slope s0 are colored in blue whereas boxes with boundary slope s2
are colored in red. The quenched entropy of every inner box S2L+1(i, j) is therefore
either given by ent2L+1(s0, τi,jω) or ent2L+1(s2, τi,jω) for an appropriate shift operator τi,j ,
depending on the position of the box.

In this paragraph, we explicitly construct the buckled boundary height function g. In
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the first read-through, this construction might be skipped. We define the set Mn as

Mn = S2n+1−2(2L+2) ∩

S′ ∪
⋃

−k+1≤i,j<k−1

∂S2l+1(i, j)

 .

The set Mn consists out of the boundary of the colored boxes and the grid S′ that is
contained in the centered box of side length 2n + 1 − 2(2L + 2). We now construct a
function ĝ : Mn → Z as a piece-wise affine height function. We assume w.l.o.g. that k − 1

is even. We start with the left-most vertical line of Mn, and define for −(k − 1)(2L+ 2) ≤
y ≤ (k − 1)(2L+ 2) (cf. Definition 2.7)

ĝ(−(k − 1)(2L+ 2), y) = [vy − a](−(k−1)(2L+2),y) mod 2 ,

where a = 1
2 (u0+u2)(k− 1)(2L+2) = u1(k− 1)(2L+2). For −k+1 ≤ l < k− 1 we define

the number

b(l) :=

{
u1(k − 1 + l)(2L+ 2), if k − 1 + l is even,

u1(k − 1 + l − 1)(2L+ 2) + u0(2L+ 2), if k − 1 + l is odd.

Now, for (x, y) ∈ Mn such that l(2L+ 2) < x ≤ (l + 1)(2L+ 2) we set

ĝ(x, y) =

{
[u0(x− l(2L+ 2) + b(l) + vy − a](x,y) mod 2 , if l is even,

[u2(x− l(2L+ 2) + b(l) + vy − a](x,y) mod 2 , if l is odd.

By definition, the map ĝ is a height function on the set Mn. The buckled boundary height
function g is defined as the restriction of ĝ onto the boundaries of the colored boxes.

Let us turn to the question of how to relate entn(s1, ω) to the right hand side of (3.18).
We claim that there exists a height function ḡ : S2n+1 → N on the large box S2n+1

with the following properties: On the boundary of S2n+1 the function ḡ is the linear
boundary height function with slope s1; and on the boundary of the colored boxes,
i.e. on

⋃
−k+1≤i,j<k−1 ∂S2L+1(i, j)), the function ḡ coincides with the buckled boundary

height function g. Indeed, the buckled boundary height function g extends by con-
struction to the height-function ĝ on the set Mn. Then, ĝ can be extended to a height
function on S2n+1 with the desired properties using Kirszbraun theorem. Consider
an arbitrary height function h :

⋃
−k+1≤i,j<k−1 S2L+1(i, j) → Z that is defined on the

colored boxes with buckled boundary condition g. This height function can be ex-
tended to a height function h̄ on the large box S2n+1 such by setting h̄(x, y) = ḡ(x, y)

for (x, y) ∈ S2n+1\
⋃

−k+1≤i,j<k−1 S2L+1(i, j). By construction, the extended height func-

tion h̄ will satisfy a linear boundary condition on S2n+1 with slope s1. This allows to
under-count the number of height functions on S2n+1 and deduce, similar to the proof of
Lemma 3.3, the following estimate:

entn(s1, ω) ≤
(2L+ 1)2

n2

∑
−k+1≤i,j<k−1

i is even

ent2L+1(s0, τi,jω)

+
(2L+ 1)2

n2

∑
−k+1≤i,j<k−1

i is odd

ent2L+1(s2, τi,jω)

+ Cω C
2(2k + 1)n

n2
+ Cω C

(2L+ 1)n

n2
.

The first and second term counts the contribution of the blue and red boxes, respectively.
The third term estimates the energetic effect of under-counting on the grid S′. The last
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term estimates the energetic effect of under-counting on the outer ring of uncolored
boxes S2L+1(i, j) with either i ∈ {−k, k} or j ∈ {−k, k}. By Lemma 3.15 we observe that

lim
n→∞

entn(s1, ω) = entan(s1),

lim
L→∞

ent2l+1(s0, τi,jω) = entan(s0), and

lim
L→∞

ent2l+1(s2, τi,jω) = entan(s2).

Therefore, a combination of (3.19) and taking the limit k, L → ∞ yields the desired
inequality (3.18).

4 Profile theorem

Before proving the profile theorem, Theorem 2.22, in its full generality, it is useful
to prove a special case of the theorem with the extra assumptions that the asymptotic
height function is piecewise affine, on a domain which is of a collection of simplices. In
this special case it is not difficult to relate the microscopic entropy EntRn(B(Rn, hR, δ), ω)

to the quenched microscopic surface tension entn(s, ω), and then to derive the desired
conclusion (2.4). The special case is stated in Lemma 4.3 below, after some necessary
notation is introduced in Definitions 4.1 and 4.2.

Definition 4.1 (Simplices of scale `; cf. [31, Definition 27] and [44, Section 5.2.1]). Let
Sym(m) denote the group of permutations on {1, . . . ,m}, and for w = (w1, . . . , wm) ∈ Rm,
let bwc denote the integer point bwc := (bw1c, . . . , bwmc). Let v ∈ Zm, let σ ∈ Sym(m),
and let ` > 0. Define C(v, σ) to be the closure of the set{

w ∈ Rm
∣∣ bwc = v and wσ(1) − bwσ(1)c > · · · > wσ(m) − bwσ(m)c

}
,

and define the simplex of scale ` to the scaled set

`C(v, σ) := {`w |w ∈ C(v, σ)} .

Definition 4.2 (Piecewise affine asymptotic height functions). Let∆1, . . . ,∆k be simplices
of scale ` and let K = ∆1 ∪ · · · ∪∆k be their union. We say that an asymptotic height
function hK ∈ M(K) is piecewise affine if each restriction hK |∆i is an affine function,
i.e. if there exist si ∈ [−1, 1]m and bi ∈ R such that hK |∆i

(x) = si · x + bi for all x ∈ ∆i.
We write

Maff(K) =
{
hK ∈ M(K)

∣∣ hK is piecewise affine
}

Maff(K,h∂K) = Maff(K) ∩M(K,h∂K) .

Lemma 4.3 (Profile theorem, simplicial case). Let ∆1, . . . ,∆k be simplices of scale ` and
let K = ∆1 ∪ · · · ∪∆k be their union.

