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Abstract

We study the cluster-size distribution of supercritical long-range percolation on Zd,
where two vertices x, y ∈ Zd are connected by an edge with probability p(‖x− y‖) :=

pmin(1, β‖x − y‖)−dα for parameters p ∈ (0, 1], α > 1, and β > 0. We show that
when α > 1 + 1/d, and either β or p is sufficiently large, the probability that the
origin is in a finite cluster of size at least k decays as exp

(
− Θ(k(d−1)/d)

)
. This

corresponds to classical results for nearest-neighbor Bernoulli percolation on Zd,
but is in contrast to long-range percolation with α < 1 + 1/d, when the exponent
of the stretched exponential decay changes to 2− α. This result, together with our
accompanying paper, establishes the phase diagram of long-range percolation with
respect to cluster-size decay. Our proofs rely on combinatorial methods that show
that large delocalized components are unlikely to occur. As a side result we determine
the asymptotic growth of the second-largest connected component when the graph is
restricted to a finite box.
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1 Introduction

For nearest-neighbor Bernoulli percolation on Zd [7] it is well known [1, 3, 8, 20, 26,
28] that in the supercritical case, the distribution of the number of vertices in the cluster
containing the origin follows subexponential decay. Let us write |C(0)| for the number of
vertices in the cluster containing the origin, and assume p > pc(Z

d). Then it holds that

P(k < |C(0)| <∞) = exp
(
−Θ(k

d−1
d )
)
. (1.1)
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Cluster sizes in long-range percolation

Figure 1: Simulation of long-range percolation in dimension 2 restricted to a finite box.
The largest connected component C(1)

n is colored blue, the second-largest connected
component C(2)

n red, and the component containing the origin C(0) green.

The decay rate in (1.1) – stretched exponential decay with exponent (d− 1)/d – can be
intuitively explained as follows: a cluster C with at least k vertices has at least Θ(k(d−1)/d)

edges on its (outer) boundary. All these edges need to be absent. In other words, the
tail decay in (1.1) is driven by surface tension. Recently, this result was extended to
supercritical Bernoulli percolation on certain classes of transitive graphs [9, 23]. Related
works are also [29, 34], which determine the size of the second-largest component in a
finite box for random geometric graphs, also known as continuum percolation, obtaining
the same exponent (d− 1)/d for the cluster-size decay.

In our accompanying papers [24, 25], we study the supercritical cluster-size decay in
a large class of spatial random graph models where at least one of the degree distribution
and the edge-length distribution obey heavy tails: long-range percolation [2, 35], scale-
free percolation on Zd and in the continuum [12, 13]; geometric inhomogeneous random
graphs [6], hyperbolic random graphs [27], the ultra-small scale-free geometric network
[37]; the scale-free Gilbert model [21], the Poisson Boolean model with random radii
[17], the age- and the weight-dependent random connection models [18, 19].

In these models the tail in (1.1) stays still stretched exponential, but is at least as
light as the right-hand-side of (1.1). The new exponent – say ζ – is at least (d− 1)/d, with
its formula depending on the model parameters. Generally speaking, the accompanying
papers [24, 25] treat cluster-sizes whenever the decay is strictly lighter than the right-
hand side of (1.1). There, we leave the part of the phase diagram open where the model
parameters are such that the conjectured exponent in (1.1) stays (d− 1)/d and the tail
decay is driven by surface tension as in nearest-neighbor percolation.

In particular, the paper [25] leaves open this region for long-range percolation (LRP)
[2, 35] (see Theorem 1.3 below for the result). This missing region for LRP is the main
focus in this paper. We write x ∧ y := min(x, y).

Definition 1.1 (Long-range percolation (LRP)). Fix constants d ∈ N, α > 1, p ∈ (0, 1], and
β > 0. We consider the random graph G∞ = (V (G∞), E(G∞)) with V (G∞) = Zd such
that each edge {x, y} is included in E(G∞), independently of all the other edges, with
probability

p
(
‖x− y‖

)
:= p ·

(
1 ∧ β

‖x− y‖

)dα
, (1.2)
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Cluster sizes in long-range percolation

where ‖·‖ := ‖·‖2 denotes the (Euclidean) 2-norm. We set Λn := Zd∩ [−n−1/d/2, n1/d/2)d

and En := {{x, y} ∈ E∞ : {x, y} ⊆ Λn}, and write Gn := (Λn, En) for the induced
subgraph of G∞ on Λn. We write C(0) and Cn(0) for the connected component containing
the origin in G∞ and Gn, respectively.

Each edge with length at most β is present with probability p, resembling spread-out
percolation in this length-range. The long-range nature is apparent beyond radius β.
Our parametrization with dα as the power of the polynomial decay matches the notation
of the accompanying paper [24]. Other common parametrizations of this power are
s [5, 10, 11] and d+ α [22].

Throughout the paper we will assume high edge density (that we make precise below).
High edge density implies that the graph is supercritical, and

P
(
0↔∞

)
> 0

holds. Further, the infinite component is almost surely unique [2, 16]. We write C(i)
n for

the i-th largest component in Gn with i ∈ {1, 2}. If C(1)
n contains all vertices of Gn then we

set C(2)
n := ∅. For n =∞, we write C(1)

∞ for the unique infinite component in G∞. We refer
to Figure 1 for a visualization. We will generally assume that p ∧ β < 1, so that not all
nearest-neighbor edges are present and hence the graph is not connected almost surely.
We state our main result.

Theorem 1.2 (Second-largest component and cluster-size decay). Consider supercritical
long-range percolation on Zd for d ≥ 2 and α > 1 + 1/d, and p ∧ β < 1. If either β ≥ 1

and β sufficiently large (depending on p, α, d), or β < 1 and p(1∧ β)dα is sufficiently close
to 1, then there exist constants A, δ > 0 such that for all n sufficiently large,

P
(

1
A (log n)d/(d−1) ≤ |C(2)

n | ≤ A(log n)d/(d−1)
)
≥ 1− n−δ. (1.3)

Under the same assumptions, for all k sufficiently large, whenever n(log n)−2d/(d−1) ≥ k
or n =∞,

− k−(d−1)/d log
(
P
(
|Cn(0)| > k, 0 /∈ C(1)

n

))
∈ [1/A,A]. (1.4)

Lastly, under the same assumptions,

|C(1)
n |
n

P−→ P
(
0↔∞

)
, as n→∞. (1.5)

Note that (1.4) allows for n =∞. In Remark 1.4 we discuss a further generalization
to more general connectivity functions p(‖x− y‖). Theorem 1.2 complements the result
of [25] applied to long-range percolation that we state here for completeness.

Theorem 1.3 (Complementary result for α < 1 + 1/d [25, Theorems 2.9–2.10]). Consider
supercritical long-range percolation on Zd for d ≥ 1 and α < 1 + 1/d. There exist
constants A, δ > 0 such that for all n

P
(

1
A (log n)1/(2−α) ≤ |C(2)

n | ≤ A(log n)1/(2−α)
)
≥ 1− n−δ. (1.6)

Moreover, for all k sufficiently large, whenever n ≥ Ak or n =∞,

− k−(2−α) log
(
P
(
|Cn(0)| > k, 0 /∈ C(1)

n

))
∈ [1/A,A]. (1.7)

Lastly, under the same assumptions,

|C(1)
n |
n

P−→ P
(
0↔∞

)
, as n→∞.
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Cluster sizes in long-range percolation

In Theorem 1.3 we do not require β or p to be sufficiently large, and we also allow
one-dimensional models: when d = 1, LRP is supercritical when α ≤ 2 = 1 + 1/d and
when p, β are sufficiently large [15, 35]. When d = 1 and α > 2, LRP is subcritical for
any p, β > 0 such that p(1) < 1 [35], so Theorems 1.2 and 1.3 together give a complete
picture for the cluster-size decay for supercritical long-range percolation (under the
additional assumption that β or p is sufficiently large when α > 1 + 1/d). In [25], we
also study the phase boundary α = 1 + 1/d. In that case the lower bounds (1.6) and (1.7)
contain lower-order correction factors, which we conjecture to be sharp. We omit further
details here. To the extent of our knowledge, for LRP, the only related results regarding
the distribution of smaller clusters in supercritical LRP is an upper bound on the second-
largest component with unidentified exponent by Crawford and Sly [11] for α ∈ (1, 2) in
dimension 1 and α ∈ (1, 1 + 2/d) in dimensions 2 and higher. For (sub)critical LRP with
α ∈ (1, 2), a polynomial upper bound on P(|C(0)| ≥ n) is established in [22].

Before proceeding to the technical contributions, we remark that our results could
be generalized to a more general class of random graph models on Zd. Theorem 1.2
extends to random graph models on Zd with independent edges for any connectivity
function that has a lighter tail than p in Theorem 1.2, provided that the probability of
‘short-range’ edges is still sufficiently high. For instance, our methods extend to long-
range percolation models in which the connection probability decays superpolynomially,
and also provide an alternative proof for the cluster size decay in spread out percolation,
a special case in [9] (in spread-out percolation two vertices within distance R connect
independently by an edge with probability p. We refrain from proving the result in
this generality, since it would require many technically involved changes in our already
technical companion paper [24]. We nevertheless formulate the following comment.

Remark 1.4. Consider the percolation model on Zd where each pair of vertices x, y ∈ Zd
is connected by an edge with probability p(‖x− y‖) for some function p : [0,∞)→ [0, 1),
independently of other vertex pairs. Let J : [0,∞) → [0, 1) be a function that satisfies
supr>0 J(r) < 1, and ∫

x:x∈Rd

‖x‖J(‖x‖)dx <∞. (1.8)

Then we have the following two cases:

1) If the connectivity function p is of the form

p(‖x‖) = J(‖x‖/β),

and there is an ε > 0 such that J(x) > ε whenever x < ε, then (1.3)–(1.5) can be
proven for all sufficiently large β depending on ε.

2) If the connectivity function is of the form

p(‖x‖) =

{
p if ‖x‖ = 1,

J(‖x‖) if ‖x‖ > 1,

then (1.3)–(1.5) can be proven for all p sufficiently close to 1.

The integral in the condition (1.8) represents the order of the expected number of
edges {x, y} for which the line-segment (x, y) crosses a fixed box of volume one. If this
number is finite, Theorem 1.2 holds in more generality. The connectivity function p from
Definition 1.1 satisfies the integrability condition (1.8) if and only if α > 1 + 1/d. We
conjecture that the upper bounds in (1.3)–(1.4) remain valid if (1.8) is violated (but no
longer match the lower bounds). However, this would require a different proof technique.

We state a proposition that contains the main technical contribution of this paper.
Together with statements from our companion paper [24], where we establish the
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Cluster sizes in long-range percolation

relation between the second-largest component and the cluster-size decay for spatial
random graph models more generally, this proposition will readily imply Theorem 1.2.

Proposition 1.5 (Second-largest component, upper bound). Consider supercritical long-
range percolation on Zd for α > 1+1/d, d ≥ 2. If β in (1.2) is sufficiently large (depending
on p, α, d), or if p(1 ∧ β)dα is sufficiently close to 1, then for all k sufficiently large and for
all n satisfying n(log n)−2d/(d−1) ≥ k,

P
(
|C(2)

n | ≥ k
)
≤ (n log n) exp

(
− k(d−1)/d

)
.

We believe that Proposition 1.5, and hence Theorem 1.2, should hold for any values of
β, p that lead to a supercritical graph: however, this would require non-trivial adaptations
of our proof techniques.

1.1 Idea of proof

The proof of Proposition 1.5 relies on a careful first-moment analysis in which we
count all possible candidates of isolated components of size at least k. The starting
point is the classic isoperimetric inequality which states that any set S of at least k
vertices has an edge-boundary of size |∂S| = Ω(k(d−1)/d). These edges need to be absent
when S is a connected component (or simply component below), i.e., detached from the
rest of the graph. The combinatorial difficulty arises when we account for all possible
candidate components S: the structure of S is more complex than for nearest-neighbor
bond percolation in Zd, since S can be “delocalized” in space. The second difficulty
arises in the finite box Λn ⊆ Zd, where we need to take boundary effects into account
caused by possibly shared boundaries of ∂S and ∂Λn.

To resolve these two complications, we distinguish two types of components: the first
type consists of several “blocks” connected by long edges: each block is a connected
subset of Zd (with respect to nearest-neighbor relation in Zd). We consider each possible
combination of blocks with fixed total outer edge-boundary size m, and give an upper
bound on the probability that these blocks form a connected component by counting all
possible spanning trees on these blocks. We show that the combinatorial factor arising
from counting all potential components with boundary m is at most exponential in m.
We then use the large value of β or p in our favor to prove that the probability that such
a component is formed and isolated is sufficiently small.

The second type of potential component S contains a large block that has a large
overlap with the boundary of Λn, and consequently |∂S| inside Λn may be small. Again,
a simple enumeration of all such blocks would yield too large combinatorial factors.
Instead, we use only certain holes of S and an adapted isoperimetric inequality to still
ensure that many edges need to be absent. Then we group potential large components,
such that a large number of holes coincide for each potential large component in the
same group. This makes combinatorial factors much smaller, and we obtain the right
decay.

Organization

In Section 2, we derive an intermediate upper bound for P
(
|C(2)
n | ≥ k

)
, defining the

two types of components formally. Then, we state two lemmas and show that they imply
Proposition 1.5. We prove the two lemmas in separate sections. In the last section we
use the result of Proposition 1.5 to prove Theorem 1.2.

Notation

Let H = (VH , EH) be a graph. For two sets A,B ⊆ VH , we write A ∼H B if there
exist x ∈ A, y ∈ B such that {x, y} ∈ EH , and A 6∼H B if no such pair exists. We
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Cluster sizes in long-range percolation

leave out the subscript H if the graph is clear from the context. For A ⊆ VH , we write
H[A] for the induced subgraph of H on vertices in A. Denote by Zd∞ the graph on the
vertex set Zd and an edge between x, y ∈ Zd if and only if ‖x − y‖∞ = 1. Similarly,
let Zd1 be the graph on the vertex set Zd and an edge between x, y ∈ Zd if and only if
‖x − y‖1 = 1. As already mentioned, we write ‖ · ‖ := ‖ · ‖2. For two sets A,B ⊆ Zd,
denote by ‖A − B‖p = min{‖x − y‖p | x ∈ A, y ∈ B}. For any graph structure, we say
that a path π = (v1, v2, v3, . . . ) is self-avoiding if its vertices are all distinct. For x, y ∈ R,
we write x ∧ y := min(x, y), x ∨ y := max(x, y). We sometimes abuse notation and write
∪i≥1Ai rather than

⋃
i≥1Ai for the union. We also refer to Definition 2.4 below for the

exterior boundary of A ⊆ Zd with respect to either Λn or Zd, denoted by ∂extA, resp.
∂̃extA, and the interior boundaries ∂intA and ∂̃intA with respect to Λn, resp. Zd.

2 Preliminaries and setup

Throughout the rest of the paper, we assume that d ≥ 2, α > 1 + 1/d, and n1/d ∈ N.
This latter assumption means that the box Λn contains exactly n vertices and avoids
integer parts in our formulas. Adaptation to arbitrary n is straightforward.

We now formalize the concepts from the proof outline in Section 1.1 that eventually
lead to two lemmas, one for each of the two described types of components. To ensure
that the upcoming definitions naturally follow each other, we will postpone the (some-
times standard) proofs of intermediate claims to the appendix. We start with a definition
to describe sets of Λn that form (subsets of) the second-largest component.

