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Nonequilibrium joint fluctuations for current and
occupation time in the symmetric exclusion process
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Abstract

We provide a full description for the joint fluctuations of current and occupation time
in the one-dimensional nonequilibrium simple symmetric exclusion process, furnishing
explicit formulas for the covariances of the limiting Gaussian process. The main
novelties consist of a proof of the tightness of the nonequilibrium current based on
new correlation estimates, refined estimates on the discrete gradient of the transition
probabilities of the SSEP, and a nonequilibrium Kipnis-Varadhan Lemma based on a
Fourier approach.
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1 Introduction

The exclusion process is a prototype model in Probability Theory and Statistical
Mechanics. Since the seventies, a vast literature about it has been developed, leading to
many discoveries and rigorous mathematical descriptions of sundry physical phenomena.

In plain words, the exclusion process consists of independent continuous time random
walks on a graph under the additional rule that two walkers cannot simultaneously occupy
the same site, which is called the exclusion rule. We say that the exclusion process is
symmetric, if the walkers are symmetric random walks, and we say that the exclusion
process is simple, if jumps are allowed only to nearest neighbour sites on the graph.
Many relevant variations of the exclusion process have been studied; in this paper, we
present new results on one of the most standard versions of the exclusion process: the
symmetric simple exclusion process (SSEP) on Z.

The density fluctuations, that is, the central limit theorem for the spatial density of
particles of the SSEP (first obtained by [12] and [23]) is nowadays a standard result.
On the other hand, observables of the exclusion process, such as the current and the
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Joint fluctuations for current and occupation time

occupation time still attract attention. These two observables for the exclusion process
have clear physical interpretations: the current corresponds to the total net of particles
crossing an edge, while the occupation times measures the portion of time a certain site
has been occupied.

Below we will give a short summary of the literature. Precise results are deferred to
Section 2. In what follows, by equilibrium setting we mean that the initial measure of
the one-dimensional SSEP on Z is the Bernoulli product measure of constant parameter,
which is invariant and even reversible for this process. By nonequilibrium setting we
mean that the initial measure is a slowly varying Bernoulli product measure whose
parameter is associated to a profile ρ0 : R→ [0, 1] whose smoothness assumptions may
change from one work to another. Unless mentioned otherwise, we always refer to the
one-dimensional SSEP. Due to the total ordering in dimension one, current and tagged
particle position are very close concepts.

In 1983, in the equilibrium setting, Arratia [3] proved that the limiting variance of a
tagged particle for the one-dimensional SSEP for a fixed time t > 0 matches that one of a
1/4 fractional Brownian motion (fBM), i.e., it is of order

√
t. A similar result for a related

model of one-dimensional interacting diffusions was shortly afterwards also shown by
Rost and Vares [25]. However, to the best of our knowledge, the first result showing a
variance of order

√
t on the variance on a tagged particle (in the symmetric scenario)

was first proven by Harris [15] about a model of one-dimensional colliding Brownian
motions.

In 1991, Spohn [27, Conjecture 6.5, page 294] conjectured that the equilibrium
fluctuations of the current are given in the limit by a 1/4 fractional Brownian Motion
(fBM).

In 2002, in the equilibrium setting, De Masi and Ferrari [7] showed convergence
in distribution of the current fluctuations of the SSEP for a fixed time t > 0 towards
a centred Gaussian whose variance is

√
t times a constant. This essentially implies

convergence in the sense of finite-dimensional distributions towards a 1/4-fBM. Alter-
native proofs of this statement on convergence in finite-dimensional distributions of
the current can be found in Jara/Landim [16] by taking the initial profile as constant
therein (i.e. letting the system start from equilibrium). It is also a particular case of
Franco/Gonçalves/Neumann [11, Theorem 2.8] by taking β = 0 therein.

In 2008, in the equilibrium setting, Peligrad and Sethumaran [22] showed tightness
of the current. This finally extended the convergence of the current towards a 1/4-fBM
to be pathwise, and confirmed the conjecture of Spohn from 1991.

In 2006, Jara and Landim [16] studied the nonequilibrium fluctuations of the current.
The authors proved that the current of particles converges, in the sense of finite-
dimensional distributions, and they provided explicit formulas for the covariances.

In 2000, in the equilibrium setting, for the finite range mean-zero exclusion process,
Sethuraman [26] proved that the limiting fluctuations of the occupation time in the
uniform topology is given by a 3/4-fBM. See also [13] by Jara and Gonçalves on some
extensions, from the occupation time to the additive functionals, and from mean-zero
case to the weakly asymmetric case. For the long range exclusion process including
mean-zero case and (strongly) asymmetric case, we refer to the work [5] of Bernardin,
Gonçalves and Sethuraman, on the limit fluctuations of the additive functionals. We also
refer to another work [4] of the previous three authors, on this subject for zero range
processes.

In this work we deal with the nonequilibrium joint fluctuations of current and occupa-
tion times, i.e., the central limit theorem for the pair current and occupation time. There
are three main tools we have developed to do so, which have importance per se and they
are, by far, the most challenging results here.
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Joint fluctuations for current and occupation time

First, based on Fourier techniques we prove a nonequilibrium Kipnis-Varadhan in-
equality, which extends [17, Proposition 6.1, page 333]. Actually, a proper nomenclature
for it maybe should be a non-stationary Kipnis-Varadhan inequality, since a nonequilib-
rium (that is, the scenario where the system starts from an invariant but non-reversible
measure) Kipnis-Varadhan inequality has been already obtained in [6]. Anyway, we keep
the nonequilibrium terminology of [16] (and others) along the paper.

Second, through a careful understanding and connection of [9], [10] and [19], we
prove a precise multiple point space-time correlations estimate for the nonequilibrium
SSEP which leads to moment estimates and ultimately implies tightness of the nonequi-
librium current. We highlight that the correlation estimates we obtain generalize and
improve the corresponding estimates of [10], [16], and [19].

Third, to obtain the correlation estimates above, we derive a bound on the discrete
partial derivatives of the transition probability of n exclusion particles. By [19] the
transition probability of n exclusion particles is essentially given by an n-dimensional
Gaussian whose covariance matrix has only zeros on the off-diagonal. Our bound on the
discrete derivative is almost sharp in the sense that the discrete partial derivatives of the
transition probability of n exclusion particles almost coincide with the partial derivatives
of the aforementioned Gaussian density. Our result is thus a type of refined local central
limit theorem. Besides the works on the random conductance model such as [2], we are
not aware of other works that obtain a local central limit theorem on the level of discrete
derivatives (except for random walks).

In possession of the aforementioned tools, we prove the nonequilibrium joint fluc-
tuations for the pair current and occupation time, exhibiting an explicit formula for
covariances of the limiting Gaussian process. The Kipnis-Varadhan type inequality is
used in the characterization of the limit, and the tightness of the occupation time and
the correlations estimates are used in the proof of tightness of the current. Note that
the latter is a highly non-trivial technical issue as evidenced by the fact that even in
the equilibrium setting, where many magical identities are valid, it took a long road to
establish tightness.

As a curious corollary for the equilibrium setting, we infer that current and occupation
time, whose distributions are given by 1/4-fBM and 3/4-fBM, respectively, at any two
macroscopic fixed points u1, u2 ∈ R and at a same time t > 0, are independent, while
the corresponding processes are not. An intuition of why this happens is presented in
Section 2.

The paper is organized as follows. In Section 2 we state the results. In Section 3
we prove the nonequilibrium type Kipnis-Varadhan inequality. In Section 4 we deal with
the space-time correlations estimate and the bound on the discrete partial derivatives
of the transition probability of n exclusion particles. Finally, in Section 5 we prove the
nonequilibrium joint central limit theorem for the pair current and occupation time.

2 Statements

2.1 Definitions and previous results

The one-dimensional symmetric simple exclusion process (SSEP) is a celebrated
Markov process {ηt : t ≥ 0} whose dynamics can be entirely defined by its infinitesimal
generator L. The latter is defined on local functions f : Ω→ R, where the state space is
given by Ω = {0, 1}Z via

Lf(η) =
∑
x∈Z
{f(ηx,x+1)− f(η)} , (2.1)
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Joint fluctuations for current and occupation time

where

ηx,y(z) =


η(y) , z = x,

η(x) , z = y,

η(z) , z 6= x, y.

We fix once and for all a finite time horizon T > 0. We are interested in the evolution
of this process on the diffusive time scale, therefore we denote by {ηt : t ∈ [0, T ]}
the Markov process on Ω associated to the generator Ln = n2L, where n ∈ N is a
parameter which tends to infinity. The space of trajectories which are right-continuous,
with left-limits and taking values in Ω is denoted by D([0, T ],Ω). For any initial probability
measure µ on Ω, we denote by Pµ the probability measure on D([0, T ],Ω) induced by µ
and the Markov process {ηt : t ∈ [0, T ]}.

Denote by νρ the Bernoulli product measure of parameter ρ ∈ (0, 1), which constitutes
a family of reversible measures for the SSEP. In the sequel, we recall the Harris graphical
construction for the SSEP. Here, space is drawn sideways, time is drawn upwards, and
to each edge e = {v, w} connecting two neighbouring sites v and w in Z one attaches a
Poisson process N(e) with intensity 1. Each event of such a Poisson process is drawn as
a link above e. The configuration at time t is then obtained from the one at time 0 by
transporting the local states along paths that move upwards with time and sidewards
along the links (see Figure 1). The collection of random walkers that move according to
these rules is called the stirring process. We refer the reader to [15] for more details on
that subject, and to [21] for the construction via semigroups and generators.

x

y

0

t

Z

Figure 1: Graphical representation. The dashed lines are links and the thick red line
shows a path from (x, 0) to (y, t) following the links.

Let ρ0 : R→ [0, 1] be a C2 profile with bounded derivatives and bounded away from
zero and from one. Let {νρn0 (·)}n∈N be the collection of slowly varying Bernoulli product
measures associated to ρ0, i.e., νρn0 (·) is the product measure on {0, 1}Z such that

νρn0 (·)
{
η ∈ {0, 1}Z : η(x) = 1

}
= ρ0

(
x
n ) .

Moreover, let ρnt (x) = Eνρn0 (·)[ηt(x)] be the average occupation of site x at time t,
which is the solution of the discrete heat equation{

∂tρ
n
t (x) = ∆nρ

n
t (x) , x ∈ Z and t > 0

ρn0 (x) = ρ0(x/n) , x ∈ Z .

Here ∆n is the usual discrete Laplace operator accelerated by n2, i.e.,

∆nf(x) = n2
∑
y: x∼y

[f(y)− f(x)] .
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The centred occupation time Γnx(t) of a site x ∈ Z is defined by

Γnx(t) =

∫ t

0

ds ηs(x) ,

where ηs(x) = ηs(x) − ρns (x) is the centred occupation. We now detail the previously
known results that are most related to the current work and which were already an-
nounced in Section 1. More precisely, we state the results about the fluctuations of
the current in equilibrium and in nonequilibrium and about the occupation time in
equilibrium.

Theorem 2.1 (Equilibrium fluctuations for the occupation time [26]). Assume that η
starts from equilibrium, i.e., ρ0 ∈ (0, 1) is a constant function. In this case, the sequence
of processes {

√
nΓnx(t) : t ∈ [0, T ]}n∈N converges in distribution with respect to the

J1-Skorohod topology to a fBM of Hurst exponent 3/4.

Denote by Jnx,x+1(t) the current of particles over the bond {x, x+ 1}, which is defined
as the total number of jumps from the site x to the site x+ 1 minus the total number of
jumps from the site x+ 1 to the site x up to time t.

Let J
n

x,x+1(t) = Jnx,x+1(t) − Eνρn0 (·) [J
n
x,x+1(t)] be the centred current of particles. As

commented in the introduction, the equilibrium current fluctuations in the exclusion
process has been an object of intensive studies of many authors, among them [3, 7, 15,
25].

Theorem 2.2 (Equilibrium fluctuations for the current by many authors). Assume
that η starts in equilibrium, i.e., ρ0 is a constant function. Then, the sequence of
normalized currents of particles

{
Jn0,1(t)/

√
n : t ∈ [0, T ]

}
n∈N converges in the sense of

finite-dimensional distributions to a fBM of Hurst parameter 1/4.

Note that in Theorem 2.2 the convergence is in the sense of finite-dimensional
distributions since tightness was not available. This is due to the fact that it is not
sufficient to control second moments of the process. Rather than second moments,
moments of sixth order must be controlled in order to apply a Kolmogorov-Centsov
criterion. This issue was only solved in [22] by means of a clever decomposition of the
current as a sum of independent random variables making use of the stirring process.

Theorem 2.3 (Tightness of equilibrium current fluctuations [22]). Assume that η starts
in equilibrium, i.e., ρ0 is a constant function. The sequence of normalized currents of
particles

{
Jn0,1(t)/

√
n : t ∈ [0, T ]

}
n∈N is tight with respect to the uniform topology.

Thus, [22] allows to improve the convergence of Theorem 2.2 to be pathwise. Let
ρt(u) = ρ(t, u) be the solution of the heat equation starting from ρ0(·), i.e.,

{
∂tρt(u) = ∆ρt(u) , u ∈ R and t > 0

ρ0(u) = ρ0(u) , u ∈ R

and let X (x) = x(1− x). The out of equilibrium current fluctuations have been obtained
in:

Theorem 2.4 (Out of equilibrium current fluctuations [16]). Fix u ∈ R. The sequence of
normalized centered currents

{
Jnbunc,bunc+1(t)/

√
n : t ∈ [0, T ]

}
n∈N converges in the

sense of finite-dimensional distributions to a Gaussian process {Zt : t ∈ [0, T ]} whose
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covariances are given by

E
[
ZsZt

]
=

∫ ∞
0

dv X (ρ0(v − u))P [Bs ≥ v]P [Bt ≥ v]

+

∫ 0

−∞
dv X (ρ0(v − u))P [Bs ≤ v]P [Bt ≤ v]

+ 2

∫ s

0

dr

∫ +∞

−∞
dv X (ρ(r, v − u)) pt−r(0, v) ps−r(0, v)

provided s ≤ t, where Bt is a standard Brownian motion starting from origin and pt(u, v)

is the Gaussian kernel.

2.2 New results

We start this section with two results that are of technical nature but are interesting
on its own rights. Throughout this article, the constant C always depends on fixed
parameters only, like the initial profile ρ0, fixed numbers T, k, d, etc. The constant C may
change from line to line. By a . b we mean that there exists a constant C depending
only on some fixed parameters such that a ≤ Cb. This constant C will be called the
proportionality constant for a . b in the sequel.

Theorem 2.5 (An out of equilibrium Kipnis-Varadhan type inequality). Let T > 0 and
ε ≤ 1 and define

g(s, η) = η(0)− ρns (0)− 1

`

`−1∑
y=0

[
η(y)− ρns (y)

]
.

Assume that the initial profile ρ0 is globally Lipschitz and is bounded away from zero
and one. Then, for any 0 ≤ s < t ≤ T , taking ` = εn,

Eνρn0 (·)

[( ∫ t

s

dr g(r, ηr)
)2]

.
(t− s)ε3/4

n

(
1 + (t− s)1/4 + (t− s)

)
,

where the proportionality constant depends on T and on nothing else.

Remark 2.6. The above result is stated in the case of the simple symmetric exclusion
process, but we feel that our approach should work for the weakly asymmetric exclusion
process with an asymmetry of order 1/n, and the mean-zero exclusion process with
moments of order four. In particular the result above should not be restricted to the
nearest neighbour case. Indeed, as we will see the proof makes use of known correlation
estimates for the simple symmetric exclusion process and of the local central limit
theorem. Both tools are available for the latter two processes. We refer to Remark 3.1
for a more detailed comment. It is unclear to us if one may expect the same result to
hold for other types of processes like the inclusion process for instance.

Remark 2.7. The classical Kipnis-Varadhan inequality states that, given a Markov Chain
{Xt, t ≥ 0} with invariant measure π,

Eπ
[

sup
0≤t≤T

(∫ t

0

g(Xs)ds
)2]
≤ 24T‖g‖2−1

for some proper function g. Starting the SSEP from an invariant Bernoulli product
measure νnα with constant density α ∈ (0, 1), applying Kipnis-Varadhan inequality with g
chosen in the above Theorem, a standard argument can only give a slightly better bound
in the equilibrium setting:

Eνnα
[( ∫ t

s

dr g(r, ηr)
)2]

.
(t− s)ε

n
.
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Next we state the precise space time correlation estimates, which generalizes and
improves the results of [10], [16] and [19]. To do so we however need to introduce some
more notation. Given a list of points (xi : i ∈ I) where I is some index set, we say that
xi is a repetitive point in (xi : i ∈ I) if there exists j ∈ I with j 6= i such that xi = xj .
Otherwise xi is called a non-repetitive point. Whenever all points in (xi : i ∈ I) are
distinct, we call it a list of non-repetitive points.

Theorem 2.8. Fix m ∈ N and k1, k2, . . . , km ∈ N. Consider m lists of non-repetitive points
(xi1 : 1 ≤ i1 ≤ k1), . . . , (xim : 1 ≤ im ≤ km) and let 0 ≤ t1 < · · · < tm ≤ T . Then, there
exists a constant C independent of all the points (xij : 1 ≤ ij ≤ kj), with 1 ≤ j ≤ m, such
that∣∣∣Eνρn0 (·)

[ m∏
j=1

kj∏
ij=1

ηtj (xij )
]∣∣∣ ≤ Cn−

∑m
j=1 kj/2

m−1∏
j=1

(
n√

n2(tj+1 − tj) + 1

)kj∧∑m
l=j+1 kl

for every integer n ≥ 1. In particular, if kj = 1 for every 1 ≤ j ≤ m or, in other words,
every collection of points consists of a single point, say xj , then we have

∣∣∣Eνρn0 (·)

[ m∏
j=1

ηtj (xj)
]∣∣∣ ≤ Cn−m/2

m−1∏
j=1

n√
n2(tj+1 − tj) + 1

(2.2)

for every integer n ≥ 1.

We now present the discrete gradient estimate of the transition probability of the
labelled exclusion process.To that end we introduce more notation. Fix k ∈ N and denote
by Λk the set of non-repetitive points with k coordinates:

Λk :=
{
x = (x1, . . . , xk) ∈ Zk : xi 6= xj , ∀ 1 ≤ i, j ≤ k

}
.

We consider k labelled exclusion particles that evolve through stirring and are accel-
erated by n2. For x = (x1, . . . , xk),y = (y1, . . . , yk) ∈ Λk we denote by plex

t (x,y) the
probability that particles i ∈ {1, . . . , k} go from xi to yi in time t. Here “lex” represents
the abbreviation of the “labelled exclusion process”. We then have the following result.

Theorem 2.9. There exists a constant C > 0 such that for every t > 0, every x,y ∈ Λk,
every 1 ≤ i ≤ k such that x + ei ∈ Λk,∣∣plex

t (x,y)− plex
t (x + ei,y)

∣∣ ≤ C

(n2t+ 1)(k+1)/2
.

Remark 2.10. The above result provides diagonal estimates, i.e., the above estimate
should be sharp when x and y are close to each other. We will see in Section 4.3 that
combining a result from [19] with an interpolation estimate allows to obtain almost sharp
bounds in the non-diagonal case, i.e., when x and y are not close to each other. This will
in particular show that the above discrete derivative is almost bounded by the derivative
of a k dimensional Gaussian. We refer to Section 4.3 for the details.

Fix u1, . . . , uk ∈ R, which we call macroscopic sites, and we call bu1nc, . . ., buknc ∈ Z
the associated microscopic sites. We state below the joint fluctuations of currents and
occupation times for k macroscopic sites. To shorten notation, we sometimes write
Xr := X (ρr(u)) = X (ρ(u, r)) = ρ(u, r)(1− ρ(u, r)).