For any hK ∈ Maff(K,h∂K) and any η > 0, there exists ε = ε0(hK , η) such that, for
any ε ∈ (0, ε0] and any pmax ∈ (0, 1), there exists n0 = n0(hK , η, ε, pmax) such that for all
n ≥ n0,

P
( ∣∣∣EntKn

(
B(Kn, hK , ε`), ω

)
− EntK,an(hK)

∣∣∣
> η + CωθhK

(ε) + CωθhK ,ε

(
1
n

))
< pmax .

(4.1)

Proof. We will prove two bounds on the quenched microscopic entropy
EntKn

(B(Kn, hKn
, ε`), ω): an upper bound

P
(
EntKn

(
B(Kn, hK , ε`), ω

)
> EntK,an(hK)

+ η + CωθhK
(ε) + CωθhK ,ε

(
1
n

))
≤ θhK ,η,ε

(
1
n

) (4.2)
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and a lower bound

P
(
EntKn

(
B(Kn, hK , ε`), ω

)
< EntK,an(hK)

− η − CωθhK
(ε)− CωθhK ,ε

(
1
n

))
≤ θhK ,η,ε

(
1
n

)
.

(4.3)

Assuming that both (4.2) and (4.3) hold, the conclusion (4.1) follows immediately by
taking n0 large enough based on the two θhk,η,ε(

1
n ) terms and applying the union bound

on probabilities. So first let us verify the upper bound (4.2), and later we will verify the
lower bound (4.3). For (4.2) we undercount the set of height functions B(Kn, hKn , ε`).
We choose a fine mesh of hypercubes Qi,n that approximate Kn and consider only those
height functions that agree with the canonical boundary height functions hsi·x+bi

∂Qi,n
on

∂Qi,n, where si ∈ [−1, 1]m and bi ∈ R are chosen such that si · x+ bi = hK |Qi . The mesh
size is small enough that every such height function is in B(Kn, hKn , ε`).

To be precise, let q = 1
4ε` be the mesh size. Let Q1, . . . , Qk ⊂ Rm enumerate the set

of hypercubes in Rm that have side length q, have vertices in qZm, and lie entirely in one
of the simplices ∆j . That last property ensures that there exist si ∈ [−1, 1]m and bi ∈ R
such that

hK(x) = si · x+ bi for all x ∈ Qi .

For n ∈ N, let Qi,n := {z ∈ Zm | 1
nz ∈ Qi}. Then as desired, for any choice of height

functions (
hQi,n

)k
i=1

∈
k∏

i=1

M
(
Qi,n, h

si·x+bi
∂Qi,n

)
,

there exists at least one extension hKn
∈ M(Kn) to the whole of Kn (i.e. hKn

|Qi,n
= hQi,n

for each i = 1, . . . , k), and any such extension lies in B(Kn, hK , ε`) by choice of q.
Therefore,

EntKn

(
B(Kn, hK , ε`), ω

)
≤ 1

k

k∑
i=1

EntQi,n

(
M(Qi,n, h

si·x+bi
∂Qi,n

), ω
)

+ Cωθm(ε) + Cωθm,ε,`

(
1
n

)
,

(4.4)

where the θ error terms come from the contribution of the set Kn \
⋃k

i=1 Qi,n. For
each i = 1, . . . , k, let us abuse notation and write “qn” to denote the side length of the
hypercube Qi,n. (In fact, the actual product q · n is generally not an integer, but the
quantity we call qn satisfies |qn− q · n| < 1.) Consider Qi,n as a translate Qi,n = vi + Sqn

for vi ∈ Zm. Then the boundary values hsi·x+bi
∂Qi,n

are close to the translated values of hsi
∂Sqn

;
in particular, for z ∈ ∂Sqn,∣∣∣hsi·x+bi

∂Qi,n
(vi + z)−

(
hsi
∂Sqn

(z) + bsi · vi + nbic
)∣∣∣ ≤ 4 . (4.5)

(A non-zero error occurs when si is irrational, or more generally when qnsi is not integral
or has the wrong parity.) By Corollary 3.11 it follows that

EntQi,n

(
M(Qi,n, h

si·x+bi
∂Qi,n

), ω
)
= entqn(si, τbsi·vi+nbicω) + Cωθm

(
1
n

)
. (4.6)

Combining (4.4) and (4.6) and abbreviating τi,n := τbsi·vi+nbic yields

EntKn

(
B(Kn, hK , ε`), ω

)
≤ 1

k

k∑
i=1

entqn(si, τi,nω) + Cωθm(ε) + Cωθm,ε,`

(
1
n

)
.

(4.7)
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We note that the sequences {entqn(si, τi,nω)}n∈N may not necessarily converge to
entan(s) as n → ∞, despite the almost-sure convergence result of Lemma 3.15, due to
the potential shifts τi,n. However, since each entqn(si, ·) → entan(si) in L1, we can apply
the Markov bound:

P

(∣∣∣∣ 1k
k∑

i=1

entqn(si, τi,nω)−
1

k

k∑
i=1

entan(si)

∣∣∣∣ > η

)

≤ 1

k

k∑
i=1

1

η

∥∥entqn(si, ·)− entan(si)
∥∥
L1

= θhK ,η,ε,`

(
1
n

)
.

(4.8)

The last step in verifying (4.2) is to compare EntK,an(hK) to a sum involving entan(si).
This is straightforward: because hK is affine on each hypercube Qi, the integrand
x 7→ entan(∇hK(x)) in the macroscopic entropy is constant on each Qi, so

EntK,an(hK)
def.
=

1

|K|

∫
K

entan(∇hK(x)) dx

=
1

k

k∑
i=1

1

|Qi|

∫
Qi

entan
(
∇hK |Qi

)
+ θK(ε)

=
1

k

k∑
i=1

entan(si) + θK(ε) .

(4.9)

The only error is from the contribution of the region K \
⋃k

i=1 Qi. Combining inequali-
ties (4.7), (4.8), and (4.9) proves the desired upper bound (4.2), i.e.

P
(
EntKn

(
B(Kn, hK , ε`), ω

)
> EntK,an(hK)

+ η + θhK
(ε) + θhK ,ε

(
1
n

))
≤ θhK ,η,ε

(
1
n

)
.

Now we turn to the lower bound (4.3). Similar to before, let q = ε1/2` and let
Q1, . . . , Qk enumerate the hypercubes that have side length q, have vertices in qZm, and
lie entirely inside of one of the simplices ∆j . Note that the side length q is different now
compared to above when we were justifying the upper bound (4.2), and hence Q1, . . . , Qk

denotes a different set of hypercubes.
To prove (4.3) we overcount height functions, using the same idea as in the companion

article [31]. In summary, define a subset of “exceptional” points En ⊂ Kn as follows: let

Gn =

k⋃
i=1

∂Qi,n , Un = Kn \
k⋃

i=1

Qi,n , and En = Gn ∪ Un .

