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On the existence and regularity of local times
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Abstract

We study the existence and regularity of local times for general d-dimensional stochas-
tic processes. We give a general condition for their existence and regularity properties.
To emphasize the contribution of our results, we show that they include various promi-
nent examples, among others solutions to stochastic differential equations driven
by fractional Brownian motion, where the behavior of the local time was not fully
understood up to now and remained as an open problem in the stochastic analysis
literature. In particular this completes the picture regarding the local time behavior
of such equations, above all includes all possible dimensions and Hurst parameters.
As other main examples, we also show that by using our general approach, one can
quite easily cover and extend some recently obtained results on the local times of the
Rosenblatt process and Gaussian quasi-helices.
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1 Introduction

The local time of a stochastic process is the Radon-Nikodym derivative of the occupa-
tion measure with respect to the Lebesgue measure. The occupation measure measures
the amount of time the path of the process spends in a given set. The local times of
d-dimensional paths have generated much interest lately. This is motivated by the fact
that in order to study the sample path irregularity properties of stochastic processes,
one important aspect is the smoothness of their local times. Indeed, more regularity in
the local time leads to less regularity in the sample paths, and vice versa. In addition,
regularity of local times can be used to obtain existence of pathwise stochastic integrals
with discontinuous integrands and irregular drivers, see [8, 9].
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Existence and regularity of local time

The study of the existence of local times dates back to the works of Berman [2, 3]. In
his approach the existence of local times follows from the integrability properties of the
Fourier transform. More precisely, to prove the existence of local times for d-dimensional
stochastic processes X = (Xt)t∈[0,T ] with T ∈ (0,∞) one needs to verify that∫

Rd

∫
[0,T ]

∫
[0,T ]

∣∣∣E[ exp
(
i〈ξ,Xt −Xs〉

)]∣∣∣dsdtdξ <∞,
where 〈·, ·〉 denotes the scalar product on Rd. While the Fourier approach is very suitable
also for studying the regularity of the local time, see e.g. [16, 12], it requires knowledge
on the characteristic function. Consequently, this makes the study of local times of
processes a difficult problem beyond the Gaussian case, in which the characteristic
functions are not known. Recent contributions [4, 5] provide an approach under which
certain analytical estimates on the absolute value of characteristic functions of the
increments are shown to be efficient in order to conclude existence and regularity
properties of local times. More precisely, in [4] the authors prove that local times
admit certain Besov regularity, provided that the absolute value of the characteristic
function (of arbitrary linear combinations of the process) satisfies a certain upper
bound. In this article we borrow this idea to provide regularity results for the local
times which we believe to be sharp. To emphasize the contribution of our results, we
show that they include various prominent examples. These include, among others,
an example where the behavior of the local time was not fully understood up to now
and remained as an open problem in the stochastic analysis literature. Indeed, as
an illustrative example, we apply our results to find regularity of local times for the
solutions of certain stochastic differential equations driven by fractional Brownian
motions. In particular this completes the picture regarding the behavior of the local
time of such equations and complements all the gaps in [13]. We would like to mention
that the approach in [13] relies in proving certain density estimates for the law of
the solution to such equations. However, these estimates are shown not to be good
enough in high dimensions and for large Hurst parameters. In this paper, we completely
avoid the use of densities and overcome the aforementioned problems. Consequently,
we achieve to obtain desired results both in higher dimensions and for large Hurst
parameters.

For further illustration purposes, we also provide a simple proof for the fact that the
Rosenblatt process satisfies our general conditions. This allows to recover and (slightly)
improve recent results of [12], where the regularity of the local time of the Rosenblatt
process was studied in detail, by means of harmonic analysis and operator theory. Finally,
as a simple corollary we obtain regularity of the local times for Gaussian quasi-helices
satisfying the Gaussian local non-determinism condition, that in particular covers some
known results for the local times of d-dimensional fractional Brownian motions, see
[16].

Our main result, Theorem 2.1, is a development of some results in [4, 5]. We apply a
similar upper bound for the absolute value of the characteristic function. In comparison,
our required upper bound is more relaxed, and hence our general conditions are easier
to verify. Most notably and unlike in [4], our approach does not require densities of the
process to be infinitely differentiable, cf. Remark 2.4. Additionally, we provide further
new regularity properties for the local time.

The rest of the paper is organized as follows. In Section 2 we state our main results,
and we provide the results concerning our examples in Section 2.2. All the proofs are
given in Section 3.
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Existence and regularity of local time

2 Regularity of local times

Throughout this paper let T ∈ (0,∞), (Ω,F = (Ft)t∈[0,T ],P) the underlying filtered
probability space satisfying standard assumptions and suppose that X = (Xt)t∈[0,T ] is an
adapted process with values in Rd, d ∈ N. Recall that the occupation measure of X is
defined for sets A×B ⊂ Rd × [0, T ] as

τX(A,B) = λ
(
B ∩X−1(A)

)
,

where λ denotes the Lebesgue measure on [0, T ], so that τX measures the time the
process X spends in the set A. If the measure A 7→ τX(A,B) is absolutely continuous
with respect to the d-dimensional Lebesgue measure λd, the corresponding Radon-
Nikodym derivative

L(x,B) =
dτX
dλd

(x,B)

is called the local time (or occupation density) of X. In other words, we have

τX(A,B) =

∫
A

L(x,B)dx.

For simplicity we denote L(x, t) = L(x, [0, t]) and note that, for a closed interval I = [a, b],
we have L(x, I) = L(x, b)− L(x, a).

2.1 General setting with main results

The well-known approach due to Berman [2] in proving the existence of local times
relies on integrability properties of the Fourier transform. Generally one is left to show
that ∫

Rd

∫
[0,T ]

∫
[0,T ]

∣∣∣E[ exp
(
i〈ξ,Xt −Xs〉

)]∣∣∣dsdtdξ <∞,
where 〈·, ·〉 denotes the scalar product on Rd. Beyond the Gaussian case, in which the
characteristic functions are not known, this makes the study of local times of processes as
considered here a challenging problem. Recent contributions [4, 5] provide an approach
under which certain analytical estimates on the absolute value of characteristic functions
of the increments are shown to be efficient in order to conclude existence and regularity
properties of local times. This is the idea we borrow in the following in order to conclude
regularity results which we believe to be sharp. As our main example, we apply these
results to processes for which the regularity of local times were an open problem up to
now. Throughout, we denote by ‖ · ‖ the Euclidean norm on Rd. Our main theorem is the
following.

Theorem 2.1. Suppose that X = (Xt)t∈[0,T ] is a stochastic process with values in Rd

and continuous paths such that X0 is deterministic. Assume that the following conditions
are satisfied for some α ∈ (0, 1d ).

(A1) For every m ∈ N, ξj = (ξj,1, . . . , ξj,d) ∈ (R \ {0})d, kj,l ∈ {0, 4}, 1 ≤ j ≤ m and
1 ≤ l ≤ d, and 0 = t0 < t1 < . . . < tm < T , it holds∣∣∣E[ exp

(
i

m∑
j=1

〈ξj , Xtj −Xtj−1〉
)]∣∣∣ ≤ Cmmαθm

m∏
j=1

d∏
l=1

1

|ξj,l|kj,l(tj − tj−1)αkj,l
,

where C > 0 and θ ≥ 0.

(A2) There exists a constant C > 0 and ι ∈ [0, 1] such that for any p ≥ 1 and any
0 ≤ s ≤ t ≤ T it holds

E[‖Xt −Xs‖p] ≤ Cpppι|t− s|pα.
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Existence and regularity of local time

Then the local time (x, t) 7→ L(x, [0, t]) exists and satisfies, for every n ∈ N, 0 ≤ s < t ≤ T ,
x, y ∈ Rd, and every 0 ≤ γ < min

(
1, 1−α2α

)
, that

E|L(x, t)− L(x, s)|n ≤ Cn(t− s)(1−αd)nnnα(d+θ) (2.1)

and

|E(L(x+ y, [s, t])− L(x, [s, t]))n| ≤ Cn‖y‖γn(t− s)(1−α(d+γ))nnnα(d+γ+θ), (2.2)

where the constant C depends solely on γ, d, and α. In particular, L is jointly continuous
almost surely. Let I ⊂ (0, T ) be a closed interval and set L∗(I) = supx∈Rd L(x, I). Then
there exist deterministic constants C1 and C2 such that, almost surely,

lim sup
r→0

L∗([s− r, s+ r])

r1−αd(log log r−1)α(d+θ)
≤ C1 (2.3)

for every s ∈ I and

lim sup
r→0

sup
s∈I

L∗([s− r, s+ r])

r1−αd(log r−1)α(d+θ)
≤ C2. (2.4)

Remark 2.2. In the above result one can replace the condition 0 = t0 < t1 < . . . < tm <

T in (A1) with the condition 0 < ε ≤ t1 < . . . < tm < T (with the convention t0 = 0)
for some ε (in this case the constant C may depend on ε as well). In this case the local
time L(x, [ε, t]) for t ∈ [ε, T ] exists and is jointly continuous and (2.3) and (2.4) hold for
s ∈ I ⊂ (ε, T ). Note also that if this replaced condition holds for every ε > 0, then by a
limiting argument one obtains the existence of the local time L(x, [0, t]), cf. Theorem 2.7
below.

Remark 2.3. The parameter θ ≥ 0 in (A1) is arbitrary, and hence allows very rapid
growth in the constant (in terms of m). We point out that in typical cases, one can choose
θ = 0 which will be the case in almost all of our examples. However, we allow more
general growth in order to emphasize the generality of our results. The parameter ι
in Assumption (A2) on the other hand is related to the sharper modulus of continuity
involving a logarithmic term, and the exponent for the logarithmic term arises from
ι, which on the other hand is related to the existence of certain exponential moments,
see Proposition 3.8 below. In the Gaussian case, it is well-known that one can choose
ι = 1/2, see Proposition 2.12, while in the Rosenblatt case one chooses ι = 1, see
Proposition 2.10.