Definition 2.1 (Connected sets and blocks). We call a non-empty set A ⊆ Zd of vertices
1-connected or a block, if the graph Zd1[A] consists of a single connected component. We
similarly define A being ∗-connected if the graph Zd∞[A] consists of a single connected
component. We write

A :=
{
A ⊆ Λn | A is 1-connected

}
, A∗ :=

{
A ⊆ Λn | A is ∗-connected

}
. (2.1)

A sequence of at least two sets A1, A2, . . . ⊆ Zd is 1-disconnected if ‖Ai − Aj‖1 > 1 for
all i 6= j. We say that a set A ⊆ Λn consists of blocks A1, . . . , Ab if Ai is a (non-empty)
block for 1 ≤ i ≤ b, if the sequence (Ai)i≤b is 1-disconnected, and their union equals A.
We write A1, . . . , Ab ∈1 A if the blocks A1, . . . , Ab are 1-disconnected.

We say that a vertex x is surrounded by A ∈ A if each infinite 1-connected self-
avoiding path starting from x contains a vertex of A. We define for A ∈ A its closure Ā
as

Ā = A ∪ {x ∈ Zd : x surrounded by A}. (2.2)

We call the maximal 1-connected subsets of Ā \A the holes of A, and write HA for the
collection of holes.

We make a few comments. The ‘vertices on the boundary’ of A, that we shall shortly
define, are not surrounded by A, but they belong to both A and Ā. The closures of blocks
will be used for the first type of components described in Section 1.1. Take now a block
A ⊆ Λn. Then x can only be surrounded by A if x ∈ Λn, hence A ⊆ Λn implies that
Ā ⊆ Λn. Due to the presence of long-range edges, a component in long-range percolation
may consist of multiple 1-disconnected blocks (some of them possibly consisting of a
single vertex). We define the notion of a block graph.

Definition 2.2 (Block graph). Let A1, . . . , Ab ∈1 A be a sequence of 1-disconnected
blocks, and consider a graph G on vertices VG ⊇ ∪i≤bAi. The block graph HG((Ai)i≤b) =

(VHG
, EHG

) of G on blocks A1, . . . , Ab is defined as

VHG
:= {1, . . . , b}, EHG

:=
{
{i, j} : Ai ∼G Aj

}
.
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Cluster sizes in long-range percolation

In words, the vertices of each block are contracted to a single vertex in the block
graph, and two corresponding vertices for the blocks i and j are connected in the block
graph if and only if there is an edge in the original graph G between (some vertices in)
the two blocks. We continue with a simple claim, proven in the appendix on page 30.

Claim 2.3 (Unique block-decomposition of components). Let A be any subset of vertices
in Λn. There exists b ∈ N such that A can be uniquely partitioned into a 1-disconnected
sequence (Ai)i≤b of blocks up to permutation of the blocks. Further, if A is the vertex
set of a connected component C of Gn, then the block graph HGn((Ai)i≤b) is connected.

Later, we will enumerate subsets S ⊆ Λn of vertices that potentially form a component
of LRP in Λn. To ensure that a subset is isolated from the rest of the graph, there must
be no edge from S to its “surrounding” inside Λn. This motivates the following definition
of boundaries with respect to Λn.

Definition 2.4 (Boundaries). Let A ⊆ Λn. We define the exterior boundary of A with
respect to Λn and Zd, respectively, as

∂extA := {x ∈ Λn : ‖{x} −A‖1 = 1}, ∂̃extA := {x ∈ Zd : ‖{x} −A‖1 = 1}. (2.3)

We define the interior boundary of A with respect to Λn and Zd, respectively, as

∂intA := {x ∈ A : ‖{x} − ∂extA‖1 = 1}, ∂̃intA := {x ∈ A : ‖{x} − ∂̃extA‖1 = 1}. (2.4)

If, in words, we mention the exterior or interior boundary of A then – unless explicitly
specified differently – we mean with respect to Λn.

We mention that ∂̃intΛn is the ‘usual’ vertex boundary of Λn. The boundary ∂̃extA may
contain vertices outside Λn, and will be useful in the enumeration of subsets forming
isolated components below. It may happen that a block A contains (many) vertices of
∂̃intΛn. On such regions, A may not have exterior boundary vertices, implying that there
∂intA is also empty. The next claim contains basic properties of blocks, their closures,
and their boundaries, with proof in the appendix on page 30.

Claim 2.5 (Blocks, their closures and their boundaries). The following five statements
hold:

(i) For any block B, ∂̃intB̄ ⊆ ∂̃intB.

(ii) Let B1, B2 be 1-disconnected blocks such that B̄1 ∩ B̄2 6= ∅. Then either B̄1 ⊆ B̄2 or
B̄2 ⊆ B̄1.

(iii) Let B1, B2 be 1-disconnected blocks such that B̄1 ∩ B̄2 = ∅. Then B̄1, B̄2 are also
1-disconnected from each other.

(iv) For any block B, ∂̃intB̄ and ∂̃extB̄ are ∗-connected.

(v) For any hole H of a block B, we have that H = H̄, so ∂̃intH and ∂̃extH are ∗-
connected.

The statements (ii)–(iii) say that if B1 and B2 are 1-disconnected, then either B1 is
inside a hole of B2 or the other way round (ii), or their closures are also 1-disconnected
(iii). Part (v) states that a hole H of a 1-connected block B cannot contain further holes.
The fourth statement (iv) of the preceding claim is [14, Lemma 2.1]. The next claim
shows that the sizes of the boundaries with respect to Λn and Zd are of the same order,
provided that the set has cardinality at most 3n/4. Moreover, it contains an isoperimetric
inequality that we extensively use below. It is proved in the appendix on page 31.

Claim 2.6 (Boundary bounds and isoperimetry). There exists δ > 0 such that for all
A ⊆ Λn with |A| ≤ 3n/4 or A ∩ ∂̃intΛn = ∅,

|∂intA| ≥ δ|∂̃intA|
(?)

≥ δ|A|(d−1)/d, |∂extA| ≥ δ|∂̃extA|
(?)

≥ δ|A|(d−1)/d. (2.5)
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The inequalities with (?) hold for any A ⊆ Λn without conditions on A.

The next lemma is due to Peierls [33]. We give a proof in the appendix on page 33.
More general results also appeared in [4, 36]. We will use this claim to enumerate blocks
that satisfy A = Ā.

Lemma 2.7 (Peierls’ argument [33]). There exists a constant cpei > 0 such that for all
x ∈ Zd and m ∈ N,

|{A ∈ A : A 3 x,A = Ā, |∂̃intA| = m}| ≤ exp(cpeim). (2.6)

The proof relies on the fact that ∂̃intA is ∗-connected [14, Lemma 2.1] (which would
not hold if A contained holes, or may not hold if one replaces ∂̃intA by ∂intA).

In (2.5), we would like to replace ∂intA by ∂intĀ from (2.2) (enumeration of sets that
are equal to their closure would allow us to use Peierls’ argument). However, then the
isoperimetric inequality (2.5) may not hold anymore if the total boundary size of the
holes in A is too large compared to ∂intĀ, which could happen if |Ā| > 3n/4. We define
two types of blocks, based on the size of the closures of the blocks (that is, whether
Claim 2.6 applies to Ā or not), i.e.,

Asmall := {A ∈ A : |Ā| ≤ 3n/4, and Ā = A},
Alarge :=

{
A ∈ A : |Ā| > 3n/4, and |A| ≤ n/2

}
.

(2.7)

Recall the notation A1, . . . Ab ∈1 A in Definition 2.1 meaning that the blocks A1, . . . , Ab
are 1-disconnected. We extend this notation also to subsets of A. For each of the sets
and k ∈ N we define an event, namely

E1(b,Gn) :=

∃ (Ai)i≤b ∈1 Asmall

∣∣∣∣∣∣∣
(∪i∂̃intAi) 6∼Gn (Λn\∪iAi),
|∪iAi| ≥ k,
HGn((Ai)i≤b) connected

 , (2.8)

and

E2(Gn) := {∃A ∈ Alarge : A 6∼Gn ∂extA}. (2.9)

The following deterministic claim holds for any graph on vertices in Λn. It shows that
the union of these events contains the event {|C(2)

n | ≥ k}. In particular, the proof reveals
why we could restrict to sets with A = Ā in the definition of Asmall in (2.7).

Claim 2.8. Consider the graph Gn from Definition 1.1, with C(2)
n the second-largest

component of Gn. Then

{
|C(2)

n | ≥ k
}
⊆ E2(Gn) ∪

( bn/2c⋃
b=1

E1(b,Gn)
)
.

Proof of Claim 2.8. Clearly
{
|C(2)
n | ≥ k

}
⊆ {∃ a component C of Gn : |C| ∈ [k, bn/2c]}. The

size restriction n/2 is possible since otherwise C(2)
n would be the largest component. Take

any such C. We use Claim 2.3 to first uniquely decompose C into 1-disconnected (hence
disjoint) blocks A1, . . . , Ab for some b ≥ 1. Since k ≤ |C| ≤ n/2, |Ai| ≤ n/2 also holds for
all i ≤ b, and also b ≤ n/2, and

∑
i≤b |Ai| ≥ k.

We distinguish two cases. Either (1) there is at least one block that is in Alarge or (2)
all the blocks are in A \ Alarge. In the first case the event E2 in (2.9) holds: a block of C
satisfying Alarge (say A) is by definition 1-disconnected from the other blocks of C, and
since C is a component of Gn, A is Gn-disconnected from its exterior boundary, hence
E2(Gn) defined in (2.9) holds.
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In case (2) all the blocks (Ai)i≤b are in A\Alarge, and, since they form the component
C, the graph Gn spanned on ∪i≤bAi is connected, while their union is disconnected in
Gn from the rest of the graph. Finally their disjointness and |C| ∈ [k, n/2] ensure that
|∪i≤bAi| ∈ [k, n/2]. Formally we describe this event as (changing the sets to be denoted
by Bi to avoid clash of notation later):

Ẽ1(b,Gn) :=

∃(Bi)i≤b ∈1 A\Alarge

∣∣∣∣∣∣∣
Gn[∪i≤bBi] connected,

|∪i≤bBi| ∈ [k, n/2],

(∪i≤bBi) 6∼Gn (Λn\∪i≤bBi)

 .

Taking a union over the number of blocks and combining the two cases, we arrive at{
|C(2)

n | ≥ k
}
⊆ E2(Gn) ∪

(
∪bn/2cb=1 Ẽ1(b,Gn)

)
.

Take now any graph Gn on the vertex set Z ∩ Λn. Think of this as the realization of Gn.
We will show the implication that

{ bn/2c⋃
b=1

Ẽ1(b,Gn) holds for Gn
}

=⇒
{ bn/2c⋃
b′=1

E1(b′, Gn) holds for Gn
}
. (2.10)

Given Gn for which
⋃bn/2c
b=1 Ẽ1(b,Gn) holds, take now b and the 1-disconnected blocks

(B1, . . . , Bb) for which Ẽ1(b,Gn) holds in the union. The conditions of Claim 2.5 are
satisfied for any pair Bi, Bj with i 6= j, hence for each pair, B̄i and B̄j are either 1-
disconnected disjoint sets, or one contains fully the other one. Choose now those sets in
{B̄1, . . . , B̄b} that are not contained in any other set in the same list. We then obtain an
integer b′ ≤ b and a 1-disconnected subset {B̄i1 , . . . , B̄ib′} ⊆ {B̄1, . . . , B̄b} such that

b⋃
i=1

Bi ⊆
b⋃
i=1

B̄i =

b′⋃
j=1

B̄ij . (2.11)

Since (B̄1, . . . , B̄b′) is a 1-disconnected sequence of blocks that are equal to their own
closure, (2.10) follows if E1(b′, Gn) holds. For this, we use that B1, . . . Bb satisfies Ẽ1(b,Gn)

by assumption, so when checking (2.8) for (B̄1, . . . , B̄b′), it is sufficient to show that

{Gn[∪i≤bBi] connected} ⊆ {HGn((B̄i)i≤b′) connected}, (2.12)

{| ∪i≤b Bi| ∈ [k, n/2]} ⊆ {| ∪i≤b B̄i| ≥ k}, (2.13)

{(∪i≤bBi) 6∼Gn
(Λn \ ∪i≤bB̄i)} ⊆ {(∪i≤b′ ∂̃intB̄i) 6∼Gn

(Λn \ ∪i≤b′B̄i)}, (2.14)

since then all conditions for E1(b′, Gn) defined in (2.8) are satisfied by setting Ai = B̄i
for all i ≤ b′. For the first inclusion (2.12) we observe that{
Gn[∪i≤bBi] connected

}
⊆
{
HGn

((Bi)i≤b) connected
}
⊆
{
HGn

((B̄i)i≤b′) connected
}
,

since the left-hand side was assumed in Ẽ1(b,Gn), and the block graph being connected
is a less demanding event than the actual spanned graph being connected, and the
second containment follows since each set of edges in Gn that ensures that HGn((Bi)i≤b)

is connected, also ensures that the block graph on the closures of (Bi)i≤b is connected.
The second inclusion (2.13) follows by using ∪i≤bBi ⊆ ∪i≤b′B̄i in (2.11). For the

third inclusion (2.14) we have to argue that the set of edges that is excluded on the
right-hand side is contained in the set of excluded edges on the left-hand side. Clearly
(Λn \ ∪i≤bBi) ⊇ (Λn \ ∪i≤b′B̄i), and by part (i) in Claim 2.5 it follows that ∂intB̄i ⊆ Bi.
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We state two lemmas that together with Claim 2.8 prove Proposition 1.5. We prove
the two lemmas in the following sections.

Lemma 2.9 (Unlikely block graphs). Let Gn be long-range percolation on Λn as in Defini-
tion 1.1 with d ≥ 2, α > 1 + 1/d. There exists a constant c2.9 = c2.9(d, α) > 0 such that
for all k, n sufficiently large

P
( bn/2c⋃

b=1

E1(b,Gn)
)
≤ (n log n) ·

(
pβdα ·

(
1− p(1 ∧ β)dα

)(β∨1)c2.9
)k(d−1)/d

(2.15)

whenever p and β guarantee that the base of k(d−1)/d is sufficiently small.

We give a brief intuition on the powers occurring on the right-hand side of (2.15).
When β ≥ 1 in (2.15), the factor (1 − p)β comes from the fact that any vertex within β

distance from the boundary of total size at least k(d−1)/d of the blocks ∪i≤bAi in (2.8)
must be Gn-disconnected from ∪i≤bAi. An edge between two vertices within distance
β is absent with probability 1− p by (1.2). In this case pβdα ≥ 1 is possible; this factor
arises from counting the number of possible spanning trees on the blocks. When β < 1,
we only exclude edges of length 1 around the boundary of ∪i≤bAi, and the factor pβdα is
at most 1.

We proceed to the lemma dealing with E2(Gn). Define

f(p, β) :=

{
1− p(1 ∧ β)dα, if β < 2

√
d,

(1− p)(log2 β)−2β(d−2)/(d−1)

, if β ≥ 2
√
d.

(2.16)

The function f(p, β) describes how large p and β should be in the next lemma. It is a
technical artifact of the proof that we did not optimize. We write x ∨ y = max(x, y).

Lemma 2.10 (No large isolated component). Let Gn be long-range percolation on Λn as
in Definition 1.1 with d ≥ 2, α > 1 + 1/d. There exists a constant c2.10 = c2.10(d) > 0 such
that for all n sufficiently large

P
(
E2(Gn)

)
≤
(
1− p(1 ∧ β)dα

)(β∨1)·c2.10n(d−1)/d(logn)−2

(2.17)

whenever f(p, β) is sufficiently small.