Informally, Gn is the “grid” formed by the boundaries of the hypercubes and Un is the
“uncovered” region, i.e. the part of Kn that is not covered by the hypercubes. We group
height functions hKn ∈ B(Kn, hK , ε`) based on their values on the set En. For each fixed
assignment of heights hKn |En ∈ M(En), the entropy of the set of extensions to the hyper-
cubes

⋃k
1 Qn ≈ Kn \ En is asymptotically equal to the macroscopic entropy EntK,an(hK).

The set En is not too large, so even after counting all admissible assignments hKn |En ,
the resulting asymptotics match (4.3).

To make the above argument rigorous, let Adm(En) denote the set of admissible
height functions on En, i.e. those height functions hEn

∈ M(En) that admit an extension
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to a height function in B(Kn, hK , ε`). There is an obvious injection from B(Kn, hK , ε`)

into ⊎
hEn∈Adm(En)

k∏
i=1

M
(
Qi,n, hEn

|∂Qi,n

)
, (4.10)

where “
⊎
” denotes the disjoint union (so for distinct height functions hEn

and hEn
in

Adm(En), the product sets
∏k

1 M
(
Qi,n, hEn

|∂Qi,n

)
and

∏k
1 M

(
Qi,n, hEn

|∂Qi,n

)
are consid-

ered disjoint inside the set from (4.10)). It follows that

Zω

(
B(Kn, hK , ε`), ω

)
≤

∑
hEn∈Adm(En)

Zω

(
k∏

i=1

M
(
Qi,n, hEn

|Qi,n

))

≤
∣∣Adm(En)

∣∣ max
hEn∈Adm(En)

Zω

(
k∏

i=1

M
(
Qi,n, hEn |Qi,n

))
.

Therefore

EntKn

(
B(Kn, hK , ε`), ω

)
≥ min

hEn∈Adm(En)

k∑
i=1

|Qi,n|
|Kn|

EntQi,n

(
M(Qi,n, hEn

|Qi,n
), ω
)

− log |Adm(En)|
|Kn|

.

(4.11)

Clearly |Qi,n|
|Kn| = 1

k + θm(ε) + θm,ε,`

(
1
n

)
.

To control |Adm(En)|, we argue as follows. First, |Gn|
|Kn| = θm(q) = θm(ε) and |Un|

|Kn| =

θm(ε). Second, for an arbitrary base point z0 ∈ En, there are at most 2ε`n+ 1 admissible
values for hEn

(z0) if hEn
∈ Adm(En), since hEn

must extend to a height function in
the ball B(Kn, hK , ε`). Third, the set En is connected, so for each of the admissible
values of hEn

(z0), there are at most 2|En| height functions in Adm(En) taking that
value at z0. Putting these observations together, we conclude that 1

|Kn| log |Adm(En)| =
θm(ε) + θm,ε,`

(
1
n

)
.

Applying these asymptotic results in (4.11) yields

EntKn

(
B(Kn, hK , ε`), ω

)
≥ min

hEn∈Adm(En)

1

k

k∑
i=1

EntQi,n

(
M(Qi,n, hEn

|Qi,n
), ω
)

− θm(ε)− θm,ε,`

(
1
n

)
.

(4.12)

Whenever hEn
∈ Adm(En),

max
z∈En

∣∣hK( 1nz)−
1
nhEn

(z)
∣∣ < ε` ,

so for each i = 1, . . . , k, by analogy to (4.5),

max
z∈∂Sqn

∣∣∣(hEn(vi + z)− bsi · vi + qnbic
)
− hsi

∂Sqn
(z)
∣∣∣ ≤ ε`n .

We apply Theorem 3.8 to the height function(
z 7→ hEn

(vi + z)− bsi · vi + qnbic
)
∈ M(Sqn)
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to conclude that
EntQi,n

(
M(Qi,n, hEn |∂Qi,n), ω

)
≥ entAqn

(
si, τbsi·vi+qnbicω

)
− Cωθ(ε) .

(4.13)

The two almost-sure inequalities (4.12) and (4.13), the probability estimate (4.8),
and the macroscopic bound (4.9) together imply the desired lower bound (4.3), which
completes the proof of Lemma 4.3.

The remainder of the proof of the profile theorem (Theorem 2.22) for general asymp-
totic height functions follows closely the proof in Section 6 of the companion article [31].
Below we state an approximation result (Theorem 4.4), which concludes that any asymp-
totic height function hR admits a “good” approximation hK satisfying the hypotheses
of Lemma 4.3 above. Following that result are three robustness lemmas (Lemma 4.5,
Lemma 4.6, and Lemma 4.7). With these tools it is straightforward to reduce the general
case of Theorem 2.22 to the special case of Lemma 4.3. The approximation result
(Theorem 4.4) is unchanged from the companion article, which should be expected
because the random potential in the current model does not affect the class of limit
objects that our model admits, i.e. domains satisfying Assumption 2.1 and asymptotic
height functions. It is similar to [13, Lemma 2.2] or [43, Theorem 1]. A proof of it is
given in the companion article [31].

Theorem 4.4 (Simplicial Rademacher theorem). Let R ⊆ Rm be a region satisfying
Assumption 2.1, and let hR ∈ M(R, h∂R) be an asymptotic height function on R. For
any ε > 0 and any ` > 0 sufficiently small (depending on ε), we may choose a simplex
domain K = ∆1 ∪ · · · ∪ ∆k ⊆ R of scale ` (see Definition 4.1) and a piecewise affine
asymptotic height function hK : K → R (that is, an asymptotic height function such that
each restriction hK |∆i

: ∆i → R is affine) that satisfy the following properties:

1. |R \K| < ε and dH(K,R) < ε, where we recall that for subsets of Rm, |·| denotes
the Lebesgue measure and dH(·, ·) denotes Hausdorff metric;

2. maxx∈K |hK(x)− hR(x)| < 1
2ε`; and

3. on at least a (1−ε) fraction of the points inK (by Lebesgue measure), the gradients
∇hK(x) and ∇hR(x) agree to within ε, i.e. 1

|K|
∣∣{x ∈ K

∣∣ |∇hK(x) − ∇hR(x)|2 ≥
ε
}∣∣ < ε.

Now we turn to the robustness lemmas, which will be used when applying Theo-
rem 4.4 to approximate hR by another asymptotic height function. The three lemmas
below are almost direct analogues of Lemmas 35, 36, and 37 from [31] respectively.