Theorem 2.11. The sequence of processes{(
n−1/2Jnbu1nc,bu1nc+1(t), . . . , n−1/2Jnbuknc,buknc+1(t),

n1/2Γnbu1nc(t), . . . , n
1/2Γnbuknc(t)

)
: t ∈ [0, T ]

}
n∈N
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converges in distribution, with respect to the J1-Skorohod topology, to a 2k-dimensional
centred Gaussian process{(

Ju1
(t), . . . , Juk(t),Γu1

(t), . . . ,Γuk(t)
)

: t ∈ [0, T ]
}

whose covariances are as follows. For s, t > 0 and u1 ≤ u2 ∈ R,

E[Ju1(s)Ju2(t)] =

∫ u1

−∞
du P

[
Bs ≥ u1 − u

]
P
[
Bt ≥ u2 − u

]
X (ρ0(u))

−
∫ u2

u1

du P
[
Bs ≤ u1 − u

]
P
[
Bt ≥ u2 − u

]
X (ρ0(u))

+

∫ ∞
u2

du P
[
Bs ≤ u1 − u

]
P
[
Bt ≤ u2 − u

]
X (ρ0(u))

+ 2

∫ s∧t

0

dr

∫
R

du ps−r(u, u1)pt−r(u, u2)X (ρr(u)) , and

E[Γu1
(s)Γu2

(t)] =

∫ s

0

dr1

∫ t

0

dr2 p|r1−r2|(u1, u2)X (ρr2(u2))

+ 2

∫ s

0

dr1

∫ t

0

dr2

∫ r1∧r2

0

dτ

∫
R

du pr1−τ (u, u1)pr2−τ (u, u2){∂τXτ −∆Xτ}

and, for any s, t > 0 and u1, u2 ∈ R,

E[Γu1
(s)Ju2

(t)] =

∫ t

0

dr

∫ ∞
u1

du pr−s(u, u2)1{r > s}Xs

+

∫ t

0

dr P0[Bs−r ≥ u1 − u2]1{r < s}X (ρs(u2))

+

∫ t

0

dr

∫ s∧r

0

dτ

∫
R

du P0[Bs ≥ u1 − u]pr−τ (u, u2){∂τXτ −∆Xτ}

−
∫ t

0

dr

∫ ∞
u1

du pr(u, u2)X0

(2.3)

where Bt is a standard Brownian motion starting from zero and pt(u, v) is the Gaussian
kernel.

Remark 2.12. The assumption on the regularity of the initial profile ρ0 will be crucial
in the proof of tightness. Therefore our result does not include the step initial profile
case. We note that in the classical paper [10], the profile ρ0 had to be continuously
differentiable, thus not dealing with the step initial profile too. Moreover, we make use
of the main result of [10], see Theorem 4.1, in the present work.

Remark 2.13. The position of the tagged particle is intimately connected to the joint
asymptotic behaviour of the current and the empirical measure. The Central limit
theorem for the tagged particle out of equilibrium has been derived in [16], in the sense
of convergence in finite dimensional distributions. The tightness for the trajectory of the
tagged particle should be true, but it is not immediate from our work. We leave it for
future work.

Remark 2.14. Note that in Theorem 2.11 we show convergence of a 2k-dimensional
process indexed by time. In particular, for every fixed time this result establishes
convergence of the finite dimensional distributions in space (hence looking to any
quantity of points at arbitrary locations). It would therefore be interesting to know if one
could leverage this convergence to hold in the sense of a process indexed by space-time.
As usual this would require to establish some tightness criterion in the space-time, which
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might be technically demanding. As the paper is already long as it is we do not tackle
this problem here.

As a curious immediate corollary of Theorem 2.11, we get:

Corollary 2.15. Assume that the profile ρ0 ∈ (0, 1) is constant, i.e., the system starts
from equilibrium. Then, for each t > 0 and any u1, u2 ∈ R, the random variables
Ju1

(t) and Γu2
(t) are independent, where Ju1

(·) is a fBM of Hurst exponent 1/4 and
Γu2

(·) is a fBM of Hurst exponent 3/4. However, the processes Ju1
(·) and Γu2

(·) are not
independent.

To deduce the corollary above, note that in equilibrium the first and third terms in the
right hand side of (2.3) are identically null, while the second and forth terms cancel each
other by doing the change of variables r 7→ t− r and u 7→ u+ u2 and using the symmetry
of the heat kernel. The fact that the distribution of Ju1(·) and Γu2(·) are given by fBMs of
parameters 1/4 and 3/4 is natural in view of the literature mentioned in Section 1. On
the other hand, the independence in the equilibrium setting (for a same time) is a little
surprising. An intuition of the asymptotic independence of Corollary 2.15 relies on the
fact that the occupation time is invariant for a time reversion, while the current changes
its sign. So, they must be (asymptotically) uncorrelated, which means independence in
the Gaussian scenario.

3 An out of equilibrium Kipnis-Varadhan lemma – Proof of Theo-
rem 2.5

Our proof is inspired by [14]. For ease of notation we are going to only show that

Eνρn0 (·)

[( ∫ T

0

ds g(s, ηs)
)2]

.
Tε3/4

n

(
1 + T 1/4 + T

)
. (3.1)

The adaptation to the case s < t follows almost straightforwardly. The proof is structured
as follows: first we introduce some notation and some auxiliary identities, then we
present the main ideas, and finally we work out the details.

Fix γ > 0. Let fγ be such that

(γ − Ln)fγ(s, ·) = g(s, ·) (3.2)

for all s ∈ [0, T ]. Next, we write

fγ(T, ηT ) = fγ(0, η0) +

∫ T

0

ds (∂s + Ln)fγ(s, ηs) +M
fγ
T , (3.3)

where the last term on the right hand side above is a martingale. Define the backwards
process η̃ via η̃t = ηT−t, 0 ≤ t ≤ T . Note that its initial state is given by the final state of
the original process. In the same way we see that there exists a martingale M̃fγ (with
respect to the backwards filtration) such that

fγ(T, η̃T ) = fγ(0, η̃0) +

∫ T

0

ds (∂s + L̃n)fγ(s, η̃s) + M̃
fγ
T ,

where L̃n denotes the generator of η̃. As a consequence of the graphical construction we
have that Ln = L̃n. Hence, the above equation can be rewritten as

fγ(0, η0) = fγ(T, ηT ) +

∫ T

0

ds (Lnfγ)(s, ηs)−
∫ T

0

ds (∂sfγ)(s, ηs) + M̃
fγ
T . (3.4)
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Adding up (3.3) and (3.4) shows that

−2

∫ T

0

ds (Lnfγ)(s, ηs) = M
fγ
T + M̃

fγ
T .

The quadratic variation of Mfγ is given by the carré du champ, i.e.,

〈Mfγ ,Mfγ 〉T =

∫ T

0

ds
{
Lnf2

γ (s, ηs)− 2fγ(s, ηs)Lnfγ(s, ηs)
}

=

∫ T

0

ds
∑
x∈Z

{
fγ(s, ηx,x+1

s )− fγ(s, ηs)
}2

.

(3.5)

Since Ln = L̃n the same formula holds for M̃fγ . Using (3.2), the above observations, and
the Cauchy-Schwarz inequality, we can deduce that

Eνρn0 (·)

[( ∫ T

0

ds g(s, ηs)
)2]

≤ γ2Eνρn0 (·)

[
2
(∫ T

0

ds fγ(s, ηs)
)2]

+ 2Eνρn0 (·)

[( ∫ T

0

dsLnfγ(s, ηs)
)2]

≤ 2Tγ2

∫ T

0

dsEνρn0 (·)

[
fγ(s, ηs)

2
]

+ 4

∫ T

0

ds
∑
x

Eνρn0 (·)

[
(fγ(s, ηx,x+1

s )− fγ(s, ηs))
2
]
.

(3.6)

The above suggests the necessity of L2-type estimates on fγ , and to derive those we
will work in Fourier space. The advantage of doing so is that it will turn out that the
generator of the exclusion process has a very nice representation in Fourier coordinates.
In a nutshell, it is possible to write Ln as a sum of operators Dn,k where k ∈ N ranges
over the number of particles or the “degree” of the function f̂ that Dn,k acts on. In the
particular case of functions with degree one, i.e., k = 1, which is the case for ĝ, one
has that Dn,1 = n2∆, where the latter denotes the discrete Laplacian. This then allows
to calculate fγ rather explicitly and known estimates on the spatial correlations of the
exclusion process allow to obtain the desired estimates.

Remark 3.1. The approach adopted here should work whenever the following conditions
are satisfied:

1) the generator of the process under consideration is of the form L + A, where L
denotes the symmetric part which is diagonal in Fourier space and A denotes the
asymmetric part. Moreover, the generator of the backwards process is of the form
L −A.

2) one has a sufficient control on the spatial correlations of the process.

3) one can use the local central limit theorem.

The meaning of sufficient should become clear in the sequel. In that case the analysis
should work in a way analogous to the one employed here. In particular the resolvent
equation (3.2) only considers the symmetric part.

We will now work out the details. For any finite subset Λ of Z, define

ΨΛ(s, η) =
∏
x∈Λ

η(x)− ρns (x)√
ρns (x)(1− ρns (x))

,

where the collection {ΨΛ(s, ·) : Λ ⊆ Z, |Λ| < ∞} builds an orthonormal basis of
L2

0(νρns ), the space of L2-functions with mean zero with respect to the measure νρns =
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⊗x∈ZBer(ρns (x)). Thus, any f(s, ·) ∈ L2
0(νρns ) can uniquely be written as

f(s, ·) =

∞∑
k=1

∑
Λ: |Λ|=k

f̂(s,Λ)ΨΛ(s, ·) .

For k ≥ 1, we denote the space generated by {ΨΛ(s, ·) : |Λ| = k} by L2
k(νρns ), and we

refer to it sometimes as the k-th chaos. We further denote by πk the projection onto
L2
k(νρns ). As pointed out by [18, Equation (5.17)], we have

Lnf =

∞∑
k=1

∑
|Λ|=k

(Dn,kf̂)(Λ)ΨΛ

where
(Dn,kf̂)(Λ) = n2

∑
x∈Z

[
f̂(Λx,x+1)− f̂(Λ)

]
,

with

Λx,x+1 =


(Λ \ {x}) ∪ {x+ 1}, if x ∈ Λ, x+ 1 /∈ Λ ,

(Λ \ {x+ 1}) ∪ {x}, if x /∈ Λ, x+ 1 ∈ Λ ,

Λ, otherwise.

In the case |Λ| = 1, we can identify {Λ ⊂ Z : |Λ| = 1} with Z and we can identify Dn,1

with the discrete Laplacian accelerated by n2. We write n2∆ instead of Dn,1 in that case.
Using that πkg = 0 for all k ≥ 2 we see from the above considerations that the resolvent
equation (3.2) is equivalent to the following system of equations{

(γ − n2∆)f̂1(s, ·) = ĝ1(s, ·) ,
(γ −Dn,2)f̂k(s, ·) = 0 for k ≥ 2 ,

where f̂k denotes the coefficient of fγ in the k-th chaos. Since γ is in the resolvent set of
Dn,k, we in particular see that f̂k = 0 for all k ≥ 2. Inverting (γ − n2∆) we see that

f̂1(s, x) =
∑
y∈Z

∫ ∞
0

dt e−tγpt(x, y)ĝ1(s, y) ,

where we identified the set {x} with x, and p denotes the transition probability of a
continuous time simple symmetric random walk whose waiting time parameter is 2n2. It
now only remains to calculate ĝ1. To that end we need to solve

g(s, η) = η(0)− ρns (0)− 1

`

`−1∑
y=0

[
η(y)− ρns (y)

]
=
∑
y

ĝ1(s, y)Ψ{y}(s, η) ,

which leads us to

ĝ1(s, y) =


(1− 1

` )
√
ρns (0)(1− ρns (0)) , y = 0 ,

− 1
`

√
ρns (y)(1− ρns (y)) , y ∈ {1, 2 . . . , `− 1} ,

0, otherwise.

We therefore obtain

fγ(s, ηs) =
∑
x

[ ∫ ∞
0

dt e−tγ
(
pt(x, 0)

√
ρns (0)(1− ρns (0))

− 1

`

`−1∑
y=0

pt(x, y)
√
ρns (y)(1− ρns (y))

)]
×Ψ{x}(s, ηs) .

(3.7)
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With the above representation of fγ at hand we are now finally able to estimate the
two terms on the right hand side of (3.6). We begin with the first one. To that end we
will analyse the term inside the round brackets in (3.7) which we write as A1(s, t, x) +

A2(s, t, x), where

A1(s, t, x) =
(
pt(x, 0)− 1

`

`−1∑
y=0

pt(x, y)
)√

ρns (0)(1− ρns (0)) , and (3.8)

A2(s, t, x) =
1

`

`−1∑
y=0

pt(x, y)
(√

ρns (0)(1− ρns (0))−
√
ρns (y)(1− ρns (y))

)
. (3.9)

Hence,

fγ(s, ηs)
2

.
(∑

x

∫ ∞
0

dt e−γtA1(s, t, x) Ψ{x}(s, ηs)
)2

+
(∑

x

∫ ∞
0

dt e−γtA2(s, t, x)Ψ{x}(s, ηs)
)2

def
= A1(s, n) +A2(s, n) .

(3.10)

Lemma 3.2. Let T > 0. The estimate

Eνρn0 (·) [A1(s, n)] .
ε3/4

n

(
1 +

1
√
γ

+
1

γ2

)
holds uniformly in n for all 0 ≤ s ≤ T , where the proportionality constant depends only
on T .

Proof. Note that A1(s, n) is a square. Writing it as the product whose summation
indexes are, respectively, x1, t1 and x2, t2 induces us to restrict our attention to the
following three cases: {|x1|, |x2| ≤ n2 and t1, t2 ≥

√
ε}, {t1, t2 ≤

√
ε}, and {|x1|, |x2| ≥

n2 and t1, t2 ≥
√
ε} .

1st case: |x1|, |x2| ≤ n2 and t1, t2 ≥
√
ε. That is, we want to estimate( ∑

|x|≤n2

∫ ∞
√
ε

dt e−γtA1(s, t, x) Ψ{x}(s, ηs)
)2

. (3.11)

By the local central limit theorem given in [20, Theorem 2.3.6, page 38 and also check
the definition of pn on page 22],∣∣pt(x, y)− pt(x, 0)

∣∣ .
∣∣Ktn2(x, y)−Ktn2(x, 0)

∣∣+
|y|
n4t2

, (3.12)

where by Kt we denote the transition kernel of a Brownian motion at time 2t. Hence,
using that ρt is bounded, we can estimate (3.8) as follows:

|A1(s, t, x)| . 1

`

`−1∑
y=0

∣∣∣Ktn2(x, y)−Ktn2(x, 0)
∣∣∣+

1

`

1

n4t2

`−1∑
y=0

y

=: I(t, x) + E(n, t) .

It is therefore sufficient to estimate( ∑
|x|≤n2

∫ ∞
√
ε

dt e−γt I(t, x) Ψ{x}(s, ηs)

)2

+

( ∑
|x|≤n2

∫ ∞
√
ε

dt e−γtE(n, t) Ψ{x}(s, ηs)

)2

.

(3.13)
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Using that ` = εn we see that the error term can be bounded from above as

E(n, t) .
ε

n3t2
.

Hence, due to the boundedness of Ψ{x},∣∣∣∣ ∑
|x|≤n2

∫ ∞
√
ε

dt e−tγE(n, t)Ψ{x}(s, ηs)

∣∣∣∣ .

√
ε

n
,

so that the contribution of the above to (3.13) is at most of the order of

ε

n2
.

We turn now to the analysis of I(t, x). Using Taylor’s formula, we write

Ktn2(x, y) = Ktn2(x, 0) + ∂2Ktn2(x, 0)y +
1

2
∂2

2Ktn2(x, θx,y)y2 , (3.14)

where θx,y ∈ [0, y]. Thus

I(t, x) ≤ 1

`

`−1∑
y=0

∣∣∣∂2Kn2t(x, 0)
∣∣∣y +

1

`

`−1∑
y=0

1

2

∣∣∣∂2
2Kn2t(x, θx,y)

∣∣∣y2 . (3.15)

We first focus on the contributions coming from the first sum above. A direct computation
shows that it is bounded from above by

ε

2

1√
2π

1

n

1

t3/2
|x|
n

exp
{
− (x/n)2

2t

}
=: B(t, x) .

Plugging the above into (3.13), using that ρ is bounded from above and below, we see
that we need to estimate∑

|x1|≤n2,

|x2|≤n2

∫ ∞
√
ε

dt1

∫ ∞
√
ε

dt2 e
−γ(t1+t2)B(t1, x1)B(t2, x2)E

[
Ψ{x1}(s, ηs)Ψ{x2}(s, ηs)

]
.

To estimate the above we distinguish between two cases, the diagonal case, i.e., those
tuples (x1, x2) ∈ Z2 such that x1 = x2, and the off-diagonal case which consists of the
remaining ones. We start with the former.
The diagonal case: Write x = x1 = x2. Removing the restrictions |x| ≤ n2 and
t1, t2 ≥

√
ε, and using that Ψ{·} is bounded we infer that it suffices to estimate

∑
x∈Z

∫ ∞
0

dt1

∫ ∞
0

dt2 e
−γ(t1+t2) ε

2

n2

1

t
3/2
1

1

t
3/2
2

(x
n

)2

exp
{
− (x/n)2

2t1

}
exp

{
− (x/n)2

2t2

}
. (3.16)

Using a Riemann sum approximation and the Cauchy-Schwarz inequality to sum sepa-
rately over the two exponentials below, we obtain that

1

n

∑
x∈N

(x
n

)2

exp
{
− (x/n)2

2t1

}
exp

{
− (x/n)2

2t2

}
. t

3/4
1 t

3/4
2 .

Using the fact that the primitive of e−γt/t3/4 equals −Γ( 1
4 , γt)/γ

1/4, where Γ denotes the
upper incomplete Gamma function defined by

Γ(a, t) =

∫ ∞
t

sa−1e−sds,
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we see that (3.16) is bounded from above by some proportionality constant times

ε2

n

1
√
γ
.

The off-diagonal case: By [16, Lemma 3.2] we know that

sup
x1 6=x2

Eνρn0 (·)

[
Ψ{x1}(s, ηs)Ψ{x2}(s, ηs)

]
.

√
s

n
. (3.17)

Thus, removing once again the restrictions |x1|, |x2| ≤ n2 and t1, t2 ≥
√
ε, we see that it

is sufficient to estimate
√
s

n

∫ ∞
0

dt1

∫ ∞
0

dt2 e−γ(t1+t2)
∑
x1 6=x2

ε2 1

n2

1

t
3/2
1 t

3/2
2

∣∣∣x1

n

∣∣∣∣∣∣x2

n

∣∣∣ exp
{
− (x1/n)2

2t1

}
exp

{
− (x2/n)2

2t2

}
.

(3.18)
As before, a Riemann sum approximation argument shows that

1

n

∑
x

1√
t1

∣∣∣x1

n

∣∣∣ exp
(
− (x1/n)2

2t1

)
.
√
t1 .

Hence, (3.18) is bounded from above by some proportionality constant times

√
s

n
ε2
(∫ ∞

0

dt e−γt
1√
t

)2

=

√
s

n
ε2 Γ( 1

2 , 0)2

γ
.