Remark 2.4. The authors in [4, 5] assume a condition similar to (A1), called α-local
nondeterminism, see [5, Definition 2.4] and [4, Definition 2.8]. The concept of this notion
is explained as an extension of local nondeterminism in the framework of Gaussian
and stable processes [3, 14], connected to the (un)predictability of paths. The main
difference is that in [4] the authors assumed that one can choose integers kj,l arbitrarily,
while here we merely assume two possible choices kj,l ∈ {0, 4}. It is worth to point
out that our condition is not as restrictive, as it allows to cover densities that are not
infinitely differentiable. Indeed, by using the well-known relation between smoothness
of the density and the decay of the Fourier transform, choice kj,l = 4 requires only
existence of derivatives up to fourth order. In this article, we show that condition
(A1) as stated here along with (A2) is enough to obtain existence of the local time
together with additional (sharp) regularity properties. In order to obtain sharp regularity
estimates, it is also required to keep track on the constant depending on m (in our
case, in terms of θ). This was omitted in [4] where the authors did not study sharp
regularity. Finally, we also point out that our condition is global in the time points
0 = t0 < t1 < . . . < tm < T , while the condition in [4] is stated on small time scales
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Existence and regularity of local time

tm− t0 < ε only. However, by examining our proof carefully one observes that our results
remain valid under local conditions stated for small time scales only. For the sake of
simplicity, we assume the global condition (A1) in order to avoid unnecessary extra
technicalities in our proofs.

Following [12] we also get the following corollaries.

Corollary 2.5. Under the assumptions of Theorem 2.1 there exist deterministic con-
stants C1 and C2, not depending on x and t, such that for every t ∈ I and x ∈ Rd we
have, almost surely,

lim sup
r→0

L(x, [t− r, t+ r])

r1−αd(log log r−1)α(d+θ)
≤ C1

and for every x ∈ Rd we have, almost surely,

lim sup
r→0

sup
t∈I

L(x, [t− r, t+ r])

r1−αd(log r−1)α(d+θ)
≤ C2.

Corollary 2.6. Under the assumptions of Theorem 2.1 there exists a deterministic
constant C ∈ (0,∞) such that for every s ∈ I we have, almost surely,

lim inf
r→0

sup
t∈(s−r,s+r)

‖Xt −Xs‖
rαd(log log r−1)−α(d+θ)

≥ C

and

lim inf
r→0

inf
s∈I

sup
t∈(s−r,s+r)

‖Xt −Xs‖
rαd(log r−1)−α(d+θ)

≥ C.

In particular, X is almost surely nowhere differentiable.

Before turning to the most interesting examples as a highlight of this paper, we
would like to remark that due to the contribution [4] one can also conclude certain Besov
regularities (see [4, Theorem 1.1, Theorem 1.4 and Corollary 1.5] for details) and the
fact that L(x, t) has a continuous version, say L̃(x, t) satisfying

|L̃(x, t)− L̃(x, s)| ≤ η|t− s|β

for every β ∈ (0, 1− dα) and some random variable η.

2.2 Examples

We begin with the leading example, which covers the case where X is the solution
of stochastic differential equations driven by d-dimensional fractional Brownian motion.
In particular, we show that one can apply Theorem 2.1, allowing us to complement the
open gaps in [13]. In order to establish (A1) and as in [13], we apply estimates for
the Malliavin derivatives proved in [1]. However, these estimates force us to restrict
ourselves away from zero, cf. Theorem 2.7 below and Remark 2.2.

Let B = (B1, . . . , Bd) be a d-dimensional fractional Brownian motion with Hurst
parameter H ∈ ( 1

4 , 1), i.e. the components Bl = (Blt)t∈[0,T ], 1 ≤ l ≤ d, are independent
centered Gaussian processes satisfying

E[(Blt −Bls)2] = |t− s|2H , ∀s, t ∈ [0, T ].

Consider the following class of differential equations given by

Xt = x+

∫ t

0

V0(Xs)ds+

d∑
l=1

∫ t

0

Vl(Xs)dB
l
s, (2.5)
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Existence and regularity of local time

where t ∈ [0, T ], x ∈ Rd is the initial condition and V0, V1, . . . , Vd are smooth vector
fields in Rd. Of importance is to mention that the stochastic integrals are understood
in the Young sense for H > 1

2 (see [17]) and in the rough path sense for 1
4 < H < 1

2

(see [6]). Regarding the well-posedness of these stochastic differential equations we
state the following assumptions which are also standard in studying such equations (see
[1, 13]).

Assume that V0, V1, . . . , Vd ∈ C∞b (Rd), i.e. they possess bounded derivatives of all
orders, and suppose that V0, V1, . . . , Vd satisfy the uniform elliptic condition

vTV (x)V (x)Tv ≥ λ‖v‖2 ∀x, v ∈ Rd,

where V = (V ij )i,j=1...,d and λ ∈ (0,∞) is some constant.

Having specified the class of stochastic differential equations we now state the
following result, which considerably extends the regularity results in [13, Theorem 1.1]
as it includes all possible dimensions and Hurst parameters for which the local time
exists.

Theorem 2.7. Let X = (Xt)t∈[0,T ] be the solution to (2.5) with the assumptions above
and suppose dH < 1. Then the local time L(x, [0, t]) exists. Let I ⊂ (0, T ) be a closed
interval. Then we also have (2.1) and (2.2) with α = H and θ = 8d+δ

H , for any δ > 0,
provided that s, t ∈ I. In particular, the local time L(x, [0, t] ∩ I) is jointly continuous
almost surely. Moreover, (2.3), (2.4), and the assertions of Corollary 2.5 and Corollary 2.6
hold.

Remark 2.8. Note that in the above result, we always have sharp Hölder estimates (2.3)
and (2.4) similarly as in Theorem 2.1, as in these statements one already considers an
interval [s− r, s+ r] that is bounded away from zero. In comparison to Theorem 2.1, the
only difference is that one obtains joint continuity only on arbitrary subintervals I that
are automatically bounded away from zero. However, by a limiting argument we still
obtain the existence of L(x, [0, t]) over the whole interval.

Remark 2.9. It is evident that the value of θ is not optimal. We note however that this
does not play any significant role as it affects only to the exponent in the logarithmic
term in Corollary 2.5 and 2.6.

As a next example of our main results in Section 2.1 we would like to add the
Rosenblatt process Z = (Zt)t∈[0,T ] which depends on an underlying Hurst indexH ∈ ( 1

2 , 1)

and is treated in [12]. In particular, for this process one has the representation

Zt =

∫
{(x,y)∈R2:x 6=±y}

eit(x+y) − 1

i(x+ y)
ZG(dx)ZG(dy)

for every t ∈ [0, T ], where ZG(dx) is a complex-valued random white noise with control
measure G satisfying G(dx) = |x|−Hdx. See [12] for a more detailed introduction and
discussion of this process. As a special case of Theorem 2.1 we obtain the following
results, also addressed in [12].

Proposition 2.10. Let Z = (Zt)t∈[0,T ] be the Rosenblatt process on R with H ∈ ( 1
2 , 1).

Then the assertions of Theorem 2.1, Corollary 2.5 and Corollary 2.6 are true with α = H,
θ = 0 and ι = 1.

Remark 2.11. The above proposition improves the results of [12] slightly in terms of
the exponent in the logarithmic term. That is, we observe

lim sup
r→0

supx∈R L(x, [s− r, s+ r])

r1−H(log log r−1)H
≤ C1,
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Existence and regularity of local time

while in [12] the authors observe

lim sup
r→0

supx∈R L(x, [s− r, s+ r])

r1−H(log log r−1)2H
≤ C1.

Finally we show that Theorem 2.1 also covers the popular class of certain Gaussian
processes in which case the results are already well-known, see e.g. [16, Corollary 1.1].

Proposition 2.12. Let Z = (Zt)t∈[0,T ] be a centered d-dimensional Gaussian process
with components Zl satisfying

C−|t− s|2H ≤ E(Zlt − Zls)2 ≤ C+|t− s|2H (2.6)

for some H ∈ (0, 1d ). Suppose further that the local non-determinism property

E

∥∥∥∥∥
m∑
k=1

〈ξk, Ztk − Ztk−1
〉

∥∥∥∥∥
2

≥ C
d∏
l=1

m∑
k=1

ξ2k,lE(Zltk − Z
l
tk−1

)2 (2.7)

holds for all m ∈ N, ξk ∈ Rd and all 0 = t0 < t1 < . . . < tm ≤ T . Then the assertions of
Theorem 2.1, Corollary 2.5 and Corollary 2.6 are true with α = H, θ = 0, and ι = 1

2 .

Remark 2.13. The above result covers, e.g. the case of d-dimensional fractional Brown-
ian motion with Hurst index H < 1

d , proved already in [16]. The case of the fractional
Brownian motion is obviously also already covered by Theorem 2.7.

3 Proofs

3.1 Proof of the main results

We begin by proving the existence of local time.

Proposition 3.1. The local time L of X exists and has a representation

L(x, t) =
1

2π

∫
Rd

∫ t

0

ei〈ξ,(x−Xs)〉dsdξ. (3.1)

Proof. The existence and representation (3.1) follows from [2] if we show∫
Rd

∫
[0,T ]

∫
[0,T ]

∣∣∣E[ exp
(
i〈ξ,Xt −Xs〉

)]∣∣∣dsdtdξ
= 2

∫ T

0

∫ t

0

∫
Rd

∣∣∣E[ exp
(
i〈ξ,Xt −Xs〉

)]∣∣∣dξdsdt <∞.
We set I1 = [−(t− s)−α, (t− s)−α] and I2 = R \ I1. Then

Rd =
⋃

il∈{1,2},l=1,...,d

d∏
l=1

Iil .