To prove (2.17), we use that any set A with size below n/2 but closure Ā with size
above 3n/4 must have boundary at least Θ(n(d−1)/d), and large holes to which it cannot
be connected by an edge in Gn. The (log n)−2 factor is a technical artifact of our proof
based on the pigeon-hole principle. In both Lemma 2.9 and 2.10, the challenge is
that a simple union bound would yield too large combinatorial factors arising from the
possibilities for the sets (Ai)i≤b and A, respectively. See also Section 1.1.

3 Spanning trees on block graphs

We work towards proving Lemma 2.9. Recall the event E1(b) := E1(b,Gn) from (2.8),
and Asmall for the blocks in Λn from (2.7) on which there should be a connected
block graph HGn((Ai)i≤b) (see Definition 2.2). By a union bound over all possible 1-
disconnected sequences of blocks (A1, . . . , Ab) ∈1 Asmall whose total size is at least k, we
obtain

P
(
E1(b)

)
≤ 1

b!

∑
(Ai)i≤b∈1Asmall

P
(
HGn((Ai)i≤b) is connected, (∪i≤b∂̃intAi) 6∼Gn (Λn\∪i≤bAi)

)
,
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where the factor 1/b! corrects for the permutations of (A1, . . . , Ab) yielding the same
blocks, but ordered differently. Using the independence of edges in long-range percola-
tion in Definition 1.1, we obtain

P
(
E1(b)

)
≤ 1

b!

∑
(Ai)i≤b∈1Asmall

P
(
HGn((Ai)i≤b) is connected

)
·P
(
(∪i≤b∂̃intAi) 6∼Gn (Λn\∪i≤bAi)

)
.

(3.1)
The block graph HGn((Ai)i≤b) can only be connected if it contains a spanning tree on its
blocks. To count these spanning trees, we introduce the rooted labeled f -tree. In the
following definition, we use that each tree on b vertices has b− 1 edges.

Definition 3.1 (f -tree). Let Fb be the set of vectors f = (f1, . . . , fb) ∈ Nb0 satisfying∑
i∈[b] fi = b − 1, f1 + . . . + fj ≥ j for all j ∈ [b − 1]. We call f the vector of forward

degrees. A rooted labeled tree on b vertices is an f -tree if the root has label 1, and it has
an outgoing edge to each of the vertices with labels 2, . . . , f1 +1, vertex 2 has an outgoing
edge to each of the vertices with labels f1 + 2, . . . , f1 + f2 + 1, and so on, the vertex with
label j has an outgoing edge to each of the vertices with labels 2+

∑j−1
i=1 fi, . . . , 1+

∑j
i=1 fi.

If (i, j) is a directed edge in an f -tree, then we say that i is the parent of j and j is the
child of i. We say that the labeled block graph HGn((Ai)i≤b) is f -connected, if it contains
an f -tree on its vertices (1, 2, . . . , b).

Given a forward-degree vector f and a labeled set of vertices, the f -tree is uniquely
determined. The construction ensures that the block with label b must be a leaf, i.e., it
has forward degree fb = 0, and its parent corresponds to the label of the last nonzero
entry of f . Further, given a tree T with labeling f ∈ Fb, upon removing the leaf with label
b, we obtain a tree T \ {b} on {1, . . . , b− 1} with a labeling in Fb−1.

Further, an f -tree always has vertex 1 as its root, and the forward neighbors of any
vertex have consecutive labels. Hence, not all the b! labelings of a tree T are valid
labelings, i.e., no vector f ∈ Fb can be associated to some labelings. However, for a fixed
tree T on a connected block graph HGn((Ai)i≤b), there is at least one permutation σ of
(1, 2, . . . , b) with σ(1) = 1 and a vector f ∈ Fb such that HGn((Aσ(i))i≤b) is f -connected.
In other words, we can relabel the blocks so that the new labeling (1, σ(2), . . . σ(b)) is a
proper labeling of T , for some f ∈ Fb in Definition 3.1. We denote the set of permutations
of (1, 2, . . . , b) with 1 a fixed point by S1

b . Note that the choice of the spanning tree T may
not be unique if HGn((Ai)i) is connected. We obtain on the first factor inside the sum
in (3.1) that

P
(
HGn((Ai)i≤b) connected

)
= P

( ⋃
f∈Fb

⋃
σ∈S1

b

{
HGn((Aσ(i))i≤b) is f -connected

})
. (3.2)

If, for a given (f , σ) the block graph isHGn((Aσ(i))i≤b) is f -connected, then there are
∏
i fi!

other pairs (f ′, σ′) such that HGn((Aσ′(i))i≤b) is f ′-connected, counting the isomorphisms
of rooted trees: namely, the (consecutive) labels of the forward neighbors of any vertex v
may be permuted (yielding the factor fv! for each vertex), resulting in permuting the
labels in the forward-subtrees of v accordingly. For any such (f , σ) and (f ′, σ′), we then
also have that

∏b
i=1 fi! =

∏b
i=1 f

′
i !. Hence, in the above union each rooted tree T (with

root fixed) on HGn((Aσ′(i))i≤b) is counted
∏
i=1 fi! times. Thus, we obtain from (3.2) that

P
(
HGn((Ai)i≤b) connected

)
≤
∑
f∈Fb

( b∏
i=1

1

fi!

) ∑
σ∈S1

b

P
(
HGn((Aσ(i))i≤b) is f -connected

)
.

We substitute this into (3.1), and use that the product
∏b
i=1

1
fi!

is invariant under label
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permutations. So we arrive at

P
(
E1(b)

)
≤ 1

b

∑
f∈Fb

( b∏
i=1

1

fi!

)∑
A1

1

(b− 1)!

∑
σ∈S1

b

∑
(Ai)2≤i≤b∈1Asmall

P
(
HGn((Aσ(i))i≤b) is f -connected

)
· P
(
(∪i∂̃intAσ(i)) 6∼Gn (Λn\∪iAσ(i))

)
.

We now argue that the sum over the permutations and the factor 1/(b− 1)! cancel each
other. Given A1, let (B2, . . . , Bb) ∈1 Asmall be arbitrary blocks of total size at least k−|A1|,
also 1-disconnected from A1. Then, for any permutation σ ∈ S1

b , in the summations over
the blocks A2, . . . , Ab, there is precisely one combination of blocks such that Aσ(i) = Bi
for all i ≤ b. Hence, when summing over all permutations σ ∈ S1

b , we counted the case
that the blocks are A1, B2, . . . , Bb exactly (b− 1)! times. This cancels the factor 1/(b− 1)!,
and we arrive at

P
(
E1(b)

)
≤ 1

b

∑
f∈Fb

( b∏
i=1

1

fi!

) ∑
(Ai)i≤b∈1Asmall

P
(
HGn((Ai)i≤b) f -connected

)
· P
(
(∪i≤b∂̃intAi) 6∼Gn (Λn\∪i≤bAi)

)
.

Lastly, we prescribe the sizes of the boundaries of the blocks. We introduce the possible
boundary-length vectors:

Mb(k) :=

{
m=(m1, . . . ,mb) ∈ Nb : ∃(Ai)i≤b∈1Asmall : |∂̃intAi| = mi ∀i ≤ b,

| ∪i≤b Ai| ≥ k

}
. (3.3)

Then,

P
(
E1(b)

)
≤ 1

b

∑
m∈Mb(k)

∑
f∈Fb

( ∏
i∈[b]

1

fi!

) ∑
(Ai)i≤b∈1Asmall,

|∂̃intAi|=mi ∀i≤b

P
(
HGn((Ai)i) f -conn.

)
· P
(
∪i ∂intAi 6∼Gn Λn \ ∪iAi

)
.

(3.4)

The next two statements will imply Lemma 2.9.

Statement 3.2 (Counting spanning trees). Let Gn be long-range percolation on Λn as
in Definition 1.1 with d ≥ 2, α > 1 + 1/d. There exists c3.2 = c3.2(d, α) > 0 such that for
all fixed m ∈Mb(1),

∑
f∈Fb

( ∏
i∈[b]

1

fi!

) ∑
(Ai)i≤b∈1Asmall,

|∂̃intAi|=mi ∀i≤b

P
(
HGn((Ai)i) is f -connected

)
≤ n

(
C3.2 ·pβdα

)∑
i∈[b]mi

. (3.5)

The bound given by the previous statement increases exponentially in
∑
i∈[b]mi.

While this might look harmful, the next statement will compensate for this, so that the
two bounds combined, for appropriate choices of the constants p and β, still gives a
bound decaying exponentially in

∑
i∈[b]mi.

Statement 3.3 (Isolation). Let Gn be long-range percolation on Λn as in Definition 1.1
with d ≥ 2, α > 1 + 1/d. There exists c3.3 = c3.3(d) > 0 such that for any m ∈Mb(1), and
any 1-disconnected blocks (Ai)i≤b ∈1 Asmall with |∂̃intAi| = mi for all i,

P
(

(∪i∂̃intAi) 6∼Gn (Λn\∪iAi)
)
≤
(
1− p(1 ∧ β)dα

)(β∨1)c3.3·
∑

i∈[b]mi
. (3.6)
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We show first that Lemma 2.9 follows from these statements, and then prove the
statements in the remainder of the section.

Proof of Lemma 2.9, assuming Statements 3.2 and 3.3. Substituting the bounds from
Statements 3.2 and 3.3 into the right-hand side of (3.4) yields for β ≥ 1 that

P
(
E1(b)

)
≤ 1

b

∑
m∈Mb(k)

n
(
C3.2pβ

dα · (1− p)β·c3.3
)∑

i∈[b]mi
. (3.7)

In what follows we evaluate the summation over the vectors m ∈ Mb(k). We recall
from (3.3) that m represents the vector of interior boundary sizes of 1-connected sets
(Ai)i≤b ∈1 Asmall with total size at least k, and Ai = Āi ≤ 3n/4 for all i ≤ b by the
definition of Asmall in (2.7). In (3.3), the boundary is taken with respect to Zd, i.e., not
with respect to Λn. By the isoperimetric inequality in Claim 2.6, for all blocks (Ai)i≤b
it simultaneously holds that |∂̃intAi| ≥ |Ai|(d−1)/d. Since the function g(k) = k(d−1)/d is
concave and increasing, we obtain for all m ∈Mb(k) and any (Ai)i≤b ∈1 Asmall satisfying

∂̃intAi = mi for all i ≤ b that

m1 + . . .+mb = |∂̃intA1|+ . . .+ |∂̃intAb| ≥ |A1|(d−1)/d + . . .+ |Ab|(d−1)/d ≥ k(d−1)/d.

We define the setMb(k, `) := {m ∈ Mb(k) : m1 + . . .+mb = `}. By standard estimates
(using that each summand is at least one), we bound |Mb(k, `)| ≤

(
`+b
b

)
≤
(

2`
`

)
≤ 22` ≤ e2`.

Hence, separating the summation in (3.7) according to the possible values of
∑
imi =

` ≥ k(d−1)/d, we arrive at

P
(
E1(b)

)
≤ n

b

∞∑
`=k(d−1)/d

(
2 · C3.2 · pβdα(1− p)β·c3.3

)`
. (3.8)

Since b ≤ bn/2c, we obtain by a union bound over the number of blocks that

P
( ⋃
b≤bn/2c

E1(b)
)
≤
bn/2c∑
b=1

n

b

∞∑
`=k(d−1)/d

(
2C3.2 · pβdα(1− p)β·c3.3

)`
. (3.9)

The two sums are independent of each other. We bound the first sum from above by
n log n. We obtain

P
( ⋃
b≤bn/2c

E1(b)
)
≤ (n log n)

∞∑
`=k(d−1)/d

(
2C3.2 · pβdα(1− p)β·c3.3

)`
.

The two constants C3.2 and c3.3 depend only on d and α. We may assume that p and β

are such that pβdα(1− p)β·c3.3 is smaller than (2C3.2)−2, and under this assumption, we
obtain Lemma 2.9 when β ≥ 1. When β < 1, we replace (1− p)β with (1− pβdα) in (3.7)
and conclude in the same way.

3.1 Proof of Statement 3.2

We start with a geometric claim.

Claim 3.4. There exists a constant C3.4 > 0 such that for each block A ∈ Asmall in Λn
and all r ∈ N,∣∣{(x, y) ∈ Zd ×Zd : x ∈ A, y /∈ A, ‖x− y‖ ∈ (r, r + 1]

}∣∣ ≤ C3.4r
d|∂̃intA|. (3.10)
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Proof. We start counting line-segments of the right length with endpoints in Zd crossing
a single unit square that will be centered later at some vertex in ∂̃intA.

Let B0 := [−1/2, 1/2]d. For two vertices x, y ∈ Zd, let Lx,y denote the segment
between x and y on the unique line connecting x and y. Define

Cross(r) := {(x, y) ∈ Zd ×Zd : ‖x− y‖2 ∈ (r, r + 1],Lx,y ∩ B0 6= ∅}.

We will show that there exists a constant C3.4 > 0 such that

|Cross(r)| ≤ C3.4r
d. (3.11)

Indeed, for each pair (x, y) ∈ Cross(r), at least one of the inequalities ‖x‖ ≥ r/2 and
‖y‖ ≥ r/2 is satisfied. Without loss of generality we may assume that ‖x‖ ≥ r/2, and
then also ‖x‖ ≤ r + 1. Fix then such a vertex x. Let Sx(r0) denote the smallest spherical
cone with apex at x that completely contains B0, with r0 being the radius of this cone.
Let Sx(r) denote a cone with apex x that has the same boundary lines (and the same
angle) as Sx(r0), but radius exactly r. Then, since ‖x‖ ∈ [r/2, r + 1] by assumption,
r0 ∈ [‖x‖ + 1/2, ‖x‖ +

√
d/2]. Further, every y ∈ Zd such that (x, y) ∈ Cross(r) must be

contained in Sx(r + 1) \ Sx(r), since all half-lines emanating from x that cross B0 are
contained in Sx(∞), and ‖x − y‖ ∈ (r, r + 1]. Since the radius of Sx(r + 1) is at most
by a factor two larger than the radius r0 of Sx = Sx(r0) for all r ≥ 1, by homothety of
the cones, |(Sx(r + 1) \ Sx(r)) ∩ Zd| is bounded from above by a dimension-dependent
constant, and so for each x with ‖x‖ ∈ [r/2, r+ 1], the number of pairs (x, y) ∈ Cross(r) is
bounded from above by a dimension-dependent constant. Summing over all the at most
O(rd) many such x, we obtain (3.11) for some C3.4 > 0.

To arrive to (3.10), the block A ∈ Asmall in (2.7) ensures that A = Ā. Its interior
boundary ∂̃intA is then ∗-connected by Claim 2.5 Part (iv) ([14, Lemma 2.1]). This implies
that there exists a ∗-connected surface fully contained in ∂̃intA separating vertices in
A \ ∂̃intA from vertices in Zd \A. Hence, for each pair x ∈ A and y /∈ A, there exists at
least one vertex z ∈ ∂̃intA such that Lx,y intersects the axis-parallel box z + B0. Here
x = z may occur. The statement of the claim now follows by (3.11) when summing the at
most C3.4r

d such pairs for each vertex z on the boundary of A.