Lemma 4.5 (Robustness of macroscopic entropy under approximations). Let ε > 0, and
let R̃ ⊆ R ⊂ Rm be sets meeting the assumptions from Assumption 2.1 with |R \ R̃| < ε.
Let hR̃ ∈ M(R̃) and hR ∈ M(R) be such that∣∣∣{x ∈ R̃

∣∣∣ ∣∣∇hR̃(x)−∇hR(x)
∣∣
2
≥ ε
}∣∣∣ < ε . (4.14)

Then,
EntR,an(hR) = EntR̃,an(hR̃) + θm(ε) .

Proof. Recall from Definition 2.21 that

EntR,an(hR) :=
1

|R|

∫
R

entan
(
∇hR(x)

)
dx ,

and likewise for EntR̃,an(hR̃). The conclusion follows from three observations: first that
the domains of integration are bounded sets with small symmetric difference, second that
the function s 7→ entan(s) is continuous, and third that the functions ∇hR and ∇hR̃ almost
agree (as per (4.14)) on most of the intersection of their domains (by measure).
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Lemma 4.6 (Robustness of microscopic entropy under change in profile). Let ε > 0 and
n ∈ N. Let R ⊂ Rm satisfy Assumption 2.1, and let Rn ⊂ Zm satisfy 1

nRn ⊂ R. Let

hR, h̃R ∈ M(R) be two asymptotic height functions such that supx∈R|hR(x)− h̃R(x)| ≤ ε.
Then,

EntRn

(
B(Rn, hR, 2ε), ω

)
≤ EntRn

(
B(Rn, h̃R, ε), ω

)
.

Proof. For any fixed ω, the functional EntRn
(·, ω) : M(Rn) → R is monotonic, and it

follows from Definition 2.3 that

B(Rn, h̃R, ε) ⊆ B(Rn, hR, 2ε) .

Lemma 4.7 (Robustness of microscopic entropy under domain approximations). Let
c ∈ (0, 1], ε ∈ (0, 1], and n ∈ N. Let R̃ ⊂ R ⊂ Rm and R̃n ⊂ Rn ⊂ Zm satisfy these
assumptions:

1
nRn ⊂ R , 1

n R̃n ⊂ R̃ ,

dH( 1nRn, R) = θR(ε) , dH( 1n R̃n, R̃) = θR(ε) ,

|Rn|
nm|R|

= 1 + θR(ε) + θR,ε

(
1
n

)
,

|R̃n|
nm|R̃|

= 1 + θR(ε) + θR,ε

(
1
n

)
,

|R|
|R̃|

= 1 + θR(ε) .

Let hR ∈ M(R) be an asymptotic height function with Lip(hR) ≤ 1− cε. Then,

EntR̃n

(
B(R̃n, hR, ε), ω

)
− CωθR(ε)− CωθR,ε

(
1
n

)
≤ EntRn

(
B(Rn, hR, ε), ω

)
≤ EntR̃n

(
B(R̃n, hR,

c
3ε

2), ω
)
+ CωθR(ε) + CωθR,ε

(
1
n

)
.

(4.15)

Proof. We prove the two inequalities in (4.15) separately. For the first inequality, observe
that the map

B(Rn, hR, ε) → B(R̃n, hR, ε)

hR 7→ hR|R̃

is not generally an injection, but it is at most (2|Rn\R̃n|)-to-1 (by the graph homomorphism
property and connectedness of Rn). For any hRn

∈ B(Rn, hR, ε),

HRn,ω(hRn
) ≤ HR̃n,ω

(hRn
|R̃n

) + Cω|Rn \ R̃n| ,

so
Zω(B(Rn, hR, ε)) ≤ 2|Rn\R̃n|Zω(B(R̃n, hR, ε)) exp

(
Cω|Rn \ R̃n|

)
and

EntRn

(
B(Rn, hR, ε), ω

)
≥ |R̃n|

|Rn|
EntR̃n

(
B(R̃n, hR, ε), ω

)
− log(2)

|Rn \ R̃n|
|Rn|

− Cω|Rn \ R̃n|

= EntR̃n

(
B(R̃n, hR, ε), ω

)
− CωθR(ε)− CωθR,ε

(
1
n

)
.

To prove the second inequality in (4.15), we first note that there exists an injection
fromB(R̃n, hR,

c
3ε

2) intoB(Rn, hR, ε). A height function hR̃n
∈ B(R̃n, hR,

c
3ε

2) is extended
to hRn

∈ B(Rn, hR, ε) in such a way that
∣∣hRn

(z) − nhR

(
1
nz
)∣∣ ≤ 1 when z is in Rn and
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sufficiently far away from R̃n; the parameter value c
3ε

2 is chosen so that such an extension
is admissible by the Kirszbraun theorem. For details, see the proof of [31, Lemma 37].
For this injection hR̃n

7→ hRn
,

HR̃n,ω
(hR̃n

) ≤ HRn,ω(hRn
) + Cω|Rn \ R̃n| ,

so
Zω

(
B(R̃n, hR,

c
3ε

2)
)
≤ Zω

(
B(Rn, hR, ε)

)
exp
(
Cω|Rn \ R̃n|

)
and

EntR̃n

(
B(R̃n, hR,

c
3ε), ω

)
≥ |Rn|

|R̃n|
EntRn

(
B(Rn, hR, ε), ω

)
− log(2)

|Rn \ R̃n|
|Rn|

− Cω|Rn \ R̃n|

= EntRn

(
B(Rn, hR, ε), ω

)
− CωθR(ε)− CωθR,ε

(
1
n

)
.

To prove the profile theorem, we reduce to the special case of Lemma 4.3, where the
domain is a collection of simplices and the asymptotic height function is piecewise affine.
Before that, in order to apply Lemma 4.7, we reduce to the case where hR has Lipschitz
constant strictly less than 1. Both reductions are simple applications of the robustness
results above.

Proof of the profile theorem (Theorem 2.22). For the reader’s convenience we recall the
conclusion of the theorem that we are about to prove, namely:

lim sup
n→∞

P

(∣∣∣EntRn

(
B(Rn, hR, δ), ω

)
− Entan(R, hR)

∣∣∣
≥ η + CωθhR

(δ) + CωθhR,δ

(
1
n

))
= 0 .

(4.16)

For the first step of the proof, we reduce from the case of an arbitrary asymptotic
height function hR ∈ M(R, h∂R), i.e. a continuous function hR : R → R with Lipschitz
constant at most 1 (with respect to the `1 norm on R), to an asymptotic height function
with Lipschitz constant strictly less than 1. Indeed, let c := (2 diam1 R)−1 ∧ 1, where
diam1 R denotes the diameter of R under the `1 norm. By translation invariance of the
random field ω, we assume that there exists x0 ∈ R with hR(x0) = 0. Define

h̃R := (1− cδ)hR .

We make the following observations. First,

Lip(h̃R) = (1− cδ) Lip(hR) ≤ 1− cδ .