Next we apply (A1) to get∣∣∣E[ exp
(
i〈ξ,Xt −Xs〉

)]∣∣∣ ≤ C d∏
l=1

|ξl|−kl(t− s)−αkl ,

where we choose kl = kl(il) = 0 if il = 1 and kl(il) = 4 if il = 2. Then∫ T

0

∫ t

0

∫
Rd

∣∣∣E[ exp
(
i〈ξ,Xt −Xs〉

)]∣∣∣dξdsdt
≤ C

∑
il∈{1,2},l=1,...,d

∫ T

0

∫ t

0

∫
∏d
l=1 Iil

d∏
l=1

|ξl|−kl(t− s)−αkldξdsdt,
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Existence and regularity of local time

where ∫
Iil

|ξl|−kl(t− s)−αkldξl = C(t− s)−α

by our choices of kl for il. Hence∫ T

0

∫ t

0

∫
Rd

∣∣∣E[ exp
(
i〈ξ,Xt −Xs〉

)]∣∣∣dξdsdt
≤ C

∑
il∈{0,2},l=1,...,d

∫ T

0

∫ t

0

(t− s)−dαdsdt <∞

which concludes the proof.

Proposition 3.2. Let n ∈ N and 0 ≤ η < min
(
1, 1−αd2α

)
. Then, for any times 0 < u < U ≤

T we have∫
[u,U ]n

∫
(Rd)n

n∏
j=1

‖ξj‖η
∣∣∣∣∣∣E exp

i n∑
j=1

〈ξj , Xtj 〉

∣∣∣∣∣∣ dξdt ≤ Cnnnα(d+η+θ)(U − u)(1−α(d+η))n,

(3.2)

where the constant C > 0 depends only on α, d, and η.

Proof. The proof is similar to [4, Lemma 3,2]. In the sequel, we denote by C a generic
unimportant constant that may vary from line to line. Performing the change of variables
ξ′j :=

∑n
`=j ξ`, j = 1, . . . , n with the convention ξ′n+1 = 0, we see that

I :=

∫
[u,U ]n

∫
(Rd)n

n∏
j=1

‖ξj‖η
∣∣∣∣∣∣E exp

i n∑
j=1

〈ξj , Xtj 〉

∣∣∣∣∣∣ dξdt
= n!

∫
u≤t1<t2<...<tn≤U

∫
(Rd)n

n∏
j=1

‖ξj‖η
∣∣∣∣∣∣E exp

i n∑
j=1

〈ξj , Xtj 〉

∣∣∣∣∣∣ dξdt
= C(d)n!

∫
u≤t1<t2<...<tn≤U∫

(Rd)n

n∏
j=1

‖ξ′j − ξ′j+1‖η
∣∣∣∣∣∣E exp (iξ′1X0) exp

i n∑
j=1

〈ξ′j , (Xtj −Xtj−1)〉

∣∣∣∣∣∣ dξ′dt
≤ C(d)n!

∫
u≤t1<t2<...<tn≤U

∫
(Rd)n

n∏
j=1

‖ξ′j − ξ′j+1‖η
∣∣∣∣∣∣E exp

i n∑
j=1

〈ξ′j , (Xtj −Xtj−1)〉

∣∣∣∣∣∣ dξ′dt.
Here we have used the fact that the determinant of the Jacobian related to the change
of variables ξ′j :=

∑n
`=j ξ` is a constant C(d) depending only on d (note that in the case

d = 1, we actually have C(d) = 1), and that

n∑
j=1

〈ξj , Xtj 〉 = 〈ξ′1, X0〉+

n∑
j=1

〈ξj , Xtj −X0〉 = 〈ξ′1, X0〉+

n∑
j=1

〈ξ′j , Xtj −Xtj−1
〉.

Here, since η ∈ (0, 1), ‖ξ′j − ξ′j+1‖η ≤ (‖ξ′j‖η + ‖ξ′j+1‖η) and thus

n∏
j=1

‖ξ′j − ξ′j+1‖η ≤
∑ n∏

j=1

‖ξ′j‖γj ,
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Existence and regularity of local time

where the exponents in each term of the sum satisfy γj ∈ {0, η, 2η} and
∑n
j=1 γj = ηn.

Since ξ′n+1 = 0, the number of summands equals 2n−1. This gives

I ≤ n!Cn
∫
u≤t1<t2<...<tn≤U

∫
Rn

∑ n∏
j=1

‖ξ′j‖γj

∣∣∣∣∣∣E exp

i n∑
j=1

〈ξ′j , (Xtj −Xtj−1)〉

∣∣∣∣∣∣ dξ′dt.
By (A1), we have∣∣∣∣∣∣E exp

i n∑
j=1

〈ξ′j , (Xtj −Xtj−1
)〉

∣∣∣∣∣∣ ≤ Cnnαθn
n∏

m=1

d∏
l=1

|ξ′m,l|−km,l(tm − tm−1)−αkm,l ,

where each km,l ∈ {0, 4}. Again, define Im1 = [−(tm − tm−1)−α, (tm − tm−1)−α] and
Im2 = R \ Im1 . Then

(Rd)n =
⋃

im,l∈{1,2},m=1,...,n,l=1,...,d

n∏
m=1

d∏
l=1

Imim,l .

Now we choose km,l = km,l(im,l) = 0 if im,l = 1 and km,l(im,l) = 4 if im,l = 2. Using also

n∏
j=1

‖ξ′j‖γj ≤
∑

l1,...,ld∈{1,...,d}

n∏
j=1

|ξ′j,lj |
γj ,

it follows that

I ≤ n!Cnnαθn
∑

l1,...,ld∈{1,...,d}

∑
im,l∈{1,2},m=1,...,n,l=1,...,d

∑
(γ1,...,γn)∈{0,η,2η}n∫

u≤t1<t2<...<tn≤U

∫
∏n
m=1

∏d
l=1 I

m
im,l

n∏
j=1

|ξ′j,lj |
γj

n∏
m=1

d∏
l=1

|ξ′m,l|−km,l(tm − tm−1)−αkm,ldξ′dt.

Following [4, pages 16–18], integrating in the ξ′ variables gives

I ≤ n!Cnnαθn
∑

l1,...,ld∈{1,...,d}

∑
im,l∈{1,2},m=1,...,n,l=1,...,d

∑
(γ1,...,γn)∈{0,η,2η}n∫

u≤t1<t2<...<tn≤U

n∏
j=1

(tj − tj−1)−α(d+γj)dt

≤ n!Cnn2nαθn
∑

(γ1,...,γn)∈{0,η,2η}n

∫
u≤t1<t2<...<tn≤U

n∏
j=1

(tj − tj−1)−α(d+γj)dt,

where the last inequality follows from the fact that∑
l1,...,ld∈{1,...,d}

1 = C(d)

is just a constant depending on the fixed dimension d only, while∑
im,l∈{1,2},m=1,...,n,l=1,...,d

≤ C(d)

(
n

2

)
≤ C(d)n2.

Note that, for any θ1, θ2 > −1, we have∫ tj+1

0

(tj+1 − tj)θ1tθ2j dtj = t1+θ1+θ2j+1 B(1 + θ1, 1 + θ2), (3.3)
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Existence and regularity of local time

where B(x, y) =
∫ 1

0
tx−1(1 − t)y−1dt denotes the Beta function. Hence, denoting θj =

−α(d+ γj) and integrating in the order t1, t2, . . . , tm and using (3.3) repeatedly, yields∫
u≤t1<t2<...<tn≤U

n∏
j=1

(tj − tj−1)−α(d+γj)dt

=

∫
0≤t1<t2<...<tn≤U−u

n∏
j=1

(tj − tj−1)θjdt

= B(1 + θ1, 1 + θ2)

∫
0≤t2<...<tn≤U−u

n∏
j=3

(tj − tj−1)θj t1+θ1+θ22 dt2 . . . dtn

= B(1 + θ1, 1 + θ2)B(2 + θ1 + θ2, 1 + θ3)

·
∫
0≤t3<...<tn≤U−u

n∏
j=4

(tj − tj−1)θj t2+θ1+θ2+θ33 dt3 . . . dtn

= . . .

=

n∏
j=2

B(j − 1 +

j−1∑
k=1

θk, 1 + θj)

∫ U−u

0

t
n−1+

∑n
k=1 θj

n dtn

=

n∏
j=2

B(j − 1 +

j−1∑
k=1

θk, 1 + θj)
(U − u)n+

∑n
k=1 θj

n+
∑n
k=1 θj

since θj = −α(d+ γj) > −1 as γj ≤ 2η < 1−αd
α = 1

α − d. Recalling that

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
,

where Γ(x) is the Gamma function, we observe

n∏
j=2

B(j − 1 +

j−1∑
k=1

θk, 1 + θj) =

∏n
j=1 Γ(1 + θj)

Γ(n+
∑n
k=1 θj)

.