We continue with a lemma treating the connectedness of the block graphs, i.e., the
inner summation on the left-hand side of (3.5) in Statement 3.2. We point out that in this
lemma we only bound the event that the block graph HGn is connected, not the event
that the actual graph is connected.

Lemma 3.5. Let Gn be long-range percolation on Λn as in Definition 1.1 with d ≥ 2,
α > 1 + 1/d. There exists a constant C3.5 = C3.5(d, α) > 0 such that for all m ∈ Mb(1),
f ∈ Fb,∑

(Ai)i≤b∈1Asmall,

|∂̃intAi|=mi ∀i≤b

P
(
HGn((Ai)i∈[b]) is f -connected

)
≤ n(C3.5pβ

dα)b−1
∏
i∈[b]

ecpeimimfi
i . (3.12)

We comment that it is this lemma in the proof that crucially uses that α > 1 + 1/d.

Proof. We will prove the statement by induction on b. We first define the finite constant
C3.5, using that α > 1 + 1/d as follows:

C3.5 := C3.4

∞∑
r=1

r−(α−1)d. (3.13)

EJP 29 (2024), paper 82.
Page 14/36

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1135
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Cluster sizes in long-range percolation

We start with the initialization. Assume first that b = 1, which corresponds to a tree on a
single vertex (representing the block A1), so its forward degree is f1 = 0. We obtain∑
A1∈Asmall:|∂̃intA1|=m1

P
(
HGn((A1)) is f -connected

)
≤ |{A1 ∈ Asmall : |∂̃intA1| = m1}|

≤
∑
x∈Λn

|{A1 ∈ Asmall : A1 3 x, |∂̃intA| = m1}|.

Since A = Ā for all A ∈ Asmall by definition in (2.7), we can apply Lemma 2.7, which
yields, since |Λn| = n,∑

A1∈Asmall:|∂̃intA|=m1

P
(
HGn((Ai)i) is f -connected

)
≤
∑
x∈Λn

ecpeim1 = necpeim1 .

Since mf1
1 = m0

1 = 1, this finishes the induction base for (3.12). We now advance the
induction. Assume (3.12) holds up to b− 1. Let f ∈ Fb and consider the summation over
the last block Ab ∈ Asmall on the left-hand side in (3.12). By construction of the f -tree in
Definition 3.1, the b-th block is a leaf in the f -tree, and fb = 0. Its parent in the f -tree is the
largest vertex-label ` in f that is nonzero, and the remaining labeled graph upon removing
b is a tree, with a labeling in Fb−1 (see the comment below Definition 3.1). Then, the
forward degrees of this new tree are given by f ′ := (f1, . . . , f`−1, f` − 1, f`+1, . . . , fb−1) ∈
Fb−1, since the forward degree of the vertex ` decreased by one upon removing the leaf
b. With this notation at hand,

{HGn((Ai)i∈[b]) is f -connected} = {HGn((Ai)i∈[b−1]) is f ′-connected} ∩ {A` ∼Gn Ab}.

Independence of edges in Gn by Definition 1.1 yields∑
(Ai)i≤b∈1Asmall

P
(
HGn((Ai)i∈[b]) f -conn.

)
≤

∑
(Ai)i≤b−1∈1Asmall

P
(
HGn((Ai)i∈[b−1]) f

′-conn.
)

·
∑
Ab

P
(
A` ∼Gn Ab

)
, (3.14)

where in the subscripts of the sums (and also in the remainder of the proof) we implicitly
assume that the blocks (Ai)i≤b ∈1 Asmall are 1-disconnected, and that |∂̃intAi| = mi for
all i ≤ b. We focus on the summation over Ab. Here, Ab ∈ Asmall and Ab is 1-disconnected
from A`. We decompose the sum according to the length r of an edge (x, y) connecting
x ∈ A` and y ∈ Ab, and use that ‖x− y‖ > 1 by the 1-disconnectedness of A`, Ab. By the
connection probability (1.2), p(1 ∧ β/r)dα < pβdαr−dα holds for all r > 0. So, by a union
bound, it follows that∑

Ab

P
(
A` ∼Gn Ab

)
≤
∞∑
r=1

∑
x∈A`, y∈Zd\A`

1{‖x−y‖∈(r,r+1]}
∑
Ab3y

P
(
x ∼Gn y)

≤ pβdα
∞∑
r=1

r−dα
∑

x∈A`, y∈Zd\A`

1{‖x−y‖∈(r,r+1]}
∑
Ab3y

1.

(3.15)

Using (2.6) and that the summation in (3.12) requires that Ab has boundary size mb, we
can bound the last sum over Ab from above by exp(cpeimb). Next, we can apply Claim 3.4
to evaluate the summation over x ∈ A`, y ∈ Zd \A`, since this sum equals the cardinality
described in (3.10) with A = A`. The conditions of the claim are satisfied since A` = Ā`
by assuming A` ∈ Asmall. Hence∑

x∈A`, y∈Zd\A`

1{‖x−y‖∈(r,r+1]}
∑
Ab3y

1 ≤ ecpeimbC3.4r
d|∂̃intA`| = ecpeimbC3.4r

dm`.
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Substituting this back into (3.15) yields with the constant C3.5 from (3.13),∑
Ab

P
(
A` ∼Gn Ab

)
≤ pβdαm`e

cpeimbC3.4

∞∑
r=1

r(1−α)d = C3.5pβ
dαm`e

cpeimb .

We substitute this bound back into (3.14), and use the induction hypothesis:∑
(Ai)i≤b∈1Asmall

P
(
HGn((Ai)i∈[b]) f -conn.

)
≤ C3.5pβ

dαm`e
cpeimb

∑
(Ai)i≤b−1∈1Asmall

P
(
HGn((Ai)i∈[b−1]) f

′-conn.
)

≤ C3.5pβ
dαm`e

cpeimb

(
n(C3.5pβ

dα)b−2
∏

i∈[b−1]

ecpeimim
f ′i
i

)

≤ C3.5pβ
dαm`e

cpeimbn(C3.5pβ
dα)b−2 1

m`

∏
i∈[b−1]

ecpeimimfi
i .

To obtain the fourth row we used that f ′i = fi for all i 6= `, i ≤ b− 1, and f ′` = f` − 1 by
construction, yielding the 1/m` factor. We can rearrange the expression and obtain (3.12),
using that fb = 0 (the last block is a leaf). This finishes the proof.

We are ready to prove Statement 3.2.

Proof of Statement 3.2. Using the result of Lemma 3.5 on the left-hand side of (3.5) of
Statement 3.2, we arrive at∑

f∈Fb

( ∏
i∈[b]

1

fi!

) ∑
(Ai)i≤b∈1Asmall

P
(
HGn((Ai)i) is f -connected

)
≤ n

∑
f∈Fb

(C3.5pβ
dα)b−1

∏
i∈[b]

ecpeimimfi
i

fi!
.

(3.16)

We first analyze a single summand, i.e., the value for a fixed f ∈ Fb. Since efi =∑
j≥0(fi)

j/j! ≥ ffii /fi!, it follows that fi! ≥ (fi/e)fi . Thus,

n(C3.5pβ
dα)b−1

∏
i∈[b]

ecpeimimfi
i

fi!
≤ n(C3.5pβ

dα)b−1 exp
(
cpei

∑
i∈[b]

mi

) ∏
i∈[b]

(mi · e
fi

)fi
.

It follows from standard differentiation techniques that for any a, x ≥ 1, the function
ga(x) = (ae/x)x is maximized at x = a. Maximizing all factors (mie/fi)

fi at fi = mi yields
that (mie/fi)

fi ≤ emi for all i ≤ b. Since by definition of Fb in Definition 3.1 we have
f1 + . . .+ fb = b− 1 for all f ∈ Fb, it follows

n(C3.5pβ
dα)b−1

∏
i∈[b]

ecpeimimfi
i

fi!
≤ n(C3.5pβ

dα)b−1 exp
(

(cpei + 1)
∑
i∈[b]

mi

)
≤ n(Cpβdα)

∑
i∈[b]mi

for some C(d, α) = C(c, C3.5(d, α)), where to obtain the last row we used that b− 1 ≤ b ≤
m1 + . . .+mb as each block has at least one interior boundary vertex. Substituting this
back into (3.16), we obtain with c′′(d, α) := 2 + cpei + c′

n
∑
f∈Fb

(C3.5pβ
dα)b−1

∏
i∈[b]

ecpeimimfi
i

fi!
≤ n(Cpβdα)

∑
i∈[b]mi

∑
f∈Fb

1.
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Using again that f1 + . . . + fb = b − 1 for all f ∈ Fb, and using the same combinatorial
bounds as for m above (3.8), we obtain |Fb| ≤

(
2b
b

)
≤ 22b ≤ exp

(
2
∑
i∈[b]mi

)
, finishing

the proof for some C3.2(d, α) = C3.2(d, α) > 0.

Proof of Statement 3.3

We start with a geometric claim. Recall Asmall from (2.7), and holes from Def. 2.1.

Claim 3.6. Let (A1, . . . , Ab) ∈1 A be a 1-disconnected sequence of blocks without holes
(i.e., Ai = Āi for all i ≤ b), with A := ∪i≤bAi ⊆ Λn. Then, (Λn \A)∪ (∪i≤b∂̃intAi) ⊇ ∂̃intΛn.

Moreover, (Λn \A) ∪ (∪i≤b∂̃intAi) is ∗-connected.

Proof. We first show that (Λn \ A) ∪ (∪i≤b∂̃intAi) ⊇ ∂̃intΛn. When x ∈ (∂̃intΛn \ A), then

x ∈ Λn \A. The (only) other case is when x ∈ ∂̃intΛn ∩A. Then there must exist Ai ⊆ Λn
such that x ∈ Ai. Since x ∈ ∂̃intΛn and A ⊆ Λn, it follows from (2.3) in Definition 2.4
that there is a vertex y in Zd \ Λn neighboring x. Since x ∈ Ai ⊆ Λn, we evidently have
y /∈ Ai, hence y ∈ ∂̃extAi. As a result of (2.4), x ∈ ∂̃intAi, establishing the statement.

We turn to prove ∗-connectedness of (Λn \ A) ∪ (∪i≤b∂̃intAi). Using Claim 2.3, we
decompose the set Λn\A into a 1-disconnected sequence of 1-connected blocks (Bj)j≤b′

for some b′ ≥ 1:
∪j≤b′ Bj = Λn \A. (3.17)

We define now an auxiliary graph. For each set ∂̃intAi we associate a vertex ai for i ≤ b,
and also for each block Bj a vertex tj , for j ≤ b′. We define an auxiliary graph H on the
vertex set V = {a1 . . . , ab, t1, . . . , tb′}. We say that ai ∼H tj if there is a pair of vertices

x ∈ ∂̃intAi, y ∈ Bj that are ∗-connected, i.e., ‖x − y‖∞ = 1. Similarly, ai ∼H aj if there

is a pair of vertices x ∈ ∂̃intAi, y ∈ ∂̃intAj with ‖x − y‖∞ = 1. We will show that H
consists of a single connected component. This then implies that (Λn \A) ∪ (∪i≤b∂intAi)

is ∗-connected.
To show that H consists of a single connected component, we argue as follows. Let

f : (Λn \A) ∪ (∪i≤b∂̃intAi)→ {0, 1} be a function that is constant on ∗-connected subsets
of its domain. Since we assumed that Ai = Āi for all i ≤ b, Claim 2.5(iv) is applicable
which states that ∂̃intAi is ∗-connected for each i ≤ b. Further, (Bj)j≤b′ are blocks, i.e.,

1-connected and also ∗-connected. So, f(x) = f(y) =: fH(ai) for all x, y ∈ ∂̃intAi, and
also f(x) = f(y) =: fH(tj) for all x, y ∈ Bj . This defines a function fH : V → {0, 1}.
Since f is constant on ∗-connected subsets of its domain, fH is constant on each of the
connected components ofH. Using again that each ∂̃intAi is ∗-connected and ∗-connected
to all vertices in Ai, f(x) = fH(ai) for all x ∈ ∂̃intAi, and f can be uniquely extended
to a function g that takes the value g(x) := fH(ai) on all vertices of Ai. If we then set
g(y) := fH(tj) for all y ∈ Bj , then g : Λn → {0, 1} is a function that is constant on ∗-
connected components of (Λn\A)∪(∪i≤bAi) = (Λn\A)∪A = Λn. Now we may notice that
Λn consists of a single ∗-connected component, hence g must be constant everywhere.
This implies that f and hence fH must have been also a constant everywhere. This
implies that H consists of a single connected component and so (Λn \A)∪ (∪i≤b∂̃intAi) is
∗-connected.

Proof of Statement 3.3. Let A1, . . . , Ab ∈1 Asmall, and denote A := ∪i≤bAi. We first
assume β ≥ 1. We define the set of potential edges between the interior boundary of A
with respect to Zd and the set of vertices outside A within distance β as

∆(A) :=
{
{x, y} | x ∈ ∪i≤b∂̃intAi, y ∈ (Λn \A) : ‖y − x‖ ∈ [1, β]

}
.

Considering the event on the left-hand side of (3.6) in Statement 3.3, there should be no
edges in Gn between (∪i≤b∂̃intAi) and Λn \ A. In particular, all edges in ∆(A) must be
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absent. The distance β is chosen so that all edges of this length are present in Gn with
probability p by (1.2). Hence,

P
(

(∪i≤b∂̃intAi) 6∼Gn (Λn \ ∪i≤bAi)
)
≤ (1− p)|∆(A)|. (3.18)

Our goal is to show that for some constant c = c(d) > 0,

|∆(A)| ≥ cβ
∑
i∈[b]

|∂̃intAi| = cβ
∑
i∈[b]

mi, (3.19)

which then immediately yields (3.6) in combination with (3.18) when β ≥ 1. In what
follows we estimate |∆(A)|. In order to do so, we will make use of the boundary ∂intAi,
i.e., the interior boundary with respect to the box Λn. Using that all blocks in Asmall have
size at most 3n/4 by definition in (2.7), the conditions of the isoperimetric inequality
in Claim 2.6 are satisfied, and hence δmi ≤ |∂intAi| ≤ mi for all i ≤ b. Hence, (3.19) is
equivalent to showing that that there exists c′ = c′(d) > 0 such that for any 1-disconnected
blocks A1, . . . , Ab ∈1 Asmall, with A = ∪i≤bAi

|∆(A)| ≥ c′β
∑
i∈[b]

|∂intAi|, (3.20)

since then (3.19) holds with c = c′δ. In order to show (3.20), our first goal is to find
enough pairs of vertices in ∆(A) around a linear fraction of vertices in ∪i≤b∂intAi. For
this, we claim that a set T := {(x`, y`)}`≥1 with the following properties exists:

(i) x` ∈ ∪i∂intAi, y` ∈ ∪i∂extAi, and ‖x` − y`‖ = 1 for all ` ≥ 1;

(ii) each vertex z ∈ Λn appears at most once in a pair in T ;

(iii) |T | ≥
∑
i∈[b] |∂intAi|/(2d).

Note that requirement (i) implies that all (x`, y`) ∈ T are elements of Λn × Λn. We now
show that a set T exists. Consider the following greedy algorithm: order the vertices in
∪i∂intAi in an arbitrary order, to obtain the list (v1, v2, . . . , vM ) with M =

∑
i∈[b] |∂intAi|.