We now analyse the remainder term in (3.15) following a similar procedure as above.
The diagonal case: It turns out to be handy to use the scaling properties of the heat
kernel. To that end we note that for x ∈ Z/n, and θnx,y ∈ [0, y/n](

∂2
2Kn2t

)
(nx, nθnx,y) =

1

n3
∂2

2Kt(x, θ
n
x,y) . (3.19)

Thus, performing the sum over x = x1 = x2 we see that we need to estimate∫ ∞
√
ε

dt1

∫ ∞
√
ε

dt2 e
−γ(t1+t2)

∑
x∈Z/n

1

n6

1

`2

`−1∑
y1,y2=0

|∂2
2Kt1(x, θnx,y1)| |∂2

2Kt2(x, θnx,y2)|y2
1y

2
2 .

(3.20)
We focus on

1

n

∑
x∈Z/n

|∂2
2Kt1(x, θnx,y1)| |∂2

2Kt2(x, θnx,y2)| . (3.21)

The key property that we will use is that by a scaling argument one has that

|∂2
2Kt1(x, θnx,y)| .

(√
t1 + |x− θnx,y|

)−3

. (3.22)

To make use of that estimate we split the sum above into two parts. Summing first over
|x| ≤

√
ε, we estimate (3.21) by

1

n

∑
x∈Z/n,|x|≤

√
ε

1

t
3/2
1

1

t
3/2
2

.

√
ε

t
3/2
1 t

3/2
2

.

The sum over |x| ≥
√
ε can be estimated with the help of (3.22) from above by some

proportionality constant times

1

n

∑
x∈Z/n,|x|≥

√
ε

1

|x− θnx,y|6
.

1

n

∑
x∈Z/n,|x|≥

√
ε

1

|x|6
. ε−5/2 .
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Here, we used that ε < 1 to obtain the first inequality, so that θnx,y ≤ ε ≤
√
ε. Hence, (3.21)

is bounded from above by some proportionality constant times
√
ε

t
3/2
1 t

3/2
2

+ ε−5/2 .

Since
1

`

`−1∑
y=0

y2 . `2 (3.23)

and ` = εn, we deduce that (3.20) is bounded by some proportionality constant times∫ ∞
√
ε

dt1

∫ ∞
√
ε

dt2 e
−γ(t1+t2) 1

n5
`4(

√
ε

t
3/2
1 t

3/2
2

+ ε−5/2) .
ε4

n
+
ε3/2

γ2n
.

The off diagonal case: Making use of (3.17), the relation (3.19), and (3.23) we see that
we need to estimate

√
s
ε4

n3

∑
x1 6=x2∈Z/n

∫ ∞
√
ε

dt1

∫ ∞
√
ε

dt2 e
−γ(t1+t2) sup

0≤y≤`−1
∂2

2Kt1(x1, θ
n
x1,y)∂2

2Kt2(x2, θ
n
x2,y) .

Making use of (3.22) and distinguishing between the different cases |x1| ≤
√
ε, |x1| ≥

√
ε

and the same for x2 as in the previous case we see that the above sum is bounded by
some proportionality constant times

√
s

n
ε9/2 +

√
s

n

ε2

γ2
.

In conclusion we have shown that the contribution of the first case to A1(s, n) is at most
a proportionality constant times

ε

n2
+
ε2

n

1
√
γ

+

√
s

n
ε2 Γ( 1

2 , 0)2

γ
+
ε4

n
+
ε3/2

γ2n
+

√
s

n
ε9/2 +

√
s

n

ε2

γ2
.

2nd case: t1, t2 ≤
√
ε. In that case we write(∑
x

∫ √ε
0

dt e−γtA1(s, t, x)Ψ{x}(s, ηs)
)2

.
(∑

x

∫ √ε
0

dt e−γtpt(x, 0)Ψ{x}(s, ηs)
)2

+
(∑

x

∫ √ε
0

dt e−γt
1

`

`−1∑
y=0

pt(x, y)Ψ{x}(s, ηs)
)2

.

(3.24)

We start by dealing with the first term on the right hand side above. As before we
distinguish between diagonal and off diagonal terms.
The diagonal case: Using that Ψ is bounded we estimate for t1, t2 ≥ 0∑

x

pt1(x, 0)pt2(x, 0) = pt1+t2(0, 0) .
1

n
√

(t1 + t2)
.

Hence, ∑
x

∫ √ε
0

dt1

∫ √ε
0

dt2 e
−γ(t1+t2)pt1(x, 0) pt2(x, 0) Ψ{x}(s, ηs)

2

.
1

n

∫ √ε
0

dt1

∫ √ε
0

dt2
1√

t1 + t2
.

1

n
ε3/4 .
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The off diagonal case: Using (3.17), for fixed t1 and t2 we see that it is sufficient to
estimate √

s

n

∑
x1 6=x2

pt1(x1, 0)pt2(x2, 0) ≤
√
s

n
.

Integrating the above with respect to t1 and t2 in [0,
√
ε]2 yields

ε
√
s

n
.

It now remains to deal with the second term in (3.24).
The diagonal case: We estimate, for fixed t1 and t2,

1

`2

∑
x

`−1∑
y1,y2=0

pt1(x, y1)pt2(x, y2) =
1

`2

`−1∑
y1,y2=0

pt1+t2(y1, y2) . (3.25)

Using that for any y1, y2 ∈ Z we have that

pt1+t2(y1, y2) .
1

n
√
t1 + t2

, (3.26)

we bound (3.25) from above by the right hand side of (3.26). Integrating this with respect

to t1, t2 ∈ [0,
√
ε] yields an upper bound of ε3/4

n .
The off diagonal case: Finally, for fixed t1 and t2 and using (3.17) the expectation of
the off diagonal term can be estimated from above by

√
s

n

1

`2

∑
x1 6=x2

`−1∑
y1,y2=0

pt1(x1, y1)pt2(x2, y2) ≤
√
s

n
.

Thus, after integration the total contribution is ε
√
s

n . Summing up what we have done
in this case, the left hand side in (3.24) is bounded from above by some proportionality
constant times

1

n
ε3/4 +

ε
√
s

n
.

3rd case: |x1|, |x2| ≥ n2, t1, t2 ≥
√
ε. Using large deviations estimate for the random

walk if t ≤ n/ε, and the same estimates as in the second case if t ≥ n/ε and the
exponential factor e−γt shows that the contribution to the first term of (3.10) is at most
some proportionality constant times

n

ε
e−cn/ε +

e−γn/ε

γ
≤ 2ε

cn
+

ε

γ2n
,

for some positive constant c. Here, we used the estimates

xe−cx ≤ 2

cx
and e−γx ≤ 1

γx

which hold for all x ≥ 0. Summing up the contributions from the three cases above
concludes the proof of Lemma 3.2.

The estimates on the diagonal terms above imply the following corollary.

Corollary 3.3. Let T > 0, then uniformly in n for all 0 ≤ s ≤ T ,∑
x∈Z

E
[( ∫ ∞

0

dt e−γtA1(s, t, x)
)2]

.
ε3/4

n

(
1 +

1
√
γ

+
1

γ2

)
,

where the proportionality constant only depends on T .

EJP 29 (2024), paper 76.
Page 16/53

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1137
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Joint fluctuations for current and occupation time

Lemma 3.4. Let T > 0 and assume that the initial profile ρ0 is globally Lipschitz
continuous with Lipschitz constant L > 0. Then, the following estimate holds uniformly
in n for all 0 ≤ s ≤ T :

E[A2(s, n)] .
1

γ2

ε

n
+

1

γ2

ε2

n
,

where the proportionality constant does only depend on T .

Proof. Our first step consists in obtaining an estimate for√
ρns (0)(1− ρns (0))−

√
ρns (y)(1− ρns (y))

uniformly in |y| ≤ εn. To that end, first of all note that ρns (y) =
∑
x∈Z ps(y− x)ρ0(x/n), so

that
ρns (0)− ρns (y) =

∑
x∈Z

(ps(−x)− ps(y − x))ρ0(x/n)

=
∑
x∈Z

ps(x)(ρ0(−x/n)− ρ0((y − x)/n)) .

By the Lipschitz continuity and the fact that ps(·) is a transition probability, we obtain
that

|ρns (0)− ρns (y)| . |y|
n
.

Since ρ is bounded we see that we have the same kind of estimate for∣∣ρns (0)(1− ρns (0))− ρns (y)(1− ρns (y))
∣∣ .

Moreover, since x 7→
√
x is globally Lipschitz for x bounded away from zero we see that,

since ρ0 is bounded away from zero and from one,

∣∣√ρns (0)(1− ρns (0))−
√
ρns (y)(1− ρns (y))

∣∣ .
|y|
n
. (3.27)

As in the proof of the previous lemma we write the square of the second term in the
middle line of (3.10) as∑

x

∫ ∞
0

dt1

∫ ∞
0

dt2 e
−γ(t1+t2)A2(s, t1, x)A2(s, t2, x)Ψ{x}(s, ηs)

2

+
∑
x1 6=x2

∫ ∞
0

dt1

∫ ∞
0

dt2 e
−γ(t1+t2)A2(s, t1, x1)A2(s, t2, x2)Ψ{x1}(s, ηs)Ψ{x2}(s, ηs) .

(3.28)

We first deal with the first term above. For fixed t1, t2, using that Ψ is bounded and (3.27)
we estimate

∑
x

A2(s, t1, x)A2(s, t2, x)Ψ{x}(s, ηs)
2 .

1

`2

∑
x

`−1∑
y1,y2=0

pt1(x, y1)pt2(x, y2)
y1y2

n2

=
1

`2

`−1∑
y1,y2=0

pt1+t2(y1, y2)
y1y2

n2

=
1

`2
1

n2

`−1∑
y1=0

y1Ey1 [Xt1+t21{0≤Xt1+t2
≤`−1}] ,

where X above is a simple random walk accelerated by n2 starting in y1. Estimating
the expectation by `, calculating the sum and using that ` = εn we see that the above is
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at most ε
n . Integrating this with respect to t1 and t2 and taking the term e−γ(t1+t2) into

account we obtain the estimate
1

γ2

ε

n
.

We turn to the second term in (3.28). Making use of the correlation estimate (3.17), we
see that the expectation of the integrand is for fixed t1 and t2 at most a proportionality
constant times

√
s

n

∑
x1 6=x2

A2(s, t1, x1)A2(s, t2, x2) .

√
s

n

1

`2

∑
x1 6=x2

`−1∑
y1,y2=0

pt1(x1, y1)pt2(x2, y2)
y1y2

n2

.

√
s

n3

1

`2

`−1∑
y1,y2=0

∑
x

pt1(x, y1)
∑
x

pt2(x, y2)y1y2

=

√
s

n3

1

`2

`−1∑
y1,y2=0

y1y2

.
ε2
√
s

n
.

Here we used in the last line that ` = εn. Plugging this estimate into (3.28) yields the
bound

1

γ2

ε2
√
s

n
.

We thus conclude the proof of Lemma 3.4.

The estimates on the diagonal terms above imply the following corollary.

Corollary 3.5. Let T > 0, then uniformly in n for all 0 ≤ s ≤ T it holds that∑
x∈Z

E
[( ∫ ∞

0

dt e−γtA2(s, t, x)
)2]

.
1

γ2

ε

n
,

where the proportionality constant depends solely on T .

We now come to the proof of Theorem 2.5. As aforementioned, we are going to show
the result between times 0 and T for ease of notation (that is, we are going to show (3.1)),
which can be straightforwardly adapted to times 0 ≤ s < t ≤ T .

Proof. Choosing γ = 1√
T

, Lemmas 3.2 and 3.4 imply that∫ T

0

dsE
[
fγ(s, ηs)

2
]
.

Tε3/4

n
(1 + T 1/4 + T ) .

Regarding the second term on the right hand side of (3.6) and expanding fγ in Fourier
space, we see that it equals

4

∫ T

0

dt
∑
x

E
[(
f̂γ(s, x)

(ηs(x+ 1)− ηs(x))√
ρns (x)(1− ρns (x))

+ f̂γ(s, x+ 1)
(ηs(x)− ηs(x+ 1))√

ρns (x+ 1)(1− ρns (x+ 1))

)2
]
.

Hence, by the boundedness of η and since ρ is strictly bounded away from zero and one,
the expression above is at most

8

∫ T

0

dt
∑
x

E
[
f̂γ(s, x)2 + f̂γ(s, x+ 1)2

]
.
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Note that

f̂γ(s, x) =

∫ ∞
0

dt e−γt(A1(s, t, x) +A2(s, t, x))
def
= f̂γ,1(s, x) + f̂γ,2(s, x) .

Thus, ∫ T

0

dt
∑
x

E[f̂2
γ (s, x)] ≤ 2

∫ T

0

dt
∑
x

E
[
f̂2
γ,1(s, x) + f̂2

γ,2(s, x)
]
.

The result can now be deduced with the help of Corollaries 3.3 and 3.5. This completes
the proof.

4 Correlation function estimates – Proofs of Theorems 2.8 and 2.9

We start this section by introducing more notation. Given k times 0 ≤ t1 ≤ t2 ≤ · · · ≤
tk ≤ T and k points x1, . . . , xk, let us define the correlation function as

φ(t1, . . . , tk;x1, . . . , xk) := Eνρn0 (·)

[ k∏
i=1

ηti(xi)
]
. (4.1)

Note that we do not require that t1, . . . , tk or that x1, . . . , xk are distinct from each other.
For some special cases, an upper bound on the correlation functions has been

obtained. When k = 2, it was shown in [16, Lemma 3.2] that if 0 ≤ s < t ≤ T , then

sup
x1, x2 distinct

∣∣φ(t, t;x1, x2)
∣∣ ≤ C

√
t

n
, sup

x1, x2

∣∣φ(s, t;x1, x2)
∣∣ ≤ C

n

{√
s+

1√
t− s

}
(4.2)

for some constant C that depends only on the initial profile ρ0(·). Note that the second
inequality holds even if x1 = x2, whereas this is not true for the first bound.

An estimate of the correlation function of multiple spatial points at a fixed time has
been obtained in [10].

Theorem 4.1 ([10]). Fix an integer k ≥ 2 and assume that the initial profile ρ0(·) is
continuously differentiable. Then there exists a constant C = C(ρ0, T ) such that for all
0 ≤ t ≤ T ,

sup
x1,..., xk distinct

∣∣φ(t, . . . , t;x1, . . . , xk)
∣∣ ≤ Cn−k/2

if k is even, and

sup
x1,..., xk distinct

∣∣φ(t, . . . , t;x1, . . . , xk)
∣∣ ≤ Cn−(k+1)/2 log n

if k is odd.

In particular, this theorem implies that

sup
x1,..., xk distinct

∣∣φ(t, . . . , t;x1, . . . , xk)
∣∣ ≤ Cn−k/2 (4.3)

for all integers k ≥ 2. Our first step in obtaining a full estimate on (4.1) is to generalize
Theorem 4.1 to the case in which the points xi’s are not necessarily distinct from each
other. Recall that Λk denotes the set of non-repetitive points with k coordinates:

Λk :=
{
x = (x1, . . . , xk) ∈ Zk : xi 6= xj , ∀ 1 ≤ i, j ≤ k

}
.

For a list of non-repetitive points (xi : i ∈ I), we sometimes write it as {xi : i ∈ I} in
order to perform set operations.
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We start by extending Theorem 4.1 to allow repetitive points. To that end we first
need to introduce more notation. Consider a list of points (xi : i ∈ I). We denote by
|(xi : i ∈ I)| the total number of points, which is equal to the cardinality of I, and by
‖(xi : i ∈ I)‖ the total number of non-repetitive points. In particular, repetitive points
are not counted in ‖(xi : i ∈ I)‖. For example, given two real numbers a 6= b, then
|(a, a, b)| = 3 but ‖(a, a, b)‖ = 1.

Proposition 4.2. Assume that the initial profile ρ0(·) is C1. Fix non-negative integers
k ≥ 2 and ` ≤ k. Then there exists a constant C = C(ρ0, T ) such that, for all 0 ≤ t ≤ T ,

sup
‖(xi : 1≤i≤k)‖=`

∣∣φ(t, . . . , t;x1, . . . , xk)
∣∣ ≤ Cn−`/2 .

Remark 4.3. The above result is optimal at least in some cases. Indeed, assume that
k = 2 and that there are only repetitive points. In that case ` = 0 and the left hand side
indeed does not decay in n.

Proof. We prove this theorem by induction on k. The case k = 2 is a direct consequence
of (4.2). Indeed, (4.2) deals with the case k = ` = 2 and the case ` = 0 < k = 2 is clear.
When k = 3, the case ` = 0 is trivial and the case ` = 3 is exactly (4.3). The remaining
case is ` = 1, or in other words, where x1 = x2 6= x3. Using the identity

η(x)2 = (1− 2ρn(x))η(x) + ρn(x)−
(
ρn(x)

)2
, (4.4)

we obtain that

φ(t, t, t;x1, x1, x3) = E[ηt(x1)ηt(x3)2]

= (1− 2ρnt (x3))E[ηt(x1)ηt(x3)] + (ρnt (x3)− ρnt (x3)2)E[ηt(x1)] ,

hence ∣∣φ(t, t, t;x1, x1, x3)
∣∣ .

∣∣φ(t, t;x1, x3)
∣∣ . n−1 ,

where the contribution coming from ρ(x)− ρ(x)2 is zero since all random variables are
centred.

Assume that the statement of the theorem holds for the cases when the total number
of points is strictly less than k for some k ≥ 4. The case ` = k is just (4.3). Thus, assume
that there is at least one non-repetitive point. Assume without loss of generality that
xk = xk−1. Note that under this assumption, the total number of non-repetitive points in
(x1, . . . , xk) is less than or equal to

‖(x1, . . . , xk−2)‖ ∧ ‖(x1, . . . , xk−1)‖ .

This observation together with identity (4.4) yield∣∣φ(t, . . . , t;x1, . . . , xk)
∣∣ .

∣∣φ(t, . . . , t;x1, . . . , xk−1)
∣∣+
∣∣φ(t, . . . , t;x1, . . . , xk−2)

∣∣,
which by induction assumption is bounded by

Cn−‖(xi : 1≤i≤k−1)‖/2 + Cn−‖(xi : 1≤i≤k−2)‖/2 . n−‖(xi : 1≤i≤k)‖/2 .

The plan for the rest of this section is as follows. In Subsection 4.1 we estimate the
correlation functions of two lists of non-repetitive points at two different times. This is
the content of Theorem 4.4, which will be proved subject to some technical estimates.
Based on Theorem 4.4, in Corollary 4.7 we estimate the correlation functions with two
sets of general points at two different times. In Subsection 4.2 we prove Theorem 2.8
subject to some technical estimates and as a corollary of Theorem 4.4. In Subsection 4.3
we prove Theorem 2.9. Theorem 2.9 will then allow to provide the proofs of the technical
estimates that were needed in the proofs of Theorems 4.4 and Theorem 2.8. The proofs
of these estimates will be given in Subsections 4.4 and 4.5.
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4.1 Two times correlation estimates and some corollaries

Recall that we are assuming in this paper that the initial profile ρ0(·) is C2 with
bounded derivatives.

Theorem 4.4. Fix non-negative integers k1, k2 and consider two lists of non-repetitive
points (xi : 1 ≤ i ≤ k1) and (zj : 1 ≤ j ≤ k2). There exists a constant C independent of
(xi : 1 ≤ i ≤ k1) and (zj : 1 ≤ j ≤ k2) such that

∣∣∣Eνρn0 (·)

[ k1∏
i=1

ηt(xi)

k2∏
j=1

ηs(zi)
)]∣∣∣ ≤ Cn−(k1+k2)/2

(
n√

n2(t− s) + 1

)k1∧k2
, (4.5)

for any s < t such that 0 ≤ s, t ≤ T and every integer n ≥ 1.

Remark 4.5. The upper bound above can be improved a little bit if we use the original
bounds in Theorem 4.1 instead of the simplified one in (4.3). In that case the right hand
side in (4.5) would become

Chn(k1 + k2)

(
n√

n2(t− s) + 1

)k1∧k2
where

hn(k) =

{
n−k/2 if k is even,

n−(k+1)/2 log n if k is odd.