Plugging in θj = −α(d + γj), using the fact that
∑n
j=1 θj = −αdn − α

∑n
j=1 γj , where∑n

j=1 γj = ηn, n2 ≤ Cn, and collecting all the estimates gives

I ≤ n!Cnn2nαθn
∑

(γ1,...,γn)∈{0,η,2η}n

∏n
j=1 Γ(1 + θj)

Γ((1− αd− αη)n)

(U − u)(1−αd−αη)n

(1− αd− αη)n

≤ n!Cnnαθn
∏n
j=1 Γ(1 + θj)

Γ((1− αd− αη)n)

(U − u)(1−αd−αη)n

(1− αd− αη)n

≤ Cnnαθn Γ(n+ 1)

Γ((1− αd− αη)n)
(U − u)(1−αd−αη)n,

where in the last inequality we have also used the definition of θj and n! = Γ(n + 1).
Using Stirling’s approximation gives

Γ(n+ 1)

Γ((1− αd− αη)n)
≤ Cnnα(d+η)n,

which yields
I ≤ Cnnα(d+η+θ)n(U − u)(1−αd−αη)n

and completes the proof.
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Existence and regularity of local time

The following proposition establishes the claimed bounds (2.1) and (2.2).

Proposition 3.3. For every 0 ≤ s < t and x ∈ Rd,

E|L(x, t)− L(x, s)|n ≤ Cn(t− s)(1−αd)nnnα(d+θ). (3.4)

Moreover, for every 0 ≤ γ < min
(
1, 1−α2α

)
and y ∈ Rd, we have

|E(L(x+ y, [s, t])− L(x, [s, t]))n| ≤ Cn‖y‖γn(t− s)(1−α(d+γ))nnnα(d+γ+θ). (3.5)

In both inequalities the constant C depends only on γ, d, and α.

Proof. First, by (3.1),

E
(
L(x+ y, [s, t])− L(x, [s, t])

)n
=(2π)−n

∫
(Rd)n

∫
[s,t]n

 n∏
j=1

(exp(i〈ξj , x+ y〉)− exp(i〈ξj , x〉))

E exp

−i n∑
j=1

〈ξj , Xvj 〉

 dvdξ.

Using γ ∈ [0, 1) allows to estimate

n∏
j=1

|exp(i〈ξj , y〉)− 1| ≤ 2n
n∏
j=1

(‖y‖‖ξj‖ ∧ 1) ≤ 2n
n∏
j=1

((‖y‖‖ξj‖)γ ∧ 1) ≤ 2n‖y‖γn
n∏
j=1

‖ξj‖γ ,

where we have used the fact that |eix − 1| ≤ |x| ∧ 2 ≤ 2(|x| ∧ 1), for all x. Therefore,∣∣E(L(x+ y, [s, t])− L(x, [s, t])
)n∣∣

≤π−n‖y‖γn
∫
(Rd)n

∫
[s,t]n

n∏
j=1

‖ξj‖γ
∣∣∣∣∣∣E exp

−i n∑
j=1

〈ξj , Xvj 〉

∣∣∣∣∣∣ dvdξ.
Now, Proposition 3.2 with η = γ yields:∣∣E(L(x+ y, [s, t])− L(x, [s, t])

)n∣∣ ≤ Cn‖y‖γn(t− s)(1−α(d+γ))nnnα(d+γ+θ),

where C > 0 is a function of α, d, and γ. This establishes (3.5).
Similarly, by (3.1), using L(x, s) ≤ L(x, t) for 0 ≤ s < t, we get

E|L(x, t)− L(x, s)|n

=

(2π)−n
∫
[s,t]n

∫
Rn

exp

i〈x, n∑
j=1

ξj〉

E exp

−i n∑
j=1

〈ξj , Xuj 〉

 dξdu


≤ (2π)−n

∫
[s,t]n

∫
Rn

∣∣∣∣∣∣E exp

−i n∑
j=1

〈ξj , Xuj 〉

∣∣∣∣∣∣ dξdu
≤ Cn(t− s)(1−αd)nnnα(d+θ),

where the last inequality follows from Proposition 3.2 with η = 0, and C > 0 is a function
of α, d, and γ.

The joint Hölder continuity follows immediately from the Kolmogorov criterion (see
e.g. [11, Theorem 3.23]).

Corollary 3.4. Almost surely, the local time L(x, t) is jointly Hölder continuous in t

and x.
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Existence and regularity of local time

The next theorem is a modification of Proposition 3.3, where one shifts the process in
the x-direction by the value Xa, where a is a fixed point. The proof differs from [12] as
in our general setting, we do not have stationarity of the increments at our disposal.

Theorem 3.5. Let a > 0 and x ∈ Rd be fixed. Then,

E|L(x+Xa, t)− L(x+Xa, s)|n ≤ Cn(t− s)(1−αd)nnnα(d+θ). (3.6)

Moreover, for every 0 ≤ γ < min
(
1, 1−αd2α

)
and y ∈ Rd,

|E(L(x+ y +Xa, [s, t])− L(x+Xa, [s, t]))
n| ≤ Cn‖y‖γn(t− s)(1−α(d+γ))nnnα(d+γ+θ).

(3.7)
In both cases the constant C > 0 depends only on γ, d, and α.

Proof. Let Yt = Xt −Xa. The occupation measure of Y is just the occupation measure of
Xt translated by the (random) constant Xa. Since the occupation measure of Xt has a
continuous density, the occupation measure of Yt has also a continuous density given
by LY (t, x) = LX(t, x + Xa). Thus, in order to prove the claim, it suffices to show the
estimates for LY (t, x). For the first claim, we then proceed as before, noting that, again,
LY (x, s) ≤ LY (x, t),

E|LY (x, t)− LY (x, s)|n

= (2π)−n
∫
[s,t]n

∫
(Rd)n

exp

i〈x, n∑
j=1

ξj〉

E exp

i n∑
j=1

〈ξj , Yuj 〉

 dξdu

≤ (2π)−nn!

∫
s<u1<...<un<t

∫
(Rd)n

∣∣∣∣∣∣E exp

i n∑
j=1

〈yj , Yuj − Yuj−1
〉

∣∣∣∣∣∣ dydu.
The claim follows from this with the same arguments as the proof of Proposition 3.3 by
observing Yuj − Yuj−1 = Xuj −Xuj−1 . The other claim can be proved similarly, and we
omit the details.

The moment bounds obtained above translate into the following tail estimates by
Chebychev’s inequality. The proof is rather standard, and we omit the details.

Corollary 3.6. (i) For any finite closed interval I ⊂ (0,∞),

P(L(x, I) ≥ |I|1−αduα(d+θ)) ≤ C1 exp(−c1u) (3.8)

and

P(|L(x, I)− L(y, I)| ≥ |I|1−α(d+γ)‖x− y‖γuα(d+γ+θ)) ≤ C2 exp(−c2u). (3.9)

(ii) Set I = [a, a+ r]. Then,

P(L(x+Xa, I) ≥ r1−αduα(d+θ)) ≤ C1 exp(−c1u) (3.10)

and

P(|L(x+Xa, I)− L(y +Xa, I)| ≥ r1−α(d+γ)|x− y|γuα(d+γ+θ)) ≤ C2 exp(−c2u). (3.11)

Here all the constants c1, c2, C1, and C2 depend only on θ, γ, d, and α.

We also recall the following Garsia-Rodemich-Rumsey inequality from [7].
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Existence and regularity of local time

Proposition 3.7. Let Ψ(u) be a non-negative even function on (−∞,∞) and p(u) be a
non-negative even function on [−1, 1]. Assume both p(u) and Ψ(u) are non-decreasing
for u ≥ 0. Let f(x) be continuous on [0, 1] and suppose that∫ 1

0

∫ 1

0

Ψ

(
f(x)− f(y)

p(x− y)

)
dxdy ≤ B <∞.

Then, for all s, t ∈ [0, 1],

|f(s)− f(t)| ≤ 8

∫ |s−t|
0

Ψ−1
(

4B

u2

)
dp(u).

Proposition 3.8. Suppose that X satisfies Assumption (A2). Then there exists a positive
random constant B with finite first moment such that

sup
|t−s|<h

‖Xt −Xs‖ ≤ Bhα(log 1/h)ι.

Proof. For simplicity we consider only the case d = 1. The general case follows by
applying the one-dimensional case component-wise. We apply the Garsia-Rodemich-

Rumsey inequality with p(u) = uα and Ψ(x) = exp
(
β|x| 1ι

)
for suitably chosen small

β > 0 to be determined later. It follows that

|Xt −Xs| ≤ C
∫ |s−t|
0

β−ι
(

log

(
4B

u2

))ι
uα−1du, (3.12)

where

B =

∫ 1

0

∫ 1

0

exp

(
β

(
|Xt −Xs|
|t− s|α

) 1
ι

)
dsdt.

Assuming that B is a finite random variable, it follows from (3.12) that

|Xt −Xs| ≤ C
∫ |s−t|
0

β−ι
(

log

(
4B

u2

))ι
uα−1du

≤ C(β, ι) [log(max(1, 4B)) + 1]
ι
∫ |t−s|
0

(log(1/u))
ι
uα−1du

≤ C(β, ι) [max(1, B) + 1]
ι |t− s|α

∫ 1

0

(log(1/|t− s|v))
ι
vα−1dv

≤ C(β, ι) [max(1, B) + 1] |t− s|α [− log|t− s|]ι
∫ 1

0

(
log v−1

)ι
vα−1dv

≤ C(β, ι) [B + 1] |t− s|α [− log|t− s|]ι ,

where we have used [max(1, B) + 1]ι ≤ max(1, B) + 1 as ι ≤ 1. Hence it suffices to prove
that B is a finite random variable almost surely. For this, by taking expectation we see

EB =

∞∑
k=1

∫ 1

0

∫ 1

0

βkE|Xr −Xv|k/ι

k!|r − v|kα/ι
drdv

≤
∞∑
k=1

1

k!
(Cβ)k

(
k

ι

) kι
ι

≤
∞∑
k=1

(Cβ)k
kk

k!
≤ C

∞∑
k=1

(Cβ)k,

which is finite for small enough β > 0, and where we have used Stirling’s approximation
on the last inequality. This completes the proof.
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We are now ready to prove our main theorem. The proof is based on a standard
chaining argument, see e.g. [16, Theorem 4.3] or [12, Theorem 1.4]. For the reader’s
convenience however, we present the main arguments in order to keep track on essential
exponents that are relatively different in our generalized case.