Since each vj is in ∪i∂intAi, for each vj there is at least one vertex yj ∈ ∪i∂extAi ⊆ (Λn\A)

with ‖vj − yj‖ = 1 by Definition 2.4 (recall that the sets A1, . . . , Ab are 1-disconnected).
Starting with T1 := {(v1, y1)}, going through the ordering of (vj)j one-by-one, append
the pair (vj , yj) to the list Tj−1, if and only if yj has not been contained in any pair of
Tj−1 yet and so obtain Tj . Set then T := TM . Since any y ∈ ∪i∂extAi neighbors at most
2d many interior boundary vertices, adding a certain pair (vj , yj) only affects at most
2d− 1 other indices where a pair may not be added later. Hence,

|T | ≥ 1

2d

∑
i∈[b]

|∂intAi|. (3.21)

Next, assume that β ≥ 2
√
d+ 2 and set R := b(β − 1)/

√
dc ≥ 1. Take any pair (x`, y`) ∈ T .

Since ∪i≤b∂̃intAi ∪ (Λn \ A) is ∗-connected by Claim 3.6, we may fix for each x` a self-
avoiding path

π(x`) = (x`, z
(x`)

1 , . . . , z
(x`)

R ) ⊆ ∪i≤b∂̃intAi ∪ (Λn \A) (3.22)

(since the set on the right-hand side contains ∂̃intΛn, which has cardinality Θ(n(d−1)/d),
the set on the right-hand side has size at least R for n sufficiently large, so such a
self-avoiding path of length R then exists). By the triangle inequality,

‖x` − z(x`)

j ‖ ≤
√
dR ≤ β, and ‖y` − z(x`)

j ‖ ≤
√
dR+ 1 ≤ β. (3.23)
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Define now the type typ(z
(x`)

j ) := x` if z(x`)

j ∈ (Λn \ A) and set typ(z
(x`)

j ) := y` if z(x`)

j ∈
∪i≤b∂̃intAi. Then define the set of (unordered) pairs representing potential edges in Gn

∆(x`, y`) :=
{
{z(x`)

1 , typ(z
(x`)

1 )}, . . . , {z(x`)

R , typ(z
(x`)

R )}
}
⊆ ∆(A). (3.24)

The inclusion holds since for each of these pairs, exactly one element is in Λn \ A and
the other one is in ∪i≤b∂̃intAi, and the distance between the two vertices of each pair is
at most β by (3.23). We claim that

|∆(A)| ≥
∣∣∣ ⋃

(x`,y`)∈T

∆(x`, y`)
∣∣∣ �≥ (1/2)

|T |∑
`=1

|∆(x`, y`)| = |T | ·R/2. (3.25)

To see the inequality with �, we show that each potential edge {z, z′} ∈ Λn × Λn appears
at most twice in a set in the union in the middle. Consider {z, z′} ∈ Λn × Λn. First,
assume that there exists ` such that (z, z′)=(x`, y`) ∈ T or (z′, z)=(x`, y`) ∈ T . Without
loss of generality, we assume that the pair is ordered such that (z, z′)=(x`, y`) ∈ T . Then
there is no (xj , yj) ∈ T different from (x`, y`) such that {z, z′} ∈ ∆(xj , yj), since each
element in ∆(xj , yj) contains either xj or yj , which are different from x` and from y`
by requirement (ii) in the construction of T . Moreover, the element {z, z′}={x`, y`} is
contained at most once in the set ∆(x`, y`), since the first coordinates in (3.24) are all
different as they form a self-avoiding path, and the first coordinates do no not contain
x` = z by (3.22). So, if (z, z′) ∈ T , then this pair of vertices only appears once in∣∣ ∪(x`,y`)∈T ∆(x`, y`)

∣∣.
Next, assume that (z, z′), (z′, z) /∈ T , but {z, z′} is contained in some ∆(x`, y`). Then,

either z or z′ must be equal to either x` or to y` by (3.24). Assume without loss of
generality that z ∈ {x`, y`}, and therefore z′ /∈ {x`, y`}. Thus, {z, z′} is contained
exactly once in ∆(x`, y`). The only way that {z, z′} could be in a set ∆(x`′ , y`′) for some
(x`′ , y`′) 6= (x`, y`), is when z′ ∈ {x`′ , y`′} and (x`′ , y`′) ∈ T for some `′ 6= `. (This can only
happen if the self-avoiding path from x` passes through either x`′ or through y`′ and the
self-avoiding path from x`′ passes through either x` or y`). This argument implies that
the element {z, z′} can be contained at most twice in a set in the union in (3.25), namely
in ∆(x`, y`) and ∆(x`′ , y`′), and the inequality � in (3.25) holds.

Combining (3.25) with (3.21), R = b(β−1)/
√
dc, and the assumption that β ≥ 2

√
d+2,

(see before (3.23)), we arrive at

|∆(A)| ≥ R

4d

∑
i∈[b]

|∂intAi| =
1

4d

⌊
β − 1√

d

⌋∑
i∈[b]

|∂intAi| ≥
β

8d
√
d

∑
i∈[b]

|∂intAi|,

since whenever x ≥ 2
√
d+ 2, then b(x− 1)/

√
dc ≥ x/2

√
d.

This proves (3.20) whenever β ≥ 2
√
d+ 2. For the case 1 ≤ β ≤ 2

√
d+ 2, we use that

each vertex on the interior boundary is within distance one from a vertex on the exterior
boundary, hence

|∆(A)| ≥
∑
i∈[b]

|∂intAi| ≥
β

2
√
d+ 2

∑
i∈[b]

|∂intAi|,

and so (3.20) holds for both cases with c′(d) := 1/max{8d
√
d, 2
√
d+ 2}. This finishes the

proof of Statement 3.3 when β ≥ 1 for c3.3(d) := δc′(d).
Assume now β < 1. Each vertex on the interior boundary of A = ∪i≤bAi is at distance

1 from at least one vertex in Λn \ A by definition. We again use that the conditions
of the isoperimetric inequality in Claim 2.6 are satisfied, so that |δintAi| ≥ δmi for all
i ≤ b. Each individual edge of length 1 is absent with probability (1− pβdα). Thus, only
excluding such edges, we obtain the second case of Statement 3.3 since c3.3(d) ≤ δ.
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4 Counting holes

We turn to the proof of Lemma 2.10. We set up a few preliminaries about holes.
Recall that A denotes the family of 1-connected blocks in Λn from (2.1), and that
Alarge = {A ∈ A : |Ā| > 3n/4, |A| ≤ n/2} from (2.7). Recall also from Definition 2.1
that the holes HA of a 1-connected set A ∈ A are the 1-connected subsets of Ā \ A.
By Definition 2.1, each hole H ∈ HA is surrounded by A. This implies that H does
not intersect the boundary of the box ∂̃intΛn. Hence, it follows by Definition 2.4 of the
boundaries that for all H ∈ HA,

∂intH = ∂̃intH ⊆ ∂extA. (4.1)

Hence, comparing this to E2 := E2(Gn) = {∃A ∈ Alarge : A 6∼Gn ∂extA} from (2.9), we
obtain that

P
(
E2
)
≤ P

(
∃A ∈ Alarge : A 6∼Gn (∪H∈HA

∂intH)
)
. (4.2)

The following definition (and claim) of principal holes will ensure that the total size of the
boundaries of the holes of A in (4.2) is sufficiently large compared to the combinatorial
factor arising from the number of possible sets A there.

Definition 4.1 (Principal holes). Let A ⊆ Λn. A hole H ∈ HA has type i ∈ N if |H| ∈
(2i−1, 2i]. We write HA(i) ⊆ HA for the set of holes of A of type i. A hole-type i is called
principal for a set A if

|HA(i)| = |{H : H ∈ HA(i)}| ≥ 2−i−3i−2n =: hn(i). (4.3)

Since |HA(i)| is an integer for all i, the inequality |HA(i)| ≥ dhn(i)e also holds when-
ever the inequality in (4.3) holds. We define for i ∈ N

Alarge(i) := {A ∈ Alarge : |HA(i)| ≥ dhn(i)e
}
, (4.4)

and observe that A might appear in both Alarge(i) and Alarge(j) if both type i and type j
are principal for A. We define the following β-dependent constants:

R2 = R2(β) :=
⌊
β/
√
d
⌋
∨ 1, i? = i?(β) := 1 +

⌈
d
d−1 log2R2

⌉
. (4.5)

Here, if two vertices are within ‖ · ‖∞-distance R2 then they are within ‖ · ‖2-distance
β, hence they are connected by an edge with probability p(1 ∧ β)dα in Gn by (1.2). The
definition of i? ensures that any hole of type i ≥ i? has an exterior boundary of size at
least R2 (the exterior boundary of a hole is a subset of ∂intA) to which the vertices on
the interior boundary of the hole (a subset of ∂extA) should not be connected in Gn.

Claim 4.2 (Large blocks have a principal hole-type). For all A ∈ Alarge, there exists
iA ≤ dlog2 ne such that hole-type iA is principal for the set A, i.e.,

Alarge ⊆
⋃

i≤dlog2 ne

Alarge(i). (4.6)

There exists a constant c4.2 = c4.2(d) > 0 such that for all A ⊆ Λn, with any iA being any
principal hole-type for A, ∑

H∈HA(iA)

|∂intHi| ≥ c4.2 i−2
A 2−iA/d n. (4.7)

Moreover, for each hole H with type i ≥ i? in (4.5),

|∂extH| ≥ R2. (4.8)
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Proof. We argue by contradiction for the first part. By definition of Alarge in (2.7),
|Ā| ≥ 3n/4, and also |A| ≤ n/2. Hence, the total size of the holes is at least n/4, i.e.,
| ∪H∈HA

H| =
∑
H∈HA

|H| ≥ n/4 hold. Suppose (4.3) holds in the opposite direction for
all i ≥ 1. Since the holes are 1-disconnected, it follows from the size requirement in
Definition 4.1 that∣∣∣ ⋃

H∈HA

H
∣∣∣ =

∑
H∈HA

|H| ≤
∑
i≥1

|HA(i)|2i ≤ n

8

∑
i≥1

i−2 < n/4,

since the sum converges to π2/6 = 1.64... < 2. This contradicts the assumption that
the total size is at least n/4, so there must be at least one principal hole-type, say
iA. The restriction i ≤ dlog2 ne follows since the number of vertices in Λn is n, and
H > 2(dlog2 ne+1)−1 thus can never be satisfied. This shows (4.6).

We turn to (4.7). As argued before (4.1), holes do not intersect the boundary of the box
∂intΛn. So, ∂extH = ∂̃extH, and |∂extH| ≥ |H|(d−1)/d by Claim 2.6 for each hole. Combined
with |H| > 2iA−1 for all H ∈ HA(iA) and the lower bound |HA(iA)| ≥ 2−iA−3i−2

A n in (4.3),
this yields that∑

H∈HA(iA)

|∂intH| ≥
∑

H∈HA(iA)

|H|(d−1)/d ≥ 2−(d−1)/d2iA(d−1)/d|HA(iA)|

≥ 2−(d−1)/d2iA(d−1)/d · 2−iA−3i−2
A n ≥ c4.2 i−2

A 2−iA/d n,

for some constant c4.2 = c4.2(d) > 0. Lastly, we prove (4.8). Using again that ∂extH ≥
|H|(d−1)/d for each hole, we obtain for any hole H with type i ≥ i?,

|∂extH| ≥ |H|(d−1)/d > 2(i?−1)(d−1)/d ≥
(
2(log2 R2)d/(d−1)

)(d−1)/d
= R2.

This finishes the proof of the claim.

We use the inclusion in (4.6) to bound the event on right-hand side in (4.2) (with the
convention that the empty sum from 1 to i? is 0). After a union bound we arrive at

P
(
E2
)
≤
i?−1∑
i=1

P
(
∃A ∈ Alarge(i) : A 6∼Gn ∪H∈HA

∂intH
)

(4.9)

+

dlog2 ne∑
i=i?

P
(
∃A ∈ Alarge(i) : A 6∼Gn ∪H∈HA

∂intH
)
. (4.10)

We now bound these two sums, the first one corresponding to small principal hole types,
the second one corresponding to large principal hole types.

Excluding small principal hole types

Claim 4.3 (Sets with small principal hole-types are unlikely components). Let Gn be
long-range percolation on Λn as in Definition 1.1 with d ≥ 2, α > 1, and i?(β) from (4.5).
Then there exists c4.3 = c4.3(d) > 0 such that for all β > 0 and n sufficiently large,

Errsmall :=

i?−1∑
i=1

P
(
∃A ∈ Alarge(i) : A 6∼Gn ∪H∈HA

∂intH
)

≤ 1{β≥2
√
d}2

n ·
(
(1− p)c4.3(1+log2 β)−2β(d−2)/(d−1))n

.

(4.11)

The claim shows that the probability that large sets with small principal hole types
appear as a component of Gn, decays exponentially in n whenever the base of the second
exponential factor is strictly smaller than 1/2. Note in particular that this error term is
not present when β < 1.
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Proof. We may assume that i?(β) ≥ 2 in (4.5), since otherwise the sum would be empty
and the bound holds trivially. By definition of i? and R2(β) in (4.5), we may therefore
assume that log2R2 > 0, which is equivalent to R2(β) = bβ/

√
dc > 1 and β ≥ 2

√
d. We

assume R2(β) > 1 throughout the remainder of the proof. We start estimating a single
summand on the left-hand side of (4.11). Consider some A ∈ Alarge(i). By Definition 4.1,

hA := |HA| ≥ |HA(i)| ≥ hn(i) = 2−i−3i−2n.

We now find enough potential edges that all must be absent in order for the event
{A 6∼Gn ∪H∈HA

∂intH} in (4.11) to occur. By (4.7) in Claim 4.2, since i is a principal
hole-type of A ∈ Alarge(i)

| ∪H∈HA
∂intH| =

∑
H∈HA(i)

|∂intH| ≥ c4.2i−22−i/dn =: `i. (4.12)

We now obtain a lower bound on |A| using the isoperimetric inequality of Zd in Claim 2.6.
By definition of ∂̃intA in Definition 2.4, and since ∂̃intA ⊇ ∂̃intĀ by Claim 2.5(i), it follows
from Claim 2.6 applied to Ā that for all A ∈ Alarge,

|A| ≥ |∂̃intA| ≥ |∂̃intĀ| ≥ |Ā|(d−1)/d ≥ (3/4)(d−1)/dn(d−1)/d.

Take now a vertex x ∈ ∂intH ⊆ ∂extA. Then, since |A| diverges with n and A is 1-
connected, whenever n is sufficiently large compared to β,

|{y ∈ A : ‖y − x‖1 ≤ bβc}| ≥ bβc, ∀x ∈ ∪H∈HA
∂intH.

So, by (4.12),∣∣{{x, y} : x ∈ ∪H∈HA
∂intH, y ∈ A : ‖y − x‖1 ≤ bβc

}∣∣ ≥ bβc · | ∪H∈HA
∂intH| ≥ bβc`i.