Second, for any x ∈ R,

|hR(x)− h̃R(x)| ≤ cδ|hR(x)| ≤ cδ|x− x0|1 ≤ δ
2 . (4.17)

Third, for any x ∈ R,
|∇hR(x)−∇h̃R(x)| ≤ cδ . (4.18)

Lemma 4.5, together with (4.18) and the choice of constant c = c(R), yields

EntR,an(hR) = EntR,an(h̃R) + θR(δ) . (4.19)
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Similarly, Lemma 4.6 and (4.17) imply that almost surely,

EntRn

(
B(Rn, h̃R, 2δ), ω

)
≤ EntRn

(
B(Rn, hR, δ), ω

)
≤ EntRn

(
B(Rn, h̃R,

1
2δ), ω

)
.

Assume for the sake of the proof that (4.16) holds for h̃R. Then almost surely,

EntRn

(
B(Rn, hR, δ), ω

)
≤ EntRn

(
B(Rn, h̃R,

δ
2 ), ω

)
≤ EntR,an(h̃R) + η + Cωθh̃R

(
δ
2

)
+ Cωθh̃R,δ/2

(
1
n

)
= EntR,an(hR) + η + CωθhR

(δ) + CωθhR,δ

(
1
n

)
,

where in the last line, we combine the θR(δ) term from (4.19) together with the
Cωθh̃R

( δ2 ) term above; this is admissible since Cω ≥ 1 by definition (recall that Cω :=

1 ∨ supe∈E(Z)|ωe|) and since the various factors of 1
2 do not affect the asymptotics. The

reverse inequality is similar, and so we have reduced to the problem of proving (4.16)
with the added assumption that Lip(hR) ≤ 1− cδ for c = c(R) ∈ (0, 1).

We reduce further to the special case from Lemma 4.3, i.e. a piecewise affine asymp-
totic height function defined on a collection of simplices. First, we choose parameter
values ε = ε(δ) and ` = `(ε, δ) satisfying three criteria:

1. ε → 0 as δ → 0,
2. δ = ε`,
3. ` is sufficiently small so that the simplicial Rademacher theorem (Theorem 4.4)

applies.

The choices of ε and ` may be realized as follows, from [31]: Choose a sequence
εk ↘ 0 arbitrarily, e.g. εk = 1

k . Let `k be the largest admissible ` value based on εk, but
not larger than 1. For any given δ choose the smallest εk such that εk`k > δ; this ensures
the first criterion. Set ε = εk and ` = δ

εk
≤ `k; this ensures the last two criteria.

For the remainder of the argument, fix δ > 0. Let ε and ` satisfy the above criteria,
and let K ⊆ R ⊂ Rm be a simplicial domain and hK ∈ M(K) an asymptotic height
function satisfying the conclusions of the simplicial Rademacher theorem (Theorem 4.4).
Since ∇hK ≈ ∇hR (cf. conclusion (3) of Theorem 4.4) and since the macroscopic entropy
is robust (Lemma 4.5),∣∣∣EntR,an(hR)− EntK,an(hK)

∣∣∣ ≤ θR(ε) = θR(δ) , (4.20)

where we use the fact that ε → 0 as δ → 0 in order to replace ε by δ in the θ error term.
Similarly, by conclusions 1 and 2 of Theorem 4.4 and the microscopic entropy robust-

ness,
EntRn

(
B(Rn, hR, ε`), ω

)
(Lemma 4.7)

≤ EntKn

(
B(Kn, hR|K , c

3 (ε`)
2), ω

)
+ Cωθ(ε) + Cωθε

(
1
n

)
(Lemma 4.6)

≤ EntKn

(
B(Kn, hK , c

6 (ε`)
2), ω

)
+ Cωθ(ε) + Cωθε

(
1
n

) (4.21)

and
EntRn

(
B(Rn, hR, ε`), ω

)
(Lemma 4.7)

≥ EntKn

(
B(Kn, hR|K , ε`), ω

)
− Cωθ(ε)− Cωθε

(
1
n

)
(Lemma 4.6)

≥ EntKn

(
B(Kn, hK , 1

2ε`), ω
)
− Cωθ(ε)− Cωθε

(
1
n

)
.

(4.22)

Combining (4.20), (4.21), (4.22), and the special case of the profile theorem proved
in Lemma 4.3 completes the proof.
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5 Variational principle

In this section we prove the variational principle (Theorem 2.23). The proof follows
the steps of the corresponding proof for the uniform case in [31]. The main difference
and the step that needs attention is that the deterministic convergence needs to be lifted
to a convergence in probability. The two main inequalities in the proof follow from first
comparing the set of height functions M(Rn, h∂Rn

, δ) to the subset B(Rn, h
∗
R, δ) for a

well-chosen asymptotic height function h∗
R, and second from comparing to a superset⋃k

i=1 B(Rn, h
(i)
R , δi) for a collection of asymptotic height functions h(1)

R , . . . , h
(k)
R . Especially

in the second part of the argument, some care is needed in regards to the asymptotic
parameters. In particular:

• The choice (and number) of height functions h(i)
R depends on δ,

• the radii δi of the balls around these height functions depends on η,

• the probability that the profile theorem fails (i.e. the probability that the quantities
EntRn

(B(Rn, h
(i)
R , δi), ω) and EntR,an(h

(i)
R ) differ by a large amount due to the exact

configuration ω of the random potential) depends not just on the error tolerance η

but also on the number of height functions h(i)
R .

Proof of Theorem 2.23. Let η > 0 and pmax > 0. First we will establish that

lim sup
δ→0

lim sup
n→∞

P
(
EntRn

(
M(Rn, h∂Rn

, δ), ω
)

> inf
hR∈M(R,h∂R)

EntR,an(hR) + η
)
≤ pmax .

(5.1)

We choose h∗
R ∈ M(R, h∂R) such that

EntR,an(h
∗
R) ≤ inf

hR∈M(R,h∂R)
EntR,an(hR) +

η
4 . (5.2)

For any δ > 0 and n ∈ N, B(Rn, h
∗
R, δ) ⊆ M(Rn, h∂Rn

, δ). Hence almost surely,

EntRn

(
M(Rn, h∂Rn

, δ), ω
)
≤ EntRn

(
B(Rn, h

∗
R, δ), ω

)
. (5.3)

By the profile theorem (applied to h∗
R),

P
(∣∣EntRn

(
B(Rn, h

∗
R, δ), ω

)
− EntR,an(h

∗
R)
∣∣

> η
4 + Cωθh∗

R
(δ) + Cωθh∗

R,δ

(
1
n

))
→

n→∞
0 .

(5.4)

Let us spend a part of the available probability pmax to establish a bound on Cω.
Specifically, since Cω ∈ L1, Markov’s inequality implies that

P
(
Cω >

2‖Cω‖1

pmax

)
≤ 1

2pmax .