Proof of Theorem 2.1. The proof will be divided into five steps. The first four steps are
devoted to the proof of (2.3), while the proof of (2.4) is presented in step 5. Moreover,
we only consider the interval [s, s+ r] for notational simplicity, as the part [s− r, s] can
be treated with a symmetric argument.

In the sequel, we denote g(r) = r1−αd(log log r−1)α(d+θ), where r < e, and we define
Cn = [s, s+ 2−n]. With this notation, it suffices to prove that

lim sup
n→∞

L∗(Cn)

g(2−n)
≤ C

almost surely, where L∗(Cn) = sup{L(x,Cn) : x ∈ X(Cn)}. Throughout this proof, we
will denote by ci, i = 1, 2, . . . generic unimportant constants that may change from line to
line.

Step 1: From Proposition 3.8 we get

sup
t∈Cn

‖Xt −Xs‖ ≤ B2−nα(log 2n)ι

for some positive random variable B having finite first moment. It follows easily from
Chebychev’s inequality and Borel-Cantelli that

sup
t∈Cn

‖Xt −Xs‖ ≤ n22−nαnι

for n ≥ n1(ω).

Step 2: Set θn = 2−nα(log log 2n)−α and define

Gn = {x ∈ Rd : ‖x‖ ≤ 2−nαn2+ι, x = θnp, for some p ∈ Zd}.

Then
#Gn ≤ c1(log n)αdn(2+ι)d

and (3.10) implies

P
(

max
x∈Gn

L(x+Xs, Cn) ≥ c2g(2−n)
)
≤ c3(log n)αdn(2+ι)d−c4 ,

which is summable by choosing c2 large enough which in turn corresponds to c4 being
large. Thus, by Borel-Cantelli for large enough n ≥ n2(ω) ≥ n1(ω) we have

max
x∈Gn

L(x+Xs, Cn) ≤ c2g(2−n). (3.13)

Step 3: For given integers n, k ≥ 1 and x ∈ Gn we set

F (n, k, x) =

{
y = x+ θn

k∑
j=1

εj2
−j : εj ∈ {0, 1}d, 1 ≤ j ≤ k

}
.

Then we say that a pair of two points y1, y2 ∈ F (n, k, x) is linked if y2 − y1 = θnε2
−k for

ε ∈ {0, 1}d. Next we fix 0 < γ < min
(
1, 1−αd2α

)
and choose δ ∈ (0,∞) with δα(d+θ+γ) < γ.

Further set

Bn =
⋃
x∈Gn

∞⋃
k=1

⋃
y1,y2

{|L(y1 +Xs, Cn)− L(y2 +Xs, Cn)|

≥ 2−n(1−α(d+θ))‖y1 − y2‖γ(c52δk log n)α(d+γ+θ)},
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where ∪y1,y2 is the union over all linked pairs y1, y2 ∈ F (n, k, x). Now (3.11) with
u = c52δk log n gives

P(Bn) ≤ c1(log n)αdn(2+ι)d
∞∑
k=1

4kd exp
(
−c62δk log n

)
,

where we have used the fact #Gn ≤ c1(log n)αdn(2+ι)d and that for given k there ex-
ists less than 4kd linked pairs y1, y2. Now, again by choosing c5 large enough which
corresponds in c6 to be large, we get

∞∑
n=2

(log n)αdn(2+ι)d
∞∑
k=1

4kd exp
(
−c62δk log n

)
<∞.

Indeed, by taking c6 to be large enough, we observe that n−c62
δk ≤ n−pk for every k ≥ 1

and some arbitrary number p, yielding for all n with 4d < np that

∞∑
k=1

4kd exp
(
−c82δk log n

)
≤
∞∑
k=1

4kdn−pk ≤ 4d

np − 4d
,

and this compensates the growth of (log n)αdn(2+ι)d as p is arbitrary. This further implies,
again using Borel-Cantelli, that Bn occurs only finitely many times.

Step 4: Let n be fixed and assume that y ∈ Rd satisfies ‖y‖ ≤ 2 · 2−nαn2+ι. Then we may
represent y as y = limk→∞ yk with

yk = x+ θn

k∑
j=1

εj2
−j ,

where y0 = x ∈ Gn and εj ∈ {0, 1}d. On the event Bcn we have

|L(x+Xs, Cn)− L(y +Xs, Cn)| ≤
∞∑
k=1

|L(yk +Xs, Cn)− L(yk−1 +Xs, Cn)|

≤
∞∑
k=1

2−n(1−α(d+γ))‖yk − yk−1‖γ(c52δk log n)α(d+θ+γ)

≤ C(d)

∞∑
k=1

2−n(1−α(d+γ))θγn2−kγ(c52δk log n)α(d+θ+γ)

≤ c72−n(1−αd)
∞∑
k=1

(log log 2n)−γα2−kγ(c52δk log n)α(d+θ+γ)

≤ c82−n(1−αd)(log log 2n)α(d+θ)
∞∑
k=1

2(δα(d+θ+γ)−γ)k

≤ c9g(2−n),

where the last inequality follows from δα(d+ θ+ γ) < γ. Combining this with (3.13) then
yields

sup
‖y‖≤21−nαn2+ι

L(y +Xs, Cn) ≤ c10g(2−n)

or in other words,
sup

‖y−Xs‖≤21−nαn2+ι

L(y, Cn) ≤ c10g(2−n).

Claim (2.3) now follows from Step 1 and the fact L∗(Cn) = sup{L(y, Cn) : y ∈ X(Cn)}.
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Existence and regularity of local time

Step 5: It remains to prove (2.4). However, this follows exactly by modifying the
arguments in Steps 1–4 and following, e.g. [12, pages 511–512]. For this reason we omit
the details.

Proofs of corollaries 2.5 and 2.6 follow directly from Theorem 2.1 and the arguments
presented in [16] or in [12]. Hence we omit the proofs and leave the details for an
interested reader.

3.2 Proofs related to examples

In order to prove Theorem 2.7 we first recall some basic definitions and further tools
from Malliavin calculus, which are needed for the proof. For a detailed introduction and
extensive treatment of Malliavin calculus, the reader is referred to the textbook [15].

3.2.1 Malliavin calculus with d-dimensional fractional Brownian motion

Denote by R(s, t), s, t ∈ [0, T ], the covariance function of the components of B, i.e.

R(t, s) :=
1

2

(
t2H + s2H − |t− s|2H

)
for every s, t ∈ [0, T ]. We take H to be the Hilbert space given by the closure of Rd-valued
step functions on [0, T ] with respect to the scalar product〈(

1[0,t1], . . . ,1[0,td]

)
,
(
1[0,s1], . . . ,1[0,sd]

)〉
H

=

d∑
l=1

R(tl, sl)

for tl, sl ∈ [0, T ], 1 ≤ l ≤ d, and H is equipped with the corresponding norm ‖ · ‖H. The
Wiener integral with underlying d-dimensional fractional Brownian motion B is defined
by

B(h) =

∫ 1

0

〈hs, dBs〉

for every h ∈ H and satisfies

E[B(h1)B(h2)] = 〈h1, h2〉H

for all h1, h2 ∈ H. Moreover, the set of cylindrical random variables denoted by S is
defined as the set of all measurable real-valued random variables F with the property
that

F = f
(
B(h1), . . . , B(hn)

)
,

where n ∈ N, h1, . . . , hn ∈ H and f : Rn → R is a smooth function with bounded
derivatives of all orders. Then for every such F ∈ S the Malliavin derivative (with
respect to B) is defined as the stochastic process (DtF )t∈[0,T ] with values in H given by

DtF =

n∑
i=1

hi(t)
∂f

∂xi

(
B(h1), . . . , B(hn)

)
, t ∈ [0, T ].

For our purposes we also need the introduction of iterated derivatives Dk
t1,...,tk

F =

Dt1 . . .DtkF for k ∈ N, t1, . . . , tk ∈ [0, T ]. Thus, Dk
t1,...,tk

F is a random variable attaining
values in H⊗k, which denotes the k-fold tensor product and is equipped with the corre-
sponding norm ‖ · ‖H⊗k . For every p ∈ [1,∞) one defines Dk,p as the closure of the set of
cylindrical random variables with respect to the seminorm

‖F‖k,p =
(
E[|F |p] +

k∑
j=1

E[‖DjF‖pH⊗j ]
) 1
p
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and
D∞ =

⋂
p∈N

⋂
k∈N

Dk,p.

For a random vector F = (F 1, . . . , F d) with components in D∞, its Malliavin matrix is
defined as

γF =
(
〈DF i,DF j〉H

)
i,j=1,...,d

and F is called non-degenerate if γF is almost surely invertible with

(det γF )−1 ∈
⋂
p∈N

Lp(Ω).

Recall that, with W denoting the underlying standard Brownian motion in the kernel
representation of B (see [15, Section 5.1.3] for details), it is well-known that B and W
generate the same filtration. For our purposes, we will also perform Malliavin calculus
with respect to the underlying W as well. In order to distinguish corresponding notation
we denote by D the Malliavin derivative with respect to W and, similarly we carry over
the notations for the sets Dk,p and D∞. For the relation between D and D we refer to
[15, Section 5.2.1].