These edges must be all absent in order for {A 6∼Gn ∪H∈HA
∂intH} to occur for A ∈

Alarge(i) in (4.11). The connection probability in (1.2) ensures that two vertices within
`1-distance bβc are connected with probability p. Hence using a union bound and then
the independence of edges, we obtain

P
(
∃A ∈ Alarge(i) : A 6∼Gn ∪H∈HA

∂intH
)
≤

∑
A∈Alarge(i)

P
(
A 6∼Gn ∪H∈HA

∂intH
)

≤
∑

A∈Alarge(i)

(1− p)bβc`i ≤ 2n(1− p)bβc`i ,

where we used that Alarge(i) counts subsets of Λn, and the number of subsets of Λn is at
most 2n. This bounds a single summand in (4.11). To evaluate the sum, recalling that
`i = c4.2i

−22−i/dn from (4.12), and that i?(β) = 1 + d d
d−1 log2R2e in (4.5) we have

Errsmall ≤
i?(β)−1∑
i=1

2n(1− p)bβc`i = 2n
i?(β)−1∑
i=1

(1− p)bβcc4.2i
−22−i/d

≤ i?2n(1− p)nc4.22−1/dbβcR−1/(d−1)
2 ((log2 R2)d/(d−1)+1)−2

,

where for the last inequality we used that for all i ≤ i? − 1 = d(log2R2)d/(d − 1)e,
we have that 2−i/di−2 ≥ 2−1/dR

−1/(d−1)
2 /(1 + log2R2)2. We recall that we may assume

R2(β) = bβ/
√
dc > 1 by the reasoning at the beginning of the proof. So, the exponent of

β in the numerator becomes 1− 1/(d− 1) = (d− 2)/(d− 1) in (4.11). The prefactor i? is a
(β-dependent) constant by (4.5). Therefore, the statement in (4.11) follows by adapting
the constant in the exponent.
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Excluding large principal holes

We turn to the sum in (4.10).

Claim 4.4 (Sets with large principal hole-types are unlikely components). Let Gn be long-
range percolation on Λn as in Definition 1.1 with d ≥ 2, α > 1, and i?(β) from (4.5).
There exists c4.4 = c4.4(d) > 0 such that for all n sufficiently large

Errlarge :=

dlog2 ne∑
i=i?

P
(
∃A ∈ Alarge(i) : A 6∼Gn ∪H∈HA

∂intH
)

≤
(
1− p(1 ∧ β)dα

)b1∨(β/
√
d)c·c4.4(logn)−2n(d−1)/d

.

(4.13)

whenever p and β guarantee that the base of c4.4(log n)−2n(d−1)/d is sufficiently small..

Proof. Similarly to the small principal hole-types, we will find enough potential edges
that all must be absent in order for the events on the left-hand-side in (4.13) to occur.
Fix an ordering L of vertices in Λn so that x1 <L x2 <L · · · <L xn with respect to this
ordering (e.g., the lexicographic ordering). For a block A ∈ Alarge(i) (which has at least
dhn(i)e holes of type i by (4.3)), we order its holes HA in such a way that the holes of
type i are H(1)

A , . . . ,H
|HA(i)|
A , and that for all r < s ≤ |HA(i)| the vertices smallest in the

ordering within H(r)

A and H(s)

A – say xr ∈ H(r)

A and xs ∈ H(s)

A – satisfy xr <L xs. We obtain
an upper bound when we exclude edges from A towards only its first dhn(i)e holes of
type i:

P
(
∃A ∈ Alarge(i) : A 6∼Gn ∪H∈HA

∂intH
)

≤ P
(
∃A ∈ Alarge(i) : A 6∼Gn ∪j≤dhn(i)e∂intH

(j)

A

)
≤ P

(
∃A ∈ Alarge(i) : ∪j≤dhn(i)e∂extH

(j)

A 6∼Gn ∪j≤dhn(i)e∂intH
(j)

A

)
,

(4.14)

where to get the last row we only look at edges emanating from A that are on the
exterior boundaries of the holes. This is an upper bound since ∂extH

(j)

A ⊆ A by (4.1) for
all j ≤ dhn(i)e. If for two blocks A,A′ ∈ Alarge(i), the first dhn(i)e holes coincide, also the
exterior boundaries of these first dhn(i)e holes coincide, and the event in (4.14) excludes
the exact same edges. So, a simple union bound over A in (4.14) would overcount the
non-presence of those edges too many times. Instead, we carry out a union bound over
all possible lists of the first dhn(i)e holes. To this end, we consider for all A ∈ Alarge(i)

the following:

Di(A) := Λn \ {∪j≤dhn(i)eH
(j)

A }, D(i) := {D : ∃A ∈ Alarge(i), D = Di(A)}. (4.15)

In words, the set Di(A) has exactly dhn(i)e many holes, all of which are type i, and its
holes coincide with the first dhn(i)e type-i holes of A. D(i) collects all sets D that arise
in this way for some A ∈ Alarge(i). Since Di(A) shares the first dhn(i)e type-i holes with
A, also the exterior boundaries of those holes agree between A and Di(A). So,{

∪j≤dhn(i)e ∂extH
(j)

Di(A) 6∼Gn ∪j≤dhn(i)e ∂intH
(j)

Di(A)

}
=
{
∪j≤dhn(i)e ∂extH

(j)

A 6∼Gn ∪j≤dhn(i)e∂intH
(j)

A

}
.

Hence, in (4.14) we can group the blocks in Alarge(i) that all map to the same D ∈ D(i),
and obtain that

P
(
∃A ∈ Alarge(i) : ∪j≤dhn(i)e∂extH

(j)

A 6∼Gn ∪j≤dhn(i)e∂intH
(j)

A

)
,

= P
(
∃D ∈ D(i) : ∪j≤dhn(i)e∂extH

(j)

D 6∼Gn ∪j≤dhn(i)e∂intH
(j)

D

)
≤

∑
D∈D(i)

P
(
∪j≤dhn(i)e ∂extH

(j)

D 6∼Gn ∪j≤dhn(i)e∂intH
(j)

D

)
. (4.16)
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We combine the following three observations to bound a single summand in the last row.
First, each vertex x ∈ ∂intH

(j)

D is at distance one from at least one vertex yx ∈ ∂extH
(j)

D ⊆
D ⊆ Λn (by definition, a hole H(j)

D does not intersect ∂̃intΛn). Second, for all j ≤ dhn(i)e,
|∂extH

(j)

D | ≥ R2 by (4.8) and the fact that i ≥ i?. Third, the exterior boundary of a hole
∂extH

(j)

D is ∗-connected by Claim 2.5(v).
Recall R2 = bβ/

√
dc ∨ 1 ≥ 1 from (4.5). Hence, for each vertex x ∈ ∂intH

(j)

D , starting
from yx ∈ ∂extH

(j)

D , one can find a ∗-connected set of vertices Bx ⊆ ∂extH
(j)

D that satisfies

|Bx| ≥ R2, and ∀z ∈ Bx : ‖x− z‖2 ≤ β ∨ 1.

Here we used that
√
d is the maximal ‖ · ‖2-distance between ∗-adjacent vertices, which

gives `2-distance at most β when β ≥ 1. When β < 1, R2 = 1 and the `2-distance between
yx and x is 1 by Definition 2.4. Then, the edges {{x, z} : x ∈ ∪j≤dhn(i)e∂intH

(j)

D , z ∈ Bx}
all need to be absent for the event in (4.16) to occur. When β ≥ 1, the distance bound
‖x− z‖ ≤ β ensures that all these edges are present with probability p by (1.2). When
β < 1, the edge {x, yx} is not present with probability 1− pβdα. Combining the two cases
with (4.14) and (4.16), it follows by the independence of the edges in Gn that

P
(
∃A ∈ Alarge(i) : A 6∼Gn ∪H∈HA

∂intH
)

≤
∑

D∈D(i)

∏
j≤dhn(i)e

(
1− p(1 ∧ β)dα

)|∂intH(j)
D |·b1∨(β/

√
d)c
. (4.17)

We now encode the holes of D ∈ D(i) similar to the encoding of the blocks in Section 3.
We write xD := (x1, . . . , xdhn(i)e) for the vertices with the smallest label in the L-ordering

within the respective holes H(1)

D , . . . ,Hdhn(i)e
D . Let us write Λ

dhn(i)e
n,< for the vectors x ∈

Λ
dhn(i)e
n with xr <L xs for all r < s. By the initial ordering of the holes above (4.14),

xD ∈ Λ
dhn(i)e
n,< .

Let then mj := |∂intH
(j)

D | for all j ≤ dhn(i)e, and write mD := (m1, . . . ,mdhn(i)e).

Define then for all x ∈ Λ
dhn(i)e
n,< , and m ∈ Ndhn(i)e:

D(i,x,m) := {D ∈ D(i) : xD = x,mD = m}.

The set D ∈ D(i) has the first dhn(i)e holes of some A ∈ Alarge(i) where D(A) = D, and
for that A, hole-type i was principal in terms of Definition 4.1 and (4.4). Definition 4.1
readily implies that the inequality (4.7) in Claim 4.2 holds for the first dhn(i)e many holes
of A, and in turn of D with iA replaced by i in (4.7). Hence, the total interior boundary
size m :=

∑dhn(i)e
j=1 mj satisfies that m ≥ c4.2i

−22−i/dn. So for m ≥ c4.2i
−22−i/dn we

introduce the possible boundary-length vectors with total size m:

Mi(m) :=
{
m ∈ Ndhn(i)e : m1 + . . .+mdhn(i)e = m

}
. (4.18)

Returning to (4.16), we decompose the summation on the right-hand side as follows:

P
(
∃A ∈ Alarge(i) : A 6∼Gn ∪H∈HA

∂intH
)

≤
∑

m≥c4.2i−22−i/dn

∑
m∈Mi(m)

∑
x∈Λ

dhn(i)e
n,<

∑
D∈D(i,x,m)

∏
j≤dhn(i)e

(
1− p(1 ∧ β)dα

)|∂intH(j)
D |·b1∨(β/

√
d)c

=
∑

m≥c4.2i−22−i/dn

(
1− p(1 ∧ β)dα

)mb1∨(β/
√
d)c ∑

m∈Mi(m)

∑
x∈Λ

dhn(i)e,<
n

∑
D∈D(i,x,m)

1. (4.19)

Now we evaluate the number of terms of the last three summations in (4.19). Each
block D ∈ D(i,x,m) is uniquely characterized by its dhn(i)e holes by (4.15) (since these
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are the only holes of D). Having fixed the vectors x and m, we apply Lemma 2.7 —
Peierls’ argument— to each hole H(j)

D with H(j)

D 3 xj and |∂intH
(j)

D | = mj to count the
size of D(i,x,m). The lemma can be applied since for each hole H, we have H = H̄ by
Claim 2.5(v). Hence, there are at most exp(cpeimj) possible holes of interior boundary

size mj containing xj . So, for all x ∈ Λ
dhn(i)e
n and m ∈Mi(m),

|D(i,x,m)| ≤
∏

j≤dhn(i)e

exp
(
cpeimj

)
= exp(cpeim).

Moreover, by (4.18), m = m1 + . . .+mdhn(i)e ≥ dhn(i)e, and so |Mi(m)| ≤
(
m+dhn(i)e

m

)
≤

22m ≤ e2m. Next, since the vertices in x are ordered, there are at most
(

n
dhn(i)e

)
many

choices for the vector x ∈ Λ
dhn(i)e,<
n . Using these bounds in (4.19), and that R2 =

bβ/
√
dc ∨ 1, we obtain

P
(
∃A ∈ Alarge(i) : A 6∼Gn ∪H∈HA

∂intH
)

≤
(

n

dhn(i)e

) ∑
m≥c4.2i−22−i/dn

(
e2+cpei ·

(
1− p(1 ∧ β)dα

)b1∨(β/
√
d)c
)m

,

The constant cpei depends only on d. In what follows, we assume that p and β are such
that the first factor e(cpei+2) is at most the second factor to the power −1/2 (equivalently,
the second factor is at most e−2(cpei+2)). Then, the summands decay in m and the sum is
dominated by its first term. This gives for some C > 0 and n sufficiently large that

P
(
∃A ∈ Alarge(i) : A 6∼Gn ∪H∈HA

∂intH
)

≤ C
(

n

dhn(i)e

)(
1− p(1 ∧ β)dα

)b1∨(β/
√
d)cc4.2i−22−i/d−1n

. (4.20)

We now bound the binomial coefficient as
(
n
h

)
≤ nh/h!, and then eh =

∑∞
i=0 h

i/i! ≥ hh/h!

which implies h! ≥ (h/e)h. This estimate substituted into the bound on the binomial
coefficient gives

(
n
h

)
≤ (e · n/h)h. Using that h = dhn(i)e = d2−i−3i−2ne in (4.3) gives(

n

dhn(i)e

)
≤ (e2i+3i2)i

−22−i−3n+1 ≤ exp
(

(i+ 4 + 2 log i)
(
i−22−i−3n+ 1

))
, (4.21)

where we also used that 2 < e to obtain the right-hand-side. Using this bound in the
right-hand side of (4.20), we may compare the exponents. Let i◦ = i◦(d) be the smallest
i ∈ N such that for all n ≥ 1 and all i ≥ i◦,

(i+ 4 + 2 log i)(i−22−i−3n+ 1) < c4.2i
−22−i/dn.

Then for i ≥ i◦,

P
(
∃A ∈ Alarge(i) : A 6∼Gn ∪H∈HA

∂intH
)

≤ C
(

e ·
(
1− p(1 ∧ β)dα

)b1∨(β/
√
d)c
)c4.2i−22−i/d−1n

≤ C
(
1− p(1 ∧ β)dα

)b1∨(β/
√
d)cc4.2i−22−i/d−2n

, (4.22)

where the last bound follows from the assumption on the second factor between brackets
in the second line being smaller than e−2(cpei+2) above (4.20).

Now we treat the case i < i◦. Using that i◦ is a constant that only depends on d,
(comparing the coefficients of c4.2n in (4.20) to (4.21)) we require that p, β are such that
for all i < i◦ and all n ≥ 1,

exp
(
(i+ 4 + 2 log i)(i−22−i−3n+ 1)

)
≤
(
1− p(1 ∧ β)dα

)−b1∨(β/
√
d)cc4.2i−22−i/d−3n

. (4.23)
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In this case we obtain that for all i < i◦

P
(
∃A ∈ Alarge(i) : A 6∼Gn ∪H∈HA

∂intH
)

≤ C
(
1− p(1 ∧ β)dα

)b1∨(β/
√
d)cc4.2i−22−i/d−3n

.
(4.24)

We combine (4.22) and (4.24) and obtain for all i ≥ 1 that

P
(
∃A∈Alarge(i) :∂intA 6∼Gn ∪H∈HA(i)∂intH

)
≤ C

(
1− p(1 ∧ β)dα

)b1∨(β/
√
d)cc4.2i−22−i/d−3n

.

We apply this bound to all summands in (4.13), use that the terms of the upper bound are
increasing in i, that the last term is i = dlog2 ne (so 2−i/di−2n ≥ 2−1/d(1+log2 n)−2n(d−1)/d

for all i), and obtain for some c = c(d) > 0 and n sufficiently large

dlog2 ne∑
i=i?+1

P
(
∃A ∈ Alarge(i) : ∂intA 6∼Gn ∪H∈HA(i)∂intH

)
≤ dlog2 ne

(
1− p(1 ∧ β)dα

)b1∨(β/
√
d)cc(logn)−2n(d−1)/d

.

The logarithmic prefactor is of smaller order as n → ∞. This finishes the proof of
Claim 4.4 by adapting c to some slightly smaller c4.4 = c4.4(d).

We are ready to give the final proofs of the section.

Proof of Lemma 2.10. We recall the bound (4.9) – (4.10) on the probability of the event
E2(Gn) = {∃A ∈ Alarge : A 6∼Gn (∪H∈HA

∂intH)}, splitting it into two sums: one sum (4.9)
for small principal holes, and one sum (4.10) for large principal holes. First assume that
β < 2

√
d. Then the error term from Claim 4.3 is 0 regardless of the exact values of p and β.