However, doing so would make the proofs of this theorem and related lemmas more
complicated to follow. In addition, the upper bound obtained in this theorem is already
enough for our purpose of the proof of tightness of the current in Section 5. The same
applies to Theorem 2.8.

Remark 4.6. A previous result on the estimate of the two times correlation was obtained
by C. Landim in [19]. The upper bound obtained there is

C
{ log n

n2
+

1

(t− s)n2 + 1

}
.

Our result in Theorem 4.4 improves this bound significantly. However, we are unsure if
our bound is sharp.

Proof of Theorem 4.4. The case k1 = 0 is just Theorem 4.1. Therefore, from now on
we assume that k1 6= 0. Throughout the proof of this theorem, the collection of points
(zi : 1 ≤ j ≤ k2) and the time s are fixed. To simplify the notation, we write

ϕt(xi : 1 ≤ i ≤ k1) = Eνρn0 (·)

[ k1∏
i=1

ηt(xi)

k2∏
j=1

ηs(zj)
)]
, t ≥ s . (4.6)

A tedious but straightforward computation (see also [10]) shows that, for t ≥ s,

∂tϕt(xi : 1 ≤ i ≤ k1) = Llex
k1 ϕt(xi : 1 ≤ i ≤ k1)

+ 2n2
k1∑

i,j=1

1{|xj − xi| = 1}
(
ρnt (xj)− ρnt (xi)

)[
ϕ̃t(xj)− ϕ̃t(xi)

]
− n2

k1∑
i,j=1

1{|xj − xi| = 1}
(
ρnt (xj)− ρnt (xi)

)2
ϕ̃t(xi, xj) ,

where ϕ̃t(A) = ϕt({xi : 1 ≤ i ≤ k1}\A) for any subset A ⊂ {x1, . . . , xk1}, and Llex
k1

is the
generator of the SSEP with k1 labelled particles accelerated by a factor n2. Denote by
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(Xi : 1 ≤ i ≤ k1) the accelerated SSEP with k1 labelled particles, and by P(xi : 1≤i≤k1)

(resp. E(xi : 1≤i≤k1)) the probability (resp. expectation) with respect to (Xi : 1 ≤ i ≤ k1)

starting from initial points (xi : 1 ≤ i ≤ k1). By Xi
t we represent the location at time t of

the particle which was at site xi at time 0. Applying Duhamel’s Principle, for any t > s,
we can write ϕt(xi : 1 ≤ i ≤ k1) as the sum of an initial term and an integral term:

ϕt(xi : 1 ≤ i ≤ k1) = E(xi : 1≤i≤k1)

[
ϕs(X

i
t−s : 1 ≤ i ≤ k1)

]
+ E(xi : 1≤i≤k1)

[ ∫ t

s

Ψ(Xt−r, r)dr
] (4.7)

where for every integer k1 ≥ 1,

Ψ((xi : 1 ≤ i ≤ k1), r) := 2n2
k1∑

i,j=1

1{|xj − xi| = 1}
(
ρnr (xj)− ρnr (xi)

)[
ϕ̃r(xj)− ϕ̃r(xi)

]
− n2

k1∑
i,j=1

1{|xj − xi| = 1}
(
ρnr (xj)− ρnr (xi)

)2
ϕ̃r(xi, xj) .

(4.8)

We will show in Corollary 4.16 ahead that the initial term at the right hand side
of (4.7) is bounded from above by

Cn−(k1+k2)/2
( n√

n2(t− s) + 1

)k1∧k2
,

while the integral term will be handled in Proposition 4.12, which shows that∣∣∣E(xi : 1≤i≤k1)

[ ∫ t

s

Ψ(Xt−r, r)dr
]∣∣∣ . n−(k1+k2)/2

( n√
n2(t− s) + 1

)k1∧k2
,

proving the theorem.

We now give an estimate on the two time correlation function involving with two lists
of general points. To formulate the result we need to introduce one more notation. Given
a list of k points (xi : 1 ≤ i ≤ k) we write R((xi : 1 ≤ i ≤ k)) for the collection of index
sets I such that

(1) I ⊆ {1, . . . , k},
(2) the list (xi : i ∈ I) consists only of non-repetitive points,

(3) every non-repetitive point in (xi : 1 ≤ i ≤ k) is also contained in (xi : i ∈ I).

Note that if I ∈ R((xi : 1 ≤ i ≤ k)), then (xi : i ∈ I) might contain more non-repetitive
points than (xi : 1 ≤ i ≤ k). As an example consider (xi : 1 ≤ i ≤ k) = (a, b, c, c, d, d) and
I = {1, 2, 3}, then (xi : i ∈ I) = (a, b, c).

Corollary 4.7. Fix non-negative integers k1, k2 and consider two lists of points (xi : 1 ≤
i ≤ k1) and (zj : 1 ≤ j ≤ k2). Suppose that

‖(xi : 1 ≤ i ≤ k1)‖ = `1 and ‖(zj : 1 ≤ j ≤ k2)‖ = `2 .

Then there exists a constant C independent of (xi : 1 ≤ i ≤ k1) and (zi : 1 ≤ i ≤ k2) (but
may depend on k1 and k2) such that

∣∣∣Eνρn0 (·)

[ k1∏
i=1

ηt(xi)

k2∏
j=1

ηs(zj)
)]∣∣∣ ≤ C sup

I,J
n−(|I|+|J|)/2

( n√
n2(t− s) + 1

)|I|∧|J|
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for any s < t with 0 ≤ s, t ≤ T and every integer n ≥ 1, where the supremum is taken
over all subsets I ∈ R((xi : 1 ≤ i ≤ k1)) and J ∈ R((zj : 1 ≤ j ≤ k2)). Observing that

|I|+ |J | ≥ `1 + `2 and |I| ≤ k1 + `1
2

, |J | ≤ `2 + k2

2
,

we have in particular that∣∣∣Eνρn0 (·)

[ k1∏
i=1

ηt(xi)

k2∏
j=1

ηs(zj)
)]∣∣∣ ≤ Cn−(|`1|+|`2|)/2

( n√
n2(t− s) + 1

) `1+k1
2 ∧ `2+k2

2

.

Proof. Using the identity (4.4) we can bound the absolute value of the expectation in the
statement of this corollary by some constant depending only on ρt(·) times∑

I,J

∣∣∣Eνρn0 (·)

[∏
i∈I

ηt(xi)
∏
j∈J

ηs(zj)
)]∣∣∣ ,

where the (finite) sum above is taken over all I ∈ R((xi : 1 ≤ i ≤ k1)) and all J ∈ R((zj :

1 ≤ j ≤ k2)). Applying Theorem 4.4 to estimate each term in the above sum, yields
the first bound. For the second bound note that by the third item in the definition of
R((xi : 1 ≤ i ≤ k)) one has that |I| ≥ `1. To see that also |I| ≤ k1+`1

2 , note that to
construct I one first chooses all the `1 indices corresponding to non-repetitive points in
(x1 : 1 ≤ i ≤ k1). Since all other points in (x1 : 1 ≤ i ≤ k1) repeat at least twice, at most
k1−`1

2 indices can be added to I. This finishes the proof.

The next corollary will be helpful in establishing the next result which will play a key
role in the tightness proof of the current in Section 5. Before stating it, we introduce
some notation. Given a list of points (xi : 1 ≤ i ≤ k), let mi be the number of points
which are repeated i times in (xi : 1 ≤ i ≤ k) and denote the maximal number of distinct
points appearing in (xi : 1 ≤ i ≤ k) by

[(xi : 1 ≤ i ≤ k)] =
∑
i≥1

mi . (4.9)

To illustrate the difference of [·] from | · | and ‖ · ‖ which are defined before, consider a
list of points (a, b, c, c, d, d, d) with a 6= b 6= c 6= d. Then

m1 = 2,m2 = 1,m3 = 1 and [(a, b, c, c, d, d, d)] = 4;

|(a, b, c, c, d, d, d)| = 7, ‖(a, b, c, c, d, d, d)‖ = 2.

The following equations hold:

k =
∑
i≥1

imi , ‖(xi : 1 ≤ i ≤ k)‖ = m1 . (4.10)

Proposition 4.8. Fix a list of points (xi : 1 ≤ i ≤ k) with ‖(xi : 1 ≤ i ≤ k)‖ = ` and
[(xi : 1 ≤ i ≤ k)] = m. Then, there exists a constant C independent of the points in
(xi : 1 ≤ i ≤ k) such that

∣∣∣Eνρn0 (·)

[ k∏
i=1

(
ηt(xi)− ηs(xi)

)]∣∣∣ ≤ Cn−`/2
( n√

n2(t− s) + 1

)`/2
, if t− s ≥ 1

n

and∣∣∣Eνρn0 (·)

[ k∏
i=1

(
ηt(xi)− ηs(xi)

)]∣∣∣ ≤ Cn−m/2
( n√

n2(t− s) + 1

)m−`/2
, if t− s ≤ 1

n
.
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Proof. We first derive a formula for the upper bound of the expectation to be estimated
in this proposition. Opening the product inside the expectation and using the triangle
inequality, we obtain

∣∣∣Eνρn0 (·)

[ k∏
i=1

(
ηt(xi)− ηs(xi)

)]∣∣∣ ≤ ∑
Q⊆{1,..., k}

∣∣∣Eνρn0 (·)

[∏
i∈Q

ηt(xi)
∏
j∈Qc

ηs(xj)
]∣∣∣

where Qc is the complement of Q with respect to the set {1, . . . , k}. In view of Corol-
lary 4.7, we have that

∣∣∣Eνρn0 (·)

[ k∏
i=1

(
ηt(xi)− ηs(xi)

)]∣∣∣ . sup
Q⊆{1,2,...,k}

sup
I,J

n−(|I|+|J|)/2
( n√

n2(t− s) + 1

)|I|∧|J|
where the supremum is taken over all subsets I ∈ R((xi : i ∈ Q)) and J ∈ R(xj : j ∈ Qc).
Noticing that every non-repetitive point in (xi : 1 ≤ i ≤ k) is a non-repetitive point in
either (xi : i ∈ Q) or (xj : j ∈ Qc), we can further conclude that

∣∣∣Eνρn0 (·)

[ k∏
i=1

(
ηt(xi)− ηs(xi)

)]∣∣∣ . sup
I,J

n−(|I|+|J|)/2
( n√

n2(t− s) + 1

)|I|∧|J|
(4.11)

where the supremum is taken over all subsets I, J ∈ {1, 2, · · · , k} such that I∩J = ∅, both
(xi : i ∈ I) and (xj : j ∈ J) consist of only non-repetitive points, and every non-repetitive
point in (xi : 1 ≤ i ≤ k) is contained in either (xi : i ∈ I) or (xj : j ∈ J).

Let us denote the supremum on the right hand side of (4.11) by M(xi:1≤i≤k). We are
going to show that

M(xi:1≤i≤k) ≤


Cn−`/2

(
n√

n2(t−s)+1

)`/2
, if t− s ≥ 1

n

Cn−m/2
(

n√
n2(t−s)+1

)m−`/2
, if t− s ≤ 1

n .
(4.12)

The proof is based on induction in m. Obviously (4.12) follows from Theorem 4.4 if m = `

since in this case all points are non-repetitive. Since m ≥ ` this is the base case.
Assume that the statement of (4.12) holds for every list of points (yi : 1 ≤ i ≤ k) and

all k ∈ N such that [(yi : 1 ≤ i ≤ k)] < m. Consider now a list of points (xi : 1 ≤ i ≤ k)

such that [(xi : 1 ≤ i ≤ k)] = m. Pick a repetitive point of (xi : 1 ≤ i ≤ k), say xi1 . Assume
this point is repeated a times in (xi : 1 ≤ i ≤ k): there exist indices i1, i2, . . . , ia such that

xi1 = xi2 = · · · = xia .

Let Axi1 ⊂ {1, 2, . . . , k} be the set of those indices: Axi1 = {i1, i2, . . . , ia}. Denote by I
and J those sets at which the supremum is achieved in (4.11). We need to carefully
analyse to which sets of I and J do the elements of Axi1 belong to. Recall that I and J
correspond to non-repetitive lists so that at most one element of Axi1 can belong to I
and J . There are four cases:

1. There is one element contained in I and one element contained in J . W.l.o.g.,
assume i1 ∈ I and i2 ∈ J .

2. There is one element contained in I and no element contained in J . W.l.o.g., assume
i1 ∈ I.

3. There is no element contained in I and one element contained in J . W.l.o.g., assume
i2 ∈ J .

4. There is no element contained in I, neither in J .
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Case (1): Note that

n−(|I|+|J|)/2
( n√

n2(t− s) + 1

)|I|∧|J|
= n−(|I\{i1}|+|J\{i2}|)/2

( n√
n2(t− s) + 1

)|I\{i1}|∧|J\{i2}|
× 1√

n2(t− s) + 1
.

Thus, by the definition of M(xi:1≤i≤k, i/∈Axi1 ),

n−(|I\{i1}|+|J\{i2}|)/2
( n√

n2(t− s) + 1

)|I\{i1}|∧|J\{i2}|
≤ M(xi:1≤i≤k, i/∈Axi1 ) .

By the fact that xi1 is a repetitive point of the list (xi : i ≤ i ≤ k), we have that
‖(xi : 1 ≤ i ≤ k, i /∈ Axi1 )‖ = ` and [(xi : 1 ≤ i ≤ k, i /∈ Axi1 )] = m− 1. Hence,

M(xi:1≤i≤k, i/∈Axi1 ) .


n−`/2

(
n√

n2(t−s)+1

)`/2
, if t− s ≥ 1

n

Cn−m/2+1/2
(

n√
n2(t−s)+1

)m−`/2−1

, if t− s ≤ 1
n .

Based on the three inequalities above, applying the induction assumption on
M(xi:1≤i≤k, i/∈Axi1 ), we get

M(xi:1≤i≤k) ≤


Cn−`/2

(
n√

n2(t−s)+1

)`/2
, if t− s ≥ 1

n

Cn−m/2
(

n√
n2(t−s)+1

)m−`/2
, if t− s ≤ 1

n .

Here, we used that 1√
n2(t−s)+1

. 1√
n
≤ 1 if t− s ≥ 1

n . We thus can conclude the analysis

of the first case.
Case (2): Note that

n−(|I|+|J|)/2
( n√

n2(t− s) + 1

)|I|∧|J|
≤n−(|I\{i1}|+|J|)/2

( n√
n2(t− s) + 1

)|I\{i1}|∧|J|
× n−1/2 n√

n2(t− s) + 1
.

Here, we used that t − s ≤ T , so that n√
n2(t−s)+1

& 1. Similar to the case (1), the

expression on the right hand side is bounded by

M(xi:1≤i≤k, i/∈Axi1 ) × n−1/2 n√
n2(t− s) + 1

.

Using the induction assumption we obtain

M(xi:1≤i≤k) ≤


Cn−`/2

(
n√

n2(t−s)+1

)`/2
, if t− s ≥ 1

n

Cn−m/2
(

n√
n2(t−s)+1

)m−`/2
, if t− s ≤ 1

n .

Here, we used that 1√
n2(t−s)+1

. 1√
n

if t− s ≥ 1
n .

Case (3): This case can be dealt with the same arguments as in Case (2).
Case (4). In this case we have that

n−(|I|+|J|)/2
( n√

n2(t− s) + 1

)|I|∧|J|
≤ M(xi:1≤i≤k, i/∈Axi1 ).
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From this inequality and the induction assumption, we finally get

M(xi:1≤i≤k) ≤


Cn−`/2

(
n√

n2(t−s)+1

)`/2
, if t− s ≥ 1

n

Cn−m/2+1/2
(

n√
n2(t−s)+1

)m−`/2−1

, if t− s ≤ 1
n .

To conclude this case note that if t− s ≤ 1
n , then

√
n

√
n2(t− s) + 1

n
≤
√
n+ 1√
n

. 1 .

We thus conclude the proof.

4.2 Multiple times correlation estimate – Proof of Theorem 2.8

We now prove Theorem 2.8.

Proof. We prove this proposition by induction on m, the number of lists of points. The
case m = 2 is just Theorem 4.4.

Assume m ≥ 3 and that we have proved the statement of the proposition in the case
in which the number of lists of points is strictly less than m. The rest of the proof is
quite similar to the proof of Theorem 4.4, so we only outline it here. For t > tm−1 and a
collection of points (xi : 1 ≤ i ≤ k) , define the function

φt(xi : 1 ≤ i ≤ k) = Eνρn0 (·)

[( k∏
i=1

ηt(xi)
)m−1∏
j=1

kj∏
ij=1

ηtj (xij )
]
. (4.13)

Taking the time derivative, and then using the Duhamel’s principle, we obtain

φt(xi : 1 ≤ i ≤ k) = E(xi : 1≤i≤k)

[
φtm−1

(Xi
t−tm−1

: 1 ≤ i ≤ k)
]

+E(xi : 1≤i≤k)

[ ∫ t

tm−1

drΦ(Xt−r, r)
]
,

(4.14)

where for every integer k ≥ 2,

Φ((xi : 1 ≤ i ≤ k), r) := 2n2
k∑

i,j=1

1{|xj − xi| = 1}
(
ρnr (xj)− ρnr (xi)

)[
φ̃r(xj)− φ̃r(xi)

]
− n2

k∑
i,j=1

1{|xj − xi| = 1}
(
ρnr (xj)− ρnr (xi)

)2
φ̃r(xi, xj)

and for k = 1, Φ((xi : 1 ≤ i ≤ k), r) := 0. Here φ̃t(A) = φt({xi : 1 ≤ i ≤ k}\A) for every
subset A ⊂ {x1, . . . , xk}. The two terms at the right hand side of (4.14) are estimated in
Corollary 4.19 and Proposition 4.14 respectively, both being absolutely bounded by

Cn−
∑m
j=1 kj/2

m−1∏
j=1

( n√
n2(tj+1 − tj) + 1

)kj∧∑m
l=j+1 kl

.

This proves the theorem.
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4.3 Estimates on the transition probability of SSEP – Proof of Theorem 2.9

4.3.1 Bounds on transition probabilities

In this subsection we summarize some of the results of Erhard/Hairer [9, Section 3]
and Landim [19] about the transition probability of k exclusion particles. In the former
article the exclusion process was considered on a large torus, however since its results
are based on the work of [19], which derived bounds on the same quantities considered
on the whole space, the results from [9] carry over to the present context without any
major modification.

We denote the transition probability of k labeled exclusion particles that evolve
through the stirring process and are accelerated by a factor n2 by plex(·, ·). It was shown
in [19, Theorem 3.1] that there exist constants C1, C2 > 0 such that for all x, y ∈ Λk and
all n2t > C1,

plex
t (x,y) ≤ C1

(1 + n2t)k/2
exp

{
− C2n

2t

2(log n2t)2
Φ
( |x− y| log n2t

C2
2n

2t

)}
, (4.15)

where
Φ(u) = sup

w∈R
{uw − w2 coshw} .