In our approach we will be led to work with conditional Malliavin matrices. To this
end, we denote L2

t = L2([t, T ]) and Et = E[· | Ft], t ∈ [0, T ] the conditional expectation
with respect to Ft. For a random variable F and t ∈ [0, T ], k ∈ N0, p ∈ (0,∞) we then
define the conditional seminorm

‖F‖k,p;t =
(
Et[|F |p] +

k∑
j=1

Et[‖DjF‖p
(L2
t )
⊗j ]
) 1
p

.

Furthermore, we define the conditional Malliavin matrix of F as

ΓF,t =
(
〈DF i, DF j〉L2

t

)
i,j=1,...,d

for t ∈ [0, T ]. With this notation in hand, the next result is a restatement of [1, Proposition
5.6] (see also [13, Proposition 2.2]) and the conditional formulation of a version in [15,
Proposition 2.1.4].

Lemma 3.9. Let k, n ∈ N, F = (F 1, . . . , F d) a non-degenerate random vector and G a
random variable. Suppose that F 1, . . . , F d, G ∈ D∞ and

(det ΓF,s)
−1 ∈

⋂
p∈N

Lp(Ω), s ∈ [0, T ].

Then for every multi-index α ∈ {1, . . . , d}k there exists Hs
α(F,G) ∈ D∞ such that

Es

[
(∂αϕ)(F )G

]
= Es

[
ϕ(F )Hs

α(F,G)
]

for every smooth function ϕ : Rd → R such that all of its partial derivatives have at most
polynomial growth. Moreover, Hs

α(F,G) is recursively defined by

Hs
(i)(F,G) =

n∑
j=1

δs

(
G(Γ−1F,s)i,jDF

j
)
,

Hs
α(F,G) = Hs

(αk)

(
F,Hs

(α1,...,αk−1)
(F,G)

)
,

with δs denoting the Skorokhod integral with respect to W on the interval [s, T ] (see [15,
Section 1.3.2]). Additionally, for 1 ≤ p < q <∞ with 1

p = 1
q + 1

r we have

‖Hs
α(F,G)‖p;s ≤ c‖Γ−1F,sDF‖

k
k,2k−1r;s‖G‖k,q;s,
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where c ∈ (0,∞) is a constant that only depends on p and q. In particular, there exists a
constant C ∈ (0,∞) such that

‖Hs
α(F,G)‖p;s ≤ C‖det Γ−1F,s‖

k
k,2kr;s‖DF‖

k
k,2kr;s‖G‖k,q;s. (3.14)

Furthermore, we will employ the following result which is proven in [1, Proposition
5.9, equation (26) and (27)].

Lemma 3.10. Let ε ∈ (0, T ), H ∈ ( 1
4 , 1) and (Xt)t∈[0,T ] as in Theorem 2.7. Then there

exists a constant c = c(ε) ∈ (0,∞) and r > 0 such that, for ε ≤ s ≤ t ≤ T , it holds

‖det Γ−1Xt−Xs,s‖k,2k+2;s ≤
ck

(t− s)2H
(
Es[1 +Mr2k+2

]
)2−k−2

, (3.15)

‖ det Γ−1Xt−x‖k,2k+2 ≤ ck

t2H
, k ≥ 1, (3.16)

‖D(Xt −Xs)‖k,2k+2;s ≤ ck(t− s)H
(
Es[1 +Mr2k+2

]
)2−k−2

, (3.17)

and

‖D(Xt − x)‖k,2k+2 ≤ cktH , k ≥ 1, (3.18)

where k ∈ N andM∈ D∞ is a random variable with positive values and Gaussian tails.

Remark 3.11. By carefully examining the proof of [1, Proposition 5.9], based on the
method introduced in [10], one notes that in the statement [1, Proposition 5.9] the power
2k+2 is missing inM, while it is clearly present in the proof. While this makes the upper
bounds slightly worse, it does not play any significant role in our estimates. The reason
is that, sinceM has Gaussian tails, the moment of order 2k can be upper bounded by Ck.
Note also that above we have formulated (3.16) and (3.18) slightly different compared
to [1, Lemma 4.1 and Eq. (27)], as [1] used general p for the norm ‖ · ‖k,p while in our
formulation we use p = 2k+2 corresponding to our choice. This also reveals clearer the
connection to equations (3.15) and (3.17). Indeed, the proofs of equations (3.15)-(3.18)
are similar, and actually one could add the term (E[1 +Mr2k+2

])2
−k−2

in (3.16) and (3.18)
(note that this term is currently included in the constant ck), see e.g. [1, Lemma 4.1 and
its proof].

Remark 3.12. The random variableM in Lemma 3.10 can be specified more explicitly.
Indeed, it is derived from the Besov norm of a lift of B as a rough path, see [1, p. 2583]
for details.

We will also need the following auxiliary result in our proof.

Lemma 3.13. Suppose that a sequence αh(k), h, k ≥ 1 satisfies αk(k) = 1 = α1(k) for all
k ≥ 1, αh(k) = 0 for h > k, and for 2 ≤ h ≤ k

αh(k + 1) = hαh(k) + αh−1(k).

Then for all h, k ≥ 1 we have

αh(k) ≤ Ckkk.

Proof. Without loss of generality we can assume k ≥ 3. From the recursion we get

αj(k + 1)− αj−1(k) = jαj(k).

In particular, plugging j = k − p for an integer p ≥ 0 such that k − p− 1 ≥ 1, leads to

αk−p(k + 1)− αk−p−1(k) = (k − p)αk−p(k).
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Denoting βp(k) = αk−p−1(k), we observe that this is equivalent to

βp(k + 1)− βp(k) = (k − p)αk−p(k).

Summing over k = p+2, p+3, . . . ,K−1, where K ≥ 3, and using βp(p+2) = α1(p+2) = 1

hence gives

αK−p−1(K)− 1 = βp(K)− βp(p+ 2)

=

K−1∑
k=p+2

[βp(k + 1)− βp(k)]

=

K−1∑
k=p+2

(k − p)αk−p(k).

This leads to

αK−p−1(K) = 1 +

K−1∑
k=p+2

(k − p)αk−p(k) =

K−1∑
k=p+1

(k − p)αk−p(k).

From this it follows by induction in p that, for all fixed K ≥ 3, we have

αK−p−1(K) ≤ K2+2p

(2p+ 2)!!
,

where (2p+ 2)!! = 2p+1(p+ 1)! is the double factorial. Indeed, for p = 0 we get directly

αK−1(K) =

K−1∑
k=1

k =
(K − 1)K

2
≤ K2

2

and, assuming that the claim is valid for some p, then for p+ 1 we get

αK−p−2(K) =

K−1∑
k=p+2

(k − p− 1)αk−p−1(k) ≤
K−1∑
k=p+2

k3+2p

(2p+ 2)!!
≤ K4+2p

(2p+ 4)(2p+ 2)!!
,

proving the induction step. Plugging in now j = K − p− 1 leads to

αj(K) ≤ K2K−2j

2K−j(K − j)!
.

Clearly this satisfies the claimed bound when K − j is small. On the other hand, when
K − j is large, Stirling’s approximation gives

K2K−2j

2K−j(K − j)!
≤ CKK2K−2j(K − j)−(K−j).

In particular, by setting δ = j
K we get

αj(K) ≤ CKδ K(1−δ)K ≤ CKKK ,

where now C can be chosen independently of δ, since δ ∈ [0, 1]. This yields the result.

Remark 3.14. We note that the upper bound stated in the lemma is asymptotically
essentially sharp. Indeed, from the recursion we get

αj(k + 1) ≥ jαj(k),
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from which it follows that αj(k) ≥ jk−j for all k ≥ j. Setting now δ = j/k gives us the
lower bound

αj(k) ≥ δ(1−δ)kk(1−δ)k.

As δ > 0 is arbitrary (by choosing j suitably), we observe that the upper bound kk cannot
be improved.

Now we are in position to prove Theorem 2.7.

Proof of Theorem 2.7. Recall thatH ∈ (0, 1d ) by assumption. We first prove that (Xt)t∈[0,T ]

satisfies assumption (A1) in Theorem 2.1 with α = H by using Malliavin calculus. Let
m ∈ N, ξj = (ξj,1, . . . , ξj,d) ∈ (R \ {0})d, j = 1, . . . ,m, and 0 = t0 < ε ≤ t1 < . . . < tm < T .
Note that, by Remark 2.2, we obtain results for the local time L(x, [ε, t]) along the proof
of Theorem 2.1 once we have established (A1) for t1 ≥ ε and (A2). As ε > 0 is arbitrary,
this is sufficient to prove all the claims of Theorem 2.7 except the existence of L(0, [0, t])

that we will establish at the end of the proof by a limiting argument. As such, in the
sequel we will omit the dependence on ε > 0 and the reader should keep in mind that
at this point we have restricted ourselves away from zero into a closed subinterval
I ⊂ (0, T ) (so that t1 ≥ ε for some ε > 0).