Therefore as long as δ is small enough so that the θh∗
R
(δ) term is less than η

4 · pmax
2‖Cω‖1

,

and as long as n is large enough that the θh∗
R,δ(

1
n ) term is less than η

4 · pmax
2‖Cω‖1

and the

probability in (5.4) is less than 1
2pmax, we have

P
(
EntRn

(
B(Rn, h

∗
R, δ), ω) > EntR,an(h

∗
R) +

3η
4

)
< pmax . (5.5)

The first desired inequality (5.1) follows immediately from (5.3), (5.5), and (5.2).
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Now we turn to the second half of the variational principle, namely:

lim sup
δ→0

lim sup
n→∞

P
(
EntRn

(
M(Rn, h∂Rn , δ), ω

)
< inf

hR∈M(R,h∂R)
EntR,an(hR)− η

)
≤ pmax .

(5.6)

In order to establish (5.6), we overcount the set M(Rn, h∂R, δ) using compactness of
the space of asymptotic height functions M(R, h∂R, δ) (with respect to the topology of

uniform convergence). Indeed, choose asymptotic height functions h
(1)
R , . . . , h

(k)
R such

that

M(R, h∂R, δ) ⊂
k⋃

i=1

B(R, h
(i)
R , δi) , (5.7)

where the values δi > 0 are such that the θ
h
(i)
R

(δi) terms from the profile theorem

(Theorem 2.22) are each less than η
4 · pmax

2‖Cω‖1
.

As in the first part of the proof, we restrict to the event

Ω′ :=
{
Cω <

2‖Cω‖1
pmax

}
,

which has P(Ω′) ≥ 1 − pmax
2 . Furthermore, we assume implicitly that n is large enough

that:

• each of the θ
h
(i)
R ,δi

( 1n ) terms from the profile theorem is less than η
4 · pmax

2‖Cω‖1
, and

• the exceptional events

Ei,n := Ω′ ∩
{∣∣∣EntRn

(
B(Rn, h

(i)
R , δi), ω

)
− EntR,an(h

(i)
R )
∣∣∣ > 3η

4

}
satisfy P(Ei,n) <

pmax
2k for i = 1, . . . , k.

Then for sufficiently small δ and sufficiently large n, the “good” event

Ωδ,n := Ω′ ∩ Ec
1,n ∩ · · · ∩ Ec

k,n

satisfies P(Ωδ,n) ≥ 1− pmax and, for ω ∈ Ωδ,n,∣∣∣EntRn

(
B(Rn, h

(i)
R , δi), ω

)
− EntR,an(h

(i)
R )
∣∣∣ ≤ 3η

4 . (5.8)

Assume in the sequel that ω ∈ Ωδ,n. By the set inclusion (5.7),

EntRn

(
M(Rn, h∂Rn

, δ), ω
)
≥ − 1

|Rn|
log

( k∑
i=1

Zω

(
B(Rn, h

(i)
R , δi)

))
. (5.9)

To handle the sum inside the logarithm, we compare each summand Zω(B(Rn, h
(i)
R , δi))

against infhR
EntR,an(hR). Indeed,

EntRn

(
B(Rn, h

(i)
R , δ), ω

)(5.8)
≥ EntR,an

(
h
(i)
R

)
− 3η

4

≥ inf
hR∈M(R,h∂R)

EntR,an(hR)−
3η

4
,

and so
Zω

(
B(Rn, h

(i)
R , δi)

)
≤ exp

[
|Rn|

(
− inf

hR∈M(R,h∂R)
EntR,an(hR) +

3η
4

)]
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and
k∑

i=1

Zω

(
B(Rn, h

(i)
R , δi)

)
≤ k exp

[
|Rn|

(
− inf

hR∈M(R,h∂R)
EntR,an(hR) +

3η
4

)]
.

Returning to (5.9), this yields

EntRn

(
M(Rn, h∂Rn

, δ), ω
)

≥ inf
hR∈M(R,h∂R)

EntR,an(hR)−
log k

|Rn|
− 3η

4
.

As long as n is large enough (depending on k, which in turn depends on δ), we have
log k
|Rn| <

η
4 , and so

EntRn

(
M(Rn, h∂Rn

, δ), ω
)
≥ inf

hR∈M(R,h∂R)
EntR,an(hR)− η ,

for any ω ∈ Ωδ,n. This establishes (5.6) and thereby proves the variational principle
(Theorem 2.23).

6 Open problems

• A natural question is whether in the profile theorem (Theorem 2.22) and the
variational principle (Theorem 2.23), the mode of convergence can be improved
from convergence in probability to almost-sure convergence. The obstacle to
achieving almost-sure convergence via the method of proof above is the shifted
environments τi,nω in (4.7). Without the shifts τi,n, almost sure convergence would
follow from the ergodic theorem, applied individually for each index i with n → ∞.
It is possible that the ergodic theorem can be modified to account for such shifts,
or that another method of proof can be used to improve the convergence result.

• The proofs in this article assume that the random potential ω is almost surely
bounded, and simulations provide evidence that the model does not homogenize
for some distributions of ω that are unbounded. We conjecture that the model fails
to homogenize when additionally to our Assumption 2.9, supe∈E(Z)|ωe| = ∞ almost
surely. Alternatively, find the correct conditions on ω that ensure homogenization.

• We prove that the local surface tension is convex (cf. Lemma 3.16). This is sufficient
to conclude that the infima in the variational principle and large deviations principle
are attained (as long as the set of height functions A in the large deviations
principle (1.6) is closed). It would be useful to prove that the local surface tension
is, moreover, strictly convex. Indeed, if the local surface tension is strictly convex,
then it follows that the minimizing height function in the variational principle (1.5)
is unique, and hence is a limit shape. Many random surface models are known
to have a strictly convex local surface tension, e.g. domino tilings [13] and SAP
models [44]. For other models it is known that the local surface tension is not
strictly convex, e.g. the asymmetric five vertex model (a degenerate case of the
six-vertex model) [15].

• Characterize the fluctuations of the perturbed probability measure µω. This is likely
a complex problem. By analogy to the dimer model studied in [28], we expect that
fluctuations may exhibit different asymptotics in different parts of the domain (even
asymptotically away from the boundary), and by analogy to the random bridge
model of [23], we expect non-trivial influences from the random potential.

• Simulations suggest that the arctic circle phenomenon is universal, i.e. that the
shape of the boundary between the frozen and non-frozen regions does not depend
on the realization of the random field or on the statistics of the random field. This
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universality may even extend to unbounded random fields; cf. Figure 2. A promising
method for studying the arctic circle is the tangent method described in [14].