In [9, Lemma 3.2] it was shown that we can further estimate for all x,y and t as above

C1

(1 + n2t)k/2
exp

{
− C2n

2t

2(log n2t)2
Φ
( |x− y| log n2t

C2
2n

2t

)}
.

k∏
i=1

p̄t(xi, yi) ,

where p̄(·, ·) is a kernel (not necessarily a probability kernel) defined on R+ × Z × Z
satisfying

p̄t(xi, yi) =
1√

1 + n2t
exp

{
− C2n

2t

2k(log n2t)2
Φ
( |xi − yi| log n2t

C2
2n

2t

)}
. (4.16)

Recall that p̄t(x, y) was defined only for n2t > C1. If we define, for n2t ≤ C1,

p̄t(x, y) = e−|x−y| ,

then we still have that, for all t ≥ 0,

plex
t (x,y) .

k∏
i=1

p̄t(xi, yi) . (4.17)

For more details we refer to the proof of Lemma 3.2 of [9]. Note that p̄ actually depends
on the number of particles k. However, since in our applications k will always be a
fixed number we do not indicate this in the notation. Since Φ(w) ∼ w2 for w small and
Φ(w) ∼ w logw for large w we conclude that, for t ≥ C1, there exists a constant a1 > 0

such that

p̄t(x, y) ≤ 1√
n2t+ 1

exp
{
− |x− y|

2

a1n2t

}
(4.18)

provided that |x−y| ≤ n2t/ log n2t. The above essentially shows that p̄ satisfies a Gaussian
bound for large time and in the interesting spatial regime. If |x− y| ≥ n2t/ log n2t (but
still n2t ≥ C1), then it is possible to show that there exists a constant a0 > 0 such that

p̄t(x, y) ≤ 1√
n2t+ 1

exp
{
− |x− y|

4a0 log n2t
log
|x− y| log n2t

4ea2
0n

2t

}
. (4.19)

We continue by presenting some of the most important properties of p̄. Let ζ ∈ [0, 1], and
denote n−1Z = {zn : ∃ z ∈ Z s.t. zn = z/n}. Then, it was shown in [9, Lemma 3.5] that
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1) (
√
t+‖x−y‖+n−1)ζnζ p̄t(nx, ny) is bounded uniformly in n, t ∈ [0, 1] and x, y ∈ n−1Z.

2)
∑
x∈Z/n p̄t(nx, ny) . 1 uniformly in n, t ∈ [0, 1] and x, y ∈ n−1}.

3)
∑
y∈Z/n p̄t(nx, ny) . 1 uniformly in n, t ∈ [0, 1] and x, y ∈ n−1Z.

Remark 4.9. Of course items 2) and 3) above are equivalent since p̄t(nx, ny) = p̄t(ny, nx)

for all possible choices of x and y.

Finally, it was shown that p̄ behaves well under convolution. To properly formulate it,
we denote by n−1Zk the set of all k-tuples with all coordinates in n−1Z. We say that a
kernel p defined on Rk+ × n−1Z× n−1Z is of order ζ ≥ 0 if

sup
(t, x, y)∈Rk+×n−1Z×n−1Z

(( k∑
i=1

|ti|
) 1

2
+ ‖x− y‖+ n−1

)ζ
nζpt(x, y) < ∞ .

It was then shown that if p is a kernel of order ζ ≥ 0 defined on R+ × n−1Z× n−1Z and
defining

p⊗,2t (x, z) =
∑

y∈n−1Z

pt1(x, y)pt2(y, z)

where t = (t1, t2), then p⊗,2 is of order 2ζ − 1 and for all t ∈ R2
+ and all x, z ∈ n−1Z∑

x∈n−1Z

p⊗,2t (x, z) . 1 and
∑

z∈n−1Z

p⊗,2t (x, z) . 1

where both bounds above hold uniformly over all parameters. Corollary 3.9 in [9] then
shows that the same holds for higher order convolutions, i.e., one can for ` ≥ 3 define a
kernel p⊗,` in pretty much the same way as p⊗,2 by considering the spatial convolution
of ` kernels as above and the resulting kernel has order `ζ − (`− 1). We note that the
above applies to the kernel p̄·(n·, n·) which is of order ζ = 1. To conclude this section let
us note that as a consequence of the results presented here we have, for instance, the
estimate

p̄t(x, y) .
1√

n2t+ 1
(4.20)

which holds uniformly over all parameters. The same bound (with a possibly different
proportionality constant) holds for p̄⊗,2, p̄⊗,3 and higher convolutions.

Remark 4.10. Note that the time component of p⊗2 has two coordinates t = (t1, t2).
Therefore, since p⊗,` can be defined recursively by convolving p in space at possibly
` different time points with itself, the kernel p⊗,` is defined in time for vectors t =

(t1, t2, . . . , t`). However, since for our applications only the sum of those ` components
matter we will suppress this mostly in our notation.

4.3.2 Coupling and bounds on the gradient

Before we come to the proof of Theorem 2.9 we make some preparatory remarks. If
instead of k exclusion particles one would consider k independent random walks, then
one straightforwardly obtains the following estimate:∣∣prw

t (x,y)− prw
t (x + ei,y)

∣∣ .
1

(n2t+ 1)(k+1)/2
,

where prw
t is the transition probability of independent random walks speeded up by n2. If

one tries to obtain a weaker version of gradient estimate∣∣pex
t (x,y)− pex

t (x + ei,y)
∣∣
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where pex
t is the transition probability of the exclusion process with indistinguishable

particles speeded up by n2, it might be a good idea to use the previous gradient estimate
on the random walk and try to use a comparison between pex

t and prw
t , for instance the

one provided in [1, Theorem 1]. However, it turns out that the existing results in the
literature about such a comparison are not sharp enough for our purposes, and so we
need to resort to a different strategy.

The proof of Theorem 2.9 is based on a coupling of two exclusion processes with
labelled particles. We couple two processes {Xt : t ≥ 0} and {Yt : t ≥ 0}, where
{Xt : t ≥ 0} is the SSEP with k labelled particles starting from x = (x1, . . . , xk) ∈ Λk and
{Yt : t ≥ 0} is the SSEP with k labelled particles starting from x + ei. Both processes
are speeded by n2. Denote by Pcoup the probability on the path space of the joint process
{(Xt,Yt) : t ≥ 0} and by Ecoup the corresponding expectation. Our construction relies
on the following graphical representation of SSEP with k + 1 labelled particles.

For each bond (a, a+1), a ∈ Z, we associate an i.i.d. Poisson clock with parameter 2n2.
Whenever the clock rings, particles at both ends (if there are) of this bond will both move
to the other end with probability 1/2, and stay put with probability 1/2. For example,
when the clock at bond (a, a+ 1) rings, and there is one particle at each end, then with
probability 1/2 these two particles exchange their positions and with probability 1/2

these two particles stay at their current positions. If there is one particle at site a and
site a+ 1 is empty when the clock at bond (a, a+ 1) rings, then with probability 1/2 the
particle at site a moves to site a+ 1 and with probability 1/2 the particle at site a does
not move.

Let us denote by {Zt : t ≥ 0} the exclusion process corresponding to the above
graphical representation, with k + 1 labelled particles started from (x1, . . . , xi, xi +

1, xi+1, . . . , xk). For each 1 ≤ j ≤ k + 1, let Zjt be the position of the j-th particle at time
t. We now construct the coupling. Without loss of generality, assume that ei = e1. In
the process {Zt : t ≥ 0}, we call the particle starting from site x1 the first particle, and
the particle starting from site x1 + 1 the second particle. Then we define the coupled
process (Xt,Yt) by

Xt := (Z1
t ,Z

3
t , . . . ,Z

k+1
t ) and Yt := (Z2

t ,Z
3
t , . . . ,Z

k+1
t ) .

In other words, Xt is the process obtained from Zt by ignoring the second particle, and
Yt is the process obtained from Zt by ignoring the first particle. It is easy to check that
both Xt and Yt are SSEP with k labelled particles.

Let τ be the first time that the first and second particle are at positions e− and e+

with |e− − e+| = 1 and the clock attached to the edge e = (e−, e+) rings. Once this clock
rings, by the previous graphical representation, the first and second particle may or may
not swap their positions with equal probability. Therefore, on the event {τ ≤ t}, Z1

t and
Z2
t have the same distribution, and so do Xt and Yt. This in particular implies that for

every z,w ∈ Λk,

Ecoup
[
1{τ ≤ t}

[
1{(Xt,Yt) = (z,w)} − 1{(Xt,Yt) = (w, z)}

]]
= 0 . (4.21)

The next lemma gives an upper bound on the gradient in terms of a probability
involving the stopping time τ .

Lemma 4.11. There exists a constant C independent of x, y, t and ei such that

∣∣plex
2t (x,y)− plex

2t (x + ei,y)
∣∣ ≤ C

(n2t+ 1)k/2
Pcoup(τ > t) .
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Proof. Note that∣∣plex
2t (x,y)− plex

2t (x + ei,y)
∣∣ =

∣∣∣ ∑
z∈Λk

plex
t (x, z)plex

t (z,y)− plex
t (x + ei, z)plex

t (z,y)
∣∣∣

≤
∑
z∈Λk

∣∣plex
t (x, z)− plex

t (x + ei, z)
∣∣ plex
t (z,y) .

By [19, Theorem 1.1], we know that plex
t (z,y) is uniformly bounded by (1 + n2t)−k/2. On

the other hand, let pcoup
t be the transition probability of the coupled process that was

defined before this lemma. Then∑
z

∣∣plex
t (x, z)− plex

t (x + ei, z)
∣∣

=
∑
z

∣∣∑
w

[
pcoup
t

(
(x,x + ei), (z,w)

)
− pcoup

t

(
(x,x + ei), (w, z)

)]∣∣
≤
∑
z 6=w

∣∣pcoup
t

(
(x,x + ei), (z,w)

)
− pcoup

t

(
(x,x + ei), (w, z)

)∣∣
=
∑
z 6=w

∣∣Ecoup
[
1{(Xt,Yt) = (z,w)} − 1{(Xt,Yt) = (w, z)}

]∣∣.
By (4.21), the previous expression is equal to∑

z 6=w

∣∣∣Ecoup
[
1{τ > t}

[
1{(Xt,Yt) = (z,w)} − 1{(Xt,Yt) = (w, z)}

]]∣∣∣
≤
∑
z6=w

∣∣∣Ecoup
[
1{τ > t}

[
1{(Xt,Yt) = (z,w)}+ 1{(Xt,Yt) = (w, z)}

]]∣∣∣
≤ 2

∑
z6=w

Pcoup
(
τ > t, (Xt,Yt) 6= (z,w)

)
≤ 2Pcoup(τ > t) .

Theorem 2.9 is a simple consequence of Lemma 4.11, once we can show that

Pcoup(τ > t) .
1√

n2t+ 1
. (4.22)

Note that from the graphical representation, the motion of every particle is deter-
mined only by the Poisson clock on each bond, but not effected by the other particles.
Therefore, when dealing with τ , we can focus on the first and second particle and ignore
the presence of the other particles. By definition of the stopping time τ , it is not hard
to see that before τ , the first particle and the second particle perform accelerated
independent simple random walks. Denote by P̃ the probability on the path space of two
independent random walks, and by τ̃ the first meeting time of these two random walks.
The key observation is that the events {τ > t} and {τ̃ > t} have the same distribution.
Hence we have

Pcoup(τ > t) = P̃(τ̃ > t) .
1√

n2t+ 1
.

This finishes the proof of Theorem 2.9.

EJP 29 (2024), paper 76.
Page 30/53

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1137
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Joint fluctuations for current and occupation time

4.4 Estimates on integral terms

From (4.15) we can get a trivial bound of the gradient:

∣∣plex
t (x,y)− plex

t (x + ej ,y)
∣∣ .

C1

(1 + n2t)k/2
exp

{
− C2n

2t

2(log n2t)2
Φ
(‖x− y‖ log n2t

C2
2n

2t

)}
for every t > 0, every x,y ∈ Zk, every 1 ≤ j ≤ k such that x + ej ∈ Λk. Combining the
bound in Theorem 2.9 and using the geometric interpolation bound

min{a, b} ≤
√
ab, ∀ a, b > 0 ,

we obtain∣∣plex
t (x,y)− plex

t (x + ej ,y)
∣∣ .

1

(
√
n2t+ 1)k+1/2

exp
{
− C2n

2t

4(log n2t)2
Φ
(‖x− y‖ log n2t

C2
2n

2t

)}
.

1

(1 + n2t)1/4

k∏
i=1

p̄t(xi, yi)

(4.23)

when n2t > C1 and an analogous inequality holds for n2t ≤ C1. Note that at this point
that the definition of p̄ is actually slightly different from the one in Section 4.3.1. Namely,
because of the geometric interpolation bound we actually need to consider the square
root of the exponential term in (4.16). This of course only changes the constants inside
the exponential but none of its properties. We therefore continue using the notation p̄.

With this bound, we are now able to estimate the second expectation on the right
hand side of (4.7) in Theorem 4.4. Recall the definition of ϕ in (4.6) and the definition of
Ψ in (4.8) in the proof of Theorem 4.4. Recall also that before giving these definitions,
we have fixed a collection of points (zj : 1 ≤ j ≤ k2) and a time s.

Proposition 4.12. There exists a constant C independent of (xi : 1 ≤ i ≤ k1) and
(zj : 1 ≤ j ≤ k2) such that∣∣∣E(xi:1≤i≤k1)

[ ∫ t

s

drΨ(Xt−r, r)
]∣∣∣ ≤ Cn−(k1+k2)/2 ×

( n√
n2(t− s) + 1

)k1∧k2
,

for any s < t with 0 ≤ s, t ≤ T and every integer n ≥ 1.

We first prove a technical lemma which will be very useful in the proof of this
proposition. To that end we introduce more notation. Let p̄⊗,`t : Z × Z → R be the
convolution which is defined inductively by

p̄⊗,`t1+t2(x, z) =
∑
y∈Z

p̄⊗,`−1
t1 (x, y)p̄t2(y, z) , ∀ t1, t2 > 0 . (4.24)

Note that p̄⊗,` defined in this way is actually not well defined. We refer to Remark 4.10
for an explanation on that. With the convention p̄⊗,1t = p̄t, recall that we showed in
Section 4.3.1 that

sup
0≤t≤T

sup
x

∑
z

p̄⊗,`t (x, z) . 1 . (4.25)

For every x = (x1, . . . , xk) ∈ Λk and y = (y1, . . . , yk) ∈ Λk, let

p̃⊗,`t (x,y) =

k∏
i=1

p̄⊗,`t (xi, yi) .
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As a consequence of (4.25),

sup
0≤t≤T

sup
x

∑
z

p̃⊗,`t (x, z) . 1 . (4.26)

The following quantity plays a crucial role in the proof of Proposition 4.12:

Sk,`t,r := sup
x∈Λk

∑
y∈Λk

p̃⊗,`t−r(x,y)
∣∣ϕr(y)

∣∣ ,
for every non-negative integer k and s ≤ r < t. In the case k = 0, ϕr(y) is simply given
by

Eνρn0 (·)

[ k2∏
j=1

ηs(zj)
]
.

Using the bound (4.3) and property (4.26), we note that

S0,`
t,r ≤ C(`)n−k2/2 . (4.27)

Lemma 4.13. For every non-negative integers k and `, there exists a constant C > 0

independent of (zj : 1 ≤ j ≤ k2), such that for every 0 ≤ s < r < t with 0 ≤ s, t ≤ T ,

Sk,`t,r ≤ Cn−(k+k2)/2

(
n√

n2(t− s) + 1

)k∧k2 (n2(t− s) + 1)1/4

(n2(r − s) + 1)1/4
.

The idea of the proof is to perform induction on k, i.e., we bound Sk,`t,r in terms of

Sk−2,`+1
t,r and Sk−1,`+1

t,r and use a seed bound on S0,`
t,r to conclude.

Proof of Lemma 4.13. The case k = 0 holds trivially by (4.27). Assume k ≥ 1. By (4.7),
for every x ∈ Λk, we have∑

y∈Λk

p̃⊗,`t−r(x,y)|ϕr(y)| ≤ A1 +A2 +A3 ,

where

A1 =
∑
y∈Λk

p̃⊗,`t−r(x,y)Ey

[∣∣ϕs(Xr−s)
∣∣] ,

A2 = 2n2
∑
y∈Λk

p̃⊗,`t−r(x,y)
∣∣∣Ey

[ ∫ r

s

dτ
∑
i,j

1{|Xi
r−τ−X

j
r−τ |=1}

×
[
ρnτ (Xi

r−τ )− ρnτ (Xj
r−τ )

][
ϕ̃τ (Xi

r−τ )− ϕ̃τ (Xj
r−τ )

]]∣∣∣ ,
and

A3 = n2
∑
y∈Λk

p̃⊗,`t−r(x,y)Ey

[ ∫ r

s

dτ
∑
i,j

1{|Xi
r−τ−X

j
r−τ |=1}

×
∣∣ρnτ (Xi

r−τ )− ρnτ (Xj
r−τ )

∣∣2∣∣∣ϕ̃τ (Xi
r−τ ,X

j
r−τ )

∣∣∣].
In the above formulas, recall that Xt denotes the vector of positions of the collection of
exclusion walkers at time n2t, Xi

t denotes the position of the i-th particle at time n2t, and
Ey the probability with respect to process {Xt : t ≥ 0} starting from y = (y1, . . . , yk) ∈ Λk.
We note that A2 and A3 are actually zero unless k ≥ 2.

EJP 29 (2024), paper 76.
Page 32/53

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1137
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Joint fluctuations for current and occupation time

For the first term we have that

A1 . n−(k+k2)/2
( n√

n2(t− s) + 1

)k∧k2
by Lemma 4.15 and Remark 4.17. We now estimate A3. Since ρ0 is continuously
differentiable with bounded derivative,

sup
0≤τ≤T
|x−y|=1

∣∣ρnτ (x)− ρnτ (y)
∣∣2 = O(n−2) , (4.28)

thus

A3 .
∫ r

s

dτ
∑
i,j

∑
y∈Λk

p̃⊗,`t−r(x,y)
∑

w:|wi−wj |=1

plex
r−τ (y,w)|ϕ̃τ (wi, wj)|

.
∫ r

s

dτ
∑
i,j

∑
y∈Λk

p̃⊗,`t−r(x,y)
∑

w:|wi−wj |=1

p̃r−τ (y,w)|ϕ̃τ (wi, wj)|

=

∫ r

s

dτ
∑
i,j

∑
w:|wi−wj |=1

p̃⊗,`+1
t−τ (x,w)|ϕ̃τ (wi, wj)| .

By the explicit expression of p̃⊗,`+1
t , we have

A3 .
∫ r

s

dτ
∑
i,j

∑
w:|wi−wj |=1

∏
l

p̄⊗,`+1
t−τ (xl, wl)|ϕ̃τ (wi, wj)|

=

∫ r

s

dτ
∑
i,j

∑
w:|wi−wj |=1

( ∏
l 6=i,j

p̄⊗,`+1
t−τ (xl, wl)

)(
p̄⊗,`+1
t−τ (xi, wi)p̄

⊗,`+1
t−τ (xj , wj)

)
|ϕ̃τ (wi, wj)| .

Note that p̄⊗,`+1 is translation invariant and symmetric, therefore∑
wi,wj

1{|wi−wj |=1}p̄
⊗,`+1
t−τ (xi, wi)p̄

⊗,`+1
t−τ (xj , wj)

=
∑
wi

p̄⊗,`+1
t−τ (xi, wi)p̄

⊗,`+1
t−τ (xj , wi + 1) +

∑
wi

p̄⊗,`+1
t−τ (xi, wi)p̄

⊗,`+1
t−τ (xj , wi − 1)

=
∑
wi

p̄⊗,`+1
t−τ (xi, wi)p̄

⊗,`+1
t−τ (xj − 1, wi) +

∑
wi

p̄⊗,`+1
t−τ (xi, wi)p̄

⊗,`+1
t−τ (xj + 1, wi)

.
∑
wi

p̄
⊗,2(`+1)
2(t−τ) (xi, xj − 1) +

∑
wi

p̄
⊗,2(`+1)
2(t−τ) (xi, xj + 1)

.
1√

n2(t− τ) + 1
.