In order to establish (A1), the idea is to apply Lemma 3.9 for arbitrary multi-indexes
kj = (kj,1, . . . , kj,d), 1 ≤ j ≤ m. In the following we will use the notation |kj | = kj,1 + . . .+

kj,d. Applying the first identity in Lemma 3.9 we write for j = 1

E
[

exp
(
i

m∑
h=1

〈ξh, Xth −Xth−1
〉
)]

=

d∏
l=1

1

(iξ1,l)k1,l
E
[

exp
(
i〈ξ1, Xt1 −Xt0〉

)
Ht0
k1

(Xt1 −Xt0 , Y )
]
,

(3.19)

where we set

Y = exp
(
i

m∑
h=2

〈ξh, Xth −Xth−1
〉
)

and Ht0
k1

(Xt1 − Xt0 , Y ) as specified in Lemma 3.9. In order to apply bound (3.14), we
need to estimate the norm ‖Y ‖|k1|,q,s for some q > 1 and s > 0 that we will do next. Using
the notation k = |k1|, Zk = Xtk −Xtk−1

, Z = (Z2, . . . , Zm) and setting

Y = f(Z2, . . . , Zm) = exp
(
i

m∑
h=2

〈ξh, Xth −Xth−1
〉
)
,

the first derivative is given by

Df(Z) =

m∑
j=2

f ′xj (Z)DZj

and the second derivative is given by

D2f(Z) =

m∑
j=2

f ′xj (Z)D2Zj

+

m∑
j1,j2=2

f ′′xj1xj2 (Z)DZj1 ⊗DZj2 .
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Similarly, the third derivative is given by

D3f(Z) =

m∑
j=2

f ′xj (Z)D3Zj + 3

m∑
j1,j2=2

f ′′xj1xj2 (Z)D2Zj1 ⊗DZj2

+

m∑
j1,j2,j3=2

f (3)xj1xj2xj3
(Z)DZj1 ⊗DZj2 ⊗DZj3 .

Taking iterated derivatives gives us

Dkf(Z) =

m∑
j=2

f ′xj (Z)DkZj +

m∑
j1,j2=2

f ′′xj1xj2 (Z)A
(k)
2 (j1, j2) + . . .

+

m∑
j1,...,jk−1=2

f (k−1)xj1xj2 ...xjk−1
(Z)A

(k)
k−1(j1, . . . , jk−1)

+

m∑
j1,...,jk=2

f (k)xj1xj2 ...xjk
(Z)A

(k)
k (j1, . . . , jk),

where each A
(k)
h (j1, . . . , jh) consists of (tensor) products of iterated derivatives of the

form DZj , with a total of h different indices in Zj and with a total of k derivatives. Indeed,
observe that it holds

A
(k+1)
h (j1, . . . , jh) = DA

(k)
h (j1, . . . , jh)1{h≤k} +DZjh ⊗A

(k)
h−1(j1, . . . , jh−1)1{h≥1}. (3.20)

Denote by ev the amount of derivatives one takes on the term Zjv . Taking into account
that

f (h)xj1xj2 ...xjh
(Z) = ihf(Z)ξj1 . . . ξjh

and by the Hölder inequality for conditional expectations we obtain, for each term in
Dkf(Z), an estimate

Es[‖f (h)xj1xj2 ...xjh
(Z)A

(k)
h (j1, . . . , jh)‖q

(L2
s)
⊗k ] ≤ αqh(k)

h∏
v=1

|ξjv |q
[
Es‖DevZjv‖

qh
(L2
s)
⊗ev

] 1
h

,

where αh(k) corresponds to the amount of terms in A
(k)
h .1 Here, by (3.17), Jensen’s

inequality for conditional expectations, and since qh ≤ qk ≤ 2k+2 (we will choose q ≤ 2

later on), we have

Es‖DevZjv‖
qh
(L2
s)
⊗ev ≤ Ckqh(tj − tj−1)qHh

[
Es[1 +Mr2k+2

]
]qh2−k−2

.

Since also h ≤ k, this leads to the bound

Es[‖f (h)xj1xj2 ...xjh
(Z)A

(k)
h (j1, . . . , jh)‖q

(L2
s)
⊗k ] ≤ Cqk

2

αqh(k)cqks,ω,k

h∏
v=1

|ξjv |q(tjv − tjv−1)qH ,

where

cs,ω,k =
[
Es[1 +Mr2k+2

]
]2−k−2

.

1For example for k = 2, the amount of terms in A
(2)
h for h = 1, 2 is only one, while for k = 3 the amount

of terms in A
(3)
h is 1 for h ∈ {1, 3}, while for h = 2 the amount is 3. This is due to the fact that the

mixed derivatives of the form D2Zj1 ⊗DZj2 arise by an application of the product rule once from the term
f ′
xj

(Z)D2Zj and two times from the term f ′′
xj1xj2

(Z)DZj1 ⊗DZj2 .
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For the coefficients αh(k) we obtain αk(k) = 1 = α1(k) for all k ≥ 1, αh(k) = 0 for h > k,
and for 2 ≤ h ≤ k we have

αh(k + 1) = hαh(k) + αh−1(k).

Indeed, this can be seen from the definition of A(k+1)
h in (3.20), equivalently by observing

that first order derivatives in f arise only from the factor DkZj , and k:th order derivatives
arise only from the single factor DZj1 ⊗ . . . ⊗DZjk giving us αk(k) = α1(k) = 1. Also,
h:th order derivatives of f for h > k are not present if differentiating only k times, giving
us αh(k) = 0 for h > k. For the values 2 ≤ h ≤ k, we observe that terms involving the
h:th order derivative of f when differentiating k + 1 times arise from the product rule
D(FG) = GDF + FDG either 1) from the term f

(h)
xj1xj2 ...xjh

(Z)Ah(k) when the derivative

is taken in Ah(k), or 2) from the term f
(h−1)
xj1xj2 ...xjh−1

(Z)Ah−1(k) when the derivative is

taken in f (h−1). As Ah(k) consists of terms involving exactly h (tensor) products of
derivatives of Z, the first case contributes a number of terms hαh(k). The second case
on the other hand contributes with αh−1(k), the amount of terms in Ah−1(k). Hence, by
Lemma 3.13, we have

αh(k) ≤ Ckkk.

Hence, overall, we obtain the estimate

Es[‖DkY ‖q
(L2
s)
⊗k ] ≤

k∑
h=1

m∑
j1,...,jh=2

Es[‖f (h)xj1xj2 ...xjh
(Z)A

(k)
h (j1, . . . , jh)‖q

(L2
s)
⊗k ]

≤ cqks,ω,kC
qk2kqk

k∑
h=1

m∑
j1,...,jh=2

h∏
v=1

|ξjv |q(tjv − tjv−1)qH .

This gives us

‖Y ‖k,q,s ≤

[
1 +

k∑
v=1

cqvs,ω,kC
qv2vqv

v∑
h=1

m∑
j1,...,jh=2

h∏
v=1

|ξjv |q(tjv − tjv−1)qH

] 1
q

≤ 1 + cks,ω,kC
k2kk

[
k∑
h=1

m∑
j1,...,jh=2

h∏
v=1

|ξjv |q(tjv − tjv−1)qH

] 1
q

.

Now if

|ξjv |(tjv − tjv−1)H ≤ 1

for every v ∈ {1, . . . , h} then we can simply estimate

‖Y ‖k,q,s ≤ (1 + cks,ω,k)Ck
2

kkmk,

so we will only consider the case if there is some v such that

|ξjv |(tjv − tjv−1)H > 1.

Without loss of generality assume that

max
j=2,...,m

|ξj |(tj − tj−1)H = |ξ2|(t2 − t1)H

and that

max
l=1,...,d

|ξ2,l| = |ξ2,1|.
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Then we obtain the estimate

‖Y ‖k,q,s ≤ (1 + cks,ω,k)Ck
2

kkmk|ξ2,1|k(t2 − t1)kH . (3.21)

Note that since M has Gaussian tails, its moments grow similarly as for a Gaussian
random variable. In particular, this gives that

c0,ω,k =
[
E[1 +Mr2k+2

]
]2−k−2

≤ Ck,

and hence for s = 0 we have

‖Y ‖|k1|,q ≤ C
|k1|2 |k1||k1|m|k1|(t2 − t1)|k1|H |ξ2,1||k1|

for some positive and finite constant C. Then, using equation (3.19), estimate (3.14) of
Lemma 3.9 with (p, r, q, s) = (1, 8, 8/7, 0), and then estimates (3.16) and (3.18), we obtain∣∣∣∣∣E[ exp

(
i
m∑
h=1

〈ξh, Xth −Xth−1
〉
)]∣∣∣∣∣

≤ C‖det Γ−1Xt1−Xt0
‖|k1||k1|,2|k1|+2‖D(Xt1 −Xt0)‖|k1||k1|,2|k1|+2‖Y ‖|k1|,q

d∏
l=1

1

|ξ1,l|k1,l

≤ C |k1|
2

|k1||k1|m|k1|
( 1

(t1 − t0)|k1|H

)
(t2 − t1)|k1|H |ξ2,1||k1|

d∏
l=1

1

|ξ1,l|k1,l

≤ C |k1||k1|(1+δ)|k1|m|k1|
( 1

(t1 − t0)|k1|H

)
(t2 − t1)|k1|H |ξ2,1||k1|

d∏
l=1

1

|ξ1,l|k1,l
,

(3.22)

where in the last line we have used Ck
2 ≤ Ck2 kδk for any δ > 0. Observe that (3.22) holds

for every integers k1,l. Replacing k1,l by k1,lm in (3.22) we get∣∣∣∣∣E[ exp
(
i

m∑
h=1

〈ξh, Xth −Xth−1
〉
)]∣∣∣∣∣

≤ C |mk1||mk1|(2+δ)|mk1|
( 1

(t1 − t0)|mk1|H

)
(t2 − t1)|mk1|H |ξ2,1||mk1|

d∏
l=1

1

|ξ1,l|mk1,l
.