Recall f(p, β) = 1−p(1∧β)dα from (2.16), which we assumed to be sufficiently small in the

statement of Lemma 2.10. To apply Claim 4.4, we must assume
(
1− p(1∧ β)dα

)b1∨(β/
√
d)c

to be sufficiently small, which follows if f(p, β) is small. Thus, when β < 2
√
d we obtain

by Claims 4.3 and 4.4,

P
(
E2(Gn)

)
≤
(
1− p(1 ∧ β)dα

)b1∨(β/
√
d)c·c4.4(logn)−2n(d−1)/d

.

When β ≥ 2
√
d, we obtain an extra error term from Claim 4.3. Now, our assumption on p

and β for β ≥ 2
√
d in Lemma 2.10 is that f(p, β) = (1−p)(log2 β)−2β(d−2)/(d−1)

is sufficiently
small. This criterion directly guarantees the criterion in Claim 4.3, and also implies the
necessary criterion that (1 − p)bβ/

√
dc is small when β ≥ 2

√
d in Claim 4.4. Thus, the

bounds in Claims 4.3 and 4.4 hold, and

P
(
E2(Gn)

)
≤
(
2 · (1− p)c4.3(1+log2 β)−2β(d−2)/(d−1))n

+
(
1− p

)b1∨(β/
√
d)c·c4.4(logn)−2n(d−1)/d

.

The constant c4.3 depends only on d. Thus, by ensuring that f(p, β) is sufficiently small,
the first term can be made smaller than 2−n. For such p and β, the second term dominates
the right-hand side. This finishes the proof.

Proof of Proposition 1.5. The proof is immediate from Claim 2.8 and Lemmas 2.9 and 2.10.
The condition n(log n)−2d/(d−1) ≥ k implies that k(d−1)/d ≤ n(d−1)/d/(log n)2, so that the
error bound from (2.15) dominates the error bound from (2.17). The coefficient of
−k(d−1)/d in the exponent can be made at least 1 by choosing either β sufficiently large
or p(1 ∧ β)dα sufficiently close to 1.
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5 Proof of Theorem 1.2

We will verify the statements in Theorem 1.2, based on Proposition 1.5.

Upper bounds

The upper bound on the second-largest component in (1.3) follows immediately from
Proposition 1.5, by substituting k = A(log n)d/(d−1) for some large constant A = A(δ).
For the upper bound on the cluster-size decay in (1.4) and the lower bounds in (1.3–1.4),
we cite two statements from our paper [24] which considers a more general class of
percolation models. The paper [24] considers models where vertices have associated
vertex marks, and the connection probability (1.2) contains an additional factor to β in
the numerator on the right-hand side of (1.2) that depends on these vertex-marks. The
model long-range percolation in Definition 1.1 hence forms a subclass of the model in
[24] in which the vertex set is Zd and all the vertex marks are identical to 1. Due to
this, conditions that regard vertices with high vertex-marks in [24] are automatically
satisfied for the long-range percolation model in Definition 1.1. We rephrase the results
of [24] to the setting of long-range percolation of Definition 1.1 by setting all vertex
marks identical to 1 in [24].

Proposition 5.1 (Prerequisites for the upper bound [24, Proposition 6.1]). Consider
supercritical long-range percolation with parameters α > 1, and d ∈ N. Assume that
there exist c1 ≥ 0 and ζ, c2, c3 > 0, and a function n0(k) = O(k1+c1) such that for all k
sufficiently large, and whenever n ∈ [n0(k),∞),

P
(
|C(2)

n | > k
)
≤ nc2 exp

(
− c3kζ

)
, (5.1)

P
(
|C(1)

n | ≤ nc3
)
≤ n−1−c3 . (5.2)

Then there exists a constant A > 0 such that for all k suffiently large constant and n

satisfying n ∈ [n0(k),∞],

P
(
|Cn(0)| > k, 0 /∈ C(1)

n

)
≤ exp

(
− (1/A)kζ

)
,

and
|C(1)
n |
n

P−→ P
(
0↔∞

)
, as n→∞.

We have just proved the prerequisite (5.1) for our case in Proposition 1.5 with
ζ = (d − 1)/d, c2 = 2 and c3 = 1. The other prerequisite (5.2) is a consequence of the
following lemma ((5.3) below in particular). The second statement of the lemma, (5.4)
will be needed for the lower bound of Theorem 1.2 shortly.

Lemma 5.2. Consider long-range percolation in Definition 1.1 with α > 1, and d ≥ 2.
For all p ∈ (0, 1), there exists β5.2 = β5.2(p, d, α) > 0 such that for all β ≥ β5.2 there exists
ρ > 0 such that for n sufficiently large,

P
(
|C(1)

n | ≥ ρn
)
≥ 1− exp

(
− ρn(d−1)/d

)
, (5.3)

P
(
|Cn(0)| ≥ ρn

)
≥ ρ. (5.4)

The same bounds hold whenever p(1 ∧ β)dα is sufficiently close to 1.

Proof. We start with showing (5.3). If p(1 ∧ β)dα is sufficiently close to 1, then we
can do the following. Taking Gn as a realization of LRP in Λn, and retaining only the
edges of Gn that are between nearest-neighbor vertices in Zd1, we obtain the classical
iid nearest-neighbor Bernoulli percolation in Λn. Denote this graph by G(nn)

n and its
largest component by C(1)

n (G(nn)
n ). Then since E(G(nn)

n ) ⊆ E(Gn), for the sizes of the largest
components it holds that |C(1)

n | ≥ |C(1)
n (G(nn)

n )|. Since p(1∧β)dα is sufficiently close to 1, the
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surface-order large devation result of [14, Theorem 1.1] applies to C(1)
n (G(nn)

n ), and (5.3)
immediately follows.

Assume now that p(1 ∧ β)dα is not sufficiently close to 1 for the nearest-neighbor
subgraph to ensure the required result. Let

m(n) :=

⌈
n1/d

β/(2
√
d)

⌉d
. (5.5)

Partition Λn into m(n) identical boxes Q1, Q2, Qm(n), each having sidelength r(n) =

n1/d/m(n)1/d ≤ β/(2
√
d). Denote ni := |Zd ∩Qi| the number of vertices in box Qi. Then,

for n large enough, for all i ≤ m(n) it holds that ni ∈ [C(β), 4C(β)], where for all n
sufficiently large

C(β) := Vol(Q1)/2 = r(n)d/2 ∈
[

βd

4(2
√
d)d

,
βd

2(2
√
d)d

]
. (5.6)

Let us say that Qi, Qj are adjacent boxes if they share a (d− 1)-dimensional face. Since
the diameter of each box is at most β/2, by (1.2), if Qi, Qj are adjacent boxes,

P ({x, y} ∈ E(Gn)) = p for all x ∈ Qi ∩Zd, y ∈ Qj ∩Zd, (5.7)

independently of other edges. The same is true when both x, y ∈ Qi ∩Zd.
Let us denote the subgraph of Gn induced by the vertices in the box Qi by Gn(Qi).

Gn(Qi) stochastically dominates an Erdős–Rényi random graph with ni ∈ [C(β), 4C(β)]

vertices and edge probability p. The probability that the graph diameter of Gn(Qi) is at
most 2, is by a union bound at most

(
ni

2

)
(1− p)ni−2 → 0 as ni →∞. If the graph diameter

is at most 2, then Gn(Qi) must be connected. Thus, for any fixed ε > 0, by choosing
β (and hence also C(β)) large enough depending on ε, the probability that Gn(Qi) is
connected is at least 1 − ε. Further, the graphs (Gn(Qi))i≤m(n) are independent since
they are induced subgraphs of long-range percolation on vertices in disjoint boxes, and
edges are present independently in Gn by Definition 1.1.

We define a deterministic auxiliary graph G. Every box Qi corresponds to a vertex vi,
for each i ≤ m(n), and two vertices vi, vj in G are adjacent if the corresponding boxes
Qi, Qj are adjacent, i.e., they share a (d− 1)-dimensional face. (Similarly, one can define
the 1-distance between any two vertices vi, vj by the length of the shortest path between

vi, vj via adjacent vertices.) Hence, the vertices of G then form a box Λ̃m(n) of volume
m(n) of Zd1. This we call the re-normalized lattice.

Now we define a random subgraph H of G. We declare a vertex vi of G active when
Gn(Qi) is connected. Edges of H will be only present between active and adjacent
vertices in G. Assuming that two vertices vi, vj ∈ H are adjacent in G and both active,
we declare the edge between v1 and v2 open, equivalently, present in E(H), if there exist
vertices x ∈ Qi ∩Zd, y ∈ Qj ∩Zd with the edge {u, v} ∈ E(Gn). Conditional on vi, vj being
active, by (5.7), the nearest-neighbor edge between v1 and v2 is open with probability
1− (1− p)ninj ≥ 1− (1− p)C(β)2 ≥ 1− ε, where the last inequality holds for arbitrarily
small ε > 0 by making C = C(β) in (5.6) large enough. Different edges of E(G) are
present conditionally independently in E(H) given that the end-vertices are active.

Finally, let H be the induced graph obtained from H on active vertices and open
edges E(H). By the observation above, the vertices (vi)i≤m(n) form a box Λ̃m(n) of volume

m(n) of Zd1. Then H stochastically dominates a site-bond percolation of Z1
d in Λ̃m(n).

More precisely, since vertices of G are active independently with probability at least
1− ε, and edges of G between adjacent vertices are present conditionally independently
again with probability at least 1− ε in H, each edge in the renormalised lattice Λ̃m(n) is
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open with probability at least (1− ε)3. The model is 1-dependent, since the state of any
edge {vi, vj} of H depends only on edges sharing at least one vertex with {vi, vj}.

Since ε can be chosen arbitrarily small, by [30, Theorem 0.0] or [32, Remark 6.2], the
graph H therefore stochastically dominates iid nearest-neighbor bond percolation G?

on Λ̃m(n) with parameter p? that can also be made arbitrarily close to 1. Hence for the
sizes of the largest connected components, there is a coupling such that |C(1)

m(n)(H)| ≥
|C(1)

m(n)(G
?)| holds. Thus, [14, Theorem 1.1] applies to |C(1)

m(n)(G
?)|, and so for some

c(β) > 0 we obtain that using (5.5)

P
(
|C(1)

m(n)(H)| ≥ ρm(n)
)
≥ e−cm(n)(d−1)/d

≥ 1− e−c(β)n(d−1)/d

. (5.8)

An active vi ∈ G corresponds to a box Qi that an contains at least C(β) vertices and the
graphs G(Qi) are connected, so it holds deterministically that |C(1)

n (Gn)| ≥ C(β)|C(1)

m(n)(H)|.
This, combined with (5.8) implies (5.3).

We turn now to prove (5.4). Consider a smaller box Λ2−dn. Define then

Z` :=
∑

x∈Λ
2−dn

1{|C
2−dn

(x)|≥`}.

We argue that {C(1)
n ≥ `} ⊆ {Z` ≥ `}. Indeed, if the largest component is at least of size `

then in Z` at least ` many indicators are 1. Then, using (5.3) with ρ2−d for a lower bound,
and applying a Markov’s inequality with ` = ρ2−dn followed by a union bound yields that

1− exp(−ρ2−dn(d−1)/d) ≤ P(C(1)

n ≥ ρ2−dn) ≤ P(Zρ2−dn ≥ ρ2−dn)

≤
E[Zρ2−dn]

ρ2−dn

≤ 1

ρ2−dn

∑
x∈Λ

2−dn

P
(
|C2−dn(x)| ≥ ρ2−dn

)
.

If for all x ∈ Λ2−dn it would hold that P
(
|C2−dn(x)| ≥ ρ2−dn

)
≤ ρ/2, then the right-hand

side would be at most 1/2, while the left-hand side tends to 1.
Hence, there must exist x ∈ Λ2−dn such that P

(
|C2−dn(x)| ≥ ρ2−dn

)
≥ ρ/2. Let

x ∈ Λ2−dn be such a vertex. Then, by the translation invariance of the infinite model G∞,
looking at the component of the origin C(−x)

2−dn
(0) inside the box Λ2−dn(−x), it holds that

P
(
|C(−x)

2−dn
(0)| ≥ ρ2−dn

)
= P

(
|C2−dn(x)| ≥ ρ2−dn

)
.

However, the shifted box Λ2−dn(−x) ⊆ Λn for any x ∈ Λ2−dn, and hence C(−x)

2−dn
(0) ⊆ Cn(0).

Hence, we obtain

P
(
|Cn(0)| ≥ ρ2−dn

)
≥ P

(
|C2−dn(x)| ≥ ρ2−dn

)
≥ ρ/2.

Hence, (5.4) follows by adapting the constant ρ.

Since both prerequisites of Proposition 5.1 are satisfied, this finishes the proof of the
upper bounds of Theorem 1.2.

Lower bounds

For the lower bound we adapt the lower bound from [24], rephrased to the model of
long-range percolation of Definition 1.1, by setting the vertex set to Zd and all vertex
marks to 1 in [24]. The lower bound of cluster-size decay and second-largest component
that we are about the cite – [24, Proposition 7.1] – requires that in a box of volume
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n a linear sized (at least ρn) giant component on vertices with marks in the interval
[1,polylog(n)] exists, with probability at least ρ > 0. Since in long-range percolation all
vertex marks are identical to 1, this requirement of [24, Proposition 7.1] turns into the
requirement (5.9) below for LRP. Moreover, the number mZ from [24, Proposition 7.1]
equals 1 when we restrict to long-range percolation with α > 1 + 1/d: in the setting
without vertex marks, mZ counts the number of maximizers in the set {2− α, (d− 1)/d}.
Proposition 5.3 (Lower bound [24, Proposition 7.1]). Consider supercritical long-range
percolation with parameters α > 1 + 1/d, d ≥ 2, and assume that p ∧ β ∈ (0, 1). Assume
that there exists a constant ρ > 0 such that for all n sufficiently large,

P
(
|Cn(0)| ≥ ρn

)
≥ ρ. (5.9)

Then there exists A > 0 such that for all n ∈ [Ak,∞],

P
(
|Cn(0)| > k, 0 /∈ C(1)

n

)
≥ exp

(
−Ak(d−1)/d

)
. (5.10)

Moreover, there exists δ, ε > 0, such that for all (finite) n sufficiently large

P
(
|C(2)

n | < (ε log n)d/(d−1)
)
≤ n−δ. (5.11)

In Lemma 5.2 we has just proved in (5.4) the requirement (5.9). The requirements
in Theorem 1.2 are more restrictive then the assumption p ∧ β < 1 here, so the lower
bounds in Theorem 1.2 follow from Proposition 5.3. In particular, (5.11) implies the
lower bound in (1.3), and after taking logarithm of both sides, (5.10) implies the lower
bound in (1.4).

A Proofs of preliminary claims

Proof of Claim 2.3. Identify a path on Zd1 with its vertex set. Given the set A, we define
an equivalence class↔A,1 on the vertices of A, where x↔A,1 y if and only if there is a
1-connected path π (of Zd1) consisting of vertices of A that connects x and y. We then
define the blocks A1, A2, . . . , Ab as the equivalence classes of↔A,1. In other words, start
from any vertex x ∈ A and define its block as all vertices that x is 1-connected to using
paths of only vertices of A (and the edges of Zd1), and then we iterate this over all x ∈ A,
yielding the (different) blocks A1, A2, . . . , Ab.