Here, the last bound follows from (4.20) and its following comments. On the other hand,
by the explicit expression of p̃⊗,`+1

t and the definition of Sk−2,`+1
t,τ ,∑

w:|wi−wj |=1

∏
l 6=i,j

p̄⊗,`+1
t−τ (xl, wl)|ϕ̃τ (wi, wj)| ≤ Sk−2,`+1

t,τ .

Putting all the estimates together, we obtain

A3 .
∫ r

s

dτ
1√

n2(t− τ) + 1
Sk−2,`+1
t,τ . (4.29)
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We now turn to the estimate of A2.

A2 . n2

∫ r

s

dτ
∑
i,j

∑
y∈Λk

p̃⊗,`t−r(x,y)
∣∣∣ ∑
w:|wi−wj |=1

plex
r−τ (y,w)

[
ρnτ (wi)−ρnτ (wj)

][
ϕ̃τ (wi)−ϕ̃τ (wj)

]∣∣∣ .
A summation by parts shows that the expression inside the absolute value sign is equal
to the sum of∑
w:wj=wi+1

ϕ̃τ (wi)
[
plex
r−τ (y,w)

[
ρnτ (wi)−ρnτ (wi + 1)

]
− plex

r−τ (y,w− ei)
[
ρnτ (wi− 1)−ρnτ (wi)

]]
,

and∑
w:wj=wi−1

ϕ̃τ (wi)
[
plex
r−τ (y,w)

[
ρnτ (wi)− ρnτ (wi− 1)

]
− plex

r−τ (y,w+ ei)
[
ρnτ (wi + 1)− ρnτ (wi)

]]
.

Observe that, since the second derivative of ρ0 is bounded[
ρnτ (wi)− ρnτ (wi + 1)

]
−
[
ρnτ (wi − 1)− ρnτ (wi)

]
= O(n−2) .

From this, we can deduce that∣∣∣ ∑
w:|wi−wj |=1

plex
r−τ (y,w)

[
ρnτ (wi)− ρnτ (wj)

][
ϕ̃τ (wi)− ϕ̃τ (wj)

]∣∣∣
≤
∣∣∣ ∑
w:wj=wi+1

ϕ̃τ (wi)
[
plex
r−τ (y,w)− plex

r−τ (y,w − ei)
][
ρnτ (wi − 1)− ρnτ (wi)

]∣∣∣
+
∣∣∣ ∑
w:wj=wi−1

ϕ̃τ (wi)
[
plex
r−τ (y,w)− plex

r−τ (y,w + ei)
][
ρnτ (wi + 1)− ρnτ (wi)

]∣∣∣
+ Cn−2

∣∣∣ ∑
w:|wi−wj |=1

ϕ̃τ (wi)p
lex
r−τ (y,w)

∣∣∣ .
By (4.23), (4.17), and (4.28) the previous expression is bounded by

C
( n−1

(n2(r − τ) + 1)1/4
+

1

n2

) ∑
w:|wi−wj |=1

∣∣ϕ̃τ (wi)
∣∣p̃r−τ (y,w)

.
n−1

(n2(r − τ) + 1)1/4

∑
w:|wi−wj |=1

|ϕ̃τ (wi)|p̃r−τ (y,w) .

Based on the above estimates we have

A2 . n

∫ r

s

dτ
∑
i,j

∑
y∈Λk

p̃⊗,`t−r(x,y)
1

(n2(r − τ) + 1)1/4

∑
w:|wi−wj |=1

|ϕ̃τ (wi)|p̃r−τ (y,w)

.n

∫ r

s

dτ
1

(n2(r − τ) + 1)1/4

∑
i,j

∑
y

∑
w:|wi−wj |=1

(∏
l 6=i

p̄⊗,`t−r(xl, yl)p̄r−τ (yl, wl)|ϕ̃τ (wi)|
)
×

× p̄⊗,`t−r(xi, yi)p̄r−τ (yi, wi)

.n

∫ r

s

dτ
1

(n2(r − τ) + 1)1/4

∑
i,j

∑
w:|wi−wj |=1

(∏
l 6=i

p̄⊗,`+1
t−τ (xl, wl)|ϕ̃τ (wi)|

)
p̄⊗,`+1
t−τ (xi, wi) .

Note that ∑
w:|wi−wj |=1

∏
l 6=i

p̄⊗,`+1
t−τ (xl, wl)|ϕ̃τ (wi)| . Sk−1,`+1

t,τ .
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Since by (4.20),

sup
x,w∈Z

p̄⊗,`+1
t (x,w) .

1√
n2t+ 1

,

we finally obtain

A2 . n

∫ r

s

dτ
1

(n2(r − τ) + 1)1/4
Sk−1,`+1
t,τ

1√
n2(t− τ) + 1

. (4.30)

It remains to bound A2 and A3 using (4.30) and (4.29), respectively, and our induction
assumption. Since these computations are quite similar, we only show how to prove

A2 . n−(k+k2)/2
( n√

n2(t− s) + 1

)k∧k2 (n2(t− s) + 1)1/4

(n2(r − s) + 1)1/4
. (4.31)

Applying the induction assumption on Sk−1,`+1
t,τ , namely,

Sk−1,`+1
t,τ . n−(k−1+k2)/2

( n√
n2(t− s) + 1

)(k−1)∧k2 (n2(t− s) + 1)1/4

(n2(τ − s) + 1)1/4
,

cancelling common terms on both sides of the above inequality, and using that

n√
n2(t− s) + 1

& 1 ,

we see that it is enough to show that∫ r

s

dτ
1

(n2(r − τ) + 1)1/4

1

(n2(τ − s) + 1)1/4

1√
n2(t− τ) + 1

.
n−3/2

(n2(r − s) + 1)1/4
.

The expression on the left hand side is bounded by

1√
n2(t− r+s

2 ) + 1

∫ (r+s)/2

s

dτ
1

(n2(r − τ) + 1)1/4

1

(n2(τ − s) + 1)1/4

+
1

(n2(( r+s2 − s) + 1)1/4

∫ r

(s+r)/2

dτ
1

(n2(r − τ) + 1)1/4

1√
n2(t− τ) + 1

which is less than or equal to

1√
n2(t− r+s

2 ) + 1

1

(n2(r − s) + 1)1/4

1

n2
(n2(r − s) + 1)3/4

+
1

(n2(( r+s2 − s) + 1)1/4

1

n2
(n2(r − r + s

2
) + 1)1/4 .

It is not hard to check the inequalities

1√
n2(t− r+s

2 ) + 1
(n2(r − s) + 1)3/4 .

√
n

and (
n2
(r − s

2

)
+ 1
)1/4

.
√
n .

With these two estimates, we conclude the proof of (4.31).

We now show how to bound E(xi : 1≤i≤k1)

[ ∫ t
s

drΨ(Xt−r, r)
]

with the help of

Lemma 4.13.
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Proof of Proposition 4.12. Recall the explicit formula of Ψ given in (4.8). We have∣∣∣E(xi : 1≤i≤k1)

[ ∫ t

s

drΨ(Xt−r, r)
]∣∣∣ . A4 +A5 ,

where

A4 = 2n2
∣∣∣Ex

[ ∫ t

s

dτ
∑
i,j

1{|Xi
t−τ−X

j
t−τ |=1}

[
ρnτ (Xi

t−τ )−ρnτ (Xj
t−τ )

][
ϕ̃τ (Xi

t−τ )−ϕ̃τ (Xj
t−τ )

]]∣∣∣ ,
and

A5 = n2Ex

[ ∫ t

s

dτ
∑
i,j

1{|Xi
t−τ−X

j
t−τ |=1}

∣∣ρnτ (Xi
t−τ )− ρnτ (Xj

t−τ )
∣∣2∣∣∣ϕ̃τ (Xi

t−τ ,X
j
t−τ )

∣∣∣] .
Since ρ0(·) has bounded first derivative,

sup
0≤t≤T

sup
|x−y|=1

∣∣ρnt (x)− ρnt (y)
∣∣2 ≤ n−2 ,

which gives us

A5 .
∫ t

s

dτ
∑
i,j

∑
w:|wi−wj |=1

plex
t−τ (x,w)|ϕ̃τ (wi, wj)|

.
∫ t

s

dτ
∑
i,j

∑
w:|wi−wj |=1

p̃t−τ (x,w)|ϕ̃τ (wi, wj)|

=

∫ t

s

dτ
∑
i,j

∑
w:|wi−wj |=1

∏
`

p̄t−τ (x`, w`)|ϕ̃τ (wi, wj)|

by (4.17) and the explicit formula of p̃t−τ (x,w). We have dealt with a similar (actually an
even more complicated) expression while estimating A3. It is not hard to see that

A5 .
∫ t

s

dτ
1√

n2(t− τ) + 1
Sk1−2,1
t,τ .

On the other hand, A4 is bounded by some proportionality constant times

n2

∫ t

s

dτ
∑
i,j

∣∣∣ ∑
w:|wi−wj |=1

plex
t−τ (x,w)

[
ρnτ (wi)− ρnτ (wj)

][
ϕ̃τ (wi)− ϕ̃τ (wj)

]∣∣∣
. n

∫ t

s

dτ
∑
i,j

1

(n2(t− τ) + 1)1/4

∑
w:wj=wi±1

|ϕ̃τ (wi)|p̃t−τ (x,w) .

Here, we used similar arguments as those used for A2 in Lemma 4.13. Continuing
adapting the arguments already employed in the analysis of A2, we obtain

A4 . n

∫ t

s

dτ
1

(n2(t− τ) + 1)1/4
Sk1−1,1
t,τ

1√
n2(t− τ) + 1

.

In view of Lemma 4.13, it is elementary to check that A4 and A5 are both bounded by

Cn−(k1+k2)/2 ×
( n√

n2(t− s) + 1

)k1∧k2
.
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For the proof of Theorem 2.8 we need to extend Proposition 4.12 to the case of
multiple times. To that end recall the definition of φ given in (4.13).

Proposition 4.14. Consider m lists of non-repetitive points (xi1 : 1 ≤ i1 ≤ k1), . . . , (xim :

1 ≤ im ≤ km). Assume t1 < · · · < tm and 0 ≤ tj , tj+1 ≤ T for every 1 ≤ j < m. Then,
there exists a constant C independent of (xij : 1 ≤ ij ≤ kj), 1 ≤ j ≤ m, such that∣∣∣E(xim : 1≤im≤km)

[
φtm−1

(Xim
tm−tm−1

: 1 ≤ im ≤ km)
]∣∣∣

≤ Cn−
∑m
j=1 kj/2

m−1∏
j=1

( n√
n2(tj+1 − tj) + 1

)kj∧∑m
l=j+1 kl

for every integer n ≥ 1.

The proof is quite similar to the proof of Proposition 4.12, so we only sketch it. The
key step is to estimate the following quantity, which plays a similar role as Sk,`t,r in the
proof of Proposition 4.12:

Sk,`t,r := sup
x∈Λk

∑
y∈Λk

p̃⊗,`t−r(x,y)
∣∣φr(y)

∣∣ .
One can mimic the proof of Lemma 4.13 to obtain

Skm,`tm,r . sup
x∈Λkm

∑
y∈Λkm

p̃⊗,`tm−r(x,y)E
[∣∣φtm−1

(Xr−tm−1,y)
∣∣]

+

∫ r

tm−1

dτ
1√

n2(tm − τ) + 1
Skm−2,`+1
tm,τ

+ n

∫ r

tm−1

dτ
1

(n2(r − τ) + 1)1/4
Skm−1,`+1
tm,τ

1√
n2(tm − τ) + 1

.

By Lemma 4.18 below, the first term on the right hand side of the above inequality is
bounded by

Cn−
∑m
j=1 kj/2

m−1∏
j=1

( n√
n2(tj+1 − tj) + 1

)kj∧∑m
l=j+1 kl

.

The second and third terms on the right hand side of the above inequality are bounded
by the same quantity. Indeed, this can be seen by adapting the arguments of the proof of
Lemma 4.13 and using the seed bound

S0,`
tm,r . n−

∑m−1
j=1 kj/2

m−2∏
j=1

( n√
n2(tj+1 − tj) + 1

)kj∧∑m−1
l=j+1 kl

.

This then indeed implies the bound

Skm,`tm,r . Cn−
∑m
j=1 kj/2

m−1∏
j=1

( n√
n2(tj+1 − tj) + 1

)kj∧∑m
l=j+1 kl (n2(tm − tm−1) + 1)1/4

(n2(r − tm−1) + 1)1/4
,

which allows to conclude as in Lemma 4.13 and Proposition 4.12.

4.5 Estimates on initial terms

Lemma 4.15. Fix a positive integer k1. Consider a non-negative function q : R+ × Λk1 ×
Λk1 → [0,∞) such that, for every t > 0 and every subset J ⊂ {1, . . . , k2},

sup
x∈Λk1

z∈Λk2

∑
{yi: 1≤i≤k1} :

{yi: 1≤i≤k1}∩{zj :1≤j≤k2}= {zj : j∈J}

qt
(
(xi : 1 ≤ i ≤ k1), (yi : 1 ≤ i ≤ k1)

)
.

1

(
√
n2t+ 1)|J|

.

(4.32)
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Then, there exists a constant C independent of (xi : 1 ≤ i ≤ k1) and (zj : 1 ≤ j ≤ k2)

such that

∑
yi:1≤i≤k1

qt−s
(
(xi : 1 ≤ i ≤ k1), (yi : 1 ≤ i ≤ k1)

)
E
[ k1∏
i=1

ηs(yi)

k2∏
j=1

ηs(zj)
]

≤ Cn−(k1+k2)/2 ×
( n√

n2(t− s) + 1

)k1∧k2
,

for any s < t with 0 ≤ s, t ≤ T and every integer n ≥ 1.

Proof. The sum to be estimated in the lemma can be written as

k1+k2∑
`=0

∑
{yi:1≤i≤k1}:∣∣{yi:1≤i≤k1}∆{zj :1≤j≤k2}∣∣= `

qt−s
(
(xi : 1 ≤ i ≤ k1), (yi : 1 ≤ i ≤ k1)

)
E
[ k1∏
i=1

ηs(yi)

k2∏
j=1

ηs(zj)
]
.

(4.33)
Let ∆ be the symmetric difference operator: for any sets A and B,

A∆B = (A\B) ∪ (B\A).

Since the number of non-repetitive points in (yi, zj : 1 ≤ i ≤ k1, 1 ≤ j ≤ k2) is exactly∣∣{yi : 1 ≤ i ≤ k1}∆{zj : 1 ≤ j ≤ k2}
∣∣, if

∣∣{yi : 1 ≤ i ≤ k1}∆{zj : 1 ≤ j ≤ k2}
∣∣ = `,

by Proposition 4.2, there exists a constant C independent of (yi : 1 ≤ i ≤ k1) and
(zj : 1 ≤ j ≤ k2) such that

∣∣∣E[ k1∏
i=1

ηs(yi)

k2∏
j=1

ηs(zj)
]∣∣∣ . n−`/2 . (4.34)

On the other hand, for a list of points (yi : 1 ≤ i ≤ k1) such that
∣∣{yi : 1 ≤ i ≤ k1}∆{zj :

1 ≤ j ≤ k2}
∣∣ = `, there are (k1 +k2−`)/2 points that appear in both sets {yi : 1 ≤ i ≤ k1}

and {zj : 1 ≤ j ≤ k2}, i.e.,∣∣{yi : 1 ≤ i ≤ k1} ∩ {zj : 1 ≤ j ≤ k2}
∣∣ = (k1 + k2 − `)/2 .

Therefore, for each `,∑
{yi:1≤i≤k1}:∣∣{yi:1≤i≤k1}∆{zj :1≤j≤k2}∣∣=`

qt−s
(
(xi : 1 ≤ i ≤ k1), (yi : 1 ≤ i ≤ k1)

)

=
∑

J⊂{1,2,...,k2},
|J|=(k1+k2−`)/2

∑
{yi:1≤i≤k1}:

{yi:1≤i≤k1}∩{zj :1≤j≤k2}
={zj : j∈J}

qt−s
(
(xi : 1 ≤ i ≤ k1), (yi : 1 ≤ i ≤ k1)

)

.
∑

J⊂{1,2,...,k2},
|J|=(k1+k2−`)/2

( 1√
n2(t− s) + 1

)(k1+k2−`)/2
,

(4.35)

where in the last inequality we applied condition (4.32). The expression above is further
bounded by ∑

J⊂{1,2,...,k2},
|J|=(k1+k2−`)/2

n−(k1+k2−`)/2
( n√

n2(t− s) + 1

)k1∧k2
,
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since (k1+k2−`)/2 is exactly the number of points that appear in both sets {yi; 1 ≤ i ≤ k1}
and {zi : 1 ≤ i ≤ k2}, which is of course less than or equal to k1 ∧ k2. Here, we used as
well that the distance between t and s is bounded. From this estimate and (4.34), for
each `, we have∑

{yi: 1≤i≤k1}:∣∣{yi: 1≤i≤k1}∆{zi: 1≤i≤k2}
∣∣= `

qt−s
(
(xi : 1 ≤ i ≤ k1), (yi : 1 ≤ i ≤ k1)

)
E
[ k1∏
i=1

ηs(yi)

k2∏
j=1

ηs(zj)
]

. n−(k1+k2)/2 ×
( n√

n2(t− s) + 1

)k1∧k2
.

Since the first sum over ` in (4.33) is finite, the lemma is proved.

Corollary 4.16. There exists a constant C independent of (xi : 1 ≤ i ≤ k1) and (zi : 1 ≤
i ≤ k2) such that∣∣∣E(xi: 1≤i≤k1)

[
ϕs(X

i
t−s : 1 ≤ i ≤ k1)

]∣∣∣ ≤ Cn−(k1+k2)/2 ×
( n√

n2(t− s) + 1

)k1∧k2
,

for any s < t with 0 ≤ s, t ≤ T and every integer n ≥ 1.

Proof. The expectation above can be written as

∑
yi:1≤i≤k1

plex
t−s
(
(xi : 1 ≤ i ≤ k1), (yi : 1 ≤ i ≤ k1)

)
E
[ k1∏
i=1

ηs(yi)

k2∏
j=1

ηs(zj)
]
. (4.36)

By the previous lemma, it remains to check that plex satisfies (4.32). As a consequence of
the analysis in Section 4.3.1 we have that for every t ≥ 0,

sup
x,z∈Λk

plex
t

(
(xi : 1 ≤ i ≤ k), (zj : 1 ≤ j ≤ k)

)
.
( 1√

n2t+ 1

)k
.

Given a subset J as in (4.32) we can find an index set I with |I| = |J | such that
{yi : 1 ≤ i ≤ k1} ∩ {zi : 1 ≤ i ≤ k2} = {zj : j ∈ J} = {yi : i ∈ I}. By the fact that plex

t is a
transition probability, and the above estimate on the transition probability, we have that
for every t > 0, every subset J ⊂ {1, 2, . . . , k2},

sup
x∈Λk1

z∈Λk2

∑
{yi: 1≤i≤k1} :

{yi:1≤i≤k1}∩{zj :1≤j≤k2}= {zj : j∈J}

plex
t

(
(xi : 1 ≤ i ≤ k1), (yi : 1 ≤ i ≤ k1)

)

= sup
x∈Λk1

z∈Λk2

plex
t

(
(xi : i ∈ I), (zj , j ∈ J)

)
.

1

(
√
n2t+ 1)|J|

.

Remark 4.17. The arguments to verify that plex satisfies condition (4.32) can be eas-
ily adapted to p̃⊗,`. Since p̃⊗,` is a product in terms of p̄⊗,`, and since p̄⊗,` satisfies
property (4.25), we have that for every t > 0, every subset J ⊂ {1, 2, . . . , k2},

sup
x∈Λk1

z∈Λk2

∑
{yi:1≤i≤k1}:

{yi:1≤i≤k1}∩{zj :1≤j≤k2}
={zj : j∈J}

p̃⊗,`t

(
(xi : 1 ≤ i ≤ k1), (yi : 1 ≤ i ≤ k1)

)

. sup
x∈Λk1

z∈Λk2

p̃⊗,`t

(
(xi : i ∈ I), (zj , j ∈ J)

)
.