(3.23)

Now if j = m we proceed similarly and write

E
[

exp
(
i

m∑
h=1

〈ξh, Xth −Xth−1
〉
)]

=

d∏
l=1

1

(iξm,l)km,l

× E
[

exp
(
i

m−1∑
h=1

〈ξh, Xth −Xth−1
〉
)
Etm−1

[
exp

(
i〈ξm, Xtm −Xtm−1〉

)
Htm
km

(Xtm −Xtm−1 , 1)
]]
,

withHtm
km

(Xtm−Xtm−1
, 1) as specified in Lemma 3.9. Proceeding as above but using (3.15)

EJP 29 (2024), paper 107.
Page 23/27

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1172
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Existence and regularity of local time

and (3.17) instead of (3.16) and (3.18) (recall that t1 ≥ ε), we obtain∣∣∣∣∣E[ exp
(
i

m∑
h=1

〈ξh, Xth −Xth−1
〉
)]∣∣∣∣∣

≤ CE

[
‖ det Γ−1Xtm−Xtm−1

‖|km||km|,2|km|+2,tm−1
‖D(Xtm −Xtm−1)‖|km||km|,2|km|+2,tm−1

×
d∏
l=1

1

|ξm,l|km,l

]

≤ C |km|
2 1

(tm − tm−1)|km|H

d∏
l=1

1

|ξm,l|km,l

≤ C |km||km|δ|km|
1

(tm − tm−1)|km|H

d∏
l=1

1

|ξm,l|km,l
,

(3.24)

where we have again used the fact that the random variable M has Gaussian tails,
and hence, thanks to Jensen’s inequality for conditional expectations, the moments
of Etm−1

[M] are bounded by C |km|. Observe that (3.24) holds for every integer km,l.
Replacing km,l by km,lm in (3.24) we get∣∣∣∣∣E[ exp

(
i

m∑
h=1

〈ξh, Xth −Xth−1
〉
)]∣∣∣∣∣

≤ c|mkm||mkm|(2+δ)|mkm|
1

(tm − tm−1)|mkm|H

d∏
l=1

1

|ξm,l|mkm,l
.

(3.25)

Now assume that 2 ≤ j ≤ m− 1. In this case we write

E
[

exp
(
i

m∑
h=1

〈ξh, Xth −Xth−1
〉
)]

=

d∏
l=1

1

(iξj,l)kj,l

× ∂kjξj E

[
exp

(
i

j−1∑
h=1

〈ξh, Xth −Xth−1
〉
)

Etj−1
[exp

(
i〈ξj , Xtj −Xtj−1

〉
)

exp
(
i

m∑
h=j+1

〈ξh, Xth −Xth−1
〉
)

]

]

=

d∏
l=1

1

(iξj,l)kj,l

× E
[

exp
(
i

j−1∑
h=1

〈ξh, Xth −Xth−1
〉
)
Etj−1 [exp

(
i〈ξj , Xtj −Xtj−1〉

)
H
tj−1

kj
(Xtj −Xtj−1 , Y )]

]
,

where we set

Y = exp
(
i

m∑
h=j+1

〈ξh, Xth −Xth−1
〉
)

and H
tj−1

kj
(Xtj −Xtj−1 , Y ) as specified in Lemma 3.9. Similarly as for the case j = 1 (see

equation (3.21)) we can prove

‖Y ‖|kj |,q;tj−1
≤ (1 + cktj−1,ω,k)C |kj |

2

|kj ||kj |m|kj ||ξγj ,1||kj |(tγj − tγj−1
)|kj |H ,
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for some positive random variable ctj−1,ω,k having Gaussian tails, where γj > j is such
that

max
h=j+1,...,m

|ξh|(th − th−1)H = |ξγj |(tγj − tγj−1
)H .

Then we can again proceed as above, namely use (3.14), estimates (3.15) and (3.17), and
the fact that ctj−1,ω,k has Gaussian tails (together with Jensen’s inequality for conditional
expectations). This leads to∣∣∣∣∣E[ exp

(
i

m∑
h=1

〈ξh, Xth −Xth−1
〉
)]∣∣∣∣∣

≤ C |kj ||kj |(1+δ)|kj |m|kj |
( 1

(tj − tj−1)|kj |H

)
(tγj − tγj−1)|kj |H |ξγj ,1||kj |

d∏
l=1

1

|ξj,l|kj,l
.

(3.26)

Observe that (3.26) holds for every integer kj,l. Replacing kj,l by kj,lm in (3.26) we get∣∣∣∣∣E[ exp
(
i

m∑
h=1

〈ξh, Xth −Xth−1
〉
)]∣∣∣∣∣

≤ C |mkj ||mkj |(2+δ)|mkj |
( 1

(tj − tj−1)|mkj |H

)
(tγj − tγj−1)|mkj |H |ξγj ,1||mkj |

d∏
l=1

1

|ξj,l|mkj,l
.

(3.27)

Then combining estimates (3.23), (3.25), (3.27) we have∣∣∣∣∣E[ exp
(
i

m∑
h=1

〈ξh, Xth −Xth−1
〉
)]∣∣∣∣∣

m

≤
(m−1∏
j=1

Cm|kj ||mkj |(2+δ)|mkj |
)( m∏

j=1

(tγj − tγj−1)m|kj |H

(tj − tj−1)m|kj |H

) m∏
j=1

|ξγj ,1|m|kj |

|ξj,1|mkj,1

d∏
l=2

1

|ξj,l|mkj,l
,

where we set γ1 := 2, which implies∣∣∣∣∣E[ exp
(
i

m∑
h=1

〈ξh, Xth −Xth−1
〉
)]∣∣∣∣∣

≤
(m−1∏
j=1

C |mkj ||mkj |(2+δ)|mkj |
) 1
m
( m∏
j=1

(tγj − tγj−1)|kj |H

(tj − tj−1)|kj |H

) m∏
j=1

|ξγj ,1||kj |

|ξj,1|kj,1

d∏
l=2

1

|ξj,l|kj,l

≤
(m−1∏
j=1

C |mkj ||mkj |(2+δ)|mkj |
) 1
m

×

(
m∏
j=1

1

(tj − tj−1)|kj |H

∏
l:γj=l

1

(tl − tl−1)−|kl|H

)(
m∏
j=1

1

|ξj,1|kj,1
∏
l:γj=l

1

|ξl,1|−|kl|

)
d∏
l=2

1

|ξj,l|kj,l

(3.28)

for some C ∈ (0,∞) not depending on m. Observe that (3.28) holds for arbitrary choice
of integers kj,l. In particular, noting that γj > j, this yields that∣∣∣∣∣E[ exp

(
i

m∑
h=1

〈ξh, Xth −Xth−1
〉
)]∣∣∣∣∣ ≤ Cmm4d(2+δ)m

m∏
j=1

( 1

(tj − tj−1)|kj |H

) m∏
j=1

d∏
l=1

1

|ξj,l|kj,l
,

where kj,l ∈ {0, 4}, which proves (A1) with θ = 8d+δ
H , for any δ > 0. Moreover, condition

(A2) with ι = 1
2 follows from [1, Condition (ii) of Theorem 5.15, Proof of Theorem 5.16,
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and reference therein] by observing that the growth in p arises from the driving Gaussian
process BH . Consequently, we have established (A1) for t1 ≥ ε > 0 and (A2). Hence in
order to finish the proof it suffices to prove the existence of L(x, [0, t]). For this, we note
that we have, for any t > ε > 0, any set A ∈ Rd, and by the definition of the occupation
measure τX and the local time,

τX(A, [ε, t]) =

∫
A

L(x, [ε, t])dx.

Here τX(A, [ε, t]) increases to τX(A, [0, t]) and ε 7→ L(x, [ε, t]) is an increasing function.
Hence, for every x, the limit L(x, [0, t]) := limε→0 L(x, [ε, t]) exists.2 It follows then from
the monotone convergence theorem that

τX(A, [0, t]) =

∫
A

L(x, [0, t])dx,

so that the local time L(x, [0, t]) exists. This finishes the whole proof.

Proof of Proposition 2.10. We have (see Lemma 2.1, Lemma 2.2, and their proofs in [12])
that ∣∣∣E[ exp

(
i

m∑
j=1

ξj(Ztj − Ztj−1)
)]∣∣∣ =

∏
k≥1

1

(1 + 4λ2k)1/4
, (3.29)

where
λn(Bt,ξ) ≥ C(H)( max

1≤j≤n
|ξj ||tj − tj−1|H)µ̃2

n

with µ̃n ∼ n−H/2. By observing that, for any integers kj ∈ {0, 4}, we have

n∏
j=1

|ξj |kj |tj − tj−1|kjH

≤
(

1 + max
1≤j≤n

(|ξj |2|tj − tj−1|2H)

)n
2

we see that, for any constant c1,(
1 + c1 max

1≤j≤n
(|ξj |2|tj − tj−1|2H)

)− 1
4

≤ c2

 n∏
j=1

|ξj |kj |tj − tj−1|kjH
− 1

2n

,

where c2 depends only on c1. Hence it suffices to take 2n-terms into account in (3.29)
giving us condition (A1), with θ = 0. Similarly, (A2) with ι = 1 follows from Lemma 4.1,
Proposition 4.2, and their proofs in [12].

Proof of Proposition 2.12. For simplicity we only prove the case d = 1, as the general
case follows from this by component-wise considerations. As Z is Gaussian, it follows
that

∣∣∣E[ exp
(
i

m∑
j=1

ξj(Ztj − Ztj−1)
)]∣∣∣ = exp

−1

2
V ar

 m∑
j=1

ξj(Ztj − Ztj−1)

 .

2Note that the limit takes values in R ∪ {∞} a priori.
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Existence and regularity of local time

Using the local non-determinism condition (2.7), we have

exp

−1

2
V ar

 m∑
j=1

ξj(Ztj − Ztj−1
)

 ≤ m∏
j=1

exp

(
−C

2
ξ2jE(Ztj − Ztj−1

)2
)
.

For (A1), it remains to apply e−|x| ≤ C(p)
|x|p for any p ≥ 0, with p = 0 or p = 2 for each term

together with (2.6). Finally, (A2) follows directly from (2.6) together with the fact that Z
is Gaussian.
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