• We conjecture that concentration of measure holds, at least in an appropriate
asymptotic sense, e.g. with high probability in the realization of the random field ω.
It might be possible prove concentration by adapting the idea of the harmonic
embedding and corrector from the study of random walks in random environment,
as explained in e.g. [5].

A Ergodic theorem

Ergodic theory is a rich field of modern mathematics with an extensive literature.
This includes several variants of the superadditive (or subadditive) multidimensional
ergodic theorem, such as [45, 38, 2], which all propose technically different definitions of
superadditivity in the multidimensional setting. The definition of superadditivity in [2] is
a close match for our application (i.e. establishing that the limit almost surely exists in our
definition the quenched local surface tension). However we actually need a version of the
ergodic theorem with weaker hypotheses, to allow for asymptotically negligible errors
in the superadditivity inequality (3.11) and in the translation property (3.12). These
differences are not major or novel, but neither are they so trivial that we are comfortable
with omitting the proof of the ergodic theorem under these weaker hypotheses. At the
time of writing we have not been able to find this version of the ergodic theorem (or
a stronger version) in the literature, so we include a proof here. The proof follows [2]
closely; for each step in the argument below, we cite the corresponding step in [2].

Definition A.1 (Boxes in Zm). For n ∈ N, let Sn denote the box

Sn := [0, n)m ∩Zm .

Let B denote the set of boxes

B =
{
([a1, b1)× · · · × [am, bm)) ∩Zm

∣∣
ai < bi for all i, where ai, bi ∈ Z

}
,

and for k ∈ N, let Bk denote the set of boxes

Bk =
{
([a1, b1)× · · · × [am, bm)) ∩Zm ∈ B

∣∣
all ai and bi are divisible by k

}
.

Lemma A.2 (A covering lemma; cf. [2, Lemma 3.1]). Let Z be a finite subset of Zm. For
each z ∈ Z let n(z) ≥ 1 be an integer. Then there is a set Z ′ ⊆ Z such that {z+Sn(z) | z ∈
Z ′} is a family of disjoint sets and such that

3m
∑
z∈Z′

|Sn(z)| ≥ |Z|.

This is a modification of a common covering lemma due to Wiener. The proof is
standard.

Theorem A.3 (A maximal inequality; cf. [2, Theorem 3.2]). For α > 0, let Eα denote the
event

Eα :=

{
lim sup

n≥1

1

|Sn|
FSn

> α

}
.

Then

P(Eα) ≤
3m

α/2
γ(F ).
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Proof. For N < M ∈ N, set

EN,M,α :=

{
sup

N≤n≤M

1

|Sn|
FSn > α

}
.

Clearly Eα = ∩N>0 ∪M>N EN,M,α, so it suffices to prove that

P(EN,M,α) ≤
3m

α/2
γ(F ) + o(N). (A.1)

Fix for now a larger integer K > M . We will soon take K → ∞. But first, consider a
single ω ∈ Ω. Define the set Z as follows:

Z = Z(ω) := {z ∈ SK−M | τzω ∈ EN,M,α}.

We make two claims about Z: first, that 1
|SK |E|Z| is less than or equal to the right

hand side of (A.1) in the limit (see (A.3) for the precise inequality), and second, that
1

|SK |E|Z| ≥ P(EN,M,α) in the limit (see (A.4) for the precise inequality). After establishing
these two claims, the result will follow quickly.

Towards the first claim, consider any z ∈ Z. There is an integer n(z) (implicitly
depending on ω) such that N ≤ n(z) ≤ M and

1

|Sn(z)|
FSn(z)

(τzω) > α.

By (A.7), there exists N0 ∈ N (independent of z and ω) such that, whenever N ≥ N0,

1

|Sn(z)|
Fz+Sn(z)

(ω) >
α

2
. (A.2)

Apply the covering lemma (Lemma A.2), to pick z1, . . . , zl ∈ Z (again, implicitly
depending on ω) such that the boxes zi + Sn(zi) are disjoint but 3m

∑l
i=1|Sn(zi)| ≥ |Z|.

Combining this with (A.2) we get

|Z| ≤ 3m
l∑

i=1

|Sn(zi)| ≤
3m

α/2

l∑
i=1

Fzi+Sn(zi)
,

and since F ≥ 0 is almost superadditive,

|Z| ≤ 3m

α/2
FSK

+A(ω)

l∑
i=1

|∂Sn(zi)|.

Let ε(N) = supn≥N
|∂Sn|
|Sn| . Note that ε(N) → 0 as N → ∞. Since the boxes zi + Sn(zi)

are disjoint and contained in SK ,

|Z| ≤ 3m

α/2
FSK

+A(ω) ε(N) |SK |.

Taking expectations and dividing by |SK | yields the first claim, namely

1

|SK |
E|Z| ≤ 3m

α/2
· E[FSK

]

|SK |
+ ‖A‖L1 ε(N). (A.3)

Towards the second claim, observe that as random variables,

|Z| =
∑

z∈SK−M

1EN,M,α
◦ τz.
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By translation invariance of the measure P on the random potential (cf. Assumption 2.9),

E|Z| =
∑

z∈SK−M

P(τzω ∈ EN,M,α)

=
∑

z∈SK−M

P(ω ∈ EN,M,α)

= |SK−M |P(EN,M,α).

In other words,
1

|SK |
E|Z| ≥ |SK−M |

|SK |
P(EN,M,α). (A.4)

Combining the two claims that were just established, namely (A.3) and (A.4), we have

|SK−M |
|SK |

P(EN,M,α) ≤ 3m

α/2

E[FSK
]

|SK |
+ ‖A‖L1 ε(N).

Send K to infinity:

P(EN,M,α) ≤ 3m

α/2
γ(F ) + ‖A‖L1 ε(N).

This proves the desired inequality (A.1) and completes the proof of Theorem A.3.

Lemma A.4 (Convergence of expectations; cf. [2, Lemma 3.4]).

γ(F ) = lim
n→∞

1

|Sn|
E[FSn

]. (A.5)

Moreover, if H = (HB)B∈Bk
is almost superadditive but defined only on boxes in Bk,

the same equality holds (except that both in the definition of γ(H) and in the right-hand
side above, we only consider values of n that are divisible by k as we take n → ∞).

Proof. By definition γ = lim supn→∞
1

|Sn|E[FSn
], so it suffices to show that

lim infn→∞
1

|Sn|E[FSn
] ≥ γ. Let k ∈ N. For n ≥ k, we can subdivide the large box Sn into

r ≥ 1 translates of Sk and s ≥ 0 translates of S1, say Sn =
⋃r

i=1(ui + Sk) ∪
⋃s

j=1(vj + S1).
By the superadditivity property (A.6),

FSn ≥
r∑

i=1

Fui+Sk
+

s∑
j=1

Fvj+S1 −A
(
r|∂Sk|+ s|∂S1|

)
.