Each Ai is 1-connected since every pair of vertices in Ai is connected by a 1-connected
path by the definition of ↔A,1, i.e., Ai is a block. Further, if i 6= j then ‖Ai − Aj‖1 > 1

must hold, since otherwise there would be a 1-connected path from some x ∈ Ai to some
y ∈ Aj , and that would contradict x 6↔a,1 y. Uniqueness of this decomposition follows
because↔A,1 is an equivalence relation.

When the set A is the vertex set of a component of C of G, we show that the block
graph HG((Ai)i≤b) is connected. Suppose otherwise. This means that there is a proper
subset of blocks whose union is not connected to the union of all the other blocks.
However, this contradicts that C is a component of G.

Proof of Claim 2.5. We show that ∂̃intB̄ ⊆ ∂̃intB. We argue by contradiction. Assume
that there exists x ∈ ∂̃intB̄ \ ∂̃intB. Since ∂̃intB̄ ⊆ B̄ = B ∪ (∪H∈HB

H) and B is disjoint
from B̄ \B, there are two cases. Either x ∈ B \ ∂̃intB or x ∈ ( ∪H∈HB

H) \ ∂̃intB.

For the first case assume that x ∈ B \ ∂̃intB. Then all its Zd1-neighboring vertices
were also in B by Definition 2.4 of the interior boundary. Thus x is surrounded by B,
and hence x ∈ B̄. Similarly, the neighboring vertices are also in B̄, contradicting that
x ∈ ∂̃intB̄.
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For the second case assume that x ∈ (∪H∈HB
H). Then x was surrounded by B, but

then also all its Zd1-neighboring vertices were either a member of B or surrounded by B,
contradicting again that x ∈ ∂̃intB̄.

We move on to part (ii). Assume that B̄1∩ B̄2 6= ∅, then there exists x ∈ B̄1∩ B̄2. Since
B1 and B2 are 1-disconnected, it is excluded that x ∈ B1 ∩B2. Assume there exists some
x ∈ (B̄2 \B2) ∩B1. Then, since x ∈ (B̄2 \B2), x is surrounded by B2. Further, any vertex
y ∈ B1 must be surrounded by B2, since ‖B1 − B2‖1 ≥ 2 and B1 itself is 1-connected.
Hence, B1 ⊆ B̄2. Further, vertices surrounded by B1 are then also surrounded by
B2, so we obtain B̄1 ⊆ B̄2. The argument when there exists some x ∈ (B̄1 \ B1) ∩ B2

follows analogously yielding that in that case B̄2 ⊆ B̄1. Lastly, assume that there exists
x ∈ (B̄1 \ B1) ∩ (B̄2 \ B2), i.e., x is in the intersection of a hole of B2 and a hole of B1,
in particular it is surrounded by both B1 and B2. Then there exists, for some j ≥ 1,
a (self-avoiding) path π = (x, x1, . . . , xj) on Zd1 such that x` ∈ (B̄1 \ B1) ∩ (B̄2 \ B2) for

all ` ≤ j − 1 and then xj ∈ ∂̃intB1 ∪ ∂̃intB2. That is, from x we start a path π of ‘hole’
vertices until we hit one of the interior boundaries of sets B1 or B2. Assume w.l.o.g. that
xj ∈ ∂̃intB1. Since there were no vertices from B2 on the path and x is surrounded by B2,
it must follow that also xj is surrounded by B2. Similar to the previous case, it follows
that B̄1 ⊆ B̄2.

Part (iii) claims that when B̄1 ∩ B̄2 = ∅, and initially B1, B2 are 1-disconnected, then
‖B̄1 − B̄2‖1 ≥ 2. By definition of ‖ · ‖1 between sets, we have

‖B̄1−B̄2‖1 = min
x1∈B̄1\B1,x2∈B̄2\B2

{
‖B1−B2‖1, ‖{x1}−B2‖1, ‖B1−{x2}‖1, ‖x1−x2‖1

}
. (A.1)

Each 1-connected path from xi ∈ B̄i \ Bi to any y /∈ B̄i must cross a vertex in ∂̃intB̄i.
Consequently,

‖{x1}−B2‖1 ≥ ‖{x1}− ∂̃intB̄1‖1 +‖∂̃intB̄1−B2‖1 ≥ ‖{x1}− ∂̃intB̄1‖1 +‖∂̃intB1−B2‖1 ≥ 2,

where the second inequality follows since ∂̃intB̄1 ⊆ ∂̃intB1 by part (i), and the third
inequality since by 1-disconnectedness of B1 and B2 the second term on the right-hand
side is at least two. The third and fourth term in the minimum in (A.1) can be bounded
similarly. It follows that B̄1 and B̄2 are 1-disconnected.

The fourth statement is immediate from [14, Lemma 2.1] which states that the interior
and exterior boundaries with respect to Zd1 of any ∗-connected set are ∗-connected.

We turn to the last statement, and show that for any hole H of a block B, H = H̄, i.e.,
that H does not contain holes. This is true since H was formed as a maximal 1-connected
subset of the vertices in Λn \B surrounded by B, see below (2.2) in Definition 2.1. So if
there were a hole J inside H, then J must intersect B, which would then contradict the
1-connectedness of B, since ‖J − ∂extH̄‖1 ≥ 2 as H fully surrounds J . The fact that the
interior and exterior boundaries of a hole are ∗-connected follows now from Part (iv).

Proof of Claim 2.6. The proof is inspired by an argument by Deuschel and Pisztora
[14, Proof of (A.3)]. The inequalities with (?) in (2.5) follow by standard isoperimetric
inequalities, but we will also derive them below.

We will first show the bounds for ∂int and ∂̃int. At the end of the proof we adjust it
to ∂ext and ∂̃ext. We start by showing that there exists δ′ > 0 such that ∂intA ≥ δ′∂̃intA

for all A ⊆ Λn of size at most 3n/4. Fix such a set A ⊆ Λn. We recall an inequality
related to the isoperimetric inequality by Loomis and Whitney [31, Theorem 2]. For
a set A ⊆ Λn, let Si := πi(A) denote the projection πi of A onto the i-th coordinate
hyperplane. That is, for a vertex with coordinates x = (x1, . . . , xi−1, xi, xi+1, . . . , xd) we
define πix := (x1, . . . , xi−1, 0, xi+1, . . . , xd). Then [31, Theorem 2] proves that

|A|d−1 ≤
∏
i∈[d]

|Si|. (A.2)
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Let i? be the coordinate dimension that contains the largest projected set Si? (ties broken
arbitrarily), so that as a result of (A.2),

|Si? | ≥ |A|(d−1)/d. (A.3)

We abbreviate S? = Si? , and write π? for the the i?-th projection. For s ∈ S? we define
the pre-image of s as

π↑? := {y ∈ A : π?(y) = s}
We now describe ‘fibers’ of A, informally, where A has a full n1/d-length straight line
segment on the i?th coordinate connecting two opposite faces of the box Λn. Formally,
we call a vertex s ∈ S? a projection of a fiber or shortly a fiber if there is no vertex in
∂intA that projects to s via π?, and define the set

F := {s ∈ S? : @y ∈ ∂intA with π?(y) = s}. (A.4)

The pre-image of any fiber does not contain any vertex of ∂intA within Λn, hence,
it contains a full length-n1/d line Ls connecting the two opposite faces of Λn, with
π?(Ls) = s. This is because all vertices that share all coordinates with s except the
i?th coordinate, project to s via π?, so A must contain all of them (the possibility of
A containing none of Ls is excluded by assuming s ∈ S?), otherwise there would be a
boundary vertex of A among them. Then the pre-image of any such fiber intersects the
box-boundary ∂̃intΛn in exactly 2 vertices, which then must be also boundary vertices of
A with respect to Zd:

|π↑?(s) ∩ ∂̃intΛn| = |π↑?(s) ∩ ∂̃intA| = 2, ∀s ∈ F.

By the definition in (A.4), the pre-image of vertices in F are disjoint of ∂intA (the interior
boundary of A with respect to Λn) by the definition in (2.4), see also the text below (2.4).
By the definition (A.4), the pre-image of each vertex z ∈ S? \ F contains at least one
vertex in ∂intA. A similar argument as the one for fibers shows that the pre-image of each
vertex z ∈ S? \ F contains at least two vertices in ∂̃intA. Namely, if z is not a projection
of a fiber, then the line segment Lz ∩A must not equal Lz and hence it contains at least
one vertex pair x, y so that x ∈ A, y ∈ Λn \ A. In this case y ∈ ∂extA and so x ∈ ∂intA.
Further, either there is a second such vertex pair, or if there is no second such vertex
pair then Ls ∩A must contain one vertex of Ls ∩ ∂̃intΛn, yielding that the pre-image of z
contains at least two vertices of ∂̃intA. Formally

|π↑?(z) ∩ ∂intA| ≥ 1 and |π↑?(z) ∩ ∂̃intA| ≥ 2 ∀z ∈ S? \ F. (A.5)

Further, for any configuration of A ∩ Lz, we see that the difference between the above
two intersections is the number of vertices that A ∩ Ls ∩ ∂̃intΛn contains. We obtain

|π↑?(z) ∩ ∂̃intA| − |π↑?(z) ∩ ∂intA| ≤ 2 ∀z ∈ S? \ F.

We characterize z ∈ S \ F according to this difference. For j ∈ {0, 1, 2} we define

(S? \ F )j :=
{
z ∈ S? \ F : |π↑?(z) ∩ ∂̃intA| − |π↑?(z) ∩ ∂intA| = j

}
.

Then we can count all vertices in ∂̃intA according to their projection via π∗, and obtain
that

|∂̃intA| =
∑
s∈F
|π↑?(s) ∩ ∂̃intA|+

∑
j∈{0,1,2}

∑
z∈(S?\F )j

|π↑?(z) ∩ ∂̃intA|

= 2|F |+
∑

j∈{0,1,2}

∑
z∈(S\F )j

|π↑?(z) ∩ ∂̃intA|

= 2|F |+
∑

j∈{0,1,2}

∑
z∈(S?\F )j

(|π↑?(z) ∩ ∂intA|+ j).
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Now we consider the ratio of the boundaries, i.e.,

|∂intA|
|∂̃intA|

=

∑
j∈{0,1,2}

∑
z∈(S?\F )j

|π↑?(z) ∩ ∂intA|

2|F |+ |(S? \ F )1|+ 2|(S? \ F )2|+
∑
j∈{0,1,2}

∑
z∈(S?\F )j

|π↑?(z) ∩ ∂intA|
.

Taking the set sizes |(S? \F )j |, |F | fixed, it is elementary to see that the ratio is increasing
in the summands of the double sum, i.e., its minimal value is attained when all summands
are minimal. Now we use that each of the summands is at least 1 by (A.5), and obtain

|∂intA|
|∂̃intA|

≥ |S? \ F |
2|F |+ |(S? \ F )1|+ 2|(S? \ F )2|+ |S? \ F |

.

We bound the denominator from above, i.e.,(
|F |+ |S? \ F |

)
+
(
|F |+ |(S? \ F )1|+ |(S? \ F )2|

)
+ |(S? \ F )2| ≤ 3|S?|,

to obtain
|∂intA|
|∂̃intA|

≥ |S? \ F |
3|S?|

. (A.6)

We focus on the ratio on the right-hand side. The idea here is that our two assumptions
that |A| < 3n/4 and that S? is the largest projection set together prevents the relative
ratio of fibers in S? to be large. For each vertex s ∈ F , there are n1/d-many vertices
in A that are projected onto it (namely Ls). Using also |S?| ≥ |A|(d−1)/d by (A.3) and
n ≥ (4/3)|A|, we get

|A| ≥ |F |n1/d =
|F |
|S?|
|S?|n1/d ≥ |F |

|S?|
|A|(d−1)/dn1/d ≥ (4/3)1/d |F |

|S?|
|A|.

After rearranging we obtain |F | ≤ (3/4)1/d|S?|, and using this in (A.6), we obtain that

|∂intA| ≥
(
1− (3/4)1/d

)
|∂̃intA|/3,

which finishes the proof of the first inequality in (2.5) with δ = (1− (3/4)1/d)/3. The left-
hand inequality with (?) in (2.5) is not even sharp, and follows immediately from (A.3),
since each projected vertex corresponds to at least two interior boundary vertices with
respect to Zd, i.e., |∂̃intA| ≥ 2|S?| ≥ 2|A|(d−1)/d.

We turn to the inequality concerning ∂extA and ∂̃extA in (2.5). The inequality with
(?) in (2.5) holds for the same reason as for ∂̃intA. Namely, each projected vertex
corresponds to at least two exterior boundary vertices with respect to Zd, i.e., |∂̃extA| ≥
2|S?| ≥ 2|A|(d−1)/d.

To obtain a lower bound on the ratio |∂extA|/|∂̃extA|, we use that each exterior
boundary vertex is within distance one from an interior boundary vertex, which holds
for both for ∂ and ∂̃. Since each vertex has at most 2d vertices within distance one, it
follows that

|∂extA| ≥
1

2d
· |∂intA| ≥

1

2d
· 1− (3/4)1/d

3
· |∂̃intA| ≥

1

2d
· 1− (3/4)1/d

3
· 1

2d
· |∂̃extA|,

and the proof is finished for δ = (2d)−2
(
1− (3/4)1/d

)
/3.

Proof of Lemma 2.7. We first show that there exists c′pei > 0 such that for all x ∈ Zd and
m ∈ N

|{A ⊆ Λn : A 3 x, |A| = m,A is ∗-connected}| ≤ exp(c′peim). (A.7)

Let A be in the set on the left-hand side. Since A is ∗-connected, the induced subgraph
Zd∞[A] contains a spanning tree containing x, which can be associated to a walk on the
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spanning tree (for example, walking through the tree in depth-first order), visiting each
vertex in A at most twice. Since the degree of any vertex is 3d − 1 in Zd∞, the walk has
at most 3d − 1 options at each step for its next vertex, and has length at most 2m. This
shows (A.7).

For (2.6), we observe that each set A without holes (A = Ā) can be uniquely recon-
structed from its interior boundary ∂̃intA (a vertex is in Ā \ ∂̃intA iff it is surrounded by
∂̃intA), which is ∗-connected [14, Lemma 2.1]. Since we assume |∂̃intA| = m, the isoperi-
metric inequality (2.5) ensures that |A| ≤ C1m

d/(d−1) for some C1 > 0 for all m ∈ N. This
interior boundary must either contain x or surround x as defined in Definition 2.4.

We claim that there is a constant C > 0 such that ‖x − ∂̃intA‖2 ≤ Cm1/(d−1) for all
x,A with A 3 x and A = Ā. Indeed, suppose otherwise. Then, on Zd, vertices in the
Euclidean ball of radius Cm1/(d−1) around x would be contained fully in A (without
containing a vertex of ∂̃intA). This would mean, for some dimension-dependent constant
cd, that |A| ≥ cd(Cm

1/(d−1))d, which contradicts that |A| ≤ md/(d−1) by Claim 2.6 when
C is chosen sufficiently large.

Hence, we may find a vertex y ∈ ∂̃intA∩Ball(Cm1/(d−1), x) where the latter set denotes
the Euclidean ball of radius Cm1/(d−1) around x. Then, since ∂̃intA is a ∗-connected set of
size m, (A.7) ensures that the number of possible sets S that may form ∂̃intA is exp(cpeim).
Summing over the possible choices of y ∈ Ball(Cm1/(d−1), x), we arrive at

|{A ∈ A : A 3 x,A = Ā, |∂̃intA| = m}| ≤ cdCdmd/(d−1) exp(c′peim).

The result follows by absorbing the factor cdCmd/(d−1) into the constant cpei.
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