1

(
√
n2t+ 1)|J|

,

EJP 29 (2024), paper 76.
Page 39/53

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1137
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Joint fluctuations for current and occupation time

where I is as in the proof of Corollary 4.16. The only difference is that in the third line,
we no longer have equality.

The results of the above lemma and corollary can be extended to the case of multiple
lists of points. Recall the definition of φt given in (4.13).

Lemma 4.18. Consider m lists of non-repetitive points (xi1 : 1 ≤ i1 ≤ k1), . . . , (xim : 1 ≤
im ≤ km). Assume t1 < · · · < tm and 0 ≤ tj , tj+1 ≤ T for every 1 ≤ j < m. Given a
non-negative function q : R+ × Λkm × Λkm → [0,∞) such that, for every t > 0 and every
subset J ⊂ {1, 2, . . . , km−1} holds

sup
x∈Λkm

z∈Λkm−1

∑
{yi: 1≤i≤km} :

{yi:1≤i≤km}∩{zj : 1≤j≤km−1}
={zj : j∈J}

qt
(
(xim : 1 ≤ im ≤ km), (yi : 1 ≤ i ≤ km)

)

.
1

(
√
n2t+ 1)|J|

.

(4.37)

then, there exists a constant C independent of (xij : 1 ≤ ij ≤ kj), 1 ≤ j ≤ m, such that

∑
yi: 1≤i≤km

qtm−tm−1

(
(xim : 1 ≤ im ≤ km), (yi : 1 ≤ i ≤ km)

)
E
[ km∏
i=1

ηtm−1
(yi)

m−1∏
j=1

kj∏
ij=1

ηtj (xij )
]

≤ Cn−
∑m
j=1 kj/2

m−1∏
j=1

( n√
n2(tj+1 − tj) + 1

)kj∧∑m
l=j+1 kl

,

for any s < t with 0 ≤ s, t ≤ T and every integer n ≥ 1.

Proof. The proof is based on induction on m, the number of lists of points. Lemma 4.15
deals with the case when m = 2.

Assume m ≥ 3 and that the statement of this lemma holds if the number of lists of
points is strictly less than m. The rest of the proof is quite similar to the proof of the
previous lemma, so we only outline the main steps. The sum to be estimated in the
lemma can be written as

km+km−1∑
`=0

∑
{yi: 1≤i≤km} :∣∣{yi: 1≤i≤km}∆{xim−1

: 1≤im−1≤km−1}
∣∣=`

qtm−tm−1

(
(xim : 1 ≤ im ≤ km), (yi : 1 ≤ i ≤ km)

)

× E
[ km∏
i=1

ηtm−1
(yi)

m−1∏
j=1

kj∏
ij=1

ηtj (xij )
]
.

For every ` ≤ km + km−1 and every collection of points (yi : 1 ≤ i ≤ km) such that∣∣{yi : 1 ≤ i ≤ km}∆{xim−1 : 1 ≤ im−1 ≤ km−1}
∣∣ = ` ,

using the identity (4.4) and the induction assumption, we get that∣∣∣E[ km∏
i=1

ηtm−1
(yi)

m−1∏
j=1

kj∏
ij=1

ηtj (xij )
]∣∣∣

≤ Cn−`/2−
∑m−2
j=1 kj/2

( n√
n2(tm−1−tm−2)+1

)km−2∧ `
×
m−3∏
j=1

( n√
n2(tj+1−tj)+1

)kj∧(`+
∑m−2
l=j+1 kl)

≤ Cn−`/2−
∑m−2
j=1 kj/2

m−2∏
j=1

( n√
n2(tj+1 − tj) + 1

)kj∧∑m
l=j+1 kl

.
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On the other hand, similarly to the way we deduced (4.35), we obtain∑
{yi: 1≤i≤km}∣∣{yi: 1≤i≤km}∆{xim−1

: 1≤im−1≤km−1}
∣∣=`

qtm−tm−1

(
(xim : 1 ≤ im ≤ km), (yi : 1 ≤ i ≤ km)

)

.

(
1√

n2(tm − tm−1) + 1

)(km+km−1−`)/2

. n−(km+km−1−`)/2
(

n√
n2(tm − tm−1) + 1

)km∧km−1

.

These two estimates imply that the absolute value of the expectation in the lemma is
bounded by

Cn−
∑m
j=1 kj/2

( n√
n2(tm − tm−1) + 1

)km∧km−1
m−2∏
j=1

( n√
n2(tj+1 − tj) + 1

)kj∧∑m
l=j+1 kl

,

proving the lemma.

Corollary 4.19. Consider m lists of non-repetitive points (xi1 : 1 ≤ i1 ≤ k1), . . . , (xim :

1 ≤ im ≤ km). Assume t1 < · · · < tm and 0 ≤ tj , tj+1 ≤ T for every 1 ≤ j < m. Then,
there exists a constant C independent of (xij : 1 ≤ ij ≤ kj), 1 ≤ j ≤ m, such that∣∣∣E(xim : 1≤im≤km)

[
φtm−1

(Xim
tm−tm−1

: 1 ≤ im ≤ km)
]∣∣∣

≤ Cn−
∑m
j=1 kj/2

m−1∏
j=1

( n√
n2(tj+1 − tj) + 1

)kj∧∑m
l=j+1 kl

for every integer n ≥ 1.

The proof of this corollary is almost the same as the one of Corollary 4.16, so we omit
it.

5 Joint fluctuations – Proof of Theorem 2.11

The proof of Theorem 2.11 follows the usual structure. First we establish tightness,
and then we characterize the possible limit points. We start with the former. Since the
Cartesian product of compact sets is compact, in order to show the tightness of the pair
current/occupation time it is enough to assure tightness for each one of them. We start
with the easier one, the proof of the tightness for the occupation time.

5.1 Tightness of the occupation time

Proposition 5.1. Assume that ρ0 ∈ C1. For any fixed u ∈ R, the sequence of processes{(
n1/2Γnbunc(t)

)
: t ∈ [0, T ]

}
n∈N is tight in D([0, T ],R) endowed with the uniform topology.

Proof. Without loss of generality, let us assume that u = 0. Fix 0 ≤ s < t ≤ T . It is
enough to show that there exists a constant C independent of n such that

Eνρn0 (·)

[∣∣∣√nΓn0 (t)−
√
nΓn0 (s)

∣∣∣2] ≤ C(t− s)10/7 . (5.1)

We shall prove this inequality only for t, s > 0 such that 0 ≤ t− s ≤ 1. The expectation on
the left hand side of (5.1) is bounded by

2Eνρn0 (·)

[
n
∣∣∣ ∫ t

s

dr
{
ηr(0)− 1

εn

εn−1∑
x=0

ηr(x)
}∣∣∣2]+ 2Eνρn0 (·)

[
n
∣∣∣ ∫ t

s

dr
1

εn

εn−1∑
x=0

ηr(x)
∣∣∣2] .

EJP 29 (2024), paper 76.
Page 41/53

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1137
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Joint fluctuations for current and occupation time

In view of Theorem 2.5, the first term is bounded by C(t−s)10/7 if we choose ε = (t−s)4/7.
It remains to prove that

Eνρn0 (·)

[∣∣∣ ∫ t

s

dr
1

ε
√
n

εn−1∑
x=0

ηr(x)
∣∣∣2] ≤ C(t− s)10/7 . (5.2)

By Jensen’s inequality,

Eνρn0 (·)

[∣∣∣ ∫ t

s

dr
1

ε
√
n

εn−1∑
x=0

ηr(x)
∣∣∣2] ≤ (t− s)

∫ t

s

drEµn
[∣∣∣ 1

ε
√
n

εn−1∑
x=0

ηr(x)
∣∣∣2] . (5.3)

It is shown in [16, Lemma 3.2] that

sup
x 6=y

∣∣∣Eµn [ηt(x)ηt(y)]
∣∣∣ ≤ C0

√
t

n

for some positive constant C0 that depends only on the initial profile ρ0. Since t ≤ T and
T is fixed, from this estimate on the correlations we have

Eµn
[∣∣∣ 1

ε
√
n

εn−1∑
x=0

ηr(x)
∣∣∣2] =

εn−1∑
x=0

1

ε2n
Eµn [ηr(x)2] +

∑
x 6=y

0≤x,y≤εn−1

Eµn [ηr(x)ηr(y)]

ε2n
.

1

ε
+ 1 .

Integrating the last expression from s to t, by (5.3), we obtain that

Eνρn0 (·)

[∣∣∣ ∫ t

s

dr
1

ε
√
n

εn−1∑
x=0

ηr(x)
∣∣∣2] ≤ C(t− s)2(ε−1 + 1) .

Inequality (5.2) then follows from this upper bound and our previous choice ε = (t −
s)4/7.

5.2 Tightness of the current

Proposition 5.2. Assume that ρ0 ∈ C2 with bounded first and second derivatives and is
bounded away from zero and from one. For any fixed u ∈ R, the sequence of processes{
n−1/2J

n

bunc,bunc+1(t) : t ∈ [0, T ]
}
n∈N is tight in D([0, T ],R) endowed with the uniform

topology.

It is enough to give the proof of this proposition for the processes
{
n−1/2J

n

−1,0(t) : t ∈
[0, 1/2]

}
n∈N only. For simplicity of notation, let us omit the subscript of J

n

−1,0.

Remark 5.3. In the equilibrium setting, it is known that n−1/2 J
n
(t) converges to a

fractional Brownian motion with Hurst exponent 1/4. Therefore one expects that

Eνρn0 (·)

[∣∣∣n−1/2 J
n
(t)− n−1/2 J

n
(s)
∣∣∣p] ≤ C(t− s)p/4 (5.4)

for every positive integer p. By the Kolmogorov-Centsov tightness criterion, p/4, the
power of t−s, has to be larger than 1. So the first attempt one may think of is to estimate
the sixth moment, like Peligrad and Sethuraman did in [22] in the equilibrium setting.
However, to bound the sixth moment by C(t − s)3/2 turns out to be very tricky in the
non-equilibrium setting. This is because the estimate obtained in Proposition 4.8 is
probably not optimal for the case t− s ≤ n−1. The estimate (5.4) however indicates that
higher moments should lead to larger exponents of (t − s). We will make use of that
heuristics and estimate the 24-th moment instead, even though 24 is probably not the
lowest moment that works out. This will give us more space to prove tightness with
bounds that are probably not sharp.

EJP 29 (2024), paper 76.
Page 42/53

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1137
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Joint fluctuations for current and occupation time

It is therefore sufficient to prove the following proposition.

Proposition 5.4. There exists a constant C > 0 such that

Eνρn0 (·)

[∣∣∣n−1/2 J
n
(t)− n−1/2 J

n
(s)
∣∣∣24]

≤ C(t− s)3/2 (5.5)

for all 0 ≤ s < t ≤ T and all n ∈ N.

Proof. We first deal with the situation where n is large in the sense that n2(t − s) ≥ 1.
Given K > 0, define the function GK : R→ [0, 1] by

GK(v) =
{

1− v

K

}+

1{v ≥ 0} . (5.6)

Let the density field Ynt be defined by

Ynt (H) =
1√
n

∑
x∈Z

ηt(x)H( xn ) , ∀H ∈ S(R) ,

where ηt(x) = ηt(x)− ρnt (x) is the centred occupation. We recall the following identity,
which was obtained in the proof of Proposition 3.1 of [16]: for any n and K such that
Kn ≥ 1, one has the identity

n−1/2J
n
(t) =

[
Ynt (GK)−Yn0 (GK)

]
+

1√
n

Kn∑
x=1

1

Kn
Mn
x−1,x(t)+

1√
n

∫ t

0

ds
n

K

[
ηs(0)−ηs(nK)

]
,

(5.7)
where Mn

x,x+1(t) is the martingale given by

Mn
x,x+1(t) = J

n

x,x+1(t)− n2

∫ t

0

ds
{
ηs(x)− ηs(x+ 1)

}
whose quadratic variation is

〈Mn
x,x+1〉t = n2

∫ t

0

ds
{
ηs(x)− ηs(x+ 1)

}2 ≤ n2t .

We are going to estimate the 24-th moment of each term on the right hand side of (5.7).
We will show that choosing K = (t− s)3/8 then

Eνρn0 (·)

[∣∣∣Ynt (GK)− Yns (GK)
∣∣∣24]

≤ C(t− s)3/2 , (5.8)

Eνρn0 (·)

[∣∣∣ 1√
n

Kn∑
x=1

1

Kn

[
Mn
x−1,x(t)−Mn

x−1,x(s)
]∣∣∣24]

≤ C(t− s)15/2 , (5.9)

and

Eνρn0 (·)

[∣∣∣ 1√
n

∫ t

s

dr
n

K

[
ηr(0)− ηr(nK)

]∣∣∣24]
≤ C(t− s)3 , (5.10)

which implies (5.5). Note that n2(t− s) ≥ 1 implies that Kn ≥ 1 for K = (t− s)3/8, which
is a condition to (5.7) to make sense.

The expectation in (5.8) is equal to

1

n12

Kn∑
x1,..., x24=0

Eνρn0 (·)

[ 24∏
i=1

Kn− xi
Kn

(
ηt(xi)− ηs(xi)

)]
. (5.11)

Recall the definition of [·] at (4.9) and note that the cardinality of the set{
(xi : 1 ≤ i ≤ 24) : xi ∈ {1, 2, . . . ,Kn} and [(xi : 1 ≤ i ≤ 24)] = m

}
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is of the order O((Kn)m). To get a good bound of the expectation inside the sum above,
we consider two cases.

The first case is when t− s ≥ n−1. Let ‖(xi : 1 ≤ i ≤ 24)‖ = ` and [(xi : 1 ≤ i ≤ 24)] =

m. In view of Proposition 4.8, the expression in (5.11) is bounded by

C

n12

∑
0≤`≤m≤24

n−`/2
( 1√

t− s

)`/2
(Kn)m .

Fix 0 ≤ ` ≤ 24, we will estimate

nm−`/2−12(t− s)−`/4Km .

Since t−s ≥ n−1 and K = (t−s)3/8, observing that m ≤ 24+`
2 , the term above is bounded

from above by
C(t− s)3m/8+12+`/2−m−`/4 = C(t− s)12+`/4−5m/8.

From (4.9) and (4.10), an easy computation gives

12 +
`

4
− 5m

8
≥ 3 ≥ 3

2
.

This finishes the proof of (5.8) in the first case.
The second case is when n−2 ≤ t−s ≤ n−1. In view of Proposition 4.8, the expression

in (5.11) is bounded by

C

n12

∑
0≤`≤m≤24

n−m/2
( n√

n2(t− s) + 1

)m−`/2
(Kn)m

≤ CKmn3m/2−12−`/2
( 1

n2(t− s) + 1

)m/2−`/4
.

Since K = (t− s)3/8 and m/2− `/4 ≥ 0, using the bound

1

n2(t− s) + 1
≤ 1

n2(t− s)
,

the previous expression is less than or equal to

C(t− s)3m/8−m/2+`/4n3m/2−12−`/2−m+`/2 = C(t− s)`/4−m/8nm/2−12 .

Since n−1 ≤
√
t− s, the last expression is further bounded from above by

C(t− s)`/4−3m/8+6 .

On the other hand,
`

4
− 3m

8
+ 6 ≥ 3

2
,

which allows to conclude. This concludes the proof of (5.8).
Applying the Burkholder-Davis-Gundy inequality and using the fact that the martin-

gales {Mn
x,x+1}x are orthogonal,and the bounds on the quadratic variation obtained at

the beginning of the proof we see that the expectation in (5.9) is bounded by

Eνρn0 (·)

[
Cn−12

〈 Kn∑
x=1

1

Kn
Mn
x−1,x

〉12

t−s

]
≤ Cn−12

(Kn(t− s)
K2

)12

=
C(t− s)12

K12
= C(t−s)15/2 .

The expectation in (5.10) is equal to

24!
n12

K24
Eνρn0 (·)

[ ∫ t

s

dr1

∫ r1

s

dr2 · · ·
∫ r23

s

dr24

24∏
i=1

[
ηri(0)− ηri(nK)

] ]
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which is bounded by C(t−s)12
K24 = C(t− s)3 in view of (2.2).

We now consider the situation when (t− s)n2 < 1. Rewriting the martingale Mn
−1,0 as

Mn
−1,0(t) = J

n
(t)− n2

∫ t

0

ds {ηs(x)− ηs(x+ 1)} ,

we have that

Eνρn0 (·)

[∣∣∣n−1/2 J
n

−1,0(t)− n−1/2 J
n
(s)
∣∣∣24]

≤ Eνρn0 (·)

[
n−12

(
M−1,0(t)−M−1,0(s)

)24]
+ n36(t− s)24.

By Burkholder-Davis-Gundy inequality, the first expectation on the right hand side is
bounded by

Eνρn0 (·)

[
Cn−12

〈
M−1,0

〉12

t−s

]
= Cn−12

(
n2(t− s)

)12

= Cn12(t− s)12 . (t− s)6

since n < (t− s)−1/2. Moreover, under the assumption that n < (t− s)−1/2, we have that
n36(t− s)24 is also bounded by C(t− s)6. This finishes the proof.

5.3 Convergence of finite-dimensional distributions

At this point, we must recall the density fluctuations of the SSEP. Recall that X (x) =

x(1 − x). To shorten notation write also Xr := X (ρ(u, r)) = ρ(u, r)(1 − ρ(u, r)). Writing
H(k) for the kth derivative of the function H, denote by S(R) the Schwartz space, that is,
the set of all functions H ∈ C∞ such that

‖H‖k,` := sup
x∈R
|x`H(k)(x)| < ∞ , (5.12)

for all integers k, ` ≥ 0, and denote by S ′(R) its topological dual, see [24] for more about
that subject.

Theorem 5.5 (Density fluctuations [23]). Consider the Markov process {ηt : t ≥ 0}
starting from the the slowly varying Bernoulli product measure νρn0 (·) previously defined.
Then, the sequence of processes {Ynt }n∈N converges in distribution, as n→ +∞, with re-
spect to the Skorohod topology of D([0, T ],S ′(R)), to the generalized Ornstein-Uhlenbeck
(Gaussian and zero mean) process Yt taking values on C([0, T ],S ′(R)) whose covariances
are given by

E
[
Yt(H)Ys(G)

]
=

∫
R

(Tt−sH)GXs −
∫ s

0

dr

∫
R

(Tt−rH)(Ts−rG)
{
∂rXr −∆Xr

}
(5.13)

for any H,G ∈ S(R), where

Ttf(x) :=
1√
4πt

∫
R

dy f(y) exp
{
− (x− y)2/4t

}
(5.14)

is the heat semi-group.

An integration by parts permits to rewrite (5.13) as

E
[
Yt(H)Ys(G)

]
=

∫
R

(TtH)(TsG)X0 + 2

∫ s

0

dr

∫
R

(∇Tt−rH)(∇Ts−rG)Xr (5.15)

for any H,G ∈ S(R). Without loss of generality, we will deal with the joint limit of current
and occupation time only at two macroscopic points u1, u2 ∈ R. Recall (5.6) and define
GKu : R → [0, 1] by GKu (v) = GK(v − u), which approximates the Heaviside function
Gu(v) = 1{v ≥ u} centered at u ∈ R as K goes to infinity. As a consequence of [16] we
have:
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Proposition 5.6 ([16], Proposition 3.1). For any t ≥ 0 and u ∈ R,

lim
K→∞

Eνρn0 (·)

[(
1√
n
Jbunc(t)− Ynt (GKu ) + Yn0 (GKu )

)2
]

= 0

uniformly in n.