Taking expectations and dividing by |Sn|, we have

1

|Sn|
E[FSn

] ≥ r

|Sn|
E[FSk

] +
s

|Sn|
E[FS1

]

− E[A]

(
r|∂Sk|
|Sn|

+
s|∂S1|
|Sn|

)
− sup

z∈Zm

1

|Sn|
(
rE|FSk

− Fz+Sk
|+ sE|FS1 − Fz+S1 |

)
=

1

|Sk|
E[FSk

]− o(n)− o(k).

Thus for every k ≥ 1,

lim inf
n→∞

1

|Sn|
E[FSn

] ≥ 1

|Sk|
E[FSk

]− o(k),

EJP 30 (2025), paper 2.
Page 47/52

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1236
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Homogenization of the variational principle

and (A.5) follows by taking k → ∞.

Let us deal quickly with the case where the almost superadditive process H =

(HB)B∈Bk
is defined only on boxes in Bk, i.e. only on boxes whose vertices lie on points

of Zm whose every coordinate is divisible by k. We may define a process F = (FB)B∈B
by scaling, i.e. FB = 1

|Sk|HkB, where kB = {ku |u ∈ B} is the k-fold rescaling of B. Then

1

|Sn|
FSn =

1

|Sn||Sk|
HSkn

=
1

|Skn|
FSkn

so that γ(F ) = γ(H), and the result just proven for F also carries over (via linearity of
the limit) to H.

Theorem A.5 (Ergodic theorem for almost superadditive random families). Let (Ω,F ,P)

be a probability space, let τ = (τu)u∈Zm be a family of measure-preserving transfor-
mations on Ω, and let F = (FB)B∈B be a family of L1 random variables satisfying the
following three conditions:

• F is almost superadditive, i.e.

FB ≥
n∑

i=1

FBi −A

n∑
i=1

|∂Bi| (a.s.) , (A.6)

where A = A(ω) : Ω → [0,∞) is an L1 random variable.

• For all u ∈ Zm,

lim
n→∞

sup
u∈Zm

1

|Sn|

∥∥∥Fu+Sn
− FSn

◦ τu
∥∥∥
L∞(ω)

= 0 , (A.7)

where u+B = {u+ x |x ∈ B} is the translation of B by u.

• The quantity γ(F ) = lim supn→∞
1

|Sn| E[FSn
] is finite.

Then the limit limn→∞
1

|Sn| FSn exists almost surely and in L1. If moreover {τu}u∈Zm is
ergodic, then the limit is

lim
n→∞

1

|Sn|
FSn

= γ(F ).

Proof of Theorem A.5. The proof is in four steps.

Step 1 (reduction to F ≥ 0) Consider the to the additive process

GB(ω) :=
∑
u∈B

Fu+S1(ω)−A(ω) |B|.

By the superadditivity property (A.6), F ′ = F −G ≥ 0. The desired convergence result
is known for additive processes, so it suffices to prove that 1

|Sn|F
′
Sn

converges almost
surely. So, from this point on we shall assume that the process F is non-negative.

Step 2 (alternate rates of convergence) Let f = f(ω) and f = f(ω) denote respec-
tively the pointwise lim sup and lim inf of 1

|Sn|FSn
. We shall show that, for m fixed, these

two functions are also the pointwise lim sup and lim inf of 1
|Skm|FSkm

as k → ∞.

For convenience, we write f
(m)

for the pointwise lim sup of the sequence 1
|Skm|FSkm

as k → ∞. Clearly f
(m) ≤ f . We must prove the opposite inequality. Consider first any
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two boxes B ⊆ B′. Since F is almost superadditive and non-negative, we have FB′ ≥
FB −O(|B′|). In particular, when k = d n

me,

1

|Sn|
FSmdn/me ≥ 1

|Sn|
FSn

−
O(|Smdn/me|)

|Sn|
.

Since |Smdn/me|/|Sn| → 1, the left-hand side converges to f
(m)

as n → ∞, and the
right-hand side converges to f . The corresponding result for f is proved similarly.

Step 3 (approximating F ) Fix α > 0. Let E = {ω : f(ω) − f(ω) > α}. In order
to show that P(E) = 0, let ε > 0. By Lemma A.4, there exist k arbitrarily large such
that 1

|Sk|E[FSk
] > γ − ε

2 . Define an additive family H on Bk (which, we recall, is the set of
boxes whose vertices all lie in the sub-lattice kZm ⊂ Zm) by

HB =
∑

u∈B∩kZm

Fu+Sk
−A |B ∩ kZm| |∂Sk|.

By almost superadditivity (A.6),

FB ≥
∑

u∈B∩kZm

Fu+Sk
− |A|

∑
u∈B∩kZm

|∂(u+ Sk)| = HB .

Now let F ′ = F −H, so that F ′ is a non-negative random family defined on Bk. It
holds that

f(ω)− f(ω) := lim sup
n→∞

1

|Skn|
FSkn

− lim inf
n→∞

1

|Skn|
FSkn

(∗)
= lim sup

n→∞

1

|Skn|
F ′
Skn

− lim inf
n→∞

1

|Skn|
F ′
Skn

(∗∗)
≤ sup

n→∞

1

|Skn|
F ′
Skn

. (A.8)

In particular, (∗) holds because H is additive, so it converges pointwise almost surely,
and (∗∗) holds because F ′ ≥ 0.

Next, we compute γ(H) and γ(F ′). Applying Lemma A.4:

γ(H) = lim
n→∞

(
1

|Skn|
E[HSkn

]

)
= lim

n→∞

(∑
u∈Skn∩kZm E[Fu+Sk

]

kmnm
− E[A] |Skn ∩ kZm| |∂Sk|

kmnm

)
= lim

n→∞

(
1

|Sk|
E[FSk

]− E[A]
|∂Sk|
|Sk|

− o(k)

)
.

Note that n no longer appears in the final expression. Taking k → ∞, we conclude
that γ(H) > γ(F ) − ε. Additionally from Lemma A.4, we can write γ(F ′) as a limit.
Importantly, γ is linear, so γ(F ′) = γ(F )− γ(H) < ε.

By (A.8) the event E := {f − f > α} is contained in {supn≥1
1

|Skn|F
′
Skn

> α}. By
Lemma A.3,

P(E) ≤ 3mγ(F ′)

α/2
≤ 3mε

α/2
.

Taking ε → 0, we see that P(E) = 0. Since α > 0 was arbitrary, we conclude that f = f

almost surely, and thus that 1
|Sn|FSn converges pointwise almost surely.
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