On the other hand, about the occupation time, as an immediate consequence of
Theorem 2.5, we have that

Corollary 5.7. For any t ∈ [0, T ], u ∈ R and n ∈ N,

Eνρn0 (·)

[(
n1/2Γnbunc(t)−

∫ t

0

Yns (ι1/Ku ) ds
)2]

.
T

K3/4
(1 + T 1/4 + T ) ,

where ι1/Ku := K1[u, u+ 1/K].

We start with two simple but useful lemmas on random variables whose proofs will
be given in Appendix B

Lemma 5.8. Let Xn and X be random variables. For any p ≥ 1, we have that Lp bounds

are preserved by convergence in distribution, that is, if Xn
d−→ X and E[|Xn|p] ≤ c for

all n ∈ N, then E[|X|p] ≤ c.
Lemma 5.9. Fix p ≥ 1 and let An, BKn and BK be sequences of random variables such
that

1. ‖An −BKn ‖p ≤ f(K) for all n and all K, with f(K)→ 0 as K →∞.

2. BKn
d−→ BK as n→∞.

3. {An}n∈N is tight.

Then, there exists some random variable B such that BK
Lp−→ B as K →∞. Furthermore

An
d−→ B as n→∞.

Let us come back to our model. We claim that

(
Ynt (GKu )− Yn0 (GKu ),

∫ T

0

Yns (ι1/Ku ) ds
)

(5.16)

converges in distribution to a Gaussian vector, denoted by

(
Yt(GKu )− Y0(GKu ),

∫ t

0

Ys(ι1/Ku ) ds
)

as n→∞. To prove the claim, we first note that the density field Yt acts on functions
on the Schwartz space, and GKu and ιu1/K are discontinuous functions, thus not in the
Schwartz space. Nevertheless, these functions are continuous by parts with compact
support, and a L2-density argument using (5.15) then permits to extend the Gaussian
field Yt to act on these functions. About the convergence, it is easy to find sequence of
functions H1,K,u

j and H2,K,u
j in the Schwartz space such that

‖H1,K,u
j −GKu ‖1 + ‖H1,K,u

j −GKu ‖2 ≤ c/j , ∀ j ∈ N

and

‖H2,K,u
j − ι1/Ku ‖1 + ‖H2,K,u

j − ι1/Ku ‖2 ≤ c/j , ∀ j ∈ N,

thus

‖Ynt (H1,K,u
j −GKu )‖2 ≤ c̃/j , ∀ j ∈ N (5.17)
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and ∥∥∥∫ T

0

Yns (H2,K,u
j − ι1/Ku ) ds

∥∥∥
2
≤ c̃/j , ∀ j ∈ N . (5.18)

It follows that the sequence in (5.16) is a Cauchy sequence, thus it has a limit, which is a
Gaussian vector due to (5.17), (5.18) and Theorem 5.5. This proves the claim.

Since we already proved tightness for current and occupation time in the uniform
topology, this assures tightness at any fixed time. Thus recalling Proposition 5.6 and
Corollary 5.7, we may apply Lemma 5.9 to conclude that

(n−1/2Jnbu1nc(t), n
1/2Γnbu2nc(t))

converges in distribution as n→∞ to the L2-limit

lim
K→∞

(
Yt(GKu1

)− Y0(GKu1
),

∫ t

0

Ys(ιu2

1/K) ds
)

(5.19)

which is a Gaussian vector. We denote this limit by
(
Yt(Gu1

)− Y0(Gu1
),
∫ t

0
Ys(δu2

) ds
)

or
by (Ju1

(t),Γu2
(t)). The same argument can be adapted to finite times t1, . . . , tk, which

concludes the proof of convergence of the finite-dimensional distributions. The claim
about the covariances in Theorem 2.11 follows from the calculations in Appendix A.

A Calculus of covariances

As promised above, let us determine the covariances of the limiting process (5.19).
This will be enough to conclude the proof of Theorem 2.11.

Two currents. Fix 0 ≤ s, t ≤ T and u1 ≤ u2 ∈ R. To provide the covariance between two
currents Ju1

(s) and Ju2
(t), we shall compute

E
[{
Ys(Gu1

)− Y0(Gu1
)
}{
Yt(Gu2

)− Y0(Gu2
)
}]

= lim
K→∞

E
[{
Ys(GKu1

)− Y0(GKu1
)
}{
Yt(GKu2

)− Y0(GKu2
)
}]

= lim
K→∞

∫
R

du
{

(TsG
K
u1

)(TtG
K
u2

)− (TsG
K
u1

)GKu2
−GKu1

(TtG
K
u2

) +GKu1
GKu2

}
X0

+ lim
K→∞

2

∫ s

0

dr

∫
R

du (∇Ts−rGKu1
)(∇Tt−rGKu2

)Xr

(A.1)

where we recall that Xr = X (ρ(r, u)) and {Tt : t ≥ 0} stands for the semigroup associated
to the Laplacian. For the second equality, we applied equation (5.15). The first term on
the right hand side of the last equality in (A.1) can be rewritten as

lim
K→∞

∫
R

du
{
TsG

K
u1
−GKu1

}{
TtG

K
u2
−GKu2

}
X0 . (A.2)

We are going splitting this integral into the domains of integration (−∞, u1), [u1, u2),
[u2, u1 +K], (u1 +K,u2 +K] and (u2 +K,∞) where we can assume that K > u2 − u1.

By definition of GKui with i = 1 or 2, for any t ∈ [0, T ], the function TtG
K
ui(u) is

absolutely bounded by Pu[Bt ≥ ui] = P0[Bt ≥ ui − u] and converges to it as K → ∞.
Moreover, the former probability is integrable on (−∞, ui) and since u1 ≤ u2, we have
that GKui(u) = 0 for all u < u1. Thus, by the Dominated Convergence Theorem,

lim
K→∞

∫ u1

−∞
du
{
TsG

K
u1
−GKu1

}{
TtG

K
u2
−GKu2

}
X0

=

∫ u1

−∞
duP0[Bs ≥ u1 − u]P0[Bt ≥ u2 − u]X0 .
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We claim that the integral in (A.2) restricted to (u2 + K,∞) vanishes as K → ∞.
Indeed, in this interval TtGKui −G

K
ui vanishes pointwisely as K →∞ and is bounded by

1√
K

P0(Bt ≤ u2 − u+K) + P0(Bt ≤ u2 − u+K −
√
K) .

The claim then follows by standard Gaussian tail bounds.
On the interval [u1, u2), we have that TsGKu1

−GKu1
is equal to

−Eu[1{Bs ≤ u1}
(
1− (Bs − u1)/K

)
]− Eu[1{Bs ≥ u1 +K}

(
1− (Bs − u1)/K

)
]

which is absolutely bounded by 2 and converges pointwisely to −Pu[Bs ≤ u1] = −P0[Bs ≤
u1 − u] as K →∞. It is easy to see that TtGKu2

−GKu2
converges pointwisely to P0[Bt ≥

u2 − u] on the interval [u1, u2] as K →∞. Therefore we have

lim
K→∞

∫ u2

u1

du
{
TsG

K
u1
−GKu1

}{
TtG

K
u2
−GKu2

}
X0 = −

∫ u2

u1

duP0

[
Bs ≤ u1−u

]
P0

[
Bt ≥ u2−u

]
X0 .

On the interval [u2, u1 +K], TtGKu2
−GKu2

is equal to

−Eu[1{Bt ≤ u2}
(
1− (Bt − u2)/K

)
]− Eu[1{Bt ≥ u2 +K}

(
1− (Bt − u2)/K

)
] .

By the Cauchy-Schwarz inequality, Eu[1{Bt ≤ u2}(Bt − u2)/K] and Eu[1{Bt ≥ u2 +

K}
(
1− (Bt − u2)/K

)
] vanishes in L2([u2, u1 +K]) as K →∞. The same conclusion also

holds for TsGKu1
−GKu1

. Therefore, we conclude that the integral in (A.2) over [u2, u1 +K]

is equal to a negligible term in K plus∫ u1+K

u2

du Pu[Bs ≤ u1]Pu[Bt ≤ u2]X0 →
∫ ∞
u2

du P0

[
Bs ≤ u1 − u

]
P0

[
Bt ≤ u2 − u

]
X0

as K goes to infinity. Finally, by translation invariance, the integral in (A.2) restricted to
the interval (u1 +K,u2 +K] is equal to∫ u2

u1

du
{
TsG

K
u1−K −G

K
u1−K

}{
TtG

K
u2−K −G

K
u2−K

}
X (ρ0(u+K)) .

Through the explicit expression we have that both TsG
K
u1−K − G

K
u1−K and TtG

K
u2−K −

GKu2−K are bounded absolutely by 2 and vanish pointwisely as K → ∞ on [u1, u2].
Therefore by Dominated Convergence Theorem, the integral in (A.2) over (u1 +K,u2 +K]

vanishes as K →∞. In summary, we have shown that the expression in (A.2) is equal to∫ u1

−∞
du P0

[
Bs ≥ u1 − u

]
P0

[
Bt ≥ u2 − u

]
X0

−
∫ u2

u1

du P0

[
Bs ≤ u1 − u

]
P0

[
Bt ≥ u2 − u

]
X0

+

∫ ∞
u2

du P0

[
Bs ≤ u1 − u

]
P0

[
Bt ≤ u2 − u

]
X0 .

To estimate the rightmost term in (A.1), note that

∇TtGKui(u) = pt(u, ui) +
1

K

∫ K+ui

ui

dv pt(u, v) .

By the Cauchy-Schwarz inequality, the second term vanishes in L2(R). From this we see
that the second term at the right hand side of the last equality of (A.1) converges to

2

∫ s

0

dr

∫
R

du ps−r(u, u1)pt−r(u, u2)Xr .
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Two occupation times. For easy of notation, let ε = 1/K. In order to compute the
covariance between two occupation times Γu1

(s) and Γu2
(t), we shall estimate, as ε→ 0,

the limit of

E
[ ∫ s

0

dr1 Yr1(ιεu1
)

∫ t

0

dr2 Yr2(ιεu2
)
]

=

∫ s

0

dr1

∫ t

0

dr2 E
[
Yr1(ιεu1

)Yr2(ιεu2
)
]
. (A.3)

By [16, Theorem 2.2], if 0 ≤ r2 < r1, then

E
[
Yr1(ιεu1

)Yr2(ιεu2
)
]

=

∫
R

du Tr1−r2(ιεu1
) ιεu2
Xr2

+ 2

∫ r2

0

dτ

∫
R

du (Tr1−τ ι
ε
u1

)(Tr2−τ ι
ε
u2

){∂τXτ −∆Xτ} .
(A.4)

By the expression Tt(ιεui)(u) = 1
ε

∫ ui+ε
ui

pt(u, v)dv, with i = 1, 2, we have that

lim
ε→0

∫
R

du Tr1−r2(ιεu1
) ιεu2
Xr2 = lim

ε→0

1

ε2

∫ u2+ε

u2

du

∫ u1+ε

u1

pr1−r2(u, v)dvXr2

= pr1−r2(u1, u2)X (ρr2(u2)).

Obviously the first term on the right hand side of (A.4) is simply bounded absolutely by
1√

4π(r1−r2)
for all 0 < ε ≤ 1. An easy computation shows that

∫ s

0

dr1

∫ t∧r1

0

dr2
1√

4π(r1 − r2)
< +∞ .

Therefore, by the Dominated Convergence Theorem, we have

lim
ε→0

∫ s

0

dr1

∫ t∧r1

0

dr2

∫
R

du Tr1−r2(ιεu1
) ιεu2
Xr2 =

∫ s

0

dr1

∫ t∧r1

0

dr2 pr1−r2(u1, u2)X (ρr2(u2)).

By symmetry of the Gaussian kernel pt(·, ·), we can write

Tt(ι
ε
ui)(u) =

1

ε

∫ u

u−ε
dv pt(v, ui), i = 1, 2

which converges to pt(u, ui) for every u ∈ R. For any ui ∈ R and any t ∈ [0, T ], let us
consider the Hardy-Littlewood maximal function ft,ui : R→ R defined by

ft,ui(u) := sup
0<ε≤1

1

ε

∫ u

u−ε
dv pt(v, ui) .

Note that

Mi :=

∫ s

0

dr1

∫ t∧r1

0

dr2

∫ r2

0

dτ

∫
R

du pri−τ (u, ui)
2{∂τXτ −∆Xτ} < ∞ , i = 1, 2.

By the Hardy-Littlewood Maximal Inequality (see [8, Theorem 2.5, page 31] for instance),
there exists a constant C > 0 such that for all 0 < ε ≤ 1,∫ s

0

dr1

∫ t∧r1

0

dr2

∫ r2

0

dτ

∫
R

du fri−τ,ui(u)2{∂τXτ −∆Xτ} ≤ CMi .

Moreover, obviously the non-negative function Ttιεui is bounded by ft,ui for any ε ∈ (0, ε0].
Therefore, again by the Dominated Convergence Theorem we can pass the limit inside
the integral for the second term at the right hand side of (A.4).
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The case that 0 ≤ r1 < r2 can be handled similarly. So we can conclude that the limit
of the expression in (A.3) is equal to∫ s

0

dr1

∫ t

0

dr2 p|r1−r2|(u1, u2)X (ρr2(u2))

+ 2

∫ s

0

dr1

∫ t

0

dr2

∫ r1∧r2

0

dτ

∫
R

du pr1−τ (u, u1)pr2−τ (u, u2){∂τXτ −∆Xτ} .

Current and occupation time. In this case to obtain the covariance between Ju1
(s)

and Γu2
(t), we need to estimate the limit, as ε→ 0, of

E
[{
Ys(Gu1

)− Y0(Gu1
)
}∫ t

0

drYr(ιεu2
)
]

=

∫ t

0

drE
[{
Ys(Gu1

)− Y0(Gu1
)
}
Yr(ιεu2

)
]

(A.5)

for any 0 ≤ s, t ≤ T . Recall that we have proved that Ys(GKu1
)− Y0(GKu1

) converges in L2

to Ys(Gu1)− Y0(Gu1), thus the term on the right hand side of (A.5) is equal to∫ t

0

dr lim
K→∞

E
[{
Ys(GKu1

)− Y0(GKu1
)
}
Yr(ιεu2

)
]
. (A.6)

We first deal with the case that 0 ≤ s < r. In view of Theorem 2.2 in [16], we have

E
[
Ys(GKu1

)Yr(ιεu2
)
]

=

∫
R
du GKu1

(Tr−sι
ε
u2

)Xs

+ 2

∫ s

0

dτ

∫
R
du (Ts−τG

K
u1

)(Tr−τ ι
ε
u2

){∂τXτ −∆Xτ} .
(A.7)

By the Monotone Convergence Theorem,

lim
K→∞

∫
R
du GKu1

(Tr−sι
ε
u2

)Xs =

∫ ∞
u1

du (Tr−sι
ε
u2

)Xs .

We showed in the previous computations that the non-negative function TsGKu1
is bounded

by and converges to Pu[Bs ≥ u1] = P0[Bs ≥ u1 − u]. In addition, it can be shown by a
direct computation that∫ s

0

dτ

∫
R
du (Tr−τ ι

ε
u2

) {∂τXτ −∆Xτ} < +∞ .

Therefore by Dominated Convergence Theorem we have that

lim
K→∞

∫ s

0

dτ

∫
R
du (Ts−τG

K
u1

)(Tr−τ ι
ε
u2

){∂τXτ −∆Xτ}

=

∫ s

0

dτ

∫
R
du P0[Bs ≥ u1 − u](Tr−τ ι

ε
u2

){∂τXτ −∆Xτ} .

We now consider the case that 0 ≤ r < s. In this case by [16, Theorem 2.2], we have

E
[
Ys(GKu1

)Yr(ιεu2
)
]

=

∫
R
du (Ts−rG

K
u1

) ιεu2
Xs

+ 2

∫ r

0

dτ

∫
R

du (Ts−τG
K
u1

)(Tr−τ ι
ε
u2

){∂τXτ −∆Xτ} .
(A.8)

The second term on the right hand side can be treated as in the case r > s. The first
term on the right hand side is equal to

1

ε

∫ u2+ε

u2

du (Ts−rG
K
u1

)Xs
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which by the Dominated Convergence Theorem converges to

1

ε

∫ u2+ε

u2

duP0[Bs−r ≥ u1 − u]Xs ,

since the non-negative function TsG
K
u1

is bounded by and converges to Pu[Bs ≥ u1] =

P0[Bs ≥ u1 − u], which is integrable on [u2, u2 + ε]. In summary we have shown that

lim
K→∞

E
[{
Ys(GKu1

)− Y0(GKu1
)
}
Yr(ιεu2

)
]

=

∫ ∞
u1

du (Tr−sι
ε
u2

)1{r > s}Xs +
1

ε

∫ u2+ε

u2

duP0[Bs−r ≥ u1 − u]1{r < s}Xs

+

∫ s∧r

0

dτ

∫
R
du P0[Bs ≥ u1 − u](Tr−τ ι

ε
u2

){∂τXτ −∆Xτ} −
∫ ∞
u1

du (Trι
ε
u2

)X0 .

(A.9)

This finishes the analysis of the integrand in (A.6). We now need to analyze its integral
and the limit as ε → 0. Note that limε→0

1
ε

∫ u2+ε

u2
duP0[Bs−r ≥ u1 − u]1{r < s}Xs

converges to P0[Bs−r ≥ u1 − u2]1{r < s}X (ρs(u2)) and is absolutely bounded by
1√

4π(s−r)
1{r < s}. Since

∫ t

0

dr
1√

4π(s− r)
1{r < s} < +∞ ,

the Dominated Convergence Theorem implies that

lim
ε→0

∫ t

0

dr
1

ε

∫ u2+ε

u2

duP0[Bs−r ≥ u1 − u]1{r < s}Xs

=

∫ t

0

dr P0[Bs−r ≥ u1 − u2]1{r < s}X (ρs(u2)) .

To show that we can pass the limit ε→ 0 inside the integral of the remaining three terms
we can use similar arguments as for the correlation estimate of two occupation times.
We will omit the details. Therefore, we conclude that the limit as ε→ 0 of the integral on
r over [0, t] of the sum of the four terms on the right hand side of (A.9) is equal to∫ t

0

dr

∫ ∞
u1

du pr−s(u, u2)1{r > s}Xs

+

∫ t

0

dr P0[Bs−r ≥ u1 − u2]1{r < s}X (ρs(u2))

+

∫ t

0

dr

∫ s∧r

0

dτ

∫
R

du P0[Bs ≥ u1 − u]pr−τ (u, u2){∂τXτ −∆Xτ}

−
∫ t

0

dr

∫ ∞
u1

du pr(u, u2)X0 ,

concluding the argument.

B Proofs of Lemmas 5.8 and 5.9

We first prove Lemma 5.8.

Proof. Let M > 0. Since E[|Xn|p] ≤ c, then E[|Xn|p ∧ M ] ≤ c. Noting that f(x) =

|x|p ∧M is a bounded continuous function, the convergence in distribution implies that
E[|X|p ∧M ] ≤ c and the Monotone Convergence Theorem concludes the proof.
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We now come to the proof of Lemma 5.9.

Proof. By (1), we have that {BKn }K≥1 is a Lp-Cauchy sequence, uniformly in n ∈ N.
By Lemma 5.8 and (2), we infer that {BK}K≥1 is a Lp-Cauchy sequence as well, thus

BK
Lp−→ B as K → ∞ for some B. Let Anj be a subsequence of An that converges in

distribution, which exists by the tightness assumption (3), and denote by A its limit. By
Lemma 5.8, we deduce that ‖A−BK‖p ≤ f(K) for all K. Therefore A = B, concluding
the proof